xref: /linux/io_uring/io_uring.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 struct io_defer_entry {
126 	struct list_head	list;
127 	struct io_kiocb		*req;
128 	u32			seq;
129 };
130 
131 /* requests with any of those set should undergo io_disarm_next() */
132 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
133 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
134 
135 /*
136  * No waiters. It's larger than any valid value of the tw counter
137  * so that tests against ->cq_wait_nr would fail and skip wake_up().
138  */
139 #define IO_CQ_WAKE_INIT		(-1U)
140 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
141 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
142 
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 					 struct io_uring_task *tctx,
145 					 bool cancel_all);
146 
147 static void io_queue_sqe(struct io_kiocb *req);
148 
149 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
150 
151 struct kmem_cache *req_cachep;
152 static struct workqueue_struct *iou_wq __ro_after_init;
153 
154 static int __read_mostly sysctl_io_uring_disabled;
155 static int __read_mostly sysctl_io_uring_group = -1;
156 
157 #ifdef CONFIG_SYSCTL
158 static struct ctl_table kernel_io_uring_disabled_table[] = {
159 	{
160 		.procname	= "io_uring_disabled",
161 		.data		= &sysctl_io_uring_disabled,
162 		.maxlen		= sizeof(sysctl_io_uring_disabled),
163 		.mode		= 0644,
164 		.proc_handler	= proc_dointvec_minmax,
165 		.extra1		= SYSCTL_ZERO,
166 		.extra2		= SYSCTL_TWO,
167 	},
168 	{
169 		.procname	= "io_uring_group",
170 		.data		= &sysctl_io_uring_group,
171 		.maxlen		= sizeof(gid_t),
172 		.mode		= 0644,
173 		.proc_handler	= proc_dointvec,
174 	},
175 };
176 #endif
177 
178 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
179 {
180 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
181 }
182 
183 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
184 {
185 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
186 }
187 
188 static bool io_match_linked(struct io_kiocb *head)
189 {
190 	struct io_kiocb *req;
191 
192 	io_for_each_link(req, head) {
193 		if (req->flags & REQ_F_INFLIGHT)
194 			return true;
195 	}
196 	return false;
197 }
198 
199 /*
200  * As io_match_task() but protected against racing with linked timeouts.
201  * User must not hold timeout_lock.
202  */
203 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
204 			bool cancel_all)
205 {
206 	bool matched;
207 
208 	if (tctx && head->tctx != tctx)
209 		return false;
210 	if (cancel_all)
211 		return true;
212 
213 	if (head->flags & REQ_F_LINK_TIMEOUT) {
214 		struct io_ring_ctx *ctx = head->ctx;
215 
216 		/* protect against races with linked timeouts */
217 		spin_lock_irq(&ctx->timeout_lock);
218 		matched = io_match_linked(head);
219 		spin_unlock_irq(&ctx->timeout_lock);
220 	} else {
221 		matched = io_match_linked(head);
222 	}
223 	return matched;
224 }
225 
226 static inline void req_fail_link_node(struct io_kiocb *req, int res)
227 {
228 	req_set_fail(req);
229 	io_req_set_res(req, res, 0);
230 }
231 
232 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
233 {
234 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
235 }
236 
237 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
238 {
239 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
240 
241 	complete(&ctx->ref_comp);
242 }
243 
244 static __cold void io_fallback_req_func(struct work_struct *work)
245 {
246 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
247 						fallback_work.work);
248 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
249 	struct io_kiocb *req, *tmp;
250 	struct io_tw_state ts = {};
251 
252 	percpu_ref_get(&ctx->refs);
253 	mutex_lock(&ctx->uring_lock);
254 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
255 		req->io_task_work.func(req, &ts);
256 	io_submit_flush_completions(ctx);
257 	mutex_unlock(&ctx->uring_lock);
258 	percpu_ref_put(&ctx->refs);
259 }
260 
261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
262 {
263 	unsigned int hash_buckets;
264 	int i;
265 
266 	do {
267 		hash_buckets = 1U << bits;
268 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
269 						GFP_KERNEL_ACCOUNT);
270 		if (table->hbs)
271 			break;
272 		if (bits == 1)
273 			return -ENOMEM;
274 		bits--;
275 	} while (1);
276 
277 	table->hash_bits = bits;
278 	for (i = 0; i < hash_buckets; i++)
279 		INIT_HLIST_HEAD(&table->hbs[i].list);
280 	return 0;
281 }
282 
283 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
284 {
285 	struct io_ring_ctx *ctx;
286 	int hash_bits;
287 	bool ret;
288 
289 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
290 	if (!ctx)
291 		return NULL;
292 
293 	xa_init(&ctx->io_bl_xa);
294 
295 	/*
296 	 * Use 5 bits less than the max cq entries, that should give us around
297 	 * 32 entries per hash list if totally full and uniformly spread, but
298 	 * don't keep too many buckets to not overconsume memory.
299 	 */
300 	hash_bits = ilog2(p->cq_entries) - 5;
301 	hash_bits = clamp(hash_bits, 1, 8);
302 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
303 		goto err;
304 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
305 			    0, GFP_KERNEL))
306 		goto err;
307 
308 	ctx->flags = p->flags;
309 	ctx->hybrid_poll_time = LLONG_MAX;
310 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
311 	init_waitqueue_head(&ctx->sqo_sq_wait);
312 	INIT_LIST_HEAD(&ctx->sqd_list);
313 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
314 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
315 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
316 			    sizeof(struct async_poll));
317 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
318 			    sizeof(struct io_async_msghdr));
319 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
320 			    sizeof(struct io_async_rw));
321 	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
322 			    sizeof(struct uring_cache));
323 	spin_lock_init(&ctx->msg_lock);
324 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
325 			    sizeof(struct io_kiocb));
326 	ret |= io_futex_cache_init(ctx);
327 	if (ret)
328 		goto free_ref;
329 	init_completion(&ctx->ref_comp);
330 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
331 	mutex_init(&ctx->uring_lock);
332 	init_waitqueue_head(&ctx->cq_wait);
333 	init_waitqueue_head(&ctx->poll_wq);
334 	spin_lock_init(&ctx->completion_lock);
335 	spin_lock_init(&ctx->timeout_lock);
336 	INIT_WQ_LIST(&ctx->iopoll_list);
337 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
338 	INIT_LIST_HEAD(&ctx->defer_list);
339 	INIT_LIST_HEAD(&ctx->timeout_list);
340 	INIT_LIST_HEAD(&ctx->ltimeout_list);
341 	init_llist_head(&ctx->work_llist);
342 	INIT_LIST_HEAD(&ctx->tctx_list);
343 	ctx->submit_state.free_list.next = NULL;
344 	INIT_HLIST_HEAD(&ctx->waitid_list);
345 #ifdef CONFIG_FUTEX
346 	INIT_HLIST_HEAD(&ctx->futex_list);
347 #endif
348 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
349 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
350 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
351 	io_napi_init(ctx);
352 	mutex_init(&ctx->resize_lock);
353 
354 	return ctx;
355 
356 free_ref:
357 	percpu_ref_exit(&ctx->refs);
358 err:
359 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
360 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
361 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
362 	io_alloc_cache_free(&ctx->uring_cache, kfree);
363 	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
364 	io_futex_cache_free(ctx);
365 	kvfree(ctx->cancel_table.hbs);
366 	xa_destroy(&ctx->io_bl_xa);
367 	kfree(ctx);
368 	return NULL;
369 }
370 
371 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
372 {
373 	struct io_rings *r = ctx->rings;
374 
375 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
376 	ctx->cq_extra--;
377 }
378 
379 static bool req_need_defer(struct io_kiocb *req, u32 seq)
380 {
381 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
382 		struct io_ring_ctx *ctx = req->ctx;
383 
384 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
385 	}
386 
387 	return false;
388 }
389 
390 static void io_clean_op(struct io_kiocb *req)
391 {
392 	if (req->flags & REQ_F_BUFFER_SELECTED) {
393 		spin_lock(&req->ctx->completion_lock);
394 		io_kbuf_drop(req);
395 		spin_unlock(&req->ctx->completion_lock);
396 	}
397 
398 	if (req->flags & REQ_F_NEED_CLEANUP) {
399 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
400 
401 		if (def->cleanup)
402 			def->cleanup(req);
403 	}
404 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
405 		kfree(req->apoll->double_poll);
406 		kfree(req->apoll);
407 		req->apoll = NULL;
408 	}
409 	if (req->flags & REQ_F_INFLIGHT)
410 		atomic_dec(&req->tctx->inflight_tracked);
411 	if (req->flags & REQ_F_CREDS)
412 		put_cred(req->creds);
413 	if (req->flags & REQ_F_ASYNC_DATA) {
414 		kfree(req->async_data);
415 		req->async_data = NULL;
416 	}
417 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
418 }
419 
420 static inline void io_req_track_inflight(struct io_kiocb *req)
421 {
422 	if (!(req->flags & REQ_F_INFLIGHT)) {
423 		req->flags |= REQ_F_INFLIGHT;
424 		atomic_inc(&req->tctx->inflight_tracked);
425 	}
426 }
427 
428 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
429 {
430 	if (WARN_ON_ONCE(!req->link))
431 		return NULL;
432 
433 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
434 	req->flags |= REQ_F_LINK_TIMEOUT;
435 
436 	/* linked timeouts should have two refs once prep'ed */
437 	io_req_set_refcount(req);
438 	__io_req_set_refcount(req->link, 2);
439 	return req->link;
440 }
441 
442 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
443 {
444 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
445 		return NULL;
446 	return __io_prep_linked_timeout(req);
447 }
448 
449 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
450 {
451 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
452 }
453 
454 static inline void io_arm_ltimeout(struct io_kiocb *req)
455 {
456 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
457 		__io_arm_ltimeout(req);
458 }
459 
460 static void io_prep_async_work(struct io_kiocb *req)
461 {
462 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
463 	struct io_ring_ctx *ctx = req->ctx;
464 
465 	if (!(req->flags & REQ_F_CREDS)) {
466 		req->flags |= REQ_F_CREDS;
467 		req->creds = get_current_cred();
468 	}
469 
470 	req->work.list.next = NULL;
471 	atomic_set(&req->work.flags, 0);
472 	if (req->flags & REQ_F_FORCE_ASYNC)
473 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
474 
475 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
476 		req->flags |= io_file_get_flags(req->file);
477 
478 	if (req->file && (req->flags & REQ_F_ISREG)) {
479 		bool should_hash = def->hash_reg_file;
480 
481 		/* don't serialize this request if the fs doesn't need it */
482 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
483 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
484 			should_hash = false;
485 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
486 			io_wq_hash_work(&req->work, file_inode(req->file));
487 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
488 		if (def->unbound_nonreg_file)
489 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
490 	}
491 }
492 
493 static void io_prep_async_link(struct io_kiocb *req)
494 {
495 	struct io_kiocb *cur;
496 
497 	if (req->flags & REQ_F_LINK_TIMEOUT) {
498 		struct io_ring_ctx *ctx = req->ctx;
499 
500 		spin_lock_irq(&ctx->timeout_lock);
501 		io_for_each_link(cur, req)
502 			io_prep_async_work(cur);
503 		spin_unlock_irq(&ctx->timeout_lock);
504 	} else {
505 		io_for_each_link(cur, req)
506 			io_prep_async_work(cur);
507 	}
508 }
509 
510 static void io_queue_iowq(struct io_kiocb *req)
511 {
512 	struct io_kiocb *link = io_prep_linked_timeout(req);
513 	struct io_uring_task *tctx = req->tctx;
514 
515 	BUG_ON(!tctx);
516 	BUG_ON(!tctx->io_wq);
517 
518 	/* init ->work of the whole link before punting */
519 	io_prep_async_link(req);
520 
521 	/*
522 	 * Not expected to happen, but if we do have a bug where this _can_
523 	 * happen, catch it here and ensure the request is marked as
524 	 * canceled. That will make io-wq go through the usual work cancel
525 	 * procedure rather than attempt to run this request (or create a new
526 	 * worker for it).
527 	 */
528 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
529 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
530 
531 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
532 	io_wq_enqueue(tctx->io_wq, &req->work);
533 	if (link)
534 		io_queue_linked_timeout(link);
535 }
536 
537 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
538 {
539 	io_queue_iowq(req);
540 }
541 
542 void io_req_queue_iowq(struct io_kiocb *req)
543 {
544 	req->io_task_work.func = io_req_queue_iowq_tw;
545 	io_req_task_work_add(req);
546 }
547 
548 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
549 {
550 	while (!list_empty(&ctx->defer_list)) {
551 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
552 						struct io_defer_entry, list);
553 
554 		if (req_need_defer(de->req, de->seq))
555 			break;
556 		list_del_init(&de->list);
557 		io_req_task_queue(de->req);
558 		kfree(de);
559 	}
560 }
561 
562 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
563 {
564 	if (ctx->poll_activated)
565 		io_poll_wq_wake(ctx);
566 	if (ctx->off_timeout_used)
567 		io_flush_timeouts(ctx);
568 	if (ctx->drain_active) {
569 		spin_lock(&ctx->completion_lock);
570 		io_queue_deferred(ctx);
571 		spin_unlock(&ctx->completion_lock);
572 	}
573 	if (ctx->has_evfd)
574 		io_eventfd_flush_signal(ctx);
575 }
576 
577 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
578 {
579 	if (!ctx->lockless_cq)
580 		spin_lock(&ctx->completion_lock);
581 }
582 
583 static inline void io_cq_lock(struct io_ring_ctx *ctx)
584 	__acquires(ctx->completion_lock)
585 {
586 	spin_lock(&ctx->completion_lock);
587 }
588 
589 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
590 {
591 	io_commit_cqring(ctx);
592 	if (!ctx->task_complete) {
593 		if (!ctx->lockless_cq)
594 			spin_unlock(&ctx->completion_lock);
595 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
596 		if (!ctx->syscall_iopoll)
597 			io_cqring_wake(ctx);
598 	}
599 	io_commit_cqring_flush(ctx);
600 }
601 
602 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
603 	__releases(ctx->completion_lock)
604 {
605 	io_commit_cqring(ctx);
606 	spin_unlock(&ctx->completion_lock);
607 	io_cqring_wake(ctx);
608 	io_commit_cqring_flush(ctx);
609 }
610 
611 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
612 {
613 	size_t cqe_size = sizeof(struct io_uring_cqe);
614 
615 	lockdep_assert_held(&ctx->uring_lock);
616 
617 	/* don't abort if we're dying, entries must get freed */
618 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
619 		return;
620 
621 	if (ctx->flags & IORING_SETUP_CQE32)
622 		cqe_size <<= 1;
623 
624 	io_cq_lock(ctx);
625 	while (!list_empty(&ctx->cq_overflow_list)) {
626 		struct io_uring_cqe *cqe;
627 		struct io_overflow_cqe *ocqe;
628 
629 		ocqe = list_first_entry(&ctx->cq_overflow_list,
630 					struct io_overflow_cqe, list);
631 
632 		if (!dying) {
633 			if (!io_get_cqe_overflow(ctx, &cqe, true))
634 				break;
635 			memcpy(cqe, &ocqe->cqe, cqe_size);
636 		}
637 		list_del(&ocqe->list);
638 		kfree(ocqe);
639 
640 		/*
641 		 * For silly syzbot cases that deliberately overflow by huge
642 		 * amounts, check if we need to resched and drop and
643 		 * reacquire the locks if so. Nothing real would ever hit this.
