1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 #include "zcrx.h" 101 102 #include "timeout.h" 103 #include "poll.h" 104 #include "rw.h" 105 #include "alloc_cache.h" 106 #include "eventfd.h" 107 108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 109 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 110 111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 113 114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 118 REQ_F_ASYNC_DATA) 119 120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \ 121 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 #define IO_LOCAL_TW_DEFAULT_MAX 20 128 129 struct io_defer_entry { 130 struct list_head list; 131 struct io_kiocb *req; 132 }; 133 134 /* requests with any of those set should undergo io_disarm_next() */ 135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 136 137 /* 138 * No waiters. It's larger than any valid value of the tw counter 139 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 140 */ 141 #define IO_CQ_WAKE_INIT (-1U) 142 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 143 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct io_uring_task *tctx, 147 bool cancel_all, 148 bool is_sqpoll_thread); 149 150 static void io_queue_sqe(struct io_kiocb *req); 151 static void __io_req_caches_free(struct io_ring_ctx *ctx); 152 153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 154 155 struct kmem_cache *req_cachep; 156 static struct workqueue_struct *iou_wq __ro_after_init; 157 158 static int __read_mostly sysctl_io_uring_disabled; 159 static int __read_mostly sysctl_io_uring_group = -1; 160 161 #ifdef CONFIG_SYSCTL 162 static const struct ctl_table kernel_io_uring_disabled_table[] = { 163 { 164 .procname = "io_uring_disabled", 165 .data = &sysctl_io_uring_disabled, 166 .maxlen = sizeof(sysctl_io_uring_disabled), 167 .mode = 0644, 168 .proc_handler = proc_dointvec_minmax, 169 .extra1 = SYSCTL_ZERO, 170 .extra2 = SYSCTL_TWO, 171 }, 172 { 173 .procname = "io_uring_group", 174 .data = &sysctl_io_uring_group, 175 .maxlen = sizeof(gid_t), 176 .mode = 0644, 177 .proc_handler = proc_dointvec, 178 }, 179 }; 180 #endif 181 182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 183 { 184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 185 } 186 187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 188 { 189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 190 } 191 192 static bool io_match_linked(struct io_kiocb *head) 193 { 194 struct io_kiocb *req; 195 196 io_for_each_link(req, head) { 197 if (req->flags & REQ_F_INFLIGHT) 198 return true; 199 } 200 return false; 201 } 202 203 /* 204 * As io_match_task() but protected against racing with linked timeouts. 205 * User must not hold timeout_lock. 206 */ 207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 208 bool cancel_all) 209 { 210 bool matched; 211 212 if (tctx && head->tctx != tctx) 213 return false; 214 if (cancel_all) 215 return true; 216 217 if (head->flags & REQ_F_LINK_TIMEOUT) { 218 struct io_ring_ctx *ctx = head->ctx; 219 220 /* protect against races with linked timeouts */ 221 raw_spin_lock_irq(&ctx->timeout_lock); 222 matched = io_match_linked(head); 223 raw_spin_unlock_irq(&ctx->timeout_lock); 224 } else { 225 matched = io_match_linked(head); 226 } 227 return matched; 228 } 229 230 static inline void req_fail_link_node(struct io_kiocb *req, int res) 231 { 232 req_set_fail(req); 233 io_req_set_res(req, res, 0); 234 } 235 236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 237 { 238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 239 } 240 241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 242 { 243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 244 245 complete(&ctx->ref_comp); 246 } 247 248 static __cold void io_fallback_req_func(struct work_struct *work) 249 { 250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 251 fallback_work.work); 252 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 253 struct io_kiocb *req, *tmp; 254 struct io_tw_state ts = {}; 255 256 percpu_ref_get(&ctx->refs); 257 mutex_lock(&ctx->uring_lock); 258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 259 req->io_task_work.func(req, ts); 260 io_submit_flush_completions(ctx); 261 mutex_unlock(&ctx->uring_lock); 262 percpu_ref_put(&ctx->refs); 263 } 264 265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 266 { 267 unsigned int hash_buckets; 268 int i; 269 270 do { 271 hash_buckets = 1U << bits; 272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 273 GFP_KERNEL_ACCOUNT); 274 if (table->hbs) 275 break; 276 if (bits == 1) 277 return -ENOMEM; 278 bits--; 279 } while (1); 280 281 table->hash_bits = bits; 282 for (i = 0; i < hash_buckets; i++) 283 INIT_HLIST_HEAD(&table->hbs[i].list); 284 return 0; 285 } 286 287 static void io_free_alloc_caches(struct io_ring_ctx *ctx) 288 { 289 io_alloc_cache_free(&ctx->apoll_cache, kfree); 290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free); 293 io_alloc_cache_free(&ctx->msg_cache, kfree); 294 io_futex_cache_free(ctx); 295 io_rsrc_cache_free(ctx); 296 } 297 298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 299 { 300 struct io_ring_ctx *ctx; 301 int hash_bits; 302 bool ret; 303 304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 305 if (!ctx) 306 return NULL; 307 308 xa_init(&ctx->io_bl_xa); 309 310 /* 311 * Use 5 bits less than the max cq entries, that should give us around 312 * 32 entries per hash list if totally full and uniformly spread, but 313 * don't keep too many buckets to not overconsume memory. 314 */ 315 hash_bits = ilog2(p->cq_entries) - 5; 316 hash_bits = clamp(hash_bits, 1, 8); 317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 ctx->hybrid_poll_time = LLONG_MAX; 325 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 326 init_waitqueue_head(&ctx->sqo_sq_wait); 327 INIT_LIST_HEAD(&ctx->sqd_list); 328 INIT_LIST_HEAD(&ctx->cq_overflow_list); 329 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 330 sizeof(struct async_poll), 0); 331 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct io_async_msghdr), 333 offsetof(struct io_async_msghdr, clear)); 334 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 335 sizeof(struct io_async_rw), 336 offsetof(struct io_async_rw, clear)); 337 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX, 338 sizeof(struct io_async_cmd), 339 sizeof(struct io_async_cmd)); 340 spin_lock_init(&ctx->msg_lock); 341 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 342 sizeof(struct io_kiocb), 0); 343 ret |= io_futex_cache_init(ctx); 344 ret |= io_rsrc_cache_init(ctx); 345 if (ret) 346 goto free_ref; 347 init_completion(&ctx->ref_comp); 348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 349 mutex_init(&ctx->uring_lock); 350 init_waitqueue_head(&ctx->cq_wait); 351 init_waitqueue_head(&ctx->poll_wq); 352 spin_lock_init(&ctx->completion_lock); 353 raw_spin_lock_init(&ctx->timeout_lock); 354 INIT_WQ_LIST(&ctx->iopoll_list); 355 INIT_LIST_HEAD(&ctx->defer_list); 356 INIT_LIST_HEAD(&ctx->timeout_list); 357 INIT_LIST_HEAD(&ctx->ltimeout_list); 358 init_llist_head(&ctx->work_llist); 359 INIT_LIST_HEAD(&ctx->tctx_list); 360 ctx->submit_state.free_list.next = NULL; 361 INIT_HLIST_HEAD(&ctx->waitid_list); 362 xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC); 363 #ifdef CONFIG_FUTEX 364 INIT_HLIST_HEAD(&ctx->futex_list); 365 #endif 366 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 367 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 368 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 369 io_napi_init(ctx); 370 mutex_init(&ctx->mmap_lock); 371 372 return ctx; 373 374 free_ref: 375 percpu_ref_exit(&ctx->refs); 376 err: 377 io_free_alloc_caches(ctx); 378 kvfree(ctx->cancel_table.hbs); 379 xa_destroy(&ctx->io_bl_xa); 380 kfree(ctx); 381 return NULL; 382 } 383 384 static void io_clean_op(struct io_kiocb *req) 385 { 386 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED)) 387 io_kbuf_drop_legacy(req); 388 389 if (req->flags & REQ_F_NEED_CLEANUP) { 390 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 391 392 if (def->cleanup) 393 def->cleanup(req); 394 } 395 if ((req->flags & REQ_F_POLLED) && req->apoll) { 396 kfree(req->apoll->double_poll); 397 kfree(req->apoll); 398 req->apoll = NULL; 399 } 400 if (req->flags & REQ_F_INFLIGHT) 401 atomic_dec(&req->tctx->inflight_tracked); 402 if (req->flags & REQ_F_CREDS) 403 put_cred(req->creds); 404 if (req->flags & REQ_F_ASYNC_DATA) { 405 kfree(req->async_data); 406 req->async_data = NULL; 407 } 408 req->flags &= ~IO_REQ_CLEAN_FLAGS; 409 } 410 411 /* 412 * Mark the request as inflight, so that file cancelation will find it. 413 * Can be used if the file is an io_uring instance, or if the request itself 414 * relies on ->mm being alive for the duration of the request. 415 */ 416 inline void io_req_track_inflight(struct io_kiocb *req) 417 { 418 if (!(req->flags & REQ_F_INFLIGHT)) { 419 req->flags |= REQ_F_INFLIGHT; 420 atomic_inc(&req->tctx->inflight_tracked); 421 } 422 } 423 424 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 425 { 426 if (WARN_ON_ONCE(!req->link)) 427 return NULL; 428 429 req->flags &= ~REQ_F_ARM_LTIMEOUT; 430 req->flags |= REQ_F_LINK_TIMEOUT; 431 432 /* linked timeouts should have two refs once prep'ed */ 433 io_req_set_refcount(req); 434 __io_req_set_refcount(req->link, 2); 435 return req->link; 436 } 437 438 static void io_prep_async_work(struct io_kiocb *req) 439 { 440 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 441 struct io_ring_ctx *ctx = req->ctx; 442 443 if (!(req->flags & REQ_F_CREDS)) { 444 req->flags |= REQ_F_CREDS; 445 req->creds = get_current_cred(); 446 } 447 448 req->work.list.next = NULL; 449 atomic_set(&req->work.flags, 0); 450 if (req->flags & REQ_F_FORCE_ASYNC) 451 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 452 453 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 454 req->flags |= io_file_get_flags(req->file); 455 456 if (req->file && (req->flags & REQ_F_ISREG)) { 457 bool should_hash = def->hash_reg_file; 458 459 /* don't serialize this request if the fs doesn't need it */ 460 if (should_hash && (req->file->f_flags & O_DIRECT) && 461 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 462 should_hash = false; 463 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 464 io_wq_hash_work(&req->work, file_inode(req->file)); 465 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 466 if (def->unbound_nonreg_file) 467 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 468 } 469 } 470 471 static void io_prep_async_link(struct io_kiocb *req) 472 { 473 struct io_kiocb *cur; 474 475 if (req->flags & REQ_F_LINK_TIMEOUT) { 476 struct io_ring_ctx *ctx = req->ctx; 477 478 raw_spin_lock_irq(&ctx->timeout_lock); 479 io_for_each_link(cur, req) 480 io_prep_async_work(cur); 481 raw_spin_unlock_irq(&ctx->timeout_lock); 482 } else { 483 io_for_each_link(cur, req) 484 io_prep_async_work(cur); 485 } 486 } 487 488 static void io_queue_iowq(struct io_kiocb *req) 489 { 490 struct io_uring_task *tctx = req->tctx; 491 492 BUG_ON(!tctx); 493 494 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 495 io_req_task_queue_fail(req, -ECANCELED); 496 return; 497 } 498 499 /* init ->work of the whole link before punting */ 500 io_prep_async_link(req); 501 502 /* 503 * Not expected to happen, but if we do have a bug where this _can_ 504 * happen, catch it here and ensure the request is marked as 505 * canceled. That will make io-wq go through the usual work cancel 506 * procedure rather than attempt to run this request (or create a new 507 * worker for it). 508 */ 509 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 510 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 511 512 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 513 io_wq_enqueue(tctx->io_wq, &req->work); 514 } 515 516 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw) 517 { 518 io_queue_iowq(req); 519 } 520 521 void io_req_queue_iowq(struct io_kiocb *req) 522 { 523 req->io_task_work.func = io_req_queue_iowq_tw; 524 io_req_task_work_add(req); 525 } 526 527 static unsigned io_linked_nr(struct io_kiocb *req) 528 { 529 struct io_kiocb *tmp; 530 unsigned nr = 0; 531 532 io_for_each_link(tmp, req) 533 nr++; 534 return nr; 535 } 536 537 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) 538 { 539 bool drain_seen = false, first = true; 540 541 lockdep_assert_held(&ctx->uring_lock); 542 __io_req_caches_free(ctx); 543 544 while (!list_empty(&ctx->defer_list)) { 545 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 546 struct io_defer_entry, list); 547 548 drain_seen |= de->req->flags & REQ_F_IO_DRAIN; 549 if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained) 550 return; 551 552 list_del_init(&de->list); 553 ctx->nr_drained -= io_linked_nr(de->req); 554 io_req_task_queue(de->req); 555 kfree(de); 556 first = false; 557 } 558 } 559 560 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 561 { 562 if (ctx->poll_activated) 563 io_poll_wq_wake(ctx); 564 if (ctx->off_timeout_used) 565 io_flush_timeouts(ctx); 566 if (ctx->has_evfd) 567 io_eventfd_signal(ctx, true); 568 } 569 570 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 571 { 572 if (!ctx->lockless_cq) 573 spin_lock(&ctx->completion_lock); 574 } 575 576 static inline void io_cq_lock(struct io_ring_ctx *ctx) 577 __acquires(ctx->completion_lock) 578 { 579 spin_lock(&ctx->completion_lock); 580 } 581 582 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 583 { 584 io_commit_cqring(ctx); 585 if (!ctx->task_complete) { 586 if (!ctx->lockless_cq) 587 spin_unlock(&ctx->completion_lock); 588 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 589 if (!ctx->syscall_iopoll) 590 io_cqring_wake(ctx); 591 } 592 io_commit_cqring_flush(ctx); 593 } 594 595 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 596 __releases(ctx->completion_lock) 597 { 598 io_commit_cqring(ctx); 599 spin_unlock(&ctx->completion_lock); 600 io_cqring_wake(ctx); 601 io_commit_cqring_flush(ctx); 602 } 603 604 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 605 { 606 size_t cqe_size = sizeof(struct io_uring_cqe); 607 608 lockdep_assert_held(&ctx->uring_lock); 609 610 /* don't abort if we're dying, entries must get freed */ 611 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 612 return; 613 614 if (ctx->flags & IORING_SETUP_CQE32) 615 cqe_size <<= 1; 616 617 io_cq_lock(ctx); 618 while (!list_empty(&ctx->cq_overflow_list)) { 619 struct io_uring_cqe *cqe; 620 struct