1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 #include "waitid.h" 96 #include "futex.h" 97 98 #include "timeout.h" 99 #include "poll.h" 100 #include "rw.h" 101 #include "alloc_cache.h" 102 103 #define IORING_MAX_ENTRIES 32768 104 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 105 106 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 107 IORING_REGISTER_LAST + IORING_OP_LAST) 108 109 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 110 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 111 112 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 113 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 114 115 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 116 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 117 REQ_F_ASYNC_DATA) 118 119 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 120 IO_REQ_CLEAN_FLAGS) 121 122 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 123 124 #define IO_COMPL_BATCH 32 125 #define IO_REQ_ALLOC_BATCH 8 126 127 enum { 128 IO_CHECK_CQ_OVERFLOW_BIT, 129 IO_CHECK_CQ_DROPPED_BIT, 130 }; 131 132 enum { 133 IO_EVENTFD_OP_SIGNAL_BIT, 134 IO_EVENTFD_OP_FREE_BIT, 135 }; 136 137 struct io_defer_entry { 138 struct list_head list; 139 struct io_kiocb *req; 140 u32 seq; 141 }; 142 143 /* requests with any of those set should undergo io_disarm_next() */ 144 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 145 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 146 147 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 148 struct task_struct *task, 149 bool cancel_all); 150 151 static void io_queue_sqe(struct io_kiocb *req); 152 153 struct kmem_cache *req_cachep; 154 155 static int __read_mostly sysctl_io_uring_disabled; 156 static int __read_mostly sysctl_io_uring_group = -1; 157 158 #ifdef CONFIG_SYSCTL 159 static struct ctl_table kernel_io_uring_disabled_table[] = { 160 { 161 .procname = "io_uring_disabled", 162 .data = &sysctl_io_uring_disabled, 163 .maxlen = sizeof(sysctl_io_uring_disabled), 164 .mode = 0644, 165 .proc_handler = proc_dointvec_minmax, 166 .extra1 = SYSCTL_ZERO, 167 .extra2 = SYSCTL_TWO, 168 }, 169 { 170 .procname = "io_uring_group", 171 .data = &sysctl_io_uring_group, 172 .maxlen = sizeof(gid_t), 173 .mode = 0644, 174 .proc_handler = proc_dointvec, 175 }, 176 {}, 177 }; 178 #endif 179 180 struct sock *io_uring_get_socket(struct file *file) 181 { 182 #if defined(CONFIG_UNIX) 183 if (io_is_uring_fops(file)) { 184 struct io_ring_ctx *ctx = file->private_data; 185 186 return ctx->ring_sock->sk; 187 } 188 #endif 189 return NULL; 190 } 191 EXPORT_SYMBOL(io_uring_get_socket); 192 193 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 194 { 195 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 196 ctx->submit_state.cqes_count) 197 __io_submit_flush_completions(ctx); 198 } 199 200 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 201 { 202 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 203 } 204 205 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 206 { 207 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 208 } 209 210 static bool io_match_linked(struct io_kiocb *head) 211 { 212 struct io_kiocb *req; 213 214 io_for_each_link(req, head) { 215 if (req->flags & REQ_F_INFLIGHT) 216 return true; 217 } 218 return false; 219 } 220 221 /* 222 * As io_match_task() but protected against racing with linked timeouts. 223 * User must not hold timeout_lock. 224 */ 225 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 226 bool cancel_all) 227 { 228 bool matched; 229 230 if (task && head->task != task) 231 return false; 232 if (cancel_all) 233 return true; 234 235 if (head->flags & REQ_F_LINK_TIMEOUT) { 236 struct io_ring_ctx *ctx = head->ctx; 237 238 /* protect against races with linked timeouts */ 239 spin_lock_irq(&ctx->timeout_lock); 240 matched = io_match_linked(head); 241 spin_unlock_irq(&ctx->timeout_lock); 242 } else { 243 matched = io_match_linked(head); 244 } 245 return matched; 246 } 247 248 static inline void req_fail_link_node(struct io_kiocb *req, int res) 249 { 250 req_set_fail(req); 251 io_req_set_res(req, res, 0); 252 } 253 254 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 255 { 256 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 257 } 258 259 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 260 { 261 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 262 263 complete(&ctx->ref_comp); 264 } 265 266 static __cold void io_fallback_req_func(struct work_struct *work) 267 { 268 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 269 fallback_work.work); 270 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 271 struct io_kiocb *req, *tmp; 272 struct io_tw_state ts = { .locked = true, }; 273 274 percpu_ref_get(&ctx->refs); 275 mutex_lock(&ctx->uring_lock); 276 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 277 req->io_task_work.func(req, &ts); 278 if (WARN_ON_ONCE(!ts.locked)) 279 return; 280 io_submit_flush_completions(ctx); 281 mutex_unlock(&ctx->uring_lock); 282 percpu_ref_put(&ctx->refs); 283 } 284 285 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 286 { 287 unsigned hash_buckets = 1U << bits; 288 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 289 290 table->hbs = kmalloc(hash_size, GFP_KERNEL); 291 if (!table->hbs) 292 return -ENOMEM; 293 294 table->hash_bits = bits; 295 init_hash_table(table, hash_buckets); 296 return 0; 297 } 298 299 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 300 { 301 struct io_ring_ctx *ctx; 302 int hash_bits; 303 304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 305 if (!ctx) 306 return NULL; 307 308 xa_init(&ctx->io_bl_xa); 309 310 /* 311 * Use 5 bits less than the max cq entries, that should give us around 312 * 32 entries per hash list if totally full and uniformly spread, but 313 * don't keep too many buckets to not overconsume memory. 314 */ 315 hash_bits = ilog2(p->cq_entries) - 5; 316 hash_bits = clamp(hash_bits, 1, 8); 317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 318 goto err; 319 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 320 goto err; 321 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 322 0, GFP_KERNEL)) 323 goto err; 324 325 ctx->flags = p->flags; 326 init_waitqueue_head(&ctx->sqo_sq_wait); 327 INIT_LIST_HEAD(&ctx->sqd_list); 328 INIT_LIST_HEAD(&ctx->cq_overflow_list); 329 INIT_LIST_HEAD(&ctx->io_buffers_cache); 330 INIT_HLIST_HEAD(&ctx->io_buf_list); 331 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 332 sizeof(struct io_rsrc_node)); 333 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 334 sizeof(struct async_poll)); 335 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 336 sizeof(struct io_async_msghdr)); 337 io_futex_cache_init(ctx); 338 init_completion(&ctx->ref_comp); 339 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 340 mutex_init(&ctx->uring_lock); 341 init_waitqueue_head(&ctx->cq_wait); 342 init_waitqueue_head(&ctx->poll_wq); 343 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 344 spin_lock_init(&ctx->completion_lock); 345 spin_lock_init(&ctx->timeout_lock); 346 INIT_WQ_LIST(&ctx->iopoll_list); 347 INIT_LIST_HEAD(&ctx->io_buffers_comp); 348 INIT_LIST_HEAD(&ctx->defer_list); 349 INIT_LIST_HEAD(&ctx->timeout_list); 350 INIT_LIST_HEAD(&ctx->ltimeout_list); 351 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 352 init_llist_head(&ctx->work_llist); 353 INIT_LIST_HEAD(&ctx->tctx_list); 354 ctx->submit_state.free_list.next = NULL; 355 INIT_WQ_LIST(&ctx->locked_free_list); 356 INIT_HLIST_HEAD(&ctx->waitid_list); 357 #ifdef CONFIG_FUTEX 358 INIT_HLIST_HEAD(&ctx->futex_list); 359 #endif 360 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 361 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 362 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 363 return ctx; 364 err: 365 kfree(ctx->cancel_table.hbs); 366 kfree(ctx->cancel_table_locked.hbs); 367 kfree(ctx->io_bl); 368 xa_destroy(&ctx->io_bl_xa); 369 kfree(ctx); 370 return NULL; 371 } 372 373 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 374 { 375 struct io_rings *r = ctx->rings; 376 377 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 378 ctx->cq_extra--; 379 } 380 381 static bool req_need_defer(struct io_kiocb *req, u32 seq) 382 { 383 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 384 struct io_ring_ctx *ctx = req->ctx; 385 386 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 387 } 388 389 return false; 390 } 391 392 static void io_clean_op(struct io_kiocb *req) 393 { 394 if (req->flags & REQ_F_BUFFER_SELECTED) { 395 spin_lock(&req->ctx->completion_lock); 396 io_put_kbuf_comp(req); 397 spin_unlock(&req->ctx->completion_lock); 398 } 399 400 if (req->flags & REQ_F_NEED_CLEANUP) { 401 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 402 403 if (def->cleanup) 404 def->cleanup(req); 405 } 406 if ((req->flags & REQ_F_POLLED) && req->apoll) { 407 kfree(req->apoll->double_poll); 408 kfree(req->apoll); 409 req->apoll = NULL; 410 } 411 if (req->flags & REQ_F_INFLIGHT) { 412 struct io_uring_task *tctx = req->task->io_uring; 413 414 atomic_dec(&tctx->inflight_tracked); 415 } 416 if (req->flags & REQ_F_CREDS) 417 put_cred(req->creds); 418 if (req->flags & REQ_F_ASYNC_DATA) { 419 kfree(req->async_data); 420 req->async_data = NULL; 421 } 422 req->flags &= ~IO_REQ_CLEAN_FLAGS; 423 } 424 425 static inline void io_req_track_inflight(struct io_kiocb *req) 426 { 427 if (!(req->flags & REQ_F_INFLIGHT)) { 428 req->flags |= REQ_F_INFLIGHT; 429 atomic_inc(&req->task->io_uring->inflight_tracked); 430 } 431 } 432 433 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 434 { 435 if (WARN_ON_ONCE(!req->link)) 436 return NULL; 437 438 req->flags &= ~REQ_F_ARM_LTIMEOUT; 439 req->flags |= REQ_F_LINK_TIMEOUT; 440 441 /* linked timeouts should have two refs once prep'ed */ 442 io_req_set_refcount(req); 443 __io_req_set_refcount(req->link, 2); 444 return req->link; 445 } 446 447 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 448 { 449 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 450 return NULL; 451 return __io_prep_linked_timeout(req); 452 } 453 454 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 455 { 456 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 457 } 458 459 static inline void io_arm_ltimeout(struct io_kiocb *req) 460 { 461 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 462 __io_arm_ltimeout(req); 463 } 464 465 static void io_prep_async_work(struct io_kiocb *req) 466 { 467 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 468 struct io_ring_ctx *ctx = req->ctx; 469 470 if (!(req->flags & REQ_F_CREDS)) { 471 req->flags |= REQ_F_CREDS; 472 req->creds = get_current_cred(); 473 } 474 475 req->work.list.next = NULL; 476 req->work.flags = 0; 477 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 478 if (req->flags & REQ_F_FORCE_ASYNC) 479 req->work.flags |= IO_WQ_WORK_CONCURRENT; 480 481 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 482 req->flags |= io_file_get_flags(req->file); 483 484 if (req->file && (req->flags & REQ_F_ISREG)) { 485 bool should_hash = def->hash_reg_file; 486 487 /* don't serialize this request if the fs doesn't need it */ 488 if (should_hash && (req->file->f_flags & O_DIRECT) && 489 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 490 should_hash = false; 491 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 492 io_wq_hash_work(&req->work, file_inode(req->file)); 493 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 494 if (def->unbound_nonreg_file) 495 req->work.flags |= IO_WQ_WORK_UNBOUND; 496 } 497 } 498 499 static void io_prep_async_link(struct io_kiocb *req) 500 { 501 struct io_kiocb *cur; 502 503 if (req->flags & REQ_F_LINK_TIMEOUT) { 504 struct io_ring_ctx *ctx = req->ctx; 505 506 spin_lock_irq(&ctx->timeout_lock); 507 io_for_each_link(cur, req) 508 io_prep_async_work(cur); 509 spin_unlock_irq(&ctx->timeout_lock); 510 } else { 511 io_for_each_link(cur, req) 512 io_prep_async_work(cur); 513 } 514 } 515 516 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 517 { 518 struct io_kiocb *link = io_prep_linked_timeout(req); 519 struct io_uring_task *tctx = req->task->io_uring; 520 521 BUG_ON(!tctx); 522 BUG_ON(!tctx->io_wq); 523 524 /* init ->work of the whole link before punting */ 525 io_prep_async_link(req); 526 527 /* 528 * Not expected to happen, but if we do have a bug where this _can_ 529 * happen, catch it here and ensure the request is marked as 530 * canceled. That will make io-wq go through the usual work cancel 531 * procedure rather than attempt to run this request (or create a new 532 * worker for it). 533 */ 534 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 535 req->work.flags |= IO_WQ_WORK_CANCEL; 536 537 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 538 io_wq_enqueue(tctx->io_wq, &req->work); 539 if (link) 540 io_queue_linked_timeout(link); 541 } 542 543 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 544 { 545 while (!list_empty(&ctx->defer_list)) { 546 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 547 struct io_defer_entry, list); 548 549 if (req_need_defer(de->req, de->seq)) 550 break; 551 list_del_init(&de->list); 552 io_req_task_queue(de->req); 553 kfree(de); 554 } 555 } 556 557 558 static void io_eventfd_ops(struct rcu_head *rcu) 559 { 560 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 561 int ops = atomic_xchg(&ev_fd->ops, 0); 562 563 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 564 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 565 566 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 567 * ordering in a race but if references are 0 we know we have to free 568 * it regardless. 569 */ 570 if (atomic_dec_and_test(&ev_fd->refs)) { 571 eventfd_ctx_put(ev_fd->cq_ev_fd); 572 kfree(ev_fd); 573 } 574 } 575 576 static void io_eventfd_signal(struct io_ring_ctx *ctx) 577 { 578 struct io_ev_fd *ev_fd = NULL; 579 580 rcu_read_lock(); 581 /* 582 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 583 * and eventfd_signal 584 */ 585 ev_fd = rcu_dereference(ctx->io_ev_fd); 586 587 /* 588 * Check again if ev_fd exists incase an io_eventfd_unregister call 589 * completed between the NULL check of ctx->io_ev_fd at the start of 590 * the function and rcu_read_lock. 591 */ 592 if (unlikely(!ev_fd)) 593 goto out; 594 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 595 goto out; 596 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 597 goto out; 598 599 if (likely(eventfd_signal_allowed())) { 600 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 601 } else { 602 atomic_inc(&ev_fd->refs); 603 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 604 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 605 else 606 atomic_dec(&ev_fd->refs); 607 } 608 609 out: 610 rcu_read_unlock(); 611 } 612 613 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 614 { 615 bool skip; 616 617 spin_lock(&ctx->completion_lock); 618 619 /* 620 * Eventfd should only get triggered when at least one event has been 621 * posted. Some applications rely on the eventfd notification count 622 * only changing IFF a new CQE has been added to the CQ ring. There's 623 * no depedency on 1:1 relationship between how many times this 624 * function is called (and hence the eventfd count) and number of CQEs 625 * posted to the CQ ring. 626 */ 627 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 628 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 629 spin_unlock(&ctx->completion_lock); 630 if (skip) 631 return; 632 633 io_eventfd_signal(ctx); 634 } 635 636 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 637 { 638 if (ctx->poll_activated) 639 io_poll_wq_wake(ctx); 640 if (ctx->off_timeout_used) 641 io_flush_timeouts(ctx); 642 if (ctx->drain_active) { 643 spin_lock(&ctx->completion_lock); 644 io_queue_deferred(ctx); 645 spin_unlock(&ctx->completion_lock); 646 } 647 if (ctx->has_evfd) 648 io_eventfd_flush_signal(ctx); 649 } 650 651 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 652 { 653 if (!ctx->lockless_cq) 654 spin_lock(&ctx->completion_lock); 655 } 656 657 static inline void io_cq_lock(struct io_ring_ctx *ctx) 658 __acquires(ctx->completion_lock) 659 { 660 spin_lock(&ctx->completion_lock); 661 } 662 663 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 664 { 665 io_commit_cqring(ctx); 666 if (!ctx->task_complete) { 667 if (!ctx->lockless_cq) 668 spin_unlock(&ctx->completion_lock); 669 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 670 if (!ctx->syscall_iopoll) 671 io_cqring_wake(ctx); 672 } 673 io_commit_cqring_flush(ctx); 674 } 675 676 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 677 __releases(ctx->completion_lock) 678 { 679 io_commit_cqring(ctx); 680 spin_unlock(&ctx->completion_lock); 681 io_cqring_wake(ctx); 682 io_commit_cqring_flush(ctx); 683 } 684 685 /* Returns true if there are no backlogged entries after the flush */ 686 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 687 { 688 struct io_overflow_cqe *ocqe; 689 LIST_HEAD(list); 