xref: /linux/io_uring/io_uring.c (revision fcb29877f7e18a1f27d7d6871f5f7bb6aaade575)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 #include "waitid.h"
96 #include "futex.h"
97 
98 #include "timeout.h"
99 #include "poll.h"
100 #include "rw.h"
101 #include "alloc_cache.h"
102 
103 #define IORING_MAX_ENTRIES	32768
104 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
105 
106 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
107 				 IORING_REGISTER_LAST + IORING_OP_LAST)
108 
109 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
110 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
111 
112 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
113 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
114 
115 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
116 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117 				REQ_F_ASYNC_DATA)
118 
119 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
120 				 IO_REQ_CLEAN_FLAGS)
121 
122 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
123 
124 #define IO_COMPL_BATCH			32
125 #define IO_REQ_ALLOC_BATCH		8
126 
127 enum {
128 	IO_CHECK_CQ_OVERFLOW_BIT,
129 	IO_CHECK_CQ_DROPPED_BIT,
130 };
131 
132 enum {
133 	IO_EVENTFD_OP_SIGNAL_BIT,
134 	IO_EVENTFD_OP_FREE_BIT,
135 };
136 
137 struct io_defer_entry {
138 	struct list_head	list;
139 	struct io_kiocb		*req;
140 	u32			seq;
141 };
142 
143 /* requests with any of those set should undergo io_disarm_next() */
144 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
145 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
146 
147 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
148 					 struct task_struct *task,
149 					 bool cancel_all);
150 
151 static void io_queue_sqe(struct io_kiocb *req);
152 
153 struct kmem_cache *req_cachep;
154 
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
157 
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
160 	{
161 		.procname	= "io_uring_disabled",
162 		.data		= &sysctl_io_uring_disabled,
163 		.maxlen		= sizeof(sysctl_io_uring_disabled),
164 		.mode		= 0644,
165 		.proc_handler	= proc_dointvec_minmax,
166 		.extra1		= SYSCTL_ZERO,
167 		.extra2		= SYSCTL_TWO,
168 	},
169 	{
170 		.procname	= "io_uring_group",
171 		.data		= &sysctl_io_uring_group,
172 		.maxlen		= sizeof(gid_t),
173 		.mode		= 0644,
174 		.proc_handler	= proc_dointvec,
175 	},
176 	{},
177 };
178 #endif
179 
180 struct sock *io_uring_get_socket(struct file *file)
181 {
182 #if defined(CONFIG_UNIX)
183 	if (io_is_uring_fops(file)) {
184 		struct io_ring_ctx *ctx = file->private_data;
185 
186 		return ctx->ring_sock->sk;
187 	}
188 #endif
189 	return NULL;
190 }
191 EXPORT_SYMBOL(io_uring_get_socket);
192 
193 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
194 {
195 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
196 	    ctx->submit_state.cqes_count)
197 		__io_submit_flush_completions(ctx);
198 }
199 
200 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
201 {
202 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
203 }
204 
205 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
206 {
207 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
208 }
209 
210 static bool io_match_linked(struct io_kiocb *head)
211 {
212 	struct io_kiocb *req;
213 
214 	io_for_each_link(req, head) {
215 		if (req->flags & REQ_F_INFLIGHT)
216 			return true;
217 	}
218 	return false;
219 }
220 
221 /*
222  * As io_match_task() but protected against racing with linked timeouts.
223  * User must not hold timeout_lock.
224  */
225 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
226 			bool cancel_all)
227 {
228 	bool matched;
229 
230 	if (task && head->task != task)
231 		return false;
232 	if (cancel_all)
233 		return true;
234 
235 	if (head->flags & REQ_F_LINK_TIMEOUT) {
236 		struct io_ring_ctx *ctx = head->ctx;
237 
238 		/* protect against races with linked timeouts */
239 		spin_lock_irq(&ctx->timeout_lock);
240 		matched = io_match_linked(head);
241 		spin_unlock_irq(&ctx->timeout_lock);
242 	} else {
243 		matched = io_match_linked(head);
244 	}
245 	return matched;
246 }
247 
248 static inline void req_fail_link_node(struct io_kiocb *req, int res)
249 {
250 	req_set_fail(req);
251 	io_req_set_res(req, res, 0);
252 }
253 
254 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
255 {
256 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
257 }
258 
259 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
260 {
261 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
262 
263 	complete(&ctx->ref_comp);
264 }
265 
266 static __cold void io_fallback_req_func(struct work_struct *work)
267 {
268 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
269 						fallback_work.work);
270 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
271 	struct io_kiocb *req, *tmp;
272 	struct io_tw_state ts = { .locked = true, };
273 
274 	percpu_ref_get(&ctx->refs);
275 	mutex_lock(&ctx->uring_lock);
276 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
277 		req->io_task_work.func(req, &ts);
278 	if (WARN_ON_ONCE(!ts.locked))
279 		return;
280 	io_submit_flush_completions(ctx);
281 	mutex_unlock(&ctx->uring_lock);
282 	percpu_ref_put(&ctx->refs);
283 }
284 
285 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
286 {
287 	unsigned hash_buckets = 1U << bits;
288 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
289 
290 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
291 	if (!table->hbs)
292 		return -ENOMEM;
293 
294 	table->hash_bits = bits;
295 	init_hash_table(table, hash_buckets);
296 	return 0;
297 }
298 
299 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
300 {
301 	struct io_ring_ctx *ctx;
302 	int hash_bits;
303 
304 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
305 	if (!ctx)
306 		return NULL;
307 
308 	xa_init(&ctx->io_bl_xa);
309 
310 	/*
311 	 * Use 5 bits less than the max cq entries, that should give us around
312 	 * 32 entries per hash list if totally full and uniformly spread, but
313 	 * don't keep too many buckets to not overconsume memory.
314 	 */
315 	hash_bits = ilog2(p->cq_entries) - 5;
316 	hash_bits = clamp(hash_bits, 1, 8);
317 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
318 		goto err;
319 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
320 		goto err;
321 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
322 			    0, GFP_KERNEL))
323 		goto err;
324 
325 	ctx->flags = p->flags;
326 	init_waitqueue_head(&ctx->sqo_sq_wait);
327 	INIT_LIST_HEAD(&ctx->sqd_list);
328 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
329 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
330 	INIT_HLIST_HEAD(&ctx->io_buf_list);
331 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
332 			    sizeof(struct io_rsrc_node));
333 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
334 			    sizeof(struct async_poll));
335 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
336 			    sizeof(struct io_async_msghdr));
337 	io_futex_cache_init(ctx);
338 	init_completion(&ctx->ref_comp);
339 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
340 	mutex_init(&ctx->uring_lock);
341 	init_waitqueue_head(&ctx->cq_wait);
342 	init_waitqueue_head(&ctx->poll_wq);
343 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
344 	spin_lock_init(&ctx->completion_lock);
345 	spin_lock_init(&ctx->timeout_lock);
346 	INIT_WQ_LIST(&ctx->iopoll_list);
347 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
348 	INIT_LIST_HEAD(&ctx->defer_list);
349 	INIT_LIST_HEAD(&ctx->timeout_list);
350 	INIT_LIST_HEAD(&ctx->ltimeout_list);
351 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
352 	init_llist_head(&ctx->work_llist);
353 	INIT_LIST_HEAD(&ctx->tctx_list);
354 	ctx->submit_state.free_list.next = NULL;
355 	INIT_WQ_LIST(&ctx->locked_free_list);
356 	INIT_HLIST_HEAD(&ctx->waitid_list);
357 #ifdef CONFIG_FUTEX
358 	INIT_HLIST_HEAD(&ctx->futex_list);
359 #endif
360 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
361 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
362 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
363 	return ctx;
364 err:
365 	kfree(ctx->cancel_table.hbs);
366 	kfree(ctx->cancel_table_locked.hbs);
367 	kfree(ctx->io_bl);
368 	xa_destroy(&ctx->io_bl_xa);
369 	kfree(ctx);
370 	return NULL;
371 }
372 
373 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
374 {
375 	struct io_rings *r = ctx->rings;
376 
377 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
378 	ctx->cq_extra--;
379 }
380 
381 static bool req_need_defer(struct io_kiocb *req, u32 seq)
382 {
383 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
384 		struct io_ring_ctx *ctx = req->ctx;
385 
386 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
387 	}
388 
389 	return false;
390 }
391 
392 static void io_clean_op(struct io_kiocb *req)
393 {
394 	if (req->flags & REQ_F_BUFFER_SELECTED) {
395 		spin_lock(&req->ctx->completion_lock);
396 		io_put_kbuf_comp(req);
397 		spin_unlock(&req->ctx->completion_lock);
398 	}
399 
400 	if (req->flags & REQ_F_NEED_CLEANUP) {
401 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
402 
403 		if (def->cleanup)
404 			def->cleanup(req);
405 	}
406 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
407 		kfree(req->apoll->double_poll);
408 		kfree(req->apoll);
409 		req->apoll = NULL;
410 	}
411 	if (req->flags & REQ_F_INFLIGHT) {
412 		struct io_uring_task *tctx = req->task->io_uring;
413 
414 		atomic_dec(&tctx->inflight_tracked);
415 	}
416 	if (req->flags & REQ_F_CREDS)
417 		put_cred(req->creds);
418 	if (req->flags & REQ_F_ASYNC_DATA) {
419 		kfree(req->async_data);
420 		req->async_data = NULL;
421 	}
422 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
423 }
424 
425 static inline void io_req_track_inflight(struct io_kiocb *req)
426 {
427 	if (!(req->flags & REQ_F_INFLIGHT)) {
428 		req->flags |= REQ_F_INFLIGHT;
429 		atomic_inc(&req->task->io_uring->inflight_tracked);
430 	}
431 }
432 
433 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
434 {
435 	if (WARN_ON_ONCE(!req->link))
436 		return NULL;
437 
438 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
439 	req->flags |= REQ_F_LINK_TIMEOUT;
440 
441 	/* linked timeouts should have two refs once prep'ed */
442 	io_req_set_refcount(req);
443 	__io_req_set_refcount(req->link, 2);
444 	return req->link;
445 }
446 
447 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
448 {
449 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
450 		return NULL;
451 	return __io_prep_linked_timeout(req);
452 }
453 
454 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
455 {
456 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
457 }
458 
459 static inline void io_arm_ltimeout(struct io_kiocb *req)
460 {
461 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
462 		__io_arm_ltimeout(req);
463 }
464 
465 static void io_prep_async_work(struct io_kiocb *req)
466 {
467 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
468 	struct io_ring_ctx *ctx = req->ctx;
469 
470 	if (!(req->flags & REQ_F_CREDS)) {
471 		req->flags |= REQ_F_CREDS;
472 		req->creds = get_current_cred();
473 	}
474 
475 	req->work.list.next = NULL;
476 	req->work.flags = 0;
477 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
478 	if (req->flags & REQ_F_FORCE_ASYNC)
479 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
480 
481 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
482 		req->flags |= io_file_get_flags(req->file);
483 
484 	if (req->file && (req->flags & REQ_F_ISREG)) {
485 		bool should_hash = def->hash_reg_file;
486 
487 		/* don't serialize this request if the fs doesn't need it */
488 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
489 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
490 			should_hash = false;
491 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
492 			io_wq_hash_work(&req->work, file_inode(req->file));
493 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
494 		if (def->unbound_nonreg_file)
495 			req->work.flags |= IO_WQ_WORK_UNBOUND;
496 	}
497 }
498 
499 static void io_prep_async_link(struct io_kiocb *req)
500 {
501 	struct io_kiocb *cur;
502 
503 	if (req->flags & REQ_F_LINK_TIMEOUT) {
504 		struct io_ring_ctx *ctx = req->ctx;
505 
506 		spin_lock_irq(&ctx->timeout_lock);
507 		io_for_each_link(cur, req)
508 			io_prep_async_work(cur);
509 		spin_unlock_irq(&ctx->timeout_lock);
510 	} else {
511 		io_for_each_link(cur, req)
512 			io_prep_async_work(cur);
513 	}
514 }
515 
516 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
517 {
518 	struct io_kiocb *link = io_prep_linked_timeout(req);
519 	struct io_uring_task *tctx = req->task->io_uring;
520 
521 	BUG_ON(!tctx);
522 	BUG_ON(!tctx->io_wq);
523 
524 	/* init ->work of the whole link before punting */
525 	io_prep_async_link(req);
526 
527 	/*
528 	 * Not expected to happen, but if we do have a bug where this _can_
529 	 * happen, catch it here and ensure the request is marked as
530 	 * canceled. That will make io-wq go through the usual work cancel
531 	 * procedure rather than attempt to run this request (or create a new
532 	 * worker for it).
533 	 */
534 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
535 		req->work.flags |= IO_WQ_WORK_CANCEL;
536 
537 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
538 	io_wq_enqueue(tctx->io_wq, &req->work);
539 	if (link)
540 		io_queue_linked_timeout(link);
541 }
542 
543 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
544 {
545 	while (!list_empty(&ctx->defer_list)) {
546 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
547 						struct io_defer_entry, list);
548 
549 		if (req_need_defer(de->req, de->seq))
550 			break;
551 		list_del_init(&de->list);
552 		io_req_task_queue(de->req);
553 		kfree(de);
554 	}
555 }
556 
557 
558 static void io_eventfd_ops(struct rcu_head *rcu)
559 {
560 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
561 	int ops = atomic_xchg(&ev_fd->ops, 0);
562 
563 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
564 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
565 
566 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
567 	 * ordering in a race but if references are 0 we know we have to free
568 	 * it regardless.
569 	 */
570 	if (atomic_dec_and_test(&ev_fd->refs)) {
571 		eventfd_ctx_put(ev_fd->cq_ev_fd);
572 		kfree(ev_fd);
573 	}
574 }
575 
576 static void io_eventfd_signal(struct io_ring_ctx *ctx)
577 {
578 	struct io_ev_fd *ev_fd = NULL;
579 
580 	rcu_read_lock();
581 	/*
582 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
583 	 * and eventfd_signal
584 	 */
585 	ev_fd = rcu_dereference(ctx->io_ev_fd);
586 
587 	/*
588 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
589 	 * completed between the NULL check of ctx->io_ev_fd at the start of
590 	 * the function and rcu_read_lock.
591 	 */
592 	if (unlikely(!ev_fd))
593 		goto out;
594 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
595 		goto out;
596 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
597 		goto out;
598 
599 	if (likely(eventfd_signal_allowed())) {
600 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
601 	} else {
602 		atomic_inc(&ev_fd->refs);
603 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
604 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
605 		else
606 			atomic_dec(&ev_fd->refs);
607 	}
608 
609 out:
610 	rcu_read_unlock();
611 }
612 
613 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
614 {
615 	bool skip;
616 
617 	spin_lock(&ctx->completion_lock);
618 
619 	/*
620 	 * Eventfd should only get triggered when at least one event has been
621 	 * posted. Some applications rely on the eventfd notification count
622 	 * only changing IFF a new CQE has been added to the CQ ring. There's
623 	 * no depedency on 1:1 relationship between how many times this
624 	 * function is called (and hence the eventfd count) and number of CQEs
625 	 * posted to the CQ ring.