io_overflow_cqe *ocqe; 621 622 ocqe = list_first_entry(&ctx->cq_overflow_list, 623 struct io_overflow_cqe, list); 624 625 if (!dying) { 626 if (!io_get_cqe_overflow(ctx, &cqe, true)) 627 break; 628 memcpy(cqe, &ocqe->cqe, cqe_size); 629 } 630 list_del(&ocqe->list); 631 kfree(ocqe); 632 633 /* 634 * For silly syzbot cases that deliberately overflow by huge 635 * amounts, check if we need to resched and drop and 636 * reacquire the locks if so. Nothing real would ever hit this. 637 * Ideally we'd have a non-posting unlock for this, but hard 638 * to care for a non-real case. 639 */ 640 if (need_resched()) { 641 ctx->cqe_sentinel = ctx->cqe_cached; 642 io_cq_unlock_post(ctx); 643 mutex_unlock(&ctx->uring_lock); 644 cond_resched(); 645 mutex_lock(&ctx->uring_lock); 646 io_cq_lock(ctx); 647 } 648 } 649 650 if (list_empty(&ctx->cq_overflow_list)) { 651 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 652 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 653 } 654 io_cq_unlock_post(ctx); 655 } 656 657 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 658 { 659 if (ctx->rings) 660 __io_cqring_overflow_flush(ctx, true); 661 } 662 663 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 664 { 665 mutex_lock(&ctx->uring_lock); 666 __io_cqring_overflow_flush(ctx, false); 667 mutex_unlock(&ctx->uring_lock); 668 } 669 670 /* must to be called somewhat shortly after putting a request */ 671 static inline void io_put_task(struct io_kiocb *req) 672 { 673 struct io_uring_task *tctx = req->tctx; 674 675 if (likely(tctx->task == current)) { 676 tctx->cached_refs++; 677 } else { 678 percpu_counter_sub(&tctx->inflight, 1); 679 if (unlikely(atomic_read(&tctx->in_cancel))) 680 wake_up(&tctx->wait); 681 put_task_struct(tctx->task); 682 } 683 } 684 685 void io_task_refs_refill(struct io_uring_task *tctx) 686 { 687 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 688 689 percpu_counter_add(&tctx->inflight, refill); 690 refcount_add(refill, ¤t->usage); 691 tctx->cached_refs += refill; 692 } 693 694 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 695 { 696 struct io_uring_task *tctx = task->io_uring; 697 unsigned int refs = tctx->cached_refs; 698 699 if (refs) { 700 tctx->cached_refs = 0; 701 percpu_counter_sub(&tctx->inflight, refs); 702 put_task_struct_many(task, refs); 703 } 704 } 705 706 static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx, 707 struct io_overflow_cqe *ocqe) 708 { 709 lockdep_assert_held(&ctx->completion_lock); 710 711 if (!ocqe) { 712 struct io_rings *r = ctx->rings; 713 714 /* 715 * If we're in ring overflow flush mode, or in task cancel mode, 716 * or cannot allocate an overflow entry, then we need to drop it 717 * on the floor. 718 */ 719 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 720 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 721 return false; 722 } 723 if (list_empty(&ctx->cq_overflow_list)) { 724 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 725 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 726 727 } 728 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 729 return true; 730 } 731 732 static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx, 733 struct io_cqe *cqe, 734 struct io_big_cqe *big_cqe, gfp_t gfp) 735 { 736 struct io_overflow_cqe *ocqe; 737 size_t ocq_size = sizeof(struct io_overflow_cqe); 738 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 739 740 if (is_cqe32) 741 ocq_size += sizeof(struct io_uring_cqe); 742 743 ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT); 744 trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe); 745 if (ocqe) { 746 ocqe->cqe.user_data = cqe->user_data; 747 ocqe->cqe.res = cqe->res; 748 ocqe->cqe.flags = cqe->flags; 749 if (is_cqe32 && big_cqe) { 750 ocqe->cqe.big_cqe[0] = big_cqe->extra1; 751 ocqe->cqe.big_cqe[1] = big_cqe->extra2; 752 } 753 } 754 if (big_cqe) 755 big_cqe->extra1 = big_cqe->extra2 = 0; 756 return ocqe; 757 } 758 759 /* 760 * writes to the cq entry need to come after reading head; the 761 * control dependency is enough as we're using WRITE_ONCE to 762 * fill the cq entry 763 */ 764 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 765 { 766 struct io_rings *rings = ctx->rings; 767 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 768 unsigned int free, queued, len; 769 770 /* 771 * Posting into the CQ when there are pending overflowed CQEs may break 772 * ordering guarantees, which will affect links, F_MORE users and more. 773 * Force overflow the completion. 774 */ 775 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 776 return false; 777 778 /* userspace may cheat modifying the tail, be safe and do min */ 779 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 780 free = ctx->cq_entries - queued; 781 /* we need a contiguous range, limit based on the current array offset */ 782 len = min(free, ctx->cq_entries - off); 783 if (!len) 784 return false; 785 786 if (ctx->flags & IORING_SETUP_CQE32) { 787 off <<= 1; 788 len <<= 1; 789 } 790 791 ctx->cqe_cached = &rings->cqes[off]; 792 ctx->cqe_sentinel = ctx->cqe_cached + len; 793 return true; 794 } 795 796 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 797 u32 cflags) 798 { 799 struct io_uring_cqe *cqe; 800 801 if (likely(io_get_cqe(ctx, &cqe))) { 802 WRITE_ONCE(cqe->user_data, user_data); 803 WRITE_ONCE(cqe->res, res); 804 WRITE_ONCE(cqe->flags, cflags); 805 806 if (ctx->flags & IORING_SETUP_CQE32) { 807 WRITE_ONCE(cqe->big_cqe[0], 0); 808 WRITE_ONCE(cqe->big_cqe[1], 0); 809 } 810 811 trace_io_uring_complete(ctx, NULL, cqe); 812 return true; 813 } 814 return false; 815 } 816 817 static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags) 818 { 819 return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags }; 820 } 821 822 static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe, 823 struct io_big_cqe *big_cqe) 824 { 825 struct io_overflow_cqe *ocqe; 826 827 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL); 828 spin_lock(&ctx->completion_lock); 829 io_cqring_add_overflow(ctx, ocqe); 830 spin_unlock(&ctx->completion_lock); 831 } 832 833 static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx, 834 struct io_cqe *cqe, 835 struct io_big_cqe *big_cqe) 836 { 837 struct io_overflow_cqe *ocqe; 838 839 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC); 840 return io_cqring_add_overflow(ctx, ocqe); 841 } 842 843 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 844 { 845 bool filled; 846 847 io_cq_lock(ctx); 848 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 849 if (unlikely(!filled)) { 850 struct io_cqe cqe = io_init_cqe(user_data, res, cflags); 851 852 filled = io_cqe_overflow_locked(ctx, &cqe, NULL); 853 } 854 io_cq_unlock_post(ctx); 855 return filled; 856 } 857 858 /* 859 * Must be called from inline task_work so we now a flush will happen later, 860 * and obviously with ctx->uring_lock held (tw always has that). 861 */ 862 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 863 { 864 lockdep_assert_held(&ctx->uring_lock); 865 lockdep_assert(ctx->lockless_cq); 866 867 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 868 struct io_cqe cqe = io_init_cqe(user_data, res, cflags); 869 870 io_cqe_overflow(ctx, &cqe, NULL); 871 } 872 ctx->submit_state.cq_flush = true; 873 } 874 875 /* 876 * A helper for multishot requests posting additional CQEs. 877 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 878 */ 879 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 880 { 881 struct io_ring_ctx *ctx = req->ctx; 882 bool posted; 883 884 /* 885 * If multishot has already posted deferred completions, ensure that 886 * those are flushed first before posting this one. If not, CQEs 887 * could get reordered. 888 */ 889 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 890 __io_submit_flush_completions(ctx); 891 892 lockdep_assert(!io_wq_current_is_worker()); 893 lockdep_assert_held(&ctx->uring_lock); 894 895 if (!ctx->lockless_cq) { 896 spin_lock(&ctx->completion_lock); 897 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 898 spin_unlock(&ctx->completion_lock); 899 } else { 900 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 901 } 902 903 ctx->submit_state.cq_flush = true; 904 return posted; 905 } 906 907 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 908 { 909 struct io_ring_ctx *ctx = req->ctx; 910 bool completed = true; 911 912 /* 913 * All execution paths but io-wq use the deferred completions by 914 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 915 */ 916 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 917 return; 918 919 /* 920 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 921 * the submitter task context, IOPOLL protects with uring_lock. 922 */ 923 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) { 924 defer_complete: 925 req->io_task_work.func = io_req_task_complete; 926 io_req_task_work_add(req); 927 return; 928 } 929 930 io_cq_lock(ctx); 931 if (!(req->flags & REQ_F_CQE_SKIP)) 932 completed = io_fill_cqe_req(ctx, req); 933 io_cq_unlock_post(ctx); 934 935 if (!completed) 936 goto defer_complete; 937 938 /* 939 * We don't free the request here because we know it's called from 940 * io-wq only, which holds a reference, so it cannot be the last put. 941 */ 942 req_ref_put(req); 943 } 944 945 void io_req_defer_failed(struct io_kiocb *req, s32 res) 946 __must_hold(&ctx->uring_lock) 947 { 948 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 949 950 lockdep_assert_held(&req->ctx->uring_lock); 951 952 req_set_fail(req); 953 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 954 if (def->fail) 955 def->fail(req); 956 io_req_complete_defer(req); 957 } 958 959 /* 960 * A request might get retired back into the request caches even before opcode 961 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 962 * Because of that, io_alloc_req() should be called only under ->uring_lock 963 * and with extra caution to not get a request that is still worked on. 964 */ 965 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 966 __must_hold(&ctx->uring_lock) 967 { 968 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO; 969 void *reqs[IO_REQ_ALLOC_BATCH]; 970 int ret; 971 972 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 973 974 /* 975 * Bulk alloc is all-or-nothing. If we fail to get a batch, 976 * retry single alloc to be on the safe side. 977 */ 978 if (unlikely(ret <= 0)) { 979 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 980 if (!reqs[0]) 981 return false; 982 ret = 1; 983 } 984 985 percpu_ref_get_many(&ctx->refs, ret); 986 ctx->nr_req_allocated += ret; 987 988 while (ret--) { 989 struct io_kiocb *req = reqs[ret]; 990 991 io_req_add_to_cache(req, ctx); 992 } 993 return true; 994 } 995 996 __cold void io_free_req(struct io_kiocb *req) 997 { 998 /* refs were already put, restore them for io_req_task_complete() */ 999 req->flags &= ~REQ_F_REFCOUNT; 1000 /* we only want to free it, don't post CQEs */ 1001 req->flags |= REQ_F_CQE_SKIP; 1002 req->io_task_work.func = io_req_task_complete; 1003 io_req_task_work_add(req); 1004 } 1005 1006 static void __io_req_find_next_prep(struct io_kiocb *req) 1007 { 1008 struct io_ring_ctx *ctx = req->ctx; 1009 1010 spin_lock(&ctx->completion_lock); 1011 io_disarm_next(req); 1012 spin_unlock(&ctx->completion_lock); 1013 } 1014 1015 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1016 { 1017 struct io_kiocb *nxt; 1018 1019 /* 1020 * If LINK is set, we have dependent requests in this chain. If we 1021 * didn't fail this request, queue the first one up, moving any other 1022 * dependencies to the next request. In case of failure, fail the rest 1023 * of the chain. 1024 */ 1025 if (unlikely(req->flags & IO_DISARM_MASK)) 1026 __io_req_find_next_prep(req); 1027 nxt = req->link; 1028 req->link = NULL; 1029 return nxt; 1030 } 1031 1032 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw) 1033 { 1034 if (!ctx) 1035 return; 1036 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1037 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1038 1039 io_submit_flush_completions(ctx); 1040 mutex_unlock(&ctx->uring_lock); 1041 percpu_ref_put(&ctx->refs); 1042 } 1043 1044 /* 1045 * Run queued task_work, returning the number of entries processed in *count. 1046 * If more entries than max_entries are available, stop processing once this 1047 * is reached and return the rest of the list. 1048 */ 1049 struct llist_node *io_handle_tw_list(struct llist_node *node, 1050 unsigned int *count, 1051 unsigned int max_entries) 1052 { 1053 struct io_ring_ctx *ctx = NULL; 1054 struct io_tw_state ts = { }; 1055 1056 do { 1057 struct llist_node *next = node->next; 1058 struct io_kiocb *req = container_of(node, struct io_kiocb, 1059 io_task_work.node); 1060 1061 if (req->ctx != ctx) { 1062 ctx_flush_and_put(ctx, ts); 1063 ctx = req->ctx; 1064 mutex_lock(&ctx->uring_lock); 1065 percpu_ref_get(&ctx->refs); 1066 } 1067 INDIRECT_CALL_2(req->io_task_work.func, 1068 io_poll_task_func, io_req_rw_complete, 1069 req, ts); 1070 node = next; 1071 (*count)++; 1072 if (unlikely(need_resched())) { 1073 ctx_flush_and_put(ctx, ts); 1074 ctx = NULL; 1075 cond_resched(); 1076 } 1077 } while (node && *count < max_entries); 1078 1079 ctx_flush_and_put(ctx, ts); 1080 return node; 1081 } 1082 1083 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1084 { 1085 struct io_ring_ctx *last_ctx = NULL; 1086 struct io_kiocb *req; 1087 1088 while (node) { 1089 req = container_of(node, struct io_kiocb, io_task_work.node); 1090 node = node->next; 1091 if (last_ctx != req->ctx) { 1092 if (last_ctx) { 1093 if (sync) 1094 flush_delayed_work(&last_ctx->fallback_work); 1095 percpu_ref_put(&last_ctx->refs); 1096 } 1097 last_ctx = req->ctx; 1098 percpu_ref_get(&last_ctx->refs); 1099 } 1100 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist)) 1101 schedule_delayed_work(&last_ctx->fallback_work, 1); 1102 } 1103 1104 if (last_ctx) { 1105 if (sync) 1106 flush_delayed_work(&last_ctx->fallback_work); 1107 percpu_ref_put(&last_ctx->refs); 1108 } 1109 } 1110 1111 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1112 { 1113 struct llist_node *node = llist_del_all(&tctx->task_list); 1114 1115 __io_fallback_tw(node, sync); 1116 } 1117 1118 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1119 unsigned int max_entries, 1120 unsigned int *count) 1121 { 1122 struct llist_node *node; 1123 1124 if (unlikely(current->flags & PF_EXITING)) { 1125 io_fallback_tw(tctx, true); 1126 return NULL; 1127 } 