1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 101 #include "timeout.h" 102 #include "poll.h" 103 #include "rw.h" 104 #include "alloc_cache.h" 105 #include "eventfd.h" 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 #define IO_LOCAL_TW_DEFAULT_MAX 20 125 126 struct io_defer_entry { 127 struct list_head list; 128 struct io_kiocb *req; 129 u32 seq; 130 }; 131 132 /* requests with any of those set should undergo io_disarm_next() */ 133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 135 136 /* 137 * No waiters. It's larger than any valid value of the tw counter 138 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 139 */ 140 #define IO_CQ_WAKE_INIT (-1U) 141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct io_uring_task *tctx, 146 bool cancel_all); 147 148 static void io_queue_sqe(struct io_kiocb *req); 149 150 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 151 152 struct kmem_cache *req_cachep; 153 static struct workqueue_struct *iou_wq __ro_after_init; 154 155 static int __read_mostly sysctl_io_uring_disabled; 156 static int __read_mostly sysctl_io_uring_group = -1; 157 158 #ifdef CONFIG_SYSCTL 159 static struct ctl_table kernel_io_uring_disabled_table[] = { 160 { 161 .procname = "io_uring_disabled", 162 .data = &sysctl_io_uring_disabled, 163 .maxlen = sizeof(sysctl_io_uring_disabled), 164 .mode = 0644, 165 .proc_handler = proc_dointvec_minmax, 166 .extra1 = SYSCTL_ZERO, 167 .extra2 = SYSCTL_TWO, 168 }, 169 { 170 .procname = "io_uring_group", 171 .data = &sysctl_io_uring_group, 172 .maxlen = sizeof(gid_t), 173 .mode = 0644, 174 .proc_handler = proc_dointvec, 175 }, 176 }; 177 #endif 178 179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 180 { 181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 182 } 183 184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 185 { 186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 187 } 188 189 static bool io_match_linked(struct io_kiocb *head) 190 { 191 struct io_kiocb *req; 192 193 io_for_each_link(req, head) { 194 if (req->flags & REQ_F_INFLIGHT) 195 return true; 196 } 197 return false; 198 } 199 200 /* 201 * As io_match_task() but protected against racing with linked timeouts. 202 * User must not hold timeout_lock. 203 */ 204 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 205 bool cancel_all) 206 { 207 bool matched; 208 209 if (tctx && head->tctx != tctx) 210 return false; 211 if (cancel_all) 212 return true; 213 214 if (head->flags & REQ_F_LINK_TIMEOUT) { 215 struct io_ring_ctx *ctx = head->ctx; 216 217 /* protect against races with linked timeouts */ 218 spin_lock_irq(&ctx->timeout_lock); 219 matched = io_match_linked(head); 220 spin_unlock_irq(&ctx->timeout_lock); 221 } else { 222 matched = io_match_linked(head); 223 } 224 return matched; 225 } 226 227 static inline void req_fail_link_node(struct io_kiocb *req, int res) 228 { 229 req_set_fail(req); 230 io_req_set_res(req, res, 0); 231 } 232 233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 234 { 235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 236 } 237 238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 239 { 240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 241 242 complete(&ctx->ref_comp); 243 } 244 245 static __cold void io_fallback_req_func(struct work_struct *work) 246 { 247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 248 fallback_work.work); 249 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 250 struct io_kiocb *req, *tmp; 251 struct io_tw_state ts = {}; 252 253 percpu_ref_get(&ctx->refs); 254 mutex_lock(&ctx->uring_lock); 255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 256 req->io_task_work.func(req, &ts); 257 io_submit_flush_completions(ctx); 258 mutex_unlock(&ctx->uring_lock); 259 percpu_ref_put(&ctx->refs); 260 } 261 262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 263 { 264 unsigned int hash_buckets; 265 int i; 266 267 do { 268 hash_buckets = 1U << bits; 269 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 270 GFP_KERNEL_ACCOUNT); 271 if (table->hbs) 272 break; 273 if (bits == 1) 274 return -ENOMEM; 275 bits--; 276 } while (1); 277 278 table->hash_bits = bits; 279 for (i = 0; i < hash_buckets; i++) 280 INIT_HLIST_HEAD(&table->hbs[i].list); 281 return 0; 282 } 283 284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 285 { 286 struct io_ring_ctx *ctx; 287 int hash_bits; 288 bool ret; 289 290 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 291 if (!ctx) 292 return NULL; 293 294 xa_init(&ctx->io_bl_xa); 295 296 /* 297 * Use 5 bits less than the max cq entries, that should give us around 298 * 32 entries per hash list if totally full and uniformly spread, but 299 * don't keep too many buckets to not overconsume memory. 300 */ 301 hash_bits = ilog2(p->cq_entries) - 5; 302 hash_bits = clamp(hash_bits, 1, 8); 303 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 304 goto err; 305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 306 0, GFP_KERNEL)) 307 goto err; 308 309 ctx->flags = p->flags; 310 ctx->hybrid_poll_time = LLONG_MAX; 311 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 312 init_waitqueue_head(&ctx->sqo_sq_wait); 313 INIT_LIST_HEAD(&ctx->sqd_list); 314 INIT_LIST_HEAD(&ctx->cq_overflow_list); 315 INIT_LIST_HEAD(&ctx->io_buffers_cache); 316 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 317 sizeof(struct async_poll)); 318 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 319 sizeof(struct io_async_msghdr)); 320 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 321 sizeof(struct io_async_rw)); 322 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX, 323 sizeof(struct uring_cache)); 324 spin_lock_init(&ctx->msg_lock); 325 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 326 sizeof(struct io_kiocb)); 327 ret |= io_futex_cache_init(ctx); 328 if (ret) 329 goto free_ref; 330 init_completion(&ctx->ref_comp); 331 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 332 mutex_init(&ctx->uring_lock); 333 init_waitqueue_head(&ctx->cq_wait); 334 init_waitqueue_head(&ctx->poll_wq); 335 spin_lock_init(&ctx->completion_lock); 336 spin_lock_init(&ctx->timeout_lock); 337 INIT_WQ_LIST(&ctx->iopoll_list); 338 INIT_LIST_HEAD(&ctx->io_buffers_comp); 339 INIT_LIST_HEAD(&ctx->defer_list); 340 INIT_LIST_HEAD(&ctx->timeout_list); 341 INIT_LIST_HEAD(&ctx->ltimeout_list); 342 init_llist_head(&ctx->work_llist); 343 INIT_LIST_HEAD(&ctx->tctx_list); 344 ctx->submit_state.free_list.next = NULL; 345 INIT_HLIST_HEAD(&ctx->waitid_list); 346 #ifdef CONFIG_FUTEX 347 INIT_HLIST_HEAD(&ctx->futex_list); 348 #endif 349 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 350 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 351 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 352 io_napi_init(ctx); 353 mutex_init(&ctx->resize_lock); 354 355 return ctx; 356 357 free_ref: 358 percpu_ref_exit(&ctx->refs); 359 err: 360 io_alloc_cache_free(&ctx->apoll_cache, kfree); 361 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 362 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 363 io_alloc_cache_free(&ctx->uring_cache, kfree); 364 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 365 io_futex_cache_free(ctx); 366 kvfree(ctx->cancel_table.hbs); 367 xa_destroy(&ctx->io_bl_xa); 368 kfree(ctx); 369 return NULL; 370 } 371 372 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 373 { 374 struct io_rings *r = ctx->rings; 375 376 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 377 ctx->cq_extra--; 378 } 379 380 static bool req_need_defer(struct io_kiocb *req, u32 seq) 381 { 382 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 383 struct io_ring_ctx *ctx = req->ctx; 384 385 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 386 } 387 388 return false; 389 } 390 391 static void io_clean_op(struct io_kiocb *req) 392 { 393 if (req->flags & REQ_F_BUFFER_SELECTED) { 394 spin_lock(&req->ctx->completion_lock); 395 io_kbuf_drop(req); 396 spin_unlock(&req->ctx->completion_lock); 397 } 398 399 if (req->flags & REQ_F_NEED_CLEANUP) { 400 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 401 402 if (def->cleanup) 403 def->cleanup(req); 404 } 405 if ((req->flags & REQ_F_POLLED) && req->apoll) { 406 kfree(req->apoll->double_poll); 407 kfree(req->apoll); 408 req->apoll = NULL; 409 } 410 if (req->flags & REQ_F_INFLIGHT) 411 atomic_dec(&req->tctx->inflight_tracked); 412 if (req->flags & REQ_F_CREDS) 413 put_cred(req->creds); 414 if (req->flags & REQ_F_ASYNC_DATA) { 415 kfree(req->async_data); 416 req->async_data = NULL; 417 } 418 req->flags &= ~IO_REQ_CLEAN_FLAGS; 419 } 420 421 static inline void io_req_track_inflight(struct io_kiocb *req) 422 { 423 if (!(req->flags & REQ_F_INFLIGHT)) { 424 req->flags |= REQ_F_INFLIGHT; 425 atomic_inc(&req->tctx->inflight_tracked); 426 } 427 } 428 429 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 430 { 431 if (WARN_ON_ONCE(!req->link)) 432 return NULL; 433 434 req->flags &= ~REQ_F_ARM_LTIMEOUT; 435 req->flags |= REQ_F_LINK_TIMEOUT; 436 437 /* linked timeouts should have two refs once prep'ed */ 438 io_req_set_refcount(req); 439 __io_req_set_refcount(req->link, 2); 440 return req->link; 441 } 442 443 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 444 { 445 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 446 return NULL; 447 return __io_prep_linked_timeout(req); 448 } 449 450 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 451 { 452 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 453 } 454 455 static inline void io_arm_ltimeout(struct io_kiocb *req) 456 { 457 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 458 __io_arm_ltimeout(req); 459 } 460 461 static void io_prep_async_work(struct io_kiocb *req) 462 { 463 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 464 struct io_ring_ctx *ctx = req->ctx; 465 466 if (!(req->flags & REQ_F_CREDS)) { 467 req->flags |= REQ_F_CREDS; 468 req->creds = get_current_cred(); 469 } 470 471 req->work.list.next = NULL; 472 atomic_set(&req->work.flags, 0); 473 if (req->flags & REQ_F_FORCE_ASYNC) 474 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 475 476 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 477 req->flags |= io_file_get_flags(req->file); 478 479 if (req->file && (req->flags & REQ_F_ISREG)) { 480 bool should_hash = def->hash_reg_file; 481 482 /* don't serialize this request if the fs doesn't need it */ 483 if (should_hash && (req->file->f_flags & O_DIRECT) && 484 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 485 should_hash = false; 486 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 487 io_wq_hash_work(&req->work, file_inode(req->file)); 488 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 489 if (def->unbound_nonreg_file) 490 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 491 } 492 } 493 494 static void io_prep_async_link(struct io_kiocb *req) 495 { 496 struct io_kiocb *cur; 497 498 if (req->flags & REQ_F_LINK_TIMEOUT) { 499 struct io_ring_ctx *ctx = req->ctx; 500 501 spin_lock_irq(&ctx->timeout_lock); 502 io_for_each_link(cur, req) 503 io_prep_async_work(cur); 504 spin_unlock_irq(&ctx->timeout_lock); 505 } else { 506 io_for_each_link(cur, req) 507 io_prep_async_work(cur); 508 } 509 } 510 511 static void io_queue_iowq(struct io_kiocb *req) 512 { 513 struct io_kiocb *link = io_prep_linked_timeout(req); 514 struct io_uring_task *tctx = req->tctx; 515 516 BUG_ON(!tctx); 517 BUG_ON(!tctx->io_wq); 518 519 /* init ->work of the whole link before punting */ 520 io_prep_async_link(req); 521 522 /* 523 * Not expected to happen, but if we do have a bug where this _can_ 524 * happen, catch it here and ensure the request is marked as 525 * canceled. That will make io-wq go through the usual work cancel 526 * procedure rather than attempt to run this request (or create a new 527 * worker for it). 528 */ 529 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 530 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 531 532 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 533 io_wq_enqueue(tctx->io_wq, &req->work); 534 if (link) 535 io_queue_linked_timeout(link); 536 } 537 538 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts) 539 { 540 io_queue_iowq(req); 541 } 542 543 void io_req_queue_iowq(struct io_kiocb *req) 544 { 545 req->io_task_work.func = io_req_queue_iowq_tw; 546 io_req_task_work_add(req); 547 } 548 549 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 550 { 551 while (!list_empty(&ctx->defer_list)) { 552 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 553 struct io_defer_entry, list); 554 555 if (req_need_defer(de->req, de->seq)) 556 break; 557 list_del_init(&de->list); 558 io_req_task_queue(de->req); 559 kfree(de); 560 } 561 } 562 563 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 564 { 565 if (ctx->poll_activated) 566 io_poll_wq_wake(ctx); 567 if (ctx->off_timeout_used) 568 io_flush_timeouts(ctx); 569 if (ctx->drain_active) { 570 spin_lock(&ctx->completion_lock); 571 io_queue_deferred(ctx); 572 spin_unlock(&ctx->completion_lock); 573 } 574 if (ctx->has_evfd) 575 io_eventfd_flush_signal(ctx); 576 } 577 578 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 579 { 580 if (!ctx->lockless_cq) 581 spin_lock(&ctx->completion_lock); 582 } 583 584 static inline void io_cq_lock(struct io_ring_ctx *ctx) 585 __acquires(ctx->completion_lock) 586 { 587 spin_lock(&ctx->completion_lock); 588 } 589 590 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 591 { 592 io_commit_cqring(ctx); 593 if (!ctx->task_complete) { 594 if (!ctx->lockless_cq) 595 spin_unlock(&ctx->completion_lock); 596 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 597 if (!ctx->syscall_iopoll) 598 io_cqring_wake(ctx); 599 } 600 io_commit_cqring_flush(ctx); 601 } 602 603 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 604 __releases(ctx->completion_lock) 605 { 606 io_commit_cqring(ctx); 607 spin_unlock(&ctx->completion_lock); 608 io_cqring_wake(ctx); 609 io_commit_cqring_flush(ctx); 610 } 611 612 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 613 { 614 size_t cqe_size = sizeof(struct io_uring_cqe); 615 616 lockdep_assert_held(&ctx->uring_lock); 617 618 /* don't abort if we're dying, entries must get freed */ 619 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 620 return; 621 622 if (ctx->flags & IORING_SETUP_CQE32) 623 cqe_size <<= 1; 624 625 io_cq_lock(ctx); 626 while (!list_empty(&ctx->cq_overflow_list)) { 627 struct io_uring_cqe *cqe; 628 struct io_overflow_cqe *ocqe; 629 630 ocqe = list_first_entry(&ctx->cq_overflow_list, 631 struct io_overflow_cqe, list); 632 633 if (!dying) { 634 if (!io_get_cqe_overflow(ctx, &cqe, true)) 635 break; 636 memcpy(cqe, &ocqe->cqe, cqe_size); 637 } 638 list_del(&ocqe->list); 639 kfree(ocqe); 640 641 /* 642 * For silly syzbot cases that deliberately overflow by huge 643 * amounts, check if we need to resched and drop and 644 * reacquire the locks if so. Nothing real would ever hit this. 645 * Ideally we'd have a non-posting unlock for this, but hard 646 * to care for a non-real case. 647 */ 648 if (need_resched()) { 649 io_cq_unlock_post(ctx); 650 mutex_unlock(&ctx->uring_lock); 651 cond_resched(); 652 mutex_lock(&ctx->uring_lock); 653 io_cq_lock(ctx); 654 } 655 } 656 657 if (list_empty(&ctx->cq_overflow_list)) { 658 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 659 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 660 } 661 io_cq_unlock_post(ctx); 662 } 663 664 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 665 { 666 if (ctx->rings) 667 __io_cqring_overflow_flush(ctx, true); 668 } 669 670 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 671 { 672 mutex_lock(&ctx->uring_lock); 673 __io_cqring_overflow_flush(ctx, false); 674 mutex_unlock(&ctx->uring_lock); 675 } 676 677 /* must to be called somewhat shortly after putting a request */ 678 static inline void io_put_task(struct io_kiocb *req) 679 { 680 struct io_uring_task *tctx = req->tctx; 681 682 if (likely(tctx->task == current)) { 683 tctx->cached_refs++; 684 } else { 685 percpu_counter_sub(&tctx->inflight, 1); 686 if (unlikely(atomic_read(&tctx->in_cancel))) 687 wake_up(&tctx->wait); 688 put_task_struct(tctx->task); 689 } 690 } 691 692 void io_task_refs_refill(struct io_uring_task *tctx) 693 { 694 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 695 696 percpu_counter_add(&tctx->inflight, refill); 697 refcount_add(refill, ¤t->usage); 698 tctx->cached_refs += refill; 699 } 700 701 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 702 { 703 struct io_uring_task *tctx = task->io_uring; 704 unsigned int refs = tctx->cached_refs; 705 706 if (refs) { 707 tctx->cached_refs = 0; 708 percpu_counter_sub(&tctx->inflight, refs); 709 put_task_struct_many(task, refs); 710 } 711 } 712 713 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 714 s32 res, u32 cflags, u64 extra1, u64 extra2) 715 { 716 struct io_overflow_cqe *ocqe; 717 size_t ocq_size = sizeof(struct io_overflow_cqe); 718 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 719 720 lockdep_assert_held(&ctx->completion_lock); 721 722 if (is_cqe32) 723 ocq_size += sizeof(struct io_uring_cqe); 724 725 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 726 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 727 if (!ocqe) { 728 /* 729 * If we're in ring overflow flush mode, or in task cancel mode, 730 * or cannot allocate an overflow entry, then we need to drop it 731 * on the floor. 732 */ 733 io_account_cq_overflow(ctx); 734 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 735 return false; 736 } 737 if (list_empty(&ctx->cq_overflow_list)) { 738 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 739 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 740 741 } 742 ocqe->cqe.user_data = user_data; 743 ocqe->cqe.res = res; 744 ocqe->cqe.flags = cflags; 745 if (is_cqe32) { 746 ocqe->cqe.big_cqe[0] = extra1; 747 ocqe->cqe.big_cqe[1] = extra2; 748 } 749 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 750 return true; 751 } 752 753 static void io_req_cqe_overflow(struct io_kiocb *req) 754 { 755 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 756 req->cqe.res, req->cqe.flags, 757 req->big_cqe.extra1, req->big_cqe.extra2); 758 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 759 } 760 761 /* 762 * writes to the cq entry need to come after reading head; the 763 * control dependency is enough as we're using WRITE_ONCE to 764 * fill the cq entry 765 */ 766 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 767 { 768 struct io_rings *rings = ctx->rings; 769 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 770 unsigned int free, queued, len; 771 772 /* 773 * Posting into the CQ when there are pending overflowed CQEs may break 774 * ordering guarantees, which will affect links, F_MORE users and more. 775 * Force overflow the completion. 776 */ 777 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 778 return false; 779 780 /* userspace may cheat modifying the tail, be safe and do min */ 781 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 782 free = ctx->cq_entries - queued; 783 /* we need a contiguous range, limit based on the current array offset */ 784 len = min(free, ctx->cq_entries - off); 785 if (!len) 786 return false; 787 788 if (ctx->flags & IORING_SETUP_CQE32) { 789 off <<= 1; 790 len <<= 1; 791 } 792 793 ctx->cqe_cached = &rings->cqes[off]; 794 ctx->cqe_sentinel = ctx->cqe_cached + len; 795 return true; 796 } 797 798 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 799 u32 cflags) 800 { 801 struct io_uring_cqe *cqe; 802 803 ctx->cq_extra++; 804 805 /* 806 * If we can't get a cq entry, userspace overflowed the 807 * submission (by quite a lot). Increment the overflow count in 808 * the ring. 809 */ 810 if (likely(io_get_cqe(ctx, &cqe))) { 811 WRITE_ONCE(cqe->user_data, user_data); 812 WRITE_ONCE(cqe->res, res); 813 WRITE_ONCE(cqe->flags, cflags); 814 815 if (ctx->flags & IORING_SETUP_CQE32) { 816 WRITE_ONCE(cqe->big_cqe[0], 0); 817 WRITE_ONCE(cqe->big_cqe[1], 0); 818 } 819 820 trace_io_uring_complete(ctx, NULL, cqe); 821 return true; 822 } 823 return false; 824 } 825 826 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, 827 u32 cflags) 828 { 829 bool filled; 830 831 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 832 if (!filled) 833 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 834 835 return filled; 836 } 837 838 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 839 { 840 bool filled; 841 842 io_cq_lock(ctx); 843 filled = __io_post_aux_cqe(ctx, user_data, res, cflags); 844 io_cq_unlock_post(ctx); 845 return filled; 846 } 847 848 /* 849 * Must be called from inline task_work so we now a flush will happen later, 850 * and obviously with ctx->uring_lock held (tw always has that). 851 */ 852 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 853 { 854 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 855 spin_lock(&ctx->completion_lock); 856 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 857 spin_unlock(&ctx->completion_lock); 858 } 859 ctx->submit_state.cq_flush = true; 860 } 861 862 /* 863 * A helper for multishot requests posting additional CQEs. 864 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 865 */ 866 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 867 { 868 struct io_ring_ctx *ctx = req->ctx; 869 bool posted; 870 871 lockdep_assert(!io_wq_current_is_worker()); 872 lockdep_assert_held(&ctx->uring_lock); 873 874 __io_cq_lock(ctx); 875 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 876 ctx->submit_state.cq_flush = true; 877 __io_cq_unlock_post(ctx); 878 return posted; 879 } 880 881 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 882 { 883 struct io_ring_ctx *ctx = req->ctx; 884 885 /* 886 * All execution paths but io-wq use the deferred completions by 887 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 888 */ 889 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 890 return; 891 892 /* 893 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 894 * the submitter task context, IOPOLL protects with uring_lock. 895 */ 896 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) { 897 req->io_task_work.func = io_req_task_complete; 898 io_req_task_work_add(req); 899 return; 900 } 901 902 io_cq_lock(ctx); 903 if (!(req->flags & REQ_F_CQE_SKIP)) { 904 if (!io_fill_cqe_req(ctx, req)) 905 io_req_cqe_overflow(req); 906 } 907 io_cq_unlock_post(ctx); 908 909 /* 910 * We don't free the request here because we know it's called from 911 * io-wq only, which holds a reference, so it cannot be the last put. 912 */ 913 req_ref_put(req); 914 } 915 916 void io_req_defer_failed(struct io_kiocb *req, s32 res) 917 __must_hold(&ctx->uring_lock) 918 { 919 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 920 921 lockdep_assert_held(&req->ctx->uring_lock); 922 923 req_set_fail(req); 924 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 925 if (def->fail) 926 def->fail(req); 927 io_req_complete_defer(req); 928 } 929 930 /* 931 * Don't initialise the fields below on every allocation, but do that in 932 * advance and keep them valid across allocations. 933 */ 934 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 935 { 936 req->ctx = ctx; 937 req->buf_node = NULL; 938 req->file_node = NULL; 939 req->link = NULL; 940 req->async_data = NULL; 941 /* not necessary, but safer to zero */ 942 memset(&req->cqe, 0, sizeof(req->cqe)); 943 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 944 } 945 946 /* 947 * A request might get retired back into the request caches even before opcode 948 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 949 * Because of that, io_alloc_req() should be called only under ->uring_lock 950 * and with extra caution to not get a request that is still worked on. 951 */ 952 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 953 __must_hold(&ctx->uring_lock) 954 { 955 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 956 void *reqs[IO_REQ_ALLOC_BATCH]; 957 int ret; 958 959 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 960 961 /* 962 * Bulk alloc is all-or-nothing. If we fail to get a batch, 963 * retry single alloc to be on the safe side. 964 */ 965 if (unlikely(ret <= 0)) { 966 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 967 if (!reqs[0]) 968 return false; 969 ret = 1; 970 } 971 972 percpu_ref_get_many(&ctx->refs, ret); 973 while (ret--) { 974 struct io_kiocb *req = reqs[ret]; 975 976 io_preinit_req(req, ctx); 977 io_req_add_to_cache(req, ctx); 978 } 979 return true; 980 } 981 982 __cold void io_free_req(struct io_kiocb *req) 983 { 984 /* refs were already put, restore them for io_req_task_complete() */ 985 req->flags &= ~REQ_F_REFCOUNT; 986 /* we only want to free it, don't post CQEs */ 987 req->flags |= REQ_F_CQE_SKIP; 988 req->io_task_work.func = io_req_task_complete; 989 io_req_task_work_add(req); 990 } 991 992 static void __io_req_find_next_prep(struct io_kiocb *req) 993 { 994 struct io_ring_ctx *ctx = req->ctx; 995 996 spin_lock(&ctx->completion_lock); 997 io_disarm_next(req); 998 spin_unlock(&ctx->completion_lock); 999 } 1000 1001 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1002 { 1003 struct io_kiocb *nxt; 1004 1005 /* 1006 * If LINK is set, we have dependent requests in this chain. If we 1007 * didn't fail this request, queue the first one up, moving any other 1008 * dependencies to the next request. In case of failure, fail the rest 1009 * of the chain. 1010 */ 1011 if (unlikely(req->flags & IO_DISARM_MASK)) 1012 __io_req_find_next_prep(req); 1013 nxt = req->link; 1014 req->link = NULL; 1015 return nxt; 1016 } 1017 1018 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1019 { 1020 if (!ctx) 1021 return; 1022 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1023 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1024 1025 io_submit_flush_completions(ctx); 1026 mutex_unlock(&ctx->uring_lock); 1027 percpu_ref_put(&ctx->refs); 1028 } 1029 1030 /* 1031 * Run queued task_work, returning the number of entries processed in *count. 1032 * If more entries than max_entries are available, stop processing once this 1033 * is reached and return the rest of the list. 1034 */ 1035 struct llist_node *io_handle_tw_list(struct llist_node *node, 1036 unsigned int *count, 1037 unsigned int max_entries) 1038 { 1039 struct io_ring_ctx *ctx = NULL; 1040 struct io_tw_state ts = { }; 1041 1042 do { 1043 struct llist_node *next = node->next; 1044 struct io_kiocb *req = container_of(node, struct io_kiocb, 1045 io_task_work.node); 1046 1047 if (req->ctx != ctx) { 1048 ctx_flush_and_put(ctx, &ts); 1049 ctx = req->ctx; 1050 mutex_lock(&ctx->uring_lock); 1051 percpu_ref_get(&ctx->refs); 1052 } 1053 INDIRECT_CALL_2(req->io_task_work.func, 1054 io_poll_task_func, io_req_rw_complete, 1055 req, &ts); 1056 node = next; 1057 (*count)++; 1058 if (unlikely(need_resched())) { 1059 ctx_flush_and_put(ctx, &ts); 1060 ctx = NULL; 1061 cond_resched(); 1062 } 1063 } while (node && *count < max_entries); 1064 1065 ctx_flush_and_put(ctx, &ts); 1066 return node; 1067 } 1068 1069 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1070 { 1071 struct io_ring_ctx *last_ctx = NULL; 1072 struct io_kiocb *req; 1073 1074 while (node) { 1075 req = container_of(node, struct io_kiocb, io_task_work.node); 1076 node = node->next; 1077 if (sync && last_ctx != req->ctx) { 1078 if (last_ctx) { 1079 flush_delayed_work(&last_ctx->fallback_work); 1080 percpu_ref_put(&last_ctx->refs); 1081 } 1082 last_ctx = req->ctx; 1083 percpu_ref_get(&last_ctx->refs); 1084 } 1085 if (llist_add(&req->io_task_work.node, 1086 &req->ctx->fallback_llist)) 1087 schedule_delayed_work(&req->ctx->fallback_work, 1); 1088 } 1089 1090 if (last_ctx) { 1091 flush_delayed_work(&last_ctx->fallback_work); 1092 percpu_ref_put(&last_ctx->refs); 1093 } 1094 } 1095 1096 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1097 { 1098 struct llist_node *node = llist_del_all(&tctx->task_list); 1099 1100 __io_fallback_tw(node, sync); 1101 } 1102 1103 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1104 unsigned int max_entries, 1105 unsigned int *count) 1106 { 1107 struct llist_node *node; 1108 1109 if (unlikely(current->flags & PF_EXITING)) { 1110 io_fallback_tw(tctx, true); 1111 return NULL; 1112 } 1113 1114 node = llist_del_all(&tctx->task_list); 1115 if (node) { 1116 node = llist_reverse_order(node); 1117 node = io_handle_tw_list(node, count, max_entries); 1118 } 1119 1120 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1121 if (unlikely(atomic_read(&tctx->in_cancel))) 1122 io_uring_drop_tctx_refs(current); 1123 