626 	 */
627 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
628 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
629 	spin_unlock(&ctx->completion_lock);
630 	if (skip)
631 		return;
632 
633 	io_eventfd_signal(ctx);
634 }
635 
636 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
637 {
638 	if (ctx->poll_activated)
639 		io_poll_wq_wake(ctx);
640 	if (ctx->off_timeout_used)
641 		io_flush_timeouts(ctx);
642 	if (ctx->drain_active) {
643 		spin_lock(&ctx->completion_lock);
644 		io_queue_deferred(ctx);
645 		spin_unlock(&ctx->completion_lock);
646 	}
647 	if (ctx->has_evfd)
648 		io_eventfd_flush_signal(ctx);
649 }
650 
651 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
652 {
653 	if (!ctx->lockless_cq)
654 		spin_lock(&ctx->completion_lock);
655 }
656 
657 static inline void io_cq_lock(struct io_ring_ctx *ctx)
658 	__acquires(ctx->completion_lock)
659 {
660 	spin_lock(&ctx->completion_lock);
661 }
662 
663 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
664 {
665 	io_commit_cqring(ctx);
666 	if (!ctx->task_complete) {
667 		if (!ctx->lockless_cq)
668 			spin_unlock(&ctx->completion_lock);
669 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
670 		if (!ctx->syscall_iopoll)
671 			io_cqring_wake(ctx);
672 	}
673 	io_commit_cqring_flush(ctx);
674 }
675 
676 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
677 	__releases(ctx->completion_lock)
678 {
679 	io_commit_cqring(ctx);
680 	spin_unlock(&ctx->completion_lock);
681 	io_cqring_wake(ctx);
682 	io_commit_cqring_flush(ctx);
683 }
684 
685 /* Returns true if there are no backlogged entries after the flush */
686 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
687 {
688 	struct io_overflow_cqe *ocqe;
689 	LIST_HEAD(list);
690 
691 	spin_lock(&ctx->completion_lock);
692 	list_splice_init(&ctx->cq_overflow_list, &list);
693 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
694 	spin_unlock(&ctx->completion_lock);
695 
696 	while (!list_empty(&list)) {
697 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
698 		list_del(&ocqe->list);
699 		kfree(ocqe);
700 	}
701 }
702 
703 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
704 {
705 	size_t cqe_size = sizeof(struct io_uring_cqe);
706 
707 	if (__io_cqring_events(ctx) == ctx->cq_entries)
708 		return;
709 
710 	if (ctx->flags & IORING_SETUP_CQE32)
711 		cqe_size <<= 1;
712 
713 	io_cq_lock(ctx);
714 	while (!list_empty(&ctx->cq_overflow_list)) {
715 		struct io_uring_cqe *cqe;
716 		struct io_overflow_cqe *ocqe;
717 
718 		if (!io_get_cqe_overflow(ctx, &cqe, true))
719 			break;
720 		ocqe = list_first_entry(&ctx->cq_overflow_list,
721 					struct io_overflow_cqe, list);
722 		memcpy(cqe, &ocqe->cqe, cqe_size);
723 		list_del(&ocqe->list);
724 		kfree(ocqe);
725 	}
726 
727 	if (list_empty(&ctx->cq_overflow_list)) {
728 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
729 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
730 	}
731 	io_cq_unlock_post(ctx);
732 }
733 
734 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
735 {
736 	/* iopoll syncs against uring_lock, not completion_lock */
737 	if (ctx->flags & IORING_SETUP_IOPOLL)
738 		mutex_lock(&ctx->uring_lock);
739 	__io_cqring_overflow_flush(ctx);
740 	if (ctx->flags & IORING_SETUP_IOPOLL)
741 		mutex_unlock(&ctx->uring_lock);
742 }
743 
744 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
745 {
746 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
747 		io_cqring_do_overflow_flush(ctx);
748 }
749 
750 /* can be called by any task */
751 static void io_put_task_remote(struct task_struct *task)
752 {
753 	struct io_uring_task *tctx = task->io_uring;
754 
755 	percpu_counter_sub(&tctx->inflight, 1);
756 	if (unlikely(atomic_read(&tctx->in_cancel)))
757 		wake_up(&tctx->wait);
758 	put_task_struct(task);
759 }
760 
761 /* used by a task to put its own references */
762 static void io_put_task_local(struct task_struct *task)
763 {
764 	task->io_uring->cached_refs++;
765 }
766 
767 /* must to be called somewhat shortly after putting a request */
768 static inline void io_put_task(struct task_struct *task)
769 {
770 	if (likely(task == current))
771 		io_put_task_local(task);
772 	else
773 		io_put_task_remote(task);
774 }
775 
776 void io_task_refs_refill(struct io_uring_task *tctx)
777 {
778 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
779 
780 	percpu_counter_add(&tctx->inflight, refill);
781 	refcount_add(refill, &current->usage);
782 	tctx->cached_refs += refill;
783 }
784 
785 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
786 {
787 	struct io_uring_task *tctx = task->io_uring;
788 	unsigned int refs = tctx->cached_refs;
789 
790 	if (refs) {
791 		tctx->cached_refs = 0;
792 		percpu_counter_sub(&tctx->inflight, refs);
793 		put_task_struct_many(task, refs);
794 	}
795 }
796 
797 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
798 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
799 {
800 	struct io_overflow_cqe *ocqe;
801 	size_t ocq_size = sizeof(struct io_overflow_cqe);
802 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
803 
804 	lockdep_assert_held(&ctx->completion_lock);
805 
806 	if (is_cqe32)
807 		ocq_size += sizeof(struct io_uring_cqe);
808 
809 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
810 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
811 	if (!ocqe) {
812 		/*
813 		 * If we're in ring overflow flush mode, or in task cancel mode,
814 		 * or cannot allocate an overflow entry, then we need to drop it
815 		 * on the floor.
816 		 */
817 		io_account_cq_overflow(ctx);
818 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
819 		return false;
820 	}
821 	if (list_empty(&ctx->cq_overflow_list)) {
822 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
823 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
824 
825 	}
826 	ocqe->cqe.user_data = user_data;
827 	ocqe->cqe.res = res;
828 	ocqe->cqe.flags = cflags;
829 	if (is_cqe32) {
830 		ocqe->cqe.big_cqe[0] = extra1;
831 		ocqe->cqe.big_cqe[1] = extra2;
832 	}
833 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
834 	return true;
835 }
836 
837 void io_req_cqe_overflow(struct io_kiocb *req)
838 {
839 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
840 				req->cqe.res, req->cqe.flags,
841 				req->big_cqe.extra1, req->big_cqe.extra2);
842 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
843 }
844 
845 /*
846  * writes to the cq entry need to come after reading head; the
847  * control dependency is enough as we're using WRITE_ONCE to
848  * fill the cq entry
849  */
850 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
851 {
852 	struct io_rings *rings = ctx->rings;
853 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
854 	unsigned int free, queued, len;
855 
856 	/*
857 	 * Posting into the CQ when there are pending overflowed CQEs may break
858 	 * ordering guarantees, which will affect links, F_MORE users and more.
859 	 * Force overflow the completion.
860 	 */
861 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
862 		return false;
863 
864 	/* userspace may cheat modifying the tail, be safe and do min */
865 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
866 	free = ctx->cq_entries - queued;
867 	/* we need a contiguous range, limit based on the current array offset */
868 	len = min(free, ctx->cq_entries - off);
869 	if (!len)
870 		return false;
871 
872 	if (ctx->flags & IORING_SETUP_CQE32) {
873 		off <<= 1;
874 		len <<= 1;
875 	}
876 
877 	ctx->cqe_cached = &rings->cqes[off];
878 	ctx->cqe_sentinel = ctx->cqe_cached + len;
879 	return true;
880 }
881 
882 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
883 			      u32 cflags)
884 {
885 	struct io_uring_cqe *cqe;
886 
887 	ctx->cq_extra++;
888 
889 	/*
890 	 * If we can't get a cq entry, userspace overflowed the
891 	 * submission (by quite a lot). Increment the overflow count in
892 	 * the ring.
893 	 */
894 	if (likely(io_get_cqe(ctx, &cqe))) {
895 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
896 
897 		WRITE_ONCE(cqe->user_data, user_data);
898 		WRITE_ONCE(cqe->res, res);
899 		WRITE_ONCE(cqe->flags, cflags);
900 
901 		if (ctx->flags & IORING_SETUP_CQE32) {
902 			WRITE_ONCE(cqe->big_cqe[0], 0);
903 			WRITE_ONCE(cqe->big_cqe[1], 0);
904 		}
905 		return true;
906 	}
907 	return false;
908 }
909 
910 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
911 	__must_hold(&ctx->uring_lock)
912 {
913 	struct io_submit_state *state = &ctx->submit_state;
914 	unsigned int i;
915 
916 	lockdep_assert_held(&ctx->uring_lock);
917 	for (i = 0; i < state->cqes_count; i++) {
918 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
919 
920 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
921 			if (ctx->lockless_cq) {
922 				spin_lock(&ctx->completion_lock);
923 				io_cqring_event_overflow(ctx, cqe->user_data,
924 							cqe->res, cqe->flags, 0, 0);
925 				spin_unlock(&ctx->completion_lock);
926 			} else {
927 				io_cqring_event_overflow(ctx, cqe->user_data,
928 							cqe->res, cqe->flags, 0, 0);
929 			}
930 		}
931 	}
932 	state->cqes_count = 0;
933 }
934 
935 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
936 			      bool allow_overflow)
937 {
938 	bool filled;
939 
940 	io_cq_lock(ctx);
941 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
942 	if (!filled && allow_overflow)
943 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
944 
945 	io_cq_unlock_post(ctx);
946 	return filled;
947 }
948 
949 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
950 {
951 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
952 }
953 
954 /*
955  * A helper for multishot requests posting additional CQEs.
956  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
957  */
958 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
959 {
960 	struct io_ring_ctx *ctx = req->ctx;
961 	u64 user_data = req->cqe.user_data;
962 	struct io_uring_cqe *cqe;
963 
964 	if (!defer)
965 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
966 
967 	lockdep_assert_held(&ctx->uring_lock);
968 
969 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
970 		__io_cq_lock(ctx);
971 		__io_flush_post_cqes(ctx);
972 		/* no need to flush - flush is deferred */
973 		__io_cq_unlock_post(ctx);
974 	}
975 
976 	/* For defered completions this is not as strict as it is otherwise,
977 	 * however it's main job is to prevent unbounded posted completions,
978 	 * and in that it works just as well.
979 	 */
980 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
981 		return false;
982 
983 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
984 	cqe->user_data = user_data;
985 	cqe->res = res;
986 	cqe->flags = cflags;
987 	return true;
988 }
989 
990 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
991 {
992 	struct io_ring_ctx *ctx = req->ctx;
993 	struct io_rsrc_node *rsrc_node = NULL;
994 
995 	io_cq_lock(ctx);
996 	if (!(req->flags & REQ_F_CQE_SKIP)) {
997 		if (!io_fill_cqe_req(ctx, req))
998 			io_req_cqe_overflow(req);
999 	}
1000 
1001 	/*
1002 	 * If we're the last reference to this request, add to our locked
1003 	 * free_list cache.
1004 	 */
1005 	if (req_ref_put_and_test(req)) {
1006 		if (req->flags & IO_REQ_LINK_FLAGS) {
1007 			if (req->flags & IO_DISARM_MASK)
1008 				io_disarm_next(req);
1009 			if (req->link) {
1010 				io_req_task_queue(req->link);
1011 				req->link = NULL;
1012 			}
1013 		}
1014 		io_put_kbuf_comp(req);
1015 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1016 			io_clean_op(req);
1017 		io_put_file(req);
1018 
1019 		rsrc_node = req->rsrc_node;
1020 		/*
1021 		 * Selected buffer deallocation in io_clean_op() assumes that
1022 		 * we don't hold ->completion_lock. Clean them here to avoid
1023 		 * deadlocks.
1024 		 */
1025 		io_put_task_remote(req->task);
1026 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1027 		ctx->locked_free_nr++;
1028 	}
1029 	io_cq_unlock_post(ctx);
1030 
1031 	if (rsrc_node) {
1032 		io_ring_submit_lock(ctx, issue_flags);
1033 		io_put_rsrc_node(ctx, rsrc_node);
1034 		io_ring_submit_unlock(ctx, issue_flags);
1035 	}
1036 }
1037 
1038 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1039 {
1040 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1041 		req->io_task_work.func = io_req_task_complete;
1042 		io_req_task_work_add(req);
1043 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1044 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1045 		__io_req_complete_post(req, issue_flags);
1046 	} else {
1047 		struct io_ring_ctx *ctx = req->ctx;
1048 
1049 		mutex_lock(&ctx->uring_lock);
1050 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1051 		mutex_unlock(&ctx->uring_lock);
1052 	}
1053 }
1054 
1055 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1056 	__must_hold(&ctx->uring_lock)
1057 {
1058 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1059 
1060 	lockdep_assert_held(&req->ctx->uring_lock);
1061 
1062 	req_set_fail(req);
1063 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1064 	if (def->fail)
1065 		def->fail(req);
1066 	io_req_complete_defer(req);
1067 }
1068 
1069 /*
1070  * Don't initialise the fields below on every allocation, but do that in
1071  * advance and keep them valid across allocations.
1072  */
1073 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1074 {
1075 	req->ctx = ctx;
1076 	req->link = NULL;
1077 	req->async_data = NULL;
1078 	/* not necessary, but safer to zero */
1079 	memset(&req->cqe, 0, sizeof(req->cqe));
1080 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1081 }
1082 
1083 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1084 					struct io_submit_state *state)
1085 {
1086 	spin_lock(&ctx->completion_lock);
1087 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1088 	ctx->locked_free_nr = 0;
1089 	spin_unlock(&ctx->completion_lock);
1090 }
1091 
1092 /*
1093  * A request might get retired back into the request caches even before opcode
1094  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1095  * Because of that, io_alloc_req() should be called only under ->uring_lock
1096  * and with extra caution to not get a request that is still worked on.
1097  */
1098 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1099 	__must_hold(&ctx->uring_lock)
1100 {
1101 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1102 	void *reqs[IO_REQ_ALLOC_BATCH];
1103 	int ret, i;
1104 
1105 	/*
1106 	 * If we have more than a batch's worth of requests in our IRQ side
1107 	 * locked cache, grab the lock and move them over to our submission
1108 	 * side cache.
1109 	 */
1110 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1111 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1112 		if (!io_req_cache_empty(ctx))
1113 			return true;
1114 	}
1115 
1116 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1117 
1118 	/*
1119 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1120 	 * retry single alloc to be on the safe side.
1121 	 */
1122 	if (unlikely(ret <= 0)) {
1123 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1124 		if (!reqs[0])
1125 			return false;
1126 		ret = 1;
1127 	}
1128 
1129 	percpu_ref_get_many(&ctx->refs, ret);
1130 	for (i = 0; i < ret; i++) {
1131 		struct io_kiocb *req = reqs[i];
1132 
1133 		io_preinit_req(req, ctx);
1134 		io_req_add_to_cache(req, ctx);
1135 	}
1136 	return true;
1137 }
1138 
1139 __cold void io_free_req(struct io_kiocb *req)
1140 {
1141 	/* refs were already put, restore them for io_req_task_complete() */
1142 	req->flags &= ~REQ_F_REFCOUNT;
1143 	/* we only want to free it, don't post CQEs */
1144 	req->flags |= REQ_F_CQE_SKIP;
1145 	req->io_task_work.func = io_req_task_complete;
1146 	io_req_task_work_add(req);
1147 }
1148 
1149 static void __io_req_find_next_prep(struct io_kiocb *req)
1150 {
1151 	struct io_ring_ctx *ctx = req->ctx;
1152 
1153 	spin_lock(&ctx->completion_lock);
1154 	io_disarm_next(req);
1155 	spin_unlock(&ctx->completion_lock);
1156 }
1157 
1158 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1159 {
1160 	struct io_kiocb *nxt;
1161 
1162 	/*
1163 	 * If LINK is set, we have dependent requests in this chain. If we
1164 	 * didn't fail this request, queue the first one up, moving any other
1165 	 * dependencies to the next request. In case of failure, fail the rest
1166 	 * of the chain.
1167 	 */
1168 	if (unlikely(req->flags & IO_DISARM_MASK))
1169 		__io_req_find_next_prep(req);
1170 	nxt = req->link;
1171 	req->link = NULL;
1172 	return nxt;
1173 }
1174 
1175 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1176 {
1177 	if (!ctx)
1178 		return;
1179 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1180 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1181 	if (ts->locked) {
1182 		io_submit_flush_completions(ctx);
1183 		mutex_unlock(&ctx->uring_lock);
1184 		ts->locked = false;
1185 	}
1186 	percpu_ref_put(&ctx->refs);
1187 }
1188 
1189 static unsigned int handle_tw_list(struct llist_node *node,
1190 				   struct io_ring_ctx **ctx,
1191 				   struct io_tw_state *ts,
1192 				   struct llist_node *last)
1193 {
1194 	unsigned int count = 0;
1195 
1196 	while (node && node != last) {
1197 		struct llist_node *next = node->next;
1198 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1199 						    io_task_work.node);
1200 
1201 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1202 
1203 		if (req->ctx != *ctx) {
1204 			ctx_flush_and_put(*ctx, ts);
1205 			*ctx = req->ctx;
1206 			/* if not contended, grab and improve batching */
1207 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1208 			percpu_ref_get(&(*ctx)->refs);
1209 		}
1210 		INDIRECT_CALL_2(req->io_task_work.func,
1211 				io_poll_task_func, io_req_rw_complete,
1212 				req, ts);
1213 		node = next;
1214 		count++;
1215 		if (unlikely(need_resched())) {
1216 			ctx_flush_and_put(*ctx, ts);
1217 			*ctx = NULL;
1218 			cond_resched();
1219 		}
1220 	}
1221 
1222 	return count;
1223 }
1224 
1225 /**
1226  * io_llist_xchg - swap all entries in a lock-less list
1227  * @head:	the head of lock-less list to delete all entries
1228  * @new:	new entry as the head of the list
1229  *
1230  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1231  * The order of entries returned is from the newest to the oldest added one.
1232  */
1233 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1234 					       struct llist_node *new)
1235 {
1236 	return xchg(&head->first, new);
1237 }
1238 
1239 /**
1240  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1241  * @head:	the head of lock-less list to delete all entries
1242  * @old:	expected old value of the first entry of the list
1243  * @new:	new entry as the head of the list
1244  *
1245  * perform a cmpxchg on the first entry of the list.
