1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <linux/anon_inodes.h> 64 #include <linux/sched/mm.h> 65 #include <linux/uaccess.h> 66 #include <linux/nospec.h> 67 #include <linux/highmem.h> 68 #include <linux/fsnotify.h> 69 #include <linux/fadvise.h> 70 #include <linux/task_work.h> 71 #include <linux/io_uring.h> 72 #include <linux/io_uring/cmd.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "register.h" 89 #include "sqpoll.h" 90 #include "fdinfo.h" 91 #include "kbuf.h" 92 #include "rsrc.h" 93 #include "cancel.h" 94 #include "net.h" 95 #include "notif.h" 96 #include "waitid.h" 97 #include "futex.h" 98 99 #include "timeout.h" 100 #include "poll.h" 101 #include "rw.h" 102 #include "alloc_cache.h" 103 104 #define IORING_MAX_ENTRIES 32768 105 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 struct io_defer_entry { 131 struct list_head list; 132 struct io_kiocb *req; 133 u32 seq; 134 }; 135 136 /* requests with any of those set should undergo io_disarm_next() */ 137 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 138 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 139 140 /* 141 * No waiters. It's larger than any valid value of the tw counter 142 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 143 */ 144 #define IO_CQ_WAKE_INIT (-1U) 145 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 146 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 147 148 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 149 struct task_struct *task, 150 bool cancel_all); 151 152 static void io_queue_sqe(struct io_kiocb *req); 153 154 struct kmem_cache *req_cachep; 155 156 static int __read_mostly sysctl_io_uring_disabled; 157 static int __read_mostly sysctl_io_uring_group = -1; 158 159 #ifdef CONFIG_SYSCTL 160 static struct ctl_table kernel_io_uring_disabled_table[] = { 161 { 162 .procname = "io_uring_disabled", 163 .data = &sysctl_io_uring_disabled, 164 .maxlen = sizeof(sysctl_io_uring_disabled), 165 .mode = 0644, 166 .proc_handler = proc_dointvec_minmax, 167 .extra1 = SYSCTL_ZERO, 168 .extra2 = SYSCTL_TWO, 169 }, 170 { 171 .procname = "io_uring_group", 172 .data = &sysctl_io_uring_group, 173 .maxlen = sizeof(gid_t), 174 .mode = 0644, 175 .proc_handler = proc_dointvec, 176 }, 177 {}, 178 }; 179 #endif 180 181 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 182 { 183 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 184 ctx->submit_state.cqes_count) 185 __io_submit_flush_completions(ctx); 186 } 187 188 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 189 { 190 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 191 } 192 193 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 194 { 195 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 196 } 197 198 static bool io_match_linked(struct io_kiocb *head) 199 { 200 struct io_kiocb *req; 201 202 io_for_each_link(req, head) { 203 if (req->flags & REQ_F_INFLIGHT) 204 return true; 205 } 206 return false; 207 } 208 209 /* 210 * As io_match_task() but protected against racing with linked timeouts. 211 * User must not hold timeout_lock. 212 */ 213 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 214 bool cancel_all) 215 { 216 bool matched; 217 218 if (task && head->task != task) 219 return false; 220 if (cancel_all) 221 return true; 222 223 if (head->flags & REQ_F_LINK_TIMEOUT) { 224 struct io_ring_ctx *ctx = head->ctx; 225 226 /* protect against races with linked timeouts */ 227 spin_lock_irq(&ctx->timeout_lock); 228 matched = io_match_linked(head); 229 spin_unlock_irq(&ctx->timeout_lock); 230 } else { 231 matched = io_match_linked(head); 232 } 233 return matched; 234 } 235 236 static inline void req_fail_link_node(struct io_kiocb *req, int res) 237 { 238 req_set_fail(req); 239 io_req_set_res(req, res, 0); 240 } 241 242 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 243 { 244 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 245 } 246 247 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 248 { 249 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 250 251 complete(&ctx->ref_comp); 252 } 253 254 static __cold void io_fallback_req_func(struct work_struct *work) 255 { 256 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 257 fallback_work.work); 258 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 259 struct io_kiocb *req, *tmp; 260 struct io_tw_state ts = { .locked = true, }; 261 262 percpu_ref_get(&ctx->refs); 263 mutex_lock(&ctx->uring_lock); 264 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 265 req->io_task_work.func(req, &ts); 266 if (WARN_ON_ONCE(!ts.locked)) 267 return; 268 io_submit_flush_completions(ctx); 269 mutex_unlock(&ctx->uring_lock); 270 percpu_ref_put(&ctx->refs); 271 } 272 273 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 274 { 275 unsigned hash_buckets = 1U << bits; 276 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 277 278 table->hbs = kmalloc(hash_size, GFP_KERNEL); 279 if (!table->hbs) 280 return -ENOMEM; 281 282 table->hash_bits = bits; 283 init_hash_table(table, hash_buckets); 284 return 0; 285 } 286 287 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 288 { 289 struct io_ring_ctx *ctx; 290 int hash_bits; 291 292 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 293 if (!ctx) 294 return NULL; 295 296 xa_init(&ctx->io_bl_xa); 297 298 /* 299 * Use 5 bits less than the max cq entries, that should give us around 300 * 32 entries per hash list if totally full and uniformly spread, but 301 * don't keep too many buckets to not overconsume memory. 302 */ 303 hash_bits = ilog2(p->cq_entries) - 5; 304 hash_bits = clamp(hash_bits, 1, 8); 305 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 306 goto err; 307 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 308 goto err; 309 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 310 0, GFP_KERNEL)) 311 goto err; 312 313 ctx->flags = p->flags; 314 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 315 init_waitqueue_head(&ctx->sqo_sq_wait); 316 INIT_LIST_HEAD(&ctx->sqd_list); 317 INIT_LIST_HEAD(&ctx->cq_overflow_list); 318 INIT_LIST_HEAD(&ctx->io_buffers_cache); 319 INIT_HLIST_HEAD(&ctx->io_buf_list); 320 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 321 sizeof(struct io_rsrc_node)); 322 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 323 sizeof(struct async_poll)); 324 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 325 sizeof(struct io_async_msghdr)); 326 io_futex_cache_init(ctx); 327 init_completion(&ctx->ref_comp); 328 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 329 mutex_init(&ctx->uring_lock); 330 init_waitqueue_head(&ctx->cq_wait); 331 init_waitqueue_head(&ctx->poll_wq); 332 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 333 spin_lock_init(&ctx->completion_lock); 334 spin_lock_init(&ctx->timeout_lock); 335 INIT_WQ_LIST(&ctx->iopoll_list); 336 INIT_LIST_HEAD(&ctx->io_buffers_comp); 337 INIT_LIST_HEAD(&ctx->defer_list); 338 INIT_LIST_HEAD(&ctx->timeout_list); 339 INIT_LIST_HEAD(&ctx->ltimeout_list); 340 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 341 init_llist_head(&ctx->work_llist); 342 INIT_LIST_HEAD(&ctx->tctx_list); 343 ctx->submit_state.free_list.next = NULL; 344 INIT_WQ_LIST(&ctx->locked_free_list); 345 INIT_HLIST_HEAD(&ctx->waitid_list); 346 #ifdef CONFIG_FUTEX 347 INIT_HLIST_HEAD(&ctx->futex_list); 348 #endif 349 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 350 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 351 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 352 return ctx; 353 err: 354 kfree(ctx->cancel_table.hbs); 355 kfree(ctx->cancel_table_locked.hbs); 356 kfree(ctx->io_bl); 357 xa_destroy(&ctx->io_bl_xa); 358 kfree(ctx); 359 return NULL; 360 } 361 362 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 363 { 364 struct io_rings *r = ctx->rings; 365 366 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 367 ctx->cq_extra--; 368 } 369 370 static bool req_need_defer(struct io_kiocb *req, u32 seq) 371 { 372 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 373 struct io_ring_ctx *ctx = req->ctx; 374 375 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 376 } 377 378 return false; 379 } 380 381 static void io_clean_op(struct io_kiocb *req) 382 { 383 if (req->flags & REQ_F_BUFFER_SELECTED) { 384 spin_lock(&req->ctx->completion_lock); 385 io_put_kbuf_comp(req); 386 spin_unlock(&req->ctx->completion_lock); 387 } 388 389 if (req->flags & REQ_F_NEED_CLEANUP) { 390 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 391 392 if (def->cleanup) 393 def->cleanup(req); 394 } 395 if ((req->flags & REQ_F_POLLED) && req->apoll) { 396 kfree(req->apoll->double_poll); 397 kfree(req->apoll); 398 req->apoll = NULL; 399 } 400 if (req->flags & REQ_F_INFLIGHT) { 401 struct io_uring_task *tctx = req->task->io_uring; 402 403 atomic_dec(&tctx->inflight_tracked); 404 } 405 if (req->flags & REQ_F_CREDS) 406 put_cred(req->creds); 407 if (req->flags & REQ_F_ASYNC_DATA) { 408 kfree(req->async_data); 409 req->async_data = NULL; 410 } 411 req->flags &= ~IO_REQ_CLEAN_FLAGS; 412 } 413 414 static inline void io_req_track_inflight(struct io_kiocb *req) 415 { 416 if (!(req->flags & REQ_F_INFLIGHT)) { 417 req->flags |= REQ_F_INFLIGHT; 418 atomic_inc(&req->task->io_uring->inflight_tracked); 419 } 420 } 421 422 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 423 { 424 if (WARN_ON_ONCE(!req->link)) 425 return NULL; 426 427 req->flags &= ~REQ_F_ARM_LTIMEOUT; 428 req->flags |= REQ_F_LINK_TIMEOUT; 429 430 /* linked timeouts should have two refs once prep'ed */ 431 io_req_set_refcount(req); 432 __io_req_set_refcount(req->link, 2); 433 return req->link; 434 } 435 436 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 437 { 438 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 439 return NULL; 440 return __io_prep_linked_timeout(req); 441 } 442 443 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 444 { 445 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 446 } 447 448 static inline void io_arm_ltimeout(struct io_kiocb *req) 449 { 450 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 451 __io_arm_ltimeout(req); 452 } 453 454 static void io_prep_async_work(struct io_kiocb *req) 455 { 456 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 457 struct io_ring_ctx *ctx = req->ctx; 458 459 if (!(req->flags & REQ_F_CREDS)) { 460 req->flags |= REQ_F_CREDS; 461 req->creds = get_current_cred(); 462 } 463 464 req->work.list.next = NULL; 465 req->work.flags = 0; 466 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 467 if (req->flags & REQ_F_FORCE_ASYNC) 468 req->work.flags |= IO_WQ_WORK_CONCURRENT; 469 470 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 471 req->flags |= io_file_get_flags(req->file); 472 473 if (req->file && (req->flags & REQ_F_ISREG)) { 474 bool should_hash = def->hash_reg_file; 475 476 /* don't serialize this request if the fs doesn't need it */ 477 if (should_hash && (req->file->f_flags & O_DIRECT) && 478 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 479 should_hash = false; 480 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 481 io_wq_hash_work(&req->work, file_inode(req->file)); 482 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 483 if (def->unbound_nonreg_file) 484 req->work.flags |= IO_WQ_WORK_UNBOUND; 485 } 486 } 487 488 static void io_prep_async_link(struct io_kiocb *req) 489 { 490 struct io_kiocb *cur; 491 492 if (req->flags & REQ_F_LINK_TIMEOUT) { 493 struct io_ring_ctx *ctx = req->ctx; 494 495 spin_lock_irq(&ctx->timeout_lock); 496 io_for_each_link(cur, req) 497 io_prep_async_work(cur); 498 spin_unlock_irq(&ctx->timeout_lock); 499 } else { 500 io_for_each_link(cur, req) 501 io_prep_async_work(cur); 502 } 503 } 504 505 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 506 { 507 struct io_kiocb *link = io_prep_linked_timeout(req); 508 struct io_uring_task *tctx = req->task->io_uring; 509 510 BUG_ON(!tctx); 511 BUG_ON(!tctx->io_wq); 512 513 /* init ->work of the whole link before punting */ 514 io_prep_async_link(req); 515 516 /* 517 * Not expected to happen, but if we do have a bug where this _can_ 518 * happen, catch it here and ensure the request is marked as 519 * canceled. That will make io-wq go through the usual work cancel 520 * procedure rather than attempt to run this request (or create a new 521 * worker for it). 522 */ 523 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 524 req->work.flags |= IO_WQ_WORK_CANCEL; 525 526 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 527 io_wq_enqueue(tctx->io_wq, &req->work); 528 if (link) 529 io_queue_linked_timeout(link); 530 } 531 532 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 533 { 534 while (!list_empty(&ctx->defer_list)) { 535 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 536 struct io_defer_entry, list); 537 538 if (req_need_defer(de->req, de->seq)) 539 break; 540 list_del_init(&de->list); 541 io_req_task_queue(de->req); 542 kfree(de); 543 } 544 } 545 546 void io_eventfd_ops(struct rcu_head *rcu) 547 { 548 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 549 int ops = atomic_xchg(&ev_fd->ops, 0); 550 551 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 552 eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE); 553 554 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 555 * ordering in a race but if references are 0 we know we have to free 556 * it regardless. 