1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <linux/anon_inodes.h> 63 #include <linux/sched/mm.h> 64 #include <linux/uaccess.h> 65 #include <linux/nospec.h> 66 #include <linux/fsnotify.h> 67 #include <linux/fadvise.h> 68 #include <linux/task_work.h> 69 #include <linux/io_uring.h> 70 #include <linux/io_uring/cmd.h> 71 #include <linux/audit.h> 72 #include <linux/security.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 101 #include "timeout.h" 102 #include "poll.h" 103 #include "rw.h" 104 #include "alloc_cache.h" 105 #include "eventfd.h" 106 107 #define IORING_MAX_ENTRIES 32768 108 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 109 110 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 111 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 112 113 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 114 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 118 REQ_F_ASYNC_DATA) 119 120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 121 IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 128 struct io_defer_entry { 129 struct list_head list; 130 struct io_kiocb *req; 131 u32 seq; 132 }; 133 134 /* requests with any of those set should undergo io_disarm_next() */ 135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 136 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 137 138 /* 139 * No waiters. It's larger than any valid value of the tw counter 140 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 141 */ 142 #define IO_CQ_WAKE_INIT (-1U) 143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 145 146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 147 struct task_struct *task, 148 bool cancel_all); 149 150 static void io_queue_sqe(struct io_kiocb *req); 151 152 struct kmem_cache *req_cachep; 153 static struct workqueue_struct *iou_wq __ro_after_init; 154 155 static int __read_mostly sysctl_io_uring_disabled; 156 static int __read_mostly sysctl_io_uring_group = -1; 157 158 #ifdef CONFIG_SYSCTL 159 static struct ctl_table kernel_io_uring_disabled_table[] = { 160 { 161 .procname = "io_uring_disabled", 162 .data = &sysctl_io_uring_disabled, 163 .maxlen = sizeof(sysctl_io_uring_disabled), 164 .mode = 0644, 165 .proc_handler = proc_dointvec_minmax, 166 .extra1 = SYSCTL_ZERO, 167 .extra2 = SYSCTL_TWO, 168 }, 169 { 170 .procname = "io_uring_group", 171 .data = &sysctl_io_uring_group, 172 .maxlen = sizeof(gid_t), 173 .mode = 0644, 174 .proc_handler = proc_dointvec, 175 }, 176 }; 177 #endif 178 179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 180 { 181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 182 } 183 184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 185 { 186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 187 } 188 189 static bool io_match_linked(struct io_kiocb *head) 190 { 191 struct io_kiocb *req; 192 193 io_for_each_link(req, head) { 194 if (req->flags & REQ_F_INFLIGHT) 195 return true; 196 } 197 return false; 198 } 199 200 /* 201 * As io_match_task() but protected against racing with linked timeouts. 202 * User must not hold timeout_lock. 203 */ 204 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 205 bool cancel_all) 206 { 207 bool matched; 208 209 if (task && head->task != task) 210 return false; 211 if (cancel_all) 212 return true; 213 214 if (head->flags & REQ_F_LINK_TIMEOUT) { 215 struct io_ring_ctx *ctx = head->ctx; 216 217 /* protect against races with linked timeouts */ 218 spin_lock_irq(&ctx->timeout_lock); 219 matched = io_match_linked(head); 220 spin_unlock_irq(&ctx->timeout_lock); 221 } else { 222 matched = io_match_linked(head); 223 } 224 return matched; 225 } 226 227 static inline void req_fail_link_node(struct io_kiocb *req, int res) 228 { 229 req_set_fail(req); 230 io_req_set_res(req, res, 0); 231 } 232 233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 234 { 235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 236 } 237 238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 239 { 240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 241 242 complete(&ctx->ref_comp); 243 } 244 245 static __cold void io_fallback_req_func(struct work_struct *work) 246 { 247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 248 fallback_work.work); 249 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 250 struct io_kiocb *req, *tmp; 251 struct io_tw_state ts = {}; 252 253 percpu_ref_get(&ctx->refs); 254 mutex_lock(&ctx->uring_lock); 255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 256 req->io_task_work.func(req, &ts); 257 io_submit_flush_completions(ctx); 258 mutex_unlock(&ctx->uring_lock); 259 percpu_ref_put(&ctx->refs); 260 } 261 262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 263 { 264 unsigned hash_buckets = 1U << bits; 265 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 266 267 table->hbs = kmalloc(hash_size, GFP_KERNEL); 268 if (!table->hbs) 269 return -ENOMEM; 270 271 table->hash_bits = bits; 272 init_hash_table(table, hash_buckets); 273 return 0; 274 } 275 276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 277 { 278 struct io_ring_ctx *ctx; 279 int hash_bits; 280 bool ret; 281 282 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 283 if (!ctx) 284 return NULL; 285 286 xa_init(&ctx->io_bl_xa); 287 288 /* 289 * Use 5 bits less than the max cq entries, that should give us around 290 * 32 entries per hash list if totally full and uniformly spread, but 291 * don't keep too many buckets to not overconsume memory. 292 */ 293 hash_bits = ilog2(p->cq_entries) - 5; 294 hash_bits = clamp(hash_bits, 1, 8); 295 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 296 goto err; 297 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 298 goto err; 299 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 300 0, GFP_KERNEL)) 301 goto err; 302 303 ctx->flags = p->flags; 304 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 305 init_waitqueue_head(&ctx->sqo_sq_wait); 306 INIT_LIST_HEAD(&ctx->sqd_list); 307 INIT_LIST_HEAD(&ctx->cq_overflow_list); 308 INIT_LIST_HEAD(&ctx->io_buffers_cache); 309 ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 310 sizeof(struct io_rsrc_node)); 311 ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 312 sizeof(struct async_poll)); 313 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 314 sizeof(struct io_async_msghdr)); 315 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 316 sizeof(struct io_async_rw)); 317 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX, 318 sizeof(struct io_uring_cmd_data)); 319 spin_lock_init(&ctx->msg_lock); 320 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 321 sizeof(struct io_kiocb)); 322 ret |= io_futex_cache_init(ctx); 323 if (ret) 324 goto free_ref; 325 init_completion(&ctx->ref_comp); 326 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 327 mutex_init(&ctx->uring_lock); 328 init_waitqueue_head(&ctx->cq_wait); 329 init_waitqueue_head(&ctx->poll_wq); 330 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 331 spin_lock_init(&ctx->completion_lock); 332 spin_lock_init(&ctx->timeout_lock); 333 INIT_WQ_LIST(&ctx->iopoll_list); 334 INIT_LIST_HEAD(&ctx->io_buffers_comp); 335 INIT_LIST_HEAD(&ctx->defer_list); 336 INIT_LIST_HEAD(&ctx->timeout_list); 337 INIT_LIST_HEAD(&ctx->ltimeout_list); 338 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 339 init_llist_head(&ctx->work_llist); 340 INIT_LIST_HEAD(&ctx->tctx_list); 341 ctx->submit_state.free_list.next = NULL; 342 INIT_HLIST_HEAD(&ctx->waitid_list); 343 #ifdef CONFIG_FUTEX 344 INIT_HLIST_HEAD(&ctx->futex_list); 345 #endif 346 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 347 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 348 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 349 io_napi_init(ctx); 350 351 return ctx; 352 353 free_ref: 354 percpu_ref_exit(&ctx->refs); 355 err: 356 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree); 357 io_alloc_cache_free(&ctx->apoll_cache, kfree); 358 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 359 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 360 io_alloc_cache_free(&ctx->uring_cache, kfree); 361 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 362 io_futex_cache_free(ctx); 363 kfree(ctx->cancel_table.hbs); 364 kfree(ctx->cancel_table_locked.hbs); 365 xa_destroy(&ctx->io_bl_xa); 366 kfree(ctx); 367 return NULL; 368 } 369 370 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 371 { 372 struct io_rings *r = ctx->rings; 373 374 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 375 ctx->cq_extra--; 376 } 377 378 static bool req_need_defer(struct io_kiocb *req, u32 seq) 379 { 380 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 381 struct io_ring_ctx *ctx = req->ctx; 382 383 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 384 } 385 386 return false; 387 } 388 389 static void io_clean_op(struct io_kiocb *req) 390 { 391 if (req->flags & REQ_F_BUFFER_SELECTED) { 392 spin_lock(&req->ctx->completion_lock); 393 io_kbuf_drop(req); 394 spin_unlock(&req->ctx->completion_lock); 395 } 396 397 if (req->flags & REQ_F_NEED_CLEANUP) { 398 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 399 400 if (def->cleanup) 401 def->cleanup(req); 402 } 403 if ((req->flags & REQ_F_POLLED) && req->apoll) { 404 kfree(req->apoll->double_poll); 405 kfree(req->apoll); 406 req->apoll = NULL; 407 } 408 if (req->flags & REQ_F_INFLIGHT) { 409 struct io_uring_task *tctx = req->task->io_uring; 410 411 atomic_dec(&tctx->inflight_tracked); 412 } 413 if (req->flags & REQ_F_CREDS) 414 put_cred(req->creds); 415 if (req->flags & REQ_F_ASYNC_DATA) { 416 kfree(req->async_data); 417 req->async_data = NULL; 418 } 419 req->flags &= ~IO_REQ_CLEAN_FLAGS; 420 } 421 422 static inline void io_req_track_inflight(struct io_kiocb *req) 423 { 424 if (!(req->flags & REQ_F_INFLIGHT)) { 425 req->flags |= REQ_F_INFLIGHT; 426 atomic_inc(&req->task->io_uring->inflight_tracked); 427 } 428 } 429 430 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 431 { 432 if (WARN_ON_ONCE(!req->link)) 433 return NULL; 434 435 req->flags &= ~REQ_F_ARM_LTIMEOUT; 436 req->flags |= REQ_F_LINK_TIMEOUT; 437 438 /* linked timeouts should have two refs once prep'ed */ 439 io_req_set_refcount(req); 440 __io_req_set_refcount(req->link, 2); 441 return req->link; 442 } 443 444 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 445 { 446 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 447 return NULL; 448 return __io_prep_linked_timeout(req); 449 } 450 451 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 452 { 453 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 454 } 455 456 static inline void io_arm_ltimeout(struct io_kiocb *req) 457 { 458 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 459 __io_arm_ltimeout(req); 460 } 461 462 static void io_prep_async_work(struct io_kiocb *req) 463 { 464 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 465 struct io_ring_ctx *ctx = req->ctx; 466 467 if (!(req->flags & REQ_F_CREDS)) { 468 req->flags |= REQ_F_CREDS; 469 req->creds = get_current_cred(); 470 } 471 472 req->work.list.next = NULL; 473 atomic_set(&req->work.flags, 0); 474 if (req->flags & REQ_F_FORCE_ASYNC) 475 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 476 477 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 478 req->flags |= io_file_get_flags(req->file); 479 480 if (req->file && (req->flags & REQ_F_ISREG)) { 481 bool should_hash = def->hash_reg_file; 482 483 /* don't serialize this request if the fs doesn't need it */ 484 if (should_hash && (req->file->f_flags & O_DIRECT) && 485 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 486 should_hash = false; 487 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 488 io_wq_hash_work(&req->work, file_inode(req->file)); 489 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 490 if (def->unbound_nonreg_file) 491 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 492 } 493 } 494 495 static void io_prep_async_link(struct io_kiocb *req) 496 { 497 struct io_kiocb *cur; 498 499 if (req->flags & REQ_F_LINK_TIMEOUT) { 500 struct io_ring_ctx *ctx = req->ctx; 501 502 spin_lock_irq(&ctx->timeout_lock); 503 io_for_each_link(cur, req) 504 io_prep_async_work(cur); 505 spin_unlock_irq(&ctx->timeout_lock); 506 } else { 507 io_for_each_link(cur, req) 508 io_prep_async_work(cur); 509 } 510 } 511 512 static void io_queue_iowq(struct io_kiocb *req) 513 { 514 struct io_kiocb *link = io_prep_linked_timeout(req); 515 struct io_uring_task *tctx = req->task->io_uring; 516 517 BUG_ON(!tctx); 518 BUG_ON(!tctx->io_wq); 519 520 /* init ->work of the whole link before punting */ 521 io_prep_async_link(req); 522 523 /* 524 * Not expected to happen, but if we do have a bug where this _can_ 525 * happen, catch it here and ensure the request is marked as 526 * canceled. That will make io-wq go through the usual work cancel 527 * procedure rather than attempt to run this request (or create a new 528 * worker for it). 