1124 trace_io_uring_task_work_run(tctx, *count); 1125 return node; 1126 } 1127 1128 void tctx_task_work(struct callback_head *cb) 1129 { 1130 struct io_uring_task *tctx; 1131 struct llist_node *ret; 1132 unsigned int count = 0; 1133 1134 tctx = container_of(cb, struct io_uring_task, task_work); 1135 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1136 /* can't happen */ 1137 WARN_ON_ONCE(ret); 1138 } 1139 1140 static inline void io_req_local_work_add(struct io_kiocb *req, 1141 struct io_ring_ctx *ctx, 1142 unsigned flags) 1143 { 1144 unsigned nr_wait, nr_tw, nr_tw_prev; 1145 struct llist_node *head; 1146 1147 /* See comment above IO_CQ_WAKE_INIT */ 1148 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1149 1150 /* 1151 * We don't know how many reuqests is there in the link and whether 1152 * they can even be queued lazily, fall back to non-lazy. 1153 */ 1154 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1155 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1156 1157 guard(rcu)(); 1158 1159 head = READ_ONCE(ctx->work_llist.first); 1160 do { 1161 nr_tw_prev = 0; 1162 if (head) { 1163 struct io_kiocb *first_req = container_of(head, 1164 struct io_kiocb, 1165 io_task_work.node); 1166 /* 1167 * Might be executed at any moment, rely on 1168 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1169 */ 1170 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1171 } 1172 1173 /* 1174 * Theoretically, it can overflow, but that's fine as one of 1175 * previous adds should've tried to wake the task. 1176 */ 1177 nr_tw = nr_tw_prev + 1; 1178 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1179 nr_tw = IO_CQ_WAKE_FORCE; 1180 1181 req->nr_tw = nr_tw; 1182 req->io_task_work.node.next = head; 1183 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1184 &req->io_task_work.node)); 1185 1186 /* 1187 * cmpxchg implies a full barrier, which pairs with the barrier 1188 * in set_current_state() on the io_cqring_wait() side. It's used 1189 * to ensure that either we see updated ->cq_wait_nr, or waiters 1190 * going to sleep will observe the work added to the list, which 1191 * is similar to the wait/wawke task state sync. 1192 */ 1193 1194 if (!head) { 1195 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1196 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1197 if (ctx->has_evfd) 1198 io_eventfd_signal(ctx); 1199 } 1200 1201 nr_wait = atomic_read(&ctx->cq_wait_nr); 1202 /* not enough or no one is waiting */ 1203 if (nr_tw < nr_wait) 1204 return; 1205 /* the previous add has already woken it up */ 1206 if (nr_tw_prev >= nr_wait) 1207 return; 1208 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1209 } 1210 1211 static void io_req_normal_work_add(struct io_kiocb *req) 1212 { 1213 struct io_uring_task *tctx = req->tctx; 1214 struct io_ring_ctx *ctx = req->ctx; 1215 1216 /* task_work already pending, we're done */ 1217 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1218 return; 1219 1220 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1221 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1222 1223 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1224 if (ctx->flags & IORING_SETUP_SQPOLL) { 1225 struct io_sq_data *sqd = ctx->sq_data; 1226 1227 if (sqd->thread) 1228 __set_notify_signal(sqd->thread); 1229 return; 1230 } 1231 1232 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1233 return; 1234 1235 io_fallback_tw(tctx, false); 1236 } 1237 1238 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1239 { 1240 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1241 io_req_local_work_add(req, req->ctx, flags); 1242 else 1243 io_req_normal_work_add(req); 1244 } 1245 1246 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 1247 unsigned flags) 1248 { 1249 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1250 return; 1251 io_req_local_work_add(req, ctx, flags); 1252 } 1253 1254 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1255 { 1256 struct llist_node *node = llist_del_all(&ctx->work_llist); 1257 1258 __io_fallback_tw(node, false); 1259 node = llist_del_all(&ctx->retry_llist); 1260 __io_fallback_tw(node, false); 1261 } 1262 1263 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1264 int min_events) 1265 { 1266 if (!io_local_work_pending(ctx)) 1267 return false; 1268 if (events < min_events) 1269 return true; 1270 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1271 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1272 return false; 1273 } 1274 1275 static int __io_run_local_work_loop(struct llist_node **node, 1276 struct io_tw_state *ts, 1277 int events) 1278 { 1279 int ret = 0; 1280 1281 while (*node) { 1282 struct llist_node *next = (*node)->next; 1283 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1284 io_task_work.node); 1285 INDIRECT_CALL_2(req->io_task_work.func, 1286 io_poll_task_func, io_req_rw_complete, 1287 req, ts); 1288 *node = next; 1289 if (++ret >= events) 1290 break; 1291 } 1292 1293 return ret; 1294 } 1295 1296 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1297 int min_events, int max_events) 1298 { 1299 struct llist_node *node; 1300 unsigned int loops = 0; 1301 int ret = 0; 1302 1303 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1304 return -EEXIST; 1305 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1306 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1307 again: 1308 min_events -= ret; 1309 ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events); 1310 if (ctx->retry_llist.first) 1311 goto retry_done; 1312 1313 /* 1314 * llists are in reverse order, flip it back the right way before 1315 * running the pending items. 1316 */ 1317 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1318 ret += __io_run_local_work_loop(&node, ts, max_events - ret); 1319 ctx->retry_llist.first = node; 1320 loops++; 1321 1322 if (io_run_local_work_continue(ctx, ret, min_events)) 1323 goto again; 1324 retry_done: 1325 io_submit_flush_completions(ctx); 1326 if (io_run_local_work_continue(ctx, ret, min_events)) 1327 goto again; 1328 1329 trace_io_uring_local_work_run(ctx, ret, loops); 1330 return ret; 1331 } 1332 1333 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1334 int min_events) 1335 { 1336 struct io_tw_state ts = {}; 1337 1338 if (!io_local_work_pending(ctx)) 1339 return 0; 1340 return __io_run_local_work(ctx, &ts, min_events, 1341 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1342 } 1343 1344 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1345 int max_events) 1346 { 1347 struct io_tw_state ts = {}; 1348 int ret; 1349 1350 mutex_lock(&ctx->uring_lock); 1351 ret = __io_run_local_work(ctx, &ts, min_events, max_events); 1352 mutex_unlock(&ctx->uring_lock); 1353 return ret; 1354 } 1355 1356 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1357 { 1358 io_tw_lock(req->ctx, ts); 1359 io_req_defer_failed(req, req->cqe.res); 1360 } 1361 1362 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1363 { 1364 io_tw_lock(req->ctx, ts); 1365 if (unlikely(io_should_terminate_tw())) 1366 io_req_defer_failed(req, -EFAULT); 1367 else if (req->flags & REQ_F_FORCE_ASYNC) 1368 io_queue_iowq(req); 1369 else 1370 io_queue_sqe(req); 1371 } 1372 1373 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1374 { 1375 io_req_set_res(req, ret, 0); 1376 req->io_task_work.func = io_req_task_cancel; 1377 io_req_task_work_add(req); 1378 } 1379 1380 void io_req_task_queue(struct io_kiocb *req) 1381 { 1382 req->io_task_work.func = io_req_task_submit; 1383 io_req_task_work_add(req); 1384 } 1385 1386 void io_queue_next(struct io_kiocb *req) 1387 { 1388 struct io_kiocb *nxt = io_req_find_next(req); 1389 1390 if (nxt) 1391 io_req_task_queue(nxt); 1392 } 1393 1394 static void io_free_batch_list(struct io_ring_ctx *ctx, 1395 struct io_wq_work_node *node) 1396 __must_hold(&ctx->uring_lock) 1397 { 1398 do { 1399 struct io_kiocb *req = container_of(node, struct io_kiocb, 1400 comp_list); 1401 1402 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1403 if (req->flags & REQ_F_REFCOUNT) { 1404 node = req->comp_list.next; 1405 if (!req_ref_put_and_test(req)) 1406 continue; 1407 } 1408 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1409 struct async_poll *apoll = req->apoll; 1410 1411 if (apoll->double_poll) 1412 kfree(apoll->double_poll); 1413 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll)) 1414 kfree(apoll); 1415 req->flags &= ~REQ_F_POLLED; 1416 } 1417 if (req->flags & IO_REQ_LINK_FLAGS) 1418 io_queue_next(req); 1419 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1420 io_clean_op(req); 1421 } 1422 io_put_file(req); 1423 io_req_put_rsrc_nodes(req); 1424 io_put_task(req); 1425 1426 node = req->comp_list.next; 1427 io_req_add_to_cache(req, ctx); 1428 } while (node); 1429 } 1430 1431 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1432 __must_hold(&ctx->uring_lock) 1433 { 1434 struct io_submit_state *state = &ctx->submit_state; 1435 struct io_wq_work_node *node; 1436 1437 __io_cq_lock(ctx); 1438 __wq_list_for_each(node, &state->compl_reqs) { 1439 struct io_kiocb *req = container_of(node, struct io_kiocb, 1440 comp_list); 1441 1442 if (!(req->flags & REQ_F_CQE_SKIP) && 1443 unlikely(!io_fill_cqe_req(ctx, req))) { 1444 if (ctx->lockless_cq) { 1445 spin_lock(&ctx->completion_lock); 1446 io_req_cqe_overflow(req); 1447 spin_unlock(&ctx->completion_lock); 1448 } else { 1449 io_req_cqe_overflow(req); 1450 } 1451 } 1452 } 1453 __io_cq_unlock_post(ctx); 1454 1455 if (!wq_list_empty(&state->compl_reqs)) { 1456 io_free_batch_list(ctx, state->compl_reqs.first); 1457 INIT_WQ_LIST(&state->compl_reqs); 1458 } 1459 ctx->submit_state.cq_flush = false; 1460 } 1461 1462 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1463 { 1464 /* See comment at the top of this file */ 1465 smp_rmb(); 1466 return __io_cqring_events(ctx); 1467 } 1468 1469 /* 1470 * We can't just wait for polled events to come to us, we have to actively 1471 * find and complete them. 1472 */ 1473 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1474 { 1475 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1476 return; 1477 1478 mutex_lock(&ctx->uring_lock); 1479 while (!wq_list_empty(&ctx->iopoll_list)) { 1480 /* let it sleep and repeat later if can't complete a request */ 1481 if (io_do_iopoll(ctx, true) == 0) 1482 break; 1483 /* 1484 * Ensure we allow local-to-the-cpu processing to take place, 1485 * in this case we need to ensure that we reap all events. 1486 * Also let task_work, etc. to progress by releasing the mutex 1487 */ 1488 if (need_resched()) { 1489 mutex_unlock(&ctx->uring_lock); 1490 cond_resched(); 1491 mutex_lock(&ctx->uring_lock); 1492 } 1493 } 1494 mutex_unlock(&ctx->uring_lock); 1495 } 1496 1497 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1498 { 1499 unsigned int nr_events = 0; 1500 unsigned long check_cq; 1501 1502 lockdep_assert_held(&ctx->uring_lock); 1503 1504 if (!io_allowed_run_tw(ctx)) 1505 return -EEXIST; 1506 1507 check_cq = READ_ONCE(ctx->check_cq); 1508 if (unlikely(check_cq)) { 1509 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1510 __io_cqring_overflow_flush(ctx, false); 1511 /* 1512 * Similarly do not spin if we have not informed the user of any 1513 * dropped CQE. 1514 */ 1515 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1516 return -EBADR; 1517 } 1518 /* 1519 * Don't enter poll loop if we already have events pending. 1520 * If we do, we can potentially be spinning for commands that 1521 * already triggered a CQE (eg in error). 1522 */ 1523 if (io_cqring_events(ctx)) 1524 return 0; 1525 1526 do { 1527 int ret = 0; 1528 1529 /* 1530 * If a submit got punted to a workqueue, we can have the 1531 * application entering polling for a command before it gets 1532 * issued. That app will hold the uring_lock for the duration 1533 * of the poll right here, so we need to take a breather every 1534 * now and then to ensure that the issue has a chance to add 1535 * the poll to the issued list. Otherwise we can spin here 1536 * forever, while the workqueue is stuck trying to acquire the 1537 * very same mutex. 1538 */ 1539 if (wq_list_empty(&ctx->iopoll_list) || 1540 io_task_work_pending(ctx)) { 1541 u32 tail = ctx->cached_cq_tail; 1542 1543 (void) io_run_local_work_locked(ctx, min); 1544 1545 if (task_work_pending(current) || 1546 wq_list_empty(&ctx->iopoll_list)) { 1547 mutex_unlock(&ctx->uring_lock); 1548 io_run_task_work(); 1549 mutex_lock(&ctx->uring_lock); 1550 } 1551 /* some requests don't go through iopoll_list */ 1552 if (tail != ctx->cached_cq_tail || 1553 wq_list_empty(&ctx->iopoll_list)) 1554 break; 1555 } 1556 ret = io_do_iopoll(ctx, !min); 1557 if (unlikely(ret < 0)) 1558 return ret; 1559 1560 if (task_sigpending(current)) 1561 return -EINTR; 1562 if (need_resched()) 1563 break; 1564 1565 nr_events += ret; 1566 } while (nr_events < min); 1567 1568 return 0; 1569 } 1570 1571 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1572 { 1573 io_req_complete_defer(req); 1574 } 1575 1576 /* 1577 * After the iocb has been issued, it's safe to be found on the poll list. 1578 * Adding the kiocb to the list AFTER submission ensures that we don't 1579 * find it from a io_do_iopoll() thread before the issuer is done 1580 * accessing the kiocb cookie. 1581 */ 1582 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1583 { 1584 struct io_ring_ctx *ctx = req->ctx; 1585 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1586 1587 /* workqueue context doesn't hold uring_lock, grab it now */ 1588 if (unlikely(needs_lock)) 1589 mutex_lock(&ctx->uring_lock); 1590 1591 /* 1592 * Track whether we have multiple files in our lists. This will impact 1593 * how we do polling eventually, not spinning if we're on potentially 1594 * different devices. 1595 */ 1596 if (wq_list_empty(&ctx->iopoll_list)) { 1597 ctx->poll_multi_queue = false; 1598 } else if (!ctx->poll_multi_queue) { 1599 struct io_kiocb *list_req; 1600 1601 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1602 comp_list); 1603 if (list_req->file != req->file) 1604 ctx->poll_multi_queue = true; 1605 } 1606 1607 /* 1608 * For fast devices, IO may have already completed. If it has, add 1609 * it to the front so we find it first. 