690 691 spin_lock(&ctx->completion_lock); 692 list_splice_init(&ctx->cq_overflow_list, &list); 693 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 694 spin_unlock(&ctx->completion_lock); 695 696 while (!list_empty(&list)) { 697 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 698 list_del(&ocqe->list); 699 kfree(ocqe); 700 } 701 } 702 703 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 704 { 705 size_t cqe_size = sizeof(struct io_uring_cqe); 706 707 if (__io_cqring_events(ctx) == ctx->cq_entries) 708 return; 709 710 if (ctx->flags & IORING_SETUP_CQE32) 711 cqe_size <<= 1; 712 713 io_cq_lock(ctx); 714 while (!list_empty(&ctx->cq_overflow_list)) { 715 struct io_uring_cqe *cqe; 716 struct io_overflow_cqe *ocqe; 717 718 if (!io_get_cqe_overflow(ctx, &cqe, true)) 719 break; 720 ocqe = list_first_entry(&ctx->cq_overflow_list, 721 struct io_overflow_cqe, list); 722 memcpy(cqe, &ocqe->cqe, cqe_size); 723 list_del(&ocqe->list); 724 kfree(ocqe); 725 } 726 727 if (list_empty(&ctx->cq_overflow_list)) { 728 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 729 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 730 } 731 io_cq_unlock_post(ctx); 732 } 733 734 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 735 { 736 /* iopoll syncs against uring_lock, not completion_lock */ 737 if (ctx->flags & IORING_SETUP_IOPOLL) 738 mutex_lock(&ctx->uring_lock); 739 __io_cqring_overflow_flush(ctx); 740 if (ctx->flags & IORING_SETUP_IOPOLL) 741 mutex_unlock(&ctx->uring_lock); 742 } 743 744 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 745 { 746 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 747 io_cqring_do_overflow_flush(ctx); 748 } 749 750 /* can be called by any task */ 751 static void io_put_task_remote(struct task_struct *task) 752 { 753 struct io_uring_task *tctx = task->io_uring; 754 755 percpu_counter_sub(&tctx->inflight, 1); 756 if (unlikely(atomic_read(&tctx->in_cancel))) 757 wake_up(&tctx->wait); 758 put_task_struct(task); 759 } 760 761 /* used by a task to put its own references */ 762 static void io_put_task_local(struct task_struct *task) 763 { 764 task->io_uring->cached_refs++; 765 } 766 767 /* must to be called somewhat shortly after putting a request */ 768 static inline void io_put_task(struct task_struct *task) 769 { 770 if (likely(task == current)) 771 io_put_task_local(task); 772 else 773 io_put_task_remote(task); 774 } 775 776 void io_task_refs_refill(struct io_uring_task *tctx) 777 { 778 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 779 780 percpu_counter_add(&tctx->inflight, refill); 781 refcount_add(refill, ¤t->usage); 782 tctx->cached_refs += refill; 783 } 784 785 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 786 { 787 struct io_uring_task *tctx = task->io_uring; 788 unsigned int refs = tctx->cached_refs; 789 790 if (refs) { 791 tctx->cached_refs = 0; 792 percpu_counter_sub(&tctx->inflight, refs); 793 put_task_struct_many(task, refs); 794 } 795 } 796 797 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 798 s32 res, u32 cflags, u64 extra1, u64 extra2) 799 { 800 struct io_overflow_cqe *ocqe; 801 size_t ocq_size = sizeof(struct io_overflow_cqe); 802 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 803 804 lockdep_assert_held(&ctx->completion_lock); 805 806 if (is_cqe32) 807 ocq_size += sizeof(struct io_uring_cqe); 808 809 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 810 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 811 if (!ocqe) { 812 /* 813 * If we're in ring overflow flush mode, or in task cancel mode, 814 * or cannot allocate an overflow entry, then we need to drop it 815 * on the floor. 816 */ 817 io_account_cq_overflow(ctx); 818 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 819 return false; 820 } 821 if (list_empty(&ctx->cq_overflow_list)) { 822 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 823 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 824 825 } 826 ocqe->cqe.user_data = user_data; 827 ocqe->cqe.res = res; 828 ocqe->cqe.flags = cflags; 829 if (is_cqe32) { 830 ocqe->cqe.big_cqe[0] = extra1; 831 ocqe->cqe.big_cqe[1] = extra2; 832 } 833 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 834 return true; 835 } 836 837 void io_req_cqe_overflow(struct io_kiocb *req) 838 { 839 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 840 req->cqe.res, req->cqe.flags, 841 req->big_cqe.extra1, req->big_cqe.extra2); 842 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 843 } 844 845 /* 846 * writes to the cq entry need to come after reading head; the 847 * control dependency is enough as we're using WRITE_ONCE to 848 * fill the cq entry 849 */ 850 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 851 { 852 struct io_rings *rings = ctx->rings; 853 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 854 unsigned int free, queued, len; 855 856 /* 857 * Posting into the CQ when there are pending overflowed CQEs may break 858 * ordering guarantees, which will affect links, F_MORE users and more. 859 * Force overflow the completion. 860 */ 861 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 862 return false; 863 864 /* userspace may cheat modifying the tail, be safe and do min */ 865 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 866 free = ctx->cq_entries - queued; 867 /* we need a contiguous range, limit based on the current array offset */ 868 len = min(free, ctx->cq_entries - off); 869 if (!len) 870 return false; 871 872 if (ctx->flags & IORING_SETUP_CQE32) { 873 off <<= 1; 874 len <<= 1; 875 } 876 877 ctx->cqe_cached = &rings->cqes[off]; 878 ctx->cqe_sentinel = ctx->cqe_cached + len; 879 return true; 880 } 881 882 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 883 u32 cflags) 884 { 885 struct io_uring_cqe *cqe; 886 887 ctx->cq_extra++; 888 889 /* 890 * If we can't get a cq entry, userspace overflowed the 891 * submission (by quite a lot). Increment the overflow count in 892 * the ring. 893 */ 894 if (likely(io_get_cqe(ctx, &cqe))) { 895 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 896 897 WRITE_ONCE(cqe->user_data, user_data); 898 WRITE_ONCE(cqe->res, res); 899 WRITE_ONCE(cqe->flags, cflags); 900 901 if (ctx->flags & IORING_SETUP_CQE32) { 902 WRITE_ONCE(cqe->big_cqe[0], 0); 903 WRITE_ONCE(cqe->big_cqe[1], 0); 904 } 905 return true; 906 } 907 return false; 908 } 909 910 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 911 __must_hold(&ctx->uring_lock) 912 { 913 struct io_submit_state *state = &ctx->submit_state; 914 unsigned int i; 915 916 lockdep_assert_held(&ctx->uring_lock); 917 for (i = 0; i < state->cqes_count; i++) { 918 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 919 920 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 921 if (ctx->lockless_cq) { 922 spin_lock(&ctx->completion_lock); 923 io_cqring_event_overflow(ctx, cqe->user_data, 924 cqe->res, cqe->flags, 0, 0); 925 spin_unlock(&ctx->completion_lock); 926 } else { 927 io_cqring_event_overflow(ctx, cqe->user_data, 928 cqe->res, cqe->flags, 0, 0); 929 } 930 } 931 } 932 state->cqes_count = 0; 933 } 934 935 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 936 bool allow_overflow) 937 { 938 bool filled; 939 940 io_cq_lock(ctx); 941 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 942 if (!filled && allow_overflow) 943 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 944 945 io_cq_unlock_post(ctx); 946 return filled; 947 } 948 949 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 950 { 951 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 952 } 953 954 /* 955 * A helper for multishot requests posting additional CQEs. 956 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 957 */ 958 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 959 { 960 struct io_ring_ctx *ctx = req->ctx; 961 u64 user_data = req->cqe.user_data; 962 struct io_uring_cqe *cqe; 963 964 if (!defer) 965 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 966 967 lockdep_assert_held(&ctx->uring_lock); 968 969 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 970 __io_cq_lock(ctx); 971 __io_flush_post_cqes(ctx); 972 /* no need to flush - flush is deferred */ 973 __io_cq_unlock_post(ctx); 974 } 975 976 /* For defered completions this is not as strict as it is otherwise, 977 * however it's main job is to prevent unbounded posted completions, 978 * and in that it works just as well. 979 */ 980 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 981 return false; 982 983 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 984 cqe->user_data = user_data; 985 cqe->res = res; 986 cqe->flags = cflags; 987 return true; 988 } 989 990 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 991 { 992 struct io_ring_ctx *ctx = req->ctx; 993 struct io_rsrc_node *rsrc_node = NULL; 994 995 io_cq_lock(ctx); 996 if (!(req->flags & REQ_F_CQE_SKIP)) { 997 if (!io_fill_cqe_req(ctx, req)) 998 io_req_cqe_overflow(req); 999 } 1000 1001 /* 1002 * If we're the last reference to this request, add to our locked 1003 * free_list cache. 1004 */ 1005 if (req_ref_put_and_test(req)) { 1006 if (req->flags & IO_REQ_LINK_FLAGS) { 1007 if (req->flags & IO_DISARM_MASK) 1008 io_disarm_next(req); 1009 if (req->link) { 1010 io_req_task_queue(req->link); 1011 req->link = NULL; 1012 } 1013 } 1014 io_put_kbuf_comp(req); 1015 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1016 io_clean_op(req); 1017 io_put_file(req); 1018 1019 rsrc_node = req->rsrc_node; 1020 /* 1021 * Selected buffer deallocation in io_clean_op() assumes that 1022 * we don't hold ->completion_lock. Clean them here to avoid 1023 * deadlocks. 1024 */ 1025 io_put_task_remote(req->task); 1026 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1027 ctx->locked_free_nr++; 1028 } 1029 io_cq_unlock_post(ctx); 1030 1031 if (rsrc_node) { 1032 io_ring_submit_lock(ctx, issue_flags); 1033 io_put_rsrc_node(ctx, rsrc_node); 1034 io_ring_submit_unlock(ctx, issue_flags); 1035 } 1036 } 1037 1038 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1039 { 1040 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1041 req->io_task_work.func = io_req_task_complete; 1042 io_req_task_work_add(req); 1043 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1044 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1045 __io_req_complete_post(req, issue_flags); 1046 } else { 1047 struct io_ring_ctx *ctx = req->ctx; 1048 1049 mutex_lock(&ctx->uring_lock); 1050 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1051 mutex_unlock(&ctx->uring_lock); 1052 } 1053 } 1054 1055 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1056 __must_hold(&ctx->uring_lock) 1057 { 1058 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1059 1060 lockdep_assert_held(&req->ctx->uring_lock); 1061 1062 req_set_fail(req); 1063 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1064 if (def->fail) 1065 def->fail(req); 1066 io_req_complete_defer(req); 1067 } 1068 1069 /* 1070 * Don't initialise the fields below on every allocation, but do that in 1071 * advance and keep them valid across allocations. 1072 */ 1073 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1074 { 1075 req->ctx = ctx; 1076 req->link = NULL; 1077 req->async_data = NULL; 1078 /* not necessary, but safer to zero */ 1079 memset(&req->cqe, 0, sizeof(req->cqe)); 1080 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1081 } 1082 1083 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1084 struct io_submit_state *state) 1085 { 1086 spin_lock(&ctx->completion_lock); 1087 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1088 ctx->locked_free_nr = 0; 1089 spin_unlock(&ctx->completion_lock); 1090 } 1091 1092 /* 1093 * A request might get retired back into the request caches even before opcode 1094 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1095 * Because of that, io_alloc_req() should be called only under ->uring_lock 1096 * and with extra caution to not get a request that is still worked on. 1097 */ 1098 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1099 __must_hold(&ctx->uring_lock) 1100 { 1101 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1102 void *reqs[IO_REQ_ALLOC_BATCH]; 1103 int ret, i; 1104 1105 /* 1106 * If we have more than a batch's worth of requests in our IRQ side 1107 * locked cache, grab the lock and move them over to our submission 1108 * side cache. 1109 */ 1110 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1111 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1112 if (!io_req_cache_empty(ctx)) 1113 return true; 1114 } 1115 1116 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1117 1118 /* 1119 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1120 * retry single alloc to be on the safe side. 1121 */ 1122 if (unlikely(ret <= 0)) { 1123 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1124 if (!reqs[0]) 1125 return false; 1126 ret = 1; 1127 } 1128 1129 percpu_ref_get_many(&ctx->refs, ret); 1130 for (i = 0; i < ret; i++) { 1131 struct io_kiocb *req = reqs[i]; 1132 1133 io_preinit_req(req, ctx); 1134 io_req_add_to_cache(req, ctx); 1135 } 1136 return true; 1137 } 1138 1139 __cold void io_free_req(struct io_kiocb *req) 1140 { 1141 /* refs were already put, restore them for io_req_task_complete() */ 1142 req->flags &= ~REQ_F_REFCOUNT; 1143 /* we only want to free it, don't post CQEs */ 1144 req->flags |= REQ_F_CQE_SKIP; 1145 req->io_task_work.func = io_req_task_complete; 1146 io_req_task_work_add(req); 1147 } 1148 1149 static void __io_req_find_next_prep(struct io_kiocb *req) 1150 { 1151 struct io_ring_ctx *ctx = req->ctx; 1152 1153 spin_lock(&ctx->completion_lock); 1154 io_disarm_next(req); 1155 spin_unlock(&ctx->completion_lock); 1156 } 1157 1158 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1159 { 1160 struct io_kiocb *nxt; 1161 1162 /* 1163 * If LINK is set, we have dependent requests in this chain. If we 1164 * didn't fail this request, queue the first one up, moving any other 1165 * dependencies to the next request. In case of failure, fail the rest 1166 * of the chain. 1167 */ 1168 if (unlikely(req->flags & IO_DISARM_MASK)) 1169 __io_req_find_next_prep(req); 1170 nxt = req->link; 1171 req->link = NULL; 1172 return nxt; 1173 } 1174 1175 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1176 { 1177 if (!ctx) 1178 return; 1179 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1180 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1181 if (ts->locked) { 1182 io_submit_flush_completions(ctx); 1183 mutex_unlock(&ctx->uring_lock); 1184 ts->locked = false; 1185 } 1186 percpu_ref_put(&ctx->refs); 1187 } 1188 1189 static unsigned int handle_tw_list(struct llist_node *node, 1190 struct io_ring_ctx **ctx, 1191 struct io_tw_state *ts, 1192 struct llist_node *last) 1193 { 1194 unsigned int count = 0; 1195 1196 while (node && node != last) { 1197 struct llist_node *next = node->next; 1198 struct io_kiocb *req = container_of(node, struct io_kiocb, 1199 io_task_work.node); 1200 1201 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1202 1203 if (req->ctx != *ctx) { 1204 ctx_flush_and_put(*ctx, ts); 1205 *ctx = req->ctx; 1206 /* if not contended, grab and improve batching */ 1207 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1208 percpu_ref_get(&(*ctx)->refs); 1209 } 1210 INDIRECT_CALL_2(req->io_task_work.func, 1211 io_poll_task_func, io_req_rw_complete, 1212 req, ts); 1213 node = next; 1214 count++; 1215 if (unlikely(need_resched())) { 1216 ctx_flush_and_put(*ctx, ts); 1217 *ctx = NULL; 1218 cond_resched(); 1219 } 1220 } 1221 1222 return count; 1223 } 1224 1225 /** 1226 * io_llist_xchg - swap all entries in a lock-less list 1227 * @head: the head of lock-less list to delete all entries 1228 * @new: new entry as the head of the list 1229 * 1230 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1231 * The order of entries returned is from the newest to the oldest added one. 1232 */ 1233 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1234 struct llist_node *new) 1235 { 1236 return xchg(&head->first, new); 1237 } 1238 1239 /** 1240 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1241 * @head: the head of lock-less list to delete all entries 1242 * @old: expected old value of the first entry of the list 1243 * @new: new entry as the head of the list 1244 * 1245 * perform a cmpxchg on the first entry of the list. 1246 */ 1247 1248 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1249 struct llist_node *old, 1250 struct llist_node *new) 1251 { 1252 return cmpxchg(&head->first, old, new); 1253 } 1254 1255 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1256 { 1257 struct llist_node *node = llist_del_all(&tctx->task_list); 1258 struct io_ring_ctx *last_ctx = NULL; 1259 struct io_kiocb *req; 1260 1261 while (node) { 1262 req = container_of(node, struct io_kiocb, io_task_work.node); 1263 node = node->next; 1264 if (sync && last_ctx != req->ctx) { 1265 if (last_ctx) { 1266 flush_delayed_work(&last_ctx->fallback_work); 1267 percpu_ref_put(&last_ctx->refs); 1268 } 1269 last_ctx = req->ctx; 