xref: /linux/io_uring/io_uring.c (revision af1f459233d4edeef634f559539e7f4b64cb1d25)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100 
101 #define IORING_MAX_ENTRIES	32768
102 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
103 
104 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
105 				 IORING_REGISTER_LAST + IORING_OP_LAST)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 enum {
126 	IO_CHECK_CQ_OVERFLOW_BIT,
127 	IO_CHECK_CQ_DROPPED_BIT,
128 };
129 
130 enum {
131 	IO_EVENTFD_OP_SIGNAL_BIT,
132 	IO_EVENTFD_OP_FREE_BIT,
133 };
134 
135 struct io_defer_entry {
136 	struct list_head	list;
137 	struct io_kiocb		*req;
138 	u32			seq;
139 };
140 
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 					 struct task_struct *task,
147 					 bool cancel_all);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 
151 struct kmem_cache *req_cachep;
152 
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155 
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 	{
159 		.procname	= "io_uring_disabled",
160 		.data		= &sysctl_io_uring_disabled,
161 		.maxlen		= sizeof(sysctl_io_uring_disabled),
162 		.mode		= 0644,
163 		.proc_handler	= proc_dointvec_minmax,
164 		.extra1		= SYSCTL_ZERO,
165 		.extra2		= SYSCTL_TWO,
166 	},
167 	{
168 		.procname	= "io_uring_group",
169 		.data		= &sysctl_io_uring_group,
170 		.maxlen		= sizeof(gid_t),
171 		.mode		= 0644,
172 		.proc_handler	= proc_dointvec,
173 	},
174 	{},
175 };
176 #endif
177 
178 struct sock *io_uring_get_socket(struct file *file)
179 {
180 #if defined(CONFIG_UNIX)
181 	if (io_is_uring_fops(file)) {
182 		struct io_ring_ctx *ctx = file->private_data;
183 
184 		return ctx->ring_sock->sk;
185 	}
186 #endif
187 	return NULL;
188 }
189 EXPORT_SYMBOL(io_uring_get_socket);
190 
191 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
192 {
193 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
194 	    ctx->submit_state.cqes_count)
195 		__io_submit_flush_completions(ctx);
196 }
197 
198 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
199 {
200 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
201 }
202 
203 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
204 {
205 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
206 }
207 
208 static bool io_match_linked(struct io_kiocb *head)
209 {
210 	struct io_kiocb *req;
211 
212 	io_for_each_link(req, head) {
213 		if (req->flags & REQ_F_INFLIGHT)
214 			return true;
215 	}
216 	return false;
217 }
218 
219 /*
220  * As io_match_task() but protected against racing with linked timeouts.
221  * User must not hold timeout_lock.
222  */
223 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
224 			bool cancel_all)
225 {
226 	bool matched;
227 
228 	if (task && head->task != task)
229 		return false;
230 	if (cancel_all)
231 		return true;
232 
233 	if (head->flags & REQ_F_LINK_TIMEOUT) {
234 		struct io_ring_ctx *ctx = head->ctx;
235 
236 		/* protect against races with linked timeouts */
237 		spin_lock_irq(&ctx->timeout_lock);
238 		matched = io_match_linked(head);
239 		spin_unlock_irq(&ctx->timeout_lock);
240 	} else {
241 		matched = io_match_linked(head);
242 	}
243 	return matched;
244 }
245 
246 static inline void req_fail_link_node(struct io_kiocb *req, int res)
247 {
248 	req_set_fail(req);
249 	io_req_set_res(req, res, 0);
250 }
251 
252 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
253 {
254 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
255 }
256 
257 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
258 {
259 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
260 
261 	complete(&ctx->ref_comp);
262 }
263 
264 static __cold void io_fallback_req_func(struct work_struct *work)
265 {
266 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
267 						fallback_work.work);
268 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
269 	struct io_kiocb *req, *tmp;
270 	struct io_tw_state ts = { .locked = true, };
271 
272 	mutex_lock(&ctx->uring_lock);
273 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
274 		req->io_task_work.func(req, &ts);
275 	if (WARN_ON_ONCE(!ts.locked))
276 		return;
277 	io_submit_flush_completions(ctx);
278 	mutex_unlock(&ctx->uring_lock);
279 }
280 
281 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
282 {
283 	unsigned hash_buckets = 1U << bits;
284 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
285 
286 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
287 	if (!table->hbs)
288 		return -ENOMEM;
289 
290 	table->hash_bits = bits;
291 	init_hash_table(table, hash_buckets);
292 	return 0;
293 }
294 
295 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
296 {
297 	struct io_ring_ctx *ctx;
298 	int hash_bits;
299 
300 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
301 	if (!ctx)
302 		return NULL;
303 
304 	xa_init(&ctx->io_bl_xa);
305 
306 	/*
307 	 * Use 5 bits less than the max cq entries, that should give us around
308 	 * 32 entries per hash list if totally full and uniformly spread, but
309 	 * don't keep too many buckets to not overconsume memory.