557 */ 558 if (atomic_dec_and_test(&ev_fd->refs)) { 559 eventfd_ctx_put(ev_fd->cq_ev_fd); 560 kfree(ev_fd); 561 } 562 } 563 564 static void io_eventfd_signal(struct io_ring_ctx *ctx) 565 { 566 struct io_ev_fd *ev_fd = NULL; 567 568 rcu_read_lock(); 569 /* 570 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 571 * and eventfd_signal 572 */ 573 ev_fd = rcu_dereference(ctx->io_ev_fd); 574 575 /* 576 * Check again if ev_fd exists incase an io_eventfd_unregister call 577 * completed between the NULL check of ctx->io_ev_fd at the start of 578 * the function and rcu_read_lock. 579 */ 580 if (unlikely(!ev_fd)) 581 goto out; 582 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 583 goto out; 584 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 585 goto out; 586 587 if (likely(eventfd_signal_allowed())) { 588 eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE); 589 } else { 590 atomic_inc(&ev_fd->refs); 591 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 592 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 593 else 594 atomic_dec(&ev_fd->refs); 595 } 596 597 out: 598 rcu_read_unlock(); 599 } 600 601 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 602 { 603 bool skip; 604 605 spin_lock(&ctx->completion_lock); 606 607 /* 608 * Eventfd should only get triggered when at least one event has been 609 * posted. Some applications rely on the eventfd notification count 610 * only changing IFF a new CQE has been added to the CQ ring. There's 611 * no depedency on 1:1 relationship between how many times this 612 * function is called (and hence the eventfd count) and number of CQEs 613 * posted to the CQ ring. 614 */ 615 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 616 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 617 spin_unlock(&ctx->completion_lock); 618 if (skip) 619 return; 620 621 io_eventfd_signal(ctx); 622 } 623 624 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 625 { 626 if (ctx->poll_activated) 627 io_poll_wq_wake(ctx); 628 if (ctx->off_timeout_used) 629 io_flush_timeouts(ctx); 630 if (ctx->drain_active) { 631 spin_lock(&ctx->completion_lock); 632 io_queue_deferred(ctx); 633 spin_unlock(&ctx->completion_lock); 634 } 635 if (ctx->has_evfd) 636 io_eventfd_flush_signal(ctx); 637 } 638 639 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 640 { 641 if (!ctx->lockless_cq) 642 spin_lock(&ctx->completion_lock); 643 } 644 645 static inline void io_cq_lock(struct io_ring_ctx *ctx) 646 __acquires(ctx->completion_lock) 647 { 648 spin_lock(&ctx->completion_lock); 649 } 650 651 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 652 { 653 io_commit_cqring(ctx); 654 if (!ctx->task_complete) { 655 if (!ctx->lockless_cq) 656 spin_unlock(&ctx->completion_lock); 657 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 658 if (!ctx->syscall_iopoll) 659 io_cqring_wake(ctx); 660 } 661 io_commit_cqring_flush(ctx); 662 } 663 664 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 665 __releases(ctx->completion_lock) 666 { 667 io_commit_cqring(ctx); 668 spin_unlock(&ctx->completion_lock); 669 io_cqring_wake(ctx); 670 io_commit_cqring_flush(ctx); 671 } 672 673 /* Returns true if there are no backlogged entries after the flush */ 674 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 675 { 676 struct io_overflow_cqe *ocqe; 677 LIST_HEAD(list); 678 679 spin_lock(&ctx->completion_lock); 680 list_splice_init(&ctx->cq_overflow_list, &list); 681 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 682 spin_unlock(&ctx->completion_lock); 683 684 while (!list_empty(&list)) { 685 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 686 list_del(&ocqe->list); 687 kfree(ocqe); 688 } 689 } 690 691 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 692 { 693 size_t cqe_size = sizeof(struct io_uring_cqe); 694 695 if (__io_cqring_events(ctx) == ctx->cq_entries) 696 return; 697 698 if (ctx->flags & IORING_SETUP_CQE32) 699 cqe_size <<= 1; 700 701 io_cq_lock(ctx); 702 while (!list_empty(&ctx->cq_overflow_list)) { 703 struct io_uring_cqe *cqe; 704 struct io_overflow_cqe *ocqe; 705 706 if (!io_get_cqe_overflow(ctx, &cqe, true)) 707 break; 708 ocqe = list_first_entry(&ctx->cq_overflow_list, 709 struct io_overflow_cqe, list); 710 memcpy(cqe, &ocqe->cqe, cqe_size); 711 list_del(&ocqe->list); 712 kfree(ocqe); 713 } 714 715 if (list_empty(&ctx->cq_overflow_list)) { 716 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 717 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 718 } 719 io_cq_unlock_post(ctx); 720 } 721 722 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 723 { 724 /* iopoll syncs against uring_lock, not completion_lock */ 725 if (ctx->flags & IORING_SETUP_IOPOLL) 726 mutex_lock(&ctx->uring_lock); 727 __io_cqring_overflow_flush(ctx); 728 if (ctx->flags & IORING_SETUP_IOPOLL) 729 mutex_unlock(&ctx->uring_lock); 730 } 731 732 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 733 { 734 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 735 io_cqring_do_overflow_flush(ctx); 736 } 737 738 /* can be called by any task */ 739 static void io_put_task_remote(struct task_struct *task) 740 { 741 struct io_uring_task *tctx = task->io_uring; 742 743 percpu_counter_sub(&tctx->inflight, 1); 744 if (unlikely(atomic_read(&tctx->in_cancel))) 745 wake_up(&tctx->wait); 746 put_task_struct(task); 747 } 748 749 /* used by a task to put its own references */ 750 static void io_put_task_local(struct task_struct *task) 751 { 752 task->io_uring->cached_refs++; 753 } 754 755 /* must to be called somewhat shortly after putting a request */ 756 static inline void io_put_task(struct task_struct *task) 757 { 758 if (likely(task == current)) 759 io_put_task_local(task); 760 else 761 io_put_task_remote(task); 762 } 763 764 void io_task_refs_refill(struct io_uring_task *tctx) 765 { 766 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 767 768 percpu_counter_add(&tctx->inflight, refill); 769 refcount_add(refill, ¤t->usage); 770 tctx->cached_refs += refill; 771 } 772 773 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 774 { 775 struct io_uring_task *tctx = task->io_uring; 776 unsigned int refs = tctx->cached_refs; 777 778 if (refs) { 779 tctx->cached_refs = 0; 780 percpu_counter_sub(&tctx->inflight, refs); 781 put_task_struct_many(task, refs); 782 } 783 } 784 785 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 786 s32 res, u32 cflags, u64 extra1, u64 extra2) 787 { 788 struct io_overflow_cqe *ocqe; 789 size_t ocq_size = sizeof(struct io_overflow_cqe); 790 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 791 792 lockdep_assert_held(&ctx->completion_lock); 793 794 if (is_cqe32) 795 ocq_size += sizeof(struct io_uring_cqe); 796 797 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 798 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 799 if (!ocqe) { 800 /* 801 * If we're in ring overflow flush mode, or in task cancel mode, 802 * or cannot allocate an overflow entry, then we need to drop it 803 * on the floor. 804 */ 805 io_account_cq_overflow(ctx); 806 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 807 return false; 808 } 809 if (list_empty(&ctx->cq_overflow_list)) { 810 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 811 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 812 813 } 814 ocqe->cqe.user_data = user_data; 815 ocqe->cqe.res = res; 816 ocqe->cqe.flags = cflags; 817 if (is_cqe32) { 818 ocqe->cqe.big_cqe[0] = extra1; 819 ocqe->cqe.big_cqe[1] = extra2; 820 } 821 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 822 return true; 823 } 824 825 void io_req_cqe_overflow(struct io_kiocb *req) 826 { 827 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 828 req->cqe.res, req->cqe.flags, 829 req->big_cqe.extra1, req->big_cqe.extra2); 830 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 831 } 832 833 /* 834 * writes to the cq entry need to come after reading head; the 835 * control dependency is enough as we're using WRITE_ONCE to 836 * fill the cq entry 837 */ 838 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 839 { 840 struct io_rings *rings = ctx->rings; 841 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 842 unsigned int free, queued, len; 843 844 /* 845 * Posting into the CQ when there are pending overflowed CQEs may break 846 * ordering guarantees, which will affect links, F_MORE users and more. 847 * Force overflow the completion. 848 */ 849 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 850 return false; 851 852 /* userspace may cheat modifying the tail, be safe and do min */ 853 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 854 free = ctx->cq_entries - queued; 855 /* we need a contiguous range, limit based on the current array offset */ 856 len = min(free, ctx->cq_entries - off); 857 if (!len) 858 return false; 859 860 if (ctx->flags & IORING_SETUP_CQE32) { 861 off <<= 1; 862 len <<= 1; 863 } 864 865 ctx->cqe_cached = &rings->cqes[off]; 866 ctx->cqe_sentinel = ctx->cqe_cached + len; 867 return true; 868 } 869 870 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 871 u32 cflags) 872 { 873 struct io_uring_cqe *cqe; 874 875 ctx->cq_extra++; 876 877 /* 878 * If we can't get a cq entry, userspace overflowed the 879 * submission (by quite a lot). Increment the overflow count in 880 * the ring. 881 */ 882 if (likely(io_get_cqe(ctx, &cqe))) { 883 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 884 885 WRITE_ONCE(cqe->user_data, user_data); 886 WRITE_ONCE(cqe->res, res); 887 WRITE_ONCE(cqe->flags, cflags); 888 889 if (ctx->flags & IORING_SETUP_CQE32) { 890 WRITE_ONCE(cqe->big_cqe[0], 0); 891 WRITE_ONCE(cqe->big_cqe[1], 0); 892 } 893 return true; 894 } 895 return false; 896 } 897 898 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 899 __must_hold(&ctx->uring_lock) 900 { 901 struct io_submit_state *state = &ctx->submit_state; 902 unsigned int i; 903 904 lockdep_assert_held(&ctx->uring_lock); 905 for (i = 0; i < state->cqes_count; i++) { 906 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 907 908 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 909 if (ctx->lockless_cq) { 910 spin_lock(&ctx->completion_lock); 911 io_cqring_event_overflow(ctx, cqe->user_data, 912 cqe->res, cqe->flags, 0, 0); 913 spin_unlock(&ctx->completion_lock); 914 } else { 915 io_cqring_event_overflow(ctx, cqe->user_data, 916 cqe->res, cqe->flags, 0, 0); 917 } 918 } 919 } 920 state->cqes_count = 0; 921 } 922 923 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 924 bool allow_overflow) 925 { 926 bool filled; 927 928 io_cq_lock(ctx); 929 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 930 if (!filled && allow_overflow) 931 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 932 933 io_cq_unlock_post(ctx); 934 return filled; 935 } 936 937 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 938 { 939 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 940 } 941 942 /* 943 * A helper for multishot requests posting additional CQEs. 944 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 945 */ 946 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 947 { 948 struct io_ring_ctx *ctx = req->ctx; 949 u64 user_data = req->cqe.user_data; 950 struct io_uring_cqe *cqe; 951 952 if (!defer) 953 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 954 955 lockdep_assert_held(&ctx->uring_lock); 956 957 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 958 __io_cq_lock(ctx); 959 __io_flush_post_cqes(ctx); 960 /* no need to flush - flush is deferred */ 961 __io_cq_unlock_post(ctx); 962 } 963 964 /* For defered completions this is not as strict as it is otherwise, 965 * however it's main job is to prevent unbounded posted completions, 966 * and in that it works just as well. 967 */ 968 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 969 return false; 970 971 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 972 cqe->user_data = user_data; 973 cqe->res = res; 974 cqe->flags = cflags; 975 return true; 976 } 977 978 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 979 { 980 struct io_ring_ctx *ctx = req->ctx; 981 struct io_rsrc_node *rsrc_node = NULL; 982 983 io_cq_lock(ctx); 984 if (!(req->flags & REQ_F_CQE_SKIP)) { 985 if (!io_fill_cqe_req(ctx, req)) 986 io_req_cqe_overflow(req); 987 } 988 989 /* 990 * If we're the last reference to this request, add to our locked 991 * free_list cache. 992 */ 993 if (req_ref_put_and_test(req)) { 994 if (req->flags & IO_REQ_LINK_FLAGS) { 995 if (req->flags & IO_DISARM_MASK) 996 io_disarm_next(req); 997 if (req->link) { 998 io_req_task_queue(req->link); 999 req->link = NULL; 1000 } 1001 } 1002 io_put_kbuf_comp(req); 1003 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1004 io_clean_op(req); 1005 io_put_file(req); 1006 1007 rsrc_node = req->rsrc_node; 1008 /* 1009 * Selected buffer deallocation in io_clean_op() assumes that 1010 * we don't hold ->completion_lock. Clean them here to avoid 1011 * deadlocks. 1012 */ 1013 io_put_task_remote(req->task); 1014 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1015 ctx->locked_free_nr++; 1016 } 1017 io_cq_unlock_post(ctx); 1018 1019 if (rsrc_node) { 1020 io_ring_submit_lock(ctx, issue_flags); 1021 io_put_rsrc_node(ctx, rsrc_node); 1022 io_ring_submit_unlock(ctx, issue_flags); 1023 } 1024 } 1025 1026 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1027 { 1028 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1029 req->io_task_work.func = io_req_task_complete; 1030 io_req_task_work_add(req); 1031 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1032 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1033 __io_req_complete_post(req, issue_flags); 1034 } else { 1035 struct io_ring_ctx *ctx = req->ctx; 1036 1037 mutex_lock(&ctx->uring_lock); 1038 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1039 mutex_unlock(&ctx->uring_lock); 1040 } 1041 } 1042 1043 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1044 __must_hold(&ctx->uring_lock) 1045 { 1046 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1047 1048 lockdep_assert_held(&req->ctx->uring_lock); 1049 1050 req_set_fail(req); 1051 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1052 if (def->fail) 1053 def->fail(req); 1054 io_req_complete_defer(req); 1055 } 1056 1057 /* 1058 * Don't initialise the fields below on every allocation, but do that in 1059 * advance and keep them valid across allocations. 1060 */ 1061 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1062 { 1063 req->ctx = ctx; 1064 req->link = NULL; 1065 req->async_data = NULL; 1066 /* not necessary, but safer to zero */ 1067 memset(&req->cqe, 0, sizeof(req->cqe)); 1068 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1069 } 1070 1071 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1072 struct io_submit_state *state) 1073 { 1074 spin_lock(&ctx->completion_lock); 1075 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1076 ctx->locked_free_nr = 0; 1077 spin_unlock(&ctx->completion_lock); 1078 } 1079 1080 /* 1081 * A request might get retired back into the request caches even before opcode 1082 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1083 * Because of that, io_alloc_req() should be called only under ->uring_lock 1084 * and with extra caution to not get a request that is still worked on. 1085 */ 1086 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1087 __must_hold(&ctx->uring_lock) 1088 { 1089 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1090 void *reqs[IO_REQ_ALLOC_BATCH]; 1091 int ret, i; 1092 1093 /* 1094 * If we have more than a batch's worth of requests in our IRQ side 1095 * locked cache, grab the lock and move them over to our submission 1096 * side cache. 1097 */ 1098 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1099 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1100 if (!io_req_cache_empty(ctx)) 1101 return true; 1102 } 1103 1104 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1105 1106 /* 1107 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1108 * retry single alloc to be on the safe side. 1109 */ 1110 if (unlikely(ret <= 0)) { 1111 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1112 if (!reqs[0]) 1113 return false; 1114 ret = 1; 1115 } 1116 1117 percpu_ref_get_many(&ctx->refs, ret); 1118 for (i = 0; i < ret; i++) { 1119 struct io_kiocb *req = reqs[i]; 1120 1121 io_preinit_req(req, ctx); 1122 io_req_add_to_cache(req, ctx); 1123 } 1124 return true; 1125 } 1126 1127 __cold void io_free_req(struct io_kiocb *req) 1128 { 1129 /* refs were already put, restore them for io_req_task_complete() */ 1130 req->flags &= ~REQ_F_REFCOUNT; 1131 /* we only want to free it, don't post CQEs */ 1132 req->flags |= REQ_F_CQE_SKIP; 1133 req->io_task_work.func = io_req_task_complete; 1134 io_req_task_work_add(req); 1135 } 1136 1137 static void __io_req_find_next_prep(struct io_kiocb *req) 1138 { 1139 struct io_ring_ctx *ctx = req->ctx; 1140 1141 spin_lock(&ctx->completion_lock); 1142 io_disarm_next(req); 1143 spin_unlock(&ctx->completion_lock); 1144 } 1145 1146 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1147 { 1148 struct io_kiocb *nxt; 1149 1150 /* 1151 * If LINK is set, we have dependent requests in this chain. If we 1152 * didn't fail this request, queue the first one up, moving any other 1153 * dependencies to the next request. In case of failure, fail the rest 1154 * of the chain. 