644 		 * Ideally we'd have a non-posting unlock for this, but hard
645 		 * to care for a non-real case.
646 		 */
647 		if (need_resched()) {
648 			io_cq_unlock_post(ctx);
649 			mutex_unlock(&ctx->uring_lock);
650 			cond_resched();
651 			mutex_lock(&ctx->uring_lock);
652 			io_cq_lock(ctx);
653 		}
654 	}
655 
656 	if (list_empty(&ctx->cq_overflow_list)) {
657 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
658 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
659 	}
660 	io_cq_unlock_post(ctx);
661 }
662 
663 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
664 {
665 	if (ctx->rings)
666 		__io_cqring_overflow_flush(ctx, true);
667 }
668 
669 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
670 {
671 	mutex_lock(&ctx->uring_lock);
672 	__io_cqring_overflow_flush(ctx, false);
673 	mutex_unlock(&ctx->uring_lock);
674 }
675 
676 /* must to be called somewhat shortly after putting a request */
677 static inline void io_put_task(struct io_kiocb *req)
678 {
679 	struct io_uring_task *tctx = req->tctx;
680 
681 	if (likely(tctx->task == current)) {
682 		tctx->cached_refs++;
683 	} else {
684 		percpu_counter_sub(&tctx->inflight, 1);
685 		if (unlikely(atomic_read(&tctx->in_cancel)))
686 			wake_up(&tctx->wait);
687 		put_task_struct(tctx->task);
688 	}
689 }
690 
691 void io_task_refs_refill(struct io_uring_task *tctx)
692 {
693 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
694 
695 	percpu_counter_add(&tctx->inflight, refill);
696 	refcount_add(refill, &current->usage);
697 	tctx->cached_refs += refill;
698 }
699 
700 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
701 {
702 	struct io_uring_task *tctx = task->io_uring;
703 	unsigned int refs = tctx->cached_refs;
704 
705 	if (refs) {
706 		tctx->cached_refs = 0;
707 		percpu_counter_sub(&tctx->inflight, refs);
708 		put_task_struct_many(task, refs);
709 	}
710 }
711 
712 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
713 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
714 {
715 	struct io_overflow_cqe *ocqe;
716 	size_t ocq_size = sizeof(struct io_overflow_cqe);
717 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
718 
719 	lockdep_assert_held(&ctx->completion_lock);
720 
721 	if (is_cqe32)
722 		ocq_size += sizeof(struct io_uring_cqe);
723 
724 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
725 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
726 	if (!ocqe) {
727 		/*
728 		 * If we're in ring overflow flush mode, or in task cancel mode,
729 		 * or cannot allocate an overflow entry, then we need to drop it
730 		 * on the floor.
731 		 */
732 		io_account_cq_overflow(ctx);
733 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
734 		return false;
735 	}
736 	if (list_empty(&ctx->cq_overflow_list)) {
737 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
738 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
739 
740 	}
741 	ocqe->cqe.user_data = user_data;
742 	ocqe->cqe.res = res;
743 	ocqe->cqe.flags = cflags;
744 	if (is_cqe32) {
745 		ocqe->cqe.big_cqe[0] = extra1;
746 		ocqe->cqe.big_cqe[1] = extra2;
747 	}
748 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
749 	return true;
750 }
751 
752 static void io_req_cqe_overflow(struct io_kiocb *req)
753 {
754 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
755 				req->cqe.res, req->cqe.flags,
756 				req->big_cqe.extra1, req->big_cqe.extra2);
757 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
758 }
759 
760 /*
761  * writes to the cq entry need to come after reading head; the
762  * control dependency is enough as we're using WRITE_ONCE to
763  * fill the cq entry
764  */
765 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
766 {
767 	struct io_rings *rings = ctx->rings;
768 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
769 	unsigned int free, queued, len;
770 
771 	/*
772 	 * Posting into the CQ when there are pending overflowed CQEs may break
773 	 * ordering guarantees, which will affect links, F_MORE users and more.
774 	 * Force overflow the completion.
775 	 */
776 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
777 		return false;
778 
779 	/* userspace may cheat modifying the tail, be safe and do min */
780 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
781 	free = ctx->cq_entries - queued;
782 	/* we need a contiguous range, limit based on the current array offset */
783 	len = min(free, ctx->cq_entries - off);
784 	if (!len)
785 		return false;
786 
787 	if (ctx->flags & IORING_SETUP_CQE32) {
788 		off <<= 1;
789 		len <<= 1;
790 	}
791 
792 	ctx->cqe_cached = &rings->cqes[off];
793 	ctx->cqe_sentinel = ctx->cqe_cached + len;
794 	return true;
795 }
796 
797 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
798 			      u32 cflags)
799 {
800 	struct io_uring_cqe *cqe;
801 
802 	ctx->cq_extra++;
803 
804 	/*
805 	 * If we can't get a cq entry, userspace overflowed the
806 	 * submission (by quite a lot). Increment the overflow count in
807 	 * the ring.
808 	 */
809 	if (likely(io_get_cqe(ctx, &cqe))) {
810 		WRITE_ONCE(cqe->user_data, user_data);
811 		WRITE_ONCE(cqe->res, res);
812 		WRITE_ONCE(cqe->flags, cflags);
813 
814 		if (ctx->flags & IORING_SETUP_CQE32) {
815 			WRITE_ONCE(cqe->big_cqe[0], 0);
816 			WRITE_ONCE(cqe->big_cqe[1], 0);
817 		}
818 
819 		trace_io_uring_complete(ctx, NULL, cqe);
820 		return true;
821 	}
822 	return false;
823 }
824 
825 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
826 			      u32 cflags)
827 {
828 	bool filled;
829 
830 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
831 	if (!filled)
832 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
833 
834 	return filled;
835 }
836 
837 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
838 {
839 	bool filled;
840 
841 	io_cq_lock(ctx);
842 	filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
843 	io_cq_unlock_post(ctx);
844 	return filled;
845 }
846 
847 /*
848  * Must be called from inline task_work so we now a flush will happen later,
849  * and obviously with ctx->uring_lock held (tw always has that).
850  */
851 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
852 {
853 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
854 		spin_lock(&ctx->completion_lock);
855 		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
856 		spin_unlock(&ctx->completion_lock);
857 	}
858 	ctx->submit_state.cq_flush = true;
859 }
860 
861 /*
862  * A helper for multishot requests posting additional CQEs.
863  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
864  */
865 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
866 {
867 	struct io_ring_ctx *ctx = req->ctx;
868 	bool posted;
869 
870 	lockdep_assert(!io_wq_current_is_worker());
871 	lockdep_assert_held(&ctx->uring_lock);
872 
873 	__io_cq_lock(ctx);
874 	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
875 	ctx->submit_state.cq_flush = true;
876 	__io_cq_unlock_post(ctx);
877 	return posted;
878 }
879 
880 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
881 {
882 	struct io_ring_ctx *ctx = req->ctx;
883 
884 	/*
885 	 * All execution paths but io-wq use the deferred completions by
886 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
887 	 */
888 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
889 		return;
890 
891 	/*
892 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
893 	 * the submitter task context, IOPOLL protects with uring_lock.
894 	 */
895 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
896 		req->io_task_work.func = io_req_task_complete;
897 		io_req_task_work_add(req);
898 		return;
899 	}
900 
901 	io_cq_lock(ctx);
902 	if (!(req->flags & REQ_F_CQE_SKIP)) {
903 		if (!io_fill_cqe_req(ctx, req))
904 			io_req_cqe_overflow(req);
905 	}
906 	io_cq_unlock_post(ctx);
907 
908 	/*
909 	 * We don't free the request here because we know it's called from
910 	 * io-wq only, which holds a reference, so it cannot be the last put.
911 	 */
912 	req_ref_put(req);
913 }
914 
915 void io_req_defer_failed(struct io_kiocb *req, s32 res)
916 	__must_hold(&ctx->uring_lock)
917 {
918 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
919 
920 	lockdep_assert_held(&req->ctx->uring_lock);
921 
922 	req_set_fail(req);
923 	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
924 	if (def->fail)
925 		def->fail(req);
926 	io_req_complete_defer(req);
927 }
928 
929 /*
930  * Don't initialise the fields below on every allocation, but do that in
931  * advance and keep them valid across allocations.
932  */
933 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
934 {
935 	req->ctx = ctx;
936 	req->buf_node = NULL;
937 	req->file_node = NULL;
938 	req->link = NULL;
939 	req->async_data = NULL;
940 	/* not necessary, but safer to zero */
941 	memset(&req->cqe, 0, sizeof(req->cqe));
942 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
943 }
944 
945 /*
946  * A request might get retired back into the request caches even before opcode
947  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
948  * Because of that, io_alloc_req() should be called only under ->uring_lock
949  * and with extra caution to not get a request that is still worked on.
950  */
951 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
952 	__must_hold(&ctx->uring_lock)
953 {
954 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
955 	void *reqs[IO_REQ_ALLOC_BATCH];
956 	int ret;
957 
958 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
959 
960 	/*
961 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
962 	 * retry single alloc to be on the safe side.
963 	 */
964 	if (unlikely(ret <= 0)) {
965 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
966 		if (!reqs[0])
967 			return false;
968 		ret = 1;
969 	}
970 
971 	percpu_ref_get_many(&ctx->refs, ret);
972 	while (ret--) {
973 		struct io_kiocb *req = reqs[ret];
974 
975 		io_preinit_req(req, ctx);
976 		io_req_add_to_cache(req, ctx);
977 	}
978 	return true;
979 }
980 
981 __cold void io_free_req(struct io_kiocb *req)
982 {
983 	/* refs were already put, restore them for io_req_task_complete() */
984 	req->flags &= ~REQ_F_REFCOUNT;
985 	/* we only want to free it, don't post CQEs */
986 	req->flags |= REQ_F_CQE_SKIP;
987 	req->io_task_work.func = io_req_task_complete;
988 	io_req_task_work_add(req);
989 }
990 
991 static void __io_req_find_next_prep(struct io_kiocb *req)
992 {
993 	struct io_ring_ctx *ctx = req->ctx;
994 
995 	spin_lock(&ctx->completion_lock);
996 	io_disarm_next(req);
997 	spin_unlock(&ctx->completion_lock);
998 }
999 
1000 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1001 {
1002 	struct io_kiocb *nxt;
1003 
1004 	/*
1005 	 * If LINK is set, we have dependent requests in this chain. If we
1006 	 * didn't fail this request, queue the first one up, moving any other
1007 	 * dependencies to the next request. In case of failure, fail the rest
1008 	 * of the chain.
1009 	 */
1010 	if (unlikely(req->flags & IO_DISARM_MASK))
1011 		__io_req_find_next_prep(req);
1012 	nxt = req->link;
1013 	req->link = NULL;
1014 	return nxt;
1015 }
1016 
1017 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1018 {
1019 	if (!ctx)
1020 		return;
1021 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1022 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1023 
1024 	io_submit_flush_completions(ctx);
1025 	mutex_unlock(&ctx->uring_lock);
1026 	percpu_ref_put(&ctx->refs);
1027 }
1028 
1029 /*
1030  * Run queued task_work, returning the number of entries processed in *count.
1031  * If more entries than max_entries are available, stop processing once this
1032  * is reached and return the rest of the list.