1610 */ 1611 if (READ_ONCE(req->iopoll_completed)) 1612 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1613 else 1614 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1615 1616 if (unlikely(needs_lock)) { 1617 /* 1618 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1619 * in sq thread task context or in io worker task context. If 1620 * current task context is sq thread, we don't need to check 1621 * whether should wake up sq thread. 1622 */ 1623 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1624 wq_has_sleeper(&ctx->sq_data->wait)) 1625 wake_up(&ctx->sq_data->wait); 1626 1627 mutex_unlock(&ctx->uring_lock); 1628 } 1629 } 1630 1631 io_req_flags_t io_file_get_flags(struct file *file) 1632 { 1633 io_req_flags_t res = 0; 1634 1635 if (S_ISREG(file_inode(file)->i_mode)) 1636 res |= REQ_F_ISREG; 1637 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1638 res |= REQ_F_SUPPORT_NOWAIT; 1639 return res; 1640 } 1641 1642 bool io_alloc_async_data(struct io_kiocb *req) 1643 { 1644 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1645 1646 WARN_ON_ONCE(!def->async_size); 1647 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 1648 if (req->async_data) { 1649 req->flags |= REQ_F_ASYNC_DATA; 1650 return false; 1651 } 1652 return true; 1653 } 1654 1655 static u32 io_get_sequence(struct io_kiocb *req) 1656 { 1657 u32 seq = req->ctx->cached_sq_head; 1658 struct io_kiocb *cur; 1659 1660 /* need original cached_sq_head, but it was increased for each req */ 1661 io_for_each_link(cur, req) 1662 seq--; 1663 return seq; 1664 } 1665 1666 static __cold void io_drain_req(struct io_kiocb *req) 1667 __must_hold(&ctx->uring_lock) 1668 { 1669 struct io_ring_ctx *ctx = req->ctx; 1670 struct io_defer_entry *de; 1671 int ret; 1672 u32 seq = io_get_sequence(req); 1673 1674 /* Still need defer if there is pending req in defer list. */ 1675 spin_lock(&ctx->completion_lock); 1676 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1677 spin_unlock(&ctx->completion_lock); 1678 queue: 1679 ctx->drain_active = false; 1680 io_req_task_queue(req); 1681 return; 1682 } 1683 spin_unlock(&ctx->completion_lock); 1684 1685 io_prep_async_link(req); 1686 de = kmalloc(sizeof(*de), GFP_KERNEL); 1687 if (!de) { 1688 ret = -ENOMEM; 1689 io_req_defer_failed(req, ret); 1690 return; 1691 } 1692 1693 spin_lock(&ctx->completion_lock); 1694 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1695 spin_unlock(&ctx->completion_lock); 1696 kfree(de); 1697 goto queue; 1698 } 1699 1700 trace_io_uring_defer(req); 1701 de->req = req; 1702 de->seq = seq; 1703 list_add_tail(&de->list, &ctx->defer_list); 1704 spin_unlock(&ctx->completion_lock); 1705 } 1706 1707 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1708 unsigned int issue_flags) 1709 { 1710 if (req->file || !def->needs_file) 1711 return true; 1712 1713 if (req->flags & REQ_F_FIXED_FILE) 1714 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1715 else 1716 req->file = io_file_get_normal(req, req->cqe.fd); 1717 1718 return !!req->file; 1719 } 1720 1721 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1722 { 1723 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1724 const struct cred *creds = NULL; 1725 int ret; 1726 1727 if (unlikely(!io_assign_file(req, def, issue_flags))) 1728 return -EBADF; 1729 1730 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1731 creds = override_creds(req->creds); 1732 1733 if (!def->audit_skip) 1734 audit_uring_entry(req->opcode); 1735 1736 ret = def->issue(req, issue_flags); 1737 1738 if (!def->audit_skip) 1739 audit_uring_exit(!ret, ret); 1740 1741 if (creds) 1742 revert_creds(creds); 1743 1744 if (ret == IOU_OK) { 1745 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1746 io_req_complete_defer(req); 1747 else 1748 io_req_complete_post(req, issue_flags); 1749 1750 return 0; 1751 } 1752 1753 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1754 ret = 0; 1755 io_arm_ltimeout(req); 1756 1757 /* If the op doesn't have a file, we're not polling for it */ 1758 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1759 io_iopoll_req_issued(req, issue_flags); 1760 } 1761 return ret; 1762 } 1763 1764 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1765 { 1766 io_tw_lock(req->ctx, ts); 1767 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1768 IO_URING_F_COMPLETE_DEFER); 1769 } 1770 1771 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1772 { 1773 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1774 struct io_kiocb *nxt = NULL; 1775 1776 if (req_ref_put_and_test(req)) { 1777 if (req->flags & IO_REQ_LINK_FLAGS) 1778 nxt = io_req_find_next(req); 1779 io_free_req(req); 1780 } 1781 return nxt ? &nxt->work : NULL; 1782 } 1783 1784 void io_wq_submit_work(struct io_wq_work *work) 1785 { 1786 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1787 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1788 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1789 bool needs_poll = false; 1790 int ret = 0, err = -ECANCELED; 1791 1792 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1793 if (!(req->flags & REQ_F_REFCOUNT)) 1794 __io_req_set_refcount(req, 2); 1795 else 1796 req_ref_get(req); 1797 1798 io_arm_ltimeout(req); 1799 1800 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1801 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1802 fail: 1803 io_req_task_queue_fail(req, err); 1804 return; 1805 } 1806 if (!io_assign_file(req, def, issue_flags)) { 1807 err = -EBADF; 1808 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1809 goto fail; 1810 } 1811 1812 /* 1813 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1814 * submitter task context. Final request completions are handed to the 1815 * right context, however this is not the case of auxiliary CQEs, 1816 * which is the main mean of operation for multishot requests. 1817 * Don't allow any multishot execution from io-wq. It's more restrictive 1818 * than necessary and also cleaner. 1819 */ 1820 if (req->flags & REQ_F_APOLL_MULTISHOT) { 1821 err = -EBADFD; 1822 if (!io_file_can_poll(req)) 1823 goto fail; 1824 if (req->file->f_flags & O_NONBLOCK || 1825 req->file->f_mode & FMODE_NOWAIT) { 1826 err = -ECANCELED; 1827 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1828 goto fail; 1829 return; 1830 } else { 1831 req->flags &= ~REQ_F_APOLL_MULTISHOT; 1832 } 1833 } 1834 1835 if (req->flags & REQ_F_FORCE_ASYNC) { 1836 bool opcode_poll = def->pollin || def->pollout; 1837 1838 if (opcode_poll && io_file_can_poll(req)) { 1839 needs_poll = true; 1840 issue_flags |= IO_URING_F_NONBLOCK; 1841 } 1842 } 1843 1844 do { 1845 ret = io_issue_sqe(req, issue_flags); 1846 if (ret != -EAGAIN) 1847 break; 1848 1849 /* 1850 * If REQ_F_NOWAIT is set, then don't wait or retry with 1851 * poll. -EAGAIN is final for that case. 1852 */ 1853 if (req->flags & REQ_F_NOWAIT) 1854 break; 1855 1856 /* 1857 * We can get EAGAIN for iopolled IO even though we're 1858 * forcing a sync submission from here, since we can't 1859 * wait for request slots on the block side. 1860 */ 1861 if (!needs_poll) { 1862 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1863 break; 1864 if (io_wq_worker_stopped()) 1865 break; 1866 cond_resched(); 1867 continue; 1868 } 1869 1870 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1871 return; 1872 /* aborted or ready, in either case retry blocking */ 1873 needs_poll = false; 1874 issue_flags &= ~IO_URING_F_NONBLOCK; 1875 } while (1); 1876 1877 /* avoid locking problems by failing it from a clean context */ 1878 if (ret) 1879 io_req_task_queue_fail(req, ret); 1880 } 1881 1882 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1883 unsigned int issue_flags) 1884 { 1885 struct io_ring_ctx *ctx = req->ctx; 1886 struct io_rsrc_node *node; 1887 struct file *file = NULL; 1888 1889 io_ring_submit_lock(ctx, issue_flags); 1890 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1891 if (node) { 1892 io_req_assign_rsrc_node(&req->file_node, node); 1893 req->flags |= io_slot_flags(node); 1894 file = io_slot_file(node); 1895 } 1896 io_ring_submit_unlock(ctx, issue_flags); 1897 return file; 1898 } 1899 1900 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1901 { 1902 struct file *file = fget(fd); 1903 1904 trace_io_uring_file_get(req, fd); 1905 1906 /* we don't allow fixed io_uring files */ 1907 if (file && io_is_uring_fops(file)) 1908 io_req_track_inflight(req); 1909 return file; 1910 } 1911 1912 static void io_queue_async(struct io_kiocb *req, int ret) 1913 __must_hold(&req->ctx->uring_lock) 1914 { 1915 struct io_kiocb *linked_timeout; 1916 1917 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1918 io_req_defer_failed(req, ret); 1919 return; 1920 } 1921 1922 linked_timeout = io_prep_linked_timeout(req); 1923 1924 switch (io_arm_poll_handler(req, 0)) { 1925 case IO_APOLL_READY: 1926 io_kbuf_recycle(req, 0); 1927 io_req_task_queue(req); 1928 break; 1929 case IO_APOLL_ABORTED: 1930 io_kbuf_recycle(req, 0); 1931 io_queue_iowq(req); 1932 break; 1933 case IO_APOLL_OK: 1934 break; 1935 } 1936 1937 if (linked_timeout) 1938 io_queue_linked_timeout(linked_timeout); 1939 } 1940 1941 static inline void io_queue_sqe(struct io_kiocb *req) 1942 __must_hold(&req->ctx->uring_lock) 1943 { 1944 int ret; 1945 1946 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1947 1948 /* 1949 * We async punt it if the file wasn't marked NOWAIT, or if the file 1950 * doesn't support non-blocking read/write attempts 1951 */ 1952 if (unlikely(ret)) 1953 io_queue_async(req, ret); 1954 } 1955 1956 static void io_queue_sqe_fallback(struct io_kiocb *req) 1957 __must_hold(&req->ctx->uring_lock) 1958 { 1959 if (unlikely(req->flags & REQ_F_FAIL)) { 1960 /* 1961 * We don't submit, fail them all, for that replace hardlinks 1962 * with normal links. Extra REQ_F_LINK is tolerated. 1963 */ 1964 req->flags &= ~REQ_F_HARDLINK; 1965 req->flags |= REQ_F_LINK; 1966 io_req_defer_failed(req, req->cqe.res); 1967 } else { 1968 if (unlikely(req->ctx->drain_active)) 1969 io_drain_req(req); 1970 else 1971 io_queue_iowq(req); 1972 } 1973 } 1974 1975 /* 1976 * Check SQE restrictions (opcode and flags). 1977 * 1978 * Returns 'true' if SQE is allowed, 'false' otherwise. 1979 */ 1980 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1981 struct io_kiocb *req, 1982 unsigned int sqe_flags) 1983 { 1984 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1985 return false; 1986 1987 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1988 ctx->restrictions.sqe_flags_required) 1989 return false; 1990 1991 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1992 ctx->restrictions.sqe_flags_required)) 1993 return false; 1994 1995 return true; 1996 } 1997 1998 static void io_init_req_drain(struct io_kiocb *req) 1999 { 2000 struct io_ring_ctx *ctx = req->ctx; 2001 struct io_kiocb *head = ctx->submit_state.link.head; 2002 2003 ctx->drain_active = true; 2004 if (head) { 2005 /* 2006 * If we need to drain a request in the middle of a link, drain 2007 * the head request and the next request/link after the current 2008 * link. Considering sequential execution of links, 2009 * REQ_F_IO_DRAIN will be maintained for every request of our 2010 * link. 2011 */ 2012 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2013 ctx->drain_next = true; 2014 } 2015 } 2016 2017 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2018 { 2019 /* ensure per-opcode data is cleared if we fail before prep */ 2020 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2021 return err; 2022 } 2023 2024 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2025 const struct io_uring_sqe *sqe) 2026 __must_hold(&ctx->uring_lock) 2027 { 2028 const struct io_issue_def *def; 2029 unsigned int sqe_flags; 2030 int personality; 2031 u8 opcode; 2032 2033 /* req is partially pre-initialised, see io_preinit_req() */ 2034 req->opcode = opcode = READ_ONCE(sqe->opcode); 2035 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2036 sqe_flags = READ_ONCE(sqe->flags); 2037 req->flags = (__force io_req_flags_t) sqe_flags; 2038 req->cqe.user_data = READ_ONCE(sqe->user_data); 2039 req->file = NULL; 2040 req->tctx = current->io_uring; 2041 req->cancel_seq_set = false; 2042 2043 if (unlikely(opcode >= IORING_OP_LAST)) { 2044 req->opcode = 0; 2045 return io_init_fail_req(req, -EINVAL); 2046 } 2047 def = &io_issue_defs[opcode]; 2048 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2049 /* enforce forwards compatibility on users */ 2050 if (sqe_flags & ~SQE_VALID_FLAGS) 2051 return io_init_fail_req(req, -EINVAL); 2052 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2053 if (!def->buffer_select) 2054 return io_init_fail_req(req, -EOPNOTSUPP); 2055 req->buf_index = READ_ONCE(sqe->buf_group); 2056 } 2057 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2058 ctx->drain_disabled = true; 2059 if (sqe_flags & IOSQE_IO_DRAIN) { 2060 if (ctx->drain_disabled) 2061 return io_init_fail_req(req, -EOPNOTSUPP); 2062 io_init_req_drain(req); 2063 } 2064 } 2065 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2066 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2067 return io_init_fail_req(req, -EACCES); 2068 /* knock it to the slow queue path, will be drained there */ 2069 if (ctx->drain_active) 2070 req->flags |= REQ_F_FORCE_ASYNC; 2071 /* if there is no link, we're at "next" request and need to drain */ 2072 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2073 ctx->drain_next = false; 2074 ctx->drain_active = true; 2075 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2076 } 2077 } 2078 2079 if (!def->ioprio && sqe->ioprio) 2080 return io_init_fail_req(req, -EINVAL); 2081 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2082 return io_init_fail_req(req, -EINVAL); 2083 2084 if (def->needs_file) { 2085 struct io_submit_state *state = &ctx->submit_state; 2086 2087 req->cqe.fd = READ_ONCE(sqe->fd); 2088 2089 /* 2090 * Plug now if we have more than 2 IO left after this, and the 2091 * target is potentially a read/write to block based storage. 