1155 */ 1156 if (unlikely(req->flags & IO_DISARM_MASK)) 1157 __io_req_find_next_prep(req); 1158 nxt = req->link; 1159 req->link = NULL; 1160 return nxt; 1161 } 1162 1163 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1164 { 1165 if (!ctx) 1166 return; 1167 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1168 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1169 if (ts->locked) { 1170 io_submit_flush_completions(ctx); 1171 mutex_unlock(&ctx->uring_lock); 1172 ts->locked = false; 1173 } 1174 percpu_ref_put(&ctx->refs); 1175 } 1176 1177 static unsigned int handle_tw_list(struct llist_node *node, 1178 struct io_ring_ctx **ctx, 1179 struct io_tw_state *ts, 1180 struct llist_node *last) 1181 { 1182 unsigned int count = 0; 1183 1184 while (node && node != last) { 1185 struct llist_node *next = node->next; 1186 struct io_kiocb *req = container_of(node, struct io_kiocb, 1187 io_task_work.node); 1188 1189 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1190 1191 if (req->ctx != *ctx) { 1192 ctx_flush_and_put(*ctx, ts); 1193 *ctx = req->ctx; 1194 /* if not contended, grab and improve batching */ 1195 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1196 percpu_ref_get(&(*ctx)->refs); 1197 } 1198 INDIRECT_CALL_2(req->io_task_work.func, 1199 io_poll_task_func, io_req_rw_complete, 1200 req, ts); 1201 node = next; 1202 count++; 1203 if (unlikely(need_resched())) { 1204 ctx_flush_and_put(*ctx, ts); 1205 *ctx = NULL; 1206 cond_resched(); 1207 } 1208 } 1209 1210 return count; 1211 } 1212 1213 /** 1214 * io_llist_xchg - swap all entries in a lock-less list 1215 * @head: the head of lock-less list to delete all entries 1216 * @new: new entry as the head of the list 1217 * 1218 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1219 * The order of entries returned is from the newest to the oldest added one. 1220 */ 1221 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1222 struct llist_node *new) 1223 { 1224 return xchg(&head->first, new); 1225 } 1226 1227 /** 1228 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1229 * @head: the head of lock-less list to delete all entries 1230 * @old: expected old value of the first entry of the list 1231 * @new: new entry as the head of the list 1232 * 1233 * perform a cmpxchg on the first entry of the list. 1234 */ 1235 1236 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1237 struct llist_node *old, 1238 struct llist_node *new) 1239 { 1240 return cmpxchg(&head->first, old, new); 1241 } 1242 1243 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1244 { 1245 struct llist_node *node = llist_del_all(&tctx->task_list); 1246 struct io_ring_ctx *last_ctx = NULL; 1247 struct io_kiocb *req; 1248 1249 while (node) { 1250 req = container_of(node, struct io_kiocb, io_task_work.node); 1251 node = node->next; 1252 if (sync && last_ctx != req->ctx) { 1253 if (last_ctx) { 1254 flush_delayed_work(&last_ctx->fallback_work); 1255 percpu_ref_put(&last_ctx->refs); 1256 } 1257 last_ctx = req->ctx; 1258 percpu_ref_get(&last_ctx->refs); 1259 } 1260 if (llist_add(&req->io_task_work.node, 1261 &req->ctx->fallback_llist)) 1262 schedule_delayed_work(&req->ctx->fallback_work, 1); 1263 } 1264 1265 if (last_ctx) { 1266 flush_delayed_work(&last_ctx->fallback_work); 1267 percpu_ref_put(&last_ctx->refs); 1268 } 1269 } 1270 1271 void tctx_task_work(struct callback_head *cb) 1272 { 1273 struct io_tw_state ts = {}; 1274 struct io_ring_ctx *ctx = NULL; 1275 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1276 task_work); 1277 struct llist_node fake = {}; 1278 struct llist_node *node; 1279 unsigned int loops = 0; 1280 unsigned int count = 0; 1281 1282 if (unlikely(current->flags & PF_EXITING)) { 1283 io_fallback_tw(tctx, true); 1284 return; 1285 } 1286 1287 do { 1288 loops++; 1289 node = io_llist_xchg(&tctx->task_list, &fake); 1290 count += handle_tw_list(node, &ctx, &ts, &fake); 1291 1292 /* skip expensive cmpxchg if there are items in the list */ 1293 if (READ_ONCE(tctx->task_list.first) != &fake) 1294 continue; 1295 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1296 io_submit_flush_completions(ctx); 1297 if (READ_ONCE(tctx->task_list.first) != &fake) 1298 continue; 1299 } 1300 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1301 } while (node != &fake); 1302 1303 ctx_flush_and_put(ctx, &ts); 1304 1305 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1306 if (unlikely(atomic_read(&tctx->in_cancel))) 1307 io_uring_drop_tctx_refs(current); 1308 1309 trace_io_uring_task_work_run(tctx, count, loops); 1310 } 1311 1312 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1313 { 1314 struct io_ring_ctx *ctx = req->ctx; 1315 unsigned nr_wait, nr_tw, nr_tw_prev; 1316 struct llist_node *head; 1317 1318 /* See comment above IO_CQ_WAKE_INIT */ 1319 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1320 1321 /* 1322 * We don't know how many reuqests is there in the link and whether 1323 * they can even be queued lazily, fall back to non-lazy. 1324 */ 1325 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1326 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1327 1328 head = READ_ONCE(ctx->work_llist.first); 1329 do { 1330 nr_tw_prev = 0; 1331 if (head) { 1332 struct io_kiocb *first_req = container_of(head, 1333 struct io_kiocb, 1334 io_task_work.node); 1335 /* 1336 * Might be executed at any moment, rely on 1337 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1338 */ 1339 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1340 } 1341 1342 /* 1343 * Theoretically, it can overflow, but that's fine as one of 1344 * previous adds should've tried to wake the task. 1345 */ 1346 nr_tw = nr_tw_prev + 1; 1347 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1348 nr_tw = IO_CQ_WAKE_FORCE; 1349 1350 req->nr_tw = nr_tw; 1351 req->io_task_work.node.next = head; 1352 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1353 &req->io_task_work.node)); 1354 1355 /* 1356 * cmpxchg implies a full barrier, which pairs with the barrier 1357 * in set_current_state() on the io_cqring_wait() side. It's used 1358 * to ensure that either we see updated ->cq_wait_nr, or waiters 1359 * going to sleep will observe the work added to the list, which 1360 * is similar to the wait/wawke task state sync. 1361 */ 1362 1363 if (!head) { 1364 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1365 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1366 if (ctx->has_evfd) 1367 io_eventfd_signal(ctx); 1368 } 1369 1370 nr_wait = atomic_read(&ctx->cq_wait_nr); 1371 /* not enough or no one is waiting */ 1372 if (nr_tw < nr_wait) 1373 return; 1374 /* the previous add has already woken it up */ 1375 if (nr_tw_prev >= nr_wait) 1376 return; 1377 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1378 } 1379 1380 static void io_req_normal_work_add(struct io_kiocb *req) 1381 { 1382 struct io_uring_task *tctx = req->task->io_uring; 1383 struct io_ring_ctx *ctx = req->ctx; 1384 1385 /* task_work already pending, we're done */ 1386 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1387 return; 1388 1389 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1390 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1391 1392 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1393 return; 1394 1395 io_fallback_tw(tctx, false); 1396 } 1397 1398 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1399 { 1400 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1401 rcu_read_lock(); 1402 io_req_local_work_add(req, flags); 1403 rcu_read_unlock(); 1404 } else { 1405 io_req_normal_work_add(req); 1406 } 1407 } 1408 1409 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1410 { 1411 struct llist_node *node; 1412 1413 node = llist_del_all(&ctx->work_llist); 1414 while (node) { 1415 struct io_kiocb *req = container_of(node, struct io_kiocb, 1416 io_task_work.node); 1417 1418 node = node->next; 1419 io_req_normal_work_add(req); 1420 } 1421 } 1422 1423 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1424 { 1425 struct llist_node *node; 1426 unsigned int loops = 0; 1427 int ret = 0; 1428 1429 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1430 return -EEXIST; 1431 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1432 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1433 again: 1434 /* 1435 * llists are in reverse order, flip it back the right way before 1436 * running the pending items. 1437 */ 1438 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1439 while (node) { 1440 struct llist_node *next = node->next; 1441 struct io_kiocb *req = container_of(node, struct io_kiocb, 1442 io_task_work.node); 1443 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1444 INDIRECT_CALL_2(req->io_task_work.func, 1445 io_poll_task_func, io_req_rw_complete, 1446 req, ts); 1447 ret++; 1448 node = next; 1449 } 1450 loops++; 1451 1452 if (!llist_empty(&ctx->work_llist)) 1453 goto again; 1454 if (ts->locked) { 1455 io_submit_flush_completions(ctx); 1456 if (!llist_empty(&ctx->work_llist)) 1457 goto again; 1458 } 1459 trace_io_uring_local_work_run(ctx, ret, loops); 1460 return ret; 1461 } 1462 1463 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1464 { 1465 struct io_tw_state ts = { .locked = true, }; 1466 int ret; 1467 1468 if (llist_empty(&ctx->work_llist)) 1469 return 0; 1470 1471 ret = __io_run_local_work(ctx, &ts); 1472 /* shouldn't happen! */ 1473 if (WARN_ON_ONCE(!ts.locked)) 1474 mutex_lock(&ctx->uring_lock); 1475 return ret; 1476 } 1477 1478 static int io_run_local_work(struct io_ring_ctx *ctx) 1479 { 1480 struct io_tw_state ts = {}; 1481 int ret; 1482 1483 ts.locked = mutex_trylock(&ctx->uring_lock); 1484 ret = __io_run_local_work(ctx, &ts); 1485 if (ts.locked) 1486 mutex_unlock(&ctx->uring_lock); 1487 1488 return ret; 1489 } 1490 1491 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1492 { 1493 io_tw_lock(req->ctx, ts); 1494 io_req_defer_failed(req, req->cqe.res); 1495 } 1496 1497 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1498 { 1499 io_tw_lock(req->ctx, ts); 1500 /* req->task == current here, checking PF_EXITING is safe */ 1501 if (unlikely(req->task->flags & PF_EXITING)) 1502 io_req_defer_failed(req, -EFAULT); 1503 else if (req->flags & REQ_F_FORCE_ASYNC) 1504 io_queue_iowq(req, ts); 1505 else 1506 io_queue_sqe(req); 1507 } 1508 1509 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1510 { 1511 io_req_set_res(req, ret, 0); 1512 req->io_task_work.func = io_req_task_cancel; 1513 io_req_task_work_add(req); 1514 } 1515 1516 void io_req_task_queue(struct io_kiocb *req) 1517 { 1518 req->io_task_work.func = io_req_task_submit; 1519 io_req_task_work_add(req); 1520 } 1521 1522 void io_queue_next(struct io_kiocb *req) 1523 { 1524 struct io_kiocb *nxt = io_req_find_next(req); 1525 1526 if (nxt) 1527 io_req_task_queue(nxt); 1528 } 1529 1530 static void io_free_batch_list(struct io_ring_ctx *ctx, 1531 struct io_wq_work_node *node) 1532 __must_hold(&ctx->uring_lock) 1533 { 1534 do { 1535 struct io_kiocb *req = container_of(node, struct io_kiocb, 1536 comp_list); 1537 1538 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1539 if (req->flags & REQ_F_REFCOUNT) { 1540 node = req->comp_list.next; 1541 if (!req_ref_put_and_test(req)) 1542 continue; 1543 } 1544 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1545 struct async_poll *apoll = req->apoll; 1546 1547 if (apoll->double_poll) 1548 kfree(apoll->double_poll); 1549 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1550 kfree(apoll); 1551 req->flags &= ~REQ_F_POLLED; 1552 } 1553 if (req->flags & IO_REQ_LINK_FLAGS) 1554 io_queue_next(req); 1555 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1556 io_clean_op(req); 1557 } 1558 io_put_file(req); 1559 1560 io_req_put_rsrc_locked(req, ctx); 1561 1562 io_put_task(req->task); 1563 node = req->comp_list.next; 1564 io_req_add_to_cache(req, ctx); 1565 } while (node); 1566 } 1567 1568 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1569 __must_hold(&ctx->uring_lock) 1570 { 1571 struct io_submit_state *state = &ctx->submit_state; 1572 struct io_wq_work_node *node; 1573 1574 __io_cq_lock(ctx); 1575 /* must come first to preserve CQE ordering in failure cases */ 1576 if (state->cqes_count) 1577 __io_flush_post_cqes(ctx); 1578 __wq_list_for_each(node, &state->compl_reqs) { 1579 struct io_kiocb *req = container_of(node, struct io_kiocb, 1580 comp_list); 1581 1582 if (!(req->flags & REQ_F_CQE_SKIP) && 1583 unlikely(!io_fill_cqe_req(ctx, req))) { 1584 if (ctx->lockless_cq) { 1585 spin_lock(&ctx->completion_lock); 1586 io_req_cqe_overflow(req); 1587 spin_unlock(&ctx->completion_lock); 1588 } else { 1589 io_req_cqe_overflow(req); 1590 } 1591 } 1592 } 1593 __io_cq_unlock_post(ctx); 1594 1595 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1596 io_free_batch_list(ctx, state->compl_reqs.first); 1597 INIT_WQ_LIST(&state->compl_reqs); 1598 } 1599 } 1600 1601 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1602 { 1603 /* See comment at the top of this file */ 1604 smp_rmb(); 1605 return __io_cqring_events(ctx); 1606 } 1607 1608 /* 1609 * We can't just wait for polled events to come to us, we have to actively 1610 * find and complete them. 1611 */ 1612 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1613 { 1614 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1615 return; 1616 1617 mutex_lock(&ctx->uring_lock); 1618 while (!wq_list_empty(&ctx->iopoll_list)) { 1619 /* let it sleep and repeat later if can't complete a request */ 1620 if (io_do_iopoll(ctx, true) == 0) 1621 break; 1622 /* 1623 * Ensure we allow local-to-the-cpu processing to take place, 1624 * in this case we need to ensure that we reap all events. 1625 * Also let task_work, etc. to progress by releasing the mutex 1626 */ 1627 if (need_resched()) { 1628 mutex_unlock(&ctx->uring_lock); 1629 cond_resched(); 1630 mutex_lock(&ctx->uring_lock); 1631 } 1632 } 1633 mutex_unlock(&ctx->uring_lock); 1634 } 1635 1636 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1637 { 1638 unsigned int nr_events = 0; 1639 unsigned long check_cq; 1640 1641 if (!io_allowed_run_tw(ctx)) 1642 return -EEXIST; 1643 1644 check_cq = READ_ONCE(ctx->check_cq); 1645 if (unlikely(check_cq)) { 1646 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1647 __io_cqring_overflow_flush(ctx); 1648 /* 1649 * Similarly do not spin if we have not informed the user of any 1650 * dropped CQE. 1651 */ 1652 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1653 return -EBADR; 1654 } 1655 /* 1656 * Don't enter poll loop if we already have events pending. 1657 * If we do, we can potentially be spinning for commands that 1658 * already triggered a CQE (eg in error). 