310 	 */
311 	hash_bits = ilog2(p->cq_entries) - 5;
312 	hash_bits = clamp(hash_bits, 1, 8);
313 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
314 		goto err;
315 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
316 		goto err;
317 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
318 			    0, GFP_KERNEL))
319 		goto err;
320 
321 	ctx->flags = p->flags;
322 	init_waitqueue_head(&ctx->sqo_sq_wait);
323 	INIT_LIST_HEAD(&ctx->sqd_list);
324 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
325 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
326 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
327 			    sizeof(struct io_rsrc_node));
328 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
329 			    sizeof(struct async_poll));
330 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
331 			    sizeof(struct io_async_msghdr));
332 	init_completion(&ctx->ref_comp);
333 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
334 	mutex_init(&ctx->uring_lock);
335 	init_waitqueue_head(&ctx->cq_wait);
336 	init_waitqueue_head(&ctx->poll_wq);
337 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
338 	spin_lock_init(&ctx->completion_lock);
339 	spin_lock_init(&ctx->timeout_lock);
340 	INIT_WQ_LIST(&ctx->iopoll_list);
341 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
342 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
343 	INIT_LIST_HEAD(&ctx->defer_list);
344 	INIT_LIST_HEAD(&ctx->timeout_list);
345 	INIT_LIST_HEAD(&ctx->ltimeout_list);
346 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
347 	init_llist_head(&ctx->work_llist);
348 	INIT_LIST_HEAD(&ctx->tctx_list);
349 	ctx->submit_state.free_list.next = NULL;
350 	INIT_WQ_LIST(&ctx->locked_free_list);
351 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
352 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
353 	return ctx;
354 err:
355 	kfree(ctx->cancel_table.hbs);
356 	kfree(ctx->cancel_table_locked.hbs);
357 	kfree(ctx->io_bl);
358 	xa_destroy(&ctx->io_bl_xa);
359 	kfree(ctx);
360 	return NULL;
361 }
362 
363 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
364 {
365 	struct io_rings *r = ctx->rings;
366 
367 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
368 	ctx->cq_extra--;
369 }
370 
371 static bool req_need_defer(struct io_kiocb *req, u32 seq)
372 {
373 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
374 		struct io_ring_ctx *ctx = req->ctx;
375 
376 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
377 	}
378 
379 	return false;
380 }
381 
382 static void io_clean_op(struct io_kiocb *req)
383 {
384 	if (req->flags & REQ_F_BUFFER_SELECTED) {
385 		spin_lock(&req->ctx->completion_lock);
386 		io_put_kbuf_comp(req);
387 		spin_unlock(&req->ctx->completion_lock);
388 	}
389 
390 	if (req->flags & REQ_F_NEED_CLEANUP) {
391 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
392 
393 		if (def->cleanup)
394 			def->cleanup(req);
395 	}
396 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
397 		kfree(req->apoll->double_poll);
398 		kfree(req->apoll);
399 		req->apoll = NULL;
400 	}
401 	if (req->flags & REQ_F_INFLIGHT) {
402 		struct io_uring_task *tctx = req->task->io_uring;
403 
404 		atomic_dec(&tctx->inflight_tracked);
405 	}
406 	if (req->flags & REQ_F_CREDS)
407 		put_cred(req->creds);
408 	if (req->flags & REQ_F_ASYNC_DATA) {
409 		kfree(req->async_data);
410 		req->async_data = NULL;
411 	}
412 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
413 }
414 
415 static inline void io_req_track_inflight(struct io_kiocb *req)
416 {
417 	if (!(req->flags & REQ_F_INFLIGHT)) {
418 		req->flags |= REQ_F_INFLIGHT;
419 		atomic_inc(&req->task->io_uring->inflight_tracked);
420 	}
421 }
422 
423 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
424 {
425 	if (WARN_ON_ONCE(!req->link))
426 		return NULL;
427 
428 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
429 	req->flags |= REQ_F_LINK_TIMEOUT;
430 
431 	/* linked timeouts should have two refs once prep'ed */