1270 percpu_ref_get(&last_ctx->refs); 1271 } 1272 if (llist_add(&req->io_task_work.node, 1273 &req->ctx->fallback_llist)) 1274 schedule_delayed_work(&req->ctx->fallback_work, 1); 1275 } 1276 1277 if (last_ctx) { 1278 flush_delayed_work(&last_ctx->fallback_work); 1279 percpu_ref_put(&last_ctx->refs); 1280 } 1281 } 1282 1283 void tctx_task_work(struct callback_head *cb) 1284 { 1285 struct io_tw_state ts = {}; 1286 struct io_ring_ctx *ctx = NULL; 1287 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1288 task_work); 1289 struct llist_node fake = {}; 1290 struct llist_node *node; 1291 unsigned int loops = 0; 1292 unsigned int count = 0; 1293 1294 if (unlikely(current->flags & PF_EXITING)) { 1295 io_fallback_tw(tctx, true); 1296 return; 1297 } 1298 1299 do { 1300 loops++; 1301 node = io_llist_xchg(&tctx->task_list, &fake); 1302 count += handle_tw_list(node, &ctx, &ts, &fake); 1303 1304 /* skip expensive cmpxchg if there are items in the list */ 1305 if (READ_ONCE(tctx->task_list.first) != &fake) 1306 continue; 1307 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1308 io_submit_flush_completions(ctx); 1309 if (READ_ONCE(tctx->task_list.first) != &fake) 1310 continue; 1311 } 1312 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1313 } while (node != &fake); 1314 1315 ctx_flush_and_put(ctx, &ts); 1316 1317 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1318 if (unlikely(atomic_read(&tctx->in_cancel))) 1319 io_uring_drop_tctx_refs(current); 1320 1321 trace_io_uring_task_work_run(tctx, count, loops); 1322 } 1323 1324 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1325 { 1326 struct io_ring_ctx *ctx = req->ctx; 1327 unsigned nr_wait, nr_tw, nr_tw_prev; 1328 struct llist_node *first; 1329 1330 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1331 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1332 1333 first = READ_ONCE(ctx->work_llist.first); 1334 do { 1335 nr_tw_prev = 0; 1336 if (first) { 1337 struct io_kiocb *first_req = container_of(first, 1338 struct io_kiocb, 1339 io_task_work.node); 1340 /* 1341 * Might be executed at any moment, rely on 1342 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1343 */ 1344 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1345 } 1346 nr_tw = nr_tw_prev + 1; 1347 /* Large enough to fail the nr_wait comparison below */ 1348 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1349 nr_tw = -1U; 1350 1351 req->nr_tw = nr_tw; 1352 req->io_task_work.node.next = first; 1353 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1354 &req->io_task_work.node)); 1355 1356 if (!first) { 1357 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1358 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1359 if (ctx->has_evfd) 1360 io_eventfd_signal(ctx); 1361 } 1362 1363 nr_wait = atomic_read(&ctx->cq_wait_nr); 1364 /* no one is waiting */ 1365 if (!nr_wait) 1366 return; 1367 /* either not enough or the previous add has already woken it up */ 1368 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1369 return; 1370 /* pairs with set_current_state() in io_cqring_wait() */ 1371 smp_mb__after_atomic(); 1372 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1373 } 1374 1375 static void io_req_normal_work_add(struct io_kiocb *req) 1376 { 1377 struct io_uring_task *tctx = req->task->io_uring; 1378 struct io_ring_ctx *ctx = req->ctx; 1379 1380 /* task_work already pending, we're done */ 1381 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1382 return; 1383 1384 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1385 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1386 1387 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1388 return; 1389 1390 io_fallback_tw(tctx, false); 1391 } 1392 1393 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1394 { 1395 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1396 rcu_read_lock(); 1397 io_req_local_work_add(req, flags); 1398 rcu_read_unlock(); 1399 } else { 1400 io_req_normal_work_add(req); 1401 } 1402 } 1403 1404 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1405 { 1406 struct llist_node *node; 1407 1408 node = llist_del_all(&ctx->work_llist); 1409 while (node) { 1410 struct io_kiocb *req = container_of(node, struct io_kiocb, 1411 io_task_work.node); 1412 1413 node = node->next; 1414 io_req_normal_work_add(req); 1415 } 1416 } 1417 1418 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1419 { 1420 struct llist_node *node; 1421 unsigned int loops = 0; 1422 int ret = 0; 1423 1424 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1425 return -EEXIST; 1426 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1427 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1428 again: 1429 /* 1430 * llists are in reverse order, flip it back the right way before 1431 * running the pending items. 1432 */ 1433 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1434 while (node) { 1435 struct llist_node *next = node->next; 1436 struct io_kiocb *req = container_of(node, struct io_kiocb, 1437 io_task_work.node); 1438 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1439 INDIRECT_CALL_2(req->io_task_work.func, 1440 io_poll_task_func, io_req_rw_complete, 1441 req, ts); 1442 ret++; 1443 node = next; 1444 } 1445 loops++; 1446 1447 if (!llist_empty(&ctx->work_llist)) 1448 goto again; 1449 if (ts->locked) { 1450 io_submit_flush_completions(ctx); 1451 if (!llist_empty(&ctx->work_llist)) 1452 goto again; 1453 } 1454 trace_io_uring_local_work_run(ctx, ret, loops); 1455 return ret; 1456 } 1457 1458 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1459 { 1460 struct io_tw_state ts = { .locked = true, }; 1461 int ret; 1462 1463 if (llist_empty(&ctx->work_llist)) 1464 return 0; 1465 1466 ret = __io_run_local_work(ctx, &ts); 1467 /* shouldn't happen! */ 1468 if (WARN_ON_ONCE(!ts.locked)) 1469 mutex_lock(&ctx->uring_lock); 1470 return ret; 1471 } 1472 1473 static int io_run_local_work(struct io_ring_ctx *ctx) 1474 { 1475 struct io_tw_state ts = {}; 1476 int ret; 1477 1478 ts.locked = mutex_trylock(&ctx->uring_lock); 1479 ret = __io_run_local_work(ctx, &ts); 1480 if (ts.locked) 1481 mutex_unlock(&ctx->uring_lock); 1482 1483 return ret; 1484 } 1485 1486 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1487 { 1488 io_tw_lock(req->ctx, ts); 1489 io_req_defer_failed(req, req->cqe.res); 1490 } 1491 1492 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1493 { 1494 io_tw_lock(req->ctx, ts); 1495 /* req->task == current here, checking PF_EXITING is safe */ 1496 if (unlikely(req->task->flags & PF_EXITING)) 1497 io_req_defer_failed(req, -EFAULT); 1498 else if (req->flags & REQ_F_FORCE_ASYNC) 1499 io_queue_iowq(req, ts); 1500 else 1501 io_queue_sqe(req); 1502 } 1503 1504 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1505 { 1506 io_req_set_res(req, ret, 0); 1507 req->io_task_work.func = io_req_task_cancel; 1508 io_req_task_work_add(req); 1509 } 1510 1511 void io_req_task_queue(struct io_kiocb *req) 1512 { 1513 req->io_task_work.func = io_req_task_submit; 1514 io_req_task_work_add(req); 1515 } 1516 1517 void io_queue_next(struct io_kiocb *req) 1518 { 1519 struct io_kiocb *nxt = io_req_find_next(req); 1520 1521 if (nxt) 1522 io_req_task_queue(nxt); 1523 } 1524 1525 static void io_free_batch_list(struct io_ring_ctx *ctx, 1526 struct io_wq_work_node *node) 1527 __must_hold(&ctx->uring_lock) 1528 { 1529 do { 1530 struct io_kiocb *req = container_of(node, struct io_kiocb, 1531 comp_list); 1532 1533 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1534 if (req->flags & REQ_F_REFCOUNT) { 1535 node = req->comp_list.next; 1536 if (!req_ref_put_and_test(req)) 1537 continue; 1538 } 1539 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1540 struct async_poll *apoll = req->apoll; 1541 1542 if (apoll->double_poll) 1543 kfree(apoll->double_poll); 1544 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1545 kfree(apoll); 1546 req->flags &= ~REQ_F_POLLED; 1547 } 1548 if (req->flags & IO_REQ_LINK_FLAGS) 1549 io_queue_next(req); 1550 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1551 io_clean_op(req); 1552 } 1553 io_put_file(req); 1554 1555 io_req_put_rsrc_locked(req, ctx); 1556 1557 io_put_task(req->task); 1558 node = req->comp_list.next; 1559 io_req_add_to_cache(req, ctx); 1560 } while (node); 1561 } 1562 1563 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1564 __must_hold(&ctx->uring_lock) 1565 { 1566 struct io_submit_state *state = &ctx->submit_state; 1567 struct io_wq_work_node *node; 1568 1569 __io_cq_lock(ctx); 1570 /* must come first to preserve CQE ordering in failure cases */ 1571 if (state->cqes_count) 1572 __io_flush_post_cqes(ctx); 1573 __wq_list_for_each(node, &state->compl_reqs) { 1574 struct io_kiocb *req = container_of(node, struct io_kiocb, 1575 comp_list); 1576 1577 if (!(req->flags & REQ_F_CQE_SKIP) && 1578 unlikely(!io_fill_cqe_req(ctx, req))) { 1579 if (ctx->lockless_cq) { 1580 spin_lock(&ctx->completion_lock); 1581 io_req_cqe_overflow(req); 1582 spin_unlock(&ctx->completion_lock); 1583 } else { 1584 io_req_cqe_overflow(req); 1585 } 1586 } 1587 } 1588 __io_cq_unlock_post(ctx); 1589 1590 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1591 io_free_batch_list(ctx, state->compl_reqs.first); 1592 INIT_WQ_LIST(&state->compl_reqs); 1593 } 1594 } 1595 1596 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1597 { 1598 /* See comment at the top of this file */ 1599 smp_rmb(); 1600 return __io_cqring_events(ctx); 1601 } 1602 1603 /* 1604 * We can't just wait for polled events to come to us, we have to actively 1605 * find and complete them. 1606 */ 1607 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1608 { 1609 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1610 return; 1611 1612 mutex_lock(&ctx->uring_lock); 1613 while (!wq_list_empty(&ctx->iopoll_list)) { 1614 /* let it sleep and repeat later if can't complete a request */ 1615 if (io_do_iopoll(ctx, true) == 0) 1616 break; 1617 /* 1618 * Ensure we allow local-to-the-cpu processing to take place, 1619 * in this case we need to ensure that we reap all events. 1620 * Also let task_work, etc. to progress by releasing the mutex 1621 */ 1622 if (need_resched()) { 1623 mutex_unlock(&ctx->uring_lock); 1624 cond_resched(); 1625 mutex_lock(&ctx->uring_lock); 1626 } 1627 } 1628 mutex_unlock(&ctx->uring_lock); 1629 } 1630 1631 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1632 { 1633 unsigned int nr_events = 0; 1634 unsigned long check_cq; 1635 1636 if (!io_allowed_run_tw(ctx)) 1637 return -EEXIST; 1638 1639 check_cq = READ_ONCE(ctx->check_cq); 1640 if (unlikely(check_cq)) { 1641 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1642 __io_cqring_overflow_flush(ctx); 1643 /* 1644 * Similarly do not spin if we have not informed the user of any 1645 * dropped CQE. 1646 */ 1647 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1648 return -EBADR; 1649 } 1650 /* 1651 * Don't enter poll loop if we already have events pending. 1652 * If we do, we can potentially be spinning for commands that 1653 * already triggered a CQE (eg in error). 1654 */ 1655 if (io_cqring_events(ctx)) 1656 return 0; 1657 1658 do { 1659 int ret = 0; 1660 1661 /* 1662 * If a submit got punted to a workqueue, we can have the 1663 * application entering polling for a command before it gets 1664 * issued. That app will hold the uring_lock for the duration 1665 * of the poll right here, so we need to take a breather every 1666 * now and then to ensure that the issue has a chance to add 1667 * the poll to the issued list. Otherwise we can spin here 1668 * forever, while the workqueue is stuck trying to acquire the 1669 * very same mutex. 1670 */ 1671 if (wq_list_empty(&ctx->iopoll_list) || 1672 io_task_work_pending(ctx)) { 1673 u32 tail = ctx->cached_cq_tail; 1674 1675 (void) io_run_local_work_locked(ctx); 1676 1677 if (task_work_pending(current) || 1678 wq_list_empty(&ctx->iopoll_list)) { 1679 mutex_unlock(&ctx->uring_lock); 1680 io_run_task_work(); 1681 mutex_lock(&ctx->uring_lock); 1682 } 1683 /* some requests don't go through iopoll_list */ 1684 if (tail != ctx->cached_cq_tail || 1685 wq_list_empty(&ctx->iopoll_list)) 1686 break; 1687 } 1688 ret = io_do_iopoll(ctx, !min); 1689 if (unlikely(ret < 0)) 1690 return ret; 1691 1692 if (task_sigpending(current)) 1693 return -EINTR; 1694 if (need_resched()) 1695 break; 1696 1697 nr_events += ret; 1698 } while (nr_events < min); 1699 1700 return 0; 1701 } 1702 1703 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1704 { 1705 if (ts->locked) 1706 io_req_complete_defer(req); 1707 else 1708 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1709 } 1710 1711 /* 1712 * After the iocb has been issued, it's safe to be found on the poll list. 1713 * Adding the kiocb to the list AFTER submission ensures that we don't 1714 * find it from a io_do_iopoll() thread before the issuer is done 1715 * accessing the kiocb cookie. 1716 */ 1717 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1718 { 1719 struct io_ring_ctx *ctx = req->ctx; 1720 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1721 1722 /* workqueue context doesn't hold uring_lock, grab it now */ 1723 if (unlikely(needs_lock)) 1724 mutex_lock(&ctx->uring_lock); 1725 1726 /* 1727 * Track whether we have multiple files in our lists. This will impact 1728 * how we do polling eventually, not spinning if we're on potentially 1729 * different devices. 1730 */ 1731 if (wq_list_empty(&ctx->iopoll_list)) { 1732 ctx->poll_multi_queue = false; 1733 } else if (!ctx->poll_multi_queue) { 1734 struct io_kiocb *list_req; 1735 1736 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1737 comp_list); 1738 if (list_req->file != req->file) 1739 ctx->poll_multi_queue = true; 1740 } 1741 1742 /* 1743 * For fast devices, IO may have already completed. If it has, add 1744 * it to the front so we find it first. 1745 */ 1746 if (READ_ONCE(req->iopoll_completed)) 1747 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1748 else 1749 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1750 1751 if (unlikely(needs_lock)) { 1752 /* 1753 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1754 * in sq thread task context or in io worker task context. If 1755 * current task context is sq thread, we don't need to check 1756 * whether should wake up sq thread. 1757 */ 1758 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1759 wq_has_sleeper(&ctx->sq_data->wait)) 1760 wake_up(&ctx->sq_data->wait); 1761 1762 mutex_unlock(&ctx->uring_lock); 1763 } 1764 } 1765 1766 unsigned int io_file_get_flags(struct file *file) 1767 { 1768 unsigned int res = 0; 1769 1770 if (S_ISREG(file_inode(file)->i_mode)) 1771 res |= REQ_F_ISREG; 1772 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1773 res |= REQ_F_SUPPORT_NOWAIT; 1774 return res; 1775 } 1776 1777 bool io_alloc_async_data(struct io_kiocb *req) 1778 { 1779 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1780 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1781 if (req->async_data) { 1782 req->flags |= REQ_F_ASYNC_DATA; 1783 return false; 1784 } 1785 return true; 1786 } 1787 1788 int io_req_prep_async(struct io_kiocb *req) 1789 { 1790 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1791 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1792 1793 /* assign early for deferred execution for non-fixed file */ 1794 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1795 req->file = io_file_get_normal(req, req->cqe.fd); 1796 if (!cdef->prep_async) 1797 return 0; 1798 if (WARN_ON_ONCE(req_has_async_data(req))) 1799 return -EFAULT; 1800 if (!def->manual_alloc) { 1801 if (io_alloc_async_data(req)) 1802 return -EAGAIN; 1803 } 1804 return cdef->prep_async(req); 1805 } 1806 1807 static u32 io_get_sequence(struct io_kiocb *req) 1808 { 1809 u32 seq = req->ctx->cached_sq_head; 1810 struct io_kiocb *cur; 1811 1812 /* need original cached_sq_head, but it was increased for each req */ 1813 io_for_each_link(cur, req) 1814 seq--; 1815 return seq; 1816 } 1817 1818 static __cold void io_drain_req(struct io_kiocb *req) 1819 __must_hold(&ctx->uring_lock) 1820 { 1821 struct io_ring_ctx *ctx = req->ctx; 1822 struct io_defer_entry *de; 1823 int ret; 1824 u32 seq = io_get_sequence(req); 1825 1826 /* Still need defer if there is pending req in defer list. */ 1827 spin_lock(&ctx->completion_lock); 1828 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1829 spin_unlock(&ctx->completion_lock); 1830 queue: 1831 ctx->drain_active = false; 1832 io_req_task_queue(req); 1833 return; 1834 } 1835 spin_unlock(&ctx->completion_lock); 1836 1837 io_prep_async_link(req); 1838 de = kmalloc(sizeof(*de), GFP_KERNEL); 1839 if (!de) { 1840 ret = -ENOMEM; 1841 io_req_defer_failed(req, ret); 1842 return; 1843 } 1844 1845 spin_lock(&ctx->completion_lock); 1846 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1847 spin_unlock(&ctx->completion_lock); 1848 kfree(de); 1849 goto queue; 1850 } 1851 1852 trace_io_uring_defer(req); 1853 de->req = req; 1854 de->seq = seq; 1855 list_add_tail(&de->list, &ctx->defer_list); 1856 spin_unlock(&ctx->completion_lock); 1857 } 1858 1859 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1860 unsigned int issue_flags) 1861 { 1862 if (req->file || !def->needs_file) 1863 return true; 1864 1865 if (req->flags & REQ_F_FIXED_FILE) 1866 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1867 else 1868 req->file = io_file_get_normal(req, req->cqe.fd); 1869 1870 return !!req->file; 1871 } 1872 1873 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1874 { 1875 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1876 const struct cred *creds = NULL; 1877 int ret; 1878 1879 if (unlikely(!io_assign_file(req, def, issue_flags))) 1880 return -EBADF; 1881 1882 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1883 creds = override_creds(req->creds); 1884 1885 if (!def->audit_skip) 1886 audit_uring_entry(req->opcode); 1887 1888 ret = def->issue(req, issue_flags); 1889 1890 if (!def->audit_skip) 1891 audit_uring_exit(!ret, ret); 1892 1893 if (creds) 1894 revert_creds(creds); 1895 1896 if (ret == IOU_OK) { 1897 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1898 io_req_complete_defer(req); 1899 else 1900 io_req_complete_post(req, issue_flags); 1901 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1902 return ret; 1903 1904 /* If the op doesn't have a file, we're not polling for it */ 1905 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1906 io_iopoll_req_issued(req, issue_flags); 1907 1908 return 0; 1909 } 1910 1911 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1912 { 1913 io_tw_lock(req->ctx, ts); 1914 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1915 IO_URING_F_COMPLETE_DEFER); 1916 } 1917 1918 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1919 { 1920 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1921 struct io_kiocb *nxt = NULL; 1922 1923 if (req_ref_put_and_test(req)) { 1924 if (req->flags & IO_REQ_LINK_FLAGS) 1925 nxt = io_req_find_next(req); 1926 io_free_req(req); 1927 } 1928 return nxt ? &nxt->work : NULL; 1929 } 1930 1931 void io_wq_submit_work(struct io_wq_work *work) 1932 { 1933 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1934 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1935 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1936 bool needs_poll = false; 1937 int ret = 0, err = -ECANCELED; 1938 1939 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1940 if (!