1246  */
1247 
1248 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1249 						  struct llist_node *old,
1250 						  struct llist_node *new)
1251 {
1252 	return cmpxchg(&head->first, old, new);
1253 }
1254 
1255 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1256 {
1257 	struct llist_node *node = llist_del_all(&tctx->task_list);
1258 	struct io_ring_ctx *last_ctx = NULL;
1259 	struct io_kiocb *req;
1260 
1261 	while (node) {
1262 		req = container_of(node, struct io_kiocb, io_task_work.node);
1263 		node = node->next;
1264 		if (sync && last_ctx != req->ctx) {
1265 			if (last_ctx) {
1266 				flush_delayed_work(&last_ctx->fallback_work);
1267 				percpu_ref_put(&last_ctx->refs);
1268 			}
1269 			last_ctx = req->ctx;
1270 			percpu_ref_get(&last_ctx->refs);
1271 		}
1272 		if (llist_add(&req->io_task_work.node,
1273 			      &req->ctx->fallback_llist))
1274 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1275 	}
1276 
1277 	if (last_ctx) {
1278 		flush_delayed_work(&last_ctx->fallback_work);
1279 		percpu_ref_put(&last_ctx->refs);
1280 	}
1281 }
1282 
1283 void tctx_task_work(struct callback_head *cb)
1284 {
1285 	struct io_tw_state ts = {};
1286 	struct io_ring_ctx *ctx = NULL;
1287 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1288 						  task_work);
1289 	struct llist_node fake = {};
1290 	struct llist_node *node;
1291 	unsigned int loops = 0;
1292 	unsigned int count = 0;
1293 
1294 	if (unlikely(current->flags & PF_EXITING)) {
1295 		io_fallback_tw(tctx, true);
1296 		return;
1297 	}
1298 
1299 	do {
1300 		loops++;
1301 		node = io_llist_xchg(&tctx->task_list, &fake);
1302 		count += handle_tw_list(node, &ctx, &ts, &fake);
1303 
1304 		/* skip expensive cmpxchg if there are items in the list */
1305 		if (READ_ONCE(tctx->task_list.first) != &fake)
1306 			continue;
1307 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1308 			io_submit_flush_completions(ctx);
1309 			if (READ_ONCE(tctx->task_list.first) != &fake)
1310 				continue;
1311 		}
1312 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1313 	} while (node != &fake);
1314 
1315 	ctx_flush_and_put(ctx, &ts);
1316 
1317 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1318 	if (unlikely(atomic_read(&tctx->in_cancel)))
1319 		io_uring_drop_tctx_refs(current);
1320 
1321 	trace_io_uring_task_work_run(tctx, count, loops);
1322 }
1323 
1324 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1325 {
1326 	struct io_ring_ctx *ctx = req->ctx;
1327 	unsigned nr_wait, nr_tw, nr_tw_prev;
1328 	struct llist_node *first;
1329 
1330 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1331 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1332 
1333 	first = READ_ONCE(ctx->work_llist.first);
1334 	do {
1335 		nr_tw_prev = 0;
1336 		if (first) {
1337 			struct io_kiocb *first_req = container_of(first,
1338 							struct io_kiocb,
1339 							io_task_work.node);
1340 			/*
1341 			 * Might be executed at any moment, rely on
1342 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1343 			 */
1344 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1345 		}
1346 		nr_tw = nr_tw_prev + 1;
1347 		/* Large enough to fail the nr_wait comparison below */
1348 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1349 			nr_tw = -1U;
1350 
1351 		req->nr_tw = nr_tw;
1352 		req->io_task_work.node.next = first;
1353 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1354 			      &req->io_task_work.node));
1355 
1356 	if (!first) {
1357 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1358 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1359 		if (ctx->has_evfd)
1360 			io_eventfd_signal(ctx);
1361 	}
1362 
1363 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1364 	/* no one is waiting */
1365 	if (!nr_wait)
1366 		return;
1367 	/* either not enough or the previous add has already woken it up */
1368 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1369 		return;
1370 	/* pairs with set_current_state() in io_cqring_wait() */
1371 	smp_mb__after_atomic();
1372 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1373 }
1374 
1375 static void io_req_normal_work_add(struct io_kiocb *req)
1376 {
1377 	struct io_uring_task *tctx = req->task->io_uring;
1378 	struct io_ring_ctx *ctx = req->ctx;
1379 
1380 	/* task_work already pending, we're done */
1381 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1382 		return;
1383 
1384 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1385 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1386 
1387 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1388 		return;
1389 
1390 	io_fallback_tw(tctx, false);
1391 }
1392 
1393 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1394 {
1395 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1396 		rcu_read_lock();
1397 		io_req_local_work_add(req, flags);
1398 		rcu_read_unlock();
1399 	} else {
1400 		io_req_normal_work_add(req);
1401 	}
1402 }
1403 
1404 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1405 {
1406 	struct llist_node *node;
1407 
1408 	node = llist_del_all(&ctx->work_llist);
1409 	while (node) {
1410 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1411 						    io_task_work.node);
1412 
1413 		node = node->next;
1414 		io_req_normal_work_add(req);
1415 	}
1416 }
1417 
1418 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1419 {
1420 	struct llist_node *node;
1421 	unsigned int loops = 0;
1422 	int ret = 0;
1423 
1424 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1425 		return -EEXIST;
1426 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1427 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1428 again:
1429 	/*
1430 	 * llists are in reverse order, flip it back the right way before
1431 	 * running the pending items.
1432 	 */
1433 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1434 	while (node) {
1435 		struct llist_node *next = node->next;
1436 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1437 						    io_task_work.node);
1438 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1439 		INDIRECT_CALL_2(req->io_task_work.func,
1440 				io_poll_task_func, io_req_rw_complete,
1441 				req, ts);
1442 		ret++;
1443 		node = next;
1444 	}
1445 	loops++;
1446 
1447 	if (!llist_empty(&ctx->work_llist))
1448 		goto again;
1449 	if (ts->locked) {
1450 		io_submit_flush_completions(ctx);
1451 		if (!llist_empty(&ctx->work_llist))
1452 			goto again;
1453 	}
1454 	trace_io_uring_local_work_run(ctx, ret, loops);
1455 	return ret;
1456 }
1457 
1458 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1459 {
1460 	struct io_tw_state ts = { .locked = true, };
1461 	int ret;
1462 
1463 	if (llist_empty(&ctx->work_llist))
1464 		return 0;
1465 
1466 	ret = __io_run_local_work(ctx, &ts);
1467 	/* shouldn't happen! */
1468 	if (WARN_ON_ONCE(!ts.locked))
1469 		mutex_lock(&ctx->uring_lock);
1470 	return ret;
1471 }
1472 
1473 static int io_run_local_work(struct io_ring_ctx *ctx)
1474 {
1475 	struct io_tw_state ts = {};
1476 	int ret;
1477 
1478 	ts.locked = mutex_trylock(&ctx->uring_lock);
1479 	ret = __io_run_local_work(ctx, &ts);
1480 	if (ts.locked)
1481 		mutex_unlock(&ctx->uring_lock);
1482 
1483 	return ret;
1484 }
1485 
1486 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1487 {
1488 	io_tw_lock(req->ctx, ts);
1489 	io_req_defer_failed(req, req->cqe.res);
1490 }
1491 
1492 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1493 {
1494 	io_tw_lock(req->ctx, ts);
1495 	/* req->task == current here, checking PF_EXITING is safe */
1496 	if (unlikely(req->task->flags & PF_EXITING))
1497 		io_req_defer_failed(req, -EFAULT);
1498 	else if (req->flags & REQ_F_FORCE_ASYNC)
1499 		io_queue_iowq(req, ts);
1500 	else
1501 		io_queue_sqe(req);
1502 }
1503 
1504 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1505 {
1506 	io_req_set_res(req, ret, 0);
1507 	req->io_task_work.func = io_req_task_cancel;
1508 	io_req_task_work_add(req);
1509 }
1510 
1511 void io_req_task_queue(struct io_kiocb *req)
1512 {
1513 	req->io_task_work.func = io_req_task_submit;
1514 	io_req_task_work_add(req);
1515 }
1516 
1517 void io_queue_next(struct io_kiocb *req)
1518 {
1519 	struct io_kiocb *nxt = io_req_find_next(req);
1520 
1521 	if (nxt)
1522 		io_req_task_queue(nxt);
1523 }
1524 
1525 static void io_free_batch_list(struct io_ring_ctx *ctx,
1526 			       struct io_wq_work_node *node)
1527 	__must_hold(&ctx->uring_lock)
1528 {
1529 	do {
1530 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1531 						    comp_list);
1532 
1533 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1534 			if (req->flags & REQ_F_REFCOUNT) {
1535 				node = req->comp_list.next;
1536 				if (!req_ref_put_and_test(req))
1537 					continue;
1538 			}
1539 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1540 				struct async_poll *apoll = req->apoll;
1541 
1542 				if (apoll->double_poll)
1543 					kfree(apoll->double_poll);
1544 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1545 					kfree(apoll);
1546 				req->flags &= ~REQ_F_POLLED;
1547 			}
1548 			if (req->flags & IO_REQ_LINK_FLAGS)
1549 				io_queue_next(req);
1550 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1551 				io_clean_op(req);
1552 		}
1553 		io_put_file(req);
1554 
1555 		io_req_put_rsrc_locked(req, ctx);
1556 
1557 		io_put_task(req->task);
1558 		node = req->comp_list.next;
1559 		io_req_add_to_cache(req, ctx);
1560 	} while (node);
1561 }
1562 
1563 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1564 	__must_hold(&ctx->uring_lock)
1565 {
1566 	struct io_submit_state *state = &ctx->submit_state;
1567 	struct io_wq_work_node *node;
1568 
1569 	__io_cq_lock(ctx);
1570 	/* must come first to preserve CQE ordering in failure cases */
1571 	if (state->cqes_count)
1572 		__io_flush_post_cqes(ctx);
1573 	__wq_list_for_each(node, &state->compl_reqs) {
1574 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1575 					    comp_list);
1576 
1577 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1578 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1579 			if (ctx->lockless_cq) {
1580 				spin_lock(&ctx->completion_lock);
1581 				io_req_cqe_overflow(req);
1582 				spin_unlock(&ctx->completion_lock);
1583 			} else {
1584 				io_req_cqe_overflow(req);
1585 			}
1586 		}
1587 	}
1588 	__io_cq_unlock_post(ctx);
1589 
1590 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1591 		io_free_batch_list(ctx, state->compl_reqs.first);
1592 		INIT_WQ_LIST(&state->compl_reqs);
1593 	}
1594 }
1595 
1596 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1597 {
1598 	/* See comment at the top of this file */
1599 	smp_rmb();
1600 	return __io_cqring_events(ctx);
1601 }
1602 
1603 /*
1604  * We can't just wait for polled events to come to us, we have to actively
1605  * find and complete them.
1606  */
1607 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1608 {
1609 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1610 		return;
1611 
1612 	mutex_lock(&ctx->uring_lock);
1613 	while (!wq_list_empty(&ctx->iopoll_list)) {
1614 		/* let it sleep and repeat later if can't complete a request */
1615 		if (io_do_iopoll(ctx, true) == 0)
1616 			break;
1617 		/*
1618 		 * Ensure we allow local-to-the-cpu processing to take place,
1619 		 * in this case we need to ensure that we reap all events.
1620 		 * Also let task_work, etc. to progress by releasing the mutex
1621 		 */
1622 		if (need_resched()) {
1623 			mutex_unlock(&ctx->uring_lock);
1624 			cond_resched();
1625 			mutex_lock(&ctx->uring_lock);
1626 		}
1627 	}
1628 	mutex_unlock(&ctx->uring_lock);
1629 }
1630 
1631 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1632 {
1633 	unsigned int nr_events = 0;
1634 	unsigned long check_cq;
1635 
1636 	if (!io_allowed_run_tw(ctx))
1637 		return -EEXIST;
1638 
1639 	check_cq = READ_ONCE(ctx->check_cq);
1640 	if (unlikely(check_cq)) {
1641 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1642 			__io_cqring_overflow_flush(ctx);
1643 		/*
1644 		 * Similarly do not spin if we have not informed the user of any
1645 		 * dropped CQE.
1646 		 */
1647 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1648 			return -EBADR;
1649 	}
1650 	/*
1651 	 * Don't enter poll loop if we already have events pending.
1652 	 * If we do, we can potentially be spinning for commands that
1653 	 * already triggered a CQE (eg in error).
1654 	 */
1655 	if (io_cqring_events(ctx))
1656 		return 0;
1657 
1658 	do {
1659 		int ret = 0;
1660 
1661 		/*
1662 		 * If a submit got punted to a workqueue, we can have the
1663 		 * application entering polling for a command before it gets
1664 		 * issued. That app will hold the uring_lock for the duration
1665 		 * of the poll right here, so we need to take a breather every
1666 		 * now and then to ensure that the issue has a chance to add
1667 		 * the poll to the issued list. Otherwise we can spin here
1668 		 * forever, while the workqueue is stuck trying to acquire the
1669 		 * very same mutex.
1670 		 */
1671 		if (wq_list_empty(&ctx->iopoll_list) ||
1672 		    io_task_work_pending(ctx)) {
1673 			u32 tail = ctx->cached_cq_tail;
1674 
1675 			(void) io_run_local_work_locked(ctx);
1676 
1677 			if (task_work_pending(current) ||
1678 			    wq_list_empty(&ctx->iopoll_list)) {
1679 				mutex_unlock(&ctx->uring_lock);
1680 				io_run_task_work();
1681 				mutex_lock(&ctx->uring_lock);
1682 			}
1683 			/* some requests don't go through iopoll_list */
1684 			if (tail != ctx->cached_cq_tail ||
1685 			    wq_list_empty(&ctx->iopoll_list))
1686 				break;
1687 		}
1688 		ret = io_do_iopoll(ctx, !min);
1689 		if (unlikely(ret < 0))
1690 			return ret;
1691 
1692 		if (task_sigpending(current))
1693 			return -EINTR;
1694 		if (need_resched())
1695 			break;
1696 
1697 		nr_events += ret;
1698 	} while (nr_events < min);
1699 
1700 	return 0;
1701 }
1702 
1703 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1704 {
1705 	if (ts->locked)
1706 		io_req_complete_defer(req);
1707 	else
1708 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1709 }
1710 
1711 /*
1712  * After the iocb has been issued, it's safe to be found on the poll list.
1713  * Adding the kiocb to the list AFTER submission ensures that we don't
1714  * find it from a io_do_iopoll() thread before the issuer is done
1715  * accessing the kiocb cookie.
1716  */
1717 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1718 {
1719 	struct io_ring_ctx *ctx = req->ctx;
1720 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1721 
1722 	/* workqueue context doesn't hold uring_lock, grab it now */
1723 	if (unlikely(needs_lock))
1724 		mutex_lock(&ctx->uring_lock);
1725 
1726 	/*
1727 	 * Track whether we have multiple files in our lists. This will impact
1728 	 * how we do polling eventually, not spinning if we're on potentially
1729 	 * different devices.
1730 	 */
1731 	if (wq_list_empty(&ctx->iopoll_list)) {
1732 		ctx->poll_multi_queue = false;
1733 	} else if (!ctx->poll_multi_queue) {
1734 		struct io_kiocb *list_req;
1735 
1736 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1737 					comp_list);
1738 		if (list_req->file != req->file)
1739 			ctx->poll_multi_queue = true;
1740 	}
1741 
1742 	/*
1743 	 * For fast devices, IO may have already completed. If it has, add
1744 	 * it to the front so we find it first.
1745 	 */
1746 	if (READ_ONCE(req->iopoll_completed))
1747 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1748 	else
1749 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1750 
1751 	if (unlikely(needs_lock)) {
1752 		/*
1753 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1754 		 * in sq thread task context or in io worker task context. If
1755 		 * current task context is sq thread, we don't need to check
1756 		 * whether should wake up sq thread.