432 	io_req_set_refcount(req);
433 	__io_req_set_refcount(req->link, 2);
434 	return req->link;
435 }
436 
437 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
438 {
439 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
440 		return NULL;
441 	return __io_prep_linked_timeout(req);
442 }
443 
444 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
445 {
446 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
447 }
448 
449 static inline void io_arm_ltimeout(struct io_kiocb *req)
450 {
451 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
452 		__io_arm_ltimeout(req);
453 }
454 
455 static void io_prep_async_work(struct io_kiocb *req)
456 {
457 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
458 	struct io_ring_ctx *ctx = req->ctx;
459 
460 	if (!(req->flags & REQ_F_CREDS)) {
461 		req->flags |= REQ_F_CREDS;
462 		req->creds = get_current_cred();
463 	}
464 
465 	req->work.list.next = NULL;
466 	req->work.flags = 0;
467 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
468 	if (req->flags & REQ_F_FORCE_ASYNC)
469 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
470 
471 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
472 		req->flags |= io_file_get_flags(req->file);
473 
474 	if (req->file && (req->flags & REQ_F_ISREG)) {
475 		bool should_hash = def->hash_reg_file;
476 
477 		/* don't serialize this request if the fs doesn't need it */
478 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
479 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
480 			should_hash = false;
481 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
482 			io_wq_hash_work(&req->work, file_inode(req->file));
483 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
484 		if (def->unbound_nonreg_file)
485 			req->work.flags |= IO_WQ_WORK_UNBOUND;
486 	}
487 }
488 
489 static void io_prep_async_link(struct io_kiocb *req)
490 {
491 	struct io_kiocb *cur;
492 
493 	if (req->flags & REQ_F_LINK_TIMEOUT) {
494 		struct io_ring_ctx *ctx = req->ctx;
495 
496 		spin_lock_irq(&ctx->timeout_lock);
497 		io_for_each_link(cur, req)
498 			io_prep_async_work(cur);
499 		spin_unlock_irq(&ctx->timeout_lock);
500 	} else {
501 		io_for_each_link(cur, req)
502 			io_prep_async_work(cur);
503 	}
504 }
505 
506 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
507 {
508 	struct io_kiocb *link = io_prep_linked_timeout(req);
509 	struct io_uring_task *tctx = req->task->io_uring;
510 
511 	BUG_ON(!tctx);
512 	BUG_ON(!tctx->io_wq);
513 
514 	/* init ->work of the whole link before punting */
515 	io_prep_async_link(req);
516 
517 	/*
518 	 * Not expected to happen, but if we do have a bug where this _can_
519 	 * happen, catch it here and ensure the request is marked as
520 	 * canceled. That will make io-wq go through the usual work cancel
521 	 * procedure rather than attempt to run this request (or create a new
522 	 * worker for it).
523 	 */
524 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
525 		req->work.flags |= IO_WQ_WORK_CANCEL;
526 
527 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
528 	io_wq_enqueue(tctx->io_wq, &req->work);
529 	if (link)
530 		io_queue_linked_timeout(link);
531 }
532 
533 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
534 {
535 	while (!list_empty(&ctx->defer_list)) {
536 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
537 						struct io_defer_entry, list);
538 
539 		if (req_need_defer(de->req, de->seq))
540 			break;
541 		list_del_init(&de->list);
542 		io_req_task_queue(de->req);
543 		kfree(de);
544 	}
545 }
546 
547 
548 static void io_eventfd_ops(struct rcu_head *rcu)
549 {
550 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
551 	int ops = atomic_xchg(&ev_fd->ops, 0);
552 
553 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
554 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
555 
556 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
557 	 * ordering in a race but if references are 0 we know we have to free
558 	 * it regardless.