(req->flags & REQ_F_REFCOUNT)) 1941 __io_req_set_refcount(req, 2); 1942 else 1943 req_ref_get(req); 1944 1945 io_arm_ltimeout(req); 1946 1947 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1948 if (work->flags & IO_WQ_WORK_CANCEL) { 1949 fail: 1950 io_req_task_queue_fail(req, err); 1951 return; 1952 } 1953 if (!io_assign_file(req, def, issue_flags)) { 1954 err = -EBADF; 1955 work->flags |= IO_WQ_WORK_CANCEL; 1956 goto fail; 1957 } 1958 1959 if (req->flags & REQ_F_FORCE_ASYNC) { 1960 bool opcode_poll = def->pollin || def->pollout; 1961 1962 if (opcode_poll && file_can_poll(req->file)) { 1963 needs_poll = true; 1964 issue_flags |= IO_URING_F_NONBLOCK; 1965 } 1966 } 1967 1968 do { 1969 ret = io_issue_sqe(req, issue_flags); 1970 if (ret != -EAGAIN) 1971 break; 1972 1973 /* 1974 * If REQ_F_NOWAIT is set, then don't wait or retry with 1975 * poll. -EAGAIN is final for that case. 1976 */ 1977 if (req->flags & REQ_F_NOWAIT) 1978 break; 1979 1980 /* 1981 * We can get EAGAIN for iopolled IO even though we're 1982 * forcing a sync submission from here, since we can't 1983 * wait for request slots on the block side. 1984 */ 1985 if (!needs_poll) { 1986 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1987 break; 1988 if (io_wq_worker_stopped()) 1989 break; 1990 cond_resched(); 1991 continue; 1992 } 1993 1994 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1995 return; 1996 /* aborted or ready, in either case retry blocking */ 1997 needs_poll = false; 1998 issue_flags &= ~IO_URING_F_NONBLOCK; 1999 } while (1); 2000 2001 /* avoid locking problems by failing it from a clean context */ 2002 if (ret < 0) 2003 io_req_task_queue_fail(req, ret); 2004 } 2005 2006 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2007 unsigned int issue_flags) 2008 { 2009 struct io_ring_ctx *ctx = req->ctx; 2010 struct io_fixed_file *slot; 2011 struct file *file = NULL; 2012 2013 io_ring_submit_lock(ctx, issue_flags); 2014 2015 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2016 goto out; 2017 fd = array_index_nospec(fd, ctx->nr_user_files); 2018 slot = io_fixed_file_slot(&ctx->file_table, fd); 2019 file = io_slot_file(slot); 2020 req->flags |= io_slot_flags(slot); 2021 io_req_set_rsrc_node(req, ctx, 0); 2022 out: 2023 io_ring_submit_unlock(ctx, issue_flags); 2024 return file; 2025 } 2026 2027 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2028 { 2029 struct file *file = fget(fd); 2030 2031 trace_io_uring_file_get(req, fd); 2032 2033 /* we don't allow fixed io_uring files */ 2034 if (file && io_is_uring_fops(file)) 2035 io_req_track_inflight(req); 2036 return file; 2037 } 2038 2039 static void io_queue_async(struct io_kiocb *req, int ret) 2040 __must_hold(&req->ctx->uring_lock) 2041 { 2042 struct io_kiocb *linked_timeout; 2043 2044 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2045 io_req_defer_failed(req, ret); 2046 return; 2047 } 2048 2049 linked_timeout = io_prep_linked_timeout(req); 2050 2051 switch (io_arm_poll_handler(req, 0)) { 2052 case IO_APOLL_READY: 2053 io_kbuf_recycle(req, 0); 2054 io_req_task_queue(req); 2055 break; 2056 case IO_APOLL_ABORTED: 2057 io_kbuf_recycle(req, 0); 2058 io_queue_iowq(req, NULL); 2059 break; 2060 case IO_APOLL_OK: 2061 break; 2062 } 2063 2064 if (linked_timeout) 2065 io_queue_linked_timeout(linked_timeout); 2066 } 2067 2068 static inline void io_queue_sqe(struct io_kiocb *req) 2069 __must_hold(&req->ctx->uring_lock) 2070 { 2071 int ret; 2072 2073 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2074 2075 /* 2076 * We async punt it if the file wasn't marked NOWAIT, or if the file 2077 * doesn't support non-blocking read/write attempts 2078 */ 2079 if (likely(!ret)) 2080 io_arm_ltimeout(req); 2081 else 2082 io_queue_async(req, ret); 2083 } 2084 2085 static void io_queue_sqe_fallback(struct io_kiocb *req) 2086 __must_hold(&req->ctx->uring_lock) 2087 { 2088 if (unlikely(req->flags & REQ_F_FAIL)) { 2089 /* 2090 * We don't submit, fail them all, for that replace hardlinks 2091 * with normal links. Extra REQ_F_LINK is tolerated. 2092 */ 2093 req->flags &= ~REQ_F_HARDLINK; 2094 req->flags |= REQ_F_LINK; 2095 io_req_defer_failed(req, req->cqe.res); 2096 } else { 2097 int ret = io_req_prep_async(req); 2098 2099 if (unlikely(ret)) { 2100 io_req_defer_failed(req, ret); 2101 return; 2102 } 2103 2104 if (unlikely(req->ctx->drain_active)) 2105 io_drain_req(req); 2106 else 2107 io_queue_iowq(req, NULL); 2108 } 2109 } 2110 2111 /* 2112 * Check SQE restrictions (opcode and flags). 2113 * 2114 * Returns 'true' if SQE is allowed, 'false' otherwise. 2115 */ 2116 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2117 struct io_kiocb *req, 2118 unsigned int sqe_flags) 2119 { 2120 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2121 return false; 2122 2123 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2124 ctx->restrictions.sqe_flags_required) 2125 return false; 2126 2127 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2128 ctx->restrictions.sqe_flags_required)) 2129 return false; 2130 2131 return true; 2132 } 2133 2134 static void io_init_req_drain(struct io_kiocb *req) 2135 { 2136 struct io_ring_ctx *ctx = req->ctx; 2137 struct io_kiocb *head = ctx->submit_state.link.head; 2138 2139 ctx->drain_active = true; 2140 if (head) { 2141 /* 2142 * If we need to drain a request in the middle of a link, drain 2143 * the head request and the next request/link after the current 2144 * link. Considering sequential execution of links, 2145 * REQ_F_IO_DRAIN will be maintained for every request of our 2146 * link. 2147 */ 2148 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2149 ctx->drain_next = true; 2150 } 2151 } 2152 2153 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2154 const struct io_uring_sqe *sqe) 2155 __must_hold(&ctx->uring_lock) 2156 { 2157 const struct io_issue_def *def; 2158 unsigned int sqe_flags; 2159 int personality; 2160 u8 opcode; 2161 2162 /* req is partially pre-initialised, see io_preinit_req() */ 2163 req->opcode = opcode = READ_ONCE(sqe->opcode); 2164 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2165 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2166 req->cqe.user_data = READ_ONCE(sqe->user_data); 2167 req->file = NULL; 2168 req->rsrc_node = NULL; 2169 req->task = current; 2170 2171 if (unlikely(opcode >= IORING_OP_LAST)) { 2172 req->opcode = 0; 2173 return -EINVAL; 2174 } 2175 def = &io_issue_defs[opcode]; 2176 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2177 /* enforce forwards compatibility on users */ 2178 if (sqe_flags & ~SQE_VALID_FLAGS) 2179 return -EINVAL; 2180 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2181 if (!def->buffer_select) 2182 return -EOPNOTSUPP; 2183 req->buf_index = READ_ONCE(sqe->buf_group); 2184 } 2185 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2186 ctx->drain_disabled = true; 2187 if (sqe_flags & IOSQE_IO_DRAIN) { 2188 if (ctx->drain_disabled) 2189 return -EOPNOTSUPP; 2190 io_init_req_drain(req); 2191 } 2192 } 2193 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2194 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2195 return -EACCES; 2196 /* knock it to the slow queue path, will be drained there */ 2197 if (ctx->drain_active) 2198 req->flags |= REQ_F_FORCE_ASYNC; 2199 /* if there is no link, we're at "next" request and need to drain */ 2200 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2201 ctx->drain_next = false; 2202 ctx->drain_active = true; 2203 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2204 } 2205 } 2206 2207 if (!def->ioprio && sqe->ioprio) 2208 return -EINVAL; 2209 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2210 return -EINVAL; 2211 2212 if (def->needs_file) { 2213 struct io_submit_state *state = &ctx->submit_state; 2214 2215 req->cqe.fd = READ_ONCE(sqe->fd); 2216 2217 /* 2218 * Plug now if we have more than 2 IO left after this, and the 2219 * target is potentially a read/write to block based storage. 2220 */ 2221 if (state->need_plug && def->plug) { 2222 state->plug_started = true; 2223 state->need_plug = false; 2224 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2225 } 2226 } 2227 2228 personality = READ_ONCE(sqe->personality); 2229 if (personality) { 2230 int ret; 2231 2232 req->creds = xa_load(&ctx->personalities, personality); 2233 if (!req->creds) 2234 return -EINVAL; 2235 get_cred(req->creds); 2236 ret = security_uring_override_creds(req->creds); 2237 if (ret) { 2238 put_cred(req->creds); 2239 return ret; 2240 } 2241 req->flags |= REQ_F_CREDS; 2242 } 2243 2244 return def->prep(req, sqe); 2245 } 2246 2247 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2248 struct io_kiocb *req, int ret) 2249 { 2250 struct io_ring_ctx *ctx = req->ctx; 2251 struct io_submit_link *link = &ctx->submit_state.link; 2252 struct io_kiocb *head = link->head; 2253 2254 trace_io_uring_req_failed(sqe, req, ret); 2255 2256 /* 2257 * Avoid breaking links in the middle as it renders links with SQPOLL 2258 * unusable. Instead of failing eagerly, continue assembling the link if 2259 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2260 * should find the flag and handle the rest. 2261 */ 2262 req_fail_link_node(req, ret); 2263 if (head && !(head->flags & REQ_F_FAIL)) 2264 req_fail_link_node(head, -ECANCELED); 2265 2266 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2267 if (head) { 2268 link->last->link = req; 2269 link->head = NULL; 2270 req = head; 2271 } 2272 io_queue_sqe_fallback(req); 2273 return ret; 2274 } 2275 2276 if (head) 2277 link->last->link = req; 2278 else 2279 link->head = req; 2280 link->last = req; 2281 return 0; 2282 } 2283 2284 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2285 const struct io_uring_sqe *sqe) 2286 __must_hold(&ctx->uring_lock) 2287 { 2288 struct io_submit_link *link = &ctx->submit_state.link; 2289 int ret; 2290 2291 ret = io_init_req(ctx, req, sqe); 2292 if (unlikely(ret)) 2293 return io_submit_fail_init(sqe, req, ret); 2294 2295 trace_io_uring_submit_req(req); 2296 2297 /* 2298 * If we already have a head request, queue this one for async 2299 * submittal once the head completes. If we don't have a head but 2300 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2301 * submitted sync once the chain is complete. If none of those 2302 * conditions are true (normal request), then just queue it. 2303 */ 2304 if (unlikely(link->head)) { 2305 ret = io_req_prep_async(req); 2306 if (unlikely(ret)) 2307 return io_submit_fail_init(sqe, req, ret); 2308 2309 trace_io_uring_link(req, link->head); 2310 link->last->link = req; 2311 link->last = req; 2312 2313 if (req->flags & IO_REQ_LINK_FLAGS) 2314 return 0; 2315 /* last request of the link, flush it */ 2316 req = link->head; 2317 link->head = NULL; 2318 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2319 goto fallback; 2320 2321 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2322 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2323 if (req->flags & IO_REQ_LINK_FLAGS) { 2324 link->head = req; 2325 link->last = req; 2326 } else { 2327 fallback: 2328 io_queue_sqe_fallback(req); 2329 } 2330 return 0; 2331 } 2332 2333 io_queue_sqe(req); 2334 return 0; 2335 } 2336 2337 /* 2338 * Batched submission is done, ensure local IO is flushed out. 2339 */ 2340 static void io_submit_state_end(struct io_ring_ctx *ctx) 2341 { 2342 struct io_submit_state *state = &ctx->submit_state; 2343 2344 if (unlikely(state->link.head)) 2345 io_queue_sqe_fallback(state->link.head); 2346 /* flush only after queuing links as they can generate completions */ 2347 io_submit_flush_completions(ctx); 2348 if (state->plug_started) 2349 blk_finish_plug(&state->plug); 2350 } 2351 2352 /* 2353 * Start submission side cache. 2354 */ 2355 static void io_submit_state_start(struct io_submit_state *state, 2356 unsigned int max_ios) 2357 { 2358 state->plug_started = false; 2359 state->need_plug = max_ios > 2; 2360 state->submit_nr = max_ios; 2361 /* set only head, no need to init link_last in advance */ 2362 state->link.head = NULL; 2363 } 2364 2365 static void io_commit_sqring(struct io_ring_ctx *ctx) 2366 { 2367 struct io_rings *rings = ctx->rings; 2368 2369 /* 2370 * Ensure any loads from the SQEs are done at this point, 2371 * since once we write the new head, the application could 2372 * write new data to them. 2373 */ 2374 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2375 } 2376 2377 /* 2378 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2379 * that is mapped by userspace. This means that care needs to be taken to 2380 * ensure that reads are stable, as we cannot rely on userspace always 2381 * being a good citizen. If members of the sqe are validated and then later 2382 * used, it's important that those reads are done through READ_ONCE() to 2383 * prevent a re-load down the line. 2384 */ 2385 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2386 { 2387 unsigned mask = ctx->sq_entries - 1; 2388 unsigned head = ctx->cached_sq_head++ & mask; 2389 2390 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2391 head = READ_ONCE(ctx->sq_array[head]); 2392 if (unlikely(head >= ctx->sq_entries)) { 2393 /* drop invalid entries */ 2394 spin_lock(&ctx->completion_lock); 2395 ctx->cq_extra--; 2396 spin_unlock(&ctx->completion_lock); 2397 WRITE_ONCE(ctx->rings->sq_dropped, 2398 READ_ONCE(ctx->rings->sq_dropped) + 1); 2399 return false; 2400 } 2401 } 2402 2403 /* 2404 * The cached sq head (or cq tail) serves two purposes: 2405 * 2406 * 1) allows us to batch the cost of updating the user visible 2407 * head updates. 