1033  */
1034 struct llist_node *io_handle_tw_list(struct llist_node *node,
1035 				     unsigned int *count,
1036 				     unsigned int max_entries)
1037 {
1038 	struct io_ring_ctx *ctx = NULL;
1039 	struct io_tw_state ts = { };
1040 
1041 	do {
1042 		struct llist_node *next = node->next;
1043 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1044 						    io_task_work.node);
1045 
1046 		if (req->ctx != ctx) {
1047 			ctx_flush_and_put(ctx, &ts);
1048 			ctx = req->ctx;
1049 			mutex_lock(&ctx->uring_lock);
1050 			percpu_ref_get(&ctx->refs);
1051 		}
1052 		INDIRECT_CALL_2(req->io_task_work.func,
1053 				io_poll_task_func, io_req_rw_complete,
1054 				req, &ts);
1055 		node = next;
1056 		(*count)++;
1057 		if (unlikely(need_resched())) {
1058 			ctx_flush_and_put(ctx, &ts);
1059 			ctx = NULL;
1060 			cond_resched();
1061 		}
1062 	} while (node && *count < max_entries);
1063 
1064 	ctx_flush_and_put(ctx, &ts);
1065 	return node;
1066 }
1067 
1068 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1069 {
1070 	struct io_ring_ctx *last_ctx = NULL;
1071 	struct io_kiocb *req;
1072 
1073 	while (node) {
1074 		req = container_of(node, struct io_kiocb, io_task_work.node);
1075 		node = node->next;
1076 		if (sync && last_ctx != req->ctx) {
1077 			if (last_ctx) {
1078 				flush_delayed_work(&last_ctx->fallback_work);
1079 				percpu_ref_put(&last_ctx->refs);
1080 			}
1081 			last_ctx = req->ctx;
1082 			percpu_ref_get(&last_ctx->refs);
1083 		}
1084 		if (llist_add(&req->io_task_work.node,
1085 			      &req->ctx->fallback_llist))
1086 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1087 	}
1088 
1089 	if (last_ctx) {
1090 		flush_delayed_work(&last_ctx->fallback_work);
1091 		percpu_ref_put(&last_ctx->refs);
1092 	}
1093 }
1094 
1095 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1096 {
1097 	struct llist_node *node = llist_del_all(&tctx->task_list);
1098 
1099 	__io_fallback_tw(node, sync);
1100 }
1101 
1102 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1103 				      unsigned int max_entries,
1104 				      unsigned int *count)
1105 {
1106 	struct llist_node *node;
1107 
1108 	if (unlikely(current->flags & PF_EXITING)) {
1109 		io_fallback_tw(tctx, true);
1110 		return NULL;
1111 	}
1112 
1113 	node = llist_del_all(&tctx->task_list);
1114 	if (node) {
1115 		node = llist_reverse_order(node);
1116 		node = io_handle_tw_list(node, count, max_entries);
1117 	}
1118 
1119 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1120 	if (unlikely(atomic_read(&tctx->in_cancel)))
1121 		io_uring_drop_tctx_refs(current);
1122 
1123 	trace_io_uring_task_work_run(tctx, *count);
1124 	return node;
1125 }
1126 
1127 void tctx_task_work(struct callback_head *cb)
1128 {
1129 	struct io_uring_task *tctx;
1130 	struct llist_node *ret;
1131 	unsigned int count = 0;
1132 
1133 	tctx = container_of(cb, struct io_uring_task, task_work);
1134 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1135 	/* can't happen */
1136 	WARN_ON_ONCE(ret);
1137 }
1138 
1139 static inline void io_req_local_work_add(struct io_kiocb *req,
1140 					 struct io_ring_ctx *ctx,
1141 					 unsigned flags)
1142 {
1143 	unsigned nr_wait, nr_tw, nr_tw_prev;
1144 	struct llist_node *head;
1145 
1146 	/* See comment above IO_CQ_WAKE_INIT */
1147 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1148 
1149 	/*
1150 	 * We don't know how many reuqests is there in the link and whether
1151 	 * they can even be queued lazily, fall back to non-lazy.
1152 	 */
1153 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1154 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1155 
1156 	guard(rcu)();
1157 
1158 	head = READ_ONCE(ctx->work_llist.first);
1159 	do {
1160 		nr_tw_prev = 0;
1161 		if (head) {
1162 			struct io_kiocb *first_req = container_of(head,
1163 							struct io_kiocb,
1164 							io_task_work.node);
1165 			/*
1166 			 * Might be executed at any moment, rely on
1167 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1168 			 */
1169 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1170 		}
1171 
1172 		/*
1173 		 * Theoretically, it can overflow, but that's fine as one of
1174 		 * previous adds should've tried to wake the task.
1175 		 */
1176 		nr_tw = nr_tw_prev + 1;
1177 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1178 			nr_tw = IO_CQ_WAKE_FORCE;
1179 
1180 		req->nr_tw = nr_tw;
1181 		req->io_task_work.node.next = head;
1182 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1183 			      &req->io_task_work.node));
1184 
1185 	/*
1186 	 * cmpxchg implies a full barrier, which pairs with the barrier
1187 	 * in set_current_state() on the io_cqring_wait() side. It's used
1188 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1189 	 * going to sleep will observe the work added to the list, which
1190 	 * is similar to the wait/wawke task state sync.
1191 	 */
1192 
1193 	if (!head) {
1194 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1195 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1196 		if (ctx->has_evfd)
1197 			io_eventfd_signal(ctx);
1198 	}
1199 
1200 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1201 	/* not enough or no one is waiting */
1202 	if (nr_tw < nr_wait)
1203 		return;
1204 	/* the previous add has already woken it up */
1205 	if (nr_tw_prev >= nr_wait)
1206 		return;
1207 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1208 }
1209 
1210 static void io_req_normal_work_add(struct io_kiocb *req)
1211 {
1212 	struct io_uring_task *tctx = req->tctx;
1213 	struct io_ring_ctx *ctx = req->ctx;
1214 
1215 	/* task_work already pending, we're done */
1216 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1217 		return;
1218 
1219 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1220 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1221 
1222 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1223 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1224 		struct io_sq_data *sqd = ctx->sq_data;
1225 
1226 		if (sqd->thread)
1227 			__set_notify_signal(sqd->thread);
1228 		return;
1229 	}
1230 
1231 	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1232 		return;
1233 
1234 	io_fallback_tw(tctx, false);
1235 }
1236 
1237 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1238 {
1239 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1240 		io_req_local_work_add(req, req->ctx, flags);
1241 	else
1242 		io_req_normal_work_add(req);
1243 }
1244 
1245 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1246 				 unsigned flags)
1247 {
1248 	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1249 		return;
1250 	io_req_local_work_add(req, ctx, flags);
1251 }
1252 
1253 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1254 {
1255 	struct llist_node *node = llist_del_all(&ctx->work_llist);
1256 
1257 	__io_fallback_tw(node, false);
1258 }
1259 
1260 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1261 				       int min_events)
1262 {
1263 	if (llist_empty(&ctx->work_llist))
1264 		return false;
1265 	if (events < min_events)
1266 		return true;
1267 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1268 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1269 	return false;
1270 }
1271 
1272 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1273 			       int min_events)
1274 {
1275 	struct llist_node *node;
1276 	unsigned int loops = 0;
1277 	int ret = 0;
1278 
1279 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1280 		return -EEXIST;
1281 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1282 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1283 again:
1284 	/*
1285 	 * llists are in reverse order, flip it back the right way before
1286 	 * running the pending items.
1287 	 */
1288 	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1289 	while (node) {
1290 		struct llist_node *next = node->next;
1291 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1292 						    io_task_work.node);
1293 		INDIRECT_CALL_2(req->io_task_work.func,
1294 				io_poll_task_func, io_req_rw_complete,
1295 				req, ts);
1296 		ret++;
1297 		node = next;
1298 	}
1299 	loops++;
1300 
1301 	if (io_run_local_work_continue(ctx, ret, min_events))
1302 		goto again;
1303 	io_submit_flush_completions(ctx);
1304 	if (io_run_local_work_continue(ctx, ret, min_events))
1305 		goto again;
1306 
1307 	trace_io_uring_local_work_run(ctx, ret, loops);
1308 	return ret;
1309 }
1310 
1311 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1312 					   int min_events)
1313 {
1314 	struct io_tw_state ts = {};
1315 
1316 	if (llist_empty(&ctx->work_llist))
1317 		return 0;
1318 	return __io_run_local_work(ctx, &ts, min_events);
1319 }
1320 
1321 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1322 {
1323 	struct io_tw_state ts = {};
1324 	int ret;
1325 
1326 	mutex_lock(&ctx->uring_lock);
1327 	ret = __io_run_local_work(ctx, &ts, min_events);
1328 	mutex_unlock(&ctx->uring_lock);
1329 	return ret;
1330 }
1331 
1332 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1333 {
1334 	io_tw_lock(req->ctx, ts);
1335 	io_req_defer_failed(req, req->cqe.res);
1336 }
1337 
1338 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1339 {
1340 	io_tw_lock(req->ctx, ts);
1341 	if (unlikely(io_should_terminate_tw()))
1342 		io_req_defer_failed(req, -EFAULT);
1343 	else if (req->flags & REQ_F_FORCE_ASYNC)
1344 		io_queue_iowq(req);
1345 	else
1346 		io_queue_sqe(req);
1347 }
1348 
1349 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1350 {
1351 	io_req_set_res(req, ret, 0);
1352 	req->io_task_work.func = io_req_task_cancel;
1353 	io_req_task_work_add(req);
1354 }
1355 
1356 void io_req_task_queue(struct io_kiocb *req)
1357 {
1358 	req->io_task_work.func = io_req_task_submit;
1359 	io_req_task_work_add(req);
1360 }
1361 
1362 void io_queue_next(struct io_kiocb *req)
1363 {
1364 	struct io_kiocb *nxt = io_req_find_next(req);
1365 
1366 	if (nxt)
1367 		io_req_task_queue(nxt);
1368 }
1369 
1370 static void io_free_batch_list(struct io_ring_ctx *ctx,
1371 			       struct io_wq_work_node *node)
1372 	__must_hold(&ctx->uring_lock)
1373 {
1374 	do {
1375 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1376 						    comp_list);
1377 
1378 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1379 			if (req->flags & REQ_F_REFCOUNT) {
1380 				node = req->comp_list.next;
1381 				if (!req_ref_put_and_test(req))
1382 					continue;
1383 			}
1384 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1385 				struct async_poll *apoll = req->apoll;
1386 
1387 				if (apoll->double_poll)
1388 					kfree(apoll->double_poll);
1389 				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1390 					kfree(apoll);
1391 				req->flags &= ~REQ_F_POLLED;
1392 			}
1393 			if (req->flags & IO_REQ_LINK_FLAGS)
1394 				io_queue_next(req);
1395 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1396 				io_clean_op(req);
1397 		}
1398 		io_put_file(req);
1399 		io_req_put_rsrc_nodes(req);
1400 		io_put_task(req);
1401 
1402 		node = req->comp_list.next;
1403 		io_req_add_to_cache(req, ctx);
1404 	} while (node);
1405 }
1406 
1407 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1408 	__must_hold(&ctx->uring_lock)
1409 {
1410 	struct io_submit_state *state = &ctx->submit_state;
1411 	struct io_wq_work_node *node;
1412 
1413 	__io_cq_lock(ctx);
1414 	__wq_list_for_each(node, &state->compl_reqs) {
1415 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1416 					    comp_list);
1417 
1418 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1419 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1420 			if (ctx->lockless_cq) {
1421 				spin_lock(&ctx->completion_lock);
1422 				io_req_cqe_overflow(req);
1423 				spin_unlock(&ctx->completion_lock);
1424 			} else {
1425 				io_req_cqe_overflow(req);
1426 			}
1427 		}
1428 	}
1429 	__io_cq_unlock_post(ctx);
1430 
1431 	if (!wq_list_empty(&state->compl_reqs)) {
1432 		io_free_batch_list(ctx, state->compl_reqs.first);
1433 		INIT_WQ_LIST(&state->compl_reqs);
1434 	}
1435 	ctx->submit_state.cq_flush = false;
1436 }
1437 
1438 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1439 {
1440 	/* See comment at the top of this file */
1441 	smp_rmb();
1442 	return __io_cqring_events(ctx);
1443 }
1444 
1445 /*
1446  * We can't just wait for polled events to come to us, we have to actively
1447  * find and complete them.
1448  */
1449 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1450 {
1451 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1452 		return;
1453 
1454 	mutex_lock(&ctx->uring_lock);
1455 	while (!wq_list_empty(&ctx->iopoll_list)) {
1456 		/* let it sleep and repeat later if can't complete a request */
1457 		if (io_do_iopoll(ctx, true) == 0)
1458 			break;
1459 		/*
1460 		 * Ensure we allow local-to-the-cpu processing to take place,
1461 		 * in this case we need to ensure that we reap all events.
1462 		 * Also let task_work, etc. to progress by releasing the mutex
1463 		 */
1464 		if (need_resched()) {
1465 			mutex_unlock(&ctx->uring_lock);
1466 			cond_resched();
1467 			mutex_lock(&ctx->uring_lock);
1468 		}
1469 	}
1470 	mutex_unlock(&ctx->uring_lock);
1471 }
1472 
1473 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1474 {
1475 	unsigned int nr_events = 0;
1476 	unsigned long check_cq;
1477 
1478 	lockdep_assert_held(&ctx->uring_lock);
1479 
1480 	if (!io_allowed_run_tw(ctx))
1481 		return -EEXIST;
1482 
1483 	check_cq = READ_ONCE(ctx->check_cq);
1484 	if (unlikely(check_cq)) {
1485 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1486 			__io_cqring_overflow_flush(ctx, false);
1487 		/*
1488 		 * Similarly do not spin if we have not informed the user of any
1489 		 * dropped CQE.
1490 		 */
1491 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1492 			return -EBADR;
1493 	}
1494 	/*
1495 	 * Don't enter poll loop if we already have events pending.
1496 	 * If we do, we can potentially be spinning for commands that
1497 	 * already triggered a CQE (eg in error).
1498 	 */
1499 	if (io_cqring_events(ctx))
1500 		return 0;
1501 
1502 	do {
1503 		int ret = 0;
1504 
1505 		/*
1506 		 * If a submit got punted to a workqueue, we can have the
1507 		 * application entering polling for a command before it gets
1508 		 * issued. That app will hold the uring_lock for the duration
1509 		 * of the poll right here, so we need to take a breather every
1510 		 * now and then to ensure that the issue has a chance to add
1511 		 * the poll to the issued list. Otherwise we can spin here
1512 		 * forever, while the workqueue is stuck trying to acquire the
1513 		 * very same mutex.
1514 		 */
1515 		if (wq_list_empty(&ctx->iopoll_list) ||
1516 		    io_task_work_pending(ctx)) {
1517 			u32 tail = ctx->cached_cq_tail;
1518 
1519 			(void) io_run_local_work_locked(ctx, min);
1520 
1521 			if (task_work_pending(current) ||
1522 			    wq_list_empty(&ctx->iopoll_list)) {
1523 				mutex_unlock(&ctx->uring_lock);
1524 				io_run_task_work();
1525 				mutex_lock(&ctx->uring_lock);
1526 			}
1527 			/* some requests don't go through iopoll_list */
1528 			if (tail != ctx->cached_cq_tail ||
1529 			    wq_list_empty(&ctx->iopoll_list))
1530 				break;
1531 		}
1532 		ret = io_do_iopoll(ctx, !min);
1533 		if (unlikely(ret < 0))
1534 			return ret;
1535 
1536 		if (task_sigpending(current))
1537 			return -EINTR;
1538 		if (need_resched())
1539 			break;
1540 
1541 		nr_events += ret;
1542 	} while (nr_events < min);
1543 
1544 	return 0;
1545 }
1546 
1547 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1548 {
1549 	io_req_complete_defer(req);
1550 }
1551 
1552 /*
1553  * After the iocb has been issued, it's safe to be found on the poll list.
1554  * Adding the kiocb to the list AFTER submission ensures that we don't
1555  * find it from a io_do_iopoll() thread before the issuer is done
1556  * accessing the kiocb cookie.