559 	 */
560 	if (atomic_dec_and_test(&ev_fd->refs)) {
561 		eventfd_ctx_put(ev_fd->cq_ev_fd);
562 		kfree(ev_fd);
563 	}
564 }
565 
566 static void io_eventfd_signal(struct io_ring_ctx *ctx)
567 {
568 	struct io_ev_fd *ev_fd = NULL;
569 
570 	rcu_read_lock();
571 	/*
572 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
573 	 * and eventfd_signal
574 	 */
575 	ev_fd = rcu_dereference(ctx->io_ev_fd);
576 
577 	/*
578 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
579 	 * completed between the NULL check of ctx->io_ev_fd at the start of
580 	 * the function and rcu_read_lock.
581 	 */
582 	if (unlikely(!ev_fd))
583 		goto out;
584 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
585 		goto out;
586 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
587 		goto out;
588 
589 	if (likely(eventfd_signal_allowed())) {
590 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
591 	} else {
592 		atomic_inc(&ev_fd->refs);
593 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
594 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
595 		else
596 			atomic_dec(&ev_fd->refs);
597 	}
598 
599 out:
600 	rcu_read_unlock();
601 }
602 
603 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
604 {
605 	bool skip;
606 
607 	spin_lock(&ctx->completion_lock);
608 
609 	/*
610 	 * Eventfd should only get triggered when at least one event has been
611 	 * posted. Some applications rely on the eventfd notification count
612 	 * only changing IFF a new CQE has been added to the CQ ring. There's
613 	 * no depedency on 1:1 relationship between how many times this
614 	 * function is called (and hence the eventfd count) and number of CQEs
615 	 * posted to the CQ ring.
616 	 */
617 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
618 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
619 	spin_unlock(&ctx->completion_lock);
620 	if (skip)
621 		return;
622 
623 	io_eventfd_signal(ctx);
624 }
625 
626 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
627 {
628 	if (ctx->poll_activated)
629 		io_poll_wq_wake(ctx);
630 	if (ctx->off_timeout_used)
631 		io_flush_timeouts(ctx);
632 	if (ctx->drain_active) {
633 		spin_lock(&ctx->completion_lock);
634 		io_queue_deferred(ctx);
635 		spin_unlock(&ctx->completion_lock);
636 	}
637 	if (ctx->has_evfd)
638 		io_eventfd_flush_signal(ctx);
639 }
640 
641 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
642 {
643 	if (!ctx->lockless_cq)
644 		spin_lock(&ctx->completion_lock);
645 }
646 
647 static inline void io_cq_lock(struct io_ring_ctx *ctx)
648 	__acquires(ctx->completion_lock)
649 {
650 	spin_lock(&ctx->completion_lock);
651 }
652 
653 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
654 {
655 	io_commit_cqring(ctx);
656 	if (!ctx->task_complete) {
657 		if (!ctx->lockless_cq)
658 			spin_unlock(&ctx->completion_lock);
659 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
660 		if (!ctx->syscall_iopoll)
661 			io_cqring_wake(ctx);
662 	}
663 	io_commit_cqring_flush(ctx);
664 }
665 
666 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
667 	__releases(ctx->completion_lock)
668 {
669 	io_commit_cqring(ctx);
670 	spin_unlock(&ctx->completion_lock);
671 	io_cqring_wake(ctx);
672 	io_commit_cqring_flush(ctx);
673 }
674 
675 /* Returns true if there are no backlogged entries after the flush */
676 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
677 {
678 	struct io_overflow_cqe *ocqe;
679 	LIST_HEAD(list);
680 
681 	spin_lock(&ctx->completion_lock);
682 	list_splice_init(&ctx->cq_overflow_list, &list);
683 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