1757 		 */
1758 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1759 		    wq_has_sleeper(&ctx->sq_data->wait))
1760 			wake_up(&ctx->sq_data->wait);
1761 
1762 		mutex_unlock(&ctx->uring_lock);
1763 	}
1764 }
1765 
1766 unsigned int io_file_get_flags(struct file *file)
1767 {
1768 	unsigned int res = 0;
1769 
1770 	if (S_ISREG(file_inode(file)->i_mode))
1771 		res |= REQ_F_ISREG;
1772 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1773 		res |= REQ_F_SUPPORT_NOWAIT;
1774 	return res;
1775 }
1776 
1777 bool io_alloc_async_data(struct io_kiocb *req)
1778 {
1779 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1780 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1781 	if (req->async_data) {
1782 		req->flags |= REQ_F_ASYNC_DATA;
1783 		return false;
1784 	}
1785 	return true;
1786 }
1787 
1788 int io_req_prep_async(struct io_kiocb *req)
1789 {
1790 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1791 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1792 
1793 	/* assign early for deferred execution for non-fixed file */
1794 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1795 		req->file = io_file_get_normal(req, req->cqe.fd);
1796 	if (!cdef->prep_async)
1797 		return 0;
1798 	if (WARN_ON_ONCE(req_has_async_data(req)))
1799 		return -EFAULT;
1800 	if (!def->manual_alloc) {
1801 		if (io_alloc_async_data(req))
1802 			return -EAGAIN;
1803 	}
1804 	return cdef->prep_async(req);
1805 }
1806 
1807 static u32 io_get_sequence(struct io_kiocb *req)
1808 {
1809 	u32 seq = req->ctx->cached_sq_head;
1810 	struct io_kiocb *cur;
1811 
1812 	/* need original cached_sq_head, but it was increased for each req */
1813 	io_for_each_link(cur, req)
1814 		seq--;
1815 	return seq;
1816 }
1817 
1818 static __cold void io_drain_req(struct io_kiocb *req)
1819 	__must_hold(&ctx->uring_lock)
1820 {
1821 	struct io_ring_ctx *ctx = req->ctx;
1822 	struct io_defer_entry *de;
1823 	int ret;
1824 	u32 seq = io_get_sequence(req);
1825 
1826 	/* Still need defer if there is pending req in defer list. */
1827 	spin_lock(&ctx->completion_lock);
1828 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1829 		spin_unlock(&ctx->completion_lock);
1830 queue:
1831 		ctx->drain_active = false;
1832 		io_req_task_queue(req);
1833 		return;
1834 	}
1835 	spin_unlock(&ctx->completion_lock);
1836 
1837 	io_prep_async_link(req);
1838 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1839 	if (!de) {
1840 		ret = -ENOMEM;
1841 		io_req_defer_failed(req, ret);
1842 		return;
1843 	}
1844 
1845 	spin_lock(&ctx->completion_lock);
1846 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1847 		spin_unlock(&ctx->completion_lock);
1848 		kfree(de);
1849 		goto queue;
1850 	}
1851 
1852 	trace_io_uring_defer(req);
1853 	de->req = req;
1854 	de->seq = seq;
1855 	list_add_tail(&de->list, &ctx->defer_list);
1856 	spin_unlock(&ctx->completion_lock);
1857 }
1858 
1859 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1860 			   unsigned int issue_flags)
1861 {
1862 	if (req->file || !def->needs_file)
1863 		return true;
1864 
1865 	if (req->flags & REQ_F_FIXED_FILE)
1866 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1867 	else
1868 		req->file = io_file_get_normal(req, req->cqe.fd);
1869 
1870 	return !!req->file;
1871 }
1872 
1873 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1874 {
1875 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1876 	const struct cred *creds = NULL;
1877 	int ret;
1878 
1879 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1880 		return -EBADF;
1881 
1882 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1883 		creds = override_creds(req->creds);
1884 
1885 	if (!def->audit_skip)
1886 		audit_uring_entry(req->opcode);
1887 
1888 	ret = def->issue(req, issue_flags);
1889 
1890 	if (!def->audit_skip)
1891 		audit_uring_exit(!ret, ret);
1892 
1893 	if (creds)
1894 		revert_creds(creds);
1895 
1896 	if (ret == IOU_OK) {
1897 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1898 			io_req_complete_defer(req);
1899 		else
1900 			io_req_complete_post(req, issue_flags);
1901 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1902 		return ret;
1903 
1904 	/* If the op doesn't have a file, we're not polling for it */
1905 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1906 		io_iopoll_req_issued(req, issue_flags);
1907 
1908 	return 0;
1909 }
1910 
1911 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1912 {
1913 	io_tw_lock(req->ctx, ts);
1914 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1915 				 IO_URING_F_COMPLETE_DEFER);
1916 }
1917 
1918 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1919 {
1920 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1921 	struct io_kiocb *nxt = NULL;
1922 
1923 	if (req_ref_put_and_test(req)) {
1924 		if (req->flags & IO_REQ_LINK_FLAGS)
1925 			nxt = io_req_find_next(req);
1926 		io_free_req(req);
1927 	}
1928 	return nxt ? &nxt->work : NULL;
1929 }
1930 
1931 void io_wq_submit_work(struct io_wq_work *work)
1932 {
1933 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1934 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1935 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1936 	bool needs_poll = false;
1937 	int ret = 0, err = -ECANCELED;
1938 
1939 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1940 	if (!(req->flags & REQ_F_REFCOUNT))
1941 		__io_req_set_refcount(req, 2);
1942 	else
1943 		req_ref_get(req);
1944 
1945 	io_arm_ltimeout(req);
1946 
1947 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1948 	if (work->flags & IO_WQ_WORK_CANCEL) {
1949 fail:
1950 		io_req_task_queue_fail(req, err);
1951 		return;
1952 	}
1953 	if (!io_assign_file(req, def, issue_flags)) {
1954 		err = -EBADF;
1955 		work->flags |= IO_WQ_WORK_CANCEL;
1956 		goto fail;
1957 	}
1958 
1959 	if (req->flags & REQ_F_FORCE_ASYNC) {
1960 		bool opcode_poll = def->pollin || def->pollout;
1961 
1962 		if (opcode_poll && file_can_poll(req->file)) {
1963 			needs_poll = true;
1964 			issue_flags |= IO_URING_F_NONBLOCK;
1965 		}
1966 	}
1967 
1968 	do {
1969 		ret = io_issue_sqe(req, issue_flags);
1970 		if (ret != -EAGAIN)
1971 			break;
1972 
1973 		/*
1974 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1975 		 * poll. -EAGAIN is final for that case.
1976 		 */
1977 		if (req->flags & REQ_F_NOWAIT)
1978 			break;
1979 
1980 		/*
1981 		 * We can get EAGAIN for iopolled IO even though we're
1982 		 * forcing a sync submission from here, since we can't
1983 		 * wait for request slots on the block side.
1984 		 */
1985 		if (!needs_poll) {
1986 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1987 				break;
1988 			if (io_wq_worker_stopped())
1989 				break;
1990 			cond_resched();
1991 			continue;
1992 		}
1993 
1994 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1995 			return;
1996 		/* aborted or ready, in either case retry blocking */
1997 		needs_poll = false;
1998 		issue_flags &= ~IO_URING_F_NONBLOCK;
1999 	} while (1);
2000 
2001 	/* avoid locking problems by failing it from a clean context */
2002 	if (ret < 0)
2003 		io_req_task_queue_fail(req, ret);
2004 }
2005 
2006 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2007 				      unsigned int issue_flags)
2008 {
2009 	struct io_ring_ctx *ctx = req->ctx;
2010 	struct io_fixed_file *slot;
2011 	struct file *file = NULL;
2012 
2013 	io_ring_submit_lock(ctx, issue_flags);
2014 
2015 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2016 		goto out;
2017 	fd = array_index_nospec(fd, ctx->nr_user_files);
2018 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2019 	file = io_slot_file(slot);
2020 	req->flags |= io_slot_flags(slot);
2021 	io_req_set_rsrc_node(req, ctx, 0);
2022 out:
2023 	io_ring_submit_unlock(ctx, issue_flags);
2024 	return file;
2025 }
2026 
2027 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2028 {
2029 	struct file *file = fget(fd);
2030 
2031 	trace_io_uring_file_get(req, fd);
2032 
2033 	/* we don't allow fixed io_uring files */
2034 	if (file && io_is_uring_fops(file))
2035 		io_req_track_inflight(req);
2036 	return file;
2037 }
2038 
2039 static void io_queue_async(struct io_kiocb *req, int ret)
2040 	__must_hold(&req->ctx->uring_lock)
2041 {
2042 	struct io_kiocb *linked_timeout;
2043 
2044 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2045 		io_req_defer_failed(req, ret);
2046 		return;
2047 	}
2048 
2049 	linked_timeout = io_prep_linked_timeout(req);
2050 
2051 	switch (io_arm_poll_handler(req, 0)) {
2052 	case IO_APOLL_READY:
2053 		io_kbuf_recycle(req, 0);
2054 		io_req_task_queue(req);
2055 		break;
2056 	case IO_APOLL_ABORTED:
2057 		io_kbuf_recycle(req, 0);
2058 		io_queue_iowq(req, NULL);
2059 		break;
2060 	case IO_APOLL_OK:
2061 		break;
2062 	}
2063 
2064 	if (linked_timeout)
2065 		io_queue_linked_timeout(linked_timeout);
2066 }
2067 
2068 static inline void io_queue_sqe(struct io_kiocb *req)
2069 	__must_hold(&req->ctx->uring_lock)
2070 {
2071 	int ret;
2072 
2073 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2074 
2075 	/*
2076 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2077 	 * doesn't support non-blocking read/write attempts
2078 	 */
2079 	if (likely(!ret))
2080 		io_arm_ltimeout(req);
2081 	else
2082 		io_queue_async(req, ret);
2083 }
2084 
2085 static void io_queue_sqe_fallback(struct io_kiocb *req)
2086 	__must_hold(&req->ctx->uring_lock)
2087 {
2088 	if (unlikely(req->flags & REQ_F_FAIL)) {
2089 		/*
2090 		 * We don't submit, fail them all, for that replace hardlinks
2091 		 * with normal links. Extra REQ_F_LINK is tolerated.
2092 		 */
2093 		req->flags &= ~REQ_F_HARDLINK;
2094 		req->flags |= REQ_F_LINK;
2095 		io_req_defer_failed(req, req->cqe.res);
2096 	} else {
2097 		int ret = io_req_prep_async(req);
2098 
2099 		if (unlikely(ret)) {
2100 			io_req_defer_failed(req, ret);
2101 			return;
2102 		}
2103 
2104 		if (unlikely(req->ctx->drain_active))
2105 			io_drain_req(req);
2106 		else
2107 			io_queue_iowq(req, NULL);
2108 	}
2109 }
2110 
2111 /*
2112  * Check SQE restrictions (opcode and flags).
2113  *
2114  * Returns 'true' if SQE is allowed, 'false' otherwise.
2115  */
2116 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2117 					struct io_kiocb *req,
2118 					unsigned int sqe_flags)
2119 {
2120 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2121 		return false;
2122 
2123 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2124 	    ctx->restrictions.sqe_flags_required)
2125 		return false;
2126 
2127 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2128 			  ctx->restrictions.sqe_flags_required))
2129 		return false;
2130 
2131 	return true;
2132 }
2133 
2134 static void io_init_req_drain(struct io_kiocb *req)
2135 {
2136 	struct io_ring_ctx *ctx = req->ctx;
2137 	struct io_kiocb *head = ctx->submit_state.link.head;
2138 
2139 	ctx->drain_active = true;
2140 	if (head) {
2141 		/*
2142 		 * If we need to drain a request in the middle of a link, drain
2143 		 * the head request and the next request/link after the current
2144 		 * link. Considering sequential execution of links,
2145 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2146 		 * link.
2147 		 */
2148 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2149 		ctx->drain_next = true;
2150 	}
2151 }
2152 
2153 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2154 		       const struct io_uring_sqe *sqe)
2155 	__must_hold(&ctx->uring_lock)
2156 {
2157 	const struct io_issue_def *def;
2158 	unsigned int sqe_flags;
2159 	int personality;
2160 	u8 opcode;
2161 
2162 	/* req is partially pre-initialised, see io_preinit_req() */
2163 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2164 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2165 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2166 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2167 	req->file = NULL;
2168 	req->rsrc_node = NULL;
2169 	req->task = current;
2170 
2171 	if (unlikely(opcode >= IORING_OP_LAST)) {
2172 		req->opcode = 0;
2173 		return -EINVAL;
2174 	}
2175 	def = &io_issue_defs[opcode];
2176 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2177 		/* enforce forwards compatibility on users */
2178 		if (sqe_flags & ~SQE_VALID_FLAGS)
2179 			return -EINVAL;
2180 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2181 			if (!def->buffer_select)
2182 				return -EOPNOTSUPP;
2183 			req->buf_index = READ_ONCE(sqe->buf_group);
2184 		}
2185 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2186 			ctx->drain_disabled = true;
2187 		if (sqe_flags & IOSQE_IO_DRAIN) {
2188 			if (ctx->drain_disabled)
2189 				return -EOPNOTSUPP;
2190 			io_init_req_drain(req);
2191 		}
2192 	}
2193 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2194 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2195 			return -EACCES;
2196 		/* knock it to the slow queue path, will be drained there */
2197 		if (ctx->drain_active)
2198 			req->flags |= REQ_F_FORCE_ASYNC;
2199 		/* if there is no link, we're at "next" request and need to drain */
2200 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2201 			ctx->drain_next = false;
2202 			ctx->drain_active = true;
2203 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2204 		}
2205 	}
2206 
2207 	if (!def->ioprio && sqe->ioprio)
2208 		return -EINVAL;
2209 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2210 		return -EINVAL;
2211 
2212 	if (def->needs_file) {
2213 		struct io_submit_state *state = &ctx->submit_state;
2214 
2215 		req->cqe.fd = READ_ONCE(sqe->fd);
2216 
2217 		/*
2218 		 * Plug now if we have more than 2 IO left after this, and the
2219 		 * target is potentially a read/write to block based storage.
2220 		 */
2221 		if (state->need_plug && def->plug) {
2222 			state->plug_started = true;
2223 			state->need_plug = false;
2224 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2225 		}
2226 	}
2227 
2228 	personality = READ_ONCE(sqe->personality);
2229 	if (personality) {
2230 		int ret;
2231 
2232 		req->creds = xa_load(&ctx->personalities, personality);
2233 		if (!req->creds)
2234 			return -EINVAL;
2235 		get_cred(req->creds);
2236 		ret = security_uring_override_creds(req->creds);
2237 		if (ret) {
2238 			put_cred(req->creds);
2239 			return ret;
2240 		}
2241 		req->flags |= REQ_F_CREDS;
2242 	}
2243 
2244 	return def->prep(req, sqe);
2245 }
2246 
2247 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2248 				      struct io_kiocb *req, int ret)
2249 {
2250 	struct io_ring_ctx *ctx = req->ctx;
2251 	struct io_submit_link *link = &ctx->submit_state.link;
2252 	struct io_kiocb *head = link->head;
2253 
2254 	trace_io_uring_req_failed(sqe, req, ret);
2255 
2256 	/*
2257 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2258 	 * unusable. Instead of failing eagerly, continue assembling the link if
2259 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2260 	 * should find the flag and handle the rest.
2261 	 */
2262 	req_fail_link_node(req, ret);
2263 	if (head && !(head->flags & REQ_F_FAIL))
2264 		req_fail_link_node(head, -ECANCELED);
2265 
2266 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2267 		if (head) {
2268 			link->last->link = req;
2269 			link->head = NULL;
2270 			req = head;
2271 		}
2272 		io_queue_sqe_fallback(req);
2273 		return ret;
2274 	}
2275 
2276 	if (head)
2277 		link->last->link = req;
2278 	else
2279 		link->head = req;
2280 	link->last = req;
2281 	return 0;
2282 }
2283 
2284 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2285 			 const struct io_uring_sqe *sqe)
2286 	__must_hold(&ctx->uring_lock)
2287 {
2288 	struct io_submit_link *link = &ctx->submit_state.link;
2289 	int ret;
2290 
2291 	ret = io_init_req(ctx, req, sqe);
2292 	if (unlikely(ret))
2293 		return io_submit_fail_init(sqe, req, ret);
2294 
2295 	trace_io_uring_submit_req(req);
2296 
2297 	/*
2298 	 * If we already have a head request, queue this one for async
2299 	 * submittal once the head completes. If we don't have a head but
2300 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2301 	 * submitted sync once the chain is complete. If none of those
2302 	 * conditions are true (normal request), then just queue it.
2303 	 */
2304 	if (unlikely(link->head)) {
2305 		ret = io_req_prep_async(req);
2306 		if (unlikely(ret))
2307 			return io_submit_fail_init(sqe, req, ret);
2308 
2309 		trace_io_uring_link(req, link->head);
2310 		link->last->link = req;
2311 		link->last = req;
2312 
2313 		if (req->flags & IO_REQ_LINK_FLAGS)
2314 			return 0;
2315 		/* last request of the link, flush it */
2316 		req = link->head;
2317 		link->head = NULL;
2318 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2319 			goto fallback;
2320 
2321 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2322 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2323 		if (req->flags & IO_REQ_LINK_FLAGS) {
2324 			link->head = req;
2325 			link->last = req;
2326 		} else {
2327 fallback:
2328 			io_queue_sqe_fallback(req);
2329 		}
2330 		return 0;
2331 	}
2332 
2333 	io_queue_sqe(req);
2334 	return 0;
2335 }
2336 
2337 /*
2338  * Batched submission is done, ensure local IO is flushed out.
2339  */
2340 static void io_submit_state_end(struct io_ring_ctx *ctx)
2341 {
2342 	struct io_submit_state *state = &ctx->submit_state;
2343 
2344 	if (unlikely(state->link.head))
2345 		io_queue_sqe_fallback(state->link.head);
2346 	/* flush only after queuing links as they can generate completions */
2347 	io_submit_flush_completions(ctx);
2348 	if (state->plug_started)
2349 		blk_finish_plug(&state->plug);
2350 }
2351 
2352 /*
2353  * Start submission side cache.
2354  */
2355 static void io_submit_state_start(struct io_submit_state *state,
2356 				  unsigned int max_ios)
2357 {
2358 	state->plug_started = false;
2359 	state->need_plug = max_ios > 2;
2360 	state->submit_nr = max_ios;
2361 	/* set only head, no need to init link_last in advance */
2362 	state->link.head = NULL;
2363 }
2364 
2365 static void io_commit_sqring(struct io_ring_ctx *ctx)
2366 {
2367 	struct io_rings *rings = ctx->rings;
2368 
2369 	/*
2370 	 * Ensure any loads from the SQEs are done at this point,
2371 	 * since once we write the new head, the application could
2372 	 * write new data to them.
2373 	 */
2374 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2375 }
2376 
2377 /*
2378  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2379  * that is mapped by userspace. This means that care needs to be taken to
2380  * ensure that reads are stable, as we cannot rely on userspace always
2381  * being a good citizen. If members of the sqe are validated and then later
2382  * used, it's important that those reads are done through READ_ONCE() to
2383  * prevent a re-load down the line.
2384  */
2385 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2386 {
2387 	unsigned mask = ctx->sq_entries - 1;
2388 	unsigned head = ctx->cached_sq_head++ & mask;
2389 
2390 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2391 		head = READ_ONCE(ctx->sq_array[head]);
2392 		if (unlikely(head >= ctx->sq_entries)) {
2393 			/* drop invalid entries */
2394 			spin_lock(&ctx->completion_lock);
2395 			ctx->cq_extra--;
2396 			spin_unlock(&ctx->completion_lock);
2397 			WRITE_ONCE(ctx->rings->sq_dropped,
2398 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2399 			return false;
2400 		}
2401 	}
2402 
2403 	/*
2404 	 * The cached sq head (or cq tail) serves two purposes:
2405 	 *
2406 	 * 1) allows us to batch the cost of updating the user visible
2407 	 *    head updates.