2408 * 2) allows the kernel side to track the head on its own, even 2409 * though the application is the one updating it. 2410 */ 2411 2412 /* double index for 128-byte SQEs, twice as long */ 2413 if (ctx->flags & IORING_SETUP_SQE128) 2414 head <<= 1; 2415 *sqe = &ctx->sq_sqes[head]; 2416 return true; 2417 } 2418 2419 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2420 __must_hold(&ctx->uring_lock) 2421 { 2422 unsigned int entries = io_sqring_entries(ctx); 2423 unsigned int left; 2424 int ret; 2425 2426 if (unlikely(!entries)) 2427 return 0; 2428 /* make sure SQ entry isn't read before tail */ 2429 ret = left = min(nr, entries); 2430 io_get_task_refs(left); 2431 io_submit_state_start(&ctx->submit_state, left); 2432 2433 do { 2434 const struct io_uring_sqe *sqe; 2435 struct io_kiocb *req; 2436 2437 if (unlikely(!io_alloc_req(ctx, &req))) 2438 break; 2439 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2440 io_req_add_to_cache(req, ctx); 2441 break; 2442 } 2443 2444 /* 2445 * Continue submitting even for sqe failure if the 2446 * ring was setup with IORING_SETUP_SUBMIT_ALL 2447 */ 2448 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2449 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2450 left--; 2451 break; 2452 } 2453 } while (--left); 2454 2455 if (unlikely(left)) { 2456 ret -= left; 2457 /* try again if it submitted nothing and can't allocate a req */ 2458 if (!ret && io_req_cache_empty(ctx)) 2459 ret = -EAGAIN; 2460 current->io_uring->cached_refs += left; 2461 } 2462 2463 io_submit_state_end(ctx); 2464 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2465 io_commit_sqring(ctx); 2466 return ret; 2467 } 2468 2469 struct io_wait_queue { 2470 struct wait_queue_entry wq; 2471 struct io_ring_ctx *ctx; 2472 unsigned cq_tail; 2473 unsigned nr_timeouts; 2474 ktime_t timeout; 2475 }; 2476 2477 static inline bool io_has_work(struct io_ring_ctx *ctx) 2478 { 2479 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2480 !llist_empty(&ctx->work_llist); 2481 } 2482 2483 static inline bool io_should_wake(struct io_wait_queue *iowq) 2484 { 2485 struct io_ring_ctx *ctx = iowq->ctx; 2486 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2487 2488 /* 2489 * Wake up if we have enough events, or if a timeout occurred since we 2490 * started waiting. For timeouts, we always want to return to userspace, 2491 * regardless of event count. 2492 */ 2493 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2494 } 2495 2496 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2497 int wake_flags, void *key) 2498 { 2499 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2500 2501 /* 2502 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2503 * the task, and the next invocation will do it. 2504 */ 2505 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2506 return autoremove_wake_function(curr, mode, wake_flags, key); 2507 return -1; 2508 } 2509 2510 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2511 { 2512 if (!llist_empty(&ctx->work_llist)) { 2513 __set_current_state(TASK_RUNNING); 2514 if (io_run_local_work(ctx) > 0) 2515 return 0; 2516 } 2517 if (io_run_task_work() > 0) 2518 return 0; 2519 if (task_sigpending(current)) 2520 return -EINTR; 2521 return 0; 2522 } 2523 2524 static bool current_pending_io(void) 2525 { 2526 struct io_uring_task *tctx = current->io_uring; 2527 2528 if (!tctx) 2529 return false; 2530 return percpu_counter_read_positive(&tctx->inflight); 2531 } 2532 2533 /* when returns >0, the caller should retry */ 2534 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2535 struct io_wait_queue *iowq) 2536 { 2537 int io_wait, ret; 2538 2539 if (unlikely(READ_ONCE(ctx->check_cq))) 2540 return 1; 2541 if (unlikely(!llist_empty(&ctx->work_llist))) 2542 return 1; 2543 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2544 return 1; 2545 if (unlikely(task_sigpending(current))) 2546 return -EINTR; 2547 if (unlikely(io_should_wake(iowq))) 2548 return 0; 2549 2550 /* 2551 * Mark us as being in io_wait if we have pending requests, so cpufreq 2552 * can take into account that the task is waiting for IO - turns out 2553 * to be important for low QD IO. 2554 */ 2555 io_wait = current->in_iowait; 2556 if (current_pending_io()) 2557 current->in_iowait = 1; 2558 ret = 0; 2559 if (iowq->timeout == KTIME_MAX) 2560 schedule(); 2561 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2562 ret = -ETIME; 2563 current->in_iowait = io_wait; 2564 return ret; 2565 } 2566 2567 /* 2568 * Wait until events become available, if we don't already have some. The 2569 * application must reap them itself, as they reside on the shared cq ring. 2570 */ 2571 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2572 const sigset_t __user *sig, size_t sigsz, 2573 struct __kernel_timespec __user *uts) 2574 { 2575 struct io_wait_queue iowq; 2576 struct io_rings *rings = ctx->rings; 2577 int ret; 2578 2579 if (!io_allowed_run_tw(ctx)) 2580 return -EEXIST; 2581 if (!llist_empty(&ctx->work_llist)) 2582 io_run_local_work(ctx); 2583 io_run_task_work(); 2584 io_cqring_overflow_flush(ctx); 2585 /* if user messes with these they will just get an early return */ 2586 if (__io_cqring_events_user(ctx) >= min_events) 2587 return 0; 2588 2589 if (sig) { 2590 #ifdef CONFIG_COMPAT 2591 if (in_compat_syscall()) 2592 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2593 sigsz); 2594 else 2595 #endif 2596 ret = set_user_sigmask(sig, sigsz); 2597 2598 if (ret) 2599 return ret; 2600 } 2601 2602 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2603 iowq.wq.private = current; 2604 INIT_LIST_HEAD(&iowq.wq.entry); 2605 iowq.ctx = ctx; 2606 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2607 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2608 iowq.timeout = KTIME_MAX; 2609 2610 if (uts) { 2611 struct timespec64 ts; 2612 2613 if (get_timespec64(&ts, uts)) 2614 return -EFAULT; 2615 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2616 } 2617 2618 trace_io_uring_cqring_wait(ctx, min_events); 2619 do { 2620 unsigned long check_cq; 2621 2622 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2623 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2624 2625 atomic_set(&ctx->cq_wait_nr, nr_wait); 2626 set_current_state(TASK_INTERRUPTIBLE); 2627 } else { 2628 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2629 TASK_INTERRUPTIBLE); 2630 } 2631 2632 ret = io_cqring_wait_schedule(ctx, &iowq); 2633 __set_current_state(TASK_RUNNING); 2634 atomic_set(&ctx->cq_wait_nr, 0); 2635 2636 if (ret < 0) 2637 break; 2638 /* 2639 * Run task_work after scheduling and before io_should_wake(). 2640 * If we got woken because of task_work being processed, run it 2641 * now rather than let the caller do another wait loop. 2642 */ 2643 io_run_task_work(); 2644 if (!llist_empty(&ctx->work_llist)) 2645 io_run_local_work(ctx); 2646 2647 check_cq = READ_ONCE(ctx->check_cq); 2648 if (unlikely(check_cq)) { 2649 /* let the caller flush overflows, retry */ 2650 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2651 io_cqring_do_overflow_flush(ctx); 2652 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2653 ret = -EBADR; 2654 break; 2655 } 2656 } 2657 2658 if (io_should_wake(&iowq)) { 2659 ret = 0; 2660 break; 2661 } 2662 cond_resched(); 2663 } while (1); 2664 2665 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2666 finish_wait(&ctx->cq_wait, &iowq.wq); 2667 restore_saved_sigmask_unless(ret == -EINTR); 2668 2669 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2670 } 2671 2672 void io_mem_free(void *ptr) 2673 { 2674 if (!ptr) 2675 return; 2676 2677 folio_put(virt_to_folio(ptr)); 2678 } 2679 2680 static void io_pages_free(struct page ***pages, int npages) 2681 { 2682 struct page **page_array; 2683 int i; 2684 2685 if (!pages) 2686 return; 2687 2688 page_array = *pages; 2689 if (!page_array) 2690 return; 2691 2692 for (i = 0; i < npages; i++) 2693 unpin_user_page(page_array[i]); 2694 kvfree(page_array); 2695 *pages = NULL; 2696 } 2697 2698 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2699 unsigned long uaddr, size_t size) 2700 { 2701 struct page **page_array; 2702 unsigned int nr_pages; 2703 void *page_addr; 2704 int ret, i; 2705 2706 *npages = 0; 2707 2708 if (uaddr & (PAGE_SIZE - 1) || !size) 2709 return ERR_PTR(-EINVAL); 2710 2711 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2712 if (nr_pages > USHRT_MAX) 2713 return ERR_PTR(-EINVAL); 2714 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2715 if (!page_array) 2716 return ERR_PTR(-ENOMEM); 2717 2718 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2719 page_array); 2720 if (ret != nr_pages) { 2721 err: 2722 io_pages_free(&page_array, ret > 0 ? ret : 0); 2723 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2724 } 2725 2726 page_addr = page_address(page_array[0]); 2727 for (i = 0; i < nr_pages; i++) { 2728 ret = -EINVAL; 2729 2730 /* 2731 * Can't support mapping user allocated ring memory on 32-bit 2732 * archs where it could potentially reside in highmem. Just 2733 * fail those with -EINVAL, just like we did on kernels that 2734 * didn't support this feature. 2735 */ 2736 if (PageHighMem(page_array[i])) 2737 goto err; 2738 2739 /* 2740 * No support for discontig pages for now, should either be a 2741 * single normal page, or a huge page. Later on we can add 2742 * support for remapping discontig pages, for now we will 2743 * just fail them with EINVAL. 2744 */ 2745 if (page_address(page_array[i]) != page_addr) 2746 goto err; 2747 page_addr += PAGE_SIZE; 2748 } 2749 2750 *pages = page_array; 2751 *npages = nr_pages; 2752 return page_to_virt(page_array[0]); 2753 } 2754 2755 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2756 size_t size) 2757 { 2758 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2759 size); 2760 } 2761 2762 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2763 size_t size) 2764 { 2765 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2766 size); 2767 } 2768 2769 static void io_rings_free(struct io_ring_ctx *ctx) 2770 { 2771 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2772 io_mem_free(ctx->rings); 2773 io_mem_free(ctx->sq_sqes); 2774 ctx->rings = NULL; 2775 ctx->sq_sqes = NULL; 2776 } else { 2777 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2778 ctx->n_ring_pages = 0; 2779 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2780 ctx->n_sqe_pages = 0; 2781 } 2782 } 2783 2784 void *io_mem_alloc(size_t size) 2785 { 2786 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2787 void *ret; 2788 2789 ret = (void *) __get_free_pages(gfp, get_order(size)); 2790 if (ret) 2791 return ret; 2792 return ERR_PTR(-ENOMEM); 2793 } 2794 2795 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2796 unsigned int cq_entries, size_t *sq_offset) 2797 { 2798 struct io_rings *rings; 2799 size_t off, sq_array_size; 2800 2801 off = struct_size(rings, cqes, cq_entries); 2802 if (off == SIZE_MAX) 2803 return SIZE_MAX; 2804 if (ctx->flags & IORING_SETUP_CQE32) { 2805 if (check_shl_overflow(off, 1, &off)) 2806 return SIZE_MAX; 2807 } 2808 2809 #ifdef CONFIG_SMP 2810 off = ALIGN(off, SMP_CACHE_BYTES); 2811 if (off == 0) 2812 return SIZE_MAX; 2813 #endif 2814 2815 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2816 if (sq_offset) 2817 *sq_offset = SIZE_MAX; 2818 return off; 2819 } 2820 2821 if (sq_offset) 2822 *sq_offset = off; 2823 2824 sq_array_size = array_size(sizeof(u32), sq_entries); 2825 if (sq_array_size == SIZE_MAX) 2826 return SIZE_MAX; 2827 2828 if (check_add_overflow(off, sq_array_size, &off)) 2829 return SIZE_MAX; 2830 2831 return off; 2832 } 2833 2834 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2835 unsigned int eventfd_async) 2836 { 2837 struct io_ev_fd *ev_fd; 2838 __s32 __user *fds = arg; 2839 int fd; 2840 2841 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2842 lockdep_is_held(&ctx->uring_lock)); 2843 if (ev_fd) 2844 return -EBUSY; 2845 2846 if (copy_from_user(&fd, fds, sizeof(*fds))) 2847 return -EFAULT; 2848 2849 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2850 if (!ev_fd) 2851 return -ENOMEM; 2852 2853 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2854 if (IS_ERR(ev_fd->cq_ev_fd)) { 2855 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2856 kfree(ev_fd); 2857 return ret; 2858 } 2859 2860 spin_lock(&ctx->completion_lock); 2861 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2862 spin_unlock(&ctx->completion_lock); 2863 2864 ev_fd->eventfd_async = eventfd_async; 2865 ctx->has_evfd = true; 2866 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2867 atomic_set(&ev_fd->refs, 1); 2868 atomic_set(&ev_fd->ops, 0); 2869 return 0; 2870 } 2871 2872 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2873 { 2874 struct io_ev_fd *ev_fd; 2875 2876 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2877 lockdep_is_held(&ctx->uring_lock)); 2878 if (ev_fd) { 2879 ctx->has_evfd = false; 2880 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2881 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2882 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2883 return 0; 2884 } 2885 2886 return -ENXIO; 2887 } 2888 2889 static void io_req_caches_free(struct io_ring_ctx *ctx) 2890 { 2891 struct io_kiocb *req; 2892 int nr = 0; 2893 2894 mutex_lock(&ctx->uring_lock); 2895 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2896 2897 while (!io_req_cache_empty(ctx)) { 2898 req = io_extract_req(ctx); 2899 kmem_cache_free(req_cachep, req); 2900 nr++; 2901 } 2902 if (nr) 2903 percpu_ref_put_many(&ctx->refs, nr); 2904 mutex_unlock(&ctx->uring_lock); 2905 } 2906 2907 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2908 { 2909 kfree(container_of(entry, struct io_rsrc_node, cache)); 2910 } 2911 2912 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2913 { 2914 io_sq_thread_finish(ctx); 2915 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2916 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2917 return; 2918 2919 mutex_lock(&ctx->uring_lock); 2920 if (ctx->buf_data) 2921 __io_sqe_buffers_unregister(ctx); 2922 if (ctx->file_data) 2923 __io_sqe_files_unregister(ctx); 2924 io_cqring_overflow_kill(ctx); 2925 io_eventfd_unregister(ctx); 2926 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2927 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2928 io_futex_cache_free(ctx); 2929 io_destroy_buffers(ctx); 2930 mutex_unlock(&ctx->uring_lock); 2931 if (ctx->sq_creds) 2932 put_cred(ctx->sq_creds); 2933 if (ctx->submitter_task) 2934 put_task_struct(ctx->submitter_task); 2935 2936 /* there are no registered resources left, nobody uses it */ 2937 if (ctx->rsrc_node) 2938 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2939 2940 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2941 2942 #if defined(CONFIG_UNIX) 2943 if (ctx->ring_sock) { 2944 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2945 sock_release(ctx->ring_sock); 2946 } 2947 #endif 2948 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2949 2950 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2951 if (ctx->mm_account) { 2952 mmdrop(ctx->mm_account); 2953 ctx->mm_account = NULL; 2954 } 2955 io_rings_free(ctx); 2956 io_kbuf_mmap_list_free(ctx); 2957 2958 percpu_ref_exit(&ctx->refs); 2959 free_uid(ctx->user); 2960 io_req_caches_free(ctx); 2961 if (ctx->hash_map) 2962 io_wq_put_hash(ctx->hash_map); 2963 kfree(ctx->cancel_table.hbs); 2964 kfree(ctx->cancel_table_locked.hbs); 2965 kfree(ctx->io_bl); 2966 xa_destroy(&ctx->io_bl_xa); 2967 kfree(ctx); 2968 } 2969 2970 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2971 { 2972 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2973 poll_wq_task_work); 2974 2975 mutex_lock(&ctx->uring_lock); 2976 ctx->poll_activated = true; 2977 mutex_unlock(&ctx->uring_lock); 2978 2979 /* 2980 * Wake ups for some events between start of polling and activation 2981 * might've been lost due to loose synchronisation. 2982 */ 2983 wake_up_all(&ctx->poll_wq); 2984 percpu_ref_put(&ctx->refs); 2985 } 2986 2987 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2988 { 2989 spin_lock(&ctx->completion_lock); 2990 /* already activated or in progress */ 2991 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2992 goto out; 2993 if (WARN_ON_ONCE(!ctx->task_complete)) 2994 goto out; 2995 if (!ctx->submitter_task) 2996 goto out; 2997 /* 2998 * with ->submitter_task only the submitter task completes requests, we 2999 * only need to sync with it, which is done by injecting a tw 3000 */ 3001 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 3002 percpu_ref_get(&ctx->refs); 3003 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 3004 percpu_ref_put(&ctx->refs); 3005 out: 3006 spin_unlock(&ctx->completion_lock); 3007 } 3008 3009 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 3010 { 3011 struct io_ring_ctx *ctx = file->private_data; 3012 __poll_t mask = 0; 3013 3014 if (unlikely(!ctx->poll_activated)) 3015 io_activate_pollwq(ctx); 3016 3017 poll_wait(file, &ctx->poll_wq, wait); 3018 /* 3019 * synchronizes with barrier from wq_has_sleeper call in 3020 * io_commit_cqring 3021 */ 3022 smp_rmb(); 3023 if (!io_sqring_full(ctx)) 3024 mask |= EPOLLOUT | EPOLLWRNORM; 3025 3026 /* 3027 * Don't flush cqring overflow list here, just do a simple check. 3028 * Otherwise there could possible be ABBA deadlock: 3029 * CPU0 CPU1 3030 * ---- ---- 3031 * lock(&ctx->uring_lock); 3032 * lock(&ep->mtx); 3033 * lock(&ctx->uring_lock); 3034 * lock(&ep->mtx); 3035 * 3036 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3037 * pushes them to do the flush. 