684 	spin_unlock(&ctx->completion_lock);
685 
686 	while (!list_empty(&list)) {
687 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
688 		list_del(&ocqe->list);
689 		kfree(ocqe);
690 	}
691 }
692 
693 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
694 {
695 	size_t cqe_size = sizeof(struct io_uring_cqe);
696 
697 	if (__io_cqring_events(ctx) == ctx->cq_entries)
698 		return;
699 
700 	if (ctx->flags & IORING_SETUP_CQE32)
701 		cqe_size <<= 1;
702 
703 	io_cq_lock(ctx);
704 	while (!list_empty(&ctx->cq_overflow_list)) {
705 		struct io_uring_cqe *cqe;
706 		struct io_overflow_cqe *ocqe;
707 
708 		if (!io_get_cqe_overflow(ctx, &cqe, true))
709 			break;
710 		ocqe = list_first_entry(&ctx->cq_overflow_list,
711 					struct io_overflow_cqe, list);
712 		memcpy(cqe, &ocqe->cqe, cqe_size);
713 		list_del(&ocqe->list);
714 		kfree(ocqe);
715 	}
716 
717 	if (list_empty(&ctx->cq_overflow_list)) {
718 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
719 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
720 	}
721 	io_cq_unlock_post(ctx);
722 }
723 
724 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
725 {
726 	/* iopoll syncs against uring_lock, not completion_lock */
727 	if (ctx->flags & IORING_SETUP_IOPOLL)
728 		mutex_lock(&ctx->uring_lock);
729 	__io_cqring_overflow_flush(ctx);
730 	if (ctx->flags & IORING_SETUP_IOPOLL)
731 		mutex_unlock(&ctx->uring_lock);
732 }
733 
734 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
735 {
736 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
737 		io_cqring_do_overflow_flush(ctx);
738 }
739 
740 /* can be called by any task */
741 static void io_put_task_remote(struct task_struct *task)
742 {
743 	struct io_uring_task *tctx = task->io_uring;
744 
745 	percpu_counter_sub(&tctx->inflight, 1);
746 	if (unlikely(atomic_read(&tctx->in_cancel)))
747 		wake_up(&tctx->wait);
748 	put_task_struct(task);
749 }
750 
751 /* used by a task to put its own references */
752 static void io_put_task_local(struct task_struct *task)
753 {
754 	task->io_uring->cached_refs++;
755 }
756 
757 /* must to be called somewhat shortly after putting a request */
758 static inline void io_put_task(struct task_struct *task)
759 {
760 	if (likely(task == current))
761 		io_put_task_local(task);
762 	else
763 		io_put_task_remote(task);
764 }
765 
766 void io_task_refs_refill(struct io_uring_task *tctx)
767 {
768 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
769 
770 	percpu_counter_add(&tctx->inflight, refill);
771 	refcount_add(refill, &current->usage);
772 	tctx->cached_refs += refill;
773 }
774 
775 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
776 {
777 	struct io_uring_task *tctx = task->io_uring;
778 	unsigned int refs = tctx->cached_refs;
779 
780 	if (refs) {
781 		tctx->cached_refs = 0;
782 		percpu_counter_sub(&tctx->inflight, refs);
783 		put_task_struct_many(task, refs);
784 	}
785 }
786 
787 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
788 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
789 {
790 	struct io_overflow_cqe *ocqe;
791 	size_t ocq_size = sizeof(struct io_overflow_cqe);
792 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
793 
794 	lockdep_assert_held(&ctx->completion_lock);
795 
796 	if (is_cqe32)
797 		ocq_size += sizeof(struct io_uring_cqe);
798 
799 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
800 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
801 	if (!ocqe) {
802 		/*
803 		 * If we're in ring overflow flush mode, or in task cancel mode,
804 		 * or cannot allocate an overflow entry, then we need to drop it
805 		 * on the floor.