2408 	 * 2) allows the kernel side to track the head on its own, even
2409 	 *    though the application is the one updating it.
2410 	 */
2411 
2412 	/* double index for 128-byte SQEs, twice as long */
2413 	if (ctx->flags & IORING_SETUP_SQE128)
2414 		head <<= 1;
2415 	*sqe = &ctx->sq_sqes[head];
2416 	return true;
2417 }
2418 
2419 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2420 	__must_hold(&ctx->uring_lock)
2421 {
2422 	unsigned int entries = io_sqring_entries(ctx);
2423 	unsigned int left;
2424 	int ret;
2425 
2426 	if (unlikely(!entries))
2427 		return 0;
2428 	/* make sure SQ entry isn't read before tail */
2429 	ret = left = min(nr, entries);
2430 	io_get_task_refs(left);
2431 	io_submit_state_start(&ctx->submit_state, left);
2432 
2433 	do {
2434 		const struct io_uring_sqe *sqe;
2435 		struct io_kiocb *req;
2436 
2437 		if (unlikely(!io_alloc_req(ctx, &req)))
2438 			break;
2439 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2440 			io_req_add_to_cache(req, ctx);
2441 			break;
2442 		}
2443 
2444 		/*
2445 		 * Continue submitting even for sqe failure if the
2446 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2447 		 */
2448 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2449 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2450 			left--;
2451 			break;
2452 		}
2453 	} while (--left);
2454 
2455 	if (unlikely(left)) {
2456 		ret -= left;
2457 		/* try again if it submitted nothing and can't allocate a req */
2458 		if (!ret && io_req_cache_empty(ctx))
2459 			ret = -EAGAIN;
2460 		current->io_uring->cached_refs += left;
2461 	}
2462 
2463 	io_submit_state_end(ctx);
2464 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2465 	io_commit_sqring(ctx);
2466 	return ret;
2467 }
2468 
2469 struct io_wait_queue {
2470 	struct wait_queue_entry wq;
2471 	struct io_ring_ctx *ctx;
2472 	unsigned cq_tail;
2473 	unsigned nr_timeouts;
2474 	ktime_t timeout;
2475 };
2476 
2477 static inline bool io_has_work(struct io_ring_ctx *ctx)
2478 {
2479 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2480 	       !llist_empty(&ctx->work_llist);
2481 }
2482 
2483 static inline bool io_should_wake(struct io_wait_queue *iowq)
2484 {
2485 	struct io_ring_ctx *ctx = iowq->ctx;
2486 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2487 
2488 	/*
2489 	 * Wake up if we have enough events, or if a timeout occurred since we
2490 	 * started waiting. For timeouts, we always want to return to userspace,
2491 	 * regardless of event count.
2492 	 */
2493 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2494 }
2495 
2496 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2497 			    int wake_flags, void *key)
2498 {
2499 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2500 
2501 	/*
2502 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2503 	 * the task, and the next invocation will do it.
2504 	 */
2505 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2506 		return autoremove_wake_function(curr, mode, wake_flags, key);
2507 	return -1;
2508 }
2509 
2510 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2511 {
2512 	if (!llist_empty(&ctx->work_llist)) {
2513 		__set_current_state(TASK_RUNNING);
2514 		if (io_run_local_work(ctx) > 0)
2515 			return 0;
2516 	}
2517 	if (io_run_task_work() > 0)
2518 		return 0;
2519 	if (task_sigpending(current))
2520 		return -EINTR;
2521 	return 0;
2522 }
2523 
2524 static bool current_pending_io(void)
2525 {
2526 	struct io_uring_task *tctx = current->io_uring;
2527 
2528 	if (!tctx)
2529 		return false;
2530 	return percpu_counter_read_positive(&tctx->inflight);
2531 }
2532 
2533 /* when returns >0, the caller should retry */
2534 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2535 					  struct io_wait_queue *iowq)
2536 {
2537 	int io_wait, ret;
2538 
2539 	if (unlikely(READ_ONCE(ctx->check_cq)))
2540 		return 1;
2541 	if (unlikely(!llist_empty(&ctx->work_llist)))
2542 		return 1;
2543 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2544 		return 1;
2545 	if (unlikely(task_sigpending(current)))
2546 		return -EINTR;
2547 	if (unlikely(io_should_wake(iowq)))
2548 		return 0;
2549 
2550 	/*
2551 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2552 	 * can take into account that the task is waiting for IO - turns out
2553 	 * to be important for low QD IO.
2554 	 */
2555 	io_wait = current->in_iowait;
2556 	if (current_pending_io())
2557 		current->in_iowait = 1;
2558 	ret = 0;
2559 	if (iowq->timeout == KTIME_MAX)
2560 		schedule();
2561 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2562 		ret = -ETIME;
2563 	current->in_iowait = io_wait;
2564 	return ret;
2565 }
2566 
2567 /*
2568  * Wait until events become available, if we don't already have some. The
2569  * application must reap them itself, as they reside on the shared cq ring.
2570  */
2571 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2572 			  const sigset_t __user *sig, size_t sigsz,
2573 			  struct __kernel_timespec __user *uts)
2574 {
2575 	struct io_wait_queue iowq;
2576 	struct io_rings *rings = ctx->rings;
2577 	int ret;
2578 
2579 	if (!io_allowed_run_tw(ctx))
2580 		return -EEXIST;
2581 	if (!llist_empty(&ctx->work_llist))
2582 		io_run_local_work(ctx);
2583 	io_run_task_work();
2584 	io_cqring_overflow_flush(ctx);
2585 	/* if user messes with these they will just get an early return */
2586 	if (__io_cqring_events_user(ctx) >= min_events)
2587 		return 0;
2588 
2589 	if (sig) {
2590 #ifdef CONFIG_COMPAT
2591 		if (in_compat_syscall())
2592 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2593 						      sigsz);
2594 		else
2595 #endif
2596 			ret = set_user_sigmask(sig, sigsz);
2597 
2598 		if (ret)
2599 			return ret;
2600 	}
2601 
2602 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2603 	iowq.wq.private = current;
2604 	INIT_LIST_HEAD(&iowq.wq.entry);
2605 	iowq.ctx = ctx;
2606 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2607 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2608 	iowq.timeout = KTIME_MAX;
2609 
2610 	if (uts) {
2611 		struct timespec64 ts;
2612 
2613 		if (get_timespec64(&ts, uts))
2614 			return -EFAULT;
2615 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2616 	}
2617 
2618 	trace_io_uring_cqring_wait(ctx, min_events);
2619 	do {
2620 		unsigned long check_cq;
2621 
2622 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2623 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2624 
2625 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2626 			set_current_state(TASK_INTERRUPTIBLE);
2627 		} else {
2628 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2629 							TASK_INTERRUPTIBLE);
2630 		}
2631 
2632 		ret = io_cqring_wait_schedule(ctx, &iowq);
2633 		__set_current_state(TASK_RUNNING);
2634 		atomic_set(&ctx->cq_wait_nr, 0);
2635 
2636 		if (ret < 0)
2637 			break;
2638 		/*
2639 		 * Run task_work after scheduling and before io_should_wake().
2640 		 * If we got woken because of task_work being processed, run it
2641 		 * now rather than let the caller do another wait loop.
2642 		 */
2643 		io_run_task_work();
2644 		if (!llist_empty(&ctx->work_llist))
2645 			io_run_local_work(ctx);
2646 
2647 		check_cq = READ_ONCE(ctx->check_cq);
2648 		if (unlikely(check_cq)) {
2649 			/* let the caller flush overflows, retry */
2650 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2651 				io_cqring_do_overflow_flush(ctx);
2652 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2653 				ret = -EBADR;
2654 				break;
2655 			}
2656 		}
2657 
2658 		if (io_should_wake(&iowq)) {
2659 			ret = 0;
2660 			break;
2661 		}
2662 		cond_resched();
2663 	} while (1);
2664 
2665 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2666 		finish_wait(&ctx->cq_wait, &iowq.wq);
2667 	restore_saved_sigmask_unless(ret == -EINTR);
2668 
2669 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2670 }
2671 
2672 void io_mem_free(void *ptr)
2673 {
2674 	if (!ptr)
2675 		return;
2676 
2677 	folio_put(virt_to_folio(ptr));
2678 }
2679 
2680 static void io_pages_free(struct page ***pages, int npages)
2681 {
2682 	struct page **page_array;
2683 	int i;
2684 
2685 	if (!pages)
2686 		return;
2687 
2688 	page_array = *pages;
2689 	if (!page_array)
2690 		return;
2691 
2692 	for (i = 0; i < npages; i++)
2693 		unpin_user_page(page_array[i]);
2694 	kvfree(page_array);
2695 	*pages = NULL;
2696 }
2697 
2698 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2699 			    unsigned long uaddr, size_t size)
2700 {
2701 	struct page **page_array;
2702 	unsigned int nr_pages;
2703 	void *page_addr;
2704 	int ret, i;
2705 
2706 	*npages = 0;
2707 
2708 	if (uaddr & (PAGE_SIZE - 1) || !size)
2709 		return ERR_PTR(-EINVAL);
2710 
2711 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2712 	if (nr_pages > USHRT_MAX)
2713 		return ERR_PTR(-EINVAL);
2714 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2715 	if (!page_array)
2716 		return ERR_PTR(-ENOMEM);
2717 
2718 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2719 					page_array);
2720 	if (ret != nr_pages) {
2721 err:
2722 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2723 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2724 	}
2725 
2726 	page_addr = page_address(page_array[0]);
2727 	for (i = 0; i < nr_pages; i++) {
2728 		ret = -EINVAL;
2729 
2730 		/*
2731 		 * Can't support mapping user allocated ring memory on 32-bit
2732 		 * archs where it could potentially reside in highmem. Just
2733 		 * fail those with -EINVAL, just like we did on kernels that
2734 		 * didn't support this feature.
2735 		 */
2736 		if (PageHighMem(page_array[i]))
2737 			goto err;
2738 
2739 		/*
2740 		 * No support for discontig pages for now, should either be a
2741 		 * single normal page, or a huge page. Later on we can add
2742 		 * support for remapping discontig pages, for now we will
2743 		 * just fail them with EINVAL.
2744 		 */
2745 		if (page_address(page_array[i]) != page_addr)
2746 			goto err;
2747 		page_addr += PAGE_SIZE;
2748 	}
2749 
2750 	*pages = page_array;
2751 	*npages = nr_pages;
2752 	return page_to_virt(page_array[0]);
2753 }
2754 
2755 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2756 			  size_t size)
2757 {
2758 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2759 				size);
2760 }
2761 
2762 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2763 			 size_t size)
2764 {
2765 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2766 				size);
2767 }
2768 
2769 static void io_rings_free(struct io_ring_ctx *ctx)
2770 {
2771 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2772 		io_mem_free(ctx->rings);
2773 		io_mem_free(ctx->sq_sqes);
2774 		ctx->rings = NULL;
2775 		ctx->sq_sqes = NULL;
2776 	} else {
2777 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2778 		ctx->n_ring_pages = 0;
2779 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2780 		ctx->n_sqe_pages = 0;
2781 	}
2782 }
2783 
2784 void *io_mem_alloc(size_t size)
2785 {
2786 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2787 	void *ret;
2788 
2789 	ret = (void *) __get_free_pages(gfp, get_order(size));
2790 	if (ret)
2791 		return ret;
2792 	return ERR_PTR(-ENOMEM);
2793 }
2794 
2795 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2796 				unsigned int cq_entries, size_t *sq_offset)
2797 {
2798 	struct io_rings *rings;
2799 	size_t off, sq_array_size;
2800 
2801 	off = struct_size(rings, cqes, cq_entries);
2802 	if (off == SIZE_MAX)
2803 		return SIZE_MAX;
2804 	if (ctx->flags & IORING_SETUP_CQE32) {
2805 		if (check_shl_overflow(off, 1, &off))
2806 			return SIZE_MAX;
2807 	}
2808 
2809 #ifdef CONFIG_SMP
2810 	off = ALIGN(off, SMP_CACHE_BYTES);
2811 	if (off == 0)
2812 		return SIZE_MAX;
2813 #endif
2814 
2815 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2816 		if (sq_offset)
2817 			*sq_offset = SIZE_MAX;
2818 		return off;
2819 	}
2820 
2821 	if (sq_offset)
2822 		*sq_offset = off;
2823 
2824 	sq_array_size = array_size(sizeof(u32), sq_entries);
2825 	if (sq_array_size == SIZE_MAX)
2826 		return SIZE_MAX;
2827 
2828 	if (check_add_overflow(off, sq_array_size, &off))
2829 		return SIZE_MAX;
2830 
2831 	return off;
2832 }
2833 
2834 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2835 			       unsigned int eventfd_async)
2836 {
2837 	struct io_ev_fd *ev_fd;
2838 	__s32 __user *fds = arg;
2839 	int fd;
2840 
2841 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2842 					lockdep_is_held(&ctx->uring_lock));
2843 	if (ev_fd)
2844 		return -EBUSY;
2845 
2846 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2847 		return -EFAULT;
2848 
2849 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2850 	if (!ev_fd)
2851 		return -ENOMEM;
2852 
2853 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2854 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2855 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2856 		kfree(ev_fd);
2857 		return ret;
2858 	}
2859 
2860 	spin_lock(&ctx->completion_lock);
2861 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2862 	spin_unlock(&ctx->completion_lock);
2863 
2864 	ev_fd->eventfd_async = eventfd_async;
2865 	ctx->has_evfd = true;
2866 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2867 	atomic_set(&ev_fd->refs, 1);
2868 	atomic_set(&ev_fd->ops, 0);
2869 	return 0;
2870 }
2871 
2872 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2873 {
2874 	struct io_ev_fd *ev_fd;
2875 
2876 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2877 					lockdep_is_held(&ctx->uring_lock));
2878 	if (ev_fd) {
2879 		ctx->has_evfd = false;
2880 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2881 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2882 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2883 		return 0;
2884 	}
2885 
2886 	return -ENXIO;
2887 }
2888 
2889 static void io_req_caches_free(struct io_ring_ctx *ctx)
2890 {
2891 	struct io_kiocb *req;
2892 	int nr = 0;
2893 
2894 	mutex_lock(&ctx->uring_lock);
2895 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2896 
2897 	while (!io_req_cache_empty(ctx)) {
2898 		req = io_extract_req(ctx);
2899 		kmem_cache_free(req_cachep, req);
2900 		nr++;
2901 	}
2902 	if (nr)
2903 		percpu_ref_put_many(&ctx->refs, nr);
2904 	mutex_unlock(&ctx->uring_lock);
2905 }
2906 
2907 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2908 {
2909 	kfree(container_of(entry, struct io_rsrc_node, cache));
2910 }
2911 
2912 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2913 {
2914 	io_sq_thread_finish(ctx);
2915 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2916 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2917 		return;
2918 
2919 	mutex_lock(&ctx->uring_lock);
2920 	if (ctx->buf_data)
2921 		__io_sqe_buffers_unregister(ctx);
2922 	if (ctx->file_data)
2923 		__io_sqe_files_unregister(ctx);
2924 	io_cqring_overflow_kill(ctx);
2925 	io_eventfd_unregister(ctx);
2926 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2927 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2928 	io_futex_cache_free(ctx);
2929 	io_destroy_buffers(ctx);
2930 	mutex_unlock(&ctx->uring_lock);
2931 	if (ctx->sq_creds)
2932 		put_cred(ctx->sq_creds);
2933 	if (ctx->submitter_task)
2934 		put_task_struct(ctx->submitter_task);
2935 
2936 	/* there are no registered resources left, nobody uses it */
2937 	if (ctx->rsrc_node)
2938 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2939 
2940 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2941 
2942 #if defined(CONFIG_UNIX)
2943 	if (ctx->ring_sock) {
2944 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2945 		sock_release(ctx->ring_sock);
2946 	}
2947 #endif
2948 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2949 
2950 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2951 	if (ctx->mm_account) {
2952 		mmdrop(ctx->mm_account);
2953 		ctx->mm_account = NULL;
2954 	}
2955 	io_rings_free(ctx);
2956 	io_kbuf_mmap_list_free(ctx);
2957 
2958 	percpu_ref_exit(&ctx->refs);
2959 	free_uid(ctx->user);
2960 	io_req_caches_free(ctx);
2961 	if (ctx->hash_map)
2962 		io_wq_put_hash(ctx->hash_map);
2963 	kfree(ctx->cancel_table.hbs);
2964 	kfree(ctx->cancel_table_locked.hbs);
2965 	kfree(ctx->io_bl);
2966 	xa_destroy(&ctx->io_bl_xa);
2967 	kfree(ctx);
2968 }
2969 
2970 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2971 {
2972 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2973 					       poll_wq_task_work);
2974 
2975 	mutex_lock(&ctx->uring_lock);
2976 	ctx->poll_activated = true;
2977 	mutex_unlock(&ctx->uring_lock);
2978 
2979 	/*
2980 	 * Wake ups for some events between start of polling and activation
2981 	 * might've been lost due to loose synchronisation.