1557  */
1558 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1559 {
1560 	struct io_ring_ctx *ctx = req->ctx;
1561 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1562 
1563 	/* workqueue context doesn't hold uring_lock, grab it now */
1564 	if (unlikely(needs_lock))
1565 		mutex_lock(&ctx->uring_lock);
1566 
1567 	/*
1568 	 * Track whether we have multiple files in our lists. This will impact
1569 	 * how we do polling eventually, not spinning if we're on potentially
1570 	 * different devices.
1571 	 */
1572 	if (wq_list_empty(&ctx->iopoll_list)) {
1573 		ctx->poll_multi_queue = false;
1574 	} else if (!ctx->poll_multi_queue) {
1575 		struct io_kiocb *list_req;
1576 
1577 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1578 					comp_list);
1579 		if (list_req->file != req->file)
1580 			ctx->poll_multi_queue = true;
1581 	}
1582 
1583 	/*
1584 	 * For fast devices, IO may have already completed. If it has, add
1585 	 * it to the front so we find it first.
1586 	 */
1587 	if (READ_ONCE(req->iopoll_completed))
1588 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1589 	else
1590 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1591 
1592 	if (unlikely(needs_lock)) {
1593 		/*
1594 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1595 		 * in sq thread task context or in io worker task context. If
1596 		 * current task context is sq thread, we don't need to check
1597 		 * whether should wake up sq thread.
1598 		 */
1599 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1600 		    wq_has_sleeper(&ctx->sq_data->wait))
1601 			wake_up(&ctx->sq_data->wait);
1602 
1603 		mutex_unlock(&ctx->uring_lock);
1604 	}
1605 }
1606 
1607 io_req_flags_t io_file_get_flags(struct file *file)
1608 {
1609 	io_req_flags_t res = 0;
1610 
1611 	if (S_ISREG(file_inode(file)->i_mode))
1612 		res |= REQ_F_ISREG;
1613 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1614 		res |= REQ_F_SUPPORT_NOWAIT;
1615 	return res;
1616 }
1617 
1618 bool io_alloc_async_data(struct io_kiocb *req)
1619 {
1620 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1621 
1622 	WARN_ON_ONCE(!def->async_size);
1623 	req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1624 	if (req->async_data) {
1625 		req->flags |= REQ_F_ASYNC_DATA;
1626 		return false;
1627 	}
1628 	return true;
1629 }
1630 
1631 static u32 io_get_sequence(struct io_kiocb *req)
1632 {
1633 	u32 seq = req->ctx->cached_sq_head;
1634 	struct io_kiocb *cur;
1635 
1636 	/* need original cached_sq_head, but it was increased for each req */
1637 	io_for_each_link(cur, req)
1638 		seq--;
1639 	return seq;
1640 }
1641 
1642 static __cold void io_drain_req(struct io_kiocb *req)
1643 	__must_hold(&ctx->uring_lock)
1644 {
1645 	struct io_ring_ctx *ctx = req->ctx;
1646 	struct io_defer_entry *de;
1647 	int ret;
1648 	u32 seq = io_get_sequence(req);
1649 
1650 	/* Still need defer if there is pending req in defer list. */
1651 	spin_lock(&ctx->completion_lock);
1652 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1653 		spin_unlock(&ctx->completion_lock);
1654 queue:
1655 		ctx->drain_active = false;
1656 		io_req_task_queue(req);
1657 		return;
1658 	}
1659 	spin_unlock(&ctx->completion_lock);
1660 
1661 	io_prep_async_link(req);
1662 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1663 	if (!de) {
1664 		ret = -ENOMEM;
1665 		io_req_defer_failed(req, ret);
1666 		return;
1667 	}
1668 
1669 	spin_lock(&ctx->completion_lock);
1670 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1671 		spin_unlock(&ctx->completion_lock);
1672 		kfree(de);
1673 		goto queue;
1674 	}
1675 
1676 	trace_io_uring_defer(req);
1677 	de->req = req;
1678 	de->seq = seq;
1679 	list_add_tail(&de->list, &ctx->defer_list);
1680 	spin_unlock(&ctx->completion_lock);
1681 }
1682 
1683 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1684 			   unsigned int issue_flags)
1685 {
1686 	if (req->file || !def->needs_file)
1687 		return true;
1688 
1689 	if (req->flags & REQ_F_FIXED_FILE)
1690 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1691 	else
1692 		req->file = io_file_get_normal(req, req->cqe.fd);
1693 
1694 	return !!req->file;
1695 }
1696 
1697 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1698 {
1699 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1700 	const struct cred *creds = NULL;
1701 	int ret;
1702 
1703 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1704 		return -EBADF;
1705 
1706 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1707 		creds = override_creds(req->creds);
1708 
1709 	if (!def->audit_skip)
1710 		audit_uring_entry(req->opcode);
1711 
1712 	ret = def->issue(req, issue_flags);
1713 
1714 	if (!def->audit_skip)
1715 		audit_uring_exit(!ret, ret);
1716 
1717 	if (creds)
1718 		revert_creds(creds);
1719 
1720 	if (ret == IOU_OK) {
1721 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1722 			io_req_complete_defer(req);
1723 		else
1724 			io_req_complete_post(req, issue_flags);
1725 
1726 		return 0;
1727 	}
1728 
1729 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1730 		ret = 0;
1731 		io_arm_ltimeout(req);
1732 
1733 		/* If the op doesn't have a file, we're not polling for it */
1734 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1735 			io_iopoll_req_issued(req, issue_flags);
1736 	}
1737 	return ret;
1738 }
1739 
1740 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1741 {
1742 	io_tw_lock(req->ctx, ts);
1743 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1744 				 IO_URING_F_COMPLETE_DEFER);
1745 }
1746 
1747 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1748 {
1749 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1750 	struct io_kiocb *nxt = NULL;
1751 
1752 	if (req_ref_put_and_test(req)) {
1753 		if (req->flags & IO_REQ_LINK_FLAGS)
1754 			nxt = io_req_find_next(req);
1755 		io_free_req(req);
1756 	}
1757 	return nxt ? &nxt->work : NULL;
1758 }
1759 
1760 void io_wq_submit_work(struct io_wq_work *work)
1761 {
1762 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1763 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1764 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1765 	bool needs_poll = false;
1766 	int ret = 0, err = -ECANCELED;
1767 
1768 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1769 	if (!(req->flags & REQ_F_REFCOUNT))
1770 		__io_req_set_refcount(req, 2);
1771 	else
1772 		req_ref_get(req);
1773 
1774 	io_arm_ltimeout(req);
1775 
1776 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1777 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1778 fail:
1779 		io_req_task_queue_fail(req, err);
1780 		return;
1781 	}
1782 	if (!io_assign_file(req, def, issue_flags)) {
1783 		err = -EBADF;
1784 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1785 		goto fail;
1786 	}
1787 
1788 	/*
1789 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1790 	 * submitter task context. Final request completions are handed to the
1791 	 * right context, however this is not the case of auxiliary CQEs,
1792 	 * which is the main mean of operation for multishot requests.
1793 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1794 	 * than necessary and also cleaner.
1795 	 */
1796 	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1797 		err = -EBADFD;
1798 		if (!io_file_can_poll(req))
1799 			goto fail;
1800 		if (req->file->f_flags & O_NONBLOCK ||
1801 		    req->file->f_mode & FMODE_NOWAIT) {
1802 			err = -ECANCELED;
1803 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1804 				goto fail;
1805 			return;
1806 		} else {
1807 			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1808 		}
1809 	}
1810 
1811 	if (req->flags & REQ_F_FORCE_ASYNC) {
1812 		bool opcode_poll = def->pollin || def->pollout;
1813 
1814 		if (opcode_poll && io_file_can_poll(req)) {
1815 			needs_poll = true;
1816 			issue_flags |= IO_URING_F_NONBLOCK;
1817 		}
1818 	}
1819 
1820 	do {
1821 		ret = io_issue_sqe(req, issue_flags);
1822 		if (ret != -EAGAIN)
1823 			break;
1824 
1825 		/*
1826 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1827 		 * poll. -EAGAIN is final for that case.
1828 		 */
1829 		if (req->flags & REQ_F_NOWAIT)
1830 			break;
1831 
1832 		/*
1833 		 * We can get EAGAIN for iopolled IO even though we're
1834 		 * forcing a sync submission from here, since we can't
1835 		 * wait for request slots on the block side.
1836 		 */
1837 		if (!needs_poll) {
1838 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1839 				break;
1840 			if (io_wq_worker_stopped())
1841 				break;
1842 			cond_resched();
1843 			continue;
1844 		}
1845 
1846 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1847 			return;
1848 		/* aborted or ready, in either case retry blocking */
1849 		needs_poll = false;
1850 		issue_flags &= ~IO_URING_F_NONBLOCK;
1851 	} while (1);
1852 
1853 	/* avoid locking problems by failing it from a clean context */
1854 	if (ret)
1855 		io_req_task_queue_fail(req, ret);
1856 }
1857 
1858 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1859 				      unsigned int issue_flags)
1860 {
1861 	struct io_ring_ctx *ctx = req->ctx;
1862 	struct io_rsrc_node *node;
1863 	struct file *file = NULL;
1864 
1865 	io_ring_submit_lock(ctx, issue_flags);
1866 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1867 	if (node) {
1868 		io_req_assign_rsrc_node(&req->file_node, node);
1869 		req->flags |= io_slot_flags(node);
1870 		file = io_slot_file(node);
1871 	}
1872 	io_ring_submit_unlock(ctx, issue_flags);
1873 	return file;
1874 }
1875 
1876 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1877 {
1878 	struct file *file = fget(fd);
1879 
1880 	trace_io_uring_file_get(req, fd);
1881 
1882 	/* we don't allow fixed io_uring files */
1883 	if (file && io_is_uring_fops(file))
1884 		io_req_track_inflight(req);
1885 	return file;
1886 }
1887 
1888 static void io_queue_async(struct io_kiocb *req, int ret)
1889 	__must_hold(&req->ctx->uring_lock)
1890 {
1891 	struct io_kiocb *linked_timeout;
1892 
1893 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1894 		io_req_defer_failed(req, ret);
1895 		return;
1896 	}
1897 
1898 	linked_timeout = io_prep_linked_timeout(req);
1899 
1900 	switch (io_arm_poll_handler(req, 0)) {
1901 	case IO_APOLL_READY:
1902 		io_kbuf_recycle(req, 0);
1903 		io_req_task_queue(req);
1904 		break;
1905 	case IO_APOLL_ABORTED:
1906 		io_kbuf_recycle(req, 0);
1907 		io_queue_iowq(req);
1908 		break;
1909 	case IO_APOLL_OK:
1910 		break;
1911 	}
1912 
1913 	if (linked_timeout)
1914 		io_queue_linked_timeout(linked_timeout);
1915 }
1916 
1917 static inline void io_queue_sqe(struct io_kiocb *req)
1918 	__must_hold(&req->ctx->uring_lock)
1919 {
1920 	int ret;
1921 
1922 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1923 
1924 	/*
1925 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1926 	 * doesn't support non-blocking read/write attempts
1927 	 */
1928 	if (unlikely(ret))
1929 		io_queue_async(req, ret);
1930 }
1931 
1932 static void io_queue_sqe_fallback(struct io_kiocb *req)
1933 	__must_hold(&req->ctx->uring_lock)
1934 {
1935 	if (unlikely(req->flags & REQ_F_FAIL)) {
1936 		/*
1937 		 * We don't submit, fail them all, for that replace hardlinks
1938 		 * with normal links. Extra REQ_F_LINK is tolerated.
1939 		 */
1940 		req->flags &= ~REQ_F_HARDLINK;
1941 		req->flags |= REQ_F_LINK;
1942 		io_req_defer_failed(req, req->cqe.res);
1943 	} else {
1944 		if (unlikely(req->ctx->drain_active))
1945 			io_drain_req(req);
1946 		else
1947 			io_queue_iowq(req);
1948 	}
1949 }
1950 
1951 /*
1952  * Check SQE restrictions (opcode and flags).
1953  *
1954  * Returns 'true' if SQE is allowed, 'false' otherwise.
1955  */
1956 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1957 					struct io_kiocb *req,
1958 					unsigned int sqe_flags)
1959 {
1960 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1961 		return false;
1962 
1963 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1964 	    ctx->restrictions.sqe_flags_required)
1965 		return false;
1966 
1967 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1968 			  ctx->restrictions.sqe_flags_required))
1969 		return false;
1970 
1971 	return true;
1972 }
1973 
1974 static void io_init_req_drain(struct io_kiocb *req)
1975 {
1976 	struct io_ring_ctx *ctx = req->ctx;
1977 	struct io_kiocb *head = ctx->submit_state.link.head;
1978 
1979 	ctx->drain_active = true;
1980 	if (head) {
1981 		/*
1982 		 * If we need to drain a request in the middle of a link, drain
1983 		 * the head request and the next request/link after the current
1984 		 * link. Considering sequential execution of links,
1985 		 * REQ_F_IO_DRAIN will be maintained for every request of our
1986 		 * link.