1659 */ 1660 if (io_cqring_events(ctx)) 1661 return 0; 1662 1663 do { 1664 int ret = 0; 1665 1666 /* 1667 * If a submit got punted to a workqueue, we can have the 1668 * application entering polling for a command before it gets 1669 * issued. That app will hold the uring_lock for the duration 1670 * of the poll right here, so we need to take a breather every 1671 * now and then to ensure that the issue has a chance to add 1672 * the poll to the issued list. Otherwise we can spin here 1673 * forever, while the workqueue is stuck trying to acquire the 1674 * very same mutex. 1675 */ 1676 if (wq_list_empty(&ctx->iopoll_list) || 1677 io_task_work_pending(ctx)) { 1678 u32 tail = ctx->cached_cq_tail; 1679 1680 (void) io_run_local_work_locked(ctx); 1681 1682 if (task_work_pending(current) || 1683 wq_list_empty(&ctx->iopoll_list)) { 1684 mutex_unlock(&ctx->uring_lock); 1685 io_run_task_work(); 1686 mutex_lock(&ctx->uring_lock); 1687 } 1688 /* some requests don't go through iopoll_list */ 1689 if (tail != ctx->cached_cq_tail || 1690 wq_list_empty(&ctx->iopoll_list)) 1691 break; 1692 } 1693 ret = io_do_iopoll(ctx, !min); 1694 if (unlikely(ret < 0)) 1695 return ret; 1696 1697 if (task_sigpending(current)) 1698 return -EINTR; 1699 if (need_resched()) 1700 break; 1701 1702 nr_events += ret; 1703 } while (nr_events < min); 1704 1705 return 0; 1706 } 1707 1708 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1709 { 1710 if (ts->locked) 1711 io_req_complete_defer(req); 1712 else 1713 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1714 } 1715 1716 /* 1717 * After the iocb has been issued, it's safe to be found on the poll list. 1718 * Adding the kiocb to the list AFTER submission ensures that we don't 1719 * find it from a io_do_iopoll() thread before the issuer is done 1720 * accessing the kiocb cookie. 1721 */ 1722 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1723 { 1724 struct io_ring_ctx *ctx = req->ctx; 1725 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1726 1727 /* workqueue context doesn't hold uring_lock, grab it now */ 1728 if (unlikely(needs_lock)) 1729 mutex_lock(&ctx->uring_lock); 1730 1731 /* 1732 * Track whether we have multiple files in our lists. This will impact 1733 * how we do polling eventually, not spinning if we're on potentially 1734 * different devices. 1735 */ 1736 if (wq_list_empty(&ctx->iopoll_list)) { 1737 ctx->poll_multi_queue = false; 1738 } else if (!ctx->poll_multi_queue) { 1739 struct io_kiocb *list_req; 1740 1741 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1742 comp_list); 1743 if (list_req->file != req->file) 1744 ctx->poll_multi_queue = true; 1745 } 1746 1747 /* 1748 * For fast devices, IO may have already completed. If it has, add 1749 * it to the front so we find it first. 1750 */ 1751 if (READ_ONCE(req->iopoll_completed)) 1752 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1753 else 1754 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1755 1756 if (unlikely(needs_lock)) { 1757 /* 1758 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1759 * in sq thread task context or in io worker task context. If 1760 * current task context is sq thread, we don't need to check 1761 * whether should wake up sq thread. 1762 */ 1763 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1764 wq_has_sleeper(&ctx->sq_data->wait)) 1765 wake_up(&ctx->sq_data->wait); 1766 1767 mutex_unlock(&ctx->uring_lock); 1768 } 1769 } 1770 1771 unsigned int io_file_get_flags(struct file *file) 1772 { 1773 unsigned int res = 0; 1774 1775 if (S_ISREG(file_inode(file)->i_mode)) 1776 res |= REQ_F_ISREG; 1777 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1778 res |= REQ_F_SUPPORT_NOWAIT; 1779 return res; 1780 } 1781 1782 bool io_alloc_async_data(struct io_kiocb *req) 1783 { 1784 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1785 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1786 if (req->async_data) { 1787 req->flags |= REQ_F_ASYNC_DATA; 1788 return false; 1789 } 1790 return true; 1791 } 1792 1793 int io_req_prep_async(struct io_kiocb *req) 1794 { 1795 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1796 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1797 1798 /* assign early for deferred execution for non-fixed file */ 1799 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1800 req->file = io_file_get_normal(req, req->cqe.fd); 1801 if (!cdef->prep_async) 1802 return 0; 1803 if (WARN_ON_ONCE(req_has_async_data(req))) 1804 return -EFAULT; 1805 if (!def->manual_alloc) { 1806 if (io_alloc_async_data(req)) 1807 return -EAGAIN; 1808 } 1809 return cdef->prep_async(req); 1810 } 1811 1812 static u32 io_get_sequence(struct io_kiocb *req) 1813 { 1814 u32 seq = req->ctx->cached_sq_head; 1815 struct io_kiocb *cur; 1816 1817 /* need original cached_sq_head, but it was increased for each req */ 1818 io_for_each_link(cur, req) 1819 seq--; 1820 return seq; 1821 } 1822 1823 static __cold void io_drain_req(struct io_kiocb *req) 1824 __must_hold(&ctx->uring_lock) 1825 { 1826 struct io_ring_ctx *ctx = req->ctx; 1827 struct io_defer_entry *de; 1828 int ret; 1829 u32 seq = io_get_sequence(req); 1830 1831 /* Still need defer if there is pending req in defer list. */ 1832 spin_lock(&ctx->completion_lock); 1833 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1834 spin_unlock(&ctx->completion_lock); 1835 queue: 1836 ctx->drain_active = false; 1837 io_req_task_queue(req); 1838 return; 1839 } 1840 spin_unlock(&ctx->completion_lock); 1841 1842 io_prep_async_link(req); 1843 de = kmalloc(sizeof(*de), GFP_KERNEL); 1844 if (!de) { 1845 ret = -ENOMEM; 1846 io_req_defer_failed(req, ret); 1847 return; 1848 } 1849 1850 spin_lock(&ctx->completion_lock); 1851 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1852 spin_unlock(&ctx->completion_lock); 1853 kfree(de); 1854 goto queue; 1855 } 1856 1857 trace_io_uring_defer(req); 1858 de->req = req; 1859 de->seq = seq; 1860 list_add_tail(&de->list, &ctx->defer_list); 1861 spin_unlock(&ctx->completion_lock); 1862 } 1863 1864 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1865 unsigned int issue_flags) 1866 { 1867 if (req->file || !def->needs_file) 1868 return true; 1869 1870 if (req->flags & REQ_F_FIXED_FILE) 1871 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1872 else 1873 req->file = io_file_get_normal(req, req->cqe.fd); 1874 1875 return !!req->file; 1876 } 1877 1878 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1879 { 1880 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1881 const struct cred *creds = NULL; 1882 int ret; 1883 1884 if (unlikely(!io_assign_file(req, def, issue_flags))) 1885 return -EBADF; 1886 1887 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1888 creds = override_creds(req->creds); 1889 1890 if (!def->audit_skip) 1891 audit_uring_entry(req->opcode); 1892 1893 ret = def->issue(req, issue_flags); 1894 1895 if (!def->audit_skip) 1896 audit_uring_exit(!ret, ret); 1897 1898 if (creds) 1899 revert_creds(creds); 1900 1901 if (ret == IOU_OK) { 1902 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1903 io_req_complete_defer(req); 1904 else 1905 io_req_complete_post(req, issue_flags); 1906 1907 return 0; 1908 } 1909 1910 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1911 ret = 0; 1912 io_arm_ltimeout(req); 1913 1914 /* If the op doesn't have a file, we're not polling for it */ 1915 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1916 io_iopoll_req_issued(req, issue_flags); 1917 } 1918 return ret; 1919 } 1920 1921 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1922 { 1923 io_tw_lock(req->ctx, ts); 1924 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1925 IO_URING_F_COMPLETE_DEFER); 1926 } 1927 1928 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1929 { 1930 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1931 struct io_kiocb *nxt = NULL; 1932 1933 if (req_ref_put_and_test(req)) { 1934 if (req->flags & IO_REQ_LINK_FLAGS) 1935 nxt = io_req_find_next(req); 1936 io_free_req(req); 1937 } 1938 return nxt ? &nxt->work : NULL; 1939 } 1940 1941 void io_wq_submit_work(struct io_wq_work *work) 1942 { 1943 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1944 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1945 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1946 bool needs_poll = false; 1947 int ret = 0, err = -ECANCELED; 1948 1949 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1950 if (!(req->flags & REQ_F_REFCOUNT)) 1951 __io_req_set_refcount(req, 2); 1952 else 1953 req_ref_get(req); 1954 1955 io_arm_ltimeout(req); 1956 1957 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1958 if (work->flags & IO_WQ_WORK_CANCEL) { 1959 fail: 1960 io_req_task_queue_fail(req, err); 1961 return; 1962 } 1963 if (!io_assign_file(req, def, issue_flags)) { 1964 err = -EBADF; 1965 work->flags |= IO_WQ_WORK_CANCEL; 1966 goto fail; 1967 } 1968 1969 if (req->flags & REQ_F_FORCE_ASYNC) { 1970 bool opcode_poll = def->pollin || def->pollout; 1971 1972 if (opcode_poll && file_can_poll(req->file)) { 1973 needs_poll = true; 1974 issue_flags |= IO_URING_F_NONBLOCK; 1975 } 1976 } 1977 1978 do { 1979 ret = io_issue_sqe(req, issue_flags); 1980 if (ret != -EAGAIN) 1981 break; 1982 1983 /* 1984 * If REQ_F_NOWAIT is set, then don't wait or retry with 1985 * poll. -EAGAIN is final for that case. 1986 */ 1987 if (req->flags & REQ_F_NOWAIT) 1988 break; 1989 1990 /* 1991 * We can get EAGAIN for iopolled IO even though we're 1992 * forcing a sync submission from here, since we can't 1993 * wait for request slots on the block side. 1994 */ 1995 if (!needs_poll) { 1996 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1997 break; 1998 if (io_wq_worker_stopped()) 1999 break; 2000 cond_resched(); 2001 continue; 2002 } 2003 2004 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 2005 return; 2006 /* aborted or ready, in either case retry blocking */ 2007 needs_poll = false; 2008 issue_flags &= ~IO_URING_F_NONBLOCK; 2009 } while (1); 2010 2011 /* avoid locking problems by failing it from a clean context */ 2012 if (ret < 0) 2013 io_req_task_queue_fail(req, ret); 2014 } 2015 2016 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2017 unsigned int issue_flags) 2018 { 2019 struct io_ring_ctx *ctx = req->ctx; 2020 struct io_fixed_file *slot; 2021 struct file *file = NULL; 2022 2023 io_ring_submit_lock(ctx, issue_flags); 2024 2025 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2026 goto out; 2027 fd = array_index_nospec(fd, ctx->nr_user_files); 2028 slot = io_fixed_file_slot(&ctx->file_table, fd); 2029 if (!req->rsrc_node) 2030 __io_req_set_rsrc_node(req, ctx); 2031 req->flags |= io_slot_flags(slot); 2032 file = io_slot_file(slot); 2033 out: 2034 io_ring_submit_unlock(ctx, issue_flags); 2035 return file; 2036 } 2037 2038 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2039 { 2040 struct file *file = fget(fd); 2041 2042 trace_io_uring_file_get(req, fd); 2043 2044 /* we don't allow fixed io_uring files */ 2045 if (file && io_is_uring_fops(file)) 2046 io_req_track_inflight(req); 2047 return file; 2048 } 2049 2050 static void io_queue_async(struct io_kiocb *req, int ret) 2051 __must_hold(&req->ctx->uring_lock) 2052 { 2053 struct io_kiocb *linked_timeout; 2054 2055 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2056 io_req_defer_failed(req, ret); 2057 return; 2058 } 2059 2060 linked_timeout = io_prep_linked_timeout(req); 2061 2062 switch (io_arm_poll_handler(req, 0)) { 2063 case IO_APOLL_READY: 2064 io_kbuf_recycle(req, 0); 2065 io_req_task_queue(req); 2066 break; 2067 case IO_APOLL_ABORTED: 2068 io_kbuf_recycle(req, 0); 2069 io_queue_iowq(req, NULL); 2070 break; 2071 case IO_APOLL_OK: 2072 break; 2073 } 2074 2075 if (linked_timeout) 2076 io_queue_linked_timeout(linked_timeout); 2077 } 2078 2079 static inline void io_queue_sqe(struct io_kiocb *req) 2080 __must_hold(&req->ctx->uring_lock) 2081 { 2082 int ret; 2083 2084 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2085 2086 /* 2087 * We async punt it if the file wasn't marked NOWAIT, or if the file 2088 * doesn't support non-blocking read/write attempts 2089 */ 2090 if (unlikely(ret)) 2091 io_queue_async(req, ret); 2092 } 2093 2094 static void io_queue_sqe_fallback(struct io_kiocb *req) 2095 __must_hold(&req->ctx->uring_lock) 2096 { 2097 if (unlikely(req->flags & REQ_F_FAIL)) { 2098 /* 2099 * We don't submit, fail them all, for that replace hardlinks 2100 * with normal links. Extra REQ_F_LINK is tolerated. 2101 */ 2102 req->flags &= ~REQ_F_HARDLINK; 2103 req->flags |= REQ_F_LINK; 2104 io_req_defer_failed(req, req->cqe.res); 2105 } else { 2106 int ret = io_req_prep_async(req); 2107 2108 if (unlikely(ret)) { 2109 io_req_defer_failed(req, ret); 2110 return; 2111 } 2112 2113 if (unlikely(req->ctx->drain_active)) 2114 io_drain_req(req); 2115 else 2116 io_queue_iowq(req, NULL); 2117 } 2118 } 2119 2120 /* 2121 * Check SQE restrictions (opcode and flags). 2122 * 2123 * Returns 'true' if SQE is allowed, 'false' otherwise. 2124 */ 2125 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2126 struct io_kiocb *req, 2127 unsigned int sqe_flags) 2128 { 2129 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2130 return false; 2131 2132 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2133 ctx->restrictions.sqe_flags_required) 2134 return false; 2135 2136 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2137 ctx->restrictions.sqe_flags_required)) 2138 return false; 2139 2140 return true; 2141 } 2142 2143 static void io_init_req_drain(struct io_kiocb *req) 2144 { 2145 struct io_ring_ctx *ctx = req->ctx; 2146 struct io_kiocb *head = ctx->submit_state.link.head; 2147 2148 ctx->drain_active = true; 2149 if (head) { 2150 /* 2151 * If we need to drain a request in the middle of a link, drain 2152 * the head request and the next request/link after the current 2153 * link. Considering sequential execution of links, 2154 * REQ_F_IO_DRAIN will be maintained for every request of our 2155 * link. 2156 */ 2157 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2158 ctx->drain_next = true; 2159 } 2160 } 2161 2162 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2163 const struct io_uring_sqe *sqe) 2164 __must_hold(&ctx->uring_lock) 2165 { 2166 const struct io_issue_def *def; 2167 unsigned int sqe_flags; 2168 int personality; 2169 u8 opcode; 2170 2171 /* req is partially pre-initialised, see io_preinit_req() */ 2172 req->opcode = opcode = READ_ONCE(sqe->opcode); 2173 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2174 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2175 req->cqe.user_data = READ_ONCE(sqe->user_data); 2176 req->file = NULL; 2177 req->rsrc_node = NULL; 2178 req->task = current; 2179 2180 if (unlikely(opcode >= IORING_OP_LAST)) { 2181 req->opcode = 0; 2182 return -EINVAL; 2183 } 2184 def = &io_issue_defs[opcode]; 2185 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2186 /* enforce forwards compatibility on users */ 2187 if (sqe_flags & ~SQE_VALID_FLAGS) 2188 return -EINVAL; 2189 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2190 if (!def->buffer_select) 2191 return -EOPNOTSUPP; 2192 req->buf_index = READ_ONCE(sqe->buf_group); 2193 } 2194 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2195 ctx->drain_disabled = true; 2196 if (sqe_flags & IOSQE_IO_DRAIN) { 2197 if (ctx->drain_disabled) 2198 return -EOPNOTSUPP; 2199 io_init_req_drain(req); 2200 } 2201 } 2202 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2203 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2204 return -EACCES; 2205 /* knock it to the slow queue path, will be drained there */ 2206 if (ctx->drain_active) 2207 req->flags |= REQ_F_FORCE_ASYNC; 2208 /* if there is no link, we're at "next" request and need to drain */ 2209 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2210 ctx->drain_next = false; 2211 ctx->drain_active = true; 2212 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2213 } 2214 } 2215 2216 if (!def->ioprio && sqe->ioprio) 2217 return -EINVAL; 2218 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2219 return -EINVAL; 2220 2221 if (def->needs_file) { 2222 struct io_submit_state *state = &ctx->submit_state; 2223 2224 req->cqe.fd = READ_ONCE(sqe->fd); 2225 2226 /* 2227 * Plug now if we have more than 2 IO left after this, and the 2228 * target is potentially a read/write to block based storage. 