2982 	 */
2983 	wake_up_all(&ctx->poll_wq);
2984 	percpu_ref_put(&ctx->refs);
2985 }
2986 
2987 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2988 {
2989 	spin_lock(&ctx->completion_lock);
2990 	/* already activated or in progress */
2991 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2992 		goto out;
2993 	if (WARN_ON_ONCE(!ctx->task_complete))
2994 		goto out;
2995 	if (!ctx->submitter_task)
2996 		goto out;
2997 	/*
2998 	 * with ->submitter_task only the submitter task completes requests, we
2999 	 * only need to sync with it, which is done by injecting a tw
3000 	 */
3001 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
3002 	percpu_ref_get(&ctx->refs);
3003 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3004 		percpu_ref_put(&ctx->refs);
3005 out:
3006 	spin_unlock(&ctx->completion_lock);
3007 }
3008 
3009 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3010 {
3011 	struct io_ring_ctx *ctx = file->private_data;
3012 	__poll_t mask = 0;
3013 
3014 	if (unlikely(!ctx->poll_activated))
3015 		io_activate_pollwq(ctx);
3016 
3017 	poll_wait(file, &ctx->poll_wq, wait);
3018 	/*
3019 	 * synchronizes with barrier from wq_has_sleeper call in
3020 	 * io_commit_cqring
3021 	 */
3022 	smp_rmb();
3023 	if (!io_sqring_full(ctx))
3024 		mask |= EPOLLOUT | EPOLLWRNORM;
3025 
3026 	/*
3027 	 * Don't flush cqring overflow list here, just do a simple check.
3028 	 * Otherwise there could possible be ABBA deadlock:
3029 	 *      CPU0                    CPU1
3030 	 *      ----                    ----
3031 	 * lock(&ctx->uring_lock);
3032 	 *                              lock(&ep->mtx);
3033 	 *                              lock(&ctx->uring_lock);
3034 	 * lock(&ep->mtx);
3035 	 *
3036 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3037 	 * pushes them to do the flush.
3038 	 */
3039 
3040 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3041 		mask |= EPOLLIN | EPOLLRDNORM;
3042 
3043 	return mask;
3044 }
3045 
3046 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3047 {
3048 	const struct cred *creds;
3049 
3050 	creds = xa_erase(&ctx->personalities, id);
3051 	if (creds) {
3052 		put_cred(creds);
3053 		return 0;
3054 	}
3055 
3056 	return -EINVAL;
3057 }
3058 
3059 struct io_tctx_exit {
3060 	struct callback_head		task_work;
3061 	struct completion		completion;
3062 	struct io_ring_ctx		*ctx;
3063 };
3064 
3065 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3066 {
3067 	struct io_uring_task *tctx = current->io_uring;
3068 	struct io_tctx_exit *work;
3069 
3070 	work = container_of(cb, struct io_tctx_exit, task_work);
3071 	/*
3072 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3073 	 * node. It'll be removed by the end of cancellation, just ignore it.
3074 	 * tctx can be NULL if the queueing of this task_work raced with
3075 	 * work cancelation off the exec path.
3076 	 */
3077 	if (tctx && !atomic_read(&tctx->in_cancel))
3078 		io_uring_del_tctx_node((unsigned long)work->ctx);
3079 	complete(&work->completion);
3080 }
3081 
3082 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3083 {
3084 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3085 
3086 	return req->ctx == data;
3087 }
3088 
3089 static __cold void io_ring_exit_work(struct work_struct *work)
3090 {
3091 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3092 	unsigned long timeout = jiffies + HZ * 60 * 5;
3093 	unsigned long interval = HZ / 20;
3094 	struct io_tctx_exit exit;
3095 	struct io_tctx_node *node;
3096 	int ret;
3097 
3098 	/*
3099 	 * If we're doing polled IO and end up having requests being
3100 	 * submitted async (out-of-line), then completions can come in while
3101 	 * we're waiting for refs to drop. We need to reap these manually,
3102 	 * as nobody else will be looking for them.
3103 	 */
3104 	do {
3105 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3106 			mutex_lock(&ctx->uring_lock);
3107 			io_cqring_overflow_kill(ctx);
3108 			mutex_unlock(&ctx->uring_lock);
3109 		}
3110 
3111 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3112 			io_move_task_work_from_local(ctx);
3113 
3114 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3115 			cond_resched();
3116 
3117 		if (ctx->sq_data) {
3118 			struct io_sq_data *sqd = ctx->sq_data;
3119 			struct task_struct *tsk;
3120 
3121 			io_sq_thread_park(sqd);
3122 			tsk = sqd->thread;
3123 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3124 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3125 						io_cancel_ctx_cb, ctx, true);
3126 			io_sq_thread_unpark(sqd);
3127 		}
3128 
3129 		io_req_caches_free(ctx);
3130 
3131 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3132 			/* there is little hope left, don't run it too often */
3133 			interval = HZ * 60;
3134 		}
3135 		/*
3136 		 * This is really an uninterruptible wait, as it has to be
3137 		 * complete. But it's also run from a kworker, which doesn't
3138 		 * take signals, so it's fine to make it interruptible. This
3139 		 * avoids scenarios where we knowingly can wait much longer
3140 		 * on completions, for example if someone does a SIGSTOP on
3141 		 * a task that needs to finish task_work to make this loop
3142 		 * complete. That's a synthetic situation that should not
3143 		 * cause a stuck task backtrace, and hence a potential panic
3144 		 * on stuck tasks if that is enabled.
3145 		 */
3146 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3147 
3148 	init_completion(&exit.completion);
3149 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3150 	exit.ctx = ctx;
3151 
3152 	mutex_lock(&ctx->uring_lock);
3153 	while (!list_empty(&ctx->tctx_list)) {
3154 		WARN_ON_ONCE(time_after(jiffies, timeout));
3155 
3156 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3157 					ctx_node);
3158 		/* don't spin on a single task if cancellation failed */
3159 		list_rotate_left(&ctx->tctx_list);
3160 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3161 		if (WARN_ON_ONCE(ret))
3162 			continue;
3163 
3164 		mutex_unlock(&ctx->uring_lock);
3165 		/*
3166 		 * See comment above for
3167 		 * wait_for_completion_interruptible_timeout() on why this
3168 		 * wait is marked as interruptible.
3169 		 */
3170 		wait_for_completion_interruptible(&exit.completion);
3171 		mutex_lock(&ctx->uring_lock);
3172 	}
3173 	mutex_unlock(&ctx->uring_lock);
3174 	spin_lock(&ctx->completion_lock);
3175 	spin_unlock(&ctx->completion_lock);
3176 
3177 	/* pairs with RCU read section in io_req_local_work_add() */
3178 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3179 		synchronize_rcu();
3180 
3181 	io_ring_ctx_free(ctx);
3182 }
3183 
3184 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3185 {
3186 	unsigned long index;
3187 	struct creds *creds;
3188 
3189 	mutex_lock(&ctx->uring_lock);
3190 	percpu_ref_kill(&ctx->refs);
3191 	xa_for_each(&ctx->personalities, index, creds)
3192 		io_unregister_personality(ctx, index);
3193 	if (ctx->rings)
3194 		io_poll_remove_all(ctx, NULL, true);
3195 	mutex_unlock(&ctx->uring_lock);
3196 
3197 	/*
3198 	 * If we failed setting up the ctx, we might not have any rings
3199 	 * and therefore did not submit any requests
3200 	 */
3201 	if (ctx->rings)
3202 		io_kill_timeouts(ctx, NULL, true);
3203 
3204 	flush_delayed_work(&ctx->fallback_work);
3205 
3206 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3207 	/*
3208 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3209 	 * if we're exiting a ton of rings at the same time. It just adds
3210 	 * noise and overhead, there's no discernable change in runtime
3211 	 * over using system_wq.
3212 	 */
3213 	queue_work(system_unbound_wq, &ctx->exit_work);
3214 }
3215 
3216 static int io_uring_release(struct inode *inode, struct file *file)
3217 {
3218 	struct io_ring_ctx *ctx = file->private_data;
3219 
3220 	file->private_data = NULL;
3221 	io_ring_ctx_wait_and_kill(ctx);
3222 	return 0;
3223 }
3224 
3225 struct io_task_cancel {
3226 	struct task_struct *task;
3227 	bool all;
3228 };
3229 
3230 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3231 {
3232 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3233 	struct io_task_cancel *cancel = data;
3234 
3235 	return io_match_task_safe(req, cancel->task, cancel->all);
3236 }
3237 
3238 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3239 					 struct task_struct *task,
3240 					 bool cancel_all)
3241 {
3242 	struct io_defer_entry *de;
3243 	LIST_HEAD(list);
3244 
3245 	spin_lock(&ctx->completion_lock);
3246 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3247 		if (io_match_task_safe(de->req, task, cancel_all)) {
3248 			list_cut_position(&list, &ctx->defer_list, &de->list);
3249 			break;
3250 		}
3251 	}
3252 	spin_unlock(&ctx->completion_lock);
3253 	if (list_empty(&list))
3254 		return false;
3255 
3256 	while (!list_empty(&list)) {
3257 		de = list_first_entry(&list, struct io_defer_entry, list);
3258 		list_del_init(&de->list);
3259 		io_req_task_queue_fail(de->req, -ECANCELED);
3260 		kfree(de);
3261 	}
3262 	return true;
3263 }
3264 
3265 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3266 {
3267 	struct io_tctx_node *node;
3268 	enum io_wq_cancel cret;
3269 	bool ret = false;
3270 
3271 	mutex_lock(&ctx->uring_lock);
3272 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3273 		struct io_uring_task *tctx = node->task->io_uring;
3274 
3275 		/*
3276 		 * io_wq will stay alive while we hold uring_lock, because it's
3277 		 * killed after ctx nodes, which requires to take the lock.
3278 		 */
3279 		if (!tctx || !tctx->io_wq)
3280 			continue;
3281 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3282 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3283 	}
3284 	mutex_unlock(&ctx->uring_lock);
3285 
3286 	return ret;
3287 }
3288 
3289 static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx,
3290 		struct task_struct *task, bool cancel_all)
3291 {
3292 	struct hlist_node *tmp;
3293 	struct io_kiocb *req;
3294 	bool ret = false;
3295 
3296 	lockdep_assert_held(&ctx->uring_lock);
3297 
3298 	hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd,
3299 			hash_node) {
3300 		struct io_uring_cmd *cmd = io_kiocb_to_cmd(req,
3301 				struct io_uring_cmd);
3302 		struct file *file = req->file;
3303 
3304 		if (!cancel_all && req->task != task)
3305 			continue;
3306 
3307 		if (cmd->flags & IORING_URING_CMD_CANCELABLE) {
3308 			/* ->sqe isn't available if no async data */
3309 			if (!req_has_async_data(req))
3310 				cmd->sqe = NULL;
3311 			file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL);
3312 			ret = true;
3313 		}
3314 	}
3315 	io_submit_flush_completions(ctx);
3316 
3317 	return ret;
3318 }
3319 
3320 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3321 						struct task_struct *task,
3322 						bool cancel_all)
3323 {
3324 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3325 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3326 	enum io_wq_cancel cret;
3327 	bool ret = false;
3328 
3329 	/* set it so io_req_local_work_add() would wake us up */
3330 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3331 		atomic_set(&ctx->cq_wait_nr, 1);
3332 		smp_mb();
3333 	}
3334 
3335 	/* failed during ring init, it couldn't have issued any requests */
3336 	if (!ctx->rings)
3337 		return false;
3338 
3339 	if (!task) {
3340 		ret |= io_uring_try_cancel_iowq(ctx);
3341 	} else if (tctx && tctx->io_wq) {
3342 		/*
3343 		 * Cancels requests of all rings, not only @ctx, but
3344 		 * it's fine as the task is in exit/exec.
3345 		 */
3346 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3347 				       &cancel, true);
3348 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3349 	}
3350 
3351 	/* SQPOLL thread does its own polling */
3352 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3353 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3354 		while (!wq_list_empty(&ctx->iopoll_list)) {
3355 			io_iopoll_try_reap_events(ctx);
3356 			ret = true;
3357 			cond_resched();
3358 		}
3359 	}
3360 
3361 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3362 	    io_allowed_defer_tw_run(ctx))
3363 		ret |= io_run_local_work(ctx) > 0;
3364 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3365 	mutex_lock(&ctx->uring_lock);
3366 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3367 	ret |= io_waitid_remove_all(ctx, task, cancel_all);
3368 	ret |= io_futex_remove_all(ctx, task, cancel_all);
3369 	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3370 	mutex_unlock(&ctx->uring_lock);
3371 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3372 	if (task)
3373 		ret |= io_run_task_work() > 0;
3374 	return ret;
3375 }
3376 
3377 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3378 {
3379 	if (tracked)
3380 		return atomic_read(&tctx->inflight_tracked);
3381 	return percpu_counter_sum(&tctx->inflight);
3382 }
3383 
3384 /*
3385  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3386  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3387  */
3388 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3389 {
3390 	struct io_uring_task *tctx = current->io_uring;
3391 	struct io_ring_ctx *ctx;
3392 	struct io_tctx_node *node;
3393 	unsigned long index;
3394 	s64 inflight;
3395 	DEFINE_WAIT(wait);
3396 
3397 	WARN_ON_ONCE(sqd && sqd->thread != current);
3398 
3399 	if (!current->io_uring)
3400 		return;
3401 	if (tctx->io_wq)
3402 		io_wq_exit_start(tctx->io_wq);
3403 
3404 	atomic_inc(&tctx->in_cancel);
3405 	do {
3406 		bool loop = false;
3407 
3408 		io_uring_drop_tctx_refs(current);
3409 		/* read completions before cancelations */
3410 		inflight = tctx_inflight(tctx, !cancel_all);
3411 		if (!inflight)
3412 			break;
3413 
3414 		if (!sqd) {
3415 			xa_for_each(&tctx->xa, index, node) {
3416 				/* sqpoll task will cancel all its requests */
3417 				if (node->ctx->sq_data)
3418 					continue;
3419 				loop |= io_uring_try_cancel_requests(node->ctx,
3420 							current, cancel_all);
3421 			}
3422 		} else {
3423 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3424 				loop |= io_uring_try_cancel_requests(ctx,
3425 								     current,
3426 								     cancel_all);
3427 		}
3428 
3429 		if (loop) {
3430 			cond_resched();
3431 			continue;
3432 		}
3433 
3434 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3435 		io_run_task_work();
3436 		io_uring_drop_tctx_refs(current);
3437 		xa_for_each(&tctx->xa, index, node) {
3438 			if (!llist_empty(&node->ctx->work_llist)) {
3439 				WARN_ON_ONCE(node->ctx->submitter_task &&
3440 					     node->ctx->submitter_task != current);
3441 				goto end_wait;
3442 			}
3443 		}
3444 		/*
3445 		 * If we've seen completions, retry without waiting. This
3446 		 * avoids a race where a completion comes in before we did
3447 		 * prepare_to_wait().
3448 		 */
3449 		if (inflight == tctx_inflight(tctx, !cancel_all))
3450 			schedule();
3451 end_wait:
3452 		finish_wait(&tctx->wait, &wait);
3453 	} while (1);
3454 
3455 	io_uring_clean_tctx(tctx);
3456 	if (cancel_all) {
3457 		/*
3458 		 * We shouldn't run task_works after cancel, so just leave
3459 		 * ->in_cancel set for normal exit.
3460 		 */
3461 		atomic_dec(&tctx->in_cancel);
3462 		/* for exec all current's requests should be gone, kill tctx */
3463 		__io_uring_free(current);
3464 	}
3465 }
3466 
3467 void __io_uring_cancel(bool cancel_all)
3468 {
3469 	io_uring_cancel_generic(cancel_all, NULL);
3470 }
3471 
3472 static void *io_uring_validate_mmap_request(struct file *file,
3473 					    loff_t pgoff, size_t sz)
3474 {
3475 	struct io_ring_ctx *ctx = file->private_data;
3476 	loff_t offset = pgoff << PAGE_SHIFT;
3477 	struct page *page;
3478 	void *ptr;
3479 
3480 	switch (offset & IORING_OFF_MMAP_MASK) {
3481 	case IORING_OFF_SQ_RING:
3482 	case IORING_OFF_CQ_RING:
3483 		/* Don't allow mmap if the ring was setup without it */
3484 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3485 			return ERR_PTR(-EINVAL);
3486 		ptr = ctx->rings;
3487 		break;
3488 	case IORING_OFF_SQES:
3489 		/* Don't allow mmap if the ring was setup without it */
3490 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3491 			return ERR_PTR(-EINVAL);
3492 		ptr = ctx->sq_sqes;
3493 		break;
3494 	case IORING_OFF_PBUF_RING: {
3495 		unsigned int bgid;
3496 
3497 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3498 		rcu_read_lock();
3499 		ptr = io_pbuf_get_address(ctx, bgid);
3500 		rcu_read_unlock();
3501 		if (!ptr)
3502 			return ERR_PTR(-EINVAL);
3503 		break;
3504 		}
3505 	default:
3506 		return ERR_PTR(-EINVAL);
3507 	}
3508 
3509 	page = virt_to_head_page(ptr);
3510 	if (sz > page_size(page))
3511 		return ERR_PTR(-EINVAL);
3512 
3513 	return ptr;
3514 }
3515 
3516 #ifdef CONFIG_MMU
3517 
3518 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3519 {
3520 	size_t sz = vma->vm_end - vma->vm_start;
3521 	unsigned long pfn;
3522 	void *ptr;
3523 
3524 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3525 	if (IS_ERR(ptr))
3526 		return PTR_ERR(ptr);
3527 
3528 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3529 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3530 }
3531 
3532 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3533 			unsigned long addr, unsigned long len,
3534 			unsigned long pgoff, unsigned long flags)
3535 {
3536 	void *ptr;
3537 
3538 	/*
3539 	 * Do not allow to map to user-provided address to avoid breaking the
3540 	 * aliasing rules. Userspace is not able to guess the offset address of
3541 	 * kernel kmalloc()ed memory area.