1128 1129 node = llist_del_all(&tctx->task_list); 1130 if (node) { 1131 node = llist_reverse_order(node); 1132 node = io_handle_tw_list(node, count, max_entries); 1133 } 1134 1135 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1136 if (unlikely(atomic_read(&tctx->in_cancel))) 1137 io_uring_drop_tctx_refs(current); 1138 1139 trace_io_uring_task_work_run(tctx, *count); 1140 return node; 1141 } 1142 1143 void tctx_task_work(struct callback_head *cb) 1144 { 1145 struct io_uring_task *tctx; 1146 struct llist_node *ret; 1147 unsigned int count = 0; 1148 1149 tctx = container_of(cb, struct io_uring_task, task_work); 1150 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1151 /* can't happen */ 1152 WARN_ON_ONCE(ret); 1153 } 1154 1155 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1156 { 1157 struct io_ring_ctx *ctx = req->ctx; 1158 unsigned nr_wait, nr_tw, nr_tw_prev; 1159 struct llist_node *head; 1160 1161 /* See comment above IO_CQ_WAKE_INIT */ 1162 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1163 1164 /* 1165 * We don't know how many reuqests is there in the link and whether 1166 * they can even be queued lazily, fall back to non-lazy. 1167 */ 1168 if (req->flags & IO_REQ_LINK_FLAGS) 1169 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1170 1171 guard(rcu)(); 1172 1173 head = READ_ONCE(ctx->work_llist.first); 1174 do { 1175 nr_tw_prev = 0; 1176 if (head) { 1177 struct io_kiocb *first_req = container_of(head, 1178 struct io_kiocb, 1179 io_task_work.node); 1180 /* 1181 * Might be executed at any moment, rely on 1182 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1183 */ 1184 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1185 } 1186 1187 /* 1188 * Theoretically, it can overflow, but that's fine as one of 1189 * previous adds should've tried to wake the task. 1190 */ 1191 nr_tw = nr_tw_prev + 1; 1192 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1193 nr_tw = IO_CQ_WAKE_FORCE; 1194 1195 req->nr_tw = nr_tw; 1196 req->io_task_work.node.next = head; 1197 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1198 &req->io_task_work.node)); 1199 1200 /* 1201 * cmpxchg implies a full barrier, which pairs with the barrier 1202 * in set_current_state() on the io_cqring_wait() side. It's used 1203 * to ensure that either we see updated ->cq_wait_nr, or waiters 1204 * going to sleep will observe the work added to the list, which 1205 * is similar to the wait/wawke task state sync. 1206 */ 1207 1208 if (!head) { 1209 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1210 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1211 if (ctx->has_evfd) 1212 io_eventfd_signal(ctx, false); 1213 } 1214 1215 nr_wait = atomic_read(&ctx->cq_wait_nr); 1216 /* not enough or no one is waiting */ 1217 if (nr_tw < nr_wait) 1218 return; 1219 /* the previous add has already woken it up */ 1220 if (nr_tw_prev >= nr_wait) 1221 return; 1222 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1223 } 1224 1225 static void io_req_normal_work_add(struct io_kiocb *req) 1226 { 1227 struct io_uring_task *tctx = req->tctx; 1228 struct io_ring_ctx *ctx = req->ctx; 1229 1230 /* task_work already pending, we're done */ 1231 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1232 return; 1233 1234 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1235 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1236 1237 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1238 if (ctx->flags & IORING_SETUP_SQPOLL) { 1239 __set_notify_signal(tctx->task); 1240 return; 1241 } 1242 1243 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1244 return; 1245 1246 io_fallback_tw(tctx, false); 1247 } 1248 1249 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1250 { 1251 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1252 io_req_local_work_add(req, flags); 1253 else 1254 io_req_normal_work_add(req); 1255 } 1256 1257 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags) 1258 { 1259 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1260 return; 1261 __io_req_task_work_add(req, flags); 1262 } 1263 1264 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1265 { 1266 struct llist_node *node = llist_del_all(&ctx->work_llist); 1267 1268 __io_fallback_tw(node, false); 1269 node = llist_del_all(&ctx->retry_llist); 1270 __io_fallback_tw(node, false); 1271 } 1272 1273 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1274 int min_events) 1275 { 1276 if (!io_local_work_pending(ctx)) 1277 return false; 1278 if (events < min_events) 1279 return true; 1280 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1281 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1282 return false; 1283 } 1284 1285 static int __io_run_local_work_loop(struct llist_node **node, 1286 io_tw_token_t tw, 1287 int events) 1288 { 1289 int ret = 0; 1290 1291 while (*node) { 1292 struct llist_node *next = (*node)->next; 1293 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1294 io_task_work.node); 1295 INDIRECT_CALL_2(req->io_task_work.func, 1296 io_poll_task_func, io_req_rw_complete, 1297 req, tw); 1298 *node = next; 1299 if (++ret >= events) 1300 break; 1301 } 1302 1303 return ret; 1304 } 1305 1306 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw, 1307 int min_events, int max_events) 1308 { 1309 struct llist_node *node; 1310 unsigned int loops = 0; 1311 int ret = 0; 1312 1313 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1314 return -EEXIST; 1315 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1316 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1317 again: 1318 min_events -= ret; 1319 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events); 1320 if (ctx->retry_llist.first) 1321 goto retry_done; 1322 1323 /* 1324 * llists are in reverse order, flip it back the right way before 1325 * running the pending items. 1326 */ 1327 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1328 ret += __io_run_local_work_loop(&node, tw, max_events - ret); 1329 ctx->retry_llist.first = node; 1330 loops++; 1331 1332 if (io_run_local_work_continue(ctx, ret, min_events)) 1333 goto again; 1334 retry_done: 1335 io_submit_flush_completions(ctx); 1336 if (io_run_local_work_continue(ctx, ret, min_events)) 1337 goto again; 1338 1339 trace_io_uring_local_work_run(ctx, ret, loops); 1340 return ret; 1341 } 1342 1343 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1344 int min_events) 1345 { 1346 struct io_tw_state ts = {}; 1347 1348 if (!io_local_work_pending(ctx)) 1349 return 0; 1350 return __io_run_local_work(ctx, ts, min_events, 1351 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1352 } 1353 1354 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1355 int max_events) 1356 { 1357 struct io_tw_state ts = {}; 1358 int ret; 1359 1360 mutex_lock(&ctx->uring_lock); 1361 ret = __io_run_local_work(ctx, ts, min_events, max_events); 1362 mutex_unlock(&ctx->uring_lock); 1363 return ret; 1364 } 1365 1366 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw) 1367 { 1368 io_tw_lock(req->ctx, tw); 1369 io_req_defer_failed(req, req->cqe.res); 1370 } 1371 1372 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw) 1373 { 1374 io_tw_lock(req->ctx, tw); 1375 if (unlikely(io_should_terminate_tw())) 1376 io_req_defer_failed(req, -EFAULT); 1377 else if (req->flags & REQ_F_FORCE_ASYNC) 1378 io_queue_iowq(req); 1379 else 1380 io_queue_sqe(req); 1381 } 1382 1383 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1384 { 1385 io_req_set_res(req, ret, 0); 1386 req->io_task_work.func = io_req_task_cancel; 1387 io_req_task_work_add(req); 1388 } 1389 1390 void io_req_task_queue(struct io_kiocb *req) 1391 { 1392 req->io_task_work.func = io_req_task_submit; 1393 io_req_task_work_add(req); 1394 } 1395 1396 void io_queue_next(struct io_kiocb *req) 1397 { 1398 struct io_kiocb *nxt = io_req_find_next(req); 1399 1400 if (nxt) 1401 io_req_task_queue(nxt); 1402 } 1403 1404 static inline void io_req_put_rsrc_nodes(struct io_kiocb *req) 1405 { 1406 if (req->file_node) { 1407 io_put_rsrc_node(req->ctx, req->file_node); 1408 req->file_node = NULL; 1409 } 1410 if (req->flags & REQ_F_BUF_NODE) 1411 io_put_rsrc_node(req->ctx, req->buf_node); 1412 } 1413 1414 static void io_free_batch_list(struct io_ring_ctx *ctx, 1415 struct io_wq_work_node *node) 1416 __must_hold(&ctx->uring_lock) 1417 { 1418 do { 1419 struct io_kiocb *req = container_of(node, struct io_kiocb, 1420 comp_list); 1421 1422 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1423 if (req->flags & REQ_F_REISSUE) { 1424 node = req->comp_list.next; 1425 req->flags &= ~REQ_F_REISSUE; 1426 io_queue_iowq(req); 1427 continue; 1428 } 1429 if (req->flags & REQ_F_REFCOUNT) { 1430 node = req->comp_list.next; 1431 if (!req_ref_put_and_test(req)) 1432 continue; 1433 } 1434 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1435 struct async_poll *apoll = req->apoll; 1436 1437 if (apoll->double_poll) 1438 kfree(apoll->double_poll); 1439 io_cache_free(&ctx->apoll_cache, apoll); 1440 req->flags &= ~REQ_F_POLLED; 1441 } 1442 if (req->flags & IO_REQ_LINK_FLAGS) 1443 io_queue_next(req); 1444 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1445 io_clean_op(req); 1446 } 1447 io_put_file(req); 1448 io_req_put_rsrc_nodes(req); 1449 io_put_task(req); 1450 1451 node = req->comp_list.next; 1452 io_req_add_to_cache(req, ctx); 1453 } while (node); 1454 } 1455 1456 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1457 __must_hold(&ctx->uring_lock) 1458 { 1459 struct io_submit_state *state = &ctx->submit_state; 1460 struct io_wq_work_node *node; 1461 1462 __io_cq_lock(ctx); 1463 __wq_list_for_each(node, &state->compl_reqs) { 1464 struct io_kiocb *req = container_of(node, struct io_kiocb, 1465 comp_list); 1466 1467 /* 1468 * Requests marked with REQUEUE should not post a CQE, they 1469 * will go through the io-wq retry machinery and post one 1470 * later. 1471 */ 1472 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && 1473 unlikely(!io_fill_cqe_req(ctx, req))) { 1474 if (ctx->lockless_cq) 1475 io_cqe_overflow(ctx, &req->cqe, &req->big_cqe); 1476 else 1477 io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe); 1478 } 1479 } 1480 __io_cq_unlock_post(ctx); 1481 1482 if (!wq_list_empty(&state->compl_reqs)) { 1483 io_free_batch_list(ctx, state->compl_reqs.first); 1484 INIT_WQ_LIST(&state->compl_reqs); 1485 } 1486 1487 if (unlikely(ctx->drain_active)) 1488 io_queue_deferred(ctx); 1489 1490 ctx->submit_state.cq_flush = false; 1491 } 1492 1493 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1494 { 1495 /* See comment at the top of this file */ 1496 smp_rmb(); 1497 return __io_cqring_events(ctx); 1498 } 1499 1500 /* 1501 * We can't just wait for polled events to come to us, we have to actively 1502 * find and complete them. 1503 */ 1504 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1505 { 1506 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1507 return; 1508 1509 mutex_lock(&ctx->uring_lock); 1510 while (!wq_list_empty(&ctx->iopoll_list)) { 1511 /* let it sleep and repeat later if can't complete a request */ 1512 if (io_do_iopoll(ctx, true) == 0) 1513 break; 1514 /* 1515 * Ensure we allow local-to-the-cpu processing to take place, 1516 * in this case we need to ensure that we reap all events. 1517 * Also let task_work, etc. to progress by releasing the mutex 1518 */ 1519 if (need_resched()) { 1520 mutex_unlock(&ctx->uring_lock); 1521 cond_resched(); 1522 mutex_lock(&ctx->uring_lock); 1523 } 1524 } 1525 mutex_unlock(&ctx->uring_lock); 1526 1527 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1528 io_move_task_work_from_local(ctx); 1529 } 1530 1531 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events) 1532 { 1533 unsigned int nr_events = 0; 1534 unsigned long check_cq; 1535 1536 min_events = min(min_events, ctx->cq_entries); 1537 1538 lockdep_assert_held(&ctx->uring_lock); 1539 1540 if (!io_allowed_run_tw(ctx)) 1541 return -EEXIST; 1542 1543 check_cq = READ_ONCE(ctx->check_cq); 1544 if (unlikely(check_cq)) { 1545 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1546 __io_cqring_overflow_flush(ctx, false); 1547 /* 1548 * Similarly do not spin if we have not informed the user of any 1549 * dropped CQE. 1550 */ 1551 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1552 return -EBADR; 1553 } 1554 /* 1555 * Don't enter poll loop if we already have events pending. 1556 * If we do, we can potentially be spinning for commands that 1557 * already triggered a CQE (eg in error). 1558 */ 1559 if (io_cqring_events(ctx)) 1560 return 0; 1561 1562 do { 1563 int ret = 0; 1564 1565 /* 1566 * If a submit got punted to a workqueue, we can have the 1567 * application entering polling for a command before it gets 1568 * issued. That app will hold the uring_lock for the duration 1569 * of the poll right here, so we need to take a breather every 1570 * now and then to ensure that the issue has a chance to add 1571 * the poll to the issued list. Otherwise we can spin here 1572 * forever, while the workqueue is stuck trying to acquire the 1573 * very same mutex. 1574 */ 1575 if (wq_list_empty(&ctx->iopoll_list) || 1576 io_task_work_pending(ctx)) { 1577 u32 tail = ctx->cached_cq_tail; 1578 1579 (void) io_run_local_work_locked(ctx, min_events); 1580 1581 if (task_work_pending(current) || 1582 wq_list_empty(&ctx->iopoll_list)) { 1583 mutex_unlock(&ctx->uring_lock); 1584 io_run_task_work(); 1585 mutex_lock(&ctx->uring_lock); 1586 } 1587 /* some requests don't go through iopoll_list */ 1588 if (tail != ctx->cached_cq_tail || 1589 wq_list_empty(&ctx->iopoll_list)) 1590 break; 1591 } 1592 ret = io_do_iopoll(ctx, !min_events); 1593 if (unlikely(ret < 0)) 1594 return ret; 1595 1596 if (task_sigpending(current)) 1597 return -EINTR; 1598 if (need_resched()) 1599 break; 1600 1601 nr_events += ret; 1602 } while (nr_events < min_events); 1603 1604 return 0; 1605 } 1606 1607 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw) 1608 { 1609 io_req_complete_defer(req); 1610 } 1611 1612 /* 1613 * After the iocb has been issued, it's safe to be found on the poll list. 1614 * Adding the kiocb to the list AFTER submission ensures that we don't 1615 * find it from a io_do_iopoll() thread before the issuer is done 1616 * accessing the kiocb cookie. 