3038 */ 3039 3040 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3041 mask |= EPOLLIN | EPOLLRDNORM; 3042 3043 return mask; 3044 } 3045 3046 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3047 { 3048 const struct cred *creds; 3049 3050 creds = xa_erase(&ctx->personalities, id); 3051 if (creds) { 3052 put_cred(creds); 3053 return 0; 3054 } 3055 3056 return -EINVAL; 3057 } 3058 3059 struct io_tctx_exit { 3060 struct callback_head task_work; 3061 struct completion completion; 3062 struct io_ring_ctx *ctx; 3063 }; 3064 3065 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3066 { 3067 struct io_uring_task *tctx = current->io_uring; 3068 struct io_tctx_exit *work; 3069 3070 work = container_of(cb, struct io_tctx_exit, task_work); 3071 /* 3072 * When @in_cancel, we're in cancellation and it's racy to remove the 3073 * node. It'll be removed by the end of cancellation, just ignore it. 3074 * tctx can be NULL if the queueing of this task_work raced with 3075 * work cancelation off the exec path. 3076 */ 3077 if (tctx && !atomic_read(&tctx->in_cancel)) 3078 io_uring_del_tctx_node((unsigned long)work->ctx); 3079 complete(&work->completion); 3080 } 3081 3082 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3083 { 3084 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3085 3086 return req->ctx == data; 3087 } 3088 3089 static __cold void io_ring_exit_work(struct work_struct *work) 3090 { 3091 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3092 unsigned long timeout = jiffies + HZ * 60 * 5; 3093 unsigned long interval = HZ / 20; 3094 struct io_tctx_exit exit; 3095 struct io_tctx_node *node; 3096 int ret; 3097 3098 /* 3099 * If we're doing polled IO and end up having requests being 3100 * submitted async (out-of-line), then completions can come in while 3101 * we're waiting for refs to drop. We need to reap these manually, 3102 * as nobody else will be looking for them. 3103 */ 3104 do { 3105 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3106 mutex_lock(&ctx->uring_lock); 3107 io_cqring_overflow_kill(ctx); 3108 mutex_unlock(&ctx->uring_lock); 3109 } 3110 3111 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3112 io_move_task_work_from_local(ctx); 3113 3114 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3115 cond_resched(); 3116 3117 if (ctx->sq_data) { 3118 struct io_sq_data *sqd = ctx->sq_data; 3119 struct task_struct *tsk; 3120 3121 io_sq_thread_park(sqd); 3122 tsk = sqd->thread; 3123 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3124 io_wq_cancel_cb(tsk->io_uring->io_wq, 3125 io_cancel_ctx_cb, ctx, true); 3126 io_sq_thread_unpark(sqd); 3127 } 3128 3129 io_req_caches_free(ctx); 3130 3131 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3132 /* there is little hope left, don't run it too often */ 3133 interval = HZ * 60; 3134 } 3135 /* 3136 * This is really an uninterruptible wait, as it has to be 3137 * complete. But it's also run from a kworker, which doesn't 3138 * take signals, so it's fine to make it interruptible. This 3139 * avoids scenarios where we knowingly can wait much longer 3140 * on completions, for example if someone does a SIGSTOP on 3141 * a task that needs to finish task_work to make this loop 3142 * complete. That's a synthetic situation that should not 3143 * cause a stuck task backtrace, and hence a potential panic 3144 * on stuck tasks if that is enabled. 3145 */ 3146 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3147 3148 init_completion(&exit.completion); 3149 init_task_work(&exit.task_work, io_tctx_exit_cb); 3150 exit.ctx = ctx; 3151 3152 mutex_lock(&ctx->uring_lock); 3153 while (!list_empty(&ctx->tctx_list)) { 3154 WARN_ON_ONCE(time_after(jiffies, timeout)); 3155 3156 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3157 ctx_node); 3158 /* don't spin on a single task if cancellation failed */ 3159 list_rotate_left(&ctx->tctx_list); 3160 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3161 if (WARN_ON_ONCE(ret)) 3162 continue; 3163 3164 mutex_unlock(&ctx->uring_lock); 3165 /* 3166 * See comment above for 3167 * wait_for_completion_interruptible_timeout() on why this 3168 * wait is marked as interruptible. 3169 */ 3170 wait_for_completion_interruptible(&exit.completion); 3171 mutex_lock(&ctx->uring_lock); 3172 } 3173 mutex_unlock(&ctx->uring_lock); 3174 spin_lock(&ctx->completion_lock); 3175 spin_unlock(&ctx->completion_lock); 3176 3177 /* pairs with RCU read section in io_req_local_work_add() */ 3178 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3179 synchronize_rcu(); 3180 3181 io_ring_ctx_free(ctx); 3182 } 3183 3184 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3185 { 3186 unsigned long index; 3187 struct creds *creds; 3188 3189 mutex_lock(&ctx->uring_lock); 3190 percpu_ref_kill(&ctx->refs); 3191 xa_for_each(&ctx->personalities, index, creds) 3192 io_unregister_personality(ctx, index); 3193 if (ctx->rings) 3194 io_poll_remove_all(ctx, NULL, true); 3195 mutex_unlock(&ctx->uring_lock); 3196 3197 /* 3198 * If we failed setting up the ctx, we might not have any rings 3199 * and therefore did not submit any requests 3200 */ 3201 if (ctx->rings) 3202 io_kill_timeouts(ctx, NULL, true); 3203 3204 flush_delayed_work(&ctx->fallback_work); 3205 3206 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3207 /* 3208 * Use system_unbound_wq to avoid spawning tons of event kworkers 3209 * if we're exiting a ton of rings at the same time. It just adds 3210 * noise and overhead, there's no discernable change in runtime 3211 * over using system_wq. 3212 */ 3213 queue_work(system_unbound_wq, &ctx->exit_work); 3214 } 3215 3216 static int io_uring_release(struct inode *inode, struct file *file) 3217 { 3218 struct io_ring_ctx *ctx = file->private_data; 3219 3220 file->private_data = NULL; 3221 io_ring_ctx_wait_and_kill(ctx); 3222 return 0; 3223 } 3224 3225 struct io_task_cancel { 3226 struct task_struct *task; 3227 bool all; 3228 }; 3229 3230 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3231 { 3232 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3233 struct io_task_cancel *cancel = data; 3234 3235 return io_match_task_safe(req, cancel->task, cancel->all); 3236 } 3237 3238 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3239 struct task_struct *task, 3240 bool cancel_all) 3241 { 3242 struct io_defer_entry *de; 3243 LIST_HEAD(list); 3244 3245 spin_lock(&ctx->completion_lock); 3246 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3247 if (io_match_task_safe(de->req, task, cancel_all)) { 3248 list_cut_position(&list, &ctx->defer_list, &de->list); 3249 break; 3250 } 3251 } 3252 spin_unlock(&ctx->completion_lock); 3253 if (list_empty(&list)) 3254 return false; 3255 3256 while (!list_empty(&list)) { 3257 de = list_first_entry(&list, struct io_defer_entry, list); 3258 list_del_init(&de->list); 3259 io_req_task_queue_fail(de->req, -ECANCELED); 3260 kfree(de); 3261 } 3262 return true; 3263 } 3264 3265 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3266 { 3267 struct io_tctx_node *node; 3268 enum io_wq_cancel cret; 3269 bool ret = false; 3270 3271 mutex_lock(&ctx->uring_lock); 3272 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3273 struct io_uring_task *tctx = node->task->io_uring; 3274 3275 /* 3276 * io_wq will stay alive while we hold uring_lock, because it's 3277 * killed after ctx nodes, which requires to take the lock. 3278 */ 3279 if (!tctx || !tctx->io_wq) 3280 continue; 3281 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3282 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3283 } 3284 mutex_unlock(&ctx->uring_lock); 3285 3286 return ret; 3287 } 3288 3289 static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx, 3290 struct task_struct *task, bool cancel_all) 3291 { 3292 struct hlist_node *tmp; 3293 struct io_kiocb *req; 3294 bool ret = false; 3295 3296 lockdep_assert_held(&ctx->uring_lock); 3297 3298 hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd, 3299 hash_node) { 3300 struct io_uring_cmd *cmd = io_kiocb_to_cmd(req, 3301 struct io_uring_cmd); 3302 struct file *file = req->file; 3303 3304 if (!cancel_all && req->task != task) 3305 continue; 3306 3307 if (cmd->flags & IORING_URING_CMD_CANCELABLE) { 3308 /* ->sqe isn't available if no async data */ 3309 if (!req_has_async_data(req)) 3310 cmd->sqe = NULL; 3311 file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL); 3312 ret = true; 3313 } 3314 } 3315 io_submit_flush_completions(ctx); 3316 3317 return ret; 3318 } 3319 3320 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3321 struct task_struct *task, 3322 bool cancel_all) 3323 { 3324 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3325 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3326 enum io_wq_cancel cret; 3327 bool ret = false; 3328 3329 /* set it so io_req_local_work_add() would wake us up */ 3330 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3331 atomic_set(&ctx->cq_wait_nr, 1); 3332 smp_mb(); 3333 } 3334 3335 /* failed during ring init, it couldn't have issued any requests */ 3336 if (!ctx->rings) 3337 return false; 3338 3339 if (!task) { 3340 ret |= io_uring_try_cancel_iowq(ctx); 3341 } else if (tctx && tctx->io_wq) { 3342 /* 3343 * Cancels requests of all rings, not only @ctx, but 3344 * it's fine as the task is in exit/exec. 3345 */ 3346 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3347 &cancel, true); 3348 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3349 } 3350 3351 /* SQPOLL thread does its own polling */ 3352 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3353 (ctx->sq_data && ctx->sq_data->thread == current)) { 3354 while (!wq_list_empty(&ctx->iopoll_list)) { 3355 io_iopoll_try_reap_events(ctx); 3356 ret = true; 3357 cond_resched(); 3358 } 3359 } 3360 3361 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3362 io_allowed_defer_tw_run(ctx)) 3363 ret |= io_run_local_work(ctx) > 0; 3364 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3365 mutex_lock(&ctx->uring_lock); 3366 ret |= io_poll_remove_all(ctx, task, cancel_all); 3367 ret |= io_waitid_remove_all(ctx, task, cancel_all); 3368 ret |= io_futex_remove_all(ctx, task, cancel_all); 3369 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); 3370 mutex_unlock(&ctx->uring_lock); 3371 ret |= io_kill_timeouts(ctx, task, cancel_all); 3372 if (task) 3373 ret |= io_run_task_work() > 0; 3374 return ret; 3375 } 3376 3377 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3378 { 3379 if (tracked) 3380 return atomic_read(&tctx->inflight_tracked); 3381 return percpu_counter_sum(&tctx->inflight); 3382 } 3383 3384 /* 3385 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3386 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3387 */ 3388 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3389 { 3390 struct io_uring_task *tctx = current->io_uring; 3391 struct io_ring_ctx *ctx; 3392 struct io_tctx_node *node; 3393 unsigned long index; 3394 s64 inflight; 3395 DEFINE_WAIT(wait); 3396 3397 WARN_ON_ONCE(sqd && sqd->thread != current); 3398 3399 if (!current->io_uring) 3400 return; 3401 if (tctx->io_wq) 3402 io_wq_exit_start(tctx->io_wq); 3403 3404 atomic_inc(&tctx->in_cancel); 3405 do { 3406 bool loop = false; 3407 3408 io_uring_drop_tctx_refs(current); 3409 /* read completions before cancelations */ 3410 inflight = tctx_inflight(tctx, !cancel_all); 3411 if (!inflight) 3412 break; 3413 3414 if (!sqd) { 3415 xa_for_each(&tctx->xa, index, node) { 3416 /* sqpoll task will cancel all its requests */ 3417 if (node->ctx->sq_data) 3418 continue; 3419 loop |= io_uring_try_cancel_requests(node->ctx, 3420 current, cancel_all); 3421 } 3422 } else { 3423 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3424 loop |= io_uring_try_cancel_requests(ctx, 3425 current, 3426 cancel_all); 3427 } 3428 3429 if (loop) { 3430 cond_resched(); 3431 continue; 3432 } 3433 3434 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3435 io_run_task_work(); 3436 io_uring_drop_tctx_refs(current); 3437 xa_for_each(&tctx->xa, index, node) { 3438 if (!llist_empty(&node->ctx->work_llist)) { 3439 WARN_ON_ONCE(node->ctx->submitter_task && 3440 node->ctx->submitter_task != current); 3441 goto end_wait; 3442 } 3443 } 3444 /* 3445 * If we've seen completions, retry without waiting. This 3446 * avoids a race where a completion comes in before we did 3447 * prepare_to_wait(). 3448 */ 3449 if (inflight == tctx_inflight(tctx, !cancel_all)) 3450 schedule(); 3451 end_wait: 3452 finish_wait(&tctx->wait, &wait); 3453 } while (1); 3454 3455 io_uring_clean_tctx(tctx); 3456 if (cancel_all) { 3457 /* 3458 * We shouldn't run task_works after cancel, so just leave 3459 * ->in_cancel set for normal exit. 3460 */ 3461 atomic_dec(&tctx->in_cancel); 3462 /* for exec all current's requests should be gone, kill tctx */ 3463 __io_uring_free(current); 3464 } 3465 } 3466 3467 void __io_uring_cancel(bool cancel_all) 3468 { 3469 io_uring_cancel_generic(cancel_all, NULL); 3470 } 3471 3472 static void *io_uring_validate_mmap_request(struct file *file, 3473 loff_t pgoff, size_t sz) 3474 { 3475 struct io_ring_ctx *ctx = file->private_data; 3476 loff_t offset = pgoff << PAGE_SHIFT; 3477 struct page *page; 3478 void *ptr; 3479 3480 switch (offset & IORING_OFF_MMAP_MASK) { 3481 case IORING_OFF_SQ_RING: 3482 case IORING_OFF_CQ_RING: 3483 /* Don't allow mmap if the ring was setup without it */ 3484 if (ctx->flags & IORING_SETUP_NO_MMAP) 3485 return ERR_PTR(-EINVAL); 3486 ptr = ctx->rings; 3487 break; 3488 case IORING_OFF_SQES: 3489 /* Don't allow mmap if the ring was setup without it */ 3490 if (ctx->flags & IORING_SETUP_NO_MMAP) 3491 return ERR_PTR(-EINVAL); 3492 ptr = ctx->sq_sqes; 3493 break; 3494 case IORING_OFF_PBUF_RING: { 3495 unsigned int bgid; 3496 3497 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3498 rcu_read_lock(); 3499 ptr = io_pbuf_get_address(ctx, bgid); 3500 rcu_read_unlock(); 3501 if (!ptr) 3502 return ERR_PTR(-EINVAL); 3503 break; 3504 } 3505 default: 3506 return ERR_PTR(-EINVAL); 3507 } 3508 3509 page = virt_to_head_page(ptr); 3510 if (sz > page_size(page)) 3511 return ERR_PTR(-EINVAL); 3512 3513 return ptr; 3514 } 3515 3516 #ifdef CONFIG_MMU 3517 3518 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3519 { 3520 size_t sz = vma->vm_end - vma->vm_start; 3521 unsigned long pfn; 3522 void *ptr; 3523 3524 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3525 if (IS_ERR(ptr)) 3526 return PTR_ERR(ptr); 3527 3528 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3529 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3530 } 3531 3532 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3533 unsigned long addr, unsigned long len, 3534 unsigned long pgoff, unsigned long flags) 3535 { 3536 void *ptr; 3537 3538 /* 3539 * Do not allow to map to user-provided address to avoid breaking the 3540 * aliasing rules. Userspace is not able to guess the offset address of 3541 * kernel kmalloc()ed memory area. 3542 */ 3543 if (addr) 3544 return -EINVAL; 3545 3546 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3547 if (IS_ERR(ptr)) 3548 return -ENOMEM; 3549 3550 /* 3551 * Some architectures have strong cache aliasing requirements. 3552 * For such architectures we need a coherent mapping which aliases 3553 * kernel memory *and* userspace memory. To achieve that: 3554 * - use a NULL file pointer to reference physical memory, and 3555 * - use the kernel virtual address of the shared io_uring context 3556 * (instead of the userspace-provided address, which has to be 0UL 3557 * anyway). 3558 * - use the same pgoff which the get_unmapped_area() uses to 3559 * calculate the page colouring. 3560 * For architectures without such aliasing requirements, the 3561 * architecture will return any suitable mapping because addr is 0. 3562 */ 3563 filp = NULL; 3564 flags |= MAP_SHARED; 3565 pgoff = 0; /* has been translated to ptr above */ 3566 #ifdef SHM_COLOUR 3567 addr = (uintptr_t) ptr; 3568 pgoff = addr >> PAGE_SHIFT; 3569 #else 3570 addr = 0UL; 3571 #endif 3572 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3573 } 3574 3575 #else /* !CONFIG_MMU */ 3576 3577 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3578 { 3579 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3580 } 3581 3582 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3583 { 3584 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3585 } 3586 3587 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3588 unsigned long addr, unsigned long len, 3589 unsigned long pgoff, unsigned long flags) 3590 { 3591 void *ptr; 3592 3593 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3594 if (IS_ERR(ptr)) 3595 return PTR_ERR(ptr); 3596 3597 return (unsigned long) ptr; 3598 } 3599 3600 #endif /* !CONFIG_MMU */ 3601 3602 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3603 { 3604 if (flags & IORING_ENTER_EXT_ARG) { 3605 struct io_uring_getevents_arg arg; 3606 3607 if (argsz != sizeof(arg)) 3608 return -EINVAL; 3609 if (copy_from_user(&arg, argp, sizeof(arg))) 3610 return -EFAULT; 3611 } 3612 return 0; 3613 } 3614 3615 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3616 struct __kernel_timespec __user **ts, 3617 const sigset_t __user **sig) 3618 { 3619 struct io_uring_getevents_arg arg; 3620 3621 /* 3622 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3623 * is just a pointer to the sigset_t. 3624 */ 3625 if (!