529 */ 530 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 531 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 532 533 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 534 io_wq_enqueue(tctx->io_wq, &req->work); 535 if (link) 536 io_queue_linked_timeout(link); 537 } 538 539 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts) 540 { 541 io_queue_iowq(req); 542 } 543 544 void io_req_queue_iowq(struct io_kiocb *req) 545 { 546 req->io_task_work.func = io_req_queue_iowq_tw; 547 io_req_task_work_add(req); 548 } 549 550 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 551 { 552 while (!list_empty(&ctx->defer_list)) { 553 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 554 struct io_defer_entry, list); 555 556 if (req_need_defer(de->req, de->seq)) 557 break; 558 list_del_init(&de->list); 559 io_req_task_queue(de->req); 560 kfree(de); 561 } 562 } 563 564 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 565 { 566 if (ctx->poll_activated) 567 io_poll_wq_wake(ctx); 568 if (ctx->off_timeout_used) 569 io_flush_timeouts(ctx); 570 if (ctx->drain_active) { 571 spin_lock(&ctx->completion_lock); 572 io_queue_deferred(ctx); 573 spin_unlock(&ctx->completion_lock); 574 } 575 if (ctx->has_evfd) 576 io_eventfd_flush_signal(ctx); 577 } 578 579 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 580 { 581 if (!ctx->lockless_cq) 582 spin_lock(&ctx->completion_lock); 583 } 584 585 static inline void io_cq_lock(struct io_ring_ctx *ctx) 586 __acquires(ctx->completion_lock) 587 { 588 spin_lock(&ctx->completion_lock); 589 } 590 591 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 592 { 593 io_commit_cqring(ctx); 594 if (!ctx->task_complete) { 595 if (!ctx->lockless_cq) 596 spin_unlock(&ctx->completion_lock); 597 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 598 if (!ctx->syscall_iopoll) 599 io_cqring_wake(ctx); 600 } 601 io_commit_cqring_flush(ctx); 602 } 603 604 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 605 __releases(ctx->completion_lock) 606 { 607 io_commit_cqring(ctx); 608 spin_unlock(&ctx->completion_lock); 609 io_cqring_wake(ctx); 610 io_commit_cqring_flush(ctx); 611 } 612 613 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 614 { 615 size_t cqe_size = sizeof(struct io_uring_cqe); 616 617 lockdep_assert_held(&ctx->uring_lock); 618 619 /* don't abort if we're dying, entries must get freed */ 620 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 621 return; 622 623 if (ctx->flags & IORING_SETUP_CQE32) 624 cqe_size <<= 1; 625 626 io_cq_lock(ctx); 627 while (!list_empty(&ctx->cq_overflow_list)) { 628 struct io_uring_cqe *cqe; 629 struct io_overflow_cqe *ocqe; 630 631 ocqe = list_first_entry(&ctx->cq_overflow_list, 632 struct io_overflow_cqe, list); 633 634 if (!dying) { 635 if (!io_get_cqe_overflow(ctx, &cqe, true)) 636 break; 637 memcpy(cqe, &ocqe->cqe, cqe_size); 638 } 639 list_del(&ocqe->list); 640 kfree(ocqe); 641 642 /* 643 * For silly syzbot cases that deliberately overflow by huge 644 * amounts, check if we need to resched and drop and 645 * reacquire the locks if so. Nothing real would ever hit this. 646 * Ideally we'd have a non-posting unlock for this, but hard 647 * to care for a non-real case. 648 */ 649 if (need_resched()) { 650 io_cq_unlock_post(ctx); 651 mutex_unlock(&ctx->uring_lock); 652 cond_resched(); 653 mutex_lock(&ctx->uring_lock); 654 io_cq_lock(ctx); 655 } 656 } 657 658 if (list_empty(&ctx->cq_overflow_list)) { 659 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 660 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 661 } 662 io_cq_unlock_post(ctx); 663 } 664 665 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 666 { 667 if (ctx->rings) 668 __io_cqring_overflow_flush(ctx, true); 669 } 670 671 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 672 { 673 mutex_lock(&ctx->uring_lock); 674 __io_cqring_overflow_flush(ctx, false); 675 mutex_unlock(&ctx->uring_lock); 676 } 677 678 /* can be called by any task */ 679 static void io_put_task_remote(struct task_struct *task) 680 { 681 struct io_uring_task *tctx = task->io_uring; 682 683 percpu_counter_sub(&tctx->inflight, 1); 684 if (unlikely(atomic_read(&tctx->in_cancel))) 685 wake_up(&tctx->wait); 686 put_task_struct(task); 687 } 688 689 /* used by a task to put its own references */ 690 static void io_put_task_local(struct task_struct *task) 691 { 692 task->io_uring->cached_refs++; 693 } 694 695 /* must to be called somewhat shortly after putting a request */ 696 static inline void io_put_task(struct task_struct *task) 697 { 698 if (likely(task == current)) 699 io_put_task_local(task); 700 else 701 io_put_task_remote(task); 702 } 703 704 void io_task_refs_refill(struct io_uring_task *tctx) 705 { 706 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 707 708 percpu_counter_add(&tctx->inflight, refill); 709 refcount_add(refill, ¤t->usage); 710 tctx->cached_refs += refill; 711 } 712 713 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 714 { 715 struct io_uring_task *tctx = task->io_uring; 716 unsigned int refs = tctx->cached_refs; 717 718 if (refs) { 719 tctx->cached_refs = 0; 720 percpu_counter_sub(&tctx->inflight, refs); 721 put_task_struct_many(task, refs); 722 } 723 } 724 725 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 726 s32 res, u32 cflags, u64 extra1, u64 extra2) 727 { 728 struct io_overflow_cqe *ocqe; 729 size_t ocq_size = sizeof(struct io_overflow_cqe); 730 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 731 732 lockdep_assert_held(&ctx->completion_lock); 733 734 if (is_cqe32) 735 ocq_size += sizeof(struct io_uring_cqe); 736 737 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 738 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 739 if (!ocqe) { 740 /* 741 * If we're in ring overflow flush mode, or in task cancel mode, 742 * or cannot allocate an overflow entry, then we need to drop it 743 * on the floor. 744 */ 745 io_account_cq_overflow(ctx); 746 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 747 return false; 748 } 749 if (list_empty(&ctx->cq_overflow_list)) { 750 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 751 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 752 753 } 754 ocqe->cqe.user_data = user_data; 755 ocqe->cqe.res = res; 756 ocqe->cqe.flags = cflags; 757 if (is_cqe32) { 758 ocqe->cqe.big_cqe[0] = extra1; 759 ocqe->cqe.big_cqe[1] = extra2; 760 } 761 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 762 return true; 763 } 764 765 static void io_req_cqe_overflow(struct io_kiocb *req) 766 { 767 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 768 req->cqe.res, req->cqe.flags, 769 req->big_cqe.extra1, req->big_cqe.extra2); 770 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 771 } 772 773 /* 774 * writes to the cq entry need to come after reading head; the 775 * control dependency is enough as we're using WRITE_ONCE to 776 * fill the cq entry 777 */ 778 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 779 { 780 struct io_rings *rings = ctx->rings; 781 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 782 unsigned int free, queued, len; 783 784 /* 785 * Posting into the CQ when there are pending overflowed CQEs may break 786 * ordering guarantees, which will affect links, F_MORE users and more. 787 * Force overflow the completion. 788 */ 789 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 790 return false; 791 792 /* userspace may cheat modifying the tail, be safe and do min */ 793 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 794 free = ctx->cq_entries - queued; 795 /* we need a contiguous range, limit based on the current array offset */ 796 len = min(free, ctx->cq_entries - off); 797 if (!len) 798 return false; 799 800 if (ctx->flags & IORING_SETUP_CQE32) { 801 off <<= 1; 802 len <<= 1; 803 } 804 805 ctx->cqe_cached = &rings->cqes[off]; 806 ctx->cqe_sentinel = ctx->cqe_cached + len; 807 return true; 808 } 809 810 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 811 u32 cflags) 812 { 813 struct io_uring_cqe *cqe; 814 815 ctx->cq_extra++; 816 817 /* 818 * If we can't get a cq entry, userspace overflowed the 819 * submission (by quite a lot). Increment the overflow count in 820 * the ring. 821 */ 822 if (likely(io_get_cqe(ctx, &cqe))) { 823 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 824 825 WRITE_ONCE(cqe->user_data, user_data); 826 WRITE_ONCE(cqe->res, res); 827 WRITE_ONCE(cqe->flags, cflags); 828 829 if (ctx->flags & IORING_SETUP_CQE32) { 830 WRITE_ONCE(cqe->big_cqe[0], 0); 831 WRITE_ONCE(cqe->big_cqe[1], 0); 832 } 833 return true; 834 } 835 return false; 836 } 837 838 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, 839 u32 cflags) 840 { 841 bool filled; 842 843 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 844 if (!filled) 845 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 846 847 return filled; 848 } 849 850 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 851 { 852 bool filled; 853 854 io_cq_lock(ctx); 855 filled = __io_post_aux_cqe(ctx, user_data, res, cflags); 856 io_cq_unlock_post(ctx); 857 return filled; 858 } 859 860 /* 861 * Must be called from inline task_work so we now a flush will happen later, 862 * and obviously with ctx->uring_lock held (tw always has that). 863 */ 864 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 865 { 866 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 867 spin_lock(&ctx->completion_lock); 868 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 869 spin_unlock(&ctx->completion_lock); 870 } 871 ctx->submit_state.cq_flush = true; 872 } 873 874 /* 875 * A helper for multishot requests posting additional CQEs. 876 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 877 */ 878 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 879 { 880 struct io_ring_ctx *ctx = req->ctx; 881 bool posted; 882 883 lockdep_assert(!io_wq_current_is_worker()); 884 lockdep_assert_held(&ctx->uring_lock); 885 886 __io_cq_lock(ctx); 887 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 888 ctx->submit_state.cq_flush = true; 889 __io_cq_unlock_post(ctx); 890 return posted; 891 } 892 893 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 894 { 895 struct io_ring_ctx *ctx = req->ctx; 896 897 /* 898 * All execution paths but io-wq use the deferred completions by 899 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 900 */ 901 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 902 return; 903 904 /* 905 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 906 * the submitter task context, IOPOLL protects with uring_lock. 907 */ 908 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) { 909 req->io_task_work.func = io_req_task_complete; 910 io_req_task_work_add(req); 911 return; 912 } 913 914 io_cq_lock(ctx); 915 if (!(req->flags & REQ_F_CQE_SKIP)) { 916 if (!io_fill_cqe_req(ctx, req)) 917 io_req_cqe_overflow(req); 918 } 919 io_cq_unlock_post(ctx); 920 921 /* 922 * We don't free the request here because we know it's called from 923 * io-wq only, which holds a reference, so it cannot be the last put. 924 */ 925 req_ref_put(req); 926 } 927 928 void io_req_defer_failed(struct io_kiocb *req, s32 res) 929 __must_hold(&ctx->uring_lock) 930 { 931 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 932 933 lockdep_assert_held(&req->ctx->uring_lock); 934 935 req_set_fail(req); 936 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 937 if (def->fail) 938 def->fail(req); 939 io_req_complete_defer(req); 940 } 941 942 /* 943 * Don't initialise the fields below on every allocation, but do that in 944 * advance and keep them valid across allocations. 945 */ 946 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 947 { 948 req->ctx = ctx; 949 req->link = NULL; 950 req->async_data = NULL; 951 /* not necessary, but safer to zero */ 952 memset(&req->cqe, 0, sizeof(req->cqe)); 953 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 954 } 955 956 /* 957 * A request might get retired back into the request caches even before opcode 958 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 959 * Because of that, io_alloc_req() should be called only under ->uring_lock 960 * and with extra caution to not get a request that is still worked on. 961 */ 962 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 963 __must_hold(&ctx->uring_lock) 964 { 965 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 966 void *reqs[IO_REQ_ALLOC_BATCH]; 967 int ret; 968 969 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 970 971 /* 972 * Bulk alloc is all-or-nothing. If we fail to get a batch, 973 * retry single alloc to be on the safe side. 974 */ 975 if (unlikely(ret <= 0)) { 976 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 977 if (!reqs[0]) 978 return false; 979 ret = 1; 980 } 981 982 percpu_ref_get_many(&ctx->refs, ret); 983 while (ret--) { 984 struct io_kiocb *req = reqs[ret]; 985 986 io_preinit_req(req, ctx); 987 io_req_add_to_cache(req, ctx); 988 } 989 return true; 990 } 991 992 __cold void io_free_req(struct io_kiocb *req) 993 { 994 /* refs were already put, restore them for io_req_task_complete() */ 995 req->flags &= ~REQ_F_REFCOUNT; 996 /* we only want to free it, don't post CQEs */ 997 req->flags |= REQ_F_CQE_SKIP; 998 req->io_task_work.func = io_req_task_complete; 999 io_req_task_work_add(req); 1000 } 1001 1002 static void __io_req_find_next_prep(struct io_kiocb *req) 1003 { 1004 struct io_ring_ctx *ctx = req->ctx; 1005 1006 spin_lock(&ctx->completion_lock); 1007 io_disarm_next(req); 1008 spin_unlock(&ctx->completion_lock); 1009 } 1010 1011 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1012 { 1013 struct io_kiocb *nxt; 1014 1015 /* 1016 * If LINK is set, we have dependent requests in this chain. If we 1017 * didn't fail this request, queue the first one up, moving any other 1018 * dependencies to the next request. In case of failure, fail the rest 1019 * of the chain. 1020 */ 1021 if (unlikely(req->flags & IO_DISARM_MASK)) 1022 __io_req_find_next_prep(req); 1023 nxt = req->link; 1024 req->link = NULL; 1025 return nxt; 1026 } 1027 1028 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1029 { 1030 if (!ctx) 1031 return; 1032 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1033 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1034 1035 io_submit_flush_completions(ctx); 1036 mutex_unlock(&ctx->uring_lock); 1037 percpu_ref_put(&ctx->refs); 1038 } 1039 1040 /* 1041 * Run queued task_work, returning the number of entries processed in *count. 