2229 */ 2230 if (state->need_plug && def->plug) { 2231 state->plug_started = true; 2232 state->need_plug = false; 2233 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2234 } 2235 } 2236 2237 personality = READ_ONCE(sqe->personality); 2238 if (personality) { 2239 int ret; 2240 2241 req->creds = xa_load(&ctx->personalities, personality); 2242 if (!req->creds) 2243 return -EINVAL; 2244 get_cred(req->creds); 2245 ret = security_uring_override_creds(req->creds); 2246 if (ret) { 2247 put_cred(req->creds); 2248 return ret; 2249 } 2250 req->flags |= REQ_F_CREDS; 2251 } 2252 2253 return def->prep(req, sqe); 2254 } 2255 2256 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2257 struct io_kiocb *req, int ret) 2258 { 2259 struct io_ring_ctx *ctx = req->ctx; 2260 struct io_submit_link *link = &ctx->submit_state.link; 2261 struct io_kiocb *head = link->head; 2262 2263 trace_io_uring_req_failed(sqe, req, ret); 2264 2265 /* 2266 * Avoid breaking links in the middle as it renders links with SQPOLL 2267 * unusable. Instead of failing eagerly, continue assembling the link if 2268 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2269 * should find the flag and handle the rest. 2270 */ 2271 req_fail_link_node(req, ret); 2272 if (head && !(head->flags & REQ_F_FAIL)) 2273 req_fail_link_node(head, -ECANCELED); 2274 2275 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2276 if (head) { 2277 link->last->link = req; 2278 link->head = NULL; 2279 req = head; 2280 } 2281 io_queue_sqe_fallback(req); 2282 return ret; 2283 } 2284 2285 if (head) 2286 link->last->link = req; 2287 else 2288 link->head = req; 2289 link->last = req; 2290 return 0; 2291 } 2292 2293 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2294 const struct io_uring_sqe *sqe) 2295 __must_hold(&ctx->uring_lock) 2296 { 2297 struct io_submit_link *link = &ctx->submit_state.link; 2298 int ret; 2299 2300 ret = io_init_req(ctx, req, sqe); 2301 if (unlikely(ret)) 2302 return io_submit_fail_init(sqe, req, ret); 2303 2304 trace_io_uring_submit_req(req); 2305 2306 /* 2307 * If we already have a head request, queue this one for async 2308 * submittal once the head completes. If we don't have a head but 2309 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2310 * submitted sync once the chain is complete. If none of those 2311 * conditions are true (normal request), then just queue it. 2312 */ 2313 if (unlikely(link->head)) { 2314 ret = io_req_prep_async(req); 2315 if (unlikely(ret)) 2316 return io_submit_fail_init(sqe, req, ret); 2317 2318 trace_io_uring_link(req, link->head); 2319 link->last->link = req; 2320 link->last = req; 2321 2322 if (req->flags & IO_REQ_LINK_FLAGS) 2323 return 0; 2324 /* last request of the link, flush it */ 2325 req = link->head; 2326 link->head = NULL; 2327 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2328 goto fallback; 2329 2330 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2331 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2332 if (req->flags & IO_REQ_LINK_FLAGS) { 2333 link->head = req; 2334 link->last = req; 2335 } else { 2336 fallback: 2337 io_queue_sqe_fallback(req); 2338 } 2339 return 0; 2340 } 2341 2342 io_queue_sqe(req); 2343 return 0; 2344 } 2345 2346 /* 2347 * Batched submission is done, ensure local IO is flushed out. 2348 */ 2349 static void io_submit_state_end(struct io_ring_ctx *ctx) 2350 { 2351 struct io_submit_state *state = &ctx->submit_state; 2352 2353 if (unlikely(state->link.head)) 2354 io_queue_sqe_fallback(state->link.head); 2355 /* flush only after queuing links as they can generate completions */ 2356 io_submit_flush_completions(ctx); 2357 if (state->plug_started) 2358 blk_finish_plug(&state->plug); 2359 } 2360 2361 /* 2362 * Start submission side cache. 2363 */ 2364 static void io_submit_state_start(struct io_submit_state *state, 2365 unsigned int max_ios) 2366 { 2367 state->plug_started = false; 2368 state->need_plug = max_ios > 2; 2369 state->submit_nr = max_ios; 2370 /* set only head, no need to init link_last in advance */ 2371 state->link.head = NULL; 2372 } 2373 2374 static void io_commit_sqring(struct io_ring_ctx *ctx) 2375 { 2376 struct io_rings *rings = ctx->rings; 2377 2378 /* 2379 * Ensure any loads from the SQEs are done at this point, 2380 * since once we write the new head, the application could 2381 * write new data to them. 2382 */ 2383 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2384 } 2385 2386 /* 2387 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2388 * that is mapped by userspace. This means that care needs to be taken to 2389 * ensure that reads are stable, as we cannot rely on userspace always 2390 * being a good citizen. If members of the sqe are validated and then later 2391 * used, it's important that those reads are done through READ_ONCE() to 2392 * prevent a re-load down the line. 2393 */ 2394 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2395 { 2396 unsigned mask = ctx->sq_entries - 1; 2397 unsigned head = ctx->cached_sq_head++ & mask; 2398 2399 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2400 head = READ_ONCE(ctx->sq_array[head]); 2401 if (unlikely(head >= ctx->sq_entries)) { 2402 /* drop invalid entries */ 2403 spin_lock(&ctx->completion_lock); 2404 ctx->cq_extra--; 2405 spin_unlock(&ctx->completion_lock); 2406 WRITE_ONCE(ctx->rings->sq_dropped, 2407 READ_ONCE(ctx->rings->sq_dropped) + 1); 2408 return false; 2409 } 2410 } 2411 2412 /* 2413 * The cached sq head (or cq tail) serves two purposes: 2414 * 2415 * 1) allows us to batch the cost of updating the user visible 2416 * head updates. 2417 * 2) allows the kernel side to track the head on its own, even 2418 * though the application is the one updating it. 2419 */ 2420 2421 /* double index for 128-byte SQEs, twice as long */ 2422 if (ctx->flags & IORING_SETUP_SQE128) 2423 head <<= 1; 2424 *sqe = &ctx->sq_sqes[head]; 2425 return true; 2426 } 2427 2428 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2429 __must_hold(&ctx->uring_lock) 2430 { 2431 unsigned int entries = io_sqring_entries(ctx); 2432 unsigned int left; 2433 int ret; 2434 2435 if (unlikely(!entries)) 2436 return 0; 2437 /* make sure SQ entry isn't read before tail */ 2438 ret = left = min(nr, entries); 2439 io_get_task_refs(left); 2440 io_submit_state_start(&ctx->submit_state, left); 2441 2442 do { 2443 const struct io_uring_sqe *sqe; 2444 struct io_kiocb *req; 2445 2446 if (unlikely(!io_alloc_req(ctx, &req))) 2447 break; 2448 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2449 io_req_add_to_cache(req, ctx); 2450 break; 2451 } 2452 2453 /* 2454 * Continue submitting even for sqe failure if the 2455 * ring was setup with IORING_SETUP_SUBMIT_ALL 2456 */ 2457 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2458 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2459 left--; 2460 break; 2461 } 2462 } while (--left); 2463 2464 if (unlikely(left)) { 2465 ret -= left; 2466 /* try again if it submitted nothing and can't allocate a req */ 2467 if (!ret && io_req_cache_empty(ctx)) 2468 ret = -EAGAIN; 2469 current->io_uring->cached_refs += left; 2470 } 2471 2472 io_submit_state_end(ctx); 2473 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2474 io_commit_sqring(ctx); 2475 return ret; 2476 } 2477 2478 struct io_wait_queue { 2479 struct wait_queue_entry wq; 2480 struct io_ring_ctx *ctx; 2481 unsigned cq_tail; 2482 unsigned nr_timeouts; 2483 ktime_t timeout; 2484 }; 2485 2486 static inline bool io_has_work(struct io_ring_ctx *ctx) 2487 { 2488 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2489 !llist_empty(&ctx->work_llist); 2490 } 2491 2492 static inline bool io_should_wake(struct io_wait_queue *iowq) 2493 { 2494 struct io_ring_ctx *ctx = iowq->ctx; 2495 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2496 2497 /* 2498 * Wake up if we have enough events, or if a timeout occurred since we 2499 * started waiting. For timeouts, we always want to return to userspace, 2500 * regardless of event count. 2501 */ 2502 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2503 } 2504 2505 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2506 int wake_flags, void *key) 2507 { 2508 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2509 2510 /* 2511 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2512 * the task, and the next invocation will do it. 2513 */ 2514 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2515 return autoremove_wake_function(curr, mode, wake_flags, key); 2516 return -1; 2517 } 2518 2519 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2520 { 2521 if (!llist_empty(&ctx->work_llist)) { 2522 __set_current_state(TASK_RUNNING); 2523 if (io_run_local_work(ctx) > 0) 2524 return 0; 2525 } 2526 if (io_run_task_work() > 0) 2527 return 0; 2528 if (task_sigpending(current)) 2529 return -EINTR; 2530 return 0; 2531 } 2532 2533 static bool current_pending_io(void) 2534 { 2535 struct io_uring_task *tctx = current->io_uring; 2536 2537 if (!tctx) 2538 return false; 2539 return percpu_counter_read_positive(&tctx->inflight); 2540 } 2541 2542 /* when returns >0, the caller should retry */ 2543 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2544 struct io_wait_queue *iowq) 2545 { 2546 int io_wait, ret; 2547 2548 if (unlikely(READ_ONCE(ctx->check_cq))) 2549 return 1; 2550 if (unlikely(!llist_empty(&ctx->work_llist))) 2551 return 1; 2552 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2553 return 1; 2554 if (unlikely(task_sigpending(current))) 2555 return -EINTR; 2556 if (unlikely(io_should_wake(iowq))) 2557 return 0; 2558 2559 /* 2560 * Mark us as being in io_wait if we have pending requests, so cpufreq 2561 * can take into account that the task is waiting for IO - turns out 2562 * to be important for low QD IO. 2563 */ 2564 io_wait = current->in_iowait; 2565 if (current_pending_io()) 2566 current->in_iowait = 1; 2567 ret = 0; 2568 if (iowq->timeout == KTIME_MAX) 2569 schedule(); 2570 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2571 ret = -ETIME; 2572 current->in_iowait = io_wait; 2573 return ret; 2574 } 2575 2576 /* 2577 * Wait until events become available, if we don't already have some. The 2578 * application must reap them itself, as they reside on the shared cq ring. 2579 */ 2580 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2581 const sigset_t __user *sig, size_t sigsz, 2582 struct __kernel_timespec __user *uts) 2583 { 2584 struct io_wait_queue iowq; 2585 struct io_rings *rings = ctx->rings; 2586 int ret; 2587 2588 if (!io_allowed_run_tw(ctx)) 2589 return -EEXIST; 2590 if (!llist_empty(&ctx->work_llist)) 2591 io_run_local_work(ctx); 2592 io_run_task_work(); 2593 io_cqring_overflow_flush(ctx); 2594 /* if user messes with these they will just get an early return */ 2595 if (__io_cqring_events_user(ctx) >= min_events) 2596 return 0; 2597 2598 if (sig) { 2599 #ifdef CONFIG_COMPAT 2600 if (in_compat_syscall()) 2601 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2602 sigsz); 2603 else 2604 #endif 2605 ret = set_user_sigmask(sig, sigsz); 2606 2607 if (ret) 2608 return ret; 2609 } 2610 2611 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2612 iowq.wq.private = current; 2613 INIT_LIST_HEAD(&iowq.wq.entry); 2614 iowq.ctx = ctx; 2615 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2616 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2617 iowq.timeout = KTIME_MAX; 2618 2619 if (uts) { 2620 struct timespec64 ts; 2621 2622 if (get_timespec64(&ts, uts)) 2623 return -EFAULT; 2624 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2625 } 2626 2627 trace_io_uring_cqring_wait(ctx, min_events); 2628 do { 2629 unsigned long check_cq; 2630 2631 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2632 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2633 2634 atomic_set(&ctx->cq_wait_nr, nr_wait); 2635 set_current_state(TASK_INTERRUPTIBLE); 2636 } else { 2637 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2638 TASK_INTERRUPTIBLE); 2639 } 2640 2641 ret = io_cqring_wait_schedule(ctx, &iowq); 2642 __set_current_state(TASK_RUNNING); 2643 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2644 2645 /* 2646 * Run task_work after scheduling and before io_should_wake(). 2647 * If we got woken because of task_work being processed, run it 2648 * now rather than let the caller do another wait loop. 2649 */ 2650 io_run_task_work(); 2651 if (!llist_empty(&ctx->work_llist)) 2652 io_run_local_work(ctx); 2653 2654 /* 2655 * Non-local task_work will be run on exit to userspace, but 2656 * if we're using DEFER_TASKRUN, then we could have waited 2657 * with a timeout for a number of requests. If the timeout 2658 * hits, we could have some requests ready to process. Ensure 2659 * this break is _after_ we have run task_work, to avoid 2660 * deferring running potentially pending requests until the 2661 * next time we wait for events. 2662 */ 2663 if (ret < 0) 2664 break; 2665 2666 check_cq = READ_ONCE(ctx->check_cq); 2667 if (unlikely(check_cq)) { 2668 /* let the caller flush overflows, retry */ 2669 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2670 io_cqring_do_overflow_flush(ctx); 2671 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2672 ret = -EBADR; 2673 break; 2674 } 2675 } 2676 2677 if (io_should_wake(&iowq)) { 2678 ret = 0; 2679 break; 2680 } 2681 cond_resched(); 2682 } while (1); 2683 2684 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2685 finish_wait(&ctx->cq_wait, &iowq.wq); 2686 restore_saved_sigmask_unless(ret == -EINTR); 2687 2688 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2689 } 2690 2691 void io_mem_free(void *ptr) 2692 { 2693 if (!ptr) 2694 return; 2695 2696 folio_put(virt_to_folio(ptr)); 2697 } 2698 2699 static void io_pages_free(struct page ***pages, int npages) 2700 { 2701 struct page **page_array; 2702 int i; 2703 2704 if (!pages) 2705 return; 2706 2707 page_array = *pages; 2708 if (!page_array) 2709 return; 2710 2711 for (i = 0; i < npages; i++) 2712 unpin_user_page(page_array[i]); 2713 kvfree(page_array); 2714 *pages = NULL; 2715 } 2716 2717 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2718 unsigned long uaddr, size_t size) 2719 { 2720 struct page **page_array; 2721 unsigned int nr_pages; 2722 void *page_addr; 2723 int ret, i; 2724 2725 *npages = 0; 2726 2727 if (uaddr & (PAGE_SIZE - 1) || !size) 2728 return ERR_PTR(-EINVAL); 2729 2730 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2731 if (nr_pages > USHRT_MAX) 2732 return ERR_PTR(-EINVAL); 2733 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2734 if (!page_array) 2735 return ERR_PTR(-ENOMEM); 2736 2737 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2738 page_array); 2739 if (ret != nr_pages) { 2740 err: 2741 io_pages_free(&page_array, ret > 0 ? ret : 0); 2742 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2743 } 2744 2745 page_addr = page_address(page_array[0]); 2746 for (i = 0; i < nr_pages; i++) { 2747 ret = -EINVAL; 2748 2749 /* 2750 * Can't support mapping user allocated ring memory on 32-bit 2751 * archs where it could potentially reside in highmem. Just 2752 * fail those with -EINVAL, just like we did on kernels that 2753 * didn't support this feature. 