(flags & IORING_ENTER_EXT_ARG)) { 3626 *sig = (const sigset_t __user *) argp; 3627 *ts = NULL; 3628 return 0; 3629 } 3630 3631 /* 3632 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3633 * timespec and sigset_t pointers if good. 3634 */ 3635 if (*argsz != sizeof(arg)) 3636 return -EINVAL; 3637 if (copy_from_user(&arg, argp, sizeof(arg))) 3638 return -EFAULT; 3639 if (arg.pad) 3640 return -EINVAL; 3641 *sig = u64_to_user_ptr(arg.sigmask); 3642 *argsz = arg.sigmask_sz; 3643 *ts = u64_to_user_ptr(arg.ts); 3644 return 0; 3645 } 3646 3647 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3648 u32, min_complete, u32, flags, const void __user *, argp, 3649 size_t, argsz) 3650 { 3651 struct io_ring_ctx *ctx; 3652 struct file *file; 3653 long ret; 3654 3655 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3656 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3657 IORING_ENTER_REGISTERED_RING))) 3658 return -EINVAL; 3659 3660 /* 3661 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3662 * need only dereference our task private array to find it. 3663 */ 3664 if (flags & IORING_ENTER_REGISTERED_RING) { 3665 struct io_uring_task *tctx = current->io_uring; 3666 3667 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3668 return -EINVAL; 3669 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3670 file = tctx->registered_rings[fd]; 3671 if (unlikely(!file)) 3672 return -EBADF; 3673 } else { 3674 file = fget(fd); 3675 if (unlikely(!file)) 3676 return -EBADF; 3677 ret = -EOPNOTSUPP; 3678 if (unlikely(!io_is_uring_fops(file))) 3679 goto out; 3680 } 3681 3682 ctx = file->private_data; 3683 ret = -EBADFD; 3684 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3685 goto out; 3686 3687 /* 3688 * For SQ polling, the thread will do all submissions and completions. 3689 * Just return the requested submit count, and wake the thread if 3690 * we were asked to. 3691 */ 3692 ret = 0; 3693 if (ctx->flags & IORING_SETUP_SQPOLL) { 3694 io_cqring_overflow_flush(ctx); 3695 3696 if (unlikely(ctx->sq_data->thread == NULL)) { 3697 ret = -EOWNERDEAD; 3698 goto out; 3699 } 3700 if (flags & IORING_ENTER_SQ_WAKEUP) 3701 wake_up(&ctx->sq_data->wait); 3702 if (flags & IORING_ENTER_SQ_WAIT) 3703 io_sqpoll_wait_sq(ctx); 3704 3705 ret = to_submit; 3706 } else if (to_submit) { 3707 ret = io_uring_add_tctx_node(ctx); 3708 if (unlikely(ret)) 3709 goto out; 3710 3711 mutex_lock(&ctx->uring_lock); 3712 ret = io_submit_sqes(ctx, to_submit); 3713 if (ret != to_submit) { 3714 mutex_unlock(&ctx->uring_lock); 3715 goto out; 3716 } 3717 if (flags & IORING_ENTER_GETEVENTS) { 3718 if (ctx->syscall_iopoll) 3719 goto iopoll_locked; 3720 /* 3721 * Ignore errors, we'll soon call io_cqring_wait() and 3722 * it should handle ownership problems if any. 3723 */ 3724 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3725 (void)io_run_local_work_locked(ctx); 3726 } 3727 mutex_unlock(&ctx->uring_lock); 3728 } 3729 3730 if (flags & IORING_ENTER_GETEVENTS) { 3731 int ret2; 3732 3733 if (ctx->syscall_iopoll) { 3734 /* 3735 * We disallow the app entering submit/complete with 3736 * polling, but we still need to lock the ring to 3737 * prevent racing with polled issue that got punted to 3738 * a workqueue. 3739 */ 3740 mutex_lock(&ctx->uring_lock); 3741 iopoll_locked: 3742 ret2 = io_validate_ext_arg(flags, argp, argsz); 3743 if (likely(!ret2)) { 3744 min_complete = min(min_complete, 3745 ctx->cq_entries); 3746 ret2 = io_iopoll_check(ctx, min_complete); 3747 } 3748 mutex_unlock(&ctx->uring_lock); 3749 } else { 3750 const sigset_t __user *sig; 3751 struct __kernel_timespec __user *ts; 3752 3753 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3754 if (likely(!ret2)) { 3755 min_complete = min(min_complete, 3756 ctx->cq_entries); 3757 ret2 = io_cqring_wait(ctx, min_complete, sig, 3758 argsz, ts); 3759 } 3760 } 3761 3762 if (!ret) { 3763 ret = ret2; 3764 3765 /* 3766 * EBADR indicates that one or more CQE were dropped. 3767 * Once the user has been informed we can clear the bit 3768 * as they are obviously ok with those drops. 3769 */ 3770 if (unlikely(ret2 == -EBADR)) 3771 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3772 &ctx->check_cq); 3773 } 3774 } 3775 out: 3776 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3777 fput(file); 3778 return ret; 3779 } 3780 3781 static const struct file_operations io_uring_fops = { 3782 .release = io_uring_release, 3783 .mmap = io_uring_mmap, 3784 #ifndef CONFIG_MMU 3785 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3786 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3787 #else 3788 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3789 #endif 3790 .poll = io_uring_poll, 3791 #ifdef CONFIG_PROC_FS 3792 .show_fdinfo = io_uring_show_fdinfo, 3793 #endif 3794 }; 3795 3796 bool io_is_uring_fops(struct file *file) 3797 { 3798 return file->f_op == &io_uring_fops; 3799 } 3800 3801 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3802 struct io_uring_params *p) 3803 { 3804 struct io_rings *rings; 3805 size_t size, sq_array_offset; 3806 void *ptr; 3807 3808 /* make sure these are sane, as we already accounted them */ 3809 ctx->sq_entries = p->sq_entries; 3810 ctx->cq_entries = p->cq_entries; 3811 3812 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3813 if (size == SIZE_MAX) 3814 return -EOVERFLOW; 3815 3816 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3817 rings = io_mem_alloc(size); 3818 else 3819 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3820 3821 if (IS_ERR(rings)) 3822 return PTR_ERR(rings); 3823 3824 ctx->rings = rings; 3825 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3826 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3827 rings->sq_ring_mask = p->sq_entries - 1; 3828 rings->cq_ring_mask = p->cq_entries - 1; 3829 rings->sq_ring_entries = p->sq_entries; 3830 rings->cq_ring_entries = p->cq_entries; 3831 3832 if (p->flags & IORING_SETUP_SQE128) 3833 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3834 else 3835 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3836 if (size == SIZE_MAX) { 3837 io_rings_free(ctx); 3838 return -EOVERFLOW; 3839 } 3840 3841 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3842 ptr = io_mem_alloc(size); 3843 else 3844 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3845 3846 if (IS_ERR(ptr)) { 3847 io_rings_free(ctx); 3848 return PTR_ERR(ptr); 3849 } 3850 3851 ctx->sq_sqes = ptr; 3852 return 0; 3853 } 3854 3855 static int io_uring_install_fd(struct file *file) 3856 { 3857 int fd; 3858 3859 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3860 if (fd < 0) 3861 return fd; 3862 fd_install(fd, file); 3863 return fd; 3864 } 3865 3866 /* 3867 * Allocate an anonymous fd, this is what constitutes the application 3868 * visible backing of an io_uring instance. The application mmaps this 3869 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3870 * we have to tie this fd to a socket for file garbage collection purposes. 3871 */ 3872 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3873 { 3874 struct file *file; 3875 #if defined(CONFIG_UNIX) 3876 int ret; 3877 3878 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3879 &ctx->ring_sock); 3880 if (ret) 3881 return ERR_PTR(ret); 3882 #endif 3883 3884 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3885 O_RDWR | O_CLOEXEC, NULL); 3886 #if defined(CONFIG_UNIX) 3887 if (IS_ERR(file)) { 3888 sock_release(ctx->ring_sock); 3889 ctx->ring_sock = NULL; 3890 } else { 3891 ctx->ring_sock->file = file; 3892 } 3893 #endif 3894 return file; 3895 } 3896 3897 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3898 struct io_uring_params __user *params) 3899 { 3900 struct io_ring_ctx *ctx; 3901 struct io_uring_task *tctx; 3902 struct file *file; 3903 int ret; 3904 3905 if (!entries) 3906 return -EINVAL; 3907 if (entries > IORING_MAX_ENTRIES) { 3908 if (!(p->flags & IORING_SETUP_CLAMP)) 3909 return -EINVAL; 3910 entries = IORING_MAX_ENTRIES; 3911 } 3912 3913 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3914 && !(p->flags & IORING_SETUP_NO_MMAP)) 3915 return -EINVAL; 3916 3917 /* 3918 * Use twice as many entries for the CQ ring. It's possible for the 3919 * application to drive a higher depth than the size of the SQ ring, 3920 * since the sqes are only used at submission time. This allows for 3921 * some flexibility in overcommitting a bit. If the application has 3922 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3923 * of CQ ring entries manually. 3924 */ 3925 p->sq_entries = roundup_pow_of_two(entries); 3926 if (p->flags & IORING_SETUP_CQSIZE) { 3927 /* 3928 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3929 * to a power-of-two, if it isn't already. We do NOT impose 3930 * any cq vs sq ring sizing. 3931 */ 3932 if (!p->cq_entries) 3933 return -EINVAL; 3934 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3935 if (!(p->flags & IORING_SETUP_CLAMP)) 3936 return -EINVAL; 3937 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3938 } 3939 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3940 if (p->cq_entries < p->sq_entries) 3941 return -EINVAL; 3942 } else { 3943 p->cq_entries = 2 * p->sq_entries; 3944 } 3945 3946 ctx = io_ring_ctx_alloc(p); 3947 if (!ctx) 3948 return -ENOMEM; 3949 3950 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3951 !(ctx->flags & IORING_SETUP_IOPOLL) && 3952 !(ctx->flags & IORING_SETUP_SQPOLL)) 3953 ctx->task_complete = true; 3954 3955 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3956 ctx->lockless_cq = true; 3957 3958 /* 3959 * lazy poll_wq activation relies on ->task_complete for synchronisation 3960 * purposes, see io_activate_pollwq() 3961 */ 3962 if (!ctx->task_complete) 3963 ctx->poll_activated = true; 3964 3965 /* 3966 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3967 * space applications don't need to do io completion events 3968 * polling again, they can rely on io_sq_thread to do polling 3969 * work, which can reduce cpu usage and uring_lock contention. 3970 */ 3971 if (ctx->flags & IORING_SETUP_IOPOLL && 3972 !(ctx->flags & IORING_SETUP_SQPOLL)) 3973 ctx->syscall_iopoll = 1; 3974 3975 ctx->compat = in_compat_syscall(); 3976 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3977 ctx->user = get_uid(current_user()); 3978 3979 /* 3980 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3981 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3982 */ 3983 ret = -EINVAL; 3984 if (ctx->flags & IORING_SETUP_SQPOLL) { 3985 /* IPI related flags don't make sense with SQPOLL */ 3986 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3987 IORING_SETUP_TASKRUN_FLAG | 3988 IORING_SETUP_DEFER_TASKRUN)) 3989 goto err; 3990 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3991 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3992 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3993 } else { 3994 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3995 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3996 goto err; 3997 ctx->notify_method = TWA_SIGNAL; 3998 } 3999 4000 /* 4001 * For DEFER_TASKRUN we require the completion task to be the same as the 4002 * submission task. This implies that there is only one submitter, so enforce 4003 * that. 4004 */ 4005 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 4006 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 4007 goto err; 4008 } 4009 4010 /* 4011 * This is just grabbed for accounting purposes. When a process exits, 4012 * the mm is exited and dropped before the files, hence we need to hang 4013 * on to this mm purely for the purposes of being able to unaccount 4014 * memory (locked/pinned vm). It's not used for anything else. 4015 */ 4016 mmgrab(current->mm); 4017 ctx->mm_account = current->mm; 4018 4019 ret = io_allocate_scq_urings(ctx, p); 4020 if (ret) 4021 goto err; 4022 4023 ret = io_sq_offload_create(ctx, p); 4024 if (ret) 4025 goto err; 4026 4027 ret = io_rsrc_init(ctx); 4028 if (ret) 4029 goto err; 4030 4031 p->sq_off.head = offsetof(struct io_rings, sq.head); 4032 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 4033 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 4034 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 4035 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 4036 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 4037 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 4038 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 4039 p->sq_off.resv1 = 0; 4040 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4041 p->sq_off.user_addr = 0; 4042 4043 p->cq_off.head = offsetof(struct io_rings, cq.head); 4044 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 4045 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 4046 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 4047 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 4048 p->cq_off.cqes = offsetof(struct io_rings, cqes); 4049 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 4050 p->cq_off.resv1 = 0; 4051 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4052 p->cq_off.user_addr = 0; 4053 4054 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 4055 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 4056 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4057 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4058 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4059 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4060 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4061 4062 if (copy_to_user(params, p, sizeof(*p))) { 4063 ret = -EFAULT; 4064 goto err; 4065 } 4066 4067 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4068 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4069 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4070 4071 file = io_uring_get_file(ctx); 4072 if (IS_ERR(file)) { 4073 ret = PTR_ERR(file); 4074 goto err; 4075 } 4076 4077 ret = __io_uring_add_tctx_node(ctx); 4078 if (ret) 4079 goto err_fput; 4080 tctx = current->io_uring; 4081 4082 /* 4083 * Install ring fd as the very last thing, so we don't risk someone 4084 * having closed it before we finish setup 4085 */ 4086 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4087 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4088 else 4089 ret = io_uring_install_fd(file); 4090 if (ret < 0) 4091 goto err_fput; 4092 4093 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4094 return ret; 4095 err: 4096 io_ring_ctx_wait_and_kill(ctx); 4097 return ret; 4098 err_fput: 4099 fput(file); 4100 return ret; 4101 } 4102 4103 /* 4104 * Sets up an aio uring context, and returns the fd. Applications asks for a 4105 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4106 * params structure passed in. 4107 */ 4108 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4109 { 4110 struct io_uring_params p; 4111 int i; 4112 4113 if (copy_from_user(&p, params, sizeof(p))) 4114 return -EFAULT; 4115 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4116 if (p.resv[i]) 4117 return -EINVAL; 4118 } 4119 4120 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4121 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4122 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4123 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4124 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4125 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4126 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4127 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4128 IORING_SETUP_NO_SQARRAY)) 4129 return -EINVAL; 4130 4131 return io_uring_create(entries, &p, params); 4132 } 4133 4134 static inline bool io_uring_allowed(void) 4135 { 4136 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4137 kgid_t io_uring_group; 4138 4139 if (disabled == 2) 4140 return false; 4141 4142 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4143 return true; 4144 4145 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4146 if (!gid_valid(io_uring_group)) 4147 return false; 4148 4149 return in_group_p(io_uring_group); 4150 } 4151 4152 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4153 struct io_uring_params __user *, params) 4154 { 4155 if (!io_uring_allowed()) 4156 return -EPERM; 4157 4158 return io_uring_setup(entries, params); 4159 } 4160 4161 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4162 unsigned nr_args) 4163 { 4164 struct io_uring_probe *p; 4165 size_t size; 4166 int i, ret; 4167 4168 size = struct_size(p, ops, nr_args); 4169 if (size == SIZE_MAX) 4170 return -EOVERFLOW; 4171 p = kzalloc(size, GFP_KERNEL); 4172 if (!p) 4173 return -ENOMEM; 4174 4175 ret = -EFAULT; 4176 if (copy_from_user(p, arg, size)) 4177 goto out; 4178 ret = -EINVAL; 4179 if (memchr_inv(p, 0, size)) 4180 goto out; 4181 4182 p->last_op = IORING_OP_LAST - 1; 4183 if (nr_args > IORING_OP_LAST) 4184 nr_args = IORING_OP_LAST; 4185 4186 for (i = 0; i < nr_args; i++) { 4187 p->ops[i].op = i; 4188 if (!io_issue_defs[i].not_supported) 4189 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4190 } 4191 p->ops_len = i; 4192 4193 ret = 0; 4194 if (copy_to_user(arg, p, size)) 4195 ret = -EFAULT; 4196 out: 4197 kfree(p); 4198 return ret; 4199 } 4200 4201 static int io_register_personality(struct