2092 */ 2093 if (state->need_plug && def->plug) { 2094 state->plug_started = true; 2095 state->need_plug = false; 2096 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2097 } 2098 } 2099 2100 personality = READ_ONCE(sqe->personality); 2101 if (personality) { 2102 int ret; 2103 2104 req->creds = xa_load(&ctx->personalities, personality); 2105 if (!req->creds) 2106 return io_init_fail_req(req, -EINVAL); 2107 get_cred(req->creds); 2108 ret = security_uring_override_creds(req->creds); 2109 if (ret) { 2110 put_cred(req->creds); 2111 return io_init_fail_req(req, ret); 2112 } 2113 req->flags |= REQ_F_CREDS; 2114 } 2115 2116 return def->prep(req, sqe); 2117 } 2118 2119 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2120 struct io_kiocb *req, int ret) 2121 { 2122 struct io_ring_ctx *ctx = req->ctx; 2123 struct io_submit_link *link = &ctx->submit_state.link; 2124 struct io_kiocb *head = link->head; 2125 2126 trace_io_uring_req_failed(sqe, req, ret); 2127 2128 /* 2129 * Avoid breaking links in the middle as it renders links with SQPOLL 2130 * unusable. Instead of failing eagerly, continue assembling the link if 2131 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2132 * should find the flag and handle the rest. 2133 */ 2134 req_fail_link_node(req, ret); 2135 if (head && !(head->flags & REQ_F_FAIL)) 2136 req_fail_link_node(head, -ECANCELED); 2137 2138 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2139 if (head) { 2140 link->last->link = req; 2141 link->head = NULL; 2142 req = head; 2143 } 2144 io_queue_sqe_fallback(req); 2145 return ret; 2146 } 2147 2148 if (head) 2149 link->last->link = req; 2150 else 2151 link->head = req; 2152 link->last = req; 2153 return 0; 2154 } 2155 2156 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2157 const struct io_uring_sqe *sqe) 2158 __must_hold(&ctx->uring_lock) 2159 { 2160 struct io_submit_link *link = &ctx->submit_state.link; 2161 int ret; 2162 2163 ret = io_init_req(ctx, req, sqe); 2164 if (unlikely(ret)) 2165 return io_submit_fail_init(sqe, req, ret); 2166 2167 trace_io_uring_submit_req(req); 2168 2169 /* 2170 * If we already have a head request, queue this one for async 2171 * submittal once the head completes. If we don't have a head but 2172 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2173 * submitted sync once the chain is complete. If none of those 2174 * conditions are true (normal request), then just queue it. 2175 */ 2176 if (unlikely(link->head)) { 2177 trace_io_uring_link(req, link->last); 2178 link->last->link = req; 2179 link->last = req; 2180 2181 if (req->flags & IO_REQ_LINK_FLAGS) 2182 return 0; 2183 /* last request of the link, flush it */ 2184 req = link->head; 2185 link->head = NULL; 2186 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2187 goto fallback; 2188 2189 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2190 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2191 if (req->flags & IO_REQ_LINK_FLAGS) { 2192 link->head = req; 2193 link->last = req; 2194 } else { 2195 fallback: 2196 io_queue_sqe_fallback(req); 2197 } 2198 return 0; 2199 } 2200 2201 io_queue_sqe(req); 2202 return 0; 2203 } 2204 2205 /* 2206 * Batched submission is done, ensure local IO is flushed out. 2207 */ 2208 static void io_submit_state_end(struct io_ring_ctx *ctx) 2209 { 2210 struct io_submit_state *state = &ctx->submit_state; 2211 2212 if (unlikely(state->link.head)) 2213 io_queue_sqe_fallback(state->link.head); 2214 /* flush only after queuing links as they can generate completions */ 2215 io_submit_flush_completions(ctx); 2216 if (state->plug_started) 2217 blk_finish_plug(&state->plug); 2218 } 2219 2220 /* 2221 * Start submission side cache. 2222 */ 2223 static void io_submit_state_start(struct io_submit_state *state, 2224 unsigned int max_ios) 2225 { 2226 state->plug_started = false; 2227 state->need_plug = max_ios > 2; 2228 state->submit_nr = max_ios; 2229 /* set only head, no need to init link_last in advance */ 2230 state->link.head = NULL; 2231 } 2232 2233 static void io_commit_sqring(struct io_ring_ctx *ctx) 2234 { 2235 struct io_rings *rings = ctx->rings; 2236 2237 /* 2238 * Ensure any loads from the SQEs are done at this point, 2239 * since once we write the new head, the application could 2240 * write new data to them. 2241 */ 2242 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2243 } 2244 2245 /* 2246 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2247 * that is mapped by userspace. This means that care needs to be taken to 2248 * ensure that reads are stable, as we cannot rely on userspace always 2249 * being a good citizen. If members of the sqe are validated and then later 2250 * used, it's important that those reads are done through READ_ONCE() to 2251 * prevent a re-load down the line. 2252 */ 2253 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2254 { 2255 unsigned mask = ctx->sq_entries - 1; 2256 unsigned head = ctx->cached_sq_head++ & mask; 2257 2258 if (static_branch_unlikely(&io_key_has_sqarray) && 2259 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2260 head = READ_ONCE(ctx->sq_array[head]); 2261 if (unlikely(head >= ctx->sq_entries)) { 2262 /* drop invalid entries */ 2263 spin_lock(&ctx->completion_lock); 2264 ctx->cq_extra--; 2265 spin_unlock(&ctx->completion_lock); 2266 WRITE_ONCE(ctx->rings->sq_dropped, 2267 READ_ONCE(ctx->rings->sq_dropped) + 1); 2268 return false; 2269 } 2270 head = array_index_nospec(head, ctx->sq_entries); 2271 } 2272 2273 /* 2274 * The cached sq head (or cq tail) serves two purposes: 2275 * 2276 * 1) allows us to batch the cost of updating the user visible 2277 * head updates. 2278 * 2) allows the kernel side to track the head on its own, even 2279 * though the application is the one updating it. 2280 */ 2281 2282 /* double index for 128-byte SQEs, twice as long */ 2283 if (ctx->flags & IORING_SETUP_SQE128) 2284 head <<= 1; 2285 *sqe = &ctx->sq_sqes[head]; 2286 return true; 2287 } 2288 2289 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2290 __must_hold(&ctx->uring_lock) 2291 { 2292 unsigned int entries = io_sqring_entries(ctx); 2293 unsigned int left; 2294 int ret; 2295 2296 if (unlikely(!entries)) 2297 return 0; 2298 /* make sure SQ entry isn't read before tail */ 2299 ret = left = min(nr, entries); 2300 io_get_task_refs(left); 2301 io_submit_state_start(&ctx->submit_state, left); 2302 2303 do { 2304 const struct io_uring_sqe *sqe; 2305 struct io_kiocb *req; 2306 2307 if (unlikely(!io_alloc_req(ctx, &req))) 2308 break; 2309 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2310 io_req_add_to_cache(req, ctx); 2311 break; 2312 } 2313 2314 /* 2315 * Continue submitting even for sqe failure if the 2316 * ring was setup with IORING_SETUP_SUBMIT_ALL 2317 */ 2318 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2319 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2320 left--; 2321 break; 2322 } 2323 } while (--left); 2324 2325 if (unlikely(left)) { 2326 ret -= left; 2327 /* try again if it submitted nothing and can't allocate a req */ 2328 if (!ret && io_req_cache_empty(ctx)) 2329 ret = -EAGAIN; 2330 current->io_uring->cached_refs += left; 2331 } 2332 2333 io_submit_state_end(ctx); 2334 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2335 io_commit_sqring(ctx); 2336 return ret; 2337 } 2338 2339 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2340 int wake_flags, void *key) 2341 { 2342 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2343 2344 /* 2345 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2346 * the task, and the next invocation will do it. 2347 */ 2348 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2349 return autoremove_wake_function(curr, mode, wake_flags, key); 2350 return -1; 2351 } 2352 2353 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2354 { 2355 if (io_local_work_pending(ctx)) { 2356 __set_current_state(TASK_RUNNING); 2357 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2358 return 0; 2359 } 2360 if (io_run_task_work() > 0) 2361 return 0; 2362 if (task_sigpending(current)) 2363 return -EINTR; 2364 return 0; 2365 } 2366 2367 static bool current_pending_io(void) 2368 { 2369 struct io_uring_task *tctx = current->io_uring; 2370 2371 if (!tctx) 2372 return false; 2373 return percpu_counter_read_positive(&tctx->inflight); 2374 } 2375 2376 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2377 { 2378 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2379 2380 WRITE_ONCE(iowq->hit_timeout, 1); 2381 iowq->min_timeout = 0; 2382 wake_up_process(iowq->wq.private); 2383 return HRTIMER_NORESTART; 2384 } 2385 2386 /* 2387 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2388 * wake up. If not, and we have a normal timeout, switch to that and keep 2389 * sleeping. 2390 */ 2391 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2392 { 2393 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2394 struct io_ring_ctx *ctx = iowq->ctx; 2395 2396 /* no general timeout, or shorter (or equal), we are done */ 2397 if (iowq->timeout == KTIME_MAX || 2398 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2399 goto out_wake; 2400 /* work we may need to run, wake function will see if we need to wake */ 2401 if (io_has_work(ctx)) 2402 goto out_wake; 2403 /* got events since we started waiting, min timeout is done */ 2404 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2405 goto out_wake; 2406 /* if we have any events and min timeout expired, we're done */ 2407 if (io_cqring_events(ctx)) 2408 goto out_wake; 2409 2410 /* 2411 * If using deferred task_work running and application is waiting on 2412 * more than one request, ensure we reset it now where we are switching 2413 * to normal sleeps. Any request completion post min_wait should wake 2414 * the task and return. 2415 */ 2416 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2417 atomic_set(&ctx->cq_wait_nr, 1); 2418 smp_mb(); 2419 if (!llist_empty(&ctx->work_llist)) 2420 goto out_wake; 2421 } 2422 2423 iowq->t.function = io_cqring_timer_wakeup; 2424 hrtimer_set_expires(timer, iowq->timeout); 2425 return HRTIMER_RESTART; 2426 out_wake: 2427 return io_cqring_timer_wakeup(timer); 2428 } 2429 2430 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2431 clockid_t clock_id, ktime_t start_time) 2432 { 2433 ktime_t timeout; 2434 2435 if (iowq->min_timeout) { 2436 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2437 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2438 HRTIMER_MODE_ABS); 2439 } else { 2440 timeout = iowq->timeout; 2441 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2442 HRTIMER_MODE_ABS); 2443 } 2444 2445 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2446 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2447 2448 if (!READ_ONCE(iowq->hit_timeout)) 2449 schedule(); 2450 2451 hrtimer_cancel(&iowq->t); 2452 destroy_hrtimer_on_stack(&iowq->t); 2453 __set_current_state(TASK_RUNNING); 2454 2455 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2456 } 2457 2458 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2459 struct io_wait_queue *iowq, 2460 ktime_t start_time) 2461 { 2462 int ret = 0; 2463 2464 /* 2465 * Mark us as being in io_wait if we have pending requests, so cpufreq 2466 * can take into account that the task is waiting for IO - turns out 2467 * to be important for low QD IO. 2468 */ 2469 if (current_pending_io()) 2470 current->in_iowait = 1; 2471 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2472 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2473 else 2474 schedule(); 2475 current->in_iowait = 0; 2476 return ret; 2477 } 2478 2479 /* If this returns > 0, the caller should retry */ 2480 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2481 struct io_wait_queue *iowq, 2482 ktime_t start_time) 2483 { 2484 if (unlikely(READ_ONCE(ctx->check_cq))) 2485 return 1; 2486 if (unlikely(io_local_work_pending(ctx))) 2487 return 1; 2488 if (unlikely(task_work_pending(current))) 2489 return 1; 2490 if (unlikely(task_sigpending(current))) 2491 return -EINTR; 2492 if (unlikely(io_should_wake(iowq))) 2493 return 0; 2494 2495 return __io_cqring_wait_schedule(ctx, iowq, start_time); 2496 } 2497 2498 struct ext_arg { 2499 size_t argsz; 2500 struct timespec64 ts; 2501 const sigset_t __user *sig; 2502 ktime_t min_time; 2503 bool ts_set; 2504 }; 2505 2506 /* 2507 * Wait until events become available, if we don't already have some. The 2508 * application must reap them itself, as they reside on the shared cq ring. 2509 */ 2510 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2511 struct ext_arg *ext_arg) 2512 { 2513 struct io_wait_queue iowq; 2514 struct io_rings *rings = ctx->rings; 2515 ktime_t start_time; 2516 int ret; 2517 2518 if (!io_allowed_run_tw(ctx)) 2519 return -EEXIST; 2520 if (io_local_work_pending(ctx)) 2521 io_run_local_work(ctx, min_events, 2522 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2523 io_run_task_work(); 2524 2525 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2526 io_cqring_do_overflow_flush(ctx); 2527 if (__io_cqring_events_user(ctx) >= min_events) 2528 return 0; 2529 2530 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2531 iowq.wq.private = current; 2532 INIT_LIST_HEAD(&iowq.wq.entry); 2533 iowq.ctx = ctx; 2534 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2535 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2536 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2537 iowq.hit_timeout = 0; 2538 iowq.min_timeout = ext_arg->min_time; 2539 iowq.timeout = KTIME_MAX; 2540 start_time = io_get_time(ctx); 2541 2542 if (ext_arg->ts_set) { 2543 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2544 if (!(flags & IORING_ENTER_ABS_TIMER)) 2545 iowq.timeout = ktime_add(iowq.timeout, start_time); 2546 } 2547 2548 if (ext_arg->sig) { 2549 #ifdef CONFIG_COMPAT 2550 if (in_compat_syscall()) 2551 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2552 ext_arg->argsz); 2553 else 2554 #endif 2555 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2556 2557 if (ret) 2558 return ret; 2559 } 2560 2561 io_napi_busy_loop(ctx, &iowq); 2562 2563 trace_io_uring_cqring_wait(ctx, min_events); 2564 do { 2565 unsigned long check_cq; 2566 int nr_wait; 2567 2568 /* if min timeout has been hit, don't reset wait count */ 2569 if (!iowq.hit_timeout) 2570 nr_wait = (int) iowq.cq_tail - 2571 READ_ONCE(ctx->rings->cq.tail); 2572 else 2573 nr_wait = 1; 2574 2575 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2576 atomic_set(&ctx->cq_wait_nr, nr_wait); 2577 set_current_state(TASK_INTERRUPTIBLE); 2578 } else { 2579 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2580 TASK_INTERRUPTIBLE); 2581 } 2582 2583 ret = io_cqring_wait_schedule(ctx, &iowq, start_time); 2584 __set_current_state(TASK_RUNNING); 2585 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2586 2587 /* 2588 * Run task_work after scheduling and before io_should_wake(). 