1987 		 */
1988 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1989 		ctx->drain_next = true;
1990 	}
1991 }
1992 
1993 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
1994 {
1995 	/* ensure per-opcode data is cleared if we fail before prep */
1996 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
1997 	return err;
1998 }
1999 
2000 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2001 		       const struct io_uring_sqe *sqe)
2002 	__must_hold(&ctx->uring_lock)
2003 {
2004 	const struct io_issue_def *def;
2005 	unsigned int sqe_flags;
2006 	int personality;
2007 	u8 opcode;
2008 
2009 	/* req is partially pre-initialised, see io_preinit_req() */
2010 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2011 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2012 	sqe_flags = READ_ONCE(sqe->flags);
2013 	req->flags = (__force io_req_flags_t) sqe_flags;
2014 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2015 	req->file = NULL;
2016 	req->tctx = current->io_uring;
2017 	req->cancel_seq_set = false;
2018 
2019 	if (unlikely(opcode >= IORING_OP_LAST)) {
2020 		req->opcode = 0;
2021 		return io_init_fail_req(req, -EINVAL);
2022 	}
2023 	def = &io_issue_defs[opcode];
2024 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2025 		/* enforce forwards compatibility on users */
2026 		if (sqe_flags & ~SQE_VALID_FLAGS)
2027 			return io_init_fail_req(req, -EINVAL);
2028 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2029 			if (!def->buffer_select)
2030 				return io_init_fail_req(req, -EOPNOTSUPP);
2031 			req->buf_index = READ_ONCE(sqe->buf_group);
2032 		}
2033 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2034 			ctx->drain_disabled = true;
2035 		if (sqe_flags & IOSQE_IO_DRAIN) {
2036 			if (ctx->drain_disabled)
2037 				return io_init_fail_req(req, -EOPNOTSUPP);
2038 			io_init_req_drain(req);
2039 		}
2040 	}
2041 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2042 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2043 			return io_init_fail_req(req, -EACCES);
2044 		/* knock it to the slow queue path, will be drained there */
2045 		if (ctx->drain_active)
2046 			req->flags |= REQ_F_FORCE_ASYNC;
2047 		/* if there is no link, we're at "next" request and need to drain */
2048 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2049 			ctx->drain_next = false;
2050 			ctx->drain_active = true;
2051 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2052 		}
2053 	}
2054 
2055 	if (!def->ioprio && sqe->ioprio)
2056 		return io_init_fail_req(req, -EINVAL);
2057 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2058 		return io_init_fail_req(req, -EINVAL);
2059 
2060 	if (def->needs_file) {
2061 		struct io_submit_state *state = &ctx->submit_state;
2062 
2063 		req->cqe.fd = READ_ONCE(sqe->fd);
2064 
2065 		/*
2066 		 * Plug now if we have more than 2 IO left after this, and the
2067 		 * target is potentially a read/write to block based storage.
2068 		 */
2069 		if (state->need_plug && def->plug) {
2070 			state->plug_started = true;
2071 			state->need_plug = false;
2072 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2073 		}
2074 	}
2075 
2076 	personality = READ_ONCE(sqe->personality);
2077 	if (personality) {
2078 		int ret;
2079 
2080 		req->creds = xa_load(&ctx->personalities, personality);
2081 		if (!req->creds)
2082 			return io_init_fail_req(req, -EINVAL);
2083 		get_cred(req->creds);
2084 		ret = security_uring_override_creds(req->creds);
2085 		if (ret) {
2086 			put_cred(req->creds);
2087 			return io_init_fail_req(req, ret);
2088 		}
2089 		req->flags |= REQ_F_CREDS;
2090 	}
2091 
2092 	return def->prep(req, sqe);
2093 }
2094 
2095 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2096 				      struct io_kiocb *req, int ret)
2097 {
2098 	struct io_ring_ctx *ctx = req->ctx;
2099 	struct io_submit_link *link = &ctx->submit_state.link;
2100 	struct io_kiocb *head = link->head;
2101 
2102 	trace_io_uring_req_failed(sqe, req, ret);
2103 
2104 	/*
2105 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2106 	 * unusable. Instead of failing eagerly, continue assembling the link if
2107 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2108 	 * should find the flag and handle the rest.
2109 	 */
2110 	req_fail_link_node(req, ret);
2111 	if (head && !(head->flags & REQ_F_FAIL))
2112 		req_fail_link_node(head, -ECANCELED);
2113 
2114 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2115 		if (head) {
2116 			link->last->link = req;
2117 			link->head = NULL;
2118 			req = head;
2119 		}
2120 		io_queue_sqe_fallback(req);
2121 		return ret;
2122 	}
2123 
2124 	if (head)
2125 		link->last->link = req;
2126 	else
2127 		link->head = req;
2128 	link->last = req;
2129 	return 0;
2130 }
2131 
2132 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2133 			 const struct io_uring_sqe *sqe)
2134 	__must_hold(&ctx->uring_lock)
2135 {
2136 	struct io_submit_link *link = &ctx->submit_state.link;
2137 	int ret;
2138 
2139 	ret = io_init_req(ctx, req, sqe);
2140 	if (unlikely(ret))
2141 		return io_submit_fail_init(sqe, req, ret);
2142 
2143 	trace_io_uring_submit_req(req);
2144 
2145 	/*
2146 	 * If we already have a head request, queue this one for async
2147 	 * submittal once the head completes. If we don't have a head but
2148 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2149 	 * submitted sync once the chain is complete. If none of those
2150 	 * conditions are true (normal request), then just queue it.
2151 	 */
2152 	if (unlikely(link->head)) {
2153 		trace_io_uring_link(req, link->last);
2154 		link->last->link = req;
2155 		link->last = req;
2156 
2157 		if (req->flags & IO_REQ_LINK_FLAGS)
2158 			return 0;
2159 		/* last request of the link, flush it */
2160 		req = link->head;
2161 		link->head = NULL;
2162 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2163 			goto fallback;
2164 
2165 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2166 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2167 		if (req->flags & IO_REQ_LINK_FLAGS) {
2168 			link->head = req;
2169 			link->last = req;
2170 		} else {
2171 fallback:
2172 			io_queue_sqe_fallback(req);
2173 		}
2174 		return 0;
2175 	}
2176 
2177 	io_queue_sqe(req);
2178 	return 0;
2179 }
2180 
2181 /*
2182  * Batched submission is done, ensure local IO is flushed out.
2183  */
2184 static void io_submit_state_end(struct io_ring_ctx *ctx)
2185 {
2186 	struct io_submit_state *state = &ctx->submit_state;
2187 
2188 	if (unlikely(state->link.head))
2189 		io_queue_sqe_fallback(state->link.head);
2190 	/* flush only after queuing links as they can generate completions */
2191 	io_submit_flush_completions(ctx);
2192 	if (state->plug_started)
2193 		blk_finish_plug(&state->plug);
2194 }
2195 
2196 /*
2197  * Start submission side cache.
2198  */
2199 static void io_submit_state_start(struct io_submit_state *state,
2200 				  unsigned int max_ios)
2201 {
2202 	state->plug_started = false;
2203 	state->need_plug = max_ios > 2;
2204 	state->submit_nr = max_ios;
2205 	/* set only head, no need to init link_last in advance */
2206 	state->link.head = NULL;
2207 }
2208 
2209 static void io_commit_sqring(struct io_ring_ctx *ctx)
2210 {
2211 	struct io_rings *rings = ctx->rings;
2212 
2213 	/*
2214 	 * Ensure any loads from the SQEs are done at this point,
2215 	 * since once we write the new head, the application could
2216 	 * write new data to them.
2217 	 */
2218 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2219 }
2220 
2221 /*
2222  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2223  * that is mapped by userspace. This means that care needs to be taken to
2224  * ensure that reads are stable, as we cannot rely on userspace always
2225  * being a good citizen. If members of the sqe are validated and then later
2226  * used, it's important that those reads are done through READ_ONCE() to
2227  * prevent a re-load down the line.
2228  */
2229 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2230 {
2231 	unsigned mask = ctx->sq_entries - 1;
2232 	unsigned head = ctx->cached_sq_head++ & mask;
2233 
2234 	if (static_branch_unlikely(&io_key_has_sqarray) &&
2235 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2236 		head = READ_ONCE(ctx->sq_array[head]);
2237 		if (unlikely(head >= ctx->sq_entries)) {
2238 			/* drop invalid entries */
2239 			spin_lock(&ctx->completion_lock);
2240 			ctx->cq_extra--;
2241 			spin_unlock(&ctx->completion_lock);
2242 			WRITE_ONCE(ctx->rings->sq_dropped,
2243 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2244 			return false;
2245 		}
2246 		head = array_index_nospec(head, ctx->sq_entries);
2247 	}
2248 
2249 	/*
2250 	 * The cached sq head (or cq tail) serves two purposes:
2251 	 *
2252 	 * 1) allows us to batch the cost of updating the user visible
2253 	 *    head updates.
2254 	 * 2) allows the kernel side to track the head on its own, even
2255 	 *    though the application is the one updating it.
2256 	 */
2257 
2258 	/* double index for 128-byte SQEs, twice as long */
2259 	if (ctx->flags & IORING_SETUP_SQE128)
2260 		head <<= 1;
2261 	*sqe = &ctx->sq_sqes[head];
2262 	return true;
2263 }
2264 
2265 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2266 	__must_hold(&ctx->uring_lock)
2267 {
2268 	unsigned int entries = io_sqring_entries(ctx);
2269 	unsigned int left;
2270 	int ret;
2271 
2272 	if (unlikely(!entries))
2273 		return 0;
2274 	/* make sure SQ entry isn't read before tail */
2275 	ret = left = min(nr, entries);
2276 	io_get_task_refs(left);
2277 	io_submit_state_start(&ctx->submit_state, left);
2278 
2279 	do {
2280 		const struct io_uring_sqe *sqe;
2281 		struct io_kiocb *req;
2282 
2283 		if (unlikely(!io_alloc_req(ctx, &req)))
2284 			break;
2285 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2286 			io_req_add_to_cache(req, ctx);
2287 			break;
2288 		}
2289 
2290 		/*
2291 		 * Continue submitting even for sqe failure if the
2292 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2293 		 */
2294 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2295 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2296 			left--;
2297 			break;
2298 		}
2299 	} while (--left);
2300 
2301 	if (unlikely(left)) {
2302 		ret -= left;
2303 		/* try again if it submitted nothing and can't allocate a req */
2304 		if (!ret && io_req_cache_empty(ctx))
2305 			ret = -EAGAIN;
2306 		current->io_uring->cached_refs += left;
2307 	}
2308 
2309 	io_submit_state_end(ctx);
2310 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2311 	io_commit_sqring(ctx);
2312 	return ret;
2313 }
2314 
2315 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2316 			    int wake_flags, void *key)
2317 {
2318 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2319 
2320 	/*
2321 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2322 	 * the task, and the next invocation will do it.
2323 	 */
2324 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2325 		return autoremove_wake_function(curr, mode, wake_flags, key);
2326 	return -1;
2327 }
2328 
2329 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2330 {
2331 	if (!llist_empty(&ctx->work_llist)) {
2332 		__set_current_state(TASK_RUNNING);
2333 		if (io_run_local_work(ctx, INT_MAX) > 0)
2334 			return 0;
2335 	}
2336 	if (io_run_task_work() > 0)
2337 		return 0;
2338 	if (task_sigpending(current))
2339 		return -EINTR;
2340 	return 0;
2341 }
2342 
2343 static bool current_pending_io(void)
2344 {
2345 	struct io_uring_task *tctx = current->io_uring;
2346 
2347 	if (!tctx)
2348 		return false;
2349 	return percpu_counter_read_positive(&tctx->inflight);
2350 }
2351 
2352 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2353 {
2354 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2355 
2356 	WRITE_ONCE(iowq->hit_timeout, 1);
2357 	iowq->min_timeout = 0;
2358 	wake_up_process(iowq->wq.private);
2359 	return HRTIMER_NORESTART;
2360 }
2361 
2362 /*
2363  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2364  * wake up. If not, and we have a normal timeout, switch to that and keep
2365  * sleeping.
2366  */
2367 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2368 {
2369 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2370 	struct io_ring_ctx *ctx = iowq->ctx;
2371 
2372 	/* no general timeout, or shorter (or equal), we are done */
2373 	if (iowq->timeout == KTIME_MAX ||
2374 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2375 		goto out_wake;
2376 	/* work we may need to run, wake function will see if we need to wake */
2377 	if (io_has_work(ctx))
2378 		goto out_wake;
2379 	/* got events since we started waiting, min timeout is done */
2380 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2381 		goto out_wake;
2382 	/* if we have any events and min timeout expired, we're done */
2383 	if (io_cqring_events(ctx))
2384 		goto out_wake;
2385 
2386 	/*
2387 	 * If using deferred task_work running and application is waiting on
2388 	 * more than one request, ensure we reset it now where we are switching
2389 	 * to normal sleeps. Any request completion post min_wait should wake
2390 	 * the task and return.
2391 	 */
2392 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2393 		atomic_set(&ctx->cq_wait_nr, 1);
2394 		smp_mb();
2395 		if (!llist_empty(&ctx->work_llist))
2396 			goto out_wake;
2397 	}
2398 
2399 	iowq->t.function = io_cqring_timer_wakeup;
2400 	hrtimer_set_expires(timer, iowq->timeout);
2401 	return HRTIMER_RESTART;
2402 out_wake:
2403 	return io_cqring_timer_wakeup(timer);
2404 }
2405 
2406 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2407 				      clockid_t clock_id, ktime_t start_time)
2408 {
2409 	ktime_t timeout;
2410 
2411 	if (iowq->min_timeout) {
2412 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2413 		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2414 				       HRTIMER_MODE_ABS);
2415 	} else {
2416 		timeout = iowq->timeout;
2417 		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2418 				       HRTIMER_MODE_ABS);
2419 	}
2420 
2421 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2422 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2423 
2424 	if (!READ_ONCE(iowq->hit_timeout))
2425 		schedule();
2426 
2427 	hrtimer_cancel(&iowq->t);
2428 	destroy_hrtimer_on_stack(&iowq->t);
2429 	__set_current_state(TASK_RUNNING);
2430 
2431 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2432 }
2433 
2434 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2435 				     struct io_wait_queue *iowq,
2436 				     ktime_t start_time)
2437 {
2438 	int ret = 0;
2439 
2440 	/*
2441 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2442 	 * can take into account that the task is waiting for IO - turns out
2443 	 * to be important for low QD IO.
2444 	 */
2445 	if (current_pending_io())
2446 		current->in_iowait = 1;
2447 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2448 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2449 	else
2450 		schedule();
2451 	current->in_iowait = 0;
2452 	return ret;
2453 }
2454 
2455 /* If this returns > 0, the caller should retry */
2456 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2457 					  struct io_wait_queue *iowq,
2458 					  ktime_t start_time)
2459 {
2460 	if (unlikely(READ_ONCE(ctx->check_cq)))
2461 		return 1;
2462 	if (unlikely(!llist_empty(&ctx->work_llist)))
2463 		return 1;
2464 	if (unlikely(task_work_pending(current)))
2465 		return 1;
2466 	if (unlikely(task_sigpending(current)))
2467 		return -EINTR;
2468 	if (unlikely(io_should_wake(iowq)))
2469 		return 0;
2470 
2471 	return __io_cqring_wait_schedule(ctx, iowq, start_time);
2472 }
2473 
2474 struct ext_arg {
2475 	size_t argsz;
2476 	struct timespec64 ts;
2477 	const sigset_t __user *sig;
2478 	ktime_t min_time;
2479 	bool ts_set;
2480 };
2481 
2482 /*
2483  * Wait until events become available, if we don't already have some. The
2484  * application must reap them itself, as they reside on the shared cq ring.