806 		 */
807 		io_account_cq_overflow(ctx);
808 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
809 		return false;
810 	}
811 	if (list_empty(&ctx->cq_overflow_list)) {
812 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
813 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
814 
815 	}
816 	ocqe->cqe.user_data = user_data;
817 	ocqe->cqe.res = res;
818 	ocqe->cqe.flags = cflags;
819 	if (is_cqe32) {
820 		ocqe->cqe.big_cqe[0] = extra1;
821 		ocqe->cqe.big_cqe[1] = extra2;
822 	}
823 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
824 	return true;
825 }
826 
827 void io_req_cqe_overflow(struct io_kiocb *req)
828 {
829 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
830 				req->cqe.res, req->cqe.flags,
831 				req->big_cqe.extra1, req->big_cqe.extra2);
832 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
833 }
834 
835 /*
836  * writes to the cq entry need to come after reading head; the
837  * control dependency is enough as we're using WRITE_ONCE to
838  * fill the cq entry
839  */
840 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
841 {
842 	struct io_rings *rings = ctx->rings;
843 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
844 	unsigned int free, queued, len;
845 
846 	/*
847 	 * Posting into the CQ when there are pending overflowed CQEs may break
848 	 * ordering guarantees, which will affect links, F_MORE users and more.
849 	 * Force overflow the completion.
850 	 */
851 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
852 		return false;
853 
854 	/* userspace may cheat modifying the tail, be safe and do min */
855 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
856 	free = ctx->cq_entries - queued;
857 	/* we need a contiguous range, limit based on the current array offset */
858 	len = min(free, ctx->cq_entries - off);
859 	if (!len)
860 		return false;
861 
862 	if (ctx->flags & IORING_SETUP_CQE32) {
863 		off <<= 1;
864 		len <<= 1;
865 	}
866 
867 	ctx->cqe_cached = &rings->cqes[off];
868 	ctx->cqe_sentinel = ctx->cqe_cached + len;
869 	return true;
870 }
871 
872 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
873 			      u32 cflags)
874 {
875 	struct io_uring_cqe *cqe;
876 
877 	ctx->cq_extra++;
878 
879 	/*
880 	 * If we can't get a cq entry, userspace overflowed the
881 	 * submission (by quite a lot). Increment the overflow count in
882 	 * the ring.
883 	 */
884 	if (likely(io_get_cqe(ctx, &cqe))) {
885 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
886 
887 		WRITE_ONCE(cqe->user_data, user_data);
888 		WRITE_ONCE(cqe->res, res);
889 		WRITE_ONCE(cqe->flags, cflags);
890 
891 		if (ctx->flags & IORING_SETUP_CQE32) {
892 			WRITE_ONCE(cqe->big_cqe[0], 0);
893 			WRITE_ONCE(cqe->big_cqe[1], 0);
894 		}
895 		return true;
896 	}
897 	return false;
898 }
899 
900 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
901 	__must_hold(&ctx->uring_lock)
902 {
903 	struct io_submit_state *state = &ctx->submit_state;
904 	unsigned int i;
905 
906 	lockdep_assert_held(&ctx->uring_lock);
907 	for (i = 0; i < state->cqes_count; i++) {
908 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
909 
910 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
911 			if (ctx->lockless_cq) {
912 				spin_lock(&ctx->completion_lock);
913 				io_cqring_event_overflow(ctx, cqe->user_data,
914 							cqe->res, cqe->flags, 0, 0);
915 				spin_unlock(&ctx->completion_lock);
916 			} else {
917 				io_cqring_event_overflow(ctx, cqe->user_data,
918 							cqe->res, cqe->flags, 0, 0);
919 			}
920 		}
921 	}
922 	state->cqes_count = 0;
923 }
924 
925 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
926 			      bool allow_overflow)
927 {
928 	bool filled;
929 
930 	io_cq_lock(ctx);
931 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
932 	if (!filled && allow_overflow)
933 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
934 
935 	io_cq_unlock_post(ctx);
936 	return filled;
937 }
938 
939 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
940 {
941 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
942 }
943 
944 /*
945  * A helper for multishot requests posting additional CQEs.
946  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
947  */
948 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
949 {
950 	struct io_ring_ctx *ctx = req->ctx;
951 	u64 user_data = req->cqe.user_data;
952 	struct io_uring_cqe *cqe;
953 
954 	if (!defer)
955 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
956 
957 	lockdep_assert_held(&ctx->uring_lock);
958 
959 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
960 		__io_cq_lock(ctx);
961 		__io_flush_post_cqes(ctx);
962 		/* no need to flush - flush is deferred */
963 		__io_cq_unlock_post(ctx);
964 	}
965 
966 	/* For defered completions this is not as strict as it is otherwise,
967 	 * however it's main job is to prevent unbounded posted completions,
968 	 * and in that it works just as well.