2589 * If we got woken because of task_work being processed, run it 2590 * now rather than let the caller do another wait loop. 2591 */ 2592 if (io_local_work_pending(ctx)) 2593 io_run_local_work(ctx, nr_wait, nr_wait); 2594 io_run_task_work(); 2595 2596 /* 2597 * Non-local task_work will be run on exit to userspace, but 2598 * if we're using DEFER_TASKRUN, then we could have waited 2599 * with a timeout for a number of requests. If the timeout 2600 * hits, we could have some requests ready to process. Ensure 2601 * this break is _after_ we have run task_work, to avoid 2602 * deferring running potentially pending requests until the 2603 * next time we wait for events. 2604 */ 2605 if (ret < 0) 2606 break; 2607 2608 check_cq = READ_ONCE(ctx->check_cq); 2609 if (unlikely(check_cq)) { 2610 /* let the caller flush overflows, retry */ 2611 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2612 io_cqring_do_overflow_flush(ctx); 2613 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2614 ret = -EBADR; 2615 break; 2616 } 2617 } 2618 2619 if (io_should_wake(&iowq)) { 2620 ret = 0; 2621 break; 2622 } 2623 cond_resched(); 2624 } while (1); 2625 2626 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2627 finish_wait(&ctx->cq_wait, &iowq.wq); 2628 restore_saved_sigmask_unless(ret == -EINTR); 2629 2630 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2631 } 2632 2633 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2634 size_t size) 2635 { 2636 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2637 size); 2638 } 2639 2640 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2641 size_t size) 2642 { 2643 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2644 size); 2645 } 2646 2647 static void io_rings_free(struct io_ring_ctx *ctx) 2648 { 2649 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2650 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages, 2651 true); 2652 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages, 2653 true); 2654 } else { 2655 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2656 ctx->n_ring_pages = 0; 2657 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2658 ctx->n_sqe_pages = 0; 2659 vunmap(ctx->rings); 2660 vunmap(ctx->sq_sqes); 2661 } 2662 2663 ctx->rings = NULL; 2664 ctx->sq_sqes = NULL; 2665 } 2666 2667 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2668 unsigned int cq_entries, size_t *sq_offset) 2669 { 2670 struct io_rings *rings; 2671 size_t off, sq_array_size; 2672 2673 off = struct_size(rings, cqes, cq_entries); 2674 if (off == SIZE_MAX) 2675 return SIZE_MAX; 2676 if (flags & IORING_SETUP_CQE32) { 2677 if (check_shl_overflow(off, 1, &off)) 2678 return SIZE_MAX; 2679 } 2680 2681 #ifdef CONFIG_SMP 2682 off = ALIGN(off, SMP_CACHE_BYTES); 2683 if (off == 0) 2684 return SIZE_MAX; 2685 #endif 2686 2687 if (flags & IORING_SETUP_NO_SQARRAY) { 2688 *sq_offset = SIZE_MAX; 2689 return off; 2690 } 2691 2692 *sq_offset = off; 2693 2694 sq_array_size = array_size(sizeof(u32), sq_entries); 2695 if (sq_array_size == SIZE_MAX) 2696 return SIZE_MAX; 2697 2698 if (check_add_overflow(off, sq_array_size, &off)) 2699 return SIZE_MAX; 2700 2701 return off; 2702 } 2703 2704 static void io_req_caches_free(struct io_ring_ctx *ctx) 2705 { 2706 struct io_kiocb *req; 2707 int nr = 0; 2708 2709 mutex_lock(&ctx->uring_lock); 2710 2711 while (!io_req_cache_empty(ctx)) { 2712 req = io_extract_req(ctx); 2713 kmem_cache_free(req_cachep, req); 2714 nr++; 2715 } 2716 if (nr) 2717 percpu_ref_put_many(&ctx->refs, nr); 2718 mutex_unlock(&ctx->uring_lock); 2719 } 2720 2721 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2722 { 2723 io_sq_thread_finish(ctx); 2724 2725 mutex_lock(&ctx->uring_lock); 2726 io_sqe_buffers_unregister(ctx); 2727 io_sqe_files_unregister(ctx); 2728 io_cqring_overflow_kill(ctx); 2729 io_eventfd_unregister(ctx); 2730 io_alloc_cache_free(&ctx->apoll_cache, kfree); 2731 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2732 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 2733 io_alloc_cache_free(&ctx->uring_cache, kfree); 2734 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 2735 io_futex_cache_free(ctx); 2736 io_destroy_buffers(ctx); 2737 io_free_region(ctx, &ctx->param_region); 2738 mutex_unlock(&ctx->uring_lock); 2739 if (ctx->sq_creds) 2740 put_cred(ctx->sq_creds); 2741 if (ctx->submitter_task) 2742 put_task_struct(ctx->submitter_task); 2743 2744 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2745 2746 if (ctx->mm_account) { 2747 mmdrop(ctx->mm_account); 2748 ctx->mm_account = NULL; 2749 } 2750 io_rings_free(ctx); 2751 2752 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2753 static_branch_dec(&io_key_has_sqarray); 2754 2755 percpu_ref_exit(&ctx->refs); 2756 free_uid(ctx->user); 2757 io_req_caches_free(ctx); 2758 if (ctx->hash_map) 2759 io_wq_put_hash(ctx->hash_map); 2760 io_napi_free(ctx); 2761 kvfree(ctx->cancel_table.hbs); 2762 xa_destroy(&ctx->io_bl_xa); 2763 kfree(ctx); 2764 } 2765 2766 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2767 { 2768 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2769 poll_wq_task_work); 2770 2771 mutex_lock(&ctx->uring_lock); 2772 ctx->poll_activated = true; 2773 mutex_unlock(&ctx->uring_lock); 2774 2775 /* 2776 * Wake ups for some events between start of polling and activation 2777 * might've been lost due to loose synchronisation. 2778 */ 2779 wake_up_all(&ctx->poll_wq); 2780 percpu_ref_put(&ctx->refs); 2781 } 2782 2783 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2784 { 2785 spin_lock(&ctx->completion_lock); 2786 /* already activated or in progress */ 2787 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2788 goto out; 2789 if (WARN_ON_ONCE(!ctx->task_complete)) 2790 goto out; 2791 if (!ctx->submitter_task) 2792 goto out; 2793 /* 2794 * with ->submitter_task only the submitter task completes requests, we 2795 * only need to sync with it, which is done by injecting a tw 2796 */ 2797 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2798 percpu_ref_get(&ctx->refs); 2799 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2800 percpu_ref_put(&ctx->refs); 2801 out: 2802 spin_unlock(&ctx->completion_lock); 2803 } 2804 2805 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2806 { 2807 struct io_ring_ctx *ctx = file->private_data; 2808 __poll_t mask = 0; 2809 2810 if (unlikely(!ctx->poll_activated)) 2811 io_activate_pollwq(ctx); 2812 2813 poll_wait(file, &ctx->poll_wq, wait); 2814 /* 2815 * synchronizes with barrier from wq_has_sleeper call in 2816 * io_commit_cqring 2817 */ 2818 smp_rmb(); 2819 if (!io_sqring_full(ctx)) 2820 mask |= EPOLLOUT | EPOLLWRNORM; 2821 2822 /* 2823 * Don't flush cqring overflow list here, just do a simple check. 2824 * Otherwise there could possible be ABBA deadlock: 2825 * CPU0 CPU1 2826 * ---- ---- 2827 * lock(&ctx->uring_lock); 2828 * lock(&ep->mtx); 2829 * lock(&ctx->uring_lock); 2830 * lock(&ep->mtx); 2831 * 2832 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2833 * pushes them to do the flush. 2834 */ 2835 2836 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2837 mask |= EPOLLIN | EPOLLRDNORM; 2838 2839 return mask; 2840 } 2841 2842 struct io_tctx_exit { 2843 struct callback_head task_work; 2844 struct completion completion; 2845 struct io_ring_ctx *ctx; 2846 }; 2847 2848 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2849 { 2850 struct io_uring_task *tctx = current->io_uring; 2851 struct io_tctx_exit *work; 2852 2853 work = container_of(cb, struct io_tctx_exit, task_work); 2854 /* 2855 * When @in_cancel, we're in cancellation and it's racy to remove the 2856 * node. It'll be removed by the end of cancellation, just ignore it. 2857 * tctx can be NULL if the queueing of this task_work raced with 2858 * work cancelation off the exec path. 2859 */ 2860 if (tctx && !atomic_read(&tctx->in_cancel)) 2861 io_uring_del_tctx_node((unsigned long)work->ctx); 2862 complete(&work->completion); 2863 } 2864 2865 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2866 { 2867 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2868 2869 return req->ctx == data; 2870 } 2871 2872 static __cold void io_ring_exit_work(struct work_struct *work) 2873 { 2874 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2875 unsigned long timeout = jiffies + HZ * 60 * 5; 2876 unsigned long interval = HZ / 20; 2877 struct io_tctx_exit exit; 2878 struct io_tctx_node *node; 2879 int ret; 2880 2881 /* 2882 * If we're doing polled IO and end up having requests being 2883 * submitted async (out-of-line), then completions can come in while 2884 * we're waiting for refs to drop. We need to reap these manually, 2885 * as nobody else will be looking for them. 2886 */ 2887 do { 2888 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2889 mutex_lock(&ctx->uring_lock); 2890 io_cqring_overflow_kill(ctx); 2891 mutex_unlock(&ctx->uring_lock); 2892 } 2893 2894 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2895 io_move_task_work_from_local(ctx); 2896 2897 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2898 cond_resched(); 2899 2900 if (ctx->sq_data) { 2901 struct io_sq_data *sqd = ctx->sq_data; 2902 struct task_struct *tsk; 2903 2904 io_sq_thread_park(sqd); 2905 tsk = sqd->thread; 2906 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2907 io_wq_cancel_cb(tsk->io_uring->io_wq, 2908 io_cancel_ctx_cb, ctx, true); 2909 io_sq_thread_unpark(sqd); 2910 } 2911 2912 io_req_caches_free(ctx); 2913 2914 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2915 /* there is little hope left, don't run it too often */ 2916 interval = HZ * 60; 2917 } 2918 /* 2919 * This is really an uninterruptible wait, as it has to be 2920 * complete. But it's also run from a kworker, which doesn't 2921 * take signals, so it's fine to make it interruptible. This 2922 * avoids scenarios where we knowingly can wait much longer 2923 * on completions, for example if someone does a SIGSTOP on 2924 * a task that needs to finish task_work to make this loop 2925 * complete. That's a synthetic situation that should not 2926 * cause a stuck task backtrace, and hence a potential panic 2927 * on stuck tasks if that is enabled. 2928 */ 2929 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2930 2931 init_completion(&exit.completion); 2932 init_task_work(&exit.task_work, io_tctx_exit_cb); 2933 exit.ctx = ctx; 2934 2935 mutex_lock(&ctx->uring_lock); 2936 while (!list_empty(&ctx->tctx_list)) { 2937 WARN_ON_ONCE(time_after(jiffies, timeout)); 2938 2939 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2940 ctx_node); 2941 /* don't spin on a single task if cancellation failed */ 2942 list_rotate_left(&ctx->tctx_list); 2943 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2944 if (WARN_ON_ONCE(ret)) 2945 continue; 2946 2947 mutex_unlock(&ctx->uring_lock); 2948 /* 2949 * See comment above for 2950 * wait_for_completion_interruptible_timeout() on why this 2951 * wait is marked as interruptible. 2952 */ 2953 wait_for_completion_interruptible(&exit.completion); 2954 mutex_lock(&ctx->uring_lock); 2955 } 2956 mutex_unlock(&ctx->uring_lock); 2957 spin_lock(&ctx->completion_lock); 2958 spin_unlock(&ctx->completion_lock); 2959 2960 /* pairs with RCU read section in io_req_local_work_add() */ 2961 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2962 synchronize_rcu(); 2963 2964 io_ring_ctx_free(ctx); 2965 } 2966 2967 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2968 { 2969 unsigned long index; 2970 struct creds *creds; 2971 2972 mutex_lock(&ctx->uring_lock); 2973 percpu_ref_kill(&ctx->refs); 2974 xa_for_each(&ctx->personalities, index, creds) 2975 io_unregister_personality(ctx, index); 2976 mutex_unlock(&ctx->uring_lock); 2977 2978 flush_delayed_work(&ctx->fallback_work); 2979 2980 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2981 /* 2982 * Use system_unbound_wq to avoid spawning tons of event kworkers 2983 * if we're exiting a ton of rings at the same time. It just adds 2984 * noise and overhead, there's no discernable change in runtime 2985 * over using system_wq. 2986 */ 2987 queue_work(iou_wq, &ctx->exit_work); 2988 } 2989 2990 static int io_uring_release(struct inode *inode, struct file *file) 2991 { 2992 struct io_ring_ctx *ctx = file->private_data; 2993 2994 file->private_data = NULL; 2995 io_ring_ctx_wait_and_kill(ctx); 2996 return 0; 2997 } 2998 2999 struct io_task_cancel { 3000 struct io_uring_task *tctx; 3001 bool all; 3002 }; 3003 3004 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3005 { 3006 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3007 struct io_task_cancel *cancel = data; 3008 3009 return io_match_task_safe(req, cancel->tctx, cancel->all); 3010 } 3011 3012 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3013 struct io_uring_task *tctx, 3014 bool cancel_all) 3015 { 3016 struct io_defer_entry *de; 3017 LIST_HEAD(list); 3018 3019 spin_lock(&ctx->completion_lock); 3020 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3021 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3022 list_cut_position(&list, &ctx->defer_list, &de->list); 3023 break; 3024 } 3025 } 3026 spin_unlock(&ctx->completion_lock); 3027 if (list_empty(&list)) 3028 return false; 3029 3030 while (!list_empty(&list)) { 3031 de = list_first_entry(&list, struct io_defer_entry, list); 3032 list_del_init(&de->list); 3033 io_req_task_queue_fail(de->req, -ECANCELED); 3034 kfree(de); 3035 } 3036 return true; 3037 } 3038 3039 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3040 { 3041 struct io_tctx_node *node; 3042 enum io_wq_cancel cret; 3043 bool ret = false; 3044 3045 mutex_lock(&ctx->uring_lock); 3046 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3047 struct io_uring_task *tctx = node->task->io_uring; 3048 3049 /* 3050 * io_wq will stay alive while we hold uring_lock, because it's 3051 * killed after ctx nodes, which requires to take the lock. 3052 */ 3053 if (!tctx || !tctx->io_wq) 3054 continue; 3055 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3056 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3057 } 3058 mutex_unlock(&ctx->uring_lock); 3059 3060 