1617 */ 1618 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1619 { 1620 struct io_ring_ctx *ctx = req->ctx; 1621 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1622 1623 /* workqueue context doesn't hold uring_lock, grab it now */ 1624 if (unlikely(needs_lock)) 1625 mutex_lock(&ctx->uring_lock); 1626 1627 /* 1628 * Track whether we have multiple files in our lists. This will impact 1629 * how we do polling eventually, not spinning if we're on potentially 1630 * different devices. 1631 */ 1632 if (wq_list_empty(&ctx->iopoll_list)) { 1633 ctx->poll_multi_queue = false; 1634 } else if (!ctx->poll_multi_queue) { 1635 struct io_kiocb *list_req; 1636 1637 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1638 comp_list); 1639 if (list_req->file != req->file) 1640 ctx->poll_multi_queue = true; 1641 } 1642 1643 /* 1644 * For fast devices, IO may have already completed. If it has, add 1645 * it to the front so we find it first. 1646 */ 1647 if (READ_ONCE(req->iopoll_completed)) 1648 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1649 else 1650 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1651 1652 if (unlikely(needs_lock)) { 1653 /* 1654 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1655 * in sq thread task context or in io worker task context. If 1656 * current task context is sq thread, we don't need to check 1657 * whether should wake up sq thread. 1658 */ 1659 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1660 wq_has_sleeper(&ctx->sq_data->wait)) 1661 wake_up(&ctx->sq_data->wait); 1662 1663 mutex_unlock(&ctx->uring_lock); 1664 } 1665 } 1666 1667 io_req_flags_t io_file_get_flags(struct file *file) 1668 { 1669 io_req_flags_t res = 0; 1670 1671 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1); 1672 1673 if (S_ISREG(file_inode(file)->i_mode)) 1674 res |= REQ_F_ISREG; 1675 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1676 res |= REQ_F_SUPPORT_NOWAIT; 1677 return res; 1678 } 1679 1680 static __cold void io_drain_req(struct io_kiocb *req) 1681 __must_hold(&ctx->uring_lock) 1682 { 1683 struct io_ring_ctx *ctx = req->ctx; 1684 bool drain = req->flags & IOSQE_IO_DRAIN; 1685 struct io_defer_entry *de; 1686 1687 de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT); 1688 if (!de) { 1689 io_req_defer_failed(req, -ENOMEM); 1690 return; 1691 } 1692 1693 io_prep_async_link(req); 1694 trace_io_uring_defer(req); 1695 de->req = req; 1696 1697 ctx->nr_drained += io_linked_nr(req); 1698 list_add_tail(&de->list, &ctx->defer_list); 1699 io_queue_deferred(ctx); 1700 if (!drain && list_empty(&ctx->defer_list)) 1701 ctx->drain_active = false; 1702 } 1703 1704 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1705 unsigned int issue_flags) 1706 { 1707 if (req->file || !def->needs_file) 1708 return true; 1709 1710 if (req->flags & REQ_F_FIXED_FILE) 1711 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1712 else 1713 req->file = io_file_get_normal(req, req->cqe.fd); 1714 1715 return !!req->file; 1716 } 1717 1718 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT) 1719 1720 static inline int __io_issue_sqe(struct io_kiocb *req, 1721 unsigned int issue_flags, 1722 const struct io_issue_def *def) 1723 { 1724 const struct cred *creds = NULL; 1725 struct io_kiocb *link = NULL; 1726 int ret; 1727 1728 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) { 1729 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred()) 1730 creds = override_creds(req->creds); 1731 if (req->flags & REQ_F_ARM_LTIMEOUT) 1732 link = __io_prep_linked_timeout(req); 1733 } 1734 1735 if (!def->audit_skip) 1736 audit_uring_entry(req->opcode); 1737 1738 ret = def->issue(req, issue_flags); 1739 1740 if (!def->audit_skip) 1741 audit_uring_exit(!ret, ret); 1742 1743 if (unlikely(creds || link)) { 1744 if (creds) 1745 revert_creds(creds); 1746 if (link) 1747 io_queue_linked_timeout(link); 1748 } 1749 1750 return ret; 1751 } 1752 1753 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1754 { 1755 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1756 int ret; 1757 1758 if (unlikely(!io_assign_file(req, def, issue_flags))) 1759 return -EBADF; 1760 1761 ret = __io_issue_sqe(req, issue_flags, def); 1762 1763 if (ret == IOU_COMPLETE) { 1764 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1765 io_req_complete_defer(req); 1766 else 1767 io_req_complete_post(req, issue_flags); 1768 1769 return 0; 1770 } 1771 1772 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1773 ret = 0; 1774 1775 /* If the op doesn't have a file, we're not polling for it */ 1776 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1777 io_iopoll_req_issued(req, issue_flags); 1778 } 1779 return ret; 1780 } 1781 1782 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw) 1783 { 1784 const unsigned int issue_flags = IO_URING_F_NONBLOCK | 1785 IO_URING_F_MULTISHOT | 1786 IO_URING_F_COMPLETE_DEFER; 1787 int ret; 1788 1789 io_tw_lock(req->ctx, tw); 1790 1791 WARN_ON_ONCE(!req->file); 1792 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL)) 1793 return -EFAULT; 1794 1795 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]); 1796 1797 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE); 1798 return ret; 1799 } 1800 1801 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1802 { 1803 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1804 struct io_kiocb *nxt = NULL; 1805 1806 if (req_ref_put_and_test_atomic(req)) { 1807 if (req->flags & IO_REQ_LINK_FLAGS) 1808 nxt = io_req_find_next(req); 1809 io_free_req(req); 1810 } 1811 return nxt ? &nxt->work : NULL; 1812 } 1813 1814 void io_wq_submit_work(struct io_wq_work *work) 1815 { 1816 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1817 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1818 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1819 bool needs_poll = false; 1820 int ret = 0, err = -ECANCELED; 1821 1822 /* one will be dropped by io_wq_free_work() after returning to io-wq */ 1823 if (!(req->flags & REQ_F_REFCOUNT)) 1824 __io_req_set_refcount(req, 2); 1825 else 1826 req_ref_get(req); 1827 1828 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1829 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1830 fail: 1831 io_req_task_queue_fail(req, err); 1832 return; 1833 } 1834 if (!io_assign_file(req, def, issue_flags)) { 1835 err = -EBADF; 1836 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1837 goto fail; 1838 } 1839 1840 /* 1841 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1842 * submitter task context. Final request completions are handed to the 1843 * right context, however this is not the case of auxiliary CQEs, 1844 * which is the main mean of operation for multishot requests. 1845 * Don't allow any multishot execution from io-wq. It's more restrictive 1846 * than necessary and also cleaner. 1847 */ 1848 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) { 1849 err = -EBADFD; 1850 if (!io_file_can_poll(req)) 1851 goto fail; 1852 if (req->file->f_flags & O_NONBLOCK || 1853 req->file->f_mode & FMODE_NOWAIT) { 1854 err = -ECANCELED; 1855 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1856 goto fail; 1857 return; 1858 } else { 1859 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT); 1860 } 1861 } 1862 1863 if (req->flags & REQ_F_FORCE_ASYNC) { 1864 bool opcode_poll = def->pollin || def->pollout; 1865 1866 if (opcode_poll && io_file_can_poll(req)) { 1867 needs_poll = true; 1868 issue_flags |= IO_URING_F_NONBLOCK; 1869 } 1870 } 1871 1872 do { 1873 ret = io_issue_sqe(req, issue_flags); 1874 if (ret != -EAGAIN) 1875 break; 1876 1877 /* 1878 * If REQ_F_NOWAIT is set, then don't wait or retry with 1879 * poll. -EAGAIN is final for that case. 1880 */ 1881 if (req->flags & REQ_F_NOWAIT) 1882 break; 1883 1884 /* 1885 * We can get EAGAIN for iopolled IO even though we're 1886 * forcing a sync submission from here, since we can't 1887 * wait for request slots on the block side. 1888 */ 1889 if (!needs_poll) { 1890 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1891 break; 1892 if (io_wq_worker_stopped()) 1893 break; 1894 cond_resched(); 1895 continue; 1896 } 1897 1898 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1899 return; 1900 /* aborted or ready, in either case retry blocking */ 1901 needs_poll = false; 1902 issue_flags &= ~IO_URING_F_NONBLOCK; 1903 } while (1); 1904 1905 /* avoid locking problems by failing it from a clean context */ 1906 if (ret) 1907 io_req_task_queue_fail(req, ret); 1908 } 1909 1910 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1911 unsigned int issue_flags) 1912 { 1913 struct io_ring_ctx *ctx = req->ctx; 1914 struct io_rsrc_node *node; 1915 struct file *file = NULL; 1916 1917 io_ring_submit_lock(ctx, issue_flags); 1918 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1919 if (node) { 1920 node->refs++; 1921 req->file_node = node; 1922 req->flags |= io_slot_flags(node); 1923 file = io_slot_file(node); 1924 } 1925 io_ring_submit_unlock(ctx, issue_flags); 1926 return file; 1927 } 1928 1929 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1930 { 1931 struct file *file = fget(fd); 1932 1933 trace_io_uring_file_get(req, fd); 1934 1935 /* we don't allow fixed io_uring files */ 1936 if (file && io_is_uring_fops(file)) 1937 io_req_track_inflight(req); 1938 return file; 1939 } 1940 1941 static void io_queue_async(struct io_kiocb *req, int ret) 1942 __must_hold(&req->ctx->uring_lock) 1943 { 1944 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1945 io_req_defer_failed(req, ret); 1946 return; 1947 } 1948 1949 switch (io_arm_poll_handler(req, 0)) { 1950 case IO_APOLL_READY: 1951 io_kbuf_recycle(req, 0); 1952 io_req_task_queue(req); 1953 break; 1954 case IO_APOLL_ABORTED: 1955 io_kbuf_recycle(req, 0); 1956 io_queue_iowq(req); 1957 break; 1958 case IO_APOLL_OK: 1959 break; 1960 } 1961 } 1962 1963 static inline void io_queue_sqe(struct io_kiocb *req) 1964 __must_hold(&req->ctx->uring_lock) 1965 { 1966 int ret; 1967 1968 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1969 1970 /* 1971 * We async punt it if the file wasn't marked NOWAIT, or if the file 1972 * doesn't support non-blocking read/write attempts 1973 */ 1974 if (unlikely(ret)) 1975 io_queue_async(req, ret); 1976 } 1977 1978 static void io_queue_sqe_fallback(struct io_kiocb *req) 1979 __must_hold(&req->ctx->uring_lock) 1980 { 1981 if (unlikely(req->flags & REQ_F_FAIL)) { 1982 /* 1983 * We don't submit, fail them all, for that replace hardlinks 1984 * with normal links. Extra REQ_F_LINK is tolerated. 1985 */ 1986 req->flags &= ~REQ_F_HARDLINK; 1987 req->flags |= REQ_F_LINK; 1988 io_req_defer_failed(req, req->cqe.res); 1989 } else { 1990 if (unlikely(req->ctx->drain_active)) 1991 io_drain_req(req); 1992 else 1993 io_queue_iowq(req); 1994 } 1995 } 1996 1997 /* 1998 * Check SQE restrictions (opcode and flags). 1999 * 2000 * Returns 'true' if SQE is allowed, 'false' otherwise. 2001 */ 2002 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2003 struct io_kiocb *req, 2004 unsigned int sqe_flags) 2005 { 2006 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2007 return false; 2008 2009 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2010 ctx->restrictions.sqe_flags_required) 2011 return false; 2012 2013 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2014 ctx->restrictions.sqe_flags_required)) 2015 return false; 2016 2017 return true; 2018 } 2019 2020 static void io_init_drain(struct io_ring_ctx *ctx) 2021 { 2022 struct io_kiocb *head = ctx->submit_state.link.head; 2023 2024 ctx->drain_active = true; 2025 if (head) { 2026 /* 2027 * If we need to drain a request in the middle of a link, drain 2028 * the head request and the next request/link after the current 2029 * link. Considering sequential execution of links, 2030 * REQ_F_IO_DRAIN will be maintained for every request of our 2031 * link. 2032 */ 2033 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2034 ctx->drain_next = true; 2035 } 2036 } 2037 2038 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2039 { 2040 /* ensure per-opcode data is cleared if we fail before prep */ 2041 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2042 return err; 2043 } 2044 2045 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2046 const struct io_uring_sqe *sqe) 2047 __must_hold(&ctx->uring_lock) 2048 { 2049 const struct io_issue_def *def; 2050 unsigned int sqe_flags; 2051 int personality; 2052 u8 opcode; 2053 2054 req->ctx = ctx; 2055 req->opcode = opcode = READ_ONCE(sqe->opcode); 2056 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2057 sqe_flags = READ_ONCE(sqe->flags); 2058 req->flags = (__force io_req_flags_t) sqe_flags; 2059 req->cqe.user_data = READ_ONCE(sqe->user_data); 2060 req->file = NULL; 2061 req->tctx = current->io_uring; 2062 req->cancel_seq_set = false; 2063 2064 if (unlikely(opcode >= IORING_OP_LAST)) { 2065 req->opcode = 0; 2066 return io_init_fail_req(req, -EINVAL); 2067 } 2068 opcode = array_index_nospec(opcode, IORING_OP_LAST); 2069 2070 def = &io_issue_defs[opcode]; 2071 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2072 /* enforce forwards compatibility on users */ 2073 if (sqe_flags & ~SQE_VALID_FLAGS) 2074 return io_init_fail_req(req, -EINVAL); 2075 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2076 if (!def->buffer_select) 2077 return io_init_fail_req(req, -EOPNOTSUPP); 2078 req->buf_index = READ_ONCE(sqe->buf_group); 2079 } 2080 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2081 ctx->drain_disabled = true; 2082 if (sqe_flags & IOSQE_IO_DRAIN) { 2083 if (ctx->drain_disabled) 2084 return io_init_fail_req(req, -EOPNOTSUPP); 2085 io_init_drain(ctx); 2086 } 2087 } 2088 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2089 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2090 return io_init_fail_req(req, -EACCES); 2091 /* knock it to the slow queue path, will be drained there */ 2092 if (ctx->drain_active) 2093 req->flags |= REQ_F_FORCE_ASYNC; 2094 /* if there is no link, we're at "next" request and need to drain */ 2095 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2096 ctx->drain_next = false; 2097 ctx->drain_active = true; 2098 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2099 } 2100 } 2101 2102 if (!def->ioprio && sqe->ioprio) 2103 return io_init_fail_req(req, -EINVAL); 2104 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2105 return io_init_fail_req(req, -EINVAL); 2106 2107 if (def->needs_file) { 2108 struct io_submit_state *state = &ctx->submit_state; 2109 2110 req->cqe.fd = READ_ONCE(sqe->fd); 2111 2112 /* 2113 * Plug now if we have more than 2 IO left after this, and the 2114 * target is potentially a read/write to block based storage. 