2485  */
2486 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2487 			  struct ext_arg *ext_arg)
2488 {
2489 	struct io_wait_queue iowq;
2490 	struct io_rings *rings = ctx->rings;
2491 	ktime_t start_time;
2492 	int ret;
2493 
2494 	if (!io_allowed_run_tw(ctx))
2495 		return -EEXIST;
2496 	if (!llist_empty(&ctx->work_llist))
2497 		io_run_local_work(ctx, min_events);
2498 	io_run_task_work();
2499 
2500 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2501 		io_cqring_do_overflow_flush(ctx);
2502 	if (__io_cqring_events_user(ctx) >= min_events)
2503 		return 0;
2504 
2505 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2506 	iowq.wq.private = current;
2507 	INIT_LIST_HEAD(&iowq.wq.entry);
2508 	iowq.ctx = ctx;
2509 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2510 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2511 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2512 	iowq.hit_timeout = 0;
2513 	iowq.min_timeout = ext_arg->min_time;
2514 	iowq.timeout = KTIME_MAX;
2515 	start_time = io_get_time(ctx);
2516 
2517 	if (ext_arg->ts_set) {
2518 		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2519 		if (!(flags & IORING_ENTER_ABS_TIMER))
2520 			iowq.timeout = ktime_add(iowq.timeout, start_time);
2521 	}
2522 
2523 	if (ext_arg->sig) {
2524 #ifdef CONFIG_COMPAT
2525 		if (in_compat_syscall())
2526 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2527 						      ext_arg->argsz);
2528 		else
2529 #endif
2530 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2531 
2532 		if (ret)
2533 			return ret;
2534 	}
2535 
2536 	io_napi_busy_loop(ctx, &iowq);
2537 
2538 	trace_io_uring_cqring_wait(ctx, min_events);
2539 	do {
2540 		unsigned long check_cq;
2541 		int nr_wait;
2542 
2543 		/* if min timeout has been hit, don't reset wait count */
2544 		if (!iowq.hit_timeout)
2545 			nr_wait = (int) iowq.cq_tail -
2546 					READ_ONCE(ctx->rings->cq.tail);
2547 		else
2548 			nr_wait = 1;
2549 
2550 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2551 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2552 			set_current_state(TASK_INTERRUPTIBLE);
2553 		} else {
2554 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2555 							TASK_INTERRUPTIBLE);
2556 		}
2557 
2558 		ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2559 		__set_current_state(TASK_RUNNING);
2560 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2561 
2562 		/*
2563 		 * Run task_work after scheduling and before io_should_wake().
2564 		 * If we got woken because of task_work being processed, run it
2565 		 * now rather than let the caller do another wait loop.
2566 		 */
2567 		if (!llist_empty(&ctx->work_llist))
2568 			io_run_local_work(ctx, nr_wait);
2569 		io_run_task_work();
2570 
2571 		/*
2572 		 * Non-local task_work will be run on exit to userspace, but
2573 		 * if we're using DEFER_TASKRUN, then we could have waited
2574 		 * with a timeout for a number of requests. If the timeout
2575 		 * hits, we could have some requests ready to process. Ensure
2576 		 * this break is _after_ we have run task_work, to avoid
2577 		 * deferring running potentially pending requests until the
2578 		 * next time we wait for events.
2579 		 */
2580 		if (ret < 0)
2581 			break;
2582 
2583 		check_cq = READ_ONCE(ctx->check_cq);
2584 		if (unlikely(check_cq)) {
2585 			/* let the caller flush overflows, retry */
2586 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2587 				io_cqring_do_overflow_flush(ctx);
2588 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2589 				ret = -EBADR;
2590 				break;
2591 			}
2592 		}
2593 
2594 		if (io_should_wake(&iowq)) {
2595 			ret = 0;
2596 			break;
2597 		}
2598 		cond_resched();
2599 	} while (1);
2600 
2601 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2602 		finish_wait(&ctx->cq_wait, &iowq.wq);
2603 	restore_saved_sigmask_unless(ret == -EINTR);
2604 
2605 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2606 }
2607 
2608 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2609 			  size_t size)
2610 {
2611 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2612 				size);
2613 }
2614 
2615 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2616 			 size_t size)
2617 {
2618 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2619 				size);
2620 }
2621 
2622 static void io_rings_free(struct io_ring_ctx *ctx)
2623 {
2624 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2625 		io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2626 				true);
2627 		io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2628 				true);
2629 	} else {
2630 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2631 		ctx->n_ring_pages = 0;
2632 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2633 		ctx->n_sqe_pages = 0;
2634 		vunmap(ctx->rings);
2635 		vunmap(ctx->sq_sqes);
2636 	}
2637 
2638 	ctx->rings = NULL;
2639 	ctx->sq_sqes = NULL;
2640 }
2641 
2642 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2643 			 unsigned int cq_entries, size_t *sq_offset)
2644 {
2645 	struct io_rings *rings;
2646 	size_t off, sq_array_size;
2647 
2648 	off = struct_size(rings, cqes, cq_entries);
2649 	if (off == SIZE_MAX)
2650 		return SIZE_MAX;
2651 	if (flags & IORING_SETUP_CQE32) {
2652 		if (check_shl_overflow(off, 1, &off))
2653 			return SIZE_MAX;
2654 	}
2655 
2656 #ifdef CONFIG_SMP
2657 	off = ALIGN(off, SMP_CACHE_BYTES);
2658 	if (off == 0)
2659 		return SIZE_MAX;
2660 #endif
2661 
2662 	if (flags & IORING_SETUP_NO_SQARRAY) {
2663 		*sq_offset = SIZE_MAX;
2664 		return off;
2665 	}
2666 
2667 	*sq_offset = off;
2668 
2669 	sq_array_size = array_size(sizeof(u32), sq_entries);
2670 	if (sq_array_size == SIZE_MAX)
2671 		return SIZE_MAX;
2672 
2673 	if (check_add_overflow(off, sq_array_size, &off))
2674 		return SIZE_MAX;
2675 
2676 	return off;
2677 }
2678 
2679 static void io_req_caches_free(struct io_ring_ctx *ctx)
2680 {
2681 	struct io_kiocb *req;
2682 	int nr = 0;
2683 
2684 	mutex_lock(&ctx->uring_lock);
2685 
2686 	while (!io_req_cache_empty(ctx)) {
2687 		req = io_extract_req(ctx);
2688 		kmem_cache_free(req_cachep, req);
2689 		nr++;
2690 	}
2691 	if (nr)
2692 		percpu_ref_put_many(&ctx->refs, nr);
2693 	mutex_unlock(&ctx->uring_lock);
2694 }
2695 
2696 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2697 {
2698 	io_sq_thread_finish(ctx);
2699 
2700 	mutex_lock(&ctx->uring_lock);
2701 	io_sqe_buffers_unregister(ctx);
2702 	io_sqe_files_unregister(ctx);
2703 	io_cqring_overflow_kill(ctx);
2704 	io_eventfd_unregister(ctx);
2705 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2706 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2707 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2708 	io_alloc_cache_free(&ctx->uring_cache, kfree);
2709 	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2710 	io_futex_cache_free(ctx);
2711 	io_destroy_buffers(ctx);
2712 	io_free_region(ctx, &ctx->param_region);
2713 	mutex_unlock(&ctx->uring_lock);
2714 	if (ctx->sq_creds)
2715 		put_cred(ctx->sq_creds);
2716 	if (ctx->submitter_task)
2717 		put_task_struct(ctx->submitter_task);
2718 
2719 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2720 
2721 	if (ctx->mm_account) {
2722 		mmdrop(ctx->mm_account);
2723 		ctx->mm_account = NULL;
2724 	}
2725 	io_rings_free(ctx);
2726 
2727 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2728 		static_branch_dec(&io_key_has_sqarray);
2729 
2730 	percpu_ref_exit(&ctx->refs);
2731 	free_uid(ctx->user);
2732 	io_req_caches_free(ctx);
2733 	if (ctx->hash_map)
2734 		io_wq_put_hash(ctx->hash_map);
2735 	io_napi_free(ctx);
2736 	kvfree(ctx->cancel_table.hbs);
2737 	xa_destroy(&ctx->io_bl_xa);
2738 	kfree(ctx);
2739 }
2740 
2741 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2742 {
2743 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2744 					       poll_wq_task_work);
2745 
2746 	mutex_lock(&ctx->uring_lock);
2747 	ctx->poll_activated = true;
2748 	mutex_unlock(&ctx->uring_lock);
2749 
2750 	/*
2751 	 * Wake ups for some events between start of polling and activation
2752 	 * might've been lost due to loose synchronisation.
2753 	 */
2754 	wake_up_all(&ctx->poll_wq);
2755 	percpu_ref_put(&ctx->refs);
2756 }
2757 
2758 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2759 {
2760 	spin_lock(&ctx->completion_lock);
2761 	/* already activated or in progress */
2762 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2763 		goto out;
2764 	if (WARN_ON_ONCE(!ctx->task_complete))
2765 		goto out;
2766 	if (!ctx->submitter_task)
2767 		goto out;
2768 	/*
2769 	 * with ->submitter_task only the submitter task completes requests, we
2770 	 * only need to sync with it, which is done by injecting a tw
2771 	 */
2772 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2773 	percpu_ref_get(&ctx->refs);
2774 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2775 		percpu_ref_put(&ctx->refs);
2776 out:
2777 	spin_unlock(&ctx->completion_lock);
2778 }
2779 
2780 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2781 {
2782 	struct io_ring_ctx *ctx = file->private_data;
2783 	__poll_t mask = 0;
2784 
2785 	if (unlikely(!ctx->poll_activated))
2786 		io_activate_pollwq(ctx);
2787 
2788 	poll_wait(file, &ctx->poll_wq, wait);
2789 	/*
2790 	 * synchronizes with barrier from wq_has_sleeper call in
2791 	 * io_commit_cqring
2792 	 */
2793 	smp_rmb();
2794 	if (!io_sqring_full(ctx))
2795 		mask |= EPOLLOUT | EPOLLWRNORM;
2796 
2797 	/*
2798 	 * Don't flush cqring overflow list here, just do a simple check.
2799 	 * Otherwise there could possible be ABBA deadlock:
2800 	 *      CPU0                    CPU1
2801 	 *      ----                    ----
2802 	 * lock(&ctx->uring_lock);
2803 	 *                              lock(&ep->mtx);
2804 	 *                              lock(&ctx->uring_lock);
2805 	 * lock(&ep->mtx);
2806 	 *
2807 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2808 	 * pushes them to do the flush.
2809 	 */
2810 
2811 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2812 		mask |= EPOLLIN | EPOLLRDNORM;
2813 
2814 	return mask;
2815 }
2816 
2817 struct io_tctx_exit {
2818 	struct callback_head		task_work;
2819 	struct completion		completion;
2820 	struct io_ring_ctx		*ctx;
2821 };
2822 
2823 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2824 {
2825 	struct io_uring_task *tctx = current->io_uring;
2826 	struct io_tctx_exit *work;
2827 
2828 	work = container_of(cb, struct io_tctx_exit, task_work);
2829 	/*
2830 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2831 	 * node. It'll be removed by the end of cancellation, just ignore it.
2832 	 * tctx can be NULL if the queueing of this task_work raced with
2833 	 * work cancelation off the exec path.
2834 	 */
2835 	if (tctx && !atomic_read(&tctx->in_cancel))
2836 		io_uring_del_tctx_node((unsigned long)work->ctx);
2837 	complete(&work->completion);
2838 }
2839 
2840 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2841 {
2842 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2843 
2844 	return req->ctx == data;
2845 }
2846 
2847 static __cold void io_ring_exit_work(struct work_struct *work)
2848 {
2849 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2850 	unsigned long timeout = jiffies + HZ * 60 * 5;
2851 	unsigned long interval = HZ / 20;
2852 	struct io_tctx_exit exit;
2853 	struct io_tctx_node *node;
2854 	int ret;
2855 
2856 	/*
2857 	 * If we're doing polled IO and end up having requests being
2858 	 * submitted async (out-of-line), then completions can come in while
2859 	 * we're waiting for refs to drop. We need to reap these manually,
2860 	 * as nobody else will be looking for them.
2861 	 */
2862 	do {
2863 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2864 			mutex_lock(&ctx->uring_lock);
2865 			io_cqring_overflow_kill(ctx);
2866 			mutex_unlock(&ctx->uring_lock);
2867 		}
2868 
2869 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2870 			io_move_task_work_from_local(ctx);
2871 
2872 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2873 			cond_resched();
2874 
2875 		if (ctx->sq_data) {
2876 			struct io_sq_data *sqd = ctx->sq_data;
2877 			struct task_struct *tsk;
2878 
2879 			io_sq_thread_park(sqd);
2880 			tsk = sqd->thread;
2881 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2882 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2883 						io_cancel_ctx_cb, ctx, true);
2884 			io_sq_thread_unpark(sqd);
2885 		}
2886 
2887 		io_req_caches_free(ctx);
2888 
2889 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2890 			/* there is little hope left, don't run it too often */
2891 			interval = HZ * 60;
2892 		}
2893 		/*
2894 		 * This is really an uninterruptible wait, as it has to be
2895 		 * complete. But it's also run from a kworker, which doesn't
2896 		 * take signals, so it's fine to make it interruptible. This
2897 		 * avoids scenarios where we knowingly can wait much longer
2898 		 * on completions, for example if someone does a SIGSTOP on
2899 		 * a task that needs to finish task_work to make this loop
2900 		 * complete. That's a synthetic situation that should not
2901 		 * cause a stuck task backtrace, and hence a potential panic
2902 		 * on stuck tasks if that is enabled.