return ret; 3061 } 3062 3063 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3064 struct io_uring_task *tctx, 3065 bool cancel_all) 3066 { 3067 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3068 enum io_wq_cancel cret; 3069 bool ret = false; 3070 3071 /* set it so io_req_local_work_add() would wake us up */ 3072 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3073 atomic_set(&ctx->cq_wait_nr, 1); 3074 smp_mb(); 3075 } 3076 3077 /* failed during ring init, it couldn't have issued any requests */ 3078 if (!ctx->rings) 3079 return false; 3080 3081 if (!tctx) { 3082 ret |= io_uring_try_cancel_iowq(ctx); 3083 } else if (tctx->io_wq) { 3084 /* 3085 * Cancels requests of all rings, not only @ctx, but 3086 * it's fine as the task is in exit/exec. 3087 */ 3088 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3089 &cancel, true); 3090 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3091 } 3092 3093 /* SQPOLL thread does its own polling */ 3094 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3095 (ctx->sq_data && ctx->sq_data->thread == current)) { 3096 while (!wq_list_empty(&ctx->iopoll_list)) { 3097 io_iopoll_try_reap_events(ctx); 3098 ret = true; 3099 cond_resched(); 3100 } 3101 } 3102 3103 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3104 io_allowed_defer_tw_run(ctx)) 3105 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3106 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3107 mutex_lock(&ctx->uring_lock); 3108 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3109 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3110 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3111 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3112 mutex_unlock(&ctx->uring_lock); 3113 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3114 if (tctx) 3115 ret |= io_run_task_work() > 0; 3116 else 3117 ret |= flush_delayed_work(&ctx->fallback_work); 3118 return ret; 3119 } 3120 3121 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3122 { 3123 if (tracked) 3124 return atomic_read(&tctx->inflight_tracked); 3125 return percpu_counter_sum(&tctx->inflight); 3126 } 3127 3128 /* 3129 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3130 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3131 */ 3132 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3133 { 3134 struct io_uring_task *tctx = current->io_uring; 3135 struct io_ring_ctx *ctx; 3136 struct io_tctx_node *node; 3137 unsigned long index; 3138 s64 inflight; 3139 DEFINE_WAIT(wait); 3140 3141 WARN_ON_ONCE(sqd && sqd->thread != current); 3142 3143 if (!current->io_uring) 3144 return; 3145 if (tctx->io_wq) 3146 io_wq_exit_start(tctx->io_wq); 3147 3148 atomic_inc(&tctx->in_cancel); 3149 do { 3150 bool loop = false; 3151 3152 io_uring_drop_tctx_refs(current); 3153 if (!tctx_inflight(tctx, !cancel_all)) 3154 break; 3155 3156 /* read completions before cancelations */ 3157 inflight = tctx_inflight(tctx, false); 3158 if (!inflight) 3159 break; 3160 3161 if (!sqd) { 3162 xa_for_each(&tctx->xa, index, node) { 3163 /* sqpoll task will cancel all its requests */ 3164 if (node->ctx->sq_data) 3165 continue; 3166 loop |= io_uring_try_cancel_requests(node->ctx, 3167 current->io_uring, 3168 cancel_all); 3169 } 3170 } else { 3171 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3172 loop |= io_uring_try_cancel_requests(ctx, 3173 current->io_uring, 3174 cancel_all); 3175 } 3176 3177 if (loop) { 3178 cond_resched(); 3179 continue; 3180 } 3181 3182 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3183 io_run_task_work(); 3184 io_uring_drop_tctx_refs(current); 3185 xa_for_each(&tctx->xa, index, node) { 3186 if (io_local_work_pending(node->ctx)) { 3187 WARN_ON_ONCE(node->ctx->submitter_task && 3188 node->ctx->submitter_task != current); 3189 goto end_wait; 3190 } 3191 } 3192 /* 3193 * If we've seen completions, retry without waiting. This 3194 * avoids a race where a completion comes in before we did 3195 * prepare_to_wait(). 3196 */ 3197 if (inflight == tctx_inflight(tctx, !cancel_all)) 3198 schedule(); 3199 end_wait: 3200 finish_wait(&tctx->wait, &wait); 3201 } while (1); 3202 3203 io_uring_clean_tctx(tctx); 3204 if (cancel_all) { 3205 /* 3206 * We shouldn't run task_works after cancel, so just leave 3207 * ->in_cancel set for normal exit. 3208 */ 3209 atomic_dec(&tctx->in_cancel); 3210 /* for exec all current's requests should be gone, kill tctx */ 3211 __io_uring_free(current); 3212 } 3213 } 3214 3215 void __io_uring_cancel(bool cancel_all) 3216 { 3217 io_uring_cancel_generic(cancel_all, NULL); 3218 } 3219 3220 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3221 const struct io_uring_getevents_arg __user *uarg) 3222 { 3223 unsigned long size = sizeof(struct io_uring_reg_wait); 3224 unsigned long offset = (uintptr_t)uarg; 3225 unsigned long end; 3226 3227 if (unlikely(offset % sizeof(long))) 3228 return ERR_PTR(-EFAULT); 3229 3230 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3231 if (unlikely(check_add_overflow(offset, size, &end) || 3232 end > ctx->cq_wait_size)) 3233 return ERR_PTR(-EFAULT); 3234 3235 return ctx->cq_wait_arg + offset; 3236 } 3237 3238 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3239 const void __user *argp, size_t argsz) 3240 { 3241 struct io_uring_getevents_arg arg; 3242 3243 if (!(flags & IORING_ENTER_EXT_ARG)) 3244 return 0; 3245 if (flags & IORING_ENTER_EXT_ARG_REG) 3246 return -EINVAL; 3247 if (argsz != sizeof(arg)) 3248 return -EINVAL; 3249 if (copy_from_user(&arg, argp, sizeof(arg))) 3250 return -EFAULT; 3251 return 0; 3252 } 3253 3254 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3255 const void __user *argp, struct ext_arg *ext_arg) 3256 { 3257 const struct io_uring_getevents_arg __user *uarg = argp; 3258 struct io_uring_getevents_arg arg; 3259 3260 /* 3261 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3262 * is just a pointer to the sigset_t. 3263 */ 3264 if (!(flags & IORING_ENTER_EXT_ARG)) { 3265 ext_arg->sig = (const sigset_t __user *) argp; 3266 return 0; 3267 } 3268 3269 if (flags & IORING_ENTER_EXT_ARG_REG) { 3270 struct io_uring_reg_wait *w; 3271 3272 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3273 return -EINVAL; 3274 w = io_get_ext_arg_reg(ctx, argp); 3275 if (IS_ERR(w)) 3276 return PTR_ERR(w); 3277 3278 if (w->flags & ~IORING_REG_WAIT_TS) 3279 return -EINVAL; 3280 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3281 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3282 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3283 if (w->flags & IORING_REG_WAIT_TS) { 3284 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3285 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3286 ext_arg->ts_set = true; 3287 } 3288 return 0; 3289 } 3290 3291 /* 3292 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3293 * timespec and sigset_t pointers if good. 3294 */ 3295 if (ext_arg->argsz != sizeof(arg)) 3296 return -EINVAL; 3297 #ifdef CONFIG_64BIT 3298 if (!user_access_begin(uarg, sizeof(*uarg))) 3299 return -EFAULT; 3300 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3301 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3302 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3303 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3304 user_access_end(); 3305 #else 3306 if (copy_from_user(&arg, uarg, sizeof(arg))) 3307 return -EFAULT; 3308 #endif 3309 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3310 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3311 ext_arg->argsz = arg.sigmask_sz; 3312 if (arg.ts) { 3313 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3314 return -EFAULT; 3315 ext_arg->ts_set = true; 3316 } 3317 return 0; 3318 #ifdef CONFIG_64BIT 3319 uaccess_end: 3320 user_access_end(); 3321 return -EFAULT; 3322 #endif 3323 } 3324 3325 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3326 u32, min_complete, u32, flags, const void __user *, argp, 3327 size_t, argsz) 3328 { 3329 struct io_ring_ctx *ctx; 3330 struct file *file; 3331 long ret; 3332 3333 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3334 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3335 IORING_ENTER_REGISTERED_RING | 3336 IORING_ENTER_ABS_TIMER | 3337 IORING_ENTER_EXT_ARG_REG))) 3338 return -EINVAL; 3339 3340 /* 3341 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3342 * need only dereference our task private array to find it. 3343 */ 3344 if (flags & IORING_ENTER_REGISTERED_RING) { 3345 struct io_uring_task *tctx = current->io_uring; 3346 3347 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3348 return -EINVAL; 3349 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3350 file = tctx->registered_rings[fd]; 3351 if (unlikely(!file)) 3352 return -EBADF; 3353 } else { 3354 file = fget(fd); 3355 if (unlikely(!file)) 3356 return -EBADF; 3357 ret = -EOPNOTSUPP; 3358 if (unlikely(!io_is_uring_fops(file))) 3359 goto out; 3360 } 3361 3362 ctx = file->private_data; 3363 ret = -EBADFD; 3364 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3365 goto out; 3366 3367 /* 3368 * For SQ polling, the thread will do all submissions and completions. 3369 * Just return the requested submit count, and wake the thread if 3370 * we were asked to. 3371 */ 3372 ret = 0; 3373 if (ctx->flags & IORING_SETUP_SQPOLL) { 3374 if (unlikely(ctx->sq_data->thread == NULL)) { 3375 ret = -EOWNERDEAD; 3376 goto out; 3377 } 3378 if (flags & IORING_ENTER_SQ_WAKEUP) 3379 wake_up(&ctx->sq_data->wait); 3380 if (flags & IORING_ENTER_SQ_WAIT) 3381 io_sqpoll_wait_sq(ctx); 3382 3383 ret = to_submit; 3384 } else if (to_submit) { 3385 ret = io_uring_add_tctx_node(ctx); 3386 if (unlikely(ret)) 3387 goto out; 3388 3389 mutex_lock(&ctx->uring_lock); 3390 ret = io_submit_sqes(ctx, to_submit); 3391 if (ret != to_submit) { 3392 mutex_unlock(&ctx->uring_lock); 3393 goto out; 3394 } 3395 if (flags & IORING_ENTER_GETEVENTS) { 3396 if (ctx->syscall_iopoll) 3397 goto iopoll_locked; 3398 /* 3399 * Ignore errors, we'll soon call io_cqring_wait() and 3400 * it should handle ownership problems if any. 3401 */ 3402 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3403 (void)io_run_local_work_locked(ctx, min_complete); 3404 } 3405 mutex_unlock(&ctx->uring_lock); 3406 } 3407 3408 if (flags & IORING_ENTER_GETEVENTS) { 3409 int ret2; 3410 3411 if (ctx->syscall_iopoll) { 3412 /* 3413 * We disallow the app entering submit/complete with 3414 * polling, but we still need to lock the ring to 3415 * prevent racing with polled issue that got punted to 3416 * a workqueue. 3417 */ 3418 mutex_lock(&ctx->uring_lock); 3419 iopoll_locked: 3420 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3421 if (likely(!ret2)) { 3422 min_complete = min(min_complete, 3423 ctx->cq_entries); 3424 ret2 = io_iopoll_check(ctx, min_complete); 3425 } 3426 mutex_unlock(&ctx->uring_lock); 3427 } else { 3428 struct ext_arg ext_arg = { .argsz = argsz }; 3429 3430 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3431 if (likely(!ret2)) { 3432 min_complete = min(min_complete, 3433 ctx->cq_entries); 3434 ret2 = io_cqring_wait(ctx, min_complete, flags, 3435 &ext_arg); 3436 } 3437 } 3438 3439 if (!ret) { 3440 ret = ret2; 3441 3442 /* 3443 * EBADR indicates that one or more CQE were dropped. 3444 * Once the user has been informed we can clear the bit 3445 * as they are obviously ok with those drops. 3446 */ 3447 if (unlikely(ret2 == -EBADR)) 3448 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3449 &ctx->check_cq); 3450 } 3451 } 3452 out: 3453 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3454 fput(file); 3455 return ret; 3456 } 3457 3458 static const struct file_operations io_uring_fops = { 3459 .release = io_uring_release, 3460 .mmap = io_uring_mmap, 3461 .get_unmapped_area = io_uring_get_unmapped_area, 3462 #ifndef CONFIG_MMU 3463 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3464 #endif 3465 .poll = io_uring_poll, 3466 #ifdef CONFIG_PROC_FS 3467 .show_fdinfo = io_uring_show_fdinfo, 3468 #endif 3469 }; 3470 3471 bool io_is_uring_fops(struct file *file) 3472 { 3473 return file->f_op == &io_uring_fops; 3474 } 3475 3476 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3477 struct io_uring_params *p) 3478 { 3479 struct io_rings *rings; 3480 size_t size, sq_array_offset; 3481 void *ptr; 3482 3483 /* make sure these are sane, as we already accounted them */ 3484 ctx->sq_entries = p->sq_entries; 3485 ctx->cq_entries = p->cq_entries; 3486 3487 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3488 &sq_array_offset); 3489 if (size == SIZE_MAX) 3490 return -EOVERFLOW; 3491 3492 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3493 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size); 3494 else 3495 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3496 3497 if (IS_ERR(rings)) 3498 return PTR_ERR(rings); 3499 3500 ctx->rings = rings; 3501 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3502 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3503 rings->sq_ring_mask = p->sq_entries - 1; 3504 rings->cq_ring_mask = p->cq_entries - 1; 3505 rings->sq_ring_entries = p->sq_entries; 3506 rings->cq_ring_entries = p->cq_entries; 3507 3508 if (p->flags & IORING_SETUP_SQE128) 3509 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3510 else 3511 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3512 if (size == SIZE_MAX) { 3513 io_rings_free(ctx); 3514 return -EOVERFLOW; 3515 } 3516 3517 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3518 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size); 3519 else 3520 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3521 3522 if (IS_ERR(ptr)) { 3523 io_rings_free(ctx); 3524 return PTR_ERR(ptr); 3525 } 3526 3527 ctx->sq_sqes = ptr; 3528 return 0; 3529 } 3530 3531 static int io_uring_install_fd(struct file *file) 3532 { 3533 int fd; 3534 3535 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3536 if (fd < 0) 3537 return fd; 3538 fd_install(fd, file); 3539 return fd; 3540 } 3541 3542 /* 3543 * Allocate an anonymous fd, this is what constitutes the application 3544 * visible backing of an io_uring instance. The application mmaps this 3545 * fd to gain access to the SQ/CQ ring details. 