1042 * If more entries than max_entries are available, stop processing once this 1043 * is reached and return the rest of the list. 1044 */ 1045 struct llist_node *io_handle_tw_list(struct llist_node *node, 1046 unsigned int *count, 1047 unsigned int max_entries) 1048 { 1049 struct io_ring_ctx *ctx = NULL; 1050 struct io_tw_state ts = { }; 1051 1052 do { 1053 struct llist_node *next = node->next; 1054 struct io_kiocb *req = container_of(node, struct io_kiocb, 1055 io_task_work.node); 1056 1057 if (req->ctx != ctx) { 1058 ctx_flush_and_put(ctx, &ts); 1059 ctx = req->ctx; 1060 mutex_lock(&ctx->uring_lock); 1061 percpu_ref_get(&ctx->refs); 1062 } 1063 INDIRECT_CALL_2(req->io_task_work.func, 1064 io_poll_task_func, io_req_rw_complete, 1065 req, &ts); 1066 node = next; 1067 (*count)++; 1068 if (unlikely(need_resched())) { 1069 ctx_flush_and_put(ctx, &ts); 1070 ctx = NULL; 1071 cond_resched(); 1072 } 1073 } while (node && *count < max_entries); 1074 1075 ctx_flush_and_put(ctx, &ts); 1076 return node; 1077 } 1078 1079 /** 1080 * io_llist_xchg - swap all entries in a lock-less list 1081 * @head: the head of lock-less list to delete all entries 1082 * @new: new entry as the head of the list 1083 * 1084 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1085 * The order of entries returned is from the newest to the oldest added one. 1086 */ 1087 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1088 struct llist_node *new) 1089 { 1090 return xchg(&head->first, new); 1091 } 1092 1093 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1094 { 1095 struct llist_node *node = llist_del_all(&tctx->task_list); 1096 struct io_ring_ctx *last_ctx = NULL; 1097 struct io_kiocb *req; 1098 1099 while (node) { 1100 req = container_of(node, struct io_kiocb, io_task_work.node); 1101 node = node->next; 1102 if (sync && last_ctx != req->ctx) { 1103 if (last_ctx) { 1104 flush_delayed_work(&last_ctx->fallback_work); 1105 percpu_ref_put(&last_ctx->refs); 1106 } 1107 last_ctx = req->ctx; 1108 percpu_ref_get(&last_ctx->refs); 1109 } 1110 if (llist_add(&req->io_task_work.node, 1111 &req->ctx->fallback_llist)) 1112 schedule_delayed_work(&req->ctx->fallback_work, 1); 1113 } 1114 1115 if (last_ctx) { 1116 flush_delayed_work(&last_ctx->fallback_work); 1117 percpu_ref_put(&last_ctx->refs); 1118 } 1119 } 1120 1121 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1122 unsigned int max_entries, 1123 unsigned int *count) 1124 { 1125 struct llist_node *node; 1126 1127 if (unlikely(current->flags & PF_EXITING)) { 1128 io_fallback_tw(tctx, true); 1129 return NULL; 1130 } 1131 1132 node = llist_del_all(&tctx->task_list); 1133 if (node) { 1134 node = llist_reverse_order(node); 1135 node = io_handle_tw_list(node, count, max_entries); 1136 } 1137 1138 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1139 if (unlikely(atomic_read(&tctx->in_cancel))) 1140 io_uring_drop_tctx_refs(current); 1141 1142 trace_io_uring_task_work_run(tctx, *count); 1143 return node; 1144 } 1145 1146 void tctx_task_work(struct callback_head *cb) 1147 { 1148 struct io_uring_task *tctx; 1149 struct llist_node *ret; 1150 unsigned int count = 0; 1151 1152 tctx = container_of(cb, struct io_uring_task, task_work); 1153 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1154 /* can't happen */ 1155 WARN_ON_ONCE(ret); 1156 } 1157 1158 static inline void io_req_local_work_add(struct io_kiocb *req, 1159 struct io_ring_ctx *ctx, 1160 unsigned flags) 1161 { 1162 unsigned nr_wait, nr_tw, nr_tw_prev; 1163 struct llist_node *head; 1164 1165 /* See comment above IO_CQ_WAKE_INIT */ 1166 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1167 1168 /* 1169 * We don't know how many reuqests is there in the link and whether 1170 * they can even be queued lazily, fall back to non-lazy. 1171 */ 1172 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1173 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1174 1175 guard(rcu)(); 1176 1177 head = READ_ONCE(ctx->work_llist.first); 1178 do { 1179 nr_tw_prev = 0; 1180 if (head) { 1181 struct io_kiocb *first_req = container_of(head, 1182 struct io_kiocb, 1183 io_task_work.node); 1184 /* 1185 * Might be executed at any moment, rely on 1186 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1187 */ 1188 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1189 } 1190 1191 /* 1192 * Theoretically, it can overflow, but that's fine as one of 1193 * previous adds should've tried to wake the task. 1194 */ 1195 nr_tw = nr_tw_prev + 1; 1196 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1197 nr_tw = IO_CQ_WAKE_FORCE; 1198 1199 req->nr_tw = nr_tw; 1200 req->io_task_work.node.next = head; 1201 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1202 &req->io_task_work.node)); 1203 1204 /* 1205 * cmpxchg implies a full barrier, which pairs with the barrier 1206 * in set_current_state() on the io_cqring_wait() side. It's used 1207 * to ensure that either we see updated ->cq_wait_nr, or waiters 1208 * going to sleep will observe the work added to the list, which 1209 * is similar to the wait/wawke task state sync. 1210 */ 1211 1212 if (!head) { 1213 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1214 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1215 if (ctx->has_evfd) 1216 io_eventfd_signal(ctx); 1217 } 1218 1219 nr_wait = atomic_read(&ctx->cq_wait_nr); 1220 /* not enough or no one is waiting */ 1221 if (nr_tw < nr_wait) 1222 return; 1223 /* the previous add has already woken it up */ 1224 if (nr_tw_prev >= nr_wait) 1225 return; 1226 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1227 } 1228 1229 static void io_req_normal_work_add(struct io_kiocb *req) 1230 { 1231 struct io_uring_task *tctx = req->task->io_uring; 1232 struct io_ring_ctx *ctx = req->ctx; 1233 1234 /* task_work already pending, we're done */ 1235 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1236 return; 1237 1238 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1239 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1240 1241 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1242 if (ctx->flags & IORING_SETUP_SQPOLL) { 1243 struct io_sq_data *sqd = ctx->sq_data; 1244 1245 if (sqd->thread) 1246 __set_notify_signal(sqd->thread); 1247 return; 1248 } 1249 1250 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1251 return; 1252 1253 io_fallback_tw(tctx, false); 1254 } 1255 1256 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1257 { 1258 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1259 io_req_local_work_add(req, req->ctx, flags); 1260 else 1261 io_req_normal_work_add(req); 1262 } 1263 1264 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 1265 unsigned flags) 1266 { 1267 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1268 return; 1269 io_req_local_work_add(req, ctx, flags); 1270 } 1271 1272 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1273 { 1274 struct llist_node *node; 1275 1276 node = llist_del_all(&ctx->work_llist); 1277 while (node) { 1278 struct io_kiocb *req = container_of(node, struct io_kiocb, 1279 io_task_work.node); 1280 1281 node = node->next; 1282 io_req_normal_work_add(req); 1283 } 1284 } 1285 1286 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1287 int min_events) 1288 { 1289 if (llist_empty(&ctx->work_llist)) 1290 return false; 1291 if (events < min_events) 1292 return true; 1293 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1294 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1295 return false; 1296 } 1297 1298 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1299 int min_events) 1300 { 1301 struct llist_node *node; 1302 unsigned int loops = 0; 1303 int ret = 0; 1304 1305 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1306 return -EEXIST; 1307 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1308 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1309 again: 1310 /* 1311 * llists are in reverse order, flip it back the right way before 1312 * running the pending items. 1313 */ 1314 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1315 while (node) { 1316 struct llist_node *next = node->next; 1317 struct io_kiocb *req = container_of(node, struct io_kiocb, 1318 io_task_work.node); 1319 INDIRECT_CALL_2(req->io_task_work.func, 1320 io_poll_task_func, io_req_rw_complete, 1321 req, ts); 1322 ret++; 1323 node = next; 1324 } 1325 loops++; 1326 1327 if (io_run_local_work_continue(ctx, ret, min_events)) 1328 goto again; 1329 io_submit_flush_completions(ctx); 1330 if (io_run_local_work_continue(ctx, ret, min_events)) 1331 goto again; 1332 1333 trace_io_uring_local_work_run(ctx, ret, loops); 1334 return ret; 1335 } 1336 1337 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1338 int min_events) 1339 { 1340 struct io_tw_state ts = {}; 1341 1342 if (llist_empty(&ctx->work_llist)) 1343 return 0; 1344 return __io_run_local_work(ctx, &ts, min_events); 1345 } 1346 1347 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events) 1348 { 1349 struct io_tw_state ts = {}; 1350 int ret; 1351 1352 mutex_lock(&ctx->uring_lock); 1353 ret = __io_run_local_work(ctx, &ts, min_events); 1354 mutex_unlock(&ctx->uring_lock); 1355 return ret; 1356 } 1357 1358 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1359 { 1360 io_tw_lock(req->ctx, ts); 1361 io_req_defer_failed(req, req->cqe.res); 1362 } 1363 1364 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1365 { 1366 io_tw_lock(req->ctx, ts); 1367 /* req->task == current here, checking PF_EXITING is safe */ 1368 if (unlikely(req->task->flags & PF_EXITING)) 1369 io_req_defer_failed(req, -EFAULT); 1370 else if (req->flags & REQ_F_FORCE_ASYNC) 1371 io_queue_iowq(req); 1372 else 1373 io_queue_sqe(req); 1374 } 1375 1376 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1377 { 1378 io_req_set_res(req, ret, 0); 1379 req->io_task_work.func = io_req_task_cancel; 1380 io_req_task_work_add(req); 1381 } 1382 1383 void io_req_task_queue(struct io_kiocb *req) 1384 { 1385 req->io_task_work.func = io_req_task_submit; 1386 io_req_task_work_add(req); 1387 } 1388 1389 void io_queue_next(struct io_kiocb *req) 1390 { 1391 struct io_kiocb *nxt = io_req_find_next(req); 1392 1393 if (nxt) 1394 io_req_task_queue(nxt); 1395 } 1396 1397 static void io_free_batch_list(struct io_ring_ctx *ctx, 1398 struct io_wq_work_node *node) 1399 __must_hold(&ctx->uring_lock) 1400 { 1401 do { 1402 struct io_kiocb *req = container_of(node, struct io_kiocb, 1403 comp_list); 1404 1405 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1406 if (req->flags & REQ_F_REFCOUNT) { 1407 node = req->comp_list.next; 1408 if (!req_ref_put_and_test(req)) 1409 continue; 1410 } 1411 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1412 struct async_poll *apoll = req->apoll; 1413 1414 if (apoll->double_poll) 1415 kfree(apoll->double_poll); 1416 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll)) 1417 kfree(apoll); 1418 req->flags &= ~REQ_F_POLLED; 1419 } 1420 if (req->flags & IO_REQ_LINK_FLAGS) 1421 io_queue_next(req); 1422 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1423 io_clean_op(req); 1424 } 1425 io_put_file(req); 1426 io_put_rsrc_node(ctx, req->rsrc_node); 1427 io_put_task(req->task); 1428 1429 node = req->comp_list.next; 1430 io_req_add_to_cache(req, ctx); 1431 } while (node); 1432 } 1433 1434 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1435 __must_hold(&ctx->uring_lock) 1436 { 1437 struct io_submit_state *state = &ctx->submit_state; 1438 struct io_wq_work_node *node; 1439 1440 __io_cq_lock(ctx); 1441 __wq_list_for_each(node, &state->compl_reqs) { 1442 struct io_kiocb *req = container_of(node, struct io_kiocb, 1443 comp_list); 1444 1445 if (!(req->flags & REQ_F_CQE_SKIP) && 1446 unlikely(!io_fill_cqe_req(ctx, req))) { 1447 if (ctx->lockless_cq) { 1448 spin_lock(&ctx->completion_lock); 1449 io_req_cqe_overflow(req); 1450 spin_unlock(&ctx->completion_lock); 1451 } else { 1452 io_req_cqe_overflow(req); 1453 } 1454 } 1455 } 1456 __io_cq_unlock_post(ctx); 1457 1458 if (!wq_list_empty(&state->compl_reqs)) { 1459 io_free_batch_list(ctx, state->compl_reqs.first); 1460 INIT_WQ_LIST(&state->compl_reqs); 1461 } 1462 ctx->submit_state.cq_flush = false; 1463 } 1464 1465 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1466 { 1467 /* See comment at the top of this file */ 1468 smp_rmb(); 1469 return __io_cqring_events(ctx); 1470 } 1471 1472 /* 1473 * We can't just wait for polled events to come to us, we have to actively 1474 * find and complete them. 1475 */ 1476 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1477 { 1478 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1479 return; 1480 1481 mutex_lock(&ctx->uring_lock); 1482 while (!wq_list_empty(&ctx->iopoll_list)) { 1483 /* let it sleep and repeat later if can't complete a request */ 1484 if (io_do_iopoll(ctx, true) == 0) 1485 break; 1486 /* 1487 * Ensure we allow local-to-the-cpu processing to take place, 1488 * in this case we need to ensure that we reap all events. 1489 * Also let task_work, etc. to progress by releasing the mutex 1490 */ 1491 if (need_resched()) { 1492 mutex_unlock(&ctx->uring_lock); 1493 cond_resched(); 1494 mutex_lock(&ctx->uring_lock); 1495 } 1496 } 1497 mutex_unlock(&ctx->uring_lock); 1498 } 1499 1500 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1501 { 1502 unsigned int nr_events = 0; 1503 unsigned long check_cq; 1504 1505 lockdep_assert_held(&ctx->uring_lock); 1506 1507 if (!io_allowed_run_tw(ctx)) 1508 return -EEXIST; 1509 1510 check_cq = READ_ONCE(ctx->check_cq); 1511 if (unlikely(check_cq)) { 1512 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1513 __io_cqring_overflow_flush(ctx, false); 1514 /* 1515 * Similarly do not spin if we have not informed the user of any 1516 * dropped CQE. 1517 */ 1518 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1519 return -EBADR; 1520 } 1521 /* 1522 * Don't enter poll loop if we already have events pending. 1523 * If we do, we can potentially be spinning for commands that 1524 * already triggered a CQE (eg in error). 1525 */ 1526 if (io_cqring_events(ctx)) 1527 return 0; 1528 1529 do { 1530 int ret = 0; 1531 1532 /* 1533 * If a submit got punted to a workqueue, we can have the 1534 * application entering polling for a command before it gets 1535 * issued. That app will hold the uring_lock for the duration 1536 * of the poll right here, so we need to take a breather every 1537 * now and then to ensure that the issue has a chance to add 1538 * the poll to the issued list. Otherwise we can spin here 1539 * forever, while the workqueue is stuck trying to acquire the 1540 * very same mutex. 