3542 	 */
3543 	if (addr)
3544 		return -EINVAL;
3545 
3546 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3547 	if (IS_ERR(ptr))
3548 		return -ENOMEM;
3549 
3550 	/*
3551 	 * Some architectures have strong cache aliasing requirements.
3552 	 * For such architectures we need a coherent mapping which aliases
3553 	 * kernel memory *and* userspace memory. To achieve that:
3554 	 * - use a NULL file pointer to reference physical memory, and
3555 	 * - use the kernel virtual address of the shared io_uring context
3556 	 *   (instead of the userspace-provided address, which has to be 0UL
3557 	 *   anyway).
3558 	 * - use the same pgoff which the get_unmapped_area() uses to
3559 	 *   calculate the page colouring.
3560 	 * For architectures without such aliasing requirements, the
3561 	 * architecture will return any suitable mapping because addr is 0.
3562 	 */
3563 	filp = NULL;
3564 	flags |= MAP_SHARED;
3565 	pgoff = 0;	/* has been translated to ptr above */
3566 #ifdef SHM_COLOUR
3567 	addr = (uintptr_t) ptr;
3568 	pgoff = addr >> PAGE_SHIFT;
3569 #else
3570 	addr = 0UL;
3571 #endif
3572 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3573 }
3574 
3575 #else /* !CONFIG_MMU */
3576 
3577 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3578 {
3579 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3580 }
3581 
3582 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3583 {
3584 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3585 }
3586 
3587 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3588 	unsigned long addr, unsigned long len,
3589 	unsigned long pgoff, unsigned long flags)
3590 {
3591 	void *ptr;
3592 
3593 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3594 	if (IS_ERR(ptr))
3595 		return PTR_ERR(ptr);
3596 
3597 	return (unsigned long) ptr;
3598 }
3599 
3600 #endif /* !CONFIG_MMU */
3601 
3602 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3603 {
3604 	if (flags & IORING_ENTER_EXT_ARG) {
3605 		struct io_uring_getevents_arg arg;
3606 
3607 		if (argsz != sizeof(arg))
3608 			return -EINVAL;
3609 		if (copy_from_user(&arg, argp, sizeof(arg)))
3610 			return -EFAULT;
3611 	}
3612 	return 0;
3613 }
3614 
3615 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3616 			  struct __kernel_timespec __user **ts,
3617 			  const sigset_t __user **sig)
3618 {
3619 	struct io_uring_getevents_arg arg;
3620 
3621 	/*
3622 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3623 	 * is just a pointer to the sigset_t.
3624 	 */
3625 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3626 		*sig = (const sigset_t __user *) argp;
3627 		*ts = NULL;
3628 		return 0;
3629 	}
3630 
3631 	/*
3632 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3633 	 * timespec and sigset_t pointers if good.
3634 	 */
3635 	if (*argsz != sizeof(arg))
3636 		return -EINVAL;
3637 	if (copy_from_user(&arg, argp, sizeof(arg)))
3638 		return -EFAULT;
3639 	if (arg.pad)
3640 		return -EINVAL;
3641 	*sig = u64_to_user_ptr(arg.sigmask);
3642 	*argsz = arg.sigmask_sz;
3643 	*ts = u64_to_user_ptr(arg.ts);
3644 	return 0;
3645 }
3646 
3647 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3648 		u32, min_complete, u32, flags, const void __user *, argp,
3649 		size_t, argsz)
3650 {
3651 	struct io_ring_ctx *ctx;
3652 	struct file *file;
3653 	long ret;
3654 
3655 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3656 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3657 			       IORING_ENTER_REGISTERED_RING)))
3658 		return -EINVAL;
3659 
3660 	/*
3661 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3662 	 * need only dereference our task private array to find it.
3663 	 */
3664 	if (flags & IORING_ENTER_REGISTERED_RING) {
3665 		struct io_uring_task *tctx = current->io_uring;
3666 
3667 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3668 			return -EINVAL;
3669 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3670 		file = tctx->registered_rings[fd];
3671 		if (unlikely(!file))
3672 			return -EBADF;
3673 	} else {
3674 		file = fget(fd);
3675 		if (unlikely(!file))
3676 			return -EBADF;
3677 		ret = -EOPNOTSUPP;
3678 		if (unlikely(!io_is_uring_fops(file)))
3679 			goto out;
3680 	}
3681 
3682 	ctx = file->private_data;
3683 	ret = -EBADFD;
3684 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3685 		goto out;
3686 
3687 	/*
3688 	 * For SQ polling, the thread will do all submissions and completions.
3689 	 * Just return the requested submit count, and wake the thread if
3690 	 * we were asked to.
3691 	 */
3692 	ret = 0;
3693 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3694 		io_cqring_overflow_flush(ctx);
3695 
3696 		if (unlikely(ctx->sq_data->thread == NULL)) {
3697 			ret = -EOWNERDEAD;
3698 			goto out;
3699 		}
3700 		if (flags & IORING_ENTER_SQ_WAKEUP)
3701 			wake_up(&ctx->sq_data->wait);
3702 		if (flags & IORING_ENTER_SQ_WAIT)
3703 			io_sqpoll_wait_sq(ctx);
3704 
3705 		ret = to_submit;
3706 	} else if (to_submit) {
3707 		ret = io_uring_add_tctx_node(ctx);
3708 		if (unlikely(ret))
3709 			goto out;
3710 
3711 		mutex_lock(&ctx->uring_lock);
3712 		ret = io_submit_sqes(ctx, to_submit);
3713 		if (ret != to_submit) {
3714 			mutex_unlock(&ctx->uring_lock);
3715 			goto out;
3716 		}
3717 		if (flags & IORING_ENTER_GETEVENTS) {
3718 			if (ctx->syscall_iopoll)
3719 				goto iopoll_locked;
3720 			/*
3721 			 * Ignore errors, we'll soon call io_cqring_wait() and
3722 			 * it should handle ownership problems if any.
3723 			 */
3724 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3725 				(void)io_run_local_work_locked(ctx);
3726 		}
3727 		mutex_unlock(&ctx->uring_lock);
3728 	}
3729 
3730 	if (flags & IORING_ENTER_GETEVENTS) {
3731 		int ret2;
3732 
3733 		if (ctx->syscall_iopoll) {
3734 			/*
3735 			 * We disallow the app entering submit/complete with
3736 			 * polling, but we still need to lock the ring to
3737 			 * prevent racing with polled issue that got punted to
3738 			 * a workqueue.
3739 			 */
3740 			mutex_lock(&ctx->uring_lock);
3741 iopoll_locked:
3742 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3743 			if (likely(!ret2)) {
3744 				min_complete = min(min_complete,
3745 						   ctx->cq_entries);
3746 				ret2 = io_iopoll_check(ctx, min_complete);
3747 			}
3748 			mutex_unlock(&ctx->uring_lock);
3749 		} else {
3750 			const sigset_t __user *sig;
3751 			struct __kernel_timespec __user *ts;
3752 
3753 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3754 			if (likely(!ret2)) {
3755 				min_complete = min(min_complete,
3756 						   ctx->cq_entries);
3757 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3758 						      argsz, ts);
3759 			}
3760 		}
3761 
3762 		if (!ret) {
3763 			ret = ret2;
3764 
3765 			/*
3766 			 * EBADR indicates that one or more CQE were dropped.
3767 			 * Once the user has been informed we can clear the bit
3768 			 * as they are obviously ok with those drops.
3769 			 */
3770 			if (unlikely(ret2 == -EBADR))
3771 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3772 					  &ctx->check_cq);
3773 		}
3774 	}
3775 out:
3776 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3777 		fput(file);
3778 	return ret;
3779 }
3780 
3781 static const struct file_operations io_uring_fops = {
3782 	.release	= io_uring_release,
3783 	.mmap		= io_uring_mmap,
3784 #ifndef CONFIG_MMU
3785 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3786 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3787 #else
3788 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3789 #endif
3790 	.poll		= io_uring_poll,
3791 #ifdef CONFIG_PROC_FS
3792 	.show_fdinfo	= io_uring_show_fdinfo,
3793 #endif
3794 };
3795 
3796 bool io_is_uring_fops(struct file *file)
3797 {
3798 	return file->f_op == &io_uring_fops;
3799 }
3800 
3801 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3802 					 struct io_uring_params *p)
3803 {
3804 	struct io_rings *rings;
3805 	size_t size, sq_array_offset;
3806 	void *ptr;
3807 
3808 	/* make sure these are sane, as we already accounted them */
3809 	ctx->sq_entries = p->sq_entries;
3810 	ctx->cq_entries = p->cq_entries;
3811 
3812 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3813 	if (size == SIZE_MAX)
3814 		return -EOVERFLOW;
3815 
3816 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3817 		rings = io_mem_alloc(size);
3818 	else
3819 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3820 
3821 	if (IS_ERR(rings))
3822 		return PTR_ERR(rings);
3823 
3824 	ctx->rings = rings;
3825 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3826 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3827 	rings->sq_ring_mask = p->sq_entries - 1;
3828 	rings->cq_ring_mask = p->cq_entries - 1;
3829 	rings->sq_ring_entries = p->sq_entries;
3830 	rings->cq_ring_entries = p->cq_entries;
3831 
3832 	if (p->flags & IORING_SETUP_SQE128)
3833 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3834 	else
3835 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3836 	if (size == SIZE_MAX) {
3837 		io_rings_free(ctx);
3838 		return -EOVERFLOW;
3839 	}
3840 
3841 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3842 		ptr = io_mem_alloc(size);
3843 	else
3844 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3845 
3846 	if (IS_ERR(ptr)) {
3847 		io_rings_free(ctx);
3848 		return PTR_ERR(ptr);
3849 	}
3850 
3851 	ctx->sq_sqes = ptr;
3852 	return 0;
3853 }
3854 
3855 static int io_uring_install_fd(struct file *file)
3856 {
3857 	int fd;
3858 
3859 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3860 	if (fd < 0)
3861 		return fd;
3862 	fd_install(fd, file);
3863 	return fd;
3864 }
3865 
3866 /*
3867  * Allocate an anonymous fd, this is what constitutes the application
3868  * visible backing of an io_uring instance. The application mmaps this
3869  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3870  * we have to tie this fd to a socket for file garbage collection purposes.
3871  */
3872 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3873 {
3874 	struct file *file;
3875 #if defined(CONFIG_UNIX)
3876 	int ret;
3877 
3878 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3879 				&ctx->ring_sock);
3880 	if (ret)
3881 		return ERR_PTR(ret);
3882 #endif
3883 
3884 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3885 					 O_RDWR | O_CLOEXEC, NULL);
3886 #if defined(CONFIG_UNIX)
3887 	if (IS_ERR(file)) {
3888 		sock_release(ctx->ring_sock);
3889 		ctx->ring_sock = NULL;
3890 	} else {
3891 		ctx->ring_sock->file = file;
3892 	}
3893 #endif
3894 	return file;
3895 }
3896 
3897 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3898 				  struct io_uring_params __user *params)
3899 {
3900 	struct io_ring_ctx *ctx;
3901 	struct io_uring_task *tctx;
3902 	struct file *file;
3903 	int ret;
3904 
3905 	if (!entries)
3906 		return -EINVAL;
3907 	if (entries > IORING_MAX_ENTRIES) {
3908 		if (!(p->flags & IORING_SETUP_CLAMP))
3909 			return -EINVAL;
3910 		entries = IORING_MAX_ENTRIES;
3911 	}
3912 
3913 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3914 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3915 		return -EINVAL;
3916 
3917 	/*
3918 	 * Use twice as many entries for the CQ ring. It's possible for the
3919 	 * application to drive a higher depth than the size of the SQ ring,
3920 	 * since the sqes are only used at submission time. This allows for
3921 	 * some flexibility in overcommitting a bit. If the application has
3922 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3923 	 * of CQ ring entries manually.
3924 	 */
3925 	p->sq_entries = roundup_pow_of_two(entries);
3926 	if (p->flags & IORING_SETUP_CQSIZE) {
3927 		/*
3928 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3929 		 * to a power-of-two, if it isn't already. We do NOT impose
3930 		 * any cq vs sq ring sizing.
3931 		 */
3932 		if (!p->cq_entries)
3933 			return -EINVAL;
3934 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3935 			if (!(p->flags & IORING_SETUP_CLAMP))
3936 				return -EINVAL;
3937 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3938 		}
3939 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3940 		if (p->cq_entries < p->sq_entries)
3941 			return -EINVAL;
3942 	} else {
3943 		p->cq_entries = 2 * p->sq_entries;
3944 	}
3945 
3946 	ctx = io_ring_ctx_alloc(p);
3947 	if (!ctx)
3948 		return -ENOMEM;
3949 
3950 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3951 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3952 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3953 		ctx->task_complete = true;
3954 
3955 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3956 		ctx->lockless_cq = true;
3957 
3958 	/*
3959 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3960 	 * purposes, see io_activate_pollwq()
3961 	 */
3962 	if (!ctx->task_complete)
3963 		ctx->poll_activated = true;
3964 
3965 	/*
3966 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3967 	 * space applications don't need to do io completion events
3968 	 * polling again, they can rely on io_sq_thread to do polling
3969 	 * work, which can reduce cpu usage and uring_lock contention.
3970 	 */
3971 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3972 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3973 		ctx->syscall_iopoll = 1;
3974 
3975 	ctx->compat = in_compat_syscall();
3976 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3977 		ctx->user = get_uid(current_user());
3978 
3979 	/*
3980 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3981 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3982 	 */
3983 	ret = -EINVAL;
3984 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3985 		/* IPI related flags don't make sense with SQPOLL */
3986 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3987 				  IORING_SETUP_TASKRUN_FLAG |
3988 				  IORING_SETUP_DEFER_TASKRUN))
3989 			goto err;
3990 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3991 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3992 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3993 	} else {
3994 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3995 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3996 			goto err;
3997 		ctx->notify_method = TWA_SIGNAL;
3998 	}
3999 
4000 	/*
4001 	 * For DEFER_TASKRUN we require the completion task to be the same as the
4002 	 * submission task. This implies that there is only one submitter, so enforce
4003 	 * that.
4004 	 */
4005 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
4006 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
4007 		goto err;
4008 	}
4009 
4010 	/*
4011 	 * This is just grabbed for accounting purposes. When a process exits,
4012 	 * the mm is exited and dropped before the files, hence we need to hang
4013 	 * on to this mm purely for the purposes of being able to unaccount
4014 	 * memory (locked/pinned vm). It's not used for anything else.
4015 	 */
4016 	mmgrab(current->mm);
4017 	ctx->mm_account = current->mm;
4018 
4019 	ret = io_allocate_scq_urings(ctx, p);
4020 	if (ret)
4021 		goto err;
4022 
4023 	ret = io_sq_offload_create(ctx, p);
4024 	if (ret)
4025 		goto err;
4026 
4027 	ret = io_rsrc_init(ctx);
4028 	if (ret)
4029 		goto err;
4030 
4031 	p->sq_off.head = offsetof(struct io_rings, sq.head);
4032 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
4033 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
4034 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
4035 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
4036 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
4037 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
4038 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4039 	p->sq_off.resv1 = 0;
4040 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4041 		p->sq_off.user_addr = 0;
4042 
4043 	p->cq_off.head = offsetof(struct io_rings, cq.head);
4044 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4045 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4046 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4047 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4048 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
4049 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4050 	p->cq_off.resv1 = 0;
4051 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4052 		p->cq_off.user_addr = 0;
4053 
4054 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4055 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4056 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4057 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4058 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4059 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4060 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4061 
4062 	if (copy_to_user(params, p, sizeof(*p))) {
4063 		ret = -EFAULT;
4064 		goto err;
4065 	}
4066 
4067 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4068 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4069 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4070 
4071 	file = io_uring_get_file(ctx);
4072 	if (IS_ERR(file)) {
4073 		ret = PTR_ERR(file);
4074 		goto err;
4075 	}
4076 
4077 	ret = __io_uring_add_tctx_node(ctx);
4078 	if (ret)
4079 		goto err_fput;
4080 	tctx = current->io_uring;
4081 
4082 	/*
4083 	 * Install ring fd as the very last thing, so we don't risk someone
4084 	 * having closed it before we finish setup
4085 	 */
4086 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4087 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4088 	else
4089 		ret = io_uring_install_fd(file);
4090 	if (ret < 0)
4091 		goto err_fput;
4092 
4093 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4094 	return ret;
4095 err:
4096 	io_ring_ctx_wait_and_kill(ctx);
4097 	return ret;
4098 err_fput:
4099 	fput(file);
4100 	return ret;
4101 }
4102 
4103 /*
4104  * Sets up an aio uring context, and returns the fd. Applications asks for a
4105  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4106  * params structure passed in.