2903 		 */
2904 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2905 
2906 	init_completion(&exit.completion);
2907 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2908 	exit.ctx = ctx;
2909 
2910 	mutex_lock(&ctx->uring_lock);
2911 	while (!list_empty(&ctx->tctx_list)) {
2912 		WARN_ON_ONCE(time_after(jiffies, timeout));
2913 
2914 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2915 					ctx_node);
2916 		/* don't spin on a single task if cancellation failed */
2917 		list_rotate_left(&ctx->tctx_list);
2918 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2919 		if (WARN_ON_ONCE(ret))
2920 			continue;
2921 
2922 		mutex_unlock(&ctx->uring_lock);
2923 		/*
2924 		 * See comment above for
2925 		 * wait_for_completion_interruptible_timeout() on why this
2926 		 * wait is marked as interruptible.
2927 		 */
2928 		wait_for_completion_interruptible(&exit.completion);
2929 		mutex_lock(&ctx->uring_lock);
2930 	}
2931 	mutex_unlock(&ctx->uring_lock);
2932 	spin_lock(&ctx->completion_lock);
2933 	spin_unlock(&ctx->completion_lock);
2934 
2935 	/* pairs with RCU read section in io_req_local_work_add() */
2936 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2937 		synchronize_rcu();
2938 
2939 	io_ring_ctx_free(ctx);
2940 }
2941 
2942 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2943 {
2944 	unsigned long index;
2945 	struct creds *creds;
2946 
2947 	mutex_lock(&ctx->uring_lock);
2948 	percpu_ref_kill(&ctx->refs);
2949 	xa_for_each(&ctx->personalities, index, creds)
2950 		io_unregister_personality(ctx, index);
2951 	mutex_unlock(&ctx->uring_lock);
2952 
2953 	flush_delayed_work(&ctx->fallback_work);
2954 
2955 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2956 	/*
2957 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2958 	 * if we're exiting a ton of rings at the same time. It just adds
2959 	 * noise and overhead, there's no discernable change in runtime
2960 	 * over using system_wq.
2961 	 */
2962 	queue_work(iou_wq, &ctx->exit_work);
2963 }
2964 
2965 static int io_uring_release(struct inode *inode, struct file *file)
2966 {
2967 	struct io_ring_ctx *ctx = file->private_data;
2968 
2969 	file->private_data = NULL;
2970 	io_ring_ctx_wait_and_kill(ctx);
2971 	return 0;
2972 }
2973 
2974 struct io_task_cancel {
2975 	struct io_uring_task *tctx;
2976 	bool all;
2977 };
2978 
2979 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2980 {
2981 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2982 	struct io_task_cancel *cancel = data;
2983 
2984 	return io_match_task_safe(req, cancel->tctx, cancel->all);
2985 }
2986 
2987 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2988 					 struct io_uring_task *tctx,
2989 					 bool cancel_all)
2990 {
2991 	struct io_defer_entry *de;
2992 	LIST_HEAD(list);
2993 
2994 	spin_lock(&ctx->completion_lock);
2995 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2996 		if (io_match_task_safe(de->req, tctx, cancel_all)) {
2997 			list_cut_position(&list, &ctx->defer_list, &de->list);
2998 			break;
2999 		}
3000 	}
3001 	spin_unlock(&ctx->completion_lock);
3002 	if (list_empty(&list))
3003 		return false;
3004 
3005 	while (!list_empty(&list)) {
3006 		de = list_first_entry(&list, struct io_defer_entry, list);
3007 		list_del_init(&de->list);
3008 		io_req_task_queue_fail(de->req, -ECANCELED);
3009 		kfree(de);
3010 	}
3011 	return true;
3012 }
3013 
3014 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3015 {
3016 	struct io_tctx_node *node;
3017 	enum io_wq_cancel cret;
3018 	bool ret = false;
3019 
3020 	mutex_lock(&ctx->uring_lock);
3021 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3022 		struct io_uring_task *tctx = node->task->io_uring;
3023 
3024 		/*
3025 		 * io_wq will stay alive while we hold uring_lock, because it's
3026 		 * killed after ctx nodes, which requires to take the lock.
3027 		 */
3028 		if (!tctx || !tctx->io_wq)
3029 			continue;
3030 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3031 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3032 	}
3033 	mutex_unlock(&ctx->uring_lock);
3034 
3035 	return ret;
3036 }
3037 
3038 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3039 						struct io_uring_task *tctx,
3040 						bool cancel_all)
3041 {
3042 	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3043 	enum io_wq_cancel cret;
3044 	bool ret = false;
3045 
3046 	/* set it so io_req_local_work_add() would wake us up */
3047 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3048 		atomic_set(&ctx->cq_wait_nr, 1);
3049 		smp_mb();
3050 	}
3051 
3052 	/* failed during ring init, it couldn't have issued any requests */
3053 	if (!ctx->rings)
3054 		return false;
3055 
3056 	if (!tctx) {
3057 		ret |= io_uring_try_cancel_iowq(ctx);
3058 	} else if (tctx->io_wq) {
3059 		/*
3060 		 * Cancels requests of all rings, not only @ctx, but
3061 		 * it's fine as the task is in exit/exec.
3062 		 */
3063 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3064 				       &cancel, true);
3065 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3066 	}
3067 
3068 	/* SQPOLL thread does its own polling */
3069 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3070 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3071 		while (!wq_list_empty(&ctx->iopoll_list)) {
3072 			io_iopoll_try_reap_events(ctx);
3073 			ret = true;
3074 			cond_resched();
3075 		}
3076 	}
3077 
3078 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3079 	    io_allowed_defer_tw_run(ctx))
3080 		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3081 	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3082 	mutex_lock(&ctx->uring_lock);
3083 	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3084 	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3085 	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3086 	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3087 	mutex_unlock(&ctx->uring_lock);
3088 	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3089 	if (tctx)
3090 		ret |= io_run_task_work() > 0;
3091 	else
3092 		ret |= flush_delayed_work(&ctx->fallback_work);
3093 	return ret;
3094 }
3095 
3096 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3097 {
3098 	if (tracked)
3099 		return atomic_read(&tctx->inflight_tracked);
3100 	return percpu_counter_sum(&tctx->inflight);
3101 }
3102 
3103 /*
3104  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3105  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3106  */
3107 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3108 {
3109 	struct io_uring_task *tctx = current->io_uring;
3110 	struct io_ring_ctx *ctx;
3111 	struct io_tctx_node *node;
3112 	unsigned long index;
3113 	s64 inflight;
3114 	DEFINE_WAIT(wait);
3115 
3116 	WARN_ON_ONCE(sqd && sqd->thread != current);
3117 
3118 	if (!current->io_uring)
3119 		return;
3120 	if (tctx->io_wq)
3121 		io_wq_exit_start(tctx->io_wq);
3122 
3123 	atomic_inc(&tctx->in_cancel);
3124 	do {
3125 		bool loop = false;
3126 
3127 		io_uring_drop_tctx_refs(current);
3128 		if (!tctx_inflight(tctx, !cancel_all))
3129 			break;
3130 
3131 		/* read completions before cancelations */
3132 		inflight = tctx_inflight(tctx, false);
3133 		if (!inflight)
3134 			break;
3135 
3136 		if (!sqd) {
3137 			xa_for_each(&tctx->xa, index, node) {
3138 				/* sqpoll task will cancel all its requests */
3139 				if (node->ctx->sq_data)
3140 					continue;
3141 				loop |= io_uring_try_cancel_requests(node->ctx,
3142 							current->io_uring,
3143 							cancel_all);
3144 			}
3145 		} else {
3146 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3147 				loop |= io_uring_try_cancel_requests(ctx,
3148 								     current->io_uring,
3149 								     cancel_all);
3150 		}
3151 
3152 		if (loop) {
3153 			cond_resched();
3154 			continue;
3155 		}
3156 
3157 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3158 		io_run_task_work();
3159 		io_uring_drop_tctx_refs(current);
3160 		xa_for_each(&tctx->xa, index, node) {
3161 			if (!llist_empty(&node->ctx->work_llist)) {
3162 				WARN_ON_ONCE(node->ctx->submitter_task &&
3163 					     node->ctx->submitter_task != current);
3164 				goto end_wait;
3165 			}
3166 		}
3167 		/*
3168 		 * If we've seen completions, retry without waiting. This
3169 		 * avoids a race where a completion comes in before we did
3170 		 * prepare_to_wait().
3171 		 */
3172 		if (inflight == tctx_inflight(tctx, !cancel_all))
3173 			schedule();
3174 end_wait:
3175 		finish_wait(&tctx->wait, &wait);
3176 	} while (1);
3177 
3178 	io_uring_clean_tctx(tctx);
3179 	if (cancel_all) {
3180 		/*
3181 		 * We shouldn't run task_works after cancel, so just leave
3182 		 * ->in_cancel set for normal exit.
3183 		 */
3184 		atomic_dec(&tctx->in_cancel);
3185 		/* for exec all current's requests should be gone, kill tctx */
3186 		__io_uring_free(current);
3187 	}
3188 }
3189 
3190 void __io_uring_cancel(bool cancel_all)
3191 {
3192 	io_uring_cancel_generic(cancel_all, NULL);
3193 }
3194 
3195 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3196 			const struct io_uring_getevents_arg __user *uarg)
3197 {
3198 	unsigned long size = sizeof(struct io_uring_reg_wait);
3199 	unsigned long offset = (uintptr_t)uarg;
3200 	unsigned long end;
3201 
3202 	if (unlikely(offset % sizeof(long)))
3203 		return ERR_PTR(-EFAULT);
3204 
3205 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3206 	if (unlikely(check_add_overflow(offset, size, &end) ||
3207 		     end > ctx->cq_wait_size))
3208 		return ERR_PTR(-EFAULT);
3209 
3210 	return ctx->cq_wait_arg + offset;
3211 }
3212 
3213 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3214 			       const void __user *argp, size_t argsz)
3215 {
3216 	struct io_uring_getevents_arg arg;
3217 
3218 	if (!(flags & IORING_ENTER_EXT_ARG))
3219 		return 0;
3220 	if (flags & IORING_ENTER_EXT_ARG_REG)
3221 		return -EINVAL;
3222 	if (argsz != sizeof(arg))
3223 		return -EINVAL;
3224 	if (copy_from_user(&arg, argp, sizeof(arg)))
3225 		return -EFAULT;
3226 	return 0;
3227 }
3228 
3229 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3230 			  const void __user *argp, struct ext_arg *ext_arg)
3231 {
3232 	const struct io_uring_getevents_arg __user *uarg = argp;
3233 	struct io_uring_getevents_arg arg;
3234 
3235 	/*
3236 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3237 	 * is just a pointer to the sigset_t.
3238 	 */
3239 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3240 		ext_arg->sig = (const sigset_t __user *) argp;
3241 		return 0;
3242 	}
3243 
3244 	if (flags & IORING_ENTER_EXT_ARG_REG) {
3245 		struct io_uring_reg_wait *w;
3246 
3247 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3248 			return -EINVAL;
3249 		w = io_get_ext_arg_reg(ctx, argp);
3250 		if (IS_ERR(w))
3251 			return PTR_ERR(w);
3252 
3253 		if (w->flags & ~IORING_REG_WAIT_TS)
3254 			return -EINVAL;
3255 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3256 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3257 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3258 		if (w->flags & IORING_REG_WAIT_TS) {
3259 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3260 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3261 			ext_arg->ts_set = true;
3262 		}
3263 		return 0;
3264 	}
3265 
3266 	/*
3267 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3268 	 * timespec and sigset_t pointers if good.
3269 	 */
3270 	if (ext_arg->argsz != sizeof(arg))
3271 		return -EINVAL;
3272 #ifdef CONFIG_64BIT
3273 	if (!user_access_begin(uarg, sizeof(*uarg)))
3274 		return -EFAULT;
3275 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3276 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3277 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3278 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3279 	user_access_end();
3280 #else
3281 	if (copy_from_user(&arg, uarg, sizeof(arg)))
3282 		return -EFAULT;
3283 #endif
3284 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3285 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3286 	ext_arg->argsz = arg.sigmask_sz;
3287 	if (arg.ts) {
3288 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3289 			return -EFAULT;
3290 		ext_arg->ts_set = true;
3291 	}
3292 	return 0;
3293 #ifdef CONFIG_64BIT
3294 uaccess_end:
3295 	user_access_end();
3296 	return -EFAULT;
3297 #endif
3298 }
3299 
3300 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3301 		u32, min_complete, u32, flags, const void __user *, argp,
3302 		size_t, argsz)
3303 {
3304 	struct io_ring_ctx *ctx;
3305 	struct file *file;
3306 	long ret;
3307 
3308 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3309 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3310 			       IORING_ENTER_REGISTERED_RING |
3311 			       IORING_ENTER_ABS_TIMER |
3312 			       IORING_ENTER_EXT_ARG_REG)))
3313 		return -EINVAL;
3314 
3315 	/*
3316 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3317 	 * need only dereference our task private array to find it.
3318 	 */
3319 	if (flags & IORING_ENTER_REGISTERED_RING) {
3320 		struct io_uring_task *tctx = current->io_uring;
3321 
3322 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3323 			return -EINVAL;
3324 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3325 		file = tctx->registered_rings[fd];
3326 		if (unlikely(!file))
3327 			return -EBADF;
3328 	} else {
3329 		file = fget(fd);
3330 		if (unlikely(!file))
3331 			return -EBADF;
3332 		ret = -EOPNOTSUPP;
3333 		if (unlikely(!io_is_uring_fops(file)))
3334 			goto out;
3335 	}
3336 
3337 	ctx = file->private_data;
3338 	ret = -EBADFD;
3339 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3340 		goto out;
3341 
3342 	/*
3343 	 * For SQ polling, the thread will do all submissions and completions.
3344 	 * Just return the requested submit count, and wake the thread if
3345 	 * we were asked to.
3346 	 */
3347 	ret = 0;
3348 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3349 		if (unlikely(ctx->sq_data->thread == NULL)) {
3350 			ret = -EOWNERDEAD;
3351 			goto out;
3352 		}
3353 		if (flags & IORING_ENTER_SQ_WAKEUP)
3354 			wake_up(&ctx->sq_data->wait);
3355 		if (flags & IORING_ENTER_SQ_WAIT)
3356 			io_sqpoll_wait_sq(ctx);
3357 
3358 		ret = to_submit;
3359 	} else if (to_submit) {
3360 		ret = io_uring_add_tctx_node(ctx);
3361 		if (unlikely(ret))
3362 			goto out;
3363 
3364 		mutex_lock(&ctx->uring_lock);
3365 		ret = io_submit_sqes(ctx, to_submit);
3366 		if (ret != to_submit) {
3367 			mutex_unlock(&ctx->uring_lock);
3368 			goto out;
3369 		}
3370 		if (flags & IORING_ENTER_GETEVENTS) {
3371 			if (ctx->syscall_iopoll)
3372 				goto iopoll_locked;
3373 			/*
3374 			 * Ignore errors, we'll soon call io_cqring_wait() and
3375 			 * it should handle ownership problems if any.