2115 */ 2116 if (state->need_plug && def->plug) { 2117 state->plug_started = true; 2118 state->need_plug = false; 2119 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2120 } 2121 } 2122 2123 personality = READ_ONCE(sqe->personality); 2124 if (personality) { 2125 int ret; 2126 2127 req->creds = xa_load(&ctx->personalities, personality); 2128 if (!req->creds) 2129 return io_init_fail_req(req, -EINVAL); 2130 get_cred(req->creds); 2131 ret = security_uring_override_creds(req->creds); 2132 if (ret) { 2133 put_cred(req->creds); 2134 return io_init_fail_req(req, ret); 2135 } 2136 req->flags |= REQ_F_CREDS; 2137 } 2138 2139 return def->prep(req, sqe); 2140 } 2141 2142 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2143 struct io_kiocb *req, int ret) 2144 { 2145 struct io_ring_ctx *ctx = req->ctx; 2146 struct io_submit_link *link = &ctx->submit_state.link; 2147 struct io_kiocb *head = link->head; 2148 2149 trace_io_uring_req_failed(sqe, req, ret); 2150 2151 /* 2152 * Avoid breaking links in the middle as it renders links with SQPOLL 2153 * unusable. Instead of failing eagerly, continue assembling the link if 2154 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2155 * should find the flag and handle the rest. 2156 */ 2157 req_fail_link_node(req, ret); 2158 if (head && !(head->flags & REQ_F_FAIL)) 2159 req_fail_link_node(head, -ECANCELED); 2160 2161 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2162 if (head) { 2163 link->last->link = req; 2164 link->head = NULL; 2165 req = head; 2166 } 2167 io_queue_sqe_fallback(req); 2168 return ret; 2169 } 2170 2171 if (head) 2172 link->last->link = req; 2173 else 2174 link->head = req; 2175 link->last = req; 2176 return 0; 2177 } 2178 2179 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2180 const struct io_uring_sqe *sqe) 2181 __must_hold(&ctx->uring_lock) 2182 { 2183 struct io_submit_link *link = &ctx->submit_state.link; 2184 int ret; 2185 2186 ret = io_init_req(ctx, req, sqe); 2187 if (unlikely(ret)) 2188 return io_submit_fail_init(sqe, req, ret); 2189 2190 trace_io_uring_submit_req(req); 2191 2192 /* 2193 * If we already have a head request, queue this one for async 2194 * submittal once the head completes. If we don't have a head but 2195 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2196 * submitted sync once the chain is complete. If none of those 2197 * conditions are true (normal request), then just queue it. 2198 */ 2199 if (unlikely(link->head)) { 2200 trace_io_uring_link(req, link->last); 2201 link->last->link = req; 2202 link->last = req; 2203 2204 if (req->flags & IO_REQ_LINK_FLAGS) 2205 return 0; 2206 /* last request of the link, flush it */ 2207 req = link->head; 2208 link->head = NULL; 2209 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2210 goto fallback; 2211 2212 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2213 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2214 if (req->flags & IO_REQ_LINK_FLAGS) { 2215 link->head = req; 2216 link->last = req; 2217 } else { 2218 fallback: 2219 io_queue_sqe_fallback(req); 2220 } 2221 return 0; 2222 } 2223 2224 io_queue_sqe(req); 2225 return 0; 2226 } 2227 2228 /* 2229 * Batched submission is done, ensure local IO is flushed out. 2230 */ 2231 static void io_submit_state_end(struct io_ring_ctx *ctx) 2232 { 2233 struct io_submit_state *state = &ctx->submit_state; 2234 2235 if (unlikely(state->link.head)) 2236 io_queue_sqe_fallback(state->link.head); 2237 /* flush only after queuing links as they can generate completions */ 2238 io_submit_flush_completions(ctx); 2239 if (state->plug_started) 2240 blk_finish_plug(&state->plug); 2241 } 2242 2243 /* 2244 * Start submission side cache. 2245 */ 2246 static void io_submit_state_start(struct io_submit_state *state, 2247 unsigned int max_ios) 2248 { 2249 state->plug_started = false; 2250 state->need_plug = max_ios > 2; 2251 state->submit_nr = max_ios; 2252 /* set only head, no need to init link_last in advance */ 2253 state->link.head = NULL; 2254 } 2255 2256 static void io_commit_sqring(struct io_ring_ctx *ctx) 2257 { 2258 struct io_rings *rings = ctx->rings; 2259 2260 /* 2261 * Ensure any loads from the SQEs are done at this point, 2262 * since once we write the new head, the application could 2263 * write new data to them. 2264 */ 2265 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2266 } 2267 2268 /* 2269 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2270 * that is mapped by userspace. This means that care needs to be taken to 2271 * ensure that reads are stable, as we cannot rely on userspace always 2272 * being a good citizen. If members of the sqe are validated and then later 2273 * used, it's important that those reads are done through READ_ONCE() to 2274 * prevent a re-load down the line. 2275 */ 2276 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2277 { 2278 unsigned mask = ctx->sq_entries - 1; 2279 unsigned head = ctx->cached_sq_head++ & mask; 2280 2281 if (static_branch_unlikely(&io_key_has_sqarray) && 2282 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2283 head = READ_ONCE(ctx->sq_array[head]); 2284 if (unlikely(head >= ctx->sq_entries)) { 2285 WRITE_ONCE(ctx->rings->sq_dropped, 2286 READ_ONCE(ctx->rings->sq_dropped) + 1); 2287 return false; 2288 } 2289 head = array_index_nospec(head, ctx->sq_entries); 2290 } 2291 2292 /* 2293 * The cached sq head (or cq tail) serves two purposes: 2294 * 2295 * 1) allows us to batch the cost of updating the user visible 2296 * head updates. 2297 * 2) allows the kernel side to track the head on its own, even 2298 * though the application is the one updating it. 2299 */ 2300 2301 /* double index for 128-byte SQEs, twice as long */ 2302 if (ctx->flags & IORING_SETUP_SQE128) 2303 head <<= 1; 2304 *sqe = &ctx->sq_sqes[head]; 2305 return true; 2306 } 2307 2308 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2309 __must_hold(&ctx->uring_lock) 2310 { 2311 unsigned int entries = io_sqring_entries(ctx); 2312 unsigned int left; 2313 int ret; 2314 2315 if (unlikely(!entries)) 2316 return 0; 2317 /* make sure SQ entry isn't read before tail */ 2318 ret = left = min(nr, entries); 2319 io_get_task_refs(left); 2320 io_submit_state_start(&ctx->submit_state, left); 2321 2322 do { 2323 const struct io_uring_sqe *sqe; 2324 struct io_kiocb *req; 2325 2326 if (unlikely(!io_alloc_req(ctx, &req))) 2327 break; 2328 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2329 io_req_add_to_cache(req, ctx); 2330 break; 2331 } 2332 2333 /* 2334 * Continue submitting even for sqe failure if the 2335 * ring was setup with IORING_SETUP_SUBMIT_ALL 2336 */ 2337 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2338 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2339 left--; 2340 break; 2341 } 2342 } while (--left); 2343 2344 if (unlikely(left)) { 2345 ret -= left; 2346 /* try again if it submitted nothing and can't allocate a req */ 2347 if (!ret && io_req_cache_empty(ctx)) 2348 ret = -EAGAIN; 2349 current->io_uring->cached_refs += left; 2350 } 2351 2352 io_submit_state_end(ctx); 2353 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2354 io_commit_sqring(ctx); 2355 return ret; 2356 } 2357 2358 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2359 int wake_flags, void *key) 2360 { 2361 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2362 2363 /* 2364 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2365 * the task, and the next invocation will do it. 2366 */ 2367 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2368 return autoremove_wake_function(curr, mode, wake_flags, key); 2369 return -1; 2370 } 2371 2372 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2373 { 2374 if (io_local_work_pending(ctx)) { 2375 __set_current_state(TASK_RUNNING); 2376 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2377 return 0; 2378 } 2379 if (io_run_task_work() > 0) 2380 return 0; 2381 if (task_sigpending(current)) 2382 return -EINTR; 2383 return 0; 2384 } 2385 2386 static bool current_pending_io(void) 2387 { 2388 struct io_uring_task *tctx = current->io_uring; 2389 2390 if (!tctx) 2391 return false; 2392 return percpu_counter_read_positive(&tctx->inflight); 2393 } 2394 2395 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2396 { 2397 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2398 2399 WRITE_ONCE(iowq->hit_timeout, 1); 2400 iowq->min_timeout = 0; 2401 wake_up_process(iowq->wq.private); 2402 return HRTIMER_NORESTART; 2403 } 2404 2405 /* 2406 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2407 * wake up. If not, and we have a normal timeout, switch to that and keep 2408 * sleeping. 2409 */ 2410 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2411 { 2412 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2413 struct io_ring_ctx *ctx = iowq->ctx; 2414 2415 /* no general timeout, or shorter (or equal), we are done */ 2416 if (iowq->timeout == KTIME_MAX || 2417 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2418 goto out_wake; 2419 /* work we may need to run, wake function will see if we need to wake */ 2420 if (io_has_work(ctx)) 2421 goto out_wake; 2422 /* got events since we started waiting, min timeout is done */ 2423 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2424 goto out_wake; 2425 /* if we have any events and min timeout expired, we're done */ 2426 if (io_cqring_events(ctx)) 2427 goto out_wake; 2428 2429 /* 2430 * If using deferred task_work running and application is waiting on 2431 * more than one request, ensure we reset it now where we are switching 2432 * to normal sleeps. Any request completion post min_wait should wake 2433 * the task and return. 2434 */ 2435 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2436 atomic_set(&ctx->cq_wait_nr, 1); 2437 smp_mb(); 2438 if (!llist_empty(&ctx->work_llist)) 2439 goto out_wake; 2440 } 2441 2442 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup); 2443 hrtimer_set_expires(timer, iowq->timeout); 2444 return HRTIMER_RESTART; 2445 out_wake: 2446 return io_cqring_timer_wakeup(timer); 2447 } 2448 2449 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2450 clockid_t clock_id, ktime_t start_time) 2451 { 2452 ktime_t timeout; 2453 2454 if (iowq->min_timeout) { 2455 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2456 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2457 HRTIMER_MODE_ABS); 2458 } else { 2459 timeout = iowq->timeout; 2460 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2461 HRTIMER_MODE_ABS); 2462 } 2463 2464 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2465 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2466 2467 if (!READ_ONCE(iowq->hit_timeout)) 2468 schedule(); 2469 2470 hrtimer_cancel(&iowq->t); 2471 destroy_hrtimer_on_stack(&iowq->t); 2472 __set_current_state(TASK_RUNNING); 2473 2474 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2475 } 2476 2477 struct ext_arg { 2478 size_t argsz; 2479 struct timespec64 ts; 2480 const sigset_t __user *sig; 2481 ktime_t min_time; 2482 bool ts_set; 2483 bool iowait; 2484 }; 2485 2486 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2487 struct io_wait_queue *iowq, 2488 struct ext_arg *ext_arg, 2489 ktime_t start_time) 2490 { 2491 int ret = 0; 2492 2493 /* 2494 * Mark us as being in io_wait if we have pending requests, so cpufreq 2495 * can take into account that the task is waiting for IO - turns out 2496 * to be important for low QD IO. 2497 */ 2498 if (ext_arg->iowait && current_pending_io()) 2499 current->in_iowait = 1; 2500 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2501 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2502 else 2503 schedule(); 2504 current->in_iowait = 0; 2505 return ret; 2506 } 2507 2508 /* If this returns > 0, the caller should retry */ 2509 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2510 struct io_wait_queue *iowq, 2511 struct ext_arg *ext_arg, 2512 ktime_t start_time) 2513 { 2514 if (unlikely(READ_ONCE(ctx->check_cq))) 2515 return 1; 2516 if (unlikely(io_local_work_pending(ctx))) 2517 return 1; 2518 if (unlikely(task_work_pending(current))) 2519 return 1; 2520 if (unlikely(task_sigpending(current))) 2521 return -EINTR; 2522 if (unlikely(io_should_wake(iowq))) 2523 return 0; 2524 2525 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time); 2526 } 2527 2528 /* 2529 * Wait until events become available, if we don't already have some. The 2530 * application must reap them itself, as they reside on the shared cq ring. 2531 */ 2532 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2533 struct ext_arg *ext_arg) 2534 { 2535 struct io_wait_queue iowq; 2536 struct io_rings *rings = ctx->rings; 2537 ktime_t start_time; 2538 int ret; 2539 2540 min_events = min_t(int, min_events, ctx->cq_entries); 2541 2542 if (!io_allowed_run_tw(ctx)) 2543 return -EEXIST; 2544 if (io_local_work_pending(ctx)) 2545 io_run_local_work(ctx, min_events, 2546 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2547 io_run_task_work(); 2548 2549 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2550 io_cqring_do_overflow_flush(ctx); 2551 if (__io_cqring_events_user(ctx) >= min_events) 2552 return 0; 2553 2554 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2555 iowq.wq.private = current; 2556 INIT_LIST_HEAD(&iowq.wq.entry); 2557 iowq.ctx = ctx; 2558 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2559 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2560 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2561 iowq.hit_timeout = 0; 2562 iowq.min_timeout = ext_arg->min_time; 2563 iowq.timeout = KTIME_MAX; 2564 start_time = io_get_time(ctx); 2565 2566 if (ext_arg->ts_set) { 2567 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2568 if (!(flags & IORING_ENTER_ABS_TIMER)) 2569 iowq.timeout = ktime_add(iowq.timeout, start_time); 2570 } 2571 2572 if (ext_arg->sig) { 2573 #ifdef CONFIG_COMPAT 2574 if (in_compat_syscall()) 2575 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2576 ext_arg->argsz); 2577 else 2578 #endif 2579 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2580 2581 if (ret) 2582 return ret; 2583 } 2584 2585 io_napi_busy_loop(ctx, &iowq); 2586 2587 trace_io_uring_cqring_wait(ctx, min_events); 2588 do { 2589 unsigned long check_cq; 2590 int nr_wait; 2591 2592 /* if min timeout has been hit, don't reset wait count */ 2593 if (!iowq.hit_timeout) 2594 nr_wait = (int) iowq.cq_tail - 2595 READ_ONCE(ctx->rings->cq.tail); 2596 else 2597 nr_wait = 1; 2598 2599 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2600 atomic_set(&ctx->cq_wait_nr, nr_wait); 2601 set_current_state(TASK_INTERRUPTIBLE); 2602 } else { 2603 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2604 TASK_INTERRUPTIBLE); 2605 } 2606 2607 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time); 2608 __set_current_state(TASK_RUNNING); 2609 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2610 2611 /* 2612 * Run task_work after scheduling and before io_should_wake(). 