1541 */ 1542 if (wq_list_empty(&ctx->iopoll_list) || 1543 io_task_work_pending(ctx)) { 1544 u32 tail = ctx->cached_cq_tail; 1545 1546 (void) io_run_local_work_locked(ctx, min); 1547 1548 if (task_work_pending(current) || 1549 wq_list_empty(&ctx->iopoll_list)) { 1550 mutex_unlock(&ctx->uring_lock); 1551 io_run_task_work(); 1552 mutex_lock(&ctx->uring_lock); 1553 } 1554 /* some requests don't go through iopoll_list */ 1555 if (tail != ctx->cached_cq_tail || 1556 wq_list_empty(&ctx->iopoll_list)) 1557 break; 1558 } 1559 ret = io_do_iopoll(ctx, !min); 1560 if (unlikely(ret < 0)) 1561 return ret; 1562 1563 if (task_sigpending(current)) 1564 return -EINTR; 1565 if (need_resched()) 1566 break; 1567 1568 nr_events += ret; 1569 } while (nr_events < min); 1570 1571 return 0; 1572 } 1573 1574 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1575 { 1576 io_req_complete_defer(req); 1577 } 1578 1579 /* 1580 * After the iocb has been issued, it's safe to be found on the poll list. 1581 * Adding the kiocb to the list AFTER submission ensures that we don't 1582 * find it from a io_do_iopoll() thread before the issuer is done 1583 * accessing the kiocb cookie. 1584 */ 1585 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1586 { 1587 struct io_ring_ctx *ctx = req->ctx; 1588 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1589 1590 /* workqueue context doesn't hold uring_lock, grab it now */ 1591 if (unlikely(needs_lock)) 1592 mutex_lock(&ctx->uring_lock); 1593 1594 /* 1595 * Track whether we have multiple files in our lists. This will impact 1596 * how we do polling eventually, not spinning if we're on potentially 1597 * different devices. 1598 */ 1599 if (wq_list_empty(&ctx->iopoll_list)) { 1600 ctx->poll_multi_queue = false; 1601 } else if (!ctx->poll_multi_queue) { 1602 struct io_kiocb *list_req; 1603 1604 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1605 comp_list); 1606 if (list_req->file != req->file) 1607 ctx->poll_multi_queue = true; 1608 } 1609 1610 /* 1611 * For fast devices, IO may have already completed. If it has, add 1612 * it to the front so we find it first. 1613 */ 1614 if (READ_ONCE(req->iopoll_completed)) 1615 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1616 else 1617 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1618 1619 if (unlikely(needs_lock)) { 1620 /* 1621 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1622 * in sq thread task context or in io worker task context. If 1623 * current task context is sq thread, we don't need to check 1624 * whether should wake up sq thread. 1625 */ 1626 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1627 wq_has_sleeper(&ctx->sq_data->wait)) 1628 wake_up(&ctx->sq_data->wait); 1629 1630 mutex_unlock(&ctx->uring_lock); 1631 } 1632 } 1633 1634 io_req_flags_t io_file_get_flags(struct file *file) 1635 { 1636 io_req_flags_t res = 0; 1637 1638 if (S_ISREG(file_inode(file)->i_mode)) 1639 res |= REQ_F_ISREG; 1640 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1641 res |= REQ_F_SUPPORT_NOWAIT; 1642 return res; 1643 } 1644 1645 bool io_alloc_async_data(struct io_kiocb *req) 1646 { 1647 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1648 1649 WARN_ON_ONCE(!def->async_size); 1650 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 1651 if (req->async_data) { 1652 req->flags |= REQ_F_ASYNC_DATA; 1653 return false; 1654 } 1655 return true; 1656 } 1657 1658 static u32 io_get_sequence(struct io_kiocb *req) 1659 { 1660 u32 seq = req->ctx->cached_sq_head; 1661 struct io_kiocb *cur; 1662 1663 /* need original cached_sq_head, but it was increased for each req */ 1664 io_for_each_link(cur, req) 1665 seq--; 1666 return seq; 1667 } 1668 1669 static __cold void io_drain_req(struct io_kiocb *req) 1670 __must_hold(&ctx->uring_lock) 1671 { 1672 struct io_ring_ctx *ctx = req->ctx; 1673 struct io_defer_entry *de; 1674 int ret; 1675 u32 seq = io_get_sequence(req); 1676 1677 /* Still need defer if there is pending req in defer list. */ 1678 spin_lock(&ctx->completion_lock); 1679 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1680 spin_unlock(&ctx->completion_lock); 1681 queue: 1682 ctx->drain_active = false; 1683 io_req_task_queue(req); 1684 return; 1685 } 1686 spin_unlock(&ctx->completion_lock); 1687 1688 io_prep_async_link(req); 1689 de = kmalloc(sizeof(*de), GFP_KERNEL); 1690 if (!de) { 1691 ret = -ENOMEM; 1692 io_req_defer_failed(req, ret); 1693 return; 1694 } 1695 1696 spin_lock(&ctx->completion_lock); 1697 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1698 spin_unlock(&ctx->completion_lock); 1699 kfree(de); 1700 goto queue; 1701 } 1702 1703 trace_io_uring_defer(req); 1704 de->req = req; 1705 de->seq = seq; 1706 list_add_tail(&de->list, &ctx->defer_list); 1707 spin_unlock(&ctx->completion_lock); 1708 } 1709 1710 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1711 unsigned int issue_flags) 1712 { 1713 if (req->file || !def->needs_file) 1714 return true; 1715 1716 if (req->flags & REQ_F_FIXED_FILE) 1717 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1718 else 1719 req->file = io_file_get_normal(req, req->cqe.fd); 1720 1721 return !!req->file; 1722 } 1723 1724 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1725 { 1726 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1727 const struct cred *creds = NULL; 1728 int ret; 1729 1730 if (unlikely(!io_assign_file(req, def, issue_flags))) 1731 return -EBADF; 1732 1733 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1734 creds = override_creds(req->creds); 1735 1736 if (!def->audit_skip) 1737 audit_uring_entry(req->opcode); 1738 1739 ret = def->issue(req, issue_flags); 1740 1741 if (!def->audit_skip) 1742 audit_uring_exit(!ret, ret); 1743 1744 if (creds) 1745 revert_creds(creds); 1746 1747 if (ret == IOU_OK) { 1748 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1749 io_req_complete_defer(req); 1750 else 1751 io_req_complete_post(req, issue_flags); 1752 1753 return 0; 1754 } 1755 1756 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1757 ret = 0; 1758 io_arm_ltimeout(req); 1759 1760 /* If the op doesn't have a file, we're not polling for it */ 1761 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1762 io_iopoll_req_issued(req, issue_flags); 1763 } 1764 return ret; 1765 } 1766 1767 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1768 { 1769 io_tw_lock(req->ctx, ts); 1770 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1771 IO_URING_F_COMPLETE_DEFER); 1772 } 1773 1774 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1775 { 1776 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1777 struct io_kiocb *nxt = NULL; 1778 1779 if (req_ref_put_and_test(req)) { 1780 if (req->flags & IO_REQ_LINK_FLAGS) 1781 nxt = io_req_find_next(req); 1782 io_free_req(req); 1783 } 1784 return nxt ? &nxt->work : NULL; 1785 } 1786 1787 void io_wq_submit_work(struct io_wq_work *work) 1788 { 1789 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1790 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1791 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1792 bool needs_poll = false; 1793 int ret = 0, err = -ECANCELED; 1794 1795 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1796 if (!(req->flags & REQ_F_REFCOUNT)) 1797 __io_req_set_refcount(req, 2); 1798 else 1799 req_ref_get(req); 1800 1801 io_arm_ltimeout(req); 1802 1803 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1804 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1805 fail: 1806 io_req_task_queue_fail(req, err); 1807 return; 1808 } 1809 if (!io_assign_file(req, def, issue_flags)) { 1810 err = -EBADF; 1811 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1812 goto fail; 1813 } 1814 1815 /* 1816 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1817 * submitter task context. Final request completions are handed to the 1818 * right context, however this is not the case of auxiliary CQEs, 1819 * which is the main mean of operation for multishot requests. 1820 * Don't allow any multishot execution from io-wq. It's more restrictive 1821 * than necessary and also cleaner. 1822 */ 1823 if (req->flags & REQ_F_APOLL_MULTISHOT) { 1824 err = -EBADFD; 1825 if (!io_file_can_poll(req)) 1826 goto fail; 1827 if (req->file->f_flags & O_NONBLOCK || 1828 req->file->f_mode & FMODE_NOWAIT) { 1829 err = -ECANCELED; 1830 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1831 goto fail; 1832 return; 1833 } else { 1834 req->flags &= ~REQ_F_APOLL_MULTISHOT; 1835 } 1836 } 1837 1838 if (req->flags & REQ_F_FORCE_ASYNC) { 1839 bool opcode_poll = def->pollin || def->pollout; 1840 1841 if (opcode_poll && io_file_can_poll(req)) { 1842 needs_poll = true; 1843 issue_flags |= IO_URING_F_NONBLOCK; 1844 } 1845 } 1846 1847 do { 1848 ret = io_issue_sqe(req, issue_flags); 1849 if (ret != -EAGAIN) 1850 break; 1851 1852 /* 1853 * If REQ_F_NOWAIT is set, then don't wait or retry with 1854 * poll. -EAGAIN is final for that case. 1855 */ 1856 if (req->flags & REQ_F_NOWAIT) 1857 break; 1858 1859 /* 1860 * We can get EAGAIN for iopolled IO even though we're 1861 * forcing a sync submission from here, since we can't 1862 * wait for request slots on the block side. 1863 */ 1864 if (!needs_poll) { 1865 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1866 break; 1867 if (io_wq_worker_stopped()) 1868 break; 1869 cond_resched(); 1870 continue; 1871 } 1872 1873 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1874 return; 1875 /* aborted or ready, in either case retry blocking */ 1876 needs_poll = false; 1877 issue_flags &= ~IO_URING_F_NONBLOCK; 1878 } while (1); 1879 1880 /* avoid locking problems by failing it from a clean context */ 1881 if (ret) 1882 io_req_task_queue_fail(req, ret); 1883 } 1884 1885 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1886 unsigned int issue_flags) 1887 { 1888 struct io_ring_ctx *ctx = req->ctx; 1889 struct io_fixed_file *slot; 1890 struct file *file = NULL; 1891 1892 io_ring_submit_lock(ctx, issue_flags); 1893 1894 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1895 goto out; 1896 fd = array_index_nospec(fd, ctx->nr_user_files); 1897 slot = io_fixed_file_slot(&ctx->file_table, fd); 1898 if (!req->rsrc_node) 1899 __io_req_set_rsrc_node(req, ctx); 1900 req->flags |= io_slot_flags(slot); 1901 file = io_slot_file(slot); 1902 out: 1903 io_ring_submit_unlock(ctx, issue_flags); 1904 return file; 1905 } 1906 1907 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1908 { 1909 struct file *file = fget(fd); 1910 1911 trace_io_uring_file_get(req, fd); 1912 1913 /* we don't allow fixed io_uring files */ 1914 if (file && io_is_uring_fops(file)) 1915 io_req_track_inflight(req); 1916 return file; 1917 } 1918 1919 static void io_queue_async(struct io_kiocb *req, int ret) 1920 __must_hold(&req->ctx->uring_lock) 1921 { 1922 struct io_kiocb *linked_timeout; 1923 1924 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1925 io_req_defer_failed(req, ret); 1926 return; 1927 } 1928 1929 linked_timeout = io_prep_linked_timeout(req); 1930 1931 switch (io_arm_poll_handler(req, 0)) { 1932 case IO_APOLL_READY: 1933 io_kbuf_recycle(req, 0); 1934 io_req_task_queue(req); 1935 break; 1936 case IO_APOLL_ABORTED: 1937 io_kbuf_recycle(req, 0); 1938 io_queue_iowq(req); 1939 break; 1940 case IO_APOLL_OK: 1941 break; 1942 } 1943 1944 if (linked_timeout) 1945 io_queue_linked_timeout(linked_timeout); 1946 } 1947 1948 static inline void io_queue_sqe(struct io_kiocb *req) 1949 __must_hold(&req->ctx->uring_lock) 1950 { 1951 int ret; 1952 1953 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1954 1955 /* 1956 * We async punt it if the file wasn't marked NOWAIT, or if the file 1957 * doesn't support non-blocking read/write attempts 1958 */ 1959 if (unlikely(ret)) 1960 io_queue_async(req, ret); 1961 } 1962 1963 static void io_queue_sqe_fallback(struct io_kiocb *req) 1964 __must_hold(&req->ctx->uring_lock) 1965 { 1966 if (unlikely(req->flags & REQ_F_FAIL)) { 1967 /* 1968 * We don't submit, fail them all, for that replace hardlinks 1969 * with normal links. Extra REQ_F_LINK is tolerated. 1970 */ 1971 req->flags &= ~REQ_F_HARDLINK; 1972 req->flags |= REQ_F_LINK; 1973 io_req_defer_failed(req, req->cqe.res); 1974 } else { 1975 if (unlikely(req->ctx->drain_active)) 1976 io_drain_req(req); 1977 else 1978 io_queue_iowq(req); 1979 } 1980 } 1981 1982 /* 1983 * Check SQE restrictions (opcode and flags). 1984 * 1985 * Returns 'true' if SQE is allowed, 'false' otherwise. 1986 */ 1987 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1988 struct io_kiocb *req, 1989 unsigned int sqe_flags) 1990 { 1991 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1992 return false; 1993 1994 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1995 ctx->restrictions.sqe_flags_required) 1996 return false; 1997 1998 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1999 ctx->restrictions.sqe_flags_required)) 2000 return false; 2001 2002 return true; 2003 } 2004 2005 static void io_init_req_drain(struct io_kiocb *req) 2006 { 2007 struct io_ring_ctx *ctx = req->ctx; 2008 struct io_kiocb *head = ctx->submit_state.link.head; 2009 2010 ctx->drain_active = true; 2011 if (head) { 2012 /* 2013 * If we need to drain a request in the middle of a link, drain 2014 * the head request and the next request/link after the current 2015 * link. Considering sequential execution of links, 2016 * REQ_F_IO_DRAIN will be maintained for every request of our 2017 * link. 2018 */ 2019 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2020 ctx->drain_next = true; 2021 } 2022 } 2023 2024 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2025 { 2026 /* ensure per-opcode data is cleared if we fail before prep */ 2027 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2028 return err; 2029 } 2030 2031 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2032 const struct io_uring_sqe *sqe) 2033 __must_hold(&ctx->uring_lock) 2034 { 2035 const struct io_issue_def *def; 2036 unsigned int sqe_flags; 2037 int personality; 2038 u8 opcode; 2039 2040 /* req is partially pre-initialised, see io_preinit_req() */ 2041 req->opcode = opcode = READ_ONCE(sqe->opcode); 2042 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2043 sqe_flags = READ_ONCE(sqe->flags); 2044 req->flags = (__force io_req_flags_t) sqe_flags; 2045 req->cqe.user_data = READ_ONCE(sqe->user_data); 2046 req->file = NULL; 2047 req->rsrc_node = NULL; 2048 req->task = current; 2049 req->cancel_seq_set = false; 2050 2051 if (unlikely(opcode >= IORING_OP_LAST)) { 2052 req->opcode = 0; 2053 return io_init_fail_req(req, -EINVAL); 2054 } 2055 def = &io_issue_defs[opcode]; 2056 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2057 /* enforce forwards compatibility on users */ 2058 if (sqe_flags & ~SQE_VALID_FLAGS) 2059 return io_init_fail_req(req, -EINVAL); 2060 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2061 if (!def->buffer_select) 2062 return io_init_fail_req(req, -EOPNOTSUPP); 2063 req->buf_index = READ_ONCE(sqe->buf_group); 2064 } 2065 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2066 ctx->drain_disabled = true; 2067 if (sqe_flags & IOSQE_IO_DRAIN) { 2068 if (ctx->drain_disabled) 2069 return io_init_fail_req(req, -EOPNOTSUPP); 2070 io_init_req_drain(req); 2071 } 2072 } 2073 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2074 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2075 return io_init_fail_req(req, -EACCES); 2076 /* knock it to the slow queue path, will be drained there */ 2077 if (ctx->drain_active) 2078 req->flags |= REQ_F_FORCE_ASYNC; 2079 /* if there is no link, we're at "next" request and need to drain */ 2080 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2081 ctx->drain_next = false; 2082 ctx->drain_active = true; 2083 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2084 } 2085 } 2086 2087 if (!def->ioprio && sqe->ioprio) 2088 return io_init_fail_req(req, -EINVAL); 2089 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2090 return io_init_fail_req(req, -EINVAL); 2091 2092 if (def->needs_file) { 2093 struct io_submit_state *state = &ctx->submit_state; 2094 2095 req->cqe.fd = READ_ONCE(sqe->fd); 2096 2097 /* 2098 * Plug now if we have more than 2 IO left after this, and the 2099 * target is potentially a read/write to block based storage. 