io_ring_ctx *ctx) 4202 { 4203 const struct cred *creds; 4204 u32 id; 4205 int ret; 4206 4207 creds = get_current_cred(); 4208 4209 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4210 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4211 if (ret < 0) { 4212 put_cred(creds); 4213 return ret; 4214 } 4215 return id; 4216 } 4217 4218 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4219 void __user *arg, unsigned int nr_args) 4220 { 4221 struct io_uring_restriction *res; 4222 size_t size; 4223 int i, ret; 4224 4225 /* Restrictions allowed only if rings started disabled */ 4226 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4227 return -EBADFD; 4228 4229 /* We allow only a single restrictions registration */ 4230 if (ctx->restrictions.registered) 4231 return -EBUSY; 4232 4233 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4234 return -EINVAL; 4235 4236 size = array_size(nr_args, sizeof(*res)); 4237 if (size == SIZE_MAX) 4238 return -EOVERFLOW; 4239 4240 res = memdup_user(arg, size); 4241 if (IS_ERR(res)) 4242 return PTR_ERR(res); 4243 4244 ret = 0; 4245 4246 for (i = 0; i < nr_args; i++) { 4247 switch (res[i].opcode) { 4248 case IORING_RESTRICTION_REGISTER_OP: 4249 if (res[i].register_op >= IORING_REGISTER_LAST) { 4250 ret = -EINVAL; 4251 goto out; 4252 } 4253 4254 __set_bit(res[i].register_op, 4255 ctx->restrictions.register_op); 4256 break; 4257 case IORING_RESTRICTION_SQE_OP: 4258 if (res[i].sqe_op >= IORING_OP_LAST) { 4259 ret = -EINVAL; 4260 goto out; 4261 } 4262 4263 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4264 break; 4265 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4266 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4267 break; 4268 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4269 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4270 break; 4271 default: 4272 ret = -EINVAL; 4273 goto out; 4274 } 4275 } 4276 4277 out: 4278 /* Reset all restrictions if an error happened */ 4279 if (ret != 0) 4280 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4281 else 4282 ctx->restrictions.registered = true; 4283 4284 kfree(res); 4285 return ret; 4286 } 4287 4288 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4289 { 4290 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4291 return -EBADFD; 4292 4293 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4294 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4295 /* 4296 * Lazy activation attempts would fail if it was polled before 4297 * submitter_task is set. 4298 */ 4299 if (wq_has_sleeper(&ctx->poll_wq)) 4300 io_activate_pollwq(ctx); 4301 } 4302 4303 if (ctx->restrictions.registered) 4304 ctx->restricted = 1; 4305 4306 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4307 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4308 wake_up(&ctx->sq_data->wait); 4309 return 0; 4310 } 4311 4312 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4313 cpumask_var_t new_mask) 4314 { 4315 int ret; 4316 4317 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4318 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4319 } else { 4320 mutex_unlock(&ctx->uring_lock); 4321 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4322 mutex_lock(&ctx->uring_lock); 4323 } 4324 4325 return ret; 4326 } 4327 4328 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4329 void __user *arg, unsigned len) 4330 { 4331 cpumask_var_t new_mask; 4332 int ret; 4333 4334 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4335 return -ENOMEM; 4336 4337 cpumask_clear(new_mask); 4338 if (len > cpumask_size()) 4339 len = cpumask_size(); 4340 4341 if (in_compat_syscall()) { 4342 ret = compat_get_bitmap(cpumask_bits(new_mask), 4343 (const compat_ulong_t __user *)arg, 4344 len * 8 /* CHAR_BIT */); 4345 } else { 4346 ret = copy_from_user(new_mask, arg, len); 4347 } 4348 4349 if (ret) { 4350 free_cpumask_var(new_mask); 4351 return -EFAULT; 4352 } 4353 4354 ret = __io_register_iowq_aff(ctx, new_mask); 4355 free_cpumask_var(new_mask); 4356 return ret; 4357 } 4358 4359 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4360 { 4361 return __io_register_iowq_aff(ctx, NULL); 4362 } 4363 4364 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4365 void __user *arg) 4366 __must_hold(&ctx->uring_lock) 4367 { 4368 struct io_tctx_node *node; 4369 struct io_uring_task *tctx = NULL; 4370 struct io_sq_data *sqd = NULL; 4371 __u32 new_count[2]; 4372 int i, ret; 4373 4374 if (copy_from_user(new_count, arg, sizeof(new_count))) 4375 return -EFAULT; 4376 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4377 if (new_count[i] > INT_MAX) 4378 return -EINVAL; 4379 4380 if (ctx->flags & IORING_SETUP_SQPOLL) { 4381 sqd = ctx->sq_data; 4382 if (sqd) { 4383 /* 4384 * Observe the correct sqd->lock -> ctx->uring_lock 4385 * ordering. Fine to drop uring_lock here, we hold 4386 * a ref to the ctx. 4387 */ 4388 refcount_inc(&sqd->refs); 4389 mutex_unlock(&ctx->uring_lock); 4390 mutex_lock(&sqd->lock); 4391 mutex_lock(&ctx->uring_lock); 4392 if (sqd->thread) 4393 tctx = sqd->thread->io_uring; 4394 } 4395 } else { 4396 tctx = current->io_uring; 4397 } 4398 4399 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4400 4401 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4402 if (new_count[i]) 4403 ctx->iowq_limits[i] = new_count[i]; 4404 ctx->iowq_limits_set = true; 4405 4406 if (tctx && tctx->io_wq) { 4407 ret = io_wq_max_workers(tctx->io_wq, new_count); 4408 if (ret) 4409 goto err; 4410 } else { 4411 memset(new_count, 0, sizeof(new_count)); 4412 } 4413 4414 if (sqd) { 4415 mutex_unlock(&sqd->lock); 4416 io_put_sq_data(sqd); 4417 } 4418 4419 if (copy_to_user(arg, new_count, sizeof(new_count))) 4420 return -EFAULT; 4421 4422 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4423 if (sqd) 4424 return 0; 4425 4426 /* now propagate the restriction to all registered users */ 4427 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4428 struct io_uring_task *tctx = node->task->io_uring; 4429 4430 if (WARN_ON_ONCE(!tctx->io_wq)) 4431 continue; 4432 4433 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4434 new_count[i] = ctx->iowq_limits[i]; 4435 /* ignore errors, it always returns zero anyway */ 4436 (void)io_wq_max_workers(tctx->io_wq, new_count); 4437 } 4438 return 0; 4439 err: 4440 if (sqd) { 4441 mutex_unlock(&sqd->lock); 4442 io_put_sq_data(sqd); 4443 } 4444 return ret; 4445 } 4446 4447 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4448 void __user *arg, unsigned nr_args) 4449 __releases(ctx->uring_lock) 4450 __acquires(ctx->uring_lock) 4451 { 4452 int ret; 4453 4454 /* 4455 * We don't quiesce the refs for register anymore and so it can't be 4456 * dying as we're holding a file ref here. 4457 */ 4458 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4459 return -ENXIO; 4460 4461 if (ctx->submitter_task && ctx->submitter_task != current) 4462 return -EEXIST; 4463 4464 if (ctx->restricted) { 4465 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4466 if (!test_bit(opcode, ctx->restrictions.register_op)) 4467 return -EACCES; 4468 } 4469 4470 switch (opcode) { 4471 case IORING_REGISTER_BUFFERS: 4472 ret = -EFAULT; 4473 if (!arg) 4474 break; 4475 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4476 break; 4477 case IORING_UNREGISTER_BUFFERS: 4478 ret = -EINVAL; 4479 if (arg || nr_args) 4480 break; 4481 ret = io_sqe_buffers_unregister(ctx); 4482 break; 4483 case IORING_REGISTER_FILES: 4484 ret = -EFAULT; 4485 if (!arg) 4486 break; 4487 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4488 break; 4489 case IORING_UNREGISTER_FILES: 4490 ret = -EINVAL; 4491 if (arg || nr_args) 4492 break; 4493 ret = io_sqe_files_unregister(ctx); 4494 break; 4495 case IORING_REGISTER_FILES_UPDATE: 4496 ret = io_register_files_update(ctx, arg, nr_args); 4497 break; 4498 case IORING_REGISTER_EVENTFD: 4499 ret = -EINVAL; 4500 if (nr_args != 1) 4501 break; 4502 ret = io_eventfd_register(ctx, arg, 0); 4503 break; 4504 case IORING_REGISTER_EVENTFD_ASYNC: 4505 ret = -EINVAL; 4506 if (nr_args != 1) 4507 break; 4508 ret = io_eventfd_register(ctx, arg, 1); 4509 break; 4510 case IORING_UNREGISTER_EVENTFD: 4511 ret = -EINVAL; 4512 if (arg || nr_args) 4513 break; 4514 ret = io_eventfd_unregister(ctx); 4515 break; 4516 case IORING_REGISTER_PROBE: 4517 ret = -EINVAL; 4518 if (!arg || nr_args > 256) 4519 break; 4520 ret = io_probe(ctx, arg, nr_args); 4521 break; 4522 case IORING_REGISTER_PERSONALITY: 4523 ret = -EINVAL; 4524 if (arg || nr_args) 4525 break; 4526 ret = io_register_personality(ctx); 4527 break; 4528 case IORING_UNREGISTER_PERSONALITY: 4529 ret = -EINVAL; 4530 if (arg) 4531 break; 4532 ret = io_unregister_personality(ctx, nr_args); 4533 break; 4534 case IORING_REGISTER_ENABLE_RINGS: 4535 ret = -EINVAL; 4536 if (arg || nr_args) 4537 break; 4538 ret = io_register_enable_rings(ctx); 4539 break; 4540 case IORING_REGISTER_RESTRICTIONS: 4541 ret = io_register_restrictions(ctx, arg, nr_args); 4542 break; 4543 case IORING_REGISTER_FILES2: 4544 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4545 break; 4546 case IORING_REGISTER_FILES_UPDATE2: 4547 ret = io_register_rsrc_update(ctx, arg, nr_args, 4548 IORING_RSRC_FILE); 4549 break; 4550 case IORING_REGISTER_BUFFERS2: 4551 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4552 break; 4553 case IORING_REGISTER_BUFFERS_UPDATE: 4554 ret = io_register_rsrc_update(ctx, arg, nr_args, 4555 IORING_RSRC_BUFFER); 4556 break; 4557 case IORING_REGISTER_IOWQ_AFF: 4558 ret = -EINVAL; 4559 if (!arg || !nr_args) 4560 break; 4561 ret = io_register_iowq_aff(ctx, arg, nr_args); 4562 break; 4563 case IORING_UNREGISTER_IOWQ_AFF: 4564 ret = -EINVAL; 4565 if (arg || nr_args) 4566 break; 4567 ret = io_unregister_iowq_aff(ctx); 4568 break; 4569 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4570 ret = -EINVAL; 4571 if (!arg || nr_args != 2) 4572 break; 4573 ret = io_register_iowq_max_workers(ctx, arg); 4574 break; 4575 case IORING_REGISTER_RING_FDS: 4576 ret = io_ringfd_register(ctx, arg, nr_args); 4577 break; 4578 case IORING_UNREGISTER_RING_FDS: 4579 ret = io_ringfd_unregister(ctx, arg, nr_args); 4580 break; 4581 case IORING_REGISTER_PBUF_RING: 4582 ret = -EINVAL; 4583 if (!arg || nr_args != 1) 4584 break; 4585 ret = io_register_pbuf_ring(ctx, arg); 4586 break; 4587 case IORING_UNREGISTER_PBUF_RING: 4588 ret = -EINVAL; 4589 if (!arg || nr_args != 1) 4590 break; 4591 ret = io_unregister_pbuf_ring(ctx, arg); 4592 break; 4593 case IORING_REGISTER_SYNC_CANCEL: 4594 ret = -EINVAL; 4595 if (!arg || nr_args != 1) 4596 break; 4597 ret = io_sync_cancel(ctx, arg); 4598 break; 4599 case IORING_REGISTER_FILE_ALLOC_RANGE: 4600 ret = -EINVAL; 4601 if (!arg || nr_args) 4602 break; 4603 ret = io_register_file_alloc_range(ctx, arg); 4604 break; 4605 default: 4606 ret = -EINVAL; 4607 break; 4608 } 4609 4610 return ret; 4611 } 4612 4613 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4614 void __user *, arg, unsigned int, nr_args) 4615 { 4616 struct io_ring_ctx *ctx; 4617 long ret = -EBADF; 4618 struct file *file; 4619 bool use_registered_ring; 4620 4621 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4622 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4623 4624 if (opcode >= IORING_REGISTER_LAST) 4625 return -EINVAL; 4626 4627 if (use_registered_ring) { 4628 /* 4629 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4630 * need only dereference our task private array to find it. 4631 */ 4632 struct io_uring_task *tctx = current->io_uring; 4633 4634 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4635 return -EINVAL; 4636 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4637 file = tctx->registered_rings[fd]; 4638 if (unlikely(!file)) 4639 return -EBADF; 4640 } else { 4641 file = fget(fd); 4642 if (unlikely(!file)) 4643 return -EBADF; 4644 ret = -EOPNOTSUPP; 4645 if (!io_is_uring_fops(file)) 4646 goto out_fput; 4647 } 4648 4649 ctx = file->private_data; 4650 4651 mutex_lock(&ctx->uring_lock); 4652 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4653 mutex_unlock(&ctx->uring_lock); 4654 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4655 out_fput: 4656 if (!use_registered_ring) 4657 fput(file); 4658 return ret; 4659 } 4660 4661 static int __init io_uring_init(void) 4662 { 4663 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4664 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4665 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4666 } while (0) 4667 4668 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4669 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4670 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4671 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4672 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4673 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4674 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4675 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4676 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4677 BUILD_BUG_SQE_ELEM(8, __u64, off); 4678 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4679 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4680 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4681 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4682 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4683 BUILD_BUG_SQE_ELEM(24, __u32, len); 4684 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4685 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4686 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4687 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4688 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4689 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4690 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4691 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4692 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4693 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4694 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4695 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4696 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4697 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4698 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4699 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4700 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4701 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4702 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4703 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4704 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4705 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4706 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4707 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4708 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4709 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4710 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4711 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4712 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4713 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4714 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4715 4716 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4717 sizeof(struct io_uring_rsrc_update)); 4718 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4719 sizeof(struct io_uring_rsrc_update2)); 4720 4721 /* ->buf_index is u16 */ 4722 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4723 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4724 offsetof(struct io_uring_buf_ring, tail)); 4725 4726 /* should fit into one byte */ 4727 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4728 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4729 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4730 4731 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4732 4733 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4734 4735 /* top 8bits are for internal use */ 4736 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 4737 4738 io_uring_optable_init(); 4739 4740 /* 4741 * Allow user copy in the per-command field, which starts after the 4742 * file in io_kiocb and until the opcode field. The openat2 handling 4743 * requires copying in user memory into the io_kiocb object in that 4744 * range, and HARDENED_USERCOPY will complain if we haven't 4745 * correctly annotated this range. 4746 */ 4747 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4748 sizeof(struct io_kiocb), 0, 4749 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4750 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4751 offsetof(struct io_kiocb, cmd.data), 4752 sizeof_field(struct io_kiocb, cmd.data), NULL); 4753 io_buf_cachep = kmem_cache_create("io_buffer", sizeof(struct io_buffer), 0, 4754 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 4755 NULL); 4756 4757 #ifdef CONFIG_SYSCTL 4758 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4759 #endif 4760 4761 return 0; 4762 }; 4763 __initcall(io_uring_init); 4764