3546 */ 3547 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3548 { 3549 /* Create a new inode so that the LSM can block the creation. */ 3550 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3551 O_RDWR | O_CLOEXEC, NULL); 3552 } 3553 3554 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3555 { 3556 if (!entries) 3557 return -EINVAL; 3558 if (entries > IORING_MAX_ENTRIES) { 3559 if (!(p->flags & IORING_SETUP_CLAMP)) 3560 return -EINVAL; 3561 entries = IORING_MAX_ENTRIES; 3562 } 3563 3564 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3565 && !(p->flags & IORING_SETUP_NO_MMAP)) 3566 return -EINVAL; 3567 3568 /* 3569 * Use twice as many entries for the CQ ring. It's possible for the 3570 * application to drive a higher depth than the size of the SQ ring, 3571 * since the sqes are only used at submission time. This allows for 3572 * some flexibility in overcommitting a bit. If the application has 3573 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3574 * of CQ ring entries manually. 3575 */ 3576 p->sq_entries = roundup_pow_of_two(entries); 3577 if (p->flags & IORING_SETUP_CQSIZE) { 3578 /* 3579 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3580 * to a power-of-two, if it isn't already. We do NOT impose 3581 * any cq vs sq ring sizing. 3582 */ 3583 if (!p->cq_entries) 3584 return -EINVAL; 3585 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3586 if (!(p->flags & IORING_SETUP_CLAMP)) 3587 return -EINVAL; 3588 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3589 } 3590 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3591 if (p->cq_entries < p->sq_entries) 3592 return -EINVAL; 3593 } else { 3594 p->cq_entries = 2 * p->sq_entries; 3595 } 3596 3597 p->sq_off.head = offsetof(struct io_rings, sq.head); 3598 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3599 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3600 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3601 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3602 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3603 p->sq_off.resv1 = 0; 3604 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3605 p->sq_off.user_addr = 0; 3606 3607 p->cq_off.head = offsetof(struct io_rings, cq.head); 3608 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3609 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3610 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3611 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3612 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3613 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3614 p->cq_off.resv1 = 0; 3615 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3616 p->cq_off.user_addr = 0; 3617 3618 return 0; 3619 } 3620 3621 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3622 struct io_uring_params __user *params) 3623 { 3624 struct io_ring_ctx *ctx; 3625 struct io_uring_task *tctx; 3626 struct file *file; 3627 int ret; 3628 3629 ret = io_uring_fill_params(entries, p); 3630 if (unlikely(ret)) 3631 return ret; 3632 3633 ctx = io_ring_ctx_alloc(p); 3634 if (!ctx) 3635 return -ENOMEM; 3636 3637 ctx->clockid = CLOCK_MONOTONIC; 3638 ctx->clock_offset = 0; 3639 3640 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3641 static_branch_inc(&io_key_has_sqarray); 3642 3643 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3644 !(ctx->flags & IORING_SETUP_IOPOLL) && 3645 !(ctx->flags & IORING_SETUP_SQPOLL)) 3646 ctx->task_complete = true; 3647 3648 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3649 ctx->lockless_cq = true; 3650 3651 /* 3652 * lazy poll_wq activation relies on ->task_complete for synchronisation 3653 * purposes, see io_activate_pollwq() 3654 */ 3655 if (!ctx->task_complete) 3656 ctx->poll_activated = true; 3657 3658 /* 3659 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3660 * space applications don't need to do io completion events 3661 * polling again, they can rely on io_sq_thread to do polling 3662 * work, which can reduce cpu usage and uring_lock contention. 3663 */ 3664 if (ctx->flags & IORING_SETUP_IOPOLL && 3665 !(ctx->flags & IORING_SETUP_SQPOLL)) 3666 ctx->syscall_iopoll = 1; 3667 3668 ctx->compat = in_compat_syscall(); 3669 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3670 ctx->user = get_uid(current_user()); 3671 3672 /* 3673 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3674 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3675 */ 3676 ret = -EINVAL; 3677 if (ctx->flags & IORING_SETUP_SQPOLL) { 3678 /* IPI related flags don't make sense with SQPOLL */ 3679 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3680 IORING_SETUP_TASKRUN_FLAG | 3681 IORING_SETUP_DEFER_TASKRUN)) 3682 goto err; 3683 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3684 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3685 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3686 } else { 3687 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3688 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3689 goto err; 3690 ctx->notify_method = TWA_SIGNAL; 3691 } 3692 3693 /* HYBRID_IOPOLL only valid with IOPOLL */ 3694 if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) == 3695 IORING_SETUP_HYBRID_IOPOLL) 3696 goto err; 3697 3698 /* 3699 * For DEFER_TASKRUN we require the completion task to be the same as the 3700 * submission task. This implies that there is only one submitter, so enforce 3701 * that. 3702 */ 3703 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3704 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3705 goto err; 3706 } 3707 3708 /* 3709 * This is just grabbed for accounting purposes. When a process exits, 3710 * the mm is exited and dropped before the files, hence we need to hang 3711 * on to this mm purely for the purposes of being able to unaccount 3712 * memory (locked/pinned vm). It's not used for anything else. 3713 */ 3714 mmgrab(current->mm); 3715 ctx->mm_account = current->mm; 3716 3717 ret = io_allocate_scq_urings(ctx, p); 3718 if (ret) 3719 goto err; 3720 3721 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3722 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3723 3724 ret = io_sq_offload_create(ctx, p); 3725 if (ret) 3726 goto err; 3727 3728 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3729 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3730 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3731 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3732 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3733 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3734 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3735 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT; 3736 3737 if (copy_to_user(params, p, sizeof(*p))) { 3738 ret = -EFAULT; 3739 goto err; 3740 } 3741 3742 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3743 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3744 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3745 3746 file = io_uring_get_file(ctx); 3747 if (IS_ERR(file)) { 3748 ret = PTR_ERR(file); 3749 goto err; 3750 } 3751 3752 ret = __io_uring_add_tctx_node(ctx); 3753 if (ret) 3754 goto err_fput; 3755 tctx = current->io_uring; 3756 3757 /* 3758 * Install ring fd as the very last thing, so we don't risk someone 3759 * having closed it before we finish setup 3760 */ 3761 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3762 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3763 else 3764 ret = io_uring_install_fd(file); 3765 if (ret < 0) 3766 goto err_fput; 3767 3768 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3769 return ret; 3770 err: 3771 io_ring_ctx_wait_and_kill(ctx); 3772 return ret; 3773 err_fput: 3774 fput(file); 3775 return ret; 3776 } 3777 3778 /* 3779 * Sets up an aio uring context, and returns the fd. Applications asks for a 3780 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3781 * params structure passed in. 3782 */ 3783 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3784 { 3785 struct io_uring_params p; 3786 int i; 3787 3788 if (copy_from_user(&p, params, sizeof(p))) 3789 return -EFAULT; 3790 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3791 if (p.resv[i]) 3792 return -EINVAL; 3793 } 3794 3795 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3796 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3797 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3798 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3799 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3800 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3801 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3802 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3803 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3804 return -EINVAL; 3805 3806 return io_uring_create(entries, &p, params); 3807 } 3808 3809 static inline bool io_uring_allowed(void) 3810 { 3811 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3812 kgid_t io_uring_group; 3813 3814 if (disabled == 2) 3815 return false; 3816 3817 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3818 return true; 3819 3820 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3821 if (!gid_valid(io_uring_group)) 3822 return false; 3823 3824 return in_group_p(io_uring_group); 3825 } 3826 3827 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3828 struct io_uring_params __user *, params) 3829 { 3830 if (!io_uring_allowed()) 3831 return -EPERM; 3832 3833 return io_uring_setup(entries, params); 3834 } 3835 3836 static int __init io_uring_init(void) 3837 { 3838 struct kmem_cache_args kmem_args = { 3839 .useroffset = offsetof(struct io_kiocb, cmd.data), 3840 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3841 .freeptr_offset = offsetof(struct io_kiocb, work), 3842 .use_freeptr_offset = true, 3843 }; 3844 3845 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3846 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3847 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3848 } while (0) 3849 3850 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3851 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3852 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3853 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3854 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3855 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3856 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3857 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3858 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3859 BUILD_BUG_SQE_ELEM(8, __u64, off); 3860 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3861 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3862 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3863 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3864 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3865 BUILD_BUG_SQE_ELEM(24, __u32, len); 3866 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3867 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3868 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3869 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3870 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3871 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3872 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3873 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3874 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3875 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3876 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3877 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3878 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3879 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3880 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3881 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3882 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3883 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3884 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3885 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3886 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3887 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3888 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3889 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3890 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3891 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3892 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3893 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3894 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3895 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3896 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3897 3898 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3899 sizeof(struct io_uring_rsrc_update)); 3900 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3901 sizeof(struct io_uring_rsrc_update2)); 3902 3903 /* ->buf_index is u16 */ 3904 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3905 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3906 offsetof(struct io_uring_buf_ring, tail)); 3907 3908 /* should fit into one byte */ 3909 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3910 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3911 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3912 3913 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3914 3915 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3916 3917 /* top 8bits are for internal use */ 3918 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3919 3920 io_uring_optable_init(); 3921 3922 /* 3923 * Allow user copy in the per-command field, which starts after the 3924 * file in io_kiocb and until the opcode field. The openat2 handling 3925 * requires copying in user memory into the io_kiocb object in that 3926 * range, and HARDENED_USERCOPY will complain if we haven't 3927 * correctly annotated this range. 3928 */ 3929 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3930 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3931 SLAB_TYPESAFE_BY_RCU); 3932 io_buf_cachep = KMEM_CACHE(io_buffer, 3933 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 3934 3935 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3936 3937 #ifdef CONFIG_SYSCTL 3938 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3939 #endif 3940 3941 return 0; 3942 }; 3943 __initcall(io_uring_init); 3944