2100 */ 2101 if (state->need_plug && def->plug) { 2102 state->plug_started = true; 2103 state->need_plug = false; 2104 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2105 } 2106 } 2107 2108 personality = READ_ONCE(sqe->personality); 2109 if (personality) { 2110 int ret; 2111 2112 req->creds = xa_load(&ctx->personalities, personality); 2113 if (!req->creds) 2114 return io_init_fail_req(req, -EINVAL); 2115 get_cred(req->creds); 2116 ret = security_uring_override_creds(req->creds); 2117 if (ret) { 2118 put_cred(req->creds); 2119 return io_init_fail_req(req, ret); 2120 } 2121 req->flags |= REQ_F_CREDS; 2122 } 2123 2124 return def->prep(req, sqe); 2125 } 2126 2127 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2128 struct io_kiocb *req, int ret) 2129 { 2130 struct io_ring_ctx *ctx = req->ctx; 2131 struct io_submit_link *link = &ctx->submit_state.link; 2132 struct io_kiocb *head = link->head; 2133 2134 trace_io_uring_req_failed(sqe, req, ret); 2135 2136 /* 2137 * Avoid breaking links in the middle as it renders links with SQPOLL 2138 * unusable. Instead of failing eagerly, continue assembling the link if 2139 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2140 * should find the flag and handle the rest. 2141 */ 2142 req_fail_link_node(req, ret); 2143 if (head && !(head->flags & REQ_F_FAIL)) 2144 req_fail_link_node(head, -ECANCELED); 2145 2146 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2147 if (head) { 2148 link->last->link = req; 2149 link->head = NULL; 2150 req = head; 2151 } 2152 io_queue_sqe_fallback(req); 2153 return ret; 2154 } 2155 2156 if (head) 2157 link->last->link = req; 2158 else 2159 link->head = req; 2160 link->last = req; 2161 return 0; 2162 } 2163 2164 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2165 const struct io_uring_sqe *sqe) 2166 __must_hold(&ctx->uring_lock) 2167 { 2168 struct io_submit_link *link = &ctx->submit_state.link; 2169 int ret; 2170 2171 ret = io_init_req(ctx, req, sqe); 2172 if (unlikely(ret)) 2173 return io_submit_fail_init(sqe, req, ret); 2174 2175 trace_io_uring_submit_req(req); 2176 2177 /* 2178 * If we already have a head request, queue this one for async 2179 * submittal once the head completes. If we don't have a head but 2180 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2181 * submitted sync once the chain is complete. If none of those 2182 * conditions are true (normal request), then just queue it. 2183 */ 2184 if (unlikely(link->head)) { 2185 trace_io_uring_link(req, link->last); 2186 link->last->link = req; 2187 link->last = req; 2188 2189 if (req->flags & IO_REQ_LINK_FLAGS) 2190 return 0; 2191 /* last request of the link, flush it */ 2192 req = link->head; 2193 link->head = NULL; 2194 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2195 goto fallback; 2196 2197 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2198 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2199 if (req->flags & IO_REQ_LINK_FLAGS) { 2200 link->head = req; 2201 link->last = req; 2202 } else { 2203 fallback: 2204 io_queue_sqe_fallback(req); 2205 } 2206 return 0; 2207 } 2208 2209 io_queue_sqe(req); 2210 return 0; 2211 } 2212 2213 /* 2214 * Batched submission is done, ensure local IO is flushed out. 2215 */ 2216 static void io_submit_state_end(struct io_ring_ctx *ctx) 2217 { 2218 struct io_submit_state *state = &ctx->submit_state; 2219 2220 if (unlikely(state->link.head)) 2221 io_queue_sqe_fallback(state->link.head); 2222 /* flush only after queuing links as they can generate completions */ 2223 io_submit_flush_completions(ctx); 2224 if (state->plug_started) 2225 blk_finish_plug(&state->plug); 2226 } 2227 2228 /* 2229 * Start submission side cache. 2230 */ 2231 static void io_submit_state_start(struct io_submit_state *state, 2232 unsigned int max_ios) 2233 { 2234 state->plug_started = false; 2235 state->need_plug = max_ios > 2; 2236 state->submit_nr = max_ios; 2237 /* set only head, no need to init link_last in advance */ 2238 state->link.head = NULL; 2239 } 2240 2241 static void io_commit_sqring(struct io_ring_ctx *ctx) 2242 { 2243 struct io_rings *rings = ctx->rings; 2244 2245 /* 2246 * Ensure any loads from the SQEs are done at this point, 2247 * since once we write the new head, the application could 2248 * write new data to them. 2249 */ 2250 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2251 } 2252 2253 /* 2254 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2255 * that is mapped by userspace. This means that care needs to be taken to 2256 * ensure that reads are stable, as we cannot rely on userspace always 2257 * being a good citizen. If members of the sqe are validated and then later 2258 * used, it's important that those reads are done through READ_ONCE() to 2259 * prevent a re-load down the line. 2260 */ 2261 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2262 { 2263 unsigned mask = ctx->sq_entries - 1; 2264 unsigned head = ctx->cached_sq_head++ & mask; 2265 2266 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2267 head = READ_ONCE(ctx->sq_array[head]); 2268 if (unlikely(head >= ctx->sq_entries)) { 2269 /* drop invalid entries */ 2270 spin_lock(&ctx->completion_lock); 2271 ctx->cq_extra--; 2272 spin_unlock(&ctx->completion_lock); 2273 WRITE_ONCE(ctx->rings->sq_dropped, 2274 READ_ONCE(ctx->rings->sq_dropped) + 1); 2275 return false; 2276 } 2277 } 2278 2279 /* 2280 * The cached sq head (or cq tail) serves two purposes: 2281 * 2282 * 1) allows us to batch the cost of updating the user visible 2283 * head updates. 2284 * 2) allows the kernel side to track the head on its own, even 2285 * though the application is the one updating it. 2286 */ 2287 2288 /* double index for 128-byte SQEs, twice as long */ 2289 if (ctx->flags & IORING_SETUP_SQE128) 2290 head <<= 1; 2291 *sqe = &ctx->sq_sqes[head]; 2292 return true; 2293 } 2294 2295 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2296 __must_hold(&ctx->uring_lock) 2297 { 2298 unsigned int entries = io_sqring_entries(ctx); 2299 unsigned int left; 2300 int ret; 2301 2302 if (unlikely(!entries)) 2303 return 0; 2304 /* make sure SQ entry isn't read before tail */ 2305 ret = left = min(nr, entries); 2306 io_get_task_refs(left); 2307 io_submit_state_start(&ctx->submit_state, left); 2308 2309 do { 2310 const struct io_uring_sqe *sqe; 2311 struct io_kiocb *req; 2312 2313 if (unlikely(!io_alloc_req(ctx, &req))) 2314 break; 2315 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2316 io_req_add_to_cache(req, ctx); 2317 break; 2318 } 2319 2320 /* 2321 * Continue submitting even for sqe failure if the 2322 * ring was setup with IORING_SETUP_SUBMIT_ALL 2323 */ 2324 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2325 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2326 left--; 2327 break; 2328 } 2329 } while (--left); 2330 2331 if (unlikely(left)) { 2332 ret -= left; 2333 /* try again if it submitted nothing and can't allocate a req */ 2334 if (!ret && io_req_cache_empty(ctx)) 2335 ret = -EAGAIN; 2336 current->io_uring->cached_refs += left; 2337 } 2338 2339 io_submit_state_end(ctx); 2340 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2341 io_commit_sqring(ctx); 2342 return ret; 2343 } 2344 2345 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2346 int wake_flags, void *key) 2347 { 2348 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2349 2350 /* 2351 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2352 * the task, and the next invocation will do it. 2353 */ 2354 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2355 return autoremove_wake_function(curr, mode, wake_flags, key); 2356 return -1; 2357 } 2358 2359 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2360 { 2361 if (!llist_empty(&ctx->work_llist)) { 2362 __set_current_state(TASK_RUNNING); 2363 if (io_run_local_work(ctx, INT_MAX) > 0) 2364 return 0; 2365 } 2366 if (io_run_task_work() > 0) 2367 return 0; 2368 if (task_sigpending(current)) 2369 return -EINTR; 2370 return 0; 2371 } 2372 2373 static bool current_pending_io(void) 2374 { 2375 struct io_uring_task *tctx = current->io_uring; 2376 2377 if (!tctx) 2378 return false; 2379 return percpu_counter_read_positive(&tctx->inflight); 2380 } 2381 2382 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2383 { 2384 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2385 2386 WRITE_ONCE(iowq->hit_timeout, 1); 2387 iowq->min_timeout = 0; 2388 wake_up_process(iowq->wq.private); 2389 return HRTIMER_NORESTART; 2390 } 2391 2392 /* 2393 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2394 * wake up. If not, and we have a normal timeout, switch to that and keep 2395 * sleeping. 2396 */ 2397 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2398 { 2399 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2400 struct io_ring_ctx *ctx = iowq->ctx; 2401 2402 /* no general timeout, or shorter (or equal), we are done */ 2403 if (iowq->timeout == KTIME_MAX || 2404 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2405 goto out_wake; 2406 /* work we may need to run, wake function will see if we need to wake */ 2407 if (io_has_work(ctx)) 2408 goto out_wake; 2409 /* got events since we started waiting, min timeout is done */ 2410 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2411 goto out_wake; 2412 /* if we have any events and min timeout expired, we're done */ 2413 if (io_cqring_events(ctx)) 2414 goto out_wake; 2415 2416 /* 2417 * If using deferred task_work running and application is waiting on 2418 * more than one request, ensure we reset it now where we are switching 2419 * to normal sleeps. Any request completion post min_wait should wake 2420 * the task and return. 2421 */ 2422 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2423 atomic_set(&ctx->cq_wait_nr, 1); 2424 smp_mb(); 2425 if (!llist_empty(&ctx->work_llist)) 2426 goto out_wake; 2427 } 2428 2429 iowq->t.function = io_cqring_timer_wakeup; 2430 hrtimer_set_expires(timer, iowq->timeout); 2431 return HRTIMER_RESTART; 2432 out_wake: 2433 return io_cqring_timer_wakeup(timer); 2434 } 2435 2436 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2437 clockid_t clock_id, ktime_t start_time) 2438 { 2439 ktime_t timeout; 2440 2441 hrtimer_init_on_stack(&iowq->t, clock_id, HRTIMER_MODE_ABS); 2442 if (iowq->min_timeout) { 2443 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2444 iowq->t.function = io_cqring_min_timer_wakeup; 2445 } else { 2446 timeout = iowq->timeout; 2447 iowq->t.function = io_cqring_timer_wakeup; 2448 } 2449 2450 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2451 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2452 2453 if (!READ_ONCE(iowq->hit_timeout)) 2454 schedule(); 2455 2456 hrtimer_cancel(&iowq->t); 2457 destroy_hrtimer_on_stack(&iowq->t); 2458 __set_current_state(TASK_RUNNING); 2459 2460 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2461 } 2462 2463 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2464 struct io_wait_queue *iowq, 2465 ktime_t start_time) 2466 { 2467 int ret = 0; 2468 2469 /* 2470 * Mark us as being in io_wait if we have pending requests, so cpufreq 2471 * can take into account that the task is waiting for IO - turns out 2472 * to be important for low QD IO. 2473 */ 2474 if (current_pending_io()) 2475 current->in_iowait = 1; 2476 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2477 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2478 else 2479 schedule(); 2480 current->in_iowait = 0; 2481 return ret; 2482 } 2483 2484 /* If this returns > 0, the caller should retry */ 2485 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2486 struct io_wait_queue *iowq, 2487 ktime_t start_time) 2488 { 2489 if (unlikely(READ_ONCE(ctx->check_cq))) 2490 return 1; 2491 if (unlikely(!llist_empty(&ctx->work_llist))) 2492 return 1; 2493 if (unlikely(task_work_pending(current))) 2494 return 1; 2495 if (unlikely(task_sigpending(current))) 2496 return -EINTR; 2497 if (unlikely(io_should_wake(iowq))) 2498 return 0; 2499 2500 return __io_cqring_wait_schedule(ctx, iowq, start_time); 2501 } 2502 2503 struct ext_arg { 2504 size_t argsz; 2505 struct __kernel_timespec __user *ts; 2506 const sigset_t __user *sig; 2507 ktime_t min_time; 2508 }; 2509 2510 /* 2511 * Wait until events become available, if we don't already have some. The 2512 * application must reap them itself, as they reside on the shared cq ring. 2513 */ 2514 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2515 struct ext_arg *ext_arg) 2516 { 2517 struct io_wait_queue iowq; 2518 struct io_rings *rings = ctx->rings; 2519 ktime_t start_time; 2520 int ret; 2521 2522 if (!io_allowed_run_tw(ctx)) 2523 return -EEXIST; 2524 if (!llist_empty(&ctx->work_llist)) 2525 io_run_local_work(ctx, min_events); 2526 io_run_task_work(); 2527 2528 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2529 io_cqring_do_overflow_flush(ctx); 2530 if (__io_cqring_events_user(ctx) >= min_events) 2531 return 0; 2532 2533 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2534 iowq.wq.private = current; 2535 INIT_LIST_HEAD(&iowq.wq.entry); 2536 iowq.ctx = ctx; 2537 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2538 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2539 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2540 iowq.hit_timeout = 0; 2541 iowq.min_timeout = ext_arg->min_time; 2542 iowq.timeout = KTIME_MAX; 2543 start_time = io_get_time(ctx); 2544 2545 if (ext_arg->ts) { 2546 struct timespec64 ts; 2547 2548 if (get_timespec64(&ts, ext_arg->ts)) 2549 return -EFAULT; 2550 2551 iowq.timeout = timespec64_to_ktime(ts); 2552 if (!