2754 */ 2755 if (PageHighMem(page_array[i])) 2756 goto err; 2757 2758 /* 2759 * No support for discontig pages for now, should either be a 2760 * single normal page, or a huge page. Later on we can add 2761 * support for remapping discontig pages, for now we will 2762 * just fail them with EINVAL. 2763 */ 2764 if (page_address(page_array[i]) != page_addr) 2765 goto err; 2766 page_addr += PAGE_SIZE; 2767 } 2768 2769 *pages = page_array; 2770 *npages = nr_pages; 2771 return page_to_virt(page_array[0]); 2772 } 2773 2774 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2775 size_t size) 2776 { 2777 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2778 size); 2779 } 2780 2781 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2782 size_t size) 2783 { 2784 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2785 size); 2786 } 2787 2788 static void io_rings_free(struct io_ring_ctx *ctx) 2789 { 2790 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2791 io_mem_free(ctx->rings); 2792 io_mem_free(ctx->sq_sqes); 2793 ctx->rings = NULL; 2794 ctx->sq_sqes = NULL; 2795 } else { 2796 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2797 ctx->n_ring_pages = 0; 2798 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2799 ctx->n_sqe_pages = 0; 2800 } 2801 } 2802 2803 void *io_mem_alloc(size_t size) 2804 { 2805 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2806 void *ret; 2807 2808 ret = (void *) __get_free_pages(gfp, get_order(size)); 2809 if (ret) 2810 return ret; 2811 return ERR_PTR(-ENOMEM); 2812 } 2813 2814 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2815 unsigned int cq_entries, size_t *sq_offset) 2816 { 2817 struct io_rings *rings; 2818 size_t off, sq_array_size; 2819 2820 off = struct_size(rings, cqes, cq_entries); 2821 if (off == SIZE_MAX) 2822 return SIZE_MAX; 2823 if (ctx->flags & IORING_SETUP_CQE32) { 2824 if (check_shl_overflow(off, 1, &off)) 2825 return SIZE_MAX; 2826 } 2827 2828 #ifdef CONFIG_SMP 2829 off = ALIGN(off, SMP_CACHE_BYTES); 2830 if (off == 0) 2831 return SIZE_MAX; 2832 #endif 2833 2834 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2835 if (sq_offset) 2836 *sq_offset = SIZE_MAX; 2837 return off; 2838 } 2839 2840 if (sq_offset) 2841 *sq_offset = off; 2842 2843 sq_array_size = array_size(sizeof(u32), sq_entries); 2844 if (sq_array_size == SIZE_MAX) 2845 return SIZE_MAX; 2846 2847 if (check_add_overflow(off, sq_array_size, &off)) 2848 return SIZE_MAX; 2849 2850 return off; 2851 } 2852 2853 static void io_req_caches_free(struct io_ring_ctx *ctx) 2854 { 2855 struct io_kiocb *req; 2856 int nr = 0; 2857 2858 mutex_lock(&ctx->uring_lock); 2859 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2860 2861 while (!io_req_cache_empty(ctx)) { 2862 req = io_extract_req(ctx); 2863 kmem_cache_free(req_cachep, req); 2864 nr++; 2865 } 2866 if (nr) 2867 percpu_ref_put_many(&ctx->refs, nr); 2868 mutex_unlock(&ctx->uring_lock); 2869 } 2870 2871 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2872 { 2873 kfree(container_of(entry, struct io_rsrc_node, cache)); 2874 } 2875 2876 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2877 { 2878 io_sq_thread_finish(ctx); 2879 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2880 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2881 return; 2882 2883 mutex_lock(&ctx->uring_lock); 2884 if (ctx->buf_data) 2885 __io_sqe_buffers_unregister(ctx); 2886 if (ctx->file_data) 2887 __io_sqe_files_unregister(ctx); 2888 io_cqring_overflow_kill(ctx); 2889 io_eventfd_unregister(ctx); 2890 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2891 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2892 io_futex_cache_free(ctx); 2893 io_destroy_buffers(ctx); 2894 mutex_unlock(&ctx->uring_lock); 2895 if (ctx->sq_creds) 2896 put_cred(ctx->sq_creds); 2897 if (ctx->submitter_task) 2898 put_task_struct(ctx->submitter_task); 2899 2900 /* there are no registered resources left, nobody uses it */ 2901 if (ctx->rsrc_node) 2902 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2903 2904 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2905 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2906 2907 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2908 if (ctx->mm_account) { 2909 mmdrop(ctx->mm_account); 2910 ctx->mm_account = NULL; 2911 } 2912 io_rings_free(ctx); 2913 io_kbuf_mmap_list_free(ctx); 2914 2915 percpu_ref_exit(&ctx->refs); 2916 free_uid(ctx->user); 2917 io_req_caches_free(ctx); 2918 if (ctx->hash_map) 2919 io_wq_put_hash(ctx->hash_map); 2920 kfree(ctx->cancel_table.hbs); 2921 kfree(ctx->cancel_table_locked.hbs); 2922 kfree(ctx->io_bl); 2923 xa_destroy(&ctx->io_bl_xa); 2924 kfree(ctx); 2925 } 2926 2927 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2928 { 2929 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2930 poll_wq_task_work); 2931 2932 mutex_lock(&ctx->uring_lock); 2933 ctx->poll_activated = true; 2934 mutex_unlock(&ctx->uring_lock); 2935 2936 /* 2937 * Wake ups for some events between start of polling and activation 2938 * might've been lost due to loose synchronisation. 2939 */ 2940 wake_up_all(&ctx->poll_wq); 2941 percpu_ref_put(&ctx->refs); 2942 } 2943 2944 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2945 { 2946 spin_lock(&ctx->completion_lock); 2947 /* already activated or in progress */ 2948 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2949 goto out; 2950 if (WARN_ON_ONCE(!ctx->task_complete)) 2951 goto out; 2952 if (!ctx->submitter_task) 2953 goto out; 2954 /* 2955 * with ->submitter_task only the submitter task completes requests, we 2956 * only need to sync with it, which is done by injecting a tw 2957 */ 2958 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2959 percpu_ref_get(&ctx->refs); 2960 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2961 percpu_ref_put(&ctx->refs); 2962 out: 2963 spin_unlock(&ctx->completion_lock); 2964 } 2965 2966 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2967 { 2968 struct io_ring_ctx *ctx = file->private_data; 2969 __poll_t mask = 0; 2970 2971 if (unlikely(!ctx->poll_activated)) 2972 io_activate_pollwq(ctx); 2973 2974 poll_wait(file, &ctx->poll_wq, wait); 2975 /* 2976 * synchronizes with barrier from wq_has_sleeper call in 2977 * io_commit_cqring 2978 */ 2979 smp_rmb(); 2980 if (!io_sqring_full(ctx)) 2981 mask |= EPOLLOUT | EPOLLWRNORM; 2982 2983 /* 2984 * Don't flush cqring overflow list here, just do a simple check. 2985 * Otherwise there could possible be ABBA deadlock: 2986 * CPU0 CPU1 2987 * ---- ---- 2988 * lock(&ctx->uring_lock); 2989 * lock(&ep->mtx); 2990 * lock(&ctx->uring_lock); 2991 * lock(&ep->mtx); 2992 * 2993 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2994 * pushes them to do the flush. 2995 */ 2996 2997 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2998 mask |= EPOLLIN | EPOLLRDNORM; 2999 3000 return mask; 3001 } 3002 3003 struct io_tctx_exit { 3004 struct callback_head task_work; 3005 struct completion completion; 3006 struct io_ring_ctx *ctx; 3007 }; 3008 3009 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3010 { 3011 struct io_uring_task *tctx = current->io_uring; 3012 struct io_tctx_exit *work; 3013 3014 work = container_of(cb, struct io_tctx_exit, task_work); 3015 /* 3016 * When @in_cancel, we're in cancellation and it's racy to remove the 3017 * node. It'll be removed by the end of cancellation, just ignore it. 3018 * tctx can be NULL if the queueing of this task_work raced with 3019 * work cancelation off the exec path. 3020 */ 3021 if (tctx && !atomic_read(&tctx->in_cancel)) 3022 io_uring_del_tctx_node((unsigned long)work->ctx); 3023 complete(&work->completion); 3024 } 3025 3026 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3027 { 3028 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3029 3030 return req->ctx == data; 3031 } 3032 3033 static __cold void io_ring_exit_work(struct work_struct *work) 3034 { 3035 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3036 unsigned long timeout = jiffies + HZ * 60 * 5; 3037 unsigned long interval = HZ / 20; 3038 struct io_tctx_exit exit; 3039 struct io_tctx_node *node; 3040 int ret; 3041 3042 /* 3043 * If we're doing polled IO and end up having requests being 3044 * submitted async (out-of-line), then completions can come in while 3045 * we're waiting for refs to drop. We need to reap these manually, 3046 * as nobody else will be looking for them. 3047 */ 3048 do { 3049 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3050 mutex_lock(&ctx->uring_lock); 3051 io_cqring_overflow_kill(ctx); 3052 mutex_unlock(&ctx->uring_lock); 3053 } 3054 3055 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3056 io_move_task_work_from_local(ctx); 3057 3058 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3059 cond_resched(); 3060 3061 if (ctx->sq_data) { 3062 struct io_sq_data *sqd = ctx->sq_data; 3063 struct task_struct *tsk; 3064 3065 io_sq_thread_park(sqd); 3066 tsk = sqd->thread; 3067 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3068 io_wq_cancel_cb(tsk->io_uring->io_wq, 3069 io_cancel_ctx_cb, ctx, true); 3070 io_sq_thread_unpark(sqd); 3071 } 3072 3073 io_req_caches_free(ctx); 3074 3075 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3076 /* there is little hope left, don't run it too often */ 3077 interval = HZ * 60; 3078 } 3079 /* 3080 * This is really an uninterruptible wait, as it has to be 3081 * complete. But it's also run from a kworker, which doesn't 3082 * take signals, so it's fine to make it interruptible. This 3083 * avoids scenarios where we knowingly can wait much longer 3084 * on completions, for example if someone does a SIGSTOP on 3085 * a task that needs to finish task_work to make this loop 3086 * complete. That's a synthetic situation that should not 3087 * cause a stuck task backtrace, and hence a potential panic 3088 * on stuck tasks if that is enabled. 3089 */ 3090 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3091 3092 init_completion(&exit.completion); 3093 init_task_work(&exit.task_work, io_tctx_exit_cb); 3094 exit.ctx = ctx; 3095 3096 mutex_lock(&ctx->uring_lock); 3097 while (!list_empty(&ctx->tctx_list)) { 3098 WARN_ON_ONCE(time_after(jiffies, timeout)); 3099 3100 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3101 ctx_node); 3102 /* don't spin on a single task if cancellation failed */ 3103 list_rotate_left(&ctx->tctx_list); 3104 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3105 if (WARN_ON_ONCE(ret)) 3106 continue; 3107 3108 mutex_unlock(&ctx->uring_lock); 3109 /* 3110 * See comment above for 3111 * wait_for_completion_interruptible_timeout() on why this 3112 * wait is marked as interruptible. 3113 */ 3114 wait_for_completion_interruptible(&exit.completion); 3115 mutex_lock(&ctx->uring_lock); 3116 } 3117 mutex_unlock(&ctx->uring_lock); 3118 spin_lock(&ctx->completion_lock); 3119 spin_unlock(&ctx->completion_lock); 3120 3121 /* pairs with RCU read section in io_req_local_work_add() */ 3122 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3123 synchronize_rcu(); 3124 3125 io_ring_ctx_free(ctx); 3126 } 3127 3128 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3129 { 3130 unsigned long index; 3131 struct creds *creds; 3132 3133 mutex_lock(&ctx->uring_lock); 3134 percpu_ref_kill(&ctx->refs); 3135 xa_for_each(&ctx->personalities, index, creds) 3136 io_unregister_personality(ctx, index); 3137 if (ctx->rings) 3138 io_poll_remove_all(ctx, NULL, true); 3139 mutex_unlock(&ctx->uring_lock); 3140 3141 /* 3142 * If we failed setting up the ctx, we might not have any rings 3143 * and therefore did not submit any requests 3144 */ 3145 if (ctx->rings) 3146 io_kill_timeouts(ctx, NULL, true); 3147 3148 flush_delayed_work(&ctx->fallback_work); 3149 3150 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3151 /* 3152 * Use system_unbound_wq to avoid spawning tons of event kworkers 3153 * if we're exiting a ton of rings at the same time. It just adds 3154 * noise and overhead, there's no discernable change in runtime 3155 * over using system_wq. 3156 */ 3157 queue_work(system_unbound_wq, &ctx->exit_work); 3158 } 3159 3160 static int io_uring_release(struct inode *inode, struct file *file) 3161 { 3162 struct io_ring_ctx *ctx = file->private_data; 3163 3164 file->private_data = NULL; 3165 io_ring_ctx_wait_and_kill(ctx); 3166 return 0; 3167 } 3168 3169 struct io_task_cancel { 3170 struct task_struct *task; 3171 bool all; 3172 }; 3173 3174 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3175 { 3176 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3177 struct io_task_cancel *cancel = data; 3178 3179 return io_match_task_safe(req, cancel->task, cancel->all); 3180 } 3181 3182 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3183 struct task_struct *task, 3184 bool cancel_all) 3185 { 3186 struct io_defer_entry *de; 3187 LIST_HEAD(list); 3188 3189 spin_lock(&ctx->completion_lock); 3190 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3191 if (io_match_task_safe(de->req, task, cancel_all)) { 3192 list_cut_position(&list, &ctx->defer_list, &de->list); 3193 break; 3194 } 3195 } 3196 spin_unlock(&ctx->completion_lock); 3197 if (list_empty(&list)) 3198 return false; 3199 3200 while (!list_empty(&list)) { 3201 de = list_first_entry(&list, struct io_defer_entry, list); 3202 list_del_init(&de->list); 3203 io_req_task_queue_fail(de->req, -ECANCELED); 3204 kfree(de); 3205 } 3206 return true; 3207 } 3208 3209 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3210 { 3211 struct io_tctx_node *node; 3212 enum io_wq_cancel cret; 3213 bool ret = false; 3214 3215 mutex_lock(&ctx->uring_lock); 3216 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3217 struct io_uring_task *tctx = node->task->io_uring; 3218 3219 /* 3220 * io_wq will stay alive while we hold uring_lock, because it's 3221 * killed after ctx nodes, which requires to take the lock. 3222 */ 3223 if (!tctx || !tctx->io_wq) 3224 continue; 3225 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3226 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3227 } 3228 mutex_unlock(&ctx->uring_lock); 3229 3230 return ret; 3231 } 3232 3233 