2613 * If we got woken because of task_work being processed, run it 2614 * now rather than let the caller do another wait loop. 2615 */ 2616 if (io_local_work_pending(ctx)) 2617 io_run_local_work(ctx, nr_wait, nr_wait); 2618 io_run_task_work(); 2619 2620 /* 2621 * Non-local task_work will be run on exit to userspace, but 2622 * if we're using DEFER_TASKRUN, then we could have waited 2623 * with a timeout for a number of requests. If the timeout 2624 * hits, we could have some requests ready to process. Ensure 2625 * this break is _after_ we have run task_work, to avoid 2626 * deferring running potentially pending requests until the 2627 * next time we wait for events. 2628 */ 2629 if (ret < 0) 2630 break; 2631 2632 check_cq = READ_ONCE(ctx->check_cq); 2633 if (unlikely(check_cq)) { 2634 /* let the caller flush overflows, retry */ 2635 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2636 io_cqring_do_overflow_flush(ctx); 2637 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2638 ret = -EBADR; 2639 break; 2640 } 2641 } 2642 2643 if (io_should_wake(&iowq)) { 2644 ret = 0; 2645 break; 2646 } 2647 cond_resched(); 2648 } while (1); 2649 2650 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2651 finish_wait(&ctx->cq_wait, &iowq.wq); 2652 restore_saved_sigmask_unless(ret == -EINTR); 2653 2654 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2655 } 2656 2657 static void io_rings_free(struct io_ring_ctx *ctx) 2658 { 2659 io_free_region(ctx, &ctx->sq_region); 2660 io_free_region(ctx, &ctx->ring_region); 2661 ctx->rings = NULL; 2662 ctx->sq_sqes = NULL; 2663 } 2664 2665 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2666 unsigned int cq_entries, size_t *sq_offset) 2667 { 2668 struct io_rings *rings; 2669 size_t off, sq_array_size; 2670 2671 off = struct_size(rings, cqes, cq_entries); 2672 if (off == SIZE_MAX) 2673 return SIZE_MAX; 2674 if (flags & IORING_SETUP_CQE32) { 2675 if (check_shl_overflow(off, 1, &off)) 2676 return SIZE_MAX; 2677 } 2678 2679 #ifdef CONFIG_SMP 2680 off = ALIGN(off, SMP_CACHE_BYTES); 2681 if (off == 0) 2682 return SIZE_MAX; 2683 #endif 2684 2685 if (flags & IORING_SETUP_NO_SQARRAY) { 2686 *sq_offset = SIZE_MAX; 2687 return off; 2688 } 2689 2690 *sq_offset = off; 2691 2692 sq_array_size = array_size(sizeof(u32), sq_entries); 2693 if (sq_array_size == SIZE_MAX) 2694 return SIZE_MAX; 2695 2696 if (check_add_overflow(off, sq_array_size, &off)) 2697 return SIZE_MAX; 2698 2699 return off; 2700 } 2701 2702 static __cold void __io_req_caches_free(struct io_ring_ctx *ctx) 2703 { 2704 struct io_kiocb *req; 2705 int nr = 0; 2706 2707 while (!io_req_cache_empty(ctx)) { 2708 req = io_extract_req(ctx); 2709 kmem_cache_free(req_cachep, req); 2710 nr++; 2711 } 2712 if (nr) { 2713 ctx->nr_req_allocated -= nr; 2714 percpu_ref_put_many(&ctx->refs, nr); 2715 } 2716 } 2717 2718 static __cold void io_req_caches_free(struct io_ring_ctx *ctx) 2719 { 2720 guard(mutex)(&ctx->uring_lock); 2721 __io_req_caches_free(ctx); 2722 } 2723 2724 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2725 { 2726 io_sq_thread_finish(ctx); 2727 2728 mutex_lock(&ctx->uring_lock); 2729 io_sqe_buffers_unregister(ctx); 2730 io_sqe_files_unregister(ctx); 2731 io_unregister_zcrx_ifqs(ctx); 2732 io_cqring_overflow_kill(ctx); 2733 io_eventfd_unregister(ctx); 2734 io_free_alloc_caches(ctx); 2735 io_destroy_buffers(ctx); 2736 io_free_region(ctx, &ctx->param_region); 2737 mutex_unlock(&ctx->uring_lock); 2738 if (ctx->sq_creds) 2739 put_cred(ctx->sq_creds); 2740 if (ctx->submitter_task) 2741 put_task_struct(ctx->submitter_task); 2742 2743 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2744 2745 if (ctx->mm_account) { 2746 mmdrop(ctx->mm_account); 2747 ctx->mm_account = NULL; 2748 } 2749 io_rings_free(ctx); 2750 2751 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2752 static_branch_dec(&io_key_has_sqarray); 2753 2754 percpu_ref_exit(&ctx->refs); 2755 free_uid(ctx->user); 2756 io_req_caches_free(ctx); 2757 2758 WARN_ON_ONCE(ctx->nr_req_allocated); 2759 2760 if (ctx->hash_map) 2761 io_wq_put_hash(ctx->hash_map); 2762 io_napi_free(ctx); 2763 kvfree(ctx->cancel_table.hbs); 2764 xa_destroy(&ctx->io_bl_xa); 2765 kfree(ctx); 2766 } 2767 2768 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2769 { 2770 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2771 poll_wq_task_work); 2772 2773 mutex_lock(&ctx->uring_lock); 2774 ctx->poll_activated = true; 2775 mutex_unlock(&ctx->uring_lock); 2776 2777 /* 2778 * Wake ups for some events between start of polling and activation 2779 * might've been lost due to loose synchronisation. 2780 */ 2781 wake_up_all(&ctx->poll_wq); 2782 percpu_ref_put(&ctx->refs); 2783 } 2784 2785 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2786 { 2787 spin_lock(&ctx->completion_lock); 2788 /* already activated or in progress */ 2789 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2790 goto out; 2791 if (WARN_ON_ONCE(!ctx->task_complete)) 2792 goto out; 2793 if (!ctx->submitter_task) 2794 goto out; 2795 /* 2796 * with ->submitter_task only the submitter task completes requests, we 2797 * only need to sync with it, which is done by injecting a tw 2798 */ 2799 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2800 percpu_ref_get(&ctx->refs); 2801 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2802 percpu_ref_put(&ctx->refs); 2803 out: 2804 spin_unlock(&ctx->completion_lock); 2805 } 2806 2807 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2808 { 2809 struct io_ring_ctx *ctx = file->private_data; 2810 __poll_t mask = 0; 2811 2812 if (unlikely(!ctx->poll_activated)) 2813 io_activate_pollwq(ctx); 2814 /* 2815 * provides mb() which pairs with barrier from wq_has_sleeper 2816 * call in io_commit_cqring 2817 */ 2818 poll_wait(file, &ctx->poll_wq, wait); 2819 2820 if (!io_sqring_full(ctx)) 2821 mask |= EPOLLOUT | EPOLLWRNORM; 2822 2823 /* 2824 * Don't flush cqring overflow list here, just do a simple check. 2825 * Otherwise there could possible be ABBA deadlock: 2826 * CPU0 CPU1 2827 * ---- ---- 2828 * lock(&ctx->uring_lock); 2829 * lock(&ep->mtx); 2830 * lock(&ctx->uring_lock); 2831 * lock(&ep->mtx); 2832 * 2833 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2834 * pushes them to do the flush. 2835 */ 2836 2837 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2838 mask |= EPOLLIN | EPOLLRDNORM; 2839 2840 return mask; 2841 } 2842 2843 struct io_tctx_exit { 2844 struct callback_head task_work; 2845 struct completion completion; 2846 struct io_ring_ctx *ctx; 2847 }; 2848 2849 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2850 { 2851 struct io_uring_task *tctx = current->io_uring; 2852 struct io_tctx_exit *work; 2853 2854 work = container_of(cb, struct io_tctx_exit, task_work); 2855 /* 2856 * When @in_cancel, we're in cancellation and it's racy to remove the 2857 * node. It'll be removed by the end of cancellation, just ignore it. 2858 * tctx can be NULL if the queueing of this task_work raced with 2859 * work cancelation off the exec path. 2860 */ 2861 if (tctx && !atomic_read(&tctx->in_cancel)) 2862 io_uring_del_tctx_node((unsigned long)work->ctx); 2863 complete(&work->completion); 2864 } 2865 2866 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2867 { 2868 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2869 2870 return req->ctx == data; 2871 } 2872 2873 static __cold void io_ring_exit_work(struct work_struct *work) 2874 { 2875 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2876 unsigned long timeout = jiffies + HZ * 60 * 5; 2877 unsigned long interval = HZ / 20; 2878 struct io_tctx_exit exit; 2879 struct io_tctx_node *node; 2880 int ret; 2881 2882 /* 2883 * If we're doing polled IO and end up having requests being 2884 * submitted async (out-of-line), then completions can come in while 2885 * we're waiting for refs to drop. We need to reap these manually, 2886 * as nobody else will be looking for them. 2887 */ 2888 do { 2889 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2890 mutex_lock(&ctx->uring_lock); 2891 io_cqring_overflow_kill(ctx); 2892 mutex_unlock(&ctx->uring_lock); 2893 } 2894 if (!xa_empty(&ctx->zcrx_ctxs)) { 2895 mutex_lock(&ctx->uring_lock); 2896 io_shutdown_zcrx_ifqs(ctx); 2897 mutex_unlock(&ctx->uring_lock); 2898 } 2899 2900 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2901 io_move_task_work_from_local(ctx); 2902 2903 /* The SQPOLL thread never reaches this path */ 2904 while (io_uring_try_cancel_requests(ctx, NULL, true, false)) 2905 cond_resched(); 2906 2907 if (ctx->sq_data) { 2908 struct io_sq_data *sqd = ctx->sq_data; 2909 struct task_struct *tsk; 2910 2911 io_sq_thread_park(sqd); 2912 tsk = sqpoll_task_locked(sqd); 2913 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2914 io_wq_cancel_cb(tsk->io_uring->io_wq, 2915 io_cancel_ctx_cb, ctx, true); 2916 io_sq_thread_unpark(sqd); 2917 } 2918 2919 io_req_caches_free(ctx); 2920 2921 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2922 /* there is little hope left, don't run it too often */ 2923 interval = HZ * 60; 2924 } 2925 /* 2926 * This is really an uninterruptible wait, as it has to be 2927 * complete. But it's also run from a kworker, which doesn't 2928 * take signals, so it's fine to make it interruptible. This 2929 * avoids scenarios where we knowingly can wait much longer 2930 * on completions, for example if someone does a SIGSTOP on 2931 * a task that needs to finish task_work to make this loop 2932 * complete. That's a synthetic situation that should not 2933 * cause a stuck task backtrace, and hence a potential panic 2934 * on stuck tasks if that is enabled. 2935 */ 2936 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2937 2938 init_completion(&exit.completion); 2939 init_task_work(&exit.task_work, io_tctx_exit_cb); 2940 exit.ctx = ctx; 2941 2942 mutex_lock(&ctx->uring_lock); 2943 while (!list_empty(&ctx->tctx_list)) { 2944 WARN_ON_ONCE(time_after(jiffies, timeout)); 2945 2946 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2947 ctx_node); 2948 /* don't spin on a single task if cancellation failed */ 2949 list_rotate_left(&ctx->tctx_list); 2950 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2951 if (WARN_ON_ONCE(ret)) 2952 continue; 2953 2954 mutex_unlock(&ctx->uring_lock); 2955 /* 2956 * See comment above for 2957 * wait_for_completion_interruptible_timeout() on why this 2958 * wait is marked as interruptible. 2959 */ 2960 wait_for_completion_interruptible(&exit.completion); 2961 mutex_lock(&ctx->uring_lock); 2962 } 2963 mutex_unlock(&ctx->uring_lock); 2964 spin_lock(&ctx->completion_lock); 2965 spin_unlock(&ctx->completion_lock); 2966 2967 /* pairs with RCU read section in io_req_local_work_add() */ 2968 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2969 synchronize_rcu(); 2970 2971 io_ring_ctx_free(ctx); 2972 } 2973 2974 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2975 { 2976 unsigned long index; 2977 struct creds *creds; 2978 2979 mutex_lock(&ctx->uring_lock); 2980 percpu_ref_kill(&ctx->refs); 2981 xa_for_each(&ctx->personalities, index, creds) 2982 io_unregister_personality(ctx, index); 2983 mutex_unlock(&ctx->uring_lock); 2984 2985 flush_delayed_work(&ctx->fallback_work); 2986 2987 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2988 /* 2989 * Use system_unbound_wq to avoid spawning tons of event kworkers 2990 * if we're exiting a ton of rings at the same time. It just adds 2991 * noise and overhead, there's no discernable change in runtime 2992 * over using system_wq. 2993 */ 2994 queue_work(iou_wq, &ctx->exit_work); 2995 } 2996 2997 static int io_uring_release(struct inode *inode, struct file *file) 2998 { 2999 struct io_ring_ctx *ctx = file->private_data; 3000 3001 file->private_data = NULL; 3002 io_ring_ctx_wait_and_kill(ctx); 3003 return 0; 3004 } 3005 3006 struct io_task_cancel { 3007 struct io_uring_task *tctx; 3008 bool all; 3009 }; 3010 3011 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3012 { 3013 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3014 struct io_task_cancel *cancel = data; 3015 3016 return io_match_task_safe(req, cancel->tctx, cancel->all); 3017 } 3018 3019 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3020 struct io_uring_task *tctx, 3021 bool cancel_all) 3022 { 3023 struct io_defer_entry *de; 3024 LIST_HEAD(list); 3025 3026 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3027 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3028 list_cut_position(&list, &ctx->defer_list, &de->list); 3029 break; 3030 } 3031 } 3032 if (list_empty(&list)) 3033 return false; 3034 3035 while (!list_empty(&list)) { 3036 de = list_first_entry(&list, struct io_defer_entry, list); 3037 list_del_init(&de->list); 3038 ctx->nr_drained -= io_linked_nr(de->req); 3039 io_req_task_queue_fail(de->req, -ECANCELED); 3040 kfree(de); 3041 } 3042 return true; 3043 } 3044 3045 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3046 { 3047 struct io_tctx_node *node; 3048 enum io_wq_cancel cret; 3049 bool ret = false; 3050 3051 mutex_lock(&ctx->uring_lock); 3052 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3053 struct io_uring_task *tctx = node->task->io_uring; 3054 3055 /* 3056 * io_wq will stay alive while we hold uring_lock, because it's 3057 * killed after ctx nodes, which requires to take the lock. 3058 */ 3059 if (!tctx || !tctx->io_wq) 3060 continue; 3061 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3062 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3063 } 3064 mutex_unlock(&ctx->uring_lock); 3065 3066 return ret; 3067 } 3068 3069 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3070 struct io_uring_task *tctx, 3071 bool cancel_all, 3072 bool is_sqpoll_thread) 3073 { 3074 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3075 enum io_wq_cancel cret; 3076 bool ret = false; 3077 3078 /* set it so io_req_local_work_add() would wake us up */ 3079 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3080 atomic_set(&ctx->cq_wait_nr, 1); 3081 smp_mb(); 3082 } 3083 3084 /* failed during ring init, it couldn't have issued any