(flags & IORING_ENTER_ABS_TIMER)) 2553 iowq.timeout = ktime_add(iowq.timeout, start_time); 2554 } 2555 2556 if (ext_arg->sig) { 2557 #ifdef CONFIG_COMPAT 2558 if (in_compat_syscall()) 2559 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2560 ext_arg->argsz); 2561 else 2562 #endif 2563 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2564 2565 if (ret) 2566 return ret; 2567 } 2568 2569 io_napi_busy_loop(ctx, &iowq); 2570 2571 trace_io_uring_cqring_wait(ctx, min_events); 2572 do { 2573 unsigned long check_cq; 2574 int nr_wait; 2575 2576 /* if min timeout has been hit, don't reset wait count */ 2577 if (!iowq.hit_timeout) 2578 nr_wait = (int) iowq.cq_tail - 2579 READ_ONCE(ctx->rings->cq.tail); 2580 else 2581 nr_wait = 1; 2582 2583 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2584 atomic_set(&ctx->cq_wait_nr, nr_wait); 2585 set_current_state(TASK_INTERRUPTIBLE); 2586 } else { 2587 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2588 TASK_INTERRUPTIBLE); 2589 } 2590 2591 ret = io_cqring_wait_schedule(ctx, &iowq, start_time); 2592 __set_current_state(TASK_RUNNING); 2593 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2594 2595 /* 2596 * Run task_work after scheduling and before io_should_wake(). 2597 * If we got woken because of task_work being processed, run it 2598 * now rather than let the caller do another wait loop. 2599 */ 2600 if (!llist_empty(&ctx->work_llist)) 2601 io_run_local_work(ctx, nr_wait); 2602 io_run_task_work(); 2603 2604 /* 2605 * Non-local task_work will be run on exit to userspace, but 2606 * if we're using DEFER_TASKRUN, then we could have waited 2607 * with a timeout for a number of requests. If the timeout 2608 * hits, we could have some requests ready to process. Ensure 2609 * this break is _after_ we have run task_work, to avoid 2610 * deferring running potentially pending requests until the 2611 * next time we wait for events. 2612 */ 2613 if (ret < 0) 2614 break; 2615 2616 check_cq = READ_ONCE(ctx->check_cq); 2617 if (unlikely(check_cq)) { 2618 /* let the caller flush overflows, retry */ 2619 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2620 io_cqring_do_overflow_flush(ctx); 2621 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2622 ret = -EBADR; 2623 break; 2624 } 2625 } 2626 2627 if (io_should_wake(&iowq)) { 2628 ret = 0; 2629 break; 2630 } 2631 cond_resched(); 2632 } while (1); 2633 2634 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2635 finish_wait(&ctx->cq_wait, &iowq.wq); 2636 restore_saved_sigmask_unless(ret == -EINTR); 2637 2638 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2639 } 2640 2641 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2642 size_t size) 2643 { 2644 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2645 size); 2646 } 2647 2648 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2649 size_t size) 2650 { 2651 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2652 size); 2653 } 2654 2655 static void io_rings_free(struct io_ring_ctx *ctx) 2656 { 2657 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2658 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages, 2659 true); 2660 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages, 2661 true); 2662 } else { 2663 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2664 ctx->n_ring_pages = 0; 2665 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2666 ctx->n_sqe_pages = 0; 2667 vunmap(ctx->rings); 2668 vunmap(ctx->sq_sqes); 2669 } 2670 2671 ctx->rings = NULL; 2672 ctx->sq_sqes = NULL; 2673 } 2674 2675 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2676 unsigned int cq_entries, size_t *sq_offset) 2677 { 2678 struct io_rings *rings; 2679 size_t off, sq_array_size; 2680 2681 off = struct_size(rings, cqes, cq_entries); 2682 if (off == SIZE_MAX) 2683 return SIZE_MAX; 2684 if (ctx->flags & IORING_SETUP_CQE32) { 2685 if (check_shl_overflow(off, 1, &off)) 2686 return SIZE_MAX; 2687 } 2688 2689 #ifdef CONFIG_SMP 2690 off = ALIGN(off, SMP_CACHE_BYTES); 2691 if (off == 0) 2692 return SIZE_MAX; 2693 #endif 2694 2695 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2696 *sq_offset = SIZE_MAX; 2697 return off; 2698 } 2699 2700 *sq_offset = off; 2701 2702 sq_array_size = array_size(sizeof(u32), sq_entries); 2703 if (sq_array_size == SIZE_MAX) 2704 return SIZE_MAX; 2705 2706 if (check_add_overflow(off, sq_array_size, &off)) 2707 return SIZE_MAX; 2708 2709 return off; 2710 } 2711 2712 static void io_req_caches_free(struct io_ring_ctx *ctx) 2713 { 2714 struct io_kiocb *req; 2715 int nr = 0; 2716 2717 mutex_lock(&ctx->uring_lock); 2718 2719 while (!io_req_cache_empty(ctx)) { 2720 req = io_extract_req(ctx); 2721 kmem_cache_free(req_cachep, req); 2722 nr++; 2723 } 2724 if (nr) 2725 percpu_ref_put_many(&ctx->refs, nr); 2726 mutex_unlock(&ctx->uring_lock); 2727 } 2728 2729 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2730 { 2731 io_sq_thread_finish(ctx); 2732 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2733 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2734 return; 2735 2736 mutex_lock(&ctx->uring_lock); 2737 if (ctx->buf_data) 2738 __io_sqe_buffers_unregister(ctx); 2739 if (ctx->file_data) 2740 __io_sqe_files_unregister(ctx); 2741 io_cqring_overflow_kill(ctx); 2742 io_eventfd_unregister(ctx); 2743 io_alloc_cache_free(&ctx->apoll_cache, kfree); 2744 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2745 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 2746 io_alloc_cache_free(&ctx->uring_cache, kfree); 2747 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 2748 io_futex_cache_free(ctx); 2749 io_destroy_buffers(ctx); 2750 mutex_unlock(&ctx->uring_lock); 2751 if (ctx->sq_creds) 2752 put_cred(ctx->sq_creds); 2753 if (ctx->submitter_task) 2754 put_task_struct(ctx->submitter_task); 2755 2756 /* there are no registered resources left, nobody uses it */ 2757 if (ctx->rsrc_node) 2758 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2759 2760 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2761 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2762 2763 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree); 2764 if (ctx->mm_account) { 2765 mmdrop(ctx->mm_account); 2766 ctx->mm_account = NULL; 2767 } 2768 io_rings_free(ctx); 2769 2770 percpu_ref_exit(&ctx->refs); 2771 free_uid(ctx->user); 2772 io_req_caches_free(ctx); 2773 if (ctx->hash_map) 2774 io_wq_put_hash(ctx->hash_map); 2775 io_napi_free(ctx); 2776 kfree(ctx->cancel_table.hbs); 2777 kfree(ctx->cancel_table_locked.hbs); 2778 xa_destroy(&ctx->io_bl_xa); 2779 kfree(ctx); 2780 } 2781 2782 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2783 { 2784 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2785 poll_wq_task_work); 2786 2787 mutex_lock(&ctx->uring_lock); 2788 ctx->poll_activated = true; 2789 mutex_unlock(&ctx->uring_lock); 2790 2791 /* 2792 * Wake ups for some events between start of polling and activation 2793 * might've been lost due to loose synchronisation. 2794 */ 2795 wake_up_all(&ctx->poll_wq); 2796 percpu_ref_put(&ctx->refs); 2797 } 2798 2799 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2800 { 2801 spin_lock(&ctx->completion_lock); 2802 /* already activated or in progress */ 2803 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2804 goto out; 2805 if (WARN_ON_ONCE(!ctx->task_complete)) 2806 goto out; 2807 if (!ctx->submitter_task) 2808 goto out; 2809 /* 2810 * with ->submitter_task only the submitter task completes requests, we 2811 * only need to sync with it, which is done by injecting a tw 2812 */ 2813 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2814 percpu_ref_get(&ctx->refs); 2815 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2816 percpu_ref_put(&ctx->refs); 2817 out: 2818 spin_unlock(&ctx->completion_lock); 2819 } 2820 2821 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2822 { 2823 struct io_ring_ctx *ctx = file->private_data; 2824 __poll_t mask = 0; 2825 2826 if (unlikely(!ctx->poll_activated)) 2827 io_activate_pollwq(ctx); 2828 2829 poll_wait(file, &ctx->poll_wq, wait); 2830 /* 2831 * synchronizes with barrier from wq_has_sleeper call in 2832 * io_commit_cqring 2833 */ 2834 smp_rmb(); 2835 if (!io_sqring_full(ctx)) 2836 mask |= EPOLLOUT | EPOLLWRNORM; 2837 2838 /* 2839 * Don't flush cqring overflow list here, just do a simple check. 2840 * Otherwise there could possible be ABBA deadlock: 2841 * CPU0 CPU1 2842 * ---- ---- 2843 * lock(&ctx->uring_lock); 2844 * lock(&ep->mtx); 2845 * lock(&ctx->uring_lock); 2846 * lock(&ep->mtx); 2847 * 2848 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2849 * pushes them to do the flush. 2850 */ 2851 2852 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2853 mask |= EPOLLIN | EPOLLRDNORM; 2854 2855 return mask; 2856 } 2857 2858 struct io_tctx_exit { 2859 struct callback_head task_work; 2860 struct completion completion; 2861 struct io_ring_ctx *ctx; 2862 }; 2863 2864 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2865 { 2866 struct io_uring_task *tctx = current->io_uring; 2867 struct io_tctx_exit *work; 2868 2869 work = container_of(cb, struct io_tctx_exit, task_work); 2870 /* 2871 * When @in_cancel, we're in cancellation and it's racy to remove the 2872 * node. It'll be removed by the end of cancellation, just ignore it. 2873 * tctx can be NULL if the queueing of this task_work raced with 2874 * work cancelation off the exec path. 2875 */ 2876 if (tctx && !atomic_read(&tctx->in_cancel)) 2877 io_uring_del_tctx_node((unsigned long)work->ctx); 2878 complete(&work->completion); 2879 } 2880 2881 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2882 { 2883 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2884 2885 return req->ctx == data; 2886 } 2887 2888 static __cold void io_ring_exit_work(struct work_struct *work) 2889 { 2890 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2891 unsigned long timeout = jiffies + HZ * 60 * 5; 2892 unsigned long interval = HZ / 20; 2893 struct io_tctx_exit exit; 2894 struct io_tctx_node *node; 2895 int ret; 2896 2897 /* 2898 * If we're doing polled IO and end up having requests being 2899 * submitted async (out-of-line), then completions can come in while 2900 * we're waiting for refs to drop. We need to reap these manually, 2901 * as nobody else will be looking for them. 2902 */ 2903 do { 2904 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2905 mutex_lock(&ctx->uring_lock); 2906 io_cqring_overflow_kill(ctx); 2907 mutex_unlock(&ctx->uring_lock); 2908 } 2909 2910 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2911 io_move_task_work_from_local(ctx); 2912 2913 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2914 cond_resched(); 2915 2916 if (ctx->sq_data) { 2917 struct io_sq_data *sqd = ctx->sq_data; 2918 struct task_struct *tsk; 2919 2920 io_sq_thread_park(sqd); 2921 tsk = sqd->thread; 2922 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2923 io_wq_cancel_cb(tsk->io_uring->io_wq, 2924 io_cancel_ctx_cb, ctx, true); 2925 io_sq_thread_unpark(sqd); 2926 } 2927 2928 io_req_caches_free(ctx); 2929 2930 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2931 /* there is little hope left, don't run it too often */ 2932 interval = HZ * 60; 2933 } 2934 /* 2935 * This is really an uninterruptible wait, as it has to be 2936 * complete. But it's also run from a kworker, which doesn't 2937 * take signals, so it's fine to make it interruptible. This 2938 * avoids scenarios where we knowingly can wait much longer 2939 * on completions, for example if someone does a SIGSTOP on 2940 * a task that needs to finish task_work to make this loop 2941 * complete. That's a synthetic situation that should not 2942 * cause a stuck task backtrace, and hence a potential panic 2943 * on stuck tasks if that is enabled. 2944 */ 2945 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2946 2947 init_completion(&exit.completion); 2948 init_task_work(&exit.task_work, io_tctx_exit_cb); 2949 exit.ctx = ctx; 2950 2951 mutex_lock(&ctx->uring_lock); 2952 while (!list_empty(&ctx->tctx_list)) { 2953 WARN_ON_ONCE(time_after(jiffies, timeout)); 2954 2955 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2956 ctx_node); 2957 /* don't spin on a single task if cancellation failed */ 2958 list_rotate_left(&ctx->tctx_list); 2959 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2960 if (WARN_ON_ONCE(ret)) 2961 continue; 2962 2963 mutex_unlock(&ctx->uring_lock); 2964 /* 2965 * See comment above for 2966 * wait_for_completion_interruptible_timeout() on why this 2967 * wait is marked as interruptible. 