static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx, 3234 struct task_struct *task, bool cancel_all) 3235 { 3236 struct hlist_node *tmp; 3237 struct io_kiocb *req; 3238 bool ret = false; 3239 3240 lockdep_assert_held(&ctx->uring_lock); 3241 3242 hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd, 3243 hash_node) { 3244 struct io_uring_cmd *cmd = io_kiocb_to_cmd(req, 3245 struct io_uring_cmd); 3246 struct file *file = req->file; 3247 3248 if (!cancel_all && req->task != task) 3249 continue; 3250 3251 if (cmd->flags & IORING_URING_CMD_CANCELABLE) { 3252 /* ->sqe isn't available if no async data */ 3253 if (!req_has_async_data(req)) 3254 cmd->sqe = NULL; 3255 file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL); 3256 ret = true; 3257 } 3258 } 3259 io_submit_flush_completions(ctx); 3260 3261 return ret; 3262 } 3263 3264 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3265 struct task_struct *task, 3266 bool cancel_all) 3267 { 3268 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3269 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3270 enum io_wq_cancel cret; 3271 bool ret = false; 3272 3273 /* set it so io_req_local_work_add() would wake us up */ 3274 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3275 atomic_set(&ctx->cq_wait_nr, 1); 3276 smp_mb(); 3277 } 3278 3279 /* failed during ring init, it couldn't have issued any requests */ 3280 if (!ctx->rings) 3281 return false; 3282 3283 if (!task) { 3284 ret |= io_uring_try_cancel_iowq(ctx); 3285 } else if (tctx && tctx->io_wq) { 3286 /* 3287 * Cancels requests of all rings, not only @ctx, but 3288 * it's fine as the task is in exit/exec. 3289 */ 3290 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3291 &cancel, true); 3292 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3293 } 3294 3295 /* SQPOLL thread does its own polling */ 3296 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3297 (ctx->sq_data && ctx->sq_data->thread == current)) { 3298 while (!wq_list_empty(&ctx->iopoll_list)) { 3299 io_iopoll_try_reap_events(ctx); 3300 ret = true; 3301 cond_resched(); 3302 } 3303 } 3304 3305 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3306 io_allowed_defer_tw_run(ctx)) 3307 ret |= io_run_local_work(ctx) > 0; 3308 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3309 mutex_lock(&ctx->uring_lock); 3310 ret |= io_poll_remove_all(ctx, task, cancel_all); 3311 ret |= io_waitid_remove_all(ctx, task, cancel_all); 3312 ret |= io_futex_remove_all(ctx, task, cancel_all); 3313 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); 3314 mutex_unlock(&ctx->uring_lock); 3315 ret |= io_kill_timeouts(ctx, task, cancel_all); 3316 if (task) 3317 ret |= io_run_task_work() > 0; 3318 return ret; 3319 } 3320 3321 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3322 { 3323 if (tracked) 3324 return atomic_read(&tctx->inflight_tracked); 3325 return percpu_counter_sum(&tctx->inflight); 3326 } 3327 3328 /* 3329 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3330 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3331 */ 3332 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3333 { 3334 struct io_uring_task *tctx = current->io_uring; 3335 struct io_ring_ctx *ctx; 3336 struct io_tctx_node *node; 3337 unsigned long index; 3338 s64 inflight; 3339 DEFINE_WAIT(wait); 3340 3341 WARN_ON_ONCE(sqd && sqd->thread != current); 3342 3343 if (!current->io_uring) 3344 return; 3345 if (tctx->io_wq) 3346 io_wq_exit_start(tctx->io_wq); 3347 3348 atomic_inc(&tctx->in_cancel); 3349 do { 3350 bool loop = false; 3351 3352 io_uring_drop_tctx_refs(current); 3353 /* read completions before cancelations */ 3354 inflight = tctx_inflight(tctx, !cancel_all); 3355 if (!inflight) 3356 break; 3357 3358 if (!sqd) { 3359 xa_for_each(&tctx->xa, index, node) { 3360 /* sqpoll task will cancel all its requests */ 3361 if (node->ctx->sq_data) 3362 continue; 3363 loop |= io_uring_try_cancel_requests(node->ctx, 3364 current, cancel_all); 3365 } 3366 } else { 3367 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3368 loop |= io_uring_try_cancel_requests(ctx, 3369 current, 3370 cancel_all); 3371 } 3372 3373 if (loop) { 3374 cond_resched(); 3375 continue; 3376 } 3377 3378 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3379 io_run_task_work(); 3380 io_uring_drop_tctx_refs(current); 3381 xa_for_each(&tctx->xa, index, node) { 3382 if (!llist_empty(&node->ctx->work_llist)) { 3383 WARN_ON_ONCE(node->ctx->submitter_task && 3384 node->ctx->submitter_task != current); 3385 goto end_wait; 3386 } 3387 } 3388 /* 3389 * If we've seen completions, retry without waiting. This 3390 * avoids a race where a completion comes in before we did 3391 * prepare_to_wait(). 3392 */ 3393 if (inflight == tctx_inflight(tctx, !cancel_all)) 3394 schedule(); 3395 end_wait: 3396 finish_wait(&tctx->wait, &wait); 3397 } while (1); 3398 3399 io_uring_clean_tctx(tctx); 3400 if (cancel_all) { 3401 /* 3402 * We shouldn't run task_works after cancel, so just leave 3403 * ->in_cancel set for normal exit. 3404 */ 3405 atomic_dec(&tctx->in_cancel); 3406 /* for exec all current's requests should be gone, kill tctx */ 3407 __io_uring_free(current); 3408 } 3409 } 3410 3411 void __io_uring_cancel(bool cancel_all) 3412 { 3413 io_uring_cancel_generic(cancel_all, NULL); 3414 } 3415 3416 static void *io_uring_validate_mmap_request(struct file *file, 3417 loff_t pgoff, size_t sz) 3418 { 3419 struct io_ring_ctx *ctx = file->private_data; 3420 loff_t offset = pgoff << PAGE_SHIFT; 3421 struct page *page; 3422 void *ptr; 3423 3424 switch (offset & IORING_OFF_MMAP_MASK) { 3425 case IORING_OFF_SQ_RING: 3426 case IORING_OFF_CQ_RING: 3427 /* Don't allow mmap if the ring was setup without it */ 3428 if (ctx->flags & IORING_SETUP_NO_MMAP) 3429 return ERR_PTR(-EINVAL); 3430 ptr = ctx->rings; 3431 break; 3432 case IORING_OFF_SQES: 3433 /* Don't allow mmap if the ring was setup without it */ 3434 if (ctx->flags & IORING_SETUP_NO_MMAP) 3435 return ERR_PTR(-EINVAL); 3436 ptr = ctx->sq_sqes; 3437 break; 3438 case IORING_OFF_PBUF_RING: { 3439 unsigned int bgid; 3440 3441 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3442 rcu_read_lock(); 3443 ptr = io_pbuf_get_address(ctx, bgid); 3444 rcu_read_unlock(); 3445 if (!ptr) 3446 return ERR_PTR(-EINVAL); 3447 break; 3448 } 3449 default: 3450 return ERR_PTR(-EINVAL); 3451 } 3452 3453 page = virt_to_head_page(ptr); 3454 if (sz > page_size(page)) 3455 return ERR_PTR(-EINVAL); 3456 3457 return ptr; 3458 } 3459 3460 #ifdef CONFIG_MMU 3461 3462 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3463 { 3464 size_t sz = vma->vm_end - vma->vm_start; 3465 unsigned long pfn; 3466 void *ptr; 3467 3468 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3469 if (IS_ERR(ptr)) 3470 return PTR_ERR(ptr); 3471 3472 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3473 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3474 } 3475 3476 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3477 unsigned long addr, unsigned long len, 3478 unsigned long pgoff, unsigned long flags) 3479 { 3480 void *ptr; 3481 3482 /* 3483 * Do not allow to map to user-provided address to avoid breaking the 3484 * aliasing rules. Userspace is not able to guess the offset address of 3485 * kernel kmalloc()ed memory area. 3486 */ 3487 if (addr) 3488 return -EINVAL; 3489 3490 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3491 if (IS_ERR(ptr)) 3492 return -ENOMEM; 3493 3494 /* 3495 * Some architectures have strong cache aliasing requirements. 3496 * For such architectures we need a coherent mapping which aliases 3497 * kernel memory *and* userspace memory. To achieve that: 3498 * - use a NULL file pointer to reference physical memory, and 3499 * - use the kernel virtual address of the shared io_uring context 3500 * (instead of the userspace-provided address, which has to be 0UL 3501 * anyway). 3502 * - use the same pgoff which the get_unmapped_area() uses to 3503 * calculate the page colouring. 3504 * For architectures without such aliasing requirements, the 3505 * architecture will return any suitable mapping because addr is 0. 3506 */ 3507 filp = NULL; 3508 flags |= MAP_SHARED; 3509 pgoff = 0; /* has been translated to ptr above */ 3510 #ifdef SHM_COLOUR 3511 addr = (uintptr_t) ptr; 3512 pgoff = addr >> PAGE_SHIFT; 3513 #else 3514 addr = 0UL; 3515 #endif 3516 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3517 } 3518 3519 #else /* !CONFIG_MMU */ 3520 3521 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3522 { 3523 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3524 } 3525 3526 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3527 { 3528 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3529 } 3530 3531 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3532 unsigned long addr, unsigned long len, 3533 unsigned long pgoff, unsigned long flags) 3534 { 3535 void *ptr; 3536 3537 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3538 if (IS_ERR(ptr)) 3539 return PTR_ERR(ptr); 3540 3541 return (unsigned long) ptr; 3542 } 3543 3544 #endif /* !CONFIG_MMU */ 3545 3546 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3547 { 3548 if (flags & IORING_ENTER_EXT_ARG) { 3549 struct io_uring_getevents_arg arg; 3550 3551 if (argsz != sizeof(arg)) 3552 return -EINVAL; 3553 if (copy_from_user(&arg, argp, sizeof(arg))) 3554 return -EFAULT; 3555 } 3556 return 0; 3557 } 3558 3559 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3560 struct __kernel_timespec __user **ts, 3561 const sigset_t __user **sig) 3562 { 3563 struct io_uring_getevents_arg arg; 3564 3565 /* 3566 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3567 * is just a pointer to the sigset_t. 3568 */ 3569 if (!(flags & IORING_ENTER_EXT_ARG)) { 3570 *sig = (const sigset_t __user *) argp; 3571 *ts = NULL; 3572 return 0; 3573 } 3574 3575 /* 3576 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3577 * timespec and sigset_t pointers if good. 3578 */ 3579 if (*argsz != sizeof(arg)) 3580 return -EINVAL; 3581 if (copy_from_user(&arg, argp, sizeof(arg))) 3582 return -EFAULT; 3583 if (arg.pad) 3584 return -EINVAL; 3585 *sig = u64_to_user_ptr(arg.sigmask); 3586 *argsz = arg.sigmask_sz; 3587 *ts = u64_to_user_ptr(arg.ts); 3588 return 0; 3589 } 3590 3591 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3592 u32, min_complete, u32, flags, const void __user *, argp, 3593 size_t, argsz) 3594 { 3595 struct io_ring_ctx *ctx; 3596 struct file *file; 3597 long ret; 3598 3599 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3600 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3601 IORING_ENTER_REGISTERED_RING))) 3602 return -EINVAL; 3603 3604 /* 3605 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3606 * need only dereference our task private array to find it. 3607 */ 3608 if (flags & IORING_ENTER_REGISTERED_RING) { 3609 struct io_uring_task *tctx = current->io_uring; 3610 3611 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3612 return -EINVAL; 3613 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3614 file = tctx->registered_rings[fd]; 3615 if (unlikely(!file)) 3616 return -EBADF; 3617 } else { 3618 file = fget(fd); 3619 if (unlikely(!file)) 3620 return -EBADF; 3621 ret = -EOPNOTSUPP; 3622 if (unlikely(!io_is_uring_fops(file))) 3623 goto out; 3624 } 3625 3626 ctx = file->private_data; 3627 ret = -EBADFD; 3628 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3629 goto out; 3630 3631 /* 3632 * For SQ polling, the thread will do all submissions and completions. 3633 * Just return the requested submit count, and wake the thread if 3634 * we were asked to. 3635 */ 3636 ret = 0; 3637 if (ctx->flags & IORING_SETUP_SQPOLL) { 3638 io_cqring_overflow_flush(ctx); 3639 3640 if (unlikely(ctx->sq_data->thread == NULL)) { 3641 ret = -EOWNERDEAD; 3642 goto out; 3643 } 3644 if (flags & IORING_ENTER_SQ_WAKEUP) 3645 wake_up(&ctx->sq_data->wait); 3646 if (flags & IORING_ENTER_SQ_WAIT) 3647 io_sqpoll_wait_sq(ctx); 3648 3649 ret = to_submit; 3650 } else if (to_submit) { 3651 ret = io_uring_add_tctx_node(ctx); 3652 if (unlikely(ret)) 3653 goto out; 3654 3655 mutex_lock(&ctx->uring_lock); 3656 ret = io_submit_sqes(ctx, to_submit); 3657 if (ret != to_submit) { 3658 mutex_unlock(&ctx->uring_lock); 3659 goto out; 3660 } 3661 if (flags & IORING_ENTER_GETEVENTS) { 3662 if (ctx->syscall_iopoll) 3663 goto iopoll_locked; 3664 /* 3665 * Ignore errors, we'll soon call io_cqring_wait() and 3666 * it should handle ownership problems if any. 3667 */ 3668 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3669 (void)io_run_local_work_locked(ctx); 3670 } 3671 mutex_unlock(&ctx->uring_lock); 3672 } 3673 3674 if (flags & IORING_ENTER_GETEVENTS) { 3675 int ret2; 3676 3677 if (ctx->syscall_iopoll) { 3678 /* 3679 * We disallow the app entering submit/complete with 3680 * polling, but we still need to lock the ring to 3681 * prevent racing with polled issue that got punted to 3682 * a workqueue. 3683 */ 3684 mutex_lock(&ctx->uring_lock); 3685 iopoll_locked: 3686 ret2 = io_validate_ext_arg(flags, argp, argsz); 3687 if (likely(!ret2)) { 3688 min_complete = min(min_complete, 3689 ctx->cq_entries); 3690 ret2 = io_iopoll_check(ctx, min_complete); 3691 } 3692 mutex_unlock(&ctx->uring_lock); 3693 } else { 3694 const sigset_t __user *sig; 3695 struct __kernel_timespec __user *ts; 3696 3697 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3698 if (likely(!ret2)) { 3699 min_complete = min(min_complete, 3700 ctx->cq_entries); 3701 ret2 = io_cqring_wait(ctx, min_complete, sig, 3702 argsz, ts); 3703 } 3704 } 3705 3706 if (!ret) { 3707 ret = ret2; 3708 3709 /* 3710 * EBADR indicates that one or more CQE were dropped. 3711 * Once the user has been informed we can clear the bit 3712 * as they are obviously ok with those drops. 