requests */ 3085 if (!ctx->rings) 3086 return false; 3087 3088 if (!tctx) { 3089 ret |= io_uring_try_cancel_iowq(ctx); 3090 } else if (tctx->io_wq) { 3091 /* 3092 * Cancels requests of all rings, not only @ctx, but 3093 * it's fine as the task is in exit/exec. 3094 */ 3095 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3096 &cancel, true); 3097 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3098 } 3099 3100 /* SQPOLL thread does its own polling */ 3101 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3102 is_sqpoll_thread) { 3103 while (!wq_list_empty(&ctx->iopoll_list)) { 3104 io_iopoll_try_reap_events(ctx); 3105 ret = true; 3106 cond_resched(); 3107 } 3108 } 3109 3110 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3111 io_allowed_defer_tw_run(ctx)) 3112 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3113 mutex_lock(&ctx->uring_lock); 3114 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3115 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3116 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3117 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3118 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3119 mutex_unlock(&ctx->uring_lock); 3120 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3121 if (tctx) 3122 ret |= io_run_task_work() > 0; 3123 else 3124 ret |= flush_delayed_work(&ctx->fallback_work); 3125 return ret; 3126 } 3127 3128 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3129 { 3130 if (tracked) 3131 return atomic_read(&tctx->inflight_tracked); 3132 return percpu_counter_sum(&tctx->inflight); 3133 } 3134 3135 /* 3136 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3137 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3138 */ 3139 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3140 { 3141 struct io_uring_task *tctx = current->io_uring; 3142 struct io_ring_ctx *ctx; 3143 struct io_tctx_node *node; 3144 unsigned long index; 3145 s64 inflight; 3146 DEFINE_WAIT(wait); 3147 3148 WARN_ON_ONCE(sqd && sqpoll_task_locked(sqd) != current); 3149 3150 if (!current->io_uring) 3151 return; 3152 if (tctx->io_wq) 3153 io_wq_exit_start(tctx->io_wq); 3154 3155 atomic_inc(&tctx->in_cancel); 3156 do { 3157 bool loop = false; 3158 3159 io_uring_drop_tctx_refs(current); 3160 if (!tctx_inflight(tctx, !cancel_all)) 3161 break; 3162 3163 /* read completions before cancelations */ 3164 inflight = tctx_inflight(tctx, false); 3165 if (!inflight) 3166 break; 3167 3168 if (!sqd) { 3169 xa_for_each(&tctx->xa, index, node) { 3170 /* sqpoll task will cancel all its requests */ 3171 if (node->ctx->sq_data) 3172 continue; 3173 loop |= io_uring_try_cancel_requests(node->ctx, 3174 current->io_uring, 3175 cancel_all, 3176 false); 3177 } 3178 } else { 3179 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3180 loop |= io_uring_try_cancel_requests(ctx, 3181 current->io_uring, 3182 cancel_all, 3183 true); 3184 } 3185 3186 if (loop) { 3187 cond_resched(); 3188 continue; 3189 } 3190 3191 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3192 io_run_task_work(); 3193 io_uring_drop_tctx_refs(current); 3194 xa_for_each(&tctx->xa, index, node) { 3195 if (io_local_work_pending(node->ctx)) { 3196 WARN_ON_ONCE(node->ctx->submitter_task && 3197 node->ctx->submitter_task != current); 3198 goto end_wait; 3199 } 3200 } 3201 /* 3202 * If we've seen completions, retry without waiting. This 3203 * avoids a race where a completion comes in before we did 3204 * prepare_to_wait(). 3205 */ 3206 if (inflight == tctx_inflight(tctx, !cancel_all)) 3207 schedule(); 3208 end_wait: 3209 finish_wait(&tctx->wait, &wait); 3210 } while (1); 3211 3212 io_uring_clean_tctx(tctx); 3213 if (cancel_all) { 3214 /* 3215 * We shouldn't run task_works after cancel, so just leave 3216 * ->in_cancel set for normal exit. 3217 */ 3218 atomic_dec(&tctx->in_cancel); 3219 /* for exec all current's requests should be gone, kill tctx */ 3220 __io_uring_free(current); 3221 } 3222 } 3223 3224 void __io_uring_cancel(bool cancel_all) 3225 { 3226 io_uring_unreg_ringfd(); 3227 io_uring_cancel_generic(cancel_all, NULL); 3228 } 3229 3230 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3231 const struct io_uring_getevents_arg __user *uarg) 3232 { 3233 unsigned long size = sizeof(struct io_uring_reg_wait); 3234 unsigned long offset = (uintptr_t)uarg; 3235 unsigned long end; 3236 3237 if (unlikely(offset % sizeof(long))) 3238 return ERR_PTR(-EFAULT); 3239 3240 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3241 if (unlikely(check_add_overflow(offset, size, &end) || 3242 end > ctx->cq_wait_size)) 3243 return ERR_PTR(-EFAULT); 3244 3245 offset = array_index_nospec(offset, ctx->cq_wait_size - size); 3246 return ctx->cq_wait_arg + offset; 3247 } 3248 3249 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3250 const void __user *argp, size_t argsz) 3251 { 3252 struct io_uring_getevents_arg arg; 3253 3254 if (!(flags & IORING_ENTER_EXT_ARG)) 3255 return 0; 3256 if (flags & IORING_ENTER_EXT_ARG_REG) 3257 return -EINVAL; 3258 if (argsz != sizeof(arg)) 3259 return -EINVAL; 3260 if (copy_from_user(&arg, argp, sizeof(arg))) 3261 return -EFAULT; 3262 return 0; 3263 } 3264 3265 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3266 const void __user *argp, struct ext_arg *ext_arg) 3267 { 3268 const struct io_uring_getevents_arg __user *uarg = argp; 3269 struct io_uring_getevents_arg arg; 3270 3271 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT); 3272 3273 /* 3274 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3275 * is just a pointer to the sigset_t. 3276 */ 3277 if (!(flags & IORING_ENTER_EXT_ARG)) { 3278 ext_arg->sig = (const sigset_t __user *) argp; 3279 return 0; 3280 } 3281 3282 if (flags & IORING_ENTER_EXT_ARG_REG) { 3283 struct io_uring_reg_wait *w; 3284 3285 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3286 return -EINVAL; 3287 w = io_get_ext_arg_reg(ctx, argp); 3288 if (IS_ERR(w)) 3289 return PTR_ERR(w); 3290 3291 if (w->flags & ~IORING_REG_WAIT_TS) 3292 return -EINVAL; 3293 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3294 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3295 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3296 if (w->flags & IORING_REG_WAIT_TS) { 3297 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3298 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3299 ext_arg->ts_set = true; 3300 } 3301 return 0; 3302 } 3303 3304 /* 3305 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3306 * timespec and sigset_t pointers if good. 3307 */ 3308 if (ext_arg->argsz != sizeof(arg)) 3309 return -EINVAL; 3310 #ifdef CONFIG_64BIT 3311 if (!user_access_begin(uarg, sizeof(*uarg))) 3312 return -EFAULT; 3313 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3314 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3315 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3316 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3317 user_access_end(); 3318 #else 3319 if (copy_from_user(&arg, uarg, sizeof(arg))) 3320 return -EFAULT; 3321 #endif 3322 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3323 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3324 ext_arg->argsz = arg.sigmask_sz; 3325 if (arg.ts) { 3326 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3327 return -EFAULT; 3328 ext_arg->ts_set = true; 3329 } 3330 return 0; 3331 #ifdef CONFIG_64BIT 3332 uaccess_end: 3333 user_access_end(); 3334 return -EFAULT; 3335 #endif 3336 } 3337 3338 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3339 u32, min_complete, u32, flags, const void __user *, argp, 3340 size_t, argsz) 3341 { 3342 struct io_ring_ctx *ctx; 3343 struct file *file; 3344 long ret; 3345 3346 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3347 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3348 IORING_ENTER_REGISTERED_RING | 3349 IORING_ENTER_ABS_TIMER | 3350 IORING_ENTER_EXT_ARG_REG | 3351 IORING_ENTER_NO_IOWAIT))) 3352 return -EINVAL; 3353 3354 /* 3355 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3356 * need only dereference our task private array to find it. 3357 */ 3358 if (flags & IORING_ENTER_REGISTERED_RING) { 3359 struct io_uring_task *tctx = current->io_uring; 3360 3361 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3362 return -EINVAL; 3363 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3364 file = tctx->registered_rings[fd]; 3365 if (unlikely(!file)) 3366 return -EBADF; 3367 } else { 3368 file = fget(fd); 3369 if (unlikely(!file)) 3370 return -EBADF; 3371 ret = -EOPNOTSUPP; 3372 if (unlikely(!io_is_uring_fops(file))) 3373 goto out; 3374 } 3375 3376 ctx = file->private_data; 3377 ret = -EBADFD; 3378 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3379 goto out; 3380 3381 /* 3382 * For SQ polling, the thread will do all submissions and completions. 3383 * Just return the requested submit count, and wake the thread if 3384 * we were asked to. 3385 */ 3386 ret = 0; 3387 if (ctx->flags & IORING_SETUP_SQPOLL) { 3388 if (unlikely(ctx->sq_data->thread == NULL)) { 3389 ret = -EOWNERDEAD; 3390 goto out; 3391 } 3392 if (flags & IORING_ENTER_SQ_WAKEUP) 3393 wake_up(&ctx->sq_data->wait); 3394 if (flags & IORING_ENTER_SQ_WAIT) 3395 io_sqpoll_wait_sq(ctx); 3396 3397 ret = to_submit; 3398 } else if (to_submit) { 3399 ret = io_uring_add_tctx_node(ctx); 3400 if (unlikely(ret)) 3401 goto out; 3402 3403 mutex_lock(&ctx->uring_lock); 3404 ret = io_submit_sqes(ctx, to_submit); 3405 if (ret != to_submit) { 3406 mutex_unlock(&ctx->uring_lock); 3407 goto out; 3408 } 3409 if (flags & IORING_ENTER_GETEVENTS) { 3410 if (ctx->syscall_iopoll) 3411 goto iopoll_locked; 3412 /* 3413 * Ignore errors, we'll soon call io_cqring_wait() and 3414 * it should handle ownership problems if any. 3415 */ 3416 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3417 (void)io_run_local_work_locked(ctx, min_complete); 3418 } 3419 mutex_unlock(&ctx->uring_lock); 3420 } 3421 3422 if (flags & IORING_ENTER_GETEVENTS) { 3423 int ret2; 3424 3425 if (ctx->syscall_iopoll) { 3426 /* 3427 * We disallow the app entering submit/complete with 3428 * polling, but we still need to lock the ring to 3429 * prevent racing with polled issue that got punted to 3430 * a workqueue. 3431 */ 3432 mutex_lock(&ctx->uring_lock); 3433 iopoll_locked: 3434 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3435 if (likely(!ret2)) 3436 ret2 = io_iopoll_check(ctx, min_complete); 3437 mutex_unlock(&ctx->uring_lock); 3438 } else { 3439 struct ext_arg ext_arg = { .argsz = argsz }; 3440 3441 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3442 if (likely(!ret2)) 3443 ret2 = io_cqring_wait(ctx, min_complete, flags, 3444 &ext_arg); 3445 } 3446 3447 if (!ret) { 3448 ret = ret2; 3449 3450 /* 3451 * EBADR indicates that one or more CQE were dropped. 3452 * Once the user has been informed we can clear the bit 3453 * as they are obviously ok with those drops. 3454 */ 3455 if (unlikely(ret2 == -EBADR)) 3456 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3457 &ctx->check_cq); 3458 } 3459 } 3460 out: 3461 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3462 fput(file); 3463 return ret; 3464 } 3465 3466 static const struct file_operations io_uring_fops = { 3467 .release = io_uring_release, 3468 .mmap = io_uring_mmap, 3469 .get_unmapped_area = io_uring_get_unmapped_area, 3470 #ifndef CONFIG_MMU 3471 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3472 #endif 3473 .poll = io_uring_poll, 3474 #ifdef CONFIG_PROC_FS 3475 .show_fdinfo = io_uring_show_fdinfo, 3476 #endif 3477 }; 3478 3479 bool io_is_uring_fops(struct file *file) 3480 { 3481 return file->f_op == &io_uring_fops; 3482 } 3483 3484 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3485 struct io_uring_params *p) 3486 { 3487 struct io_uring_region_desc rd; 3488 struct io_rings *rings; 3489 size_t size, sq_array_offset; 3490 int ret; 3491 3492 /* make sure these are sane, as we already accounted them */ 3493 ctx->sq_entries = p->sq_entries; 3494 ctx->cq_entries = p->cq_entries; 3495 3496 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3497 &sq_array_offset); 3498 if (size == SIZE_MAX) 3499 return -EOVERFLOW; 3500 3501 memset(&rd, 0, sizeof(rd)); 3502 rd.size = PAGE_ALIGN(size); 3503 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3504 rd.user_addr = p->cq_off.user_addr; 3505 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3506 } 3507 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); 3508 if (ret) 3509 return ret; 3510 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); 3511 3512 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3513 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3514 rings->sq_ring_mask = p->sq_entries - 1; 3515 rings->cq_ring_mask = p->cq_entries - 1; 3516 rings->sq_ring_entries = p->sq_entries; 3517 rings->cq_ring_entries = p->cq_entries; 3518 3519 if (p->flags & IORING_SETUP_SQE128) 3520 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3521 else 3522 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3523 if (size == SIZE_MAX) { 3524 io_rings_free(ctx); 3525 return -EOVERFLOW; 3526 } 3527 3528 memset(&rd, 0, sizeof(rd)); 3529 rd.size = PAGE_ALIGN(size); 3530 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3531 rd.user_addr = p->sq_off.user_addr; 3532 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3533 } 3534 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); 3535 if (ret) { 3536 io_rings_free(ctx); 3537 return ret; 3538 } 3539 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); 3540 return 0; 3541 } 3542 3543 static int io_uring_install_fd(struct file *file) 3544 { 3545 int fd; 3546 3547 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3548 if (fd < 0) 3549 return fd; 3550 fd_install(fd, file); 3551 return fd; 3552 } 3553 3554 /* 3555 * Allocate an anonymous fd, this is what constitutes the application 3556 * visible backing of an io_uring instance. The application mmaps this 3557 * fd to gain access to the SQ/CQ ring details. 3558 */ 3559 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3560 { 3561 /* Create a new inode so that the LSM can block the creation. */ 3562 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3563 O_RDWR | O_CLOEXEC, NULL); 3564 } 3565 3566 static int io_uring_sanitise_params(struct io_uring_params *p) 3567 { 3568 unsigned flags = p->flags; 3569 3570 /* There is no way to mmap rings without a real fd */ 3571 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) && 3572 !