2968 */ 2969 wait_for_completion_interruptible(&exit.completion); 2970 mutex_lock(&ctx->uring_lock); 2971 } 2972 mutex_unlock(&ctx->uring_lock); 2973 spin_lock(&ctx->completion_lock); 2974 spin_unlock(&ctx->completion_lock); 2975 2976 /* pairs with RCU read section in io_req_local_work_add() */ 2977 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2978 synchronize_rcu(); 2979 2980 io_ring_ctx_free(ctx); 2981 } 2982 2983 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2984 { 2985 unsigned long index; 2986 struct creds *creds; 2987 2988 mutex_lock(&ctx->uring_lock); 2989 percpu_ref_kill(&ctx->refs); 2990 xa_for_each(&ctx->personalities, index, creds) 2991 io_unregister_personality(ctx, index); 2992 mutex_unlock(&ctx->uring_lock); 2993 2994 flush_delayed_work(&ctx->fallback_work); 2995 2996 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2997 /* 2998 * Use system_unbound_wq to avoid spawning tons of event kworkers 2999 * if we're exiting a ton of rings at the same time. It just adds 3000 * noise and overhead, there's no discernable change in runtime 3001 * over using system_wq. 3002 */ 3003 queue_work(iou_wq, &ctx->exit_work); 3004 } 3005 3006 static int io_uring_release(struct inode *inode, struct file *file) 3007 { 3008 struct io_ring_ctx *ctx = file->private_data; 3009 3010 file->private_data = NULL; 3011 io_ring_ctx_wait_and_kill(ctx); 3012 return 0; 3013 } 3014 3015 struct io_task_cancel { 3016 struct task_struct *task; 3017 bool all; 3018 }; 3019 3020 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3021 { 3022 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3023 struct io_task_cancel *cancel = data; 3024 3025 return io_match_task_safe(req, cancel->task, cancel->all); 3026 } 3027 3028 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3029 struct task_struct *task, 3030 bool cancel_all) 3031 { 3032 struct io_defer_entry *de; 3033 LIST_HEAD(list); 3034 3035 spin_lock(&ctx->completion_lock); 3036 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3037 if (io_match_task_safe(de->req, task, cancel_all)) { 3038 list_cut_position(&list, &ctx->defer_list, &de->list); 3039 break; 3040 } 3041 } 3042 spin_unlock(&ctx->completion_lock); 3043 if (list_empty(&list)) 3044 return false; 3045 3046 while (!list_empty(&list)) { 3047 de = list_first_entry(&list, struct io_defer_entry, list); 3048 list_del_init(&de->list); 3049 io_req_task_queue_fail(de->req, -ECANCELED); 3050 kfree(de); 3051 } 3052 return true; 3053 } 3054 3055 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3056 { 3057 struct io_tctx_node *node; 3058 enum io_wq_cancel cret; 3059 bool ret = false; 3060 3061 mutex_lock(&ctx->uring_lock); 3062 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3063 struct io_uring_task *tctx = node->task->io_uring; 3064 3065 /* 3066 * io_wq will stay alive while we hold uring_lock, because it's 3067 * killed after ctx nodes, which requires to take the lock. 3068 */ 3069 if (!tctx || !tctx->io_wq) 3070 continue; 3071 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3072 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3073 } 3074 mutex_unlock(&ctx->uring_lock); 3075 3076 return ret; 3077 } 3078 3079 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3080 struct task_struct *task, 3081 bool cancel_all) 3082 { 3083 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3084 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3085 enum io_wq_cancel cret; 3086 bool ret = false; 3087 3088 /* set it so io_req_local_work_add() would wake us up */ 3089 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3090 atomic_set(&ctx->cq_wait_nr, 1); 3091 smp_mb(); 3092 } 3093 3094 /* failed during ring init, it couldn't have issued any requests */ 3095 if (!ctx->rings) 3096 return false; 3097 3098 if (!task) { 3099 ret |= io_uring_try_cancel_iowq(ctx); 3100 } else if (tctx && tctx->io_wq) { 3101 /* 3102 * Cancels requests of all rings, not only @ctx, but 3103 * it's fine as the task is in exit/exec. 3104 */ 3105 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3106 &cancel, true); 3107 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3108 } 3109 3110 /* SQPOLL thread does its own polling */ 3111 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3112 (ctx->sq_data && ctx->sq_data->thread == current)) { 3113 while (!wq_list_empty(&ctx->iopoll_list)) { 3114 io_iopoll_try_reap_events(ctx); 3115 ret = true; 3116 cond_resched(); 3117 } 3118 } 3119 3120 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3121 io_allowed_defer_tw_run(ctx)) 3122 ret |= io_run_local_work(ctx, INT_MAX) > 0; 3123 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3124 mutex_lock(&ctx->uring_lock); 3125 ret |= io_poll_remove_all(ctx, task, cancel_all); 3126 ret |= io_waitid_remove_all(ctx, task, cancel_all); 3127 ret |= io_futex_remove_all(ctx, task, cancel_all); 3128 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); 3129 mutex_unlock(&ctx->uring_lock); 3130 ret |= io_kill_timeouts(ctx, task, cancel_all); 3131 if (task) 3132 ret |= io_run_task_work() > 0; 3133 else 3134 ret |= flush_delayed_work(&ctx->fallback_work); 3135 return ret; 3136 } 3137 3138 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3139 { 3140 if (tracked) 3141 return atomic_read(&tctx->inflight_tracked); 3142 return percpu_counter_sum(&tctx->inflight); 3143 } 3144 3145 /* 3146 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3147 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3148 */ 3149 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3150 { 3151 struct io_uring_task *tctx = current->io_uring; 3152 struct io_ring_ctx *ctx; 3153 struct io_tctx_node *node; 3154 unsigned long index; 3155 s64 inflight; 3156 DEFINE_WAIT(wait); 3157 3158 WARN_ON_ONCE(sqd && sqd->thread != current); 3159 3160 if (!current->io_uring) 3161 return; 3162 if (tctx->io_wq) 3163 io_wq_exit_start(tctx->io_wq); 3164 3165 atomic_inc(&tctx->in_cancel); 3166 do { 3167 bool loop = false; 3168 3169 io_uring_drop_tctx_refs(current); 3170 if (!tctx_inflight(tctx, !cancel_all)) 3171 break; 3172 3173 /* read completions before cancelations */ 3174 inflight = tctx_inflight(tctx, false); 3175 if (!inflight) 3176 break; 3177 3178 if (!sqd) { 3179 xa_for_each(&tctx->xa, index, node) { 3180 /* sqpoll task will cancel all its requests */ 3181 if (node->ctx->sq_data) 3182 continue; 3183 loop |= io_uring_try_cancel_requests(node->ctx, 3184 current, cancel_all); 3185 } 3186 } else { 3187 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3188 loop |= io_uring_try_cancel_requests(ctx, 3189 current, 3190 cancel_all); 3191 } 3192 3193 if (loop) { 3194 cond_resched(); 3195 continue; 3196 } 3197 3198 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3199 io_run_task_work(); 3200 io_uring_drop_tctx_refs(current); 3201 xa_for_each(&tctx->xa, index, node) { 3202 if (!llist_empty(&node->ctx->work_llist)) { 3203 WARN_ON_ONCE(node->ctx->submitter_task && 3204 node->ctx->submitter_task != current); 3205 goto end_wait; 3206 } 3207 } 3208 /* 3209 * If we've seen completions, retry without waiting. This 3210 * avoids a race where a completion comes in before we did 3211 * prepare_to_wait(). 3212 */ 3213 if (inflight == tctx_inflight(tctx, !cancel_all)) 3214 schedule(); 3215 end_wait: 3216 finish_wait(&tctx->wait, &wait); 3217 } while (1); 3218 3219 io_uring_clean_tctx(tctx); 3220 if (cancel_all) { 3221 /* 3222 * We shouldn't run task_works after cancel, so just leave 3223 * ->in_cancel set for normal exit. 3224 */ 3225 atomic_dec(&tctx->in_cancel); 3226 /* for exec all current's requests should be gone, kill tctx */ 3227 __io_uring_free(current); 3228 } 3229 } 3230 3231 void __io_uring_cancel(bool cancel_all) 3232 { 3233 io_uring_cancel_generic(cancel_all, NULL); 3234 } 3235 3236 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3237 { 3238 if (flags & IORING_ENTER_EXT_ARG) { 3239 struct io_uring_getevents_arg arg; 3240 3241 if (argsz != sizeof(arg)) 3242 return -EINVAL; 3243 if (copy_from_user(&arg, argp, sizeof(arg))) 3244 return -EFAULT; 3245 } 3246 return 0; 3247 } 3248 3249 static int io_get_ext_arg(unsigned flags, const void __user *argp, 3250 struct ext_arg *ext_arg) 3251 { 3252 struct io_uring_getevents_arg arg; 3253 3254 /* 3255 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3256 * is just a pointer to the sigset_t. 3257 */ 3258 if (!(flags & IORING_ENTER_EXT_ARG)) { 3259 ext_arg->sig = (const sigset_t __user *) argp; 3260 ext_arg->ts = NULL; 3261 return 0; 3262 } 3263 3264 /* 3265 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3266 * timespec and sigset_t pointers if good. 3267 */ 3268 if (ext_arg->argsz != sizeof(arg)) 3269 return -EINVAL; 3270 if (copy_from_user(&arg, argp, sizeof(arg))) 3271 return -EFAULT; 3272 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3273 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3274 ext_arg->argsz = arg.sigmask_sz; 3275 ext_arg->ts = u64_to_user_ptr(arg.ts); 3276 return 0; 3277 } 3278 3279 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3280 u32, min_complete, u32, flags, const void __user *, argp, 3281 size_t, argsz) 3282 { 3283 struct io_ring_ctx *ctx; 3284 struct file *file; 3285 long ret; 3286 3287 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3288 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3289 IORING_ENTER_REGISTERED_RING | 3290 IORING_ENTER_ABS_TIMER))) 3291 return -EINVAL; 3292 3293 /* 3294 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3295 * need only dereference our task private array to find it. 3296 */ 3297 if (flags & IORING_ENTER_REGISTERED_RING) { 3298 struct io_uring_task *tctx = current->io_uring; 3299 3300 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3301 return -EINVAL; 3302 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3303 file = tctx->registered_rings[fd]; 3304 if (unlikely(!file)) 3305 return -EBADF; 3306 } else { 3307 file = fget(fd); 3308 if (unlikely(!file)) 3309 return -EBADF; 3310 ret = -EOPNOTSUPP; 3311 if (unlikely(!io_is_uring_fops(file))) 3312 goto out; 3313 } 3314 3315 ctx = file->private_data; 3316 ret = -EBADFD; 3317 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3318 goto out; 3319 3320 /* 3321 * For SQ polling, the thread will do all submissions and completions. 3322 * Just return the requested submit count, and wake the thread if 3323 * we were asked to. 3324 */ 3325 ret = 0; 3326 if (ctx->flags & IORING_SETUP_SQPOLL) { 3327 if (unlikely(ctx->sq_data->thread == NULL)) { 3328 ret = -EOWNERDEAD; 3329 goto out; 3330 } 3331 if (flags & IORING_ENTER_SQ_WAKEUP) 3332 wake_up(&ctx->sq_data->wait); 3333 if (flags & IORING_ENTER_SQ_WAIT) 3334 io_sqpoll_wait_sq(ctx); 3335 3336 ret = to_submit; 3337 } else if (to_submit) { 3338 ret = io_uring_add_tctx_node(ctx); 3339 if (unlikely(ret)) 3340 goto out; 3341 3342 mutex_lock(&ctx->uring_lock); 3343 ret = io_submit_sqes(ctx, to_submit); 3344 if (ret != to_submit) { 3345 mutex_unlock(&ctx->uring_lock); 3346 goto out; 3347 } 3348 if (flags & IORING_ENTER_GETEVENTS) { 3349 if (ctx->syscall_iopoll) 3350 goto iopoll_locked; 3351 /* 3352 * Ignore errors, we'll soon call io_cqring_wait() and 3353 * it should handle ownership problems if any. 3354 */ 3355 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3356 (void)io_run_local_work_locked(ctx, min_complete); 3357 } 3358 mutex_unlock(&ctx->uring_lock); 3359 } 3360 3361 if (flags & IORING_ENTER_GETEVENTS) { 3362 int ret2; 3363 3364 if (ctx->syscall_iopoll) { 3365 /* 3366 * We disallow the app entering submit/complete with 3367 * polling, but we still need to lock the ring to 3368 * prevent racing with polled issue that got punted to 3369 * a workqueue. 3370 */ 3371 mutex_lock(&ctx->uring_lock); 3372 iopoll_locked: 3373 ret2 = io_validate_ext_arg(flags, argp, argsz); 3374 if (likely(!ret2)) { 3375 min_complete = min(min_complete, 3376 ctx->cq_entries); 3377 ret2 = io_iopoll_check(ctx, min_complete); 3378 } 3379 mutex_unlock(&ctx->uring_lock); 3380 } else { 3381 struct ext_arg ext_arg = { .argsz = argsz }; 3382 3383 ret2 = io_get_ext_arg(flags, argp, &ext_arg); 3384 if (likely(!ret2)) { 3385 min_complete = min(min_complete, 3386 ctx->cq_entries); 3387 ret2 = io_cqring_wait(ctx, min_complete, flags, 3388 &ext_arg); 3389 } 3390 } 3391 3392 if (!ret) { 3393 ret = ret2; 3394 3395 /* 3396 * EBADR indicates that one or more CQE were dropped. 3397 * Once the user has been informed we can clear the bit 3398 * as they are obviously ok with those drops. 3399 */ 3400 if (unlikely(ret2 == -EBADR)) 3401 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3402 &ctx->check_cq); 3403 } 3404 } 3405 out: 3406 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3407 fput(file); 3408 return ret; 3409 } 3410 3411 static const struct file_operations io_uring_fops = { 3412 .release = io_uring_release, 3413 .mmap = io_uring_mmap, 3414 .get_unmapped_area = io_uring_get_unmapped_area, 3415 #ifndef CONFIG_MMU 3416 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3417 #endif 3418 .poll = io_uring_poll, 3419 #ifdef CONFIG_PROC_FS 3420 .show_fdinfo = io_uring_show_fdinfo, 3421 #endif 3422 }; 3423 3424 bool io_is_uring_fops(struct file *file) 3425 { 3426 return file->f_op == &io_uring_fops; 3427 } 3428 3429 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3430 struct io_uring_params *p) 3431 { 3432 struct io_rings *rings; 3433 size_t size, sq_array_offset; 3434 void *ptr; 3435 3436 /* make sure these are sane, as we already accounted them */ 3437 ctx->sq_entries = p->sq_entries; 3438 ctx->cq_entries = p->cq_entries; 3439 3440 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3441 if (size == SIZE_MAX) 3442 return -EOVERFLOW; 3443 3444 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3445 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size); 3446 else 3447 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3448 3449 if (IS_ERR(rings)) 3450 return PTR_ERR(rings); 3451 3452 ctx->rings = rings; 3453 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3454 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3455 rings->sq_ring_mask = p->sq_entries - 1; 3456 rings->cq_ring_mask = p->cq_entries - 1; 3457 rings->sq_ring_entries = p->sq_entries; 3458 rings->cq_ring_entries = p->cq_entries; 3459 3460 if (p->flags & IORING_SETUP_SQE128) 3461 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3462 else 3463 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3464 if (size == SIZE_MAX) { 3465 io_rings_free(ctx); 3466 return -EOVERFLOW; 3467 } 3468 3469 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3470 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size); 3471 else 3472 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3473 3474 if (IS_ERR(ptr)) { 3475 io_rings_free(ctx); 3476 return PTR_ERR(ptr); 3477 } 3478 3479 ctx->sq_sqes = ptr; 3480 return 0; 3481 } 3482 3483 static int io_uring_install_fd(struct file *file) 3484 { 3485 int fd; 3486 3487 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3488 if (fd < 0) 3489 return fd; 3490 fd_install(fd, file); 3491 return fd; 3492 } 3493 3494 /* 3495 * Allocate an anonymous fd, this is what constitutes the application 3496 * visible backing of an io_uring instance. The application mmaps this 3497 * fd to gain access to the SQ/CQ ring details. 