4107  */
4108 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4109 {
4110 	struct io_uring_params p;
4111 	int i;
4112 
4113 	if (copy_from_user(&p, params, sizeof(p)))
4114 		return -EFAULT;
4115 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4116 		if (p.resv[i])
4117 			return -EINVAL;
4118 	}
4119 
4120 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4121 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4122 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4123 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4124 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4125 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4126 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4127 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4128 			IORING_SETUP_NO_SQARRAY))
4129 		return -EINVAL;
4130 
4131 	return io_uring_create(entries, &p, params);
4132 }
4133 
4134 static inline bool io_uring_allowed(void)
4135 {
4136 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4137 	kgid_t io_uring_group;
4138 
4139 	if (disabled == 2)
4140 		return false;
4141 
4142 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4143 		return true;
4144 
4145 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4146 	if (!gid_valid(io_uring_group))
4147 		return false;
4148 
4149 	return in_group_p(io_uring_group);
4150 }
4151 
4152 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4153 		struct io_uring_params __user *, params)
4154 {
4155 	if (!io_uring_allowed())
4156 		return -EPERM;
4157 
4158 	return io_uring_setup(entries, params);
4159 }
4160 
4161 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4162 			   unsigned nr_args)
4163 {
4164 	struct io_uring_probe *p;
4165 	size_t size;
4166 	int i, ret;
4167 
4168 	size = struct_size(p, ops, nr_args);
4169 	if (size == SIZE_MAX)
4170 		return -EOVERFLOW;
4171 	p = kzalloc(size, GFP_KERNEL);
4172 	if (!p)
4173 		return -ENOMEM;
4174 
4175 	ret = -EFAULT;
4176 	if (copy_from_user(p, arg, size))
4177 		goto out;
4178 	ret = -EINVAL;
4179 	if (memchr_inv(p, 0, size))
4180 		goto out;
4181 
4182 	p->last_op = IORING_OP_LAST - 1;
4183 	if (nr_args > IORING_OP_LAST)
4184 		nr_args = IORING_OP_LAST;
4185 
4186 	for (i = 0; i < nr_args; i++) {
4187 		p->ops[i].op = i;
4188 		if (!io_issue_defs[i].not_supported)
4189 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4190 	}
4191 	p->ops_len = i;
4192 
4193 	ret = 0;
4194 	if (copy_to_user(arg, p, size))
4195 		ret = -EFAULT;
4196 out:
4197 	kfree(p);
4198 	return ret;
4199 }
4200 
4201 static int io_register_personality(struct io_ring_ctx *ctx)
4202 {
4203 	const struct cred *creds;
4204 	u32 id;
4205 	int ret;
4206 
4207 	creds = get_current_cred();
4208 
4209 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4210 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4211 	if (ret < 0) {
4212 		put_cred(creds);
4213 		return ret;
4214 	}
4215 	return id;
4216 }
4217 
4218 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4219 					   void __user *arg, unsigned int nr_args)
4220 {
4221 	struct io_uring_restriction *res;
4222 	size_t size;
4223 	int i, ret;
4224 
4225 	/* Restrictions allowed only if rings started disabled */
4226 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4227 		return -EBADFD;
4228 
4229 	/* We allow only a single restrictions registration */
4230 	if (ctx->restrictions.registered)
4231 		return -EBUSY;
4232 
4233 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4234 		return -EINVAL;
4235 
4236 	size = array_size(nr_args, sizeof(*res));
4237 	if (size == SIZE_MAX)
4238 		return -EOVERFLOW;
4239 
4240 	res = memdup_user(arg, size);
4241 	if (IS_ERR(res))
4242 		return PTR_ERR(res);
4243 
4244 	ret = 0;
4245 
4246 	for (i = 0; i < nr_args; i++) {
4247 		switch (res[i].opcode) {
4248 		case IORING_RESTRICTION_REGISTER_OP:
4249 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4250 				ret = -EINVAL;
4251 				goto out;
4252 			}
4253 
4254 			__set_bit(res[i].register_op,
4255 				  ctx->restrictions.register_op);
4256 			break;
4257 		case IORING_RESTRICTION_SQE_OP:
4258 			if (res[i].sqe_op >= IORING_OP_LAST) {
4259 				ret = -EINVAL;
4260 				goto out;
4261 			}
4262 
4263 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4264 			break;
4265 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4266 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4267 			break;
4268 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4269 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4270 			break;
4271 		default:
4272 			ret = -EINVAL;
4273 			goto out;
4274 		}
4275 	}
4276 
4277 out:
4278 	/* Reset all restrictions if an error happened */
4279 	if (ret != 0)
4280 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4281 	else
4282 		ctx->restrictions.registered = true;
4283 
4284 	kfree(res);
4285 	return ret;
4286 }
4287 
4288 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4289 {
4290 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4291 		return -EBADFD;
4292 
4293 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4294 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4295 		/*
4296 		 * Lazy activation attempts would fail if it was polled before
4297 		 * submitter_task is set.
4298 		 */
4299 		if (wq_has_sleeper(&ctx->poll_wq))
4300 			io_activate_pollwq(ctx);
4301 	}
4302 
4303 	if (ctx->restrictions.registered)
4304 		ctx->restricted = 1;
4305 
4306 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4307 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4308 		wake_up(&ctx->sq_data->wait);
4309 	return 0;
4310 }
4311 
4312 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4313 					 cpumask_var_t new_mask)
4314 {
4315 	int ret;
4316 
4317 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4318 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4319 	} else {
4320 		mutex_unlock(&ctx->uring_lock);
4321 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4322 		mutex_lock(&ctx->uring_lock);
4323 	}
4324 
4325 	return ret;
4326 }
4327 
4328 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4329 				       void __user *arg, unsigned len)
4330 {
4331 	cpumask_var_t new_mask;
4332 	int ret;
4333 
4334 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4335 		return -ENOMEM;
4336 
4337 	cpumask_clear(new_mask);
4338 	if (len > cpumask_size())
4339 		len = cpumask_size();
4340 
4341 	if (in_compat_syscall()) {
4342 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4343 					(const compat_ulong_t __user *)arg,
4344 					len * 8 /* CHAR_BIT */);
4345 	} else {
4346 		ret = copy_from_user(new_mask, arg, len);
4347 	}
4348 
4349 	if (ret) {
4350 		free_cpumask_var(new_mask);
4351 		return -EFAULT;
4352 	}
4353 
4354 	ret = __io_register_iowq_aff(ctx, new_mask);
4355 	free_cpumask_var(new_mask);
4356 	return ret;
4357 }
4358 
4359 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4360 {
4361 	return __io_register_iowq_aff(ctx, NULL);
4362 }
4363 
4364 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4365 					       void __user *arg)
4366 	__must_hold(&ctx->uring_lock)
4367 {
4368 	struct io_tctx_node *node;
4369 	struct io_uring_task *tctx = NULL;
4370 	struct io_sq_data *sqd = NULL;
4371 	__u32 new_count[2];
4372 	int i, ret;
4373 
4374 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4375 		return -EFAULT;
4376 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4377 		if (new_count[i] > INT_MAX)
4378 			return -EINVAL;
4379 
4380 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4381 		sqd = ctx->sq_data;
4382 		if (sqd) {
4383 			/*
4384 			 * Observe the correct sqd->lock -> ctx->uring_lock
4385 			 * ordering. Fine to drop uring_lock here, we hold
4386 			 * a ref to the ctx.
4387 			 */
4388 			refcount_inc(&sqd->refs);
4389 			mutex_unlock(&ctx->uring_lock);
4390 			mutex_lock(&sqd->lock);
4391 			mutex_lock(&ctx->uring_lock);
4392 			if (sqd->thread)
4393 				tctx = sqd->thread->io_uring;
4394 		}
4395 	} else {
4396 		tctx = current->io_uring;
4397 	}
4398 
4399 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4400 
4401 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4402 		if (new_count[i])
4403 			ctx->iowq_limits[i] = new_count[i];
4404 	ctx->iowq_limits_set = true;
4405 
4406 	if (tctx && tctx->io_wq) {
4407 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4408 		if (ret)
4409 			goto err;
4410 	} else {
4411 		memset(new_count, 0, sizeof(new_count));
4412 	}
4413 
4414 	if (sqd) {
4415 		mutex_unlock(&sqd->lock);
4416 		io_put_sq_data(sqd);
4417 	}
4418 
4419 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4420 		return -EFAULT;
4421 
4422 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4423 	if (sqd)
4424 		return 0;
4425 
4426 	/* now propagate the restriction to all registered users */
4427 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4428 		struct io_uring_task *tctx = node->task->io_uring;
4429 
4430 		if (WARN_ON_ONCE(!tctx->io_wq))
4431 			continue;
4432 
4433 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4434 			new_count[i] = ctx->iowq_limits[i];
4435 		/* ignore errors, it always returns zero anyway */
4436 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4437 	}
4438 	return 0;
4439 err:
4440 	if (sqd) {
4441 		mutex_unlock(&sqd->lock);
4442 		io_put_sq_data(sqd);
4443 	}
4444 	return ret;
4445 }
4446 
4447 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4448 			       void __user *arg, unsigned nr_args)
4449 	__releases(ctx->uring_lock)
4450 	__acquires(ctx->uring_lock)
4451 {
4452 	int ret;
4453 
4454 	/*
4455 	 * We don't quiesce the refs for register anymore and so it can't be
4456 	 * dying as we're holding a file ref here.
4457 	 */
4458 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4459 		return -ENXIO;
4460 
4461 	if (ctx->submitter_task && ctx->submitter_task != current)
4462 		return -EEXIST;
4463 
4464 	if (ctx->restricted) {
4465 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4466 		if (!test_bit(opcode, ctx->restrictions.register_op))
4467 			return -EACCES;
4468 	}
4469 
4470 	switch (opcode) {
4471 	case IORING_REGISTER_BUFFERS:
4472 		ret = -EFAULT;
4473 		if (!arg)
4474 			break;
4475 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4476 		break;
4477 	case IORING_UNREGISTER_BUFFERS:
4478 		ret = -EINVAL;
4479 		if (arg || nr_args)
4480 			break;
4481 		ret = io_sqe_buffers_unregister(ctx);
4482 		break;
4483 	case IORING_REGISTER_FILES:
4484 		ret = -EFAULT;
4485 		if (!arg)
4486 			break;
4487 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4488 		break;
4489 	case IORING_UNREGISTER_FILES:
4490 		ret = -EINVAL;
4491 		if (arg || nr_args)
4492 			break;
4493 		ret = io_sqe_files_unregister(ctx);
4494 		break;
4495 	case IORING_REGISTER_FILES_UPDATE:
4496 		ret = io_register_files_update(ctx, arg, nr_args);
4497 		break;
4498 	case IORING_REGISTER_EVENTFD:
4499 		ret = -EINVAL;
4500 		if (nr_args != 1)
4501 			break;
4502 		ret = io_eventfd_register(ctx, arg, 0);
4503 		break;
4504 	case IORING_REGISTER_EVENTFD_ASYNC:
4505 		ret = -EINVAL;
4506 		if (nr_args != 1)
4507 			break;
4508 		ret = io_eventfd_register(ctx, arg, 1);
4509 		break;
4510 	case IORING_UNREGISTER_EVENTFD:
4511 		ret = -EINVAL;
4512 		if (arg || nr_args)
4513 			break;
4514 		ret = io_eventfd_unregister(ctx);
4515 		break;
4516 	case IORING_REGISTER_PROBE:
4517 		ret = -EINVAL;
4518 		if (!arg || nr_args > 256)
4519 			break;
4520 		ret = io_probe(ctx, arg, nr_args);
4521 		break;
4522 	case IORING_REGISTER_PERSONALITY:
4523 		ret = -EINVAL;
4524 		if (arg || nr_args)
4525 			break;
4526 		ret = io_register_personality(ctx);
4527 		break;
4528 	case IORING_UNREGISTER_PERSONALITY:
4529 		ret = -EINVAL;
4530 		if (arg)
4531 			break;
4532 		ret = io_unregister_personality(ctx, nr_args);
4533 		break;
4534 	case IORING_REGISTER_ENABLE_RINGS:
4535 		ret = -EINVAL;
4536 		if (arg || nr_args)
4537 			break;
4538 		ret = io_register_enable_rings(ctx);
4539 		break;
4540 	case IORING_REGISTER_RESTRICTIONS:
4541 		ret = io_register_restrictions(ctx, arg, nr_args);
4542 		break;
4543 	case IORING_REGISTER_FILES2:
4544 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4545 		break;
4546 	case IORING_REGISTER_FILES_UPDATE2:
4547 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4548 					      IORING_RSRC_FILE);
4549 		break;
4550 	case IORING_REGISTER_BUFFERS2:
4551 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4552 		break;
4553 	case IORING_REGISTER_BUFFERS_UPDATE:
4554 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4555 					      IORING_RSRC_BUFFER);
4556 		break;
4557 	case IORING_REGISTER_IOWQ_AFF:
4558 		ret = -EINVAL;
4559 		if (!arg || !nr_args)
4560 			break;
4561 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4562 		break;
4563 	case IORING_UNREGISTER_IOWQ_AFF:
4564 		ret = -EINVAL;
4565 		if (arg || nr_args)
4566 			break;
4567 		ret = io_unregister_iowq_aff(ctx);
4568 		break;
4569 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4570 		ret = -EINVAL;
4571 		if (!arg || nr_args != 2)
4572 			break;
4573 		ret = io_register_iowq_max_workers(ctx, arg);
4574 		break;
4575 	case IORING_REGISTER_RING_FDS:
4576 		ret = io_ringfd_register(ctx, arg, nr_args);
4577 		break;
4578 	case IORING_UNREGISTER_RING_FDS:
4579 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4580 		break;
4581 	case IORING_REGISTER_PBUF_RING:
4582 		ret = -EINVAL;
4583 		if (!arg || nr_args != 1)
4584 			break;
4585 		ret = io_register_pbuf_ring(ctx, arg);
4586 		break;
4587 	case IORING_UNREGISTER_PBUF_RING:
4588 		ret = -EINVAL;
4589 		if (!arg || nr_args != 1)
4590 			break;
4591 		ret = io_unregister_pbuf_ring(ctx, arg);
4592 		break;
4593 	case IORING_REGISTER_SYNC_CANCEL:
4594 		ret = -EINVAL;
4595 		if (!arg || nr_args != 1)
4596 			break;
4597 		ret = io_sync_cancel(ctx, arg);
4598 		break;
4599 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4600 		ret = -EINVAL;
4601 		if (!arg || nr_args)
4602 			break;
4603 		ret = io_register_file_alloc_range(ctx, arg);
4604 		break;
4605 	default:
4606 		ret = -EINVAL;
4607 		break;
4608 	}
4609 
4610 	return ret;
4611 }
4612 
4613 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4614 		void __user *, arg, unsigned int, nr_args)
4615 {
4616 	struct io_ring_ctx *ctx;
4617 	long ret = -EBADF;
4618 	struct file *file;
4619 	bool use_registered_ring;
4620 
4621 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4622 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4623 
4624 	if (opcode >= IORING_REGISTER_LAST)
4625 		return -EINVAL;
4626 
4627 	if (use_registered_ring) {
4628 		/*
4629 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4630 		 * need only dereference our task private array to find it.
4631 		 */
4632 		struct io_uring_task *tctx = current->io_uring;
4633 
4634 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4635 			return -EINVAL;
4636 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4637 		file = tctx->registered_rings[fd];
4638 		if (unlikely(!file))
4639 			return -EBADF;
4640 	} else {
4641 		file = fget(fd);
4642 		if (unlikely(!file))
4643 			return -EBADF;
4644 		ret = -EOPNOTSUPP;
4645 		if (!io_is_uring_fops(file))
4646 			goto out_fput;
4647 	}
4648 
4649 	ctx = file->private_data;
4650 
4651 	mutex_lock(&ctx->uring_lock);
4652 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4653 	mutex_unlock(&ctx->uring_lock);
4654 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4655 out_fput:
4656 	if (!use_registered_ring)
4657 		fput(file);
4658 	return ret;
4659 }
4660 
4661 static int __init io_uring_init(void)
4662 {
4663 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4664 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4665 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4666 } while (0)
4667 
4668 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4669 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4670 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4671 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4672 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4673 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4674 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4675 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4676 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4677 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4678 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4679 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4680 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4681 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4682 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4683 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4684 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4685 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4686 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4687 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4688 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4689 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4690 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4691 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4692 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4693 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4694 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4695 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4696 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4697 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4698 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4699 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4700 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4701 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4702 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4703 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4704 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4705 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4706 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4707 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4708 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4709 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4710 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4711 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4712 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4713 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4714 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4715 
4716 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4717 		     sizeof(struct io_uring_rsrc_update));
4718 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4719 		     sizeof(struct io_uring_rsrc_update2));
4720 
4721 	/* ->buf_index is u16 */
4722 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4723 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4724 		     offsetof(struct io_uring_buf_ring, tail));
4725 
4726 	/* should fit into one byte */
4727 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4728 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4729 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4730 
4731 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4732 
4733 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4734 
4735 	/* top 8bits are for internal use */
4736 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4737 
4738 	io_uring_optable_init();
4739 
4740 	/*
4741 	 * Allow user copy in the per-command field, which starts after the
4742 	 * file in io_kiocb and until the opcode field. The openat2 handling
4743 	 * requires copying in user memory into the io_kiocb object in that
4744 	 * range, and HARDENED_USERCOPY will complain if we haven't
4745 	 * correctly annotated this range.
4746 	 */
4747 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4748 				sizeof(struct io_kiocb), 0,
4749 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4750 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4751 				offsetof(struct io_kiocb, cmd.data),
4752 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4753 	io_buf_cachep = kmem_cache_create("io_buffer", sizeof(struct io_buffer), 0,
4754 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
4755 					  NULL);
4756 
4757 #ifdef CONFIG_SYSCTL
4758 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4759 #endif
4760 
4761 	return 0;
4762 };
4763 __initcall(io_uring_init);
4764