(flags & IORING_SETUP_NO_MMAP)) 3573 return -EINVAL; 3574 3575 if (flags & IORING_SETUP_SQPOLL) { 3576 /* IPI related flags don't make sense with SQPOLL */ 3577 if (flags & (IORING_SETUP_COOP_TASKRUN | 3578 IORING_SETUP_TASKRUN_FLAG | 3579 IORING_SETUP_DEFER_TASKRUN)) 3580 return -EINVAL; 3581 } 3582 3583 if (flags & IORING_SETUP_TASKRUN_FLAG) { 3584 if (!(flags & (IORING_SETUP_COOP_TASKRUN | 3585 IORING_SETUP_DEFER_TASKRUN))) 3586 return -EINVAL; 3587 } 3588 3589 /* HYBRID_IOPOLL only valid with IOPOLL */ 3590 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL)) 3591 return -EINVAL; 3592 3593 /* 3594 * For DEFER_TASKRUN we require the completion task to be the same as 3595 * the submission task. This implies that there is only one submitter. 3596 */ 3597 if ((flags & IORING_SETUP_DEFER_TASKRUN) && 3598 !(flags & IORING_SETUP_SINGLE_ISSUER)) 3599 return -EINVAL; 3600 3601 return 0; 3602 } 3603 3604 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3605 { 3606 if (!entries) 3607 return -EINVAL; 3608 if (entries > IORING_MAX_ENTRIES) { 3609 if (!(p->flags & IORING_SETUP_CLAMP)) 3610 return -EINVAL; 3611 entries = IORING_MAX_ENTRIES; 3612 } 3613 3614 /* 3615 * Use twice as many entries for the CQ ring. It's possible for the 3616 * application to drive a higher depth than the size of the SQ ring, 3617 * since the sqes are only used at submission time. This allows for 3618 * some flexibility in overcommitting a bit. If the application has 3619 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3620 * of CQ ring entries manually. 3621 */ 3622 p->sq_entries = roundup_pow_of_two(entries); 3623 if (p->flags & IORING_SETUP_CQSIZE) { 3624 /* 3625 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3626 * to a power-of-two, if it isn't already. We do NOT impose 3627 * any cq vs sq ring sizing. 3628 */ 3629 if (!p->cq_entries) 3630 return -EINVAL; 3631 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3632 if (!(p->flags & IORING_SETUP_CLAMP)) 3633 return -EINVAL; 3634 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3635 } 3636 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3637 if (p->cq_entries < p->sq_entries) 3638 return -EINVAL; 3639 } else { 3640 p->cq_entries = 2 * p->sq_entries; 3641 } 3642 3643 p->sq_off.head = offsetof(struct io_rings, sq.head); 3644 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3645 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3646 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3647 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3648 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3649 p->sq_off.resv1 = 0; 3650 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3651 p->sq_off.user_addr = 0; 3652 3653 p->cq_off.head = offsetof(struct io_rings, cq.head); 3654 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3655 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3656 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3657 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3658 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3659 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3660 p->cq_off.resv1 = 0; 3661 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3662 p->cq_off.user_addr = 0; 3663 3664 return 0; 3665 } 3666 3667 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3668 struct io_uring_params __user *params) 3669 { 3670 struct io_ring_ctx *ctx; 3671 struct io_uring_task *tctx; 3672 struct file *file; 3673 int ret; 3674 3675 ret = io_uring_sanitise_params(p); 3676 if (ret) 3677 return ret; 3678 3679 ret = io_uring_fill_params(entries, p); 3680 if (unlikely(ret)) 3681 return ret; 3682 3683 ctx = io_ring_ctx_alloc(p); 3684 if (!ctx) 3685 return -ENOMEM; 3686 3687 ctx->clockid = CLOCK_MONOTONIC; 3688 ctx->clock_offset = 0; 3689 3690 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3691 static_branch_inc(&io_key_has_sqarray); 3692 3693 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3694 !(ctx->flags & IORING_SETUP_IOPOLL) && 3695 !(ctx->flags & IORING_SETUP_SQPOLL)) 3696 ctx->task_complete = true; 3697 3698 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3699 ctx->lockless_cq = true; 3700 3701 /* 3702 * lazy poll_wq activation relies on ->task_complete for synchronisation 3703 * purposes, see io_activate_pollwq() 3704 */ 3705 if (!ctx->task_complete) 3706 ctx->poll_activated = true; 3707 3708 /* 3709 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3710 * space applications don't need to do io completion events 3711 * polling again, they can rely on io_sq_thread to do polling 3712 * work, which can reduce cpu usage and uring_lock contention. 3713 */ 3714 if (ctx->flags & IORING_SETUP_IOPOLL && 3715 !(ctx->flags & IORING_SETUP_SQPOLL)) 3716 ctx->syscall_iopoll = 1; 3717 3718 ctx->compat = in_compat_syscall(); 3719 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3720 ctx->user = get_uid(current_user()); 3721 3722 /* 3723 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3724 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3725 */ 3726 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN)) 3727 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3728 else 3729 ctx->notify_method = TWA_SIGNAL; 3730 3731 /* 3732 * This is just grabbed for accounting purposes. When a process exits, 3733 * the mm is exited and dropped before the files, hence we need to hang 3734 * on to this mm purely for the purposes of being able to unaccount 3735 * memory (locked/pinned vm). It's not used for anything else. 3736 */ 3737 mmgrab(current->mm); 3738 ctx->mm_account = current->mm; 3739 3740 ret = io_allocate_scq_urings(ctx, p); 3741 if (ret) 3742 goto err; 3743 3744 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3745 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3746 3747 ret = io_sq_offload_create(ctx, p); 3748 if (ret) 3749 goto err; 3750 3751 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3752 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3753 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3754 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3755 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3756 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3757 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3758 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT | 3759 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT; 3760 3761 if (copy_to_user(params, p, sizeof(*p))) { 3762 ret = -EFAULT; 3763 goto err; 3764 } 3765 3766 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3767 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3768 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3769 3770 file = io_uring_get_file(ctx); 3771 if (IS_ERR(file)) { 3772 ret = PTR_ERR(file); 3773 goto err; 3774 } 3775 3776 ret = __io_uring_add_tctx_node(ctx); 3777 if (ret) 3778 goto err_fput; 3779 tctx = current->io_uring; 3780 3781 /* 3782 * Install ring fd as the very last thing, so we don't risk someone 3783 * having closed it before we finish setup 3784 */ 3785 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3786 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3787 else 3788 ret = io_uring_install_fd(file); 3789 if (ret < 0) 3790 goto err_fput; 3791 3792 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3793 return ret; 3794 err: 3795 io_ring_ctx_wait_and_kill(ctx); 3796 return ret; 3797 err_fput: 3798 fput(file); 3799 return ret; 3800 } 3801 3802 /* 3803 * Sets up an aio uring context, and returns the fd. Applications asks for a 3804 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3805 * params structure passed in. 3806 */ 3807 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3808 { 3809 struct io_uring_params p; 3810 int i; 3811 3812 if (copy_from_user(&p, params, sizeof(p))) 3813 return -EFAULT; 3814 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3815 if (p.resv[i]) 3816 return -EINVAL; 3817 } 3818 3819 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3820 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3821 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3822 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3823 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3824 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3825 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3826 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3827 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3828 return -EINVAL; 3829 3830 return io_uring_create(entries, &p, params); 3831 } 3832 3833 static inline int io_uring_allowed(void) 3834 { 3835 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3836 kgid_t io_uring_group; 3837 3838 if (disabled == 2) 3839 return -EPERM; 3840 3841 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3842 goto allowed_lsm; 3843 3844 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3845 if (!gid_valid(io_uring_group)) 3846 return -EPERM; 3847 3848 if (!in_group_p(io_uring_group)) 3849 return -EPERM; 3850 3851 allowed_lsm: 3852 return security_uring_allowed(); 3853 } 3854 3855 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3856 struct io_uring_params __user *, params) 3857 { 3858 int ret; 3859 3860 ret = io_uring_allowed(); 3861 if (ret) 3862 return ret; 3863 3864 return io_uring_setup(entries, params); 3865 } 3866 3867 static int __init io_uring_init(void) 3868 { 3869 struct kmem_cache_args kmem_args = { 3870 .useroffset = offsetof(struct io_kiocb, cmd.data), 3871 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3872 .freeptr_offset = offsetof(struct io_kiocb, work), 3873 .use_freeptr_offset = true, 3874 }; 3875 3876 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3877 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3878 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3879 } while (0) 3880 3881 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3882 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3883 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3884 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3885 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3886 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3887 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3888 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3889 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3890 BUILD_BUG_SQE_ELEM(8, __u64, off); 3891 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3892 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3893 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3894 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3895 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3896 BUILD_BUG_SQE_ELEM(24, __u32, len); 3897 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3898 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3899 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3900 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3901 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3902 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3903 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3904 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3905 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3906 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3907 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3908 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3909 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3910 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3911 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3912 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3913 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3914 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3915 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3916 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3917 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3918 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3919 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3920 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3921 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3922 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3923 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3924 BUILD_BUG_SQE_ELEM(44, __u8, write_stream); 3925 BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]); 3926 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3927 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3928 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3929 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); 3930 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); 3931 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3932 3933 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3934 sizeof(struct io_uring_rsrc_update)); 3935 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3936 sizeof(struct io_uring_rsrc_update2)); 3937 3938 /* ->buf_index is u16 */ 3939 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3940 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3941 offsetof(struct io_uring_buf_ring, tail)); 3942 3943 /* should fit into one byte */ 3944 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3945 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3946 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3947 3948 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3949 3950 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3951 3952 /* top 8bits are for internal use */ 3953 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3954 3955 io_uring_optable_init(); 3956 3957 /* imu->dir is u8 */ 3958 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX); 3959 3960 /* 3961 * Allow user copy in the per-command field, which starts after the 3962 * file in io_kiocb and until the opcode field. The openat2 handling 3963 * requires copying in user memory into the io_kiocb object in that 3964 * range, and HARDENED_USERCOPY will complain if we haven't 3965 * correctly annotated this range. 3966 */ 3967 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3968 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3969 SLAB_TYPESAFE_BY_RCU); 3970 3971 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3972 BUG_ON(!iou_wq); 3973 3974 #ifdef CONFIG_SYSCTL 3975 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3976 #endif 3977 3978 return 0; 3979 }; 3980 __initcall(io_uring_init); 3981