3498 */ 3499 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3500 { 3501 /* Create a new inode so that the LSM can block the creation. */ 3502 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3503 O_RDWR | O_CLOEXEC, NULL); 3504 } 3505 3506 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3507 struct io_uring_params __user *params) 3508 { 3509 struct io_ring_ctx *ctx; 3510 struct io_uring_task *tctx; 3511 struct file *file; 3512 int ret; 3513 3514 if (!entries) 3515 return -EINVAL; 3516 if (entries > IORING_MAX_ENTRIES) { 3517 if (!(p->flags & IORING_SETUP_CLAMP)) 3518 return -EINVAL; 3519 entries = IORING_MAX_ENTRIES; 3520 } 3521 3522 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3523 && !(p->flags & IORING_SETUP_NO_MMAP)) 3524 return -EINVAL; 3525 3526 /* 3527 * Use twice as many entries for the CQ ring. It's possible for the 3528 * application to drive a higher depth than the size of the SQ ring, 3529 * since the sqes are only used at submission time. This allows for 3530 * some flexibility in overcommitting a bit. If the application has 3531 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3532 * of CQ ring entries manually. 3533 */ 3534 p->sq_entries = roundup_pow_of_two(entries); 3535 if (p->flags & IORING_SETUP_CQSIZE) { 3536 /* 3537 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3538 * to a power-of-two, if it isn't already. We do NOT impose 3539 * any cq vs sq ring sizing. 3540 */ 3541 if (!p->cq_entries) 3542 return -EINVAL; 3543 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3544 if (!(p->flags & IORING_SETUP_CLAMP)) 3545 return -EINVAL; 3546 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3547 } 3548 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3549 if (p->cq_entries < p->sq_entries) 3550 return -EINVAL; 3551 } else { 3552 p->cq_entries = 2 * p->sq_entries; 3553 } 3554 3555 ctx = io_ring_ctx_alloc(p); 3556 if (!ctx) 3557 return -ENOMEM; 3558 3559 ctx->clockid = CLOCK_MONOTONIC; 3560 ctx->clock_offset = 0; 3561 3562 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3563 !(ctx->flags & IORING_SETUP_IOPOLL) && 3564 !(ctx->flags & IORING_SETUP_SQPOLL)) 3565 ctx->task_complete = true; 3566 3567 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3568 ctx->lockless_cq = true; 3569 3570 /* 3571 * lazy poll_wq activation relies on ->task_complete for synchronisation 3572 * purposes, see io_activate_pollwq() 3573 */ 3574 if (!ctx->task_complete) 3575 ctx->poll_activated = true; 3576 3577 /* 3578 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3579 * space applications don't need to do io completion events 3580 * polling again, they can rely on io_sq_thread to do polling 3581 * work, which can reduce cpu usage and uring_lock contention. 3582 */ 3583 if (ctx->flags & IORING_SETUP_IOPOLL && 3584 !(ctx->flags & IORING_SETUP_SQPOLL)) 3585 ctx->syscall_iopoll = 1; 3586 3587 ctx->compat = in_compat_syscall(); 3588 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3589 ctx->user = get_uid(current_user()); 3590 3591 /* 3592 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3593 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3594 */ 3595 ret = -EINVAL; 3596 if (ctx->flags & IORING_SETUP_SQPOLL) { 3597 /* IPI related flags don't make sense with SQPOLL */ 3598 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3599 IORING_SETUP_TASKRUN_FLAG | 3600 IORING_SETUP_DEFER_TASKRUN)) 3601 goto err; 3602 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3603 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3604 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3605 } else { 3606 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3607 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3608 goto err; 3609 ctx->notify_method = TWA_SIGNAL; 3610 } 3611 3612 /* 3613 * For DEFER_TASKRUN we require the completion task to be the same as the 3614 * submission task. This implies that there is only one submitter, so enforce 3615 * that. 3616 */ 3617 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3618 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3619 goto err; 3620 } 3621 3622 /* 3623 * This is just grabbed for accounting purposes. When a process exits, 3624 * the mm is exited and dropped before the files, hence we need to hang 3625 * on to this mm purely for the purposes of being able to unaccount 3626 * memory (locked/pinned vm). It's not used for anything else. 3627 */ 3628 mmgrab(current->mm); 3629 ctx->mm_account = current->mm; 3630 3631 ret = io_allocate_scq_urings(ctx, p); 3632 if (ret) 3633 goto err; 3634 3635 ret = io_sq_offload_create(ctx, p); 3636 if (ret) 3637 goto err; 3638 3639 ret = io_rsrc_init(ctx); 3640 if (ret) 3641 goto err; 3642 3643 p->sq_off.head = offsetof(struct io_rings, sq.head); 3644 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3645 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3646 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3647 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3648 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3649 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3650 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3651 p->sq_off.resv1 = 0; 3652 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3653 p->sq_off.user_addr = 0; 3654 3655 p->cq_off.head = offsetof(struct io_rings, cq.head); 3656 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3657 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3658 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3659 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3660 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3661 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3662 p->cq_off.resv1 = 0; 3663 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3664 p->cq_off.user_addr = 0; 3665 3666 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3667 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3668 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3669 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3670 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3671 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3672 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3673 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT; 3674 3675 if (copy_to_user(params, p, sizeof(*p))) { 3676 ret = -EFAULT; 3677 goto err; 3678 } 3679 3680 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3681 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3682 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3683 3684 file = io_uring_get_file(ctx); 3685 if (IS_ERR(file)) { 3686 ret = PTR_ERR(file); 3687 goto err; 3688 } 3689 3690 ret = __io_uring_add_tctx_node(ctx); 3691 if (ret) 3692 goto err_fput; 3693 tctx = current->io_uring; 3694 3695 /* 3696 * Install ring fd as the very last thing, so we don't risk someone 3697 * having closed it before we finish setup 3698 */ 3699 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3700 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3701 else 3702 ret = io_uring_install_fd(file); 3703 if (ret < 0) 3704 goto err_fput; 3705 3706 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3707 return ret; 3708 err: 3709 io_ring_ctx_wait_and_kill(ctx); 3710 return ret; 3711 err_fput: 3712 fput(file); 3713 return ret; 3714 } 3715 3716 /* 3717 * Sets up an aio uring context, and returns the fd. Applications asks for a 3718 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3719 * params structure passed in. 3720 */ 3721 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3722 { 3723 struct io_uring_params p; 3724 int i; 3725 3726 if (copy_from_user(&p, params, sizeof(p))) 3727 return -EFAULT; 3728 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3729 if (p.resv[i]) 3730 return -EINVAL; 3731 } 3732 3733 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3734 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3735 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3736 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3737 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3738 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3739 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3740 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3741 IORING_SETUP_NO_SQARRAY)) 3742 return -EINVAL; 3743 3744 return io_uring_create(entries, &p, params); 3745 } 3746 3747 static inline bool io_uring_allowed(void) 3748 { 3749 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3750 kgid_t io_uring_group; 3751 3752 if (disabled == 2) 3753 return false; 3754 3755 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3756 return true; 3757 3758 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3759 if (!gid_valid(io_uring_group)) 3760 return false; 3761 3762 return in_group_p(io_uring_group); 3763 } 3764 3765 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3766 struct io_uring_params __user *, params) 3767 { 3768 if (!io_uring_allowed()) 3769 return -EPERM; 3770 3771 return io_uring_setup(entries, params); 3772 } 3773 3774 static int __init io_uring_init(void) 3775 { 3776 struct kmem_cache_args kmem_args = { 3777 .useroffset = offsetof(struct io_kiocb, cmd.data), 3778 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3779 }; 3780 3781 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3782 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3783 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3784 } while (0) 3785 3786 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3787 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3788 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3789 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3790 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3791 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3792 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3793 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3794 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3795 BUILD_BUG_SQE_ELEM(8, __u64, off); 3796 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3797 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3798 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3799 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3800 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3801 BUILD_BUG_SQE_ELEM(24, __u32, len); 3802 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3803 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3804 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3805 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3806 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3807 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3808 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3809 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3810 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3811 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3812 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3813 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3814 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3815 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3816 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3817 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3818 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3819 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3820 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3821 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3822 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3823 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3824 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3825 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3826 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3827 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3828 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3829 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3830 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3831 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3832 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3833 3834 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3835 sizeof(struct io_uring_rsrc_update)); 3836 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3837 sizeof(struct io_uring_rsrc_update2)); 3838 3839 /* ->buf_index is u16 */ 3840 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3841 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3842 offsetof(struct io_uring_buf_ring, tail)); 3843 3844 /* should fit into one byte */ 3845 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3846 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3847 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3848 3849 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3850 3851 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3852 3853 /* top 8bits are for internal use */ 3854 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3855 3856 io_uring_optable_init(); 3857 3858 /* 3859 * Allow user copy in the per-command field, which starts after the 3860 * file in io_kiocb and until the opcode field. The openat2 handling 3861 * requires copying in user memory into the io_kiocb object in that 3862 * range, and HARDENED_USERCOPY will complain if we haven't 3863 * correctly annotated this range. 3864 */ 3865 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3866 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3867 SLAB_TYPESAFE_BY_RCU); 3868 io_buf_cachep = KMEM_CACHE(io_buffer, 3869 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 3870 3871 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3872 3873 #ifdef CONFIG_SYSCTL 3874 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3875 #endif 3876 3877 return 0; 3878 }; 3879 __initcall(io_uring_init); 3880