3376 			 */
3377 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3378 				(void)io_run_local_work_locked(ctx, min_complete);
3379 		}
3380 		mutex_unlock(&ctx->uring_lock);
3381 	}
3382 
3383 	if (flags & IORING_ENTER_GETEVENTS) {
3384 		int ret2;
3385 
3386 		if (ctx->syscall_iopoll) {
3387 			/*
3388 			 * We disallow the app entering submit/complete with
3389 			 * polling, but we still need to lock the ring to
3390 			 * prevent racing with polled issue that got punted to
3391 			 * a workqueue.
3392 			 */
3393 			mutex_lock(&ctx->uring_lock);
3394 iopoll_locked:
3395 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3396 			if (likely(!ret2)) {
3397 				min_complete = min(min_complete,
3398 						   ctx->cq_entries);
3399 				ret2 = io_iopoll_check(ctx, min_complete);
3400 			}
3401 			mutex_unlock(&ctx->uring_lock);
3402 		} else {
3403 			struct ext_arg ext_arg = { .argsz = argsz };
3404 
3405 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3406 			if (likely(!ret2)) {
3407 				min_complete = min(min_complete,
3408 						   ctx->cq_entries);
3409 				ret2 = io_cqring_wait(ctx, min_complete, flags,
3410 						      &ext_arg);
3411 			}
3412 		}
3413 
3414 		if (!ret) {
3415 			ret = ret2;
3416 
3417 			/*
3418 			 * EBADR indicates that one or more CQE were dropped.
3419 			 * Once the user has been informed we can clear the bit
3420 			 * as they are obviously ok with those drops.
3421 			 */
3422 			if (unlikely(ret2 == -EBADR))
3423 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3424 					  &ctx->check_cq);
3425 		}
3426 	}
3427 out:
3428 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3429 		fput(file);
3430 	return ret;
3431 }
3432 
3433 static const struct file_operations io_uring_fops = {
3434 	.release	= io_uring_release,
3435 	.mmap		= io_uring_mmap,
3436 	.get_unmapped_area = io_uring_get_unmapped_area,
3437 #ifndef CONFIG_MMU
3438 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3439 #endif
3440 	.poll		= io_uring_poll,
3441 #ifdef CONFIG_PROC_FS
3442 	.show_fdinfo	= io_uring_show_fdinfo,
3443 #endif
3444 };
3445 
3446 bool io_is_uring_fops(struct file *file)
3447 {
3448 	return file->f_op == &io_uring_fops;
3449 }
3450 
3451 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3452 					 struct io_uring_params *p)
3453 {
3454 	struct io_rings *rings;
3455 	size_t size, sq_array_offset;
3456 	void *ptr;
3457 
3458 	/* make sure these are sane, as we already accounted them */
3459 	ctx->sq_entries = p->sq_entries;
3460 	ctx->cq_entries = p->cq_entries;
3461 
3462 	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3463 			  &sq_array_offset);
3464 	if (size == SIZE_MAX)
3465 		return -EOVERFLOW;
3466 
3467 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3468 		rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3469 	else
3470 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3471 
3472 	if (IS_ERR(rings))
3473 		return PTR_ERR(rings);
3474 
3475 	ctx->rings = rings;
3476 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3477 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3478 	rings->sq_ring_mask = p->sq_entries - 1;
3479 	rings->cq_ring_mask = p->cq_entries - 1;
3480 	rings->sq_ring_entries = p->sq_entries;
3481 	rings->cq_ring_entries = p->cq_entries;
3482 
3483 	if (p->flags & IORING_SETUP_SQE128)
3484 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3485 	else
3486 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3487 	if (size == SIZE_MAX) {
3488 		io_rings_free(ctx);
3489 		return -EOVERFLOW;
3490 	}
3491 
3492 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3493 		ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3494 	else
3495 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3496 
3497 	if (IS_ERR(ptr)) {
3498 		io_rings_free(ctx);
3499 		return PTR_ERR(ptr);
3500 	}
3501 
3502 	ctx->sq_sqes = ptr;
3503 	return 0;
3504 }
3505 
3506 static int io_uring_install_fd(struct file *file)
3507 {
3508 	int fd;
3509 
3510 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3511 	if (fd < 0)
3512 		return fd;
3513 	fd_install(fd, file);
3514 	return fd;
3515 }
3516 
3517 /*
3518  * Allocate an anonymous fd, this is what constitutes the application
3519  * visible backing of an io_uring instance. The application mmaps this
3520  * fd to gain access to the SQ/CQ ring details.
3521  */
3522 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3523 {
3524 	/* Create a new inode so that the LSM can block the creation.  */
3525 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3526 					 O_RDWR | O_CLOEXEC, NULL);
3527 }
3528 
3529 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3530 {
3531 	if (!entries)
3532 		return -EINVAL;
3533 	if (entries > IORING_MAX_ENTRIES) {
3534 		if (!(p->flags & IORING_SETUP_CLAMP))
3535 			return -EINVAL;
3536 		entries = IORING_MAX_ENTRIES;
3537 	}
3538 
3539 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3540 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3541 		return -EINVAL;
3542 
3543 	/*
3544 	 * Use twice as many entries for the CQ ring. It's possible for the
3545 	 * application to drive a higher depth than the size of the SQ ring,
3546 	 * since the sqes are only used at submission time. This allows for
3547 	 * some flexibility in overcommitting a bit. If the application has
3548 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3549 	 * of CQ ring entries manually.
3550 	 */
3551 	p->sq_entries = roundup_pow_of_two(entries);
3552 	if (p->flags & IORING_SETUP_CQSIZE) {
3553 		/*
3554 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3555 		 * to a power-of-two, if it isn't already. We do NOT impose
3556 		 * any cq vs sq ring sizing.
3557 		 */
3558 		if (!p->cq_entries)
3559 			return -EINVAL;
3560 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3561 			if (!(p->flags & IORING_SETUP_CLAMP))
3562 				return -EINVAL;
3563 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3564 		}
3565 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3566 		if (p->cq_entries < p->sq_entries)
3567 			return -EINVAL;
3568 	} else {
3569 		p->cq_entries = 2 * p->sq_entries;
3570 	}
3571 
3572 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3573 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3574 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3575 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3576 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3577 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3578 	p->sq_off.resv1 = 0;
3579 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3580 		p->sq_off.user_addr = 0;
3581 
3582 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3583 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3584 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3585 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3586 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3587 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3588 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3589 	p->cq_off.resv1 = 0;
3590 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3591 		p->cq_off.user_addr = 0;
3592 
3593 	return 0;
3594 }
3595 
3596 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3597 				  struct io_uring_params __user *params)
3598 {
3599 	struct io_ring_ctx *ctx;
3600 	struct io_uring_task *tctx;
3601 	struct file *file;
3602 	int ret;
3603 
3604 	ret = io_uring_fill_params(entries, p);
3605 	if (unlikely(ret))
3606 		return ret;
3607 
3608 	ctx = io_ring_ctx_alloc(p);
3609 	if (!ctx)
3610 		return -ENOMEM;
3611 
3612 	ctx->clockid = CLOCK_MONOTONIC;
3613 	ctx->clock_offset = 0;
3614 
3615 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3616 		static_branch_inc(&io_key_has_sqarray);
3617 
3618 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3619 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3620 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3621 		ctx->task_complete = true;
3622 
3623 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3624 		ctx->lockless_cq = true;
3625 
3626 	/*
3627 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3628 	 * purposes, see io_activate_pollwq()
3629 	 */
3630 	if (!ctx->task_complete)
3631 		ctx->poll_activated = true;
3632 
3633 	/*
3634 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3635 	 * space applications don't need to do io completion events
3636 	 * polling again, they can rely on io_sq_thread to do polling
3637 	 * work, which can reduce cpu usage and uring_lock contention.
3638 	 */
3639 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3640 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3641 		ctx->syscall_iopoll = 1;
3642 
3643 	ctx->compat = in_compat_syscall();
3644 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3645 		ctx->user = get_uid(current_user());
3646 
3647 	/*
3648 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3649 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3650 	 */
3651 	ret = -EINVAL;
3652 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3653 		/* IPI related flags don't make sense with SQPOLL */
3654 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3655 				  IORING_SETUP_TASKRUN_FLAG |
3656 				  IORING_SETUP_DEFER_TASKRUN))
3657 			goto err;
3658 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3659 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3660 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3661 	} else {
3662 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3663 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3664 			goto err;
3665 		ctx->notify_method = TWA_SIGNAL;
3666 	}
3667 
3668 	/* HYBRID_IOPOLL only valid with IOPOLL */
3669 	if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3670 			IORING_SETUP_HYBRID_IOPOLL)
3671 		goto err;
3672 
3673 	/*
3674 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3675 	 * submission task. This implies that there is only one submitter, so enforce
3676 	 * that.
3677 	 */
3678 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3679 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3680 		goto err;
3681 	}
3682 
3683 	/*
3684 	 * This is just grabbed for accounting purposes. When a process exits,
3685 	 * the mm is exited and dropped before the files, hence we need to hang
3686 	 * on to this mm purely for the purposes of being able to unaccount
3687 	 * memory (locked/pinned vm). It's not used for anything else.
3688 	 */
3689 	mmgrab(current->mm);
3690 	ctx->mm_account = current->mm;
3691 
3692 	ret = io_allocate_scq_urings(ctx, p);
3693 	if (ret)
3694 		goto err;
3695 
3696 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3697 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3698 
3699 	ret = io_sq_offload_create(ctx, p);
3700 	if (ret)
3701 		goto err;
3702 
3703 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3704 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3705 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3706 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3707 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3708 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3709 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3710 			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3711 
3712 	if (copy_to_user(params, p, sizeof(*p))) {
3713 		ret = -EFAULT;
3714 		goto err;
3715 	}
3716 
3717 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3718 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3719 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3720 
3721 	file = io_uring_get_file(ctx);
3722 	if (IS_ERR(file)) {
3723 		ret = PTR_ERR(file);
3724 		goto err;
3725 	}
3726 
3727 	ret = __io_uring_add_tctx_node(ctx);
3728 	if (ret)
3729 		goto err_fput;
3730 	tctx = current->io_uring;
3731 
3732 	/*
3733 	 * Install ring fd as the very last thing, so we don't risk someone
3734 	 * having closed it before we finish setup
3735 	 */
3736 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3737 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3738 	else
3739 		ret = io_uring_install_fd(file);
3740 	if (ret < 0)
3741 		goto err_fput;
3742 
3743 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3744 	return ret;
3745 err:
3746 	io_ring_ctx_wait_and_kill(ctx);
3747 	return ret;
3748 err_fput:
3749 	fput(file);
3750 	return ret;
3751 }
3752 
3753 /*
3754  * Sets up an aio uring context, and returns the fd. Applications asks for a
3755  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3756  * params structure passed in.
3757  */
3758 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3759 {
3760 	struct io_uring_params p;
3761 	int i;
3762 
3763 	if (copy_from_user(&p, params, sizeof(p)))
3764 		return -EFAULT;
3765 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3766 		if (p.resv[i])
3767 			return -EINVAL;
3768 	}
3769 
3770 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3771 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3772 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3773 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3774 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3775 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3776 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3777 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3778 			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3779 		return -EINVAL;
3780 
3781 	return io_uring_create(entries, &p, params);
3782 }
3783 
3784 static inline bool io_uring_allowed(void)
3785 {
3786 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3787 	kgid_t io_uring_group;
3788 
3789 	if (disabled == 2)
3790 		return false;
3791 
3792 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3793 		return true;
3794 
3795 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3796 	if (!gid_valid(io_uring_group))
3797 		return false;
3798 
3799 	return in_group_p(io_uring_group);
3800 }
3801 
3802 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3803 		struct io_uring_params __user *, params)
3804 {
3805 	if (!io_uring_allowed())
3806 		return -EPERM;
3807 
3808 	return io_uring_setup(entries, params);
3809 }
3810 
3811 static int __init io_uring_init(void)
3812 {
3813 	struct kmem_cache_args kmem_args = {
3814 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3815 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3816 		.freeptr_offset = offsetof(struct io_kiocb, work),
3817 		.use_freeptr_offset = true,
3818 	};
3819 
3820 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3821 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3822 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3823 } while (0)
3824 
3825 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3826 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3827 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3828 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3829 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3830 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3831 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3832 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3833 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3834 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3835 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3836 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3837 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3838 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3839 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3840 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3841 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3842 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3843 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3844 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3845 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3846 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3847 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3848 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3849 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3850 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3851 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3852 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3853 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3854 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3855 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3856 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3857 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3858 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3859 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3860 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3861 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3862 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3863 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3864 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3865 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3866 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3867 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3868 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3869 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3870 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3871 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3872 
3873 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3874 		     sizeof(struct io_uring_rsrc_update));
3875 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3876 		     sizeof(struct io_uring_rsrc_update2));
3877 
3878 	/* ->buf_index is u16 */
3879 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3880 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3881 		     offsetof(struct io_uring_buf_ring, tail));
3882 
3883 	/* should fit into one byte */
3884 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3885 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3886 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3887 
3888 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3889 
3890 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3891 
3892 	/* top 8bits are for internal use */
3893 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3894 
3895 	io_uring_optable_init();
3896 
3897 	/*
3898 	 * Allow user copy in the per-command field, which starts after the
3899 	 * file in io_kiocb and until the opcode field. The openat2 handling
3900 	 * requires copying in user memory into the io_kiocb object in that
3901 	 * range, and HARDENED_USERCOPY will complain if we haven't
3902 	 * correctly annotated this range.
3903 	 */
3904 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3905 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3906 				SLAB_TYPESAFE_BY_RCU);
3907 	io_buf_cachep = KMEM_CACHE(io_buffer,
3908 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3909 
3910 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3911 
3912 #ifdef CONFIG_SYSCTL
3913 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3914 #endif
3915 
3916 	return 0;
3917 };
3918 __initcall(io_uring_init);
3919