3713 */ 3714 if (unlikely(ret2 == -EBADR)) 3715 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3716 &ctx->check_cq); 3717 } 3718 } 3719 out: 3720 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3721 fput(file); 3722 return ret; 3723 } 3724 3725 static const struct file_operations io_uring_fops = { 3726 .release = io_uring_release, 3727 .mmap = io_uring_mmap, 3728 #ifndef CONFIG_MMU 3729 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3730 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3731 #else 3732 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3733 #endif 3734 .poll = io_uring_poll, 3735 #ifdef CONFIG_PROC_FS 3736 .show_fdinfo = io_uring_show_fdinfo, 3737 #endif 3738 }; 3739 3740 bool io_is_uring_fops(struct file *file) 3741 { 3742 return file->f_op == &io_uring_fops; 3743 } 3744 3745 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3746 struct io_uring_params *p) 3747 { 3748 struct io_rings *rings; 3749 size_t size, sq_array_offset; 3750 void *ptr; 3751 3752 /* make sure these are sane, as we already accounted them */ 3753 ctx->sq_entries = p->sq_entries; 3754 ctx->cq_entries = p->cq_entries; 3755 3756 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3757 if (size == SIZE_MAX) 3758 return -EOVERFLOW; 3759 3760 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3761 rings = io_mem_alloc(size); 3762 else 3763 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3764 3765 if (IS_ERR(rings)) 3766 return PTR_ERR(rings); 3767 3768 ctx->rings = rings; 3769 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3770 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3771 rings->sq_ring_mask = p->sq_entries - 1; 3772 rings->cq_ring_mask = p->cq_entries - 1; 3773 rings->sq_ring_entries = p->sq_entries; 3774 rings->cq_ring_entries = p->cq_entries; 3775 3776 if (p->flags & IORING_SETUP_SQE128) 3777 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3778 else 3779 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3780 if (size == SIZE_MAX) { 3781 io_rings_free(ctx); 3782 return -EOVERFLOW; 3783 } 3784 3785 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3786 ptr = io_mem_alloc(size); 3787 else 3788 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3789 3790 if (IS_ERR(ptr)) { 3791 io_rings_free(ctx); 3792 return PTR_ERR(ptr); 3793 } 3794 3795 ctx->sq_sqes = ptr; 3796 return 0; 3797 } 3798 3799 static int io_uring_install_fd(struct file *file) 3800 { 3801 int fd; 3802 3803 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3804 if (fd < 0) 3805 return fd; 3806 fd_install(fd, file); 3807 return fd; 3808 } 3809 3810 /* 3811 * Allocate an anonymous fd, this is what constitutes the application 3812 * visible backing of an io_uring instance. The application mmaps this 3813 * fd to gain access to the SQ/CQ ring details. 3814 */ 3815 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3816 { 3817 /* Create a new inode so that the LSM can block the creation. */ 3818 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3819 O_RDWR | O_CLOEXEC, NULL); 3820 } 3821 3822 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3823 struct io_uring_params __user *params) 3824 { 3825 struct io_ring_ctx *ctx; 3826 struct io_uring_task *tctx; 3827 struct file *file; 3828 int ret; 3829 3830 if (!entries) 3831 return -EINVAL; 3832 if (entries > IORING_MAX_ENTRIES) { 3833 if (!(p->flags & IORING_SETUP_CLAMP)) 3834 return -EINVAL; 3835 entries = IORING_MAX_ENTRIES; 3836 } 3837 3838 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3839 && !(p->flags & IORING_SETUP_NO_MMAP)) 3840 return -EINVAL; 3841 3842 /* 3843 * Use twice as many entries for the CQ ring. It's possible for the 3844 * application to drive a higher depth than the size of the SQ ring, 3845 * since the sqes are only used at submission time. This allows for 3846 * some flexibility in overcommitting a bit. If the application has 3847 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3848 * of CQ ring entries manually. 3849 */ 3850 p->sq_entries = roundup_pow_of_two(entries); 3851 if (p->flags & IORING_SETUP_CQSIZE) { 3852 /* 3853 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3854 * to a power-of-two, if it isn't already. We do NOT impose 3855 * any cq vs sq ring sizing. 3856 */ 3857 if (!p->cq_entries) 3858 return -EINVAL; 3859 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3860 if (!(p->flags & IORING_SETUP_CLAMP)) 3861 return -EINVAL; 3862 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3863 } 3864 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3865 if (p->cq_entries < p->sq_entries) 3866 return -EINVAL; 3867 } else { 3868 p->cq_entries = 2 * p->sq_entries; 3869 } 3870 3871 ctx = io_ring_ctx_alloc(p); 3872 if (!ctx) 3873 return -ENOMEM; 3874 3875 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3876 !(ctx->flags & IORING_SETUP_IOPOLL) && 3877 !(ctx->flags & IORING_SETUP_SQPOLL)) 3878 ctx->task_complete = true; 3879 3880 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3881 ctx->lockless_cq = true; 3882 3883 /* 3884 * lazy poll_wq activation relies on ->task_complete for synchronisation 3885 * purposes, see io_activate_pollwq() 3886 */ 3887 if (!ctx->task_complete) 3888 ctx->poll_activated = true; 3889 3890 /* 3891 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3892 * space applications don't need to do io completion events 3893 * polling again, they can rely on io_sq_thread to do polling 3894 * work, which can reduce cpu usage and uring_lock contention. 3895 */ 3896 if (ctx->flags & IORING_SETUP_IOPOLL && 3897 !(ctx->flags & IORING_SETUP_SQPOLL)) 3898 ctx->syscall_iopoll = 1; 3899 3900 ctx->compat = in_compat_syscall(); 3901 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3902 ctx->user = get_uid(current_user()); 3903 3904 /* 3905 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3906 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3907 */ 3908 ret = -EINVAL; 3909 if (ctx->flags & IORING_SETUP_SQPOLL) { 3910 /* IPI related flags don't make sense with SQPOLL */ 3911 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3912 IORING_SETUP_TASKRUN_FLAG | 3913 IORING_SETUP_DEFER_TASKRUN)) 3914 goto err; 3915 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3916 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3917 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3918 } else { 3919 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3920 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3921 goto err; 3922 ctx->notify_method = TWA_SIGNAL; 3923 } 3924 3925 /* 3926 * For DEFER_TASKRUN we require the completion task to be the same as the 3927 * submission task. This implies that there is only one submitter, so enforce 3928 * that. 3929 */ 3930 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3931 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3932 goto err; 3933 } 3934 3935 /* 3936 * This is just grabbed for accounting purposes. When a process exits, 3937 * the mm is exited and dropped before the files, hence we need to hang 3938 * on to this mm purely for the purposes of being able to unaccount 3939 * memory (locked/pinned vm). It's not used for anything else. 3940 */ 3941 mmgrab(current->mm); 3942 ctx->mm_account = current->mm; 3943 3944 ret = io_allocate_scq_urings(ctx, p); 3945 if (ret) 3946 goto err; 3947 3948 ret = io_sq_offload_create(ctx, p); 3949 if (ret) 3950 goto err; 3951 3952 ret = io_rsrc_init(ctx); 3953 if (ret) 3954 goto err; 3955 3956 p->sq_off.head = offsetof(struct io_rings, sq.head); 3957 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3958 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3959 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3960 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3961 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3962 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3963 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3964 p->sq_off.resv1 = 0; 3965 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3966 p->sq_off.user_addr = 0; 3967 3968 p->cq_off.head = offsetof(struct io_rings, cq.head); 3969 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3970 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3971 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3972 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3973 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3974 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3975 p->cq_off.resv1 = 0; 3976 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3977 p->cq_off.user_addr = 0; 3978 3979 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3980 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3981 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3982 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3983 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3984 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3985 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3986 3987 if (copy_to_user(params, p, sizeof(*p))) { 3988 ret = -EFAULT; 3989 goto err; 3990 } 3991 3992 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3993 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3994 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3995 3996 file = io_uring_get_file(ctx); 3997 if (IS_ERR(file)) { 3998 ret = PTR_ERR(file); 3999 goto err; 4000 } 4001 4002 ret = __io_uring_add_tctx_node(ctx); 4003 if (ret) 4004 goto err_fput; 4005 tctx = current->io_uring; 4006 4007 /* 4008 * Install ring fd as the very last thing, so we don't risk someone 4009 * having closed it before we finish setup 4010 */ 4011 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4012 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4013 else 4014 ret = io_uring_install_fd(file); 4015 if (ret < 0) 4016 goto err_fput; 4017 4018 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4019 return ret; 4020 err: 4021 io_ring_ctx_wait_and_kill(ctx); 4022 return ret; 4023 err_fput: 4024 fput(file); 4025 return ret; 4026 } 4027 4028 /* 4029 * Sets up an aio uring context, and returns the fd. Applications asks for a 4030 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4031 * params structure passed in. 4032 */ 4033 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4034 { 4035 struct io_uring_params p; 4036 int i; 4037 4038 if (copy_from_user(&p, params, sizeof(p))) 4039 return -EFAULT; 4040 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4041 if (p.resv[i]) 4042 return -EINVAL; 4043 } 4044 4045 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4046 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4047 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4048 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4049 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4050 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4051 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4052 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4053 IORING_SETUP_NO_SQARRAY)) 4054 return -EINVAL; 4055 4056 return io_uring_create(entries, &p, params); 4057 } 4058 4059 static inline bool io_uring_allowed(void) 4060 { 4061 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4062 kgid_t io_uring_group; 4063 4064 if (disabled == 2) 4065 return false; 4066 4067 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4068 return true; 4069 4070 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4071 if (!gid_valid(io_uring_group)) 4072 return false; 4073 4074 return in_group_p(io_uring_group); 4075 } 4076 4077 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4078 struct io_uring_params __user *, params) 4079 { 4080 if (!io_uring_allowed()) 4081 return -EPERM; 4082 4083 return io_uring_setup(entries, params); 4084 } 4085 4086 static int __init io_uring_init(void) 4087 { 4088 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4089 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4090 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4091 } while (0) 4092 4093 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4094 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4095 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4096 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4097 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4098 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4099 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4100 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4101 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4102 BUILD_BUG_SQE_ELEM(8, __u64, off); 4103 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4104 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4105 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4106 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4107 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4108 BUILD_BUG_SQE_ELEM(24, __u32, len); 4109 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4110 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4111 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4112 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4113 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4114 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4115 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4116 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4117 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4118 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4119 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4120 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4121 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4122 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4123 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4124 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4125 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4126 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4127 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4128 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4129 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4130 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4131 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4132 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4133 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4134 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4135 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4136 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4137 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4138 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4139 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4140 4141 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4142 sizeof(struct io_uring_rsrc_update)); 4143 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4144 sizeof(struct io_uring_rsrc_update2)); 4145 4146 /* ->buf_index is u16 */ 4147 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4148 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4149 offsetof(struct io_uring_buf_ring, tail)); 4150 4151 /* should fit into one byte */ 4152 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4153 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4154 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4155 4156 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4157 4158 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4159 4160 /* top 8bits are for internal use */ 4161 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 4162 4163 io_uring_optable_init(); 4164 4165 /* 4166 * Allow user copy in the per-command field, which starts after the 4167 * file in io_kiocb and until the opcode field. The openat2 handling 4168 * requires copying in user memory into the io_kiocb object in that 4169 * range, and HARDENED_USERCOPY will complain if we haven't 4170 * correctly annotated this range. 4171 */ 4172 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4173 sizeof(struct io_kiocb), 0, 4174 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4175 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4176 offsetof(struct io_kiocb, cmd.data), 4177 sizeof_field(struct io_kiocb, cmd.data), NULL); 4178 io_buf_cachep = kmem_cache_create("io_buffer", sizeof(struct io_buffer), 0, 4179 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 4180 NULL); 4181 4182 #ifdef CONFIG_SYSCTL 4183 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4184 #endif 4185 4186 return 0; 4187 }; 4188 __initcall(io_uring_init); 4189