969 	 */
970 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
971 		return false;
972 
973 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
974 	cqe->user_data = user_data;
975 	cqe->res = res;
976 	cqe->flags = cflags;
977 	return true;
978 }
979 
980 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
981 {
982 	struct io_ring_ctx *ctx = req->ctx;
983 	struct io_rsrc_node *rsrc_node = NULL;
984 
985 	io_cq_lock(ctx);
986 	if (!(req->flags & REQ_F_CQE_SKIP)) {
987 		if (!io_fill_cqe_req(ctx, req))
988 			io_req_cqe_overflow(req);
989 	}
990 
991 	/*
992 	 * If we're the last reference to this request, add to our locked
993 	 * free_list cache.
994 	 */
995 	if (req_ref_put_and_test(req)) {
996 		if (req->flags & IO_REQ_LINK_FLAGS) {
997 			if (req->flags & IO_DISARM_MASK)
998 				io_disarm_next(req);
999 			if (req->link) {
1000 				io_req_task_queue(req->link);
1001 				req->link = NULL;
1002 			}
1003 		}
1004 		io_put_kbuf_comp(req);
1005 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1006 			io_clean_op(req);
1007 		io_put_file(req);
1008 
1009 		rsrc_node = req->rsrc_node;
1010 		/*
1011 		 * Selected buffer deallocation in io_clean_op() assumes that
1012 		 * we don't hold ->completion_lock. Clean them here to avoid
1013 		 * deadlocks.
1014 		 */
1015 		io_put_task_remote(req->task);
1016 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1017 		ctx->locked_free_nr++;
1018 	}
1019 	io_cq_unlock_post(ctx);
1020 
1021 	if (rsrc_node) {
1022 		io_ring_submit_lock(ctx, issue_flags);
1023 		io_put_rsrc_node(ctx, rsrc_node);
1024 		io_ring_submit_unlock(ctx, issue_flags);
1025 	}
1026 }
1027 
1028 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1029 {
1030 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1031 		req->io_task_work.func = io_req_task_complete;
1032 		io_req_task_work_add(req);
1033 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1034 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1035 		__io_req_complete_post(req, issue_flags);
1036 	} else {
1037 		struct io_ring_ctx *ctx = req->ctx;
1038 
1039 		mutex_lock(&ctx->uring_lock);
1040 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1041 		mutex_unlock(&ctx->uring_lock);
1042 	}
1043 }
1044 
1045 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1046 	__must_hold(&ctx->uring_lock)
1047 {
1048 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1049 
1050 	lockdep_assert_held(&req->ctx->uring_lock);
1051 
1052 	req_set_fail(req);
1053 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1054 	if (def->fail)
1055 		def->fail(req);
1056 	io_req_complete_defer(req);
1057 }
1058 
1059 /*
1060  * Don't initialise the fields below on every allocation, but do that in
1061  * advance and keep them valid across allocations.
1062  */
1063 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1064 {
1065 	req->ctx = ctx;
1066 	req->link = NULL;
1067 	req->async_data = NULL;
1068 	/* not necessary, but safer to zero */
1069 	memset(&req->cqe, 0, sizeof(req->cqe));
1070 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1071 }
1072 
1073 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1074 					struct io_submit_state *state)
1075 {
1076 	spin_lock(&ctx->completion_lock);
1077 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1078 	ctx->locked_free_nr = 0;
1079 	spin_unlock(&ctx->completion_lock);
1080 }
1081 
1082 /*
1083  * A request might get retired back into the request caches even before opcode
1084  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1085  * Because of that, io_alloc_req() should be called only under ->uring_lock
1086  * and with extra caution to not get a request that is still worked on.
1087  */
1088 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1089 	__must_hold(&ctx->uring_lock)
1090 {
1091 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1092 	void *reqs[IO_REQ_ALLOC_BATCH];
1093 	int ret, i;
1094 
1095 	/*
1096 	 * If we have more than a batch's worth of requests in our IRQ side
1097 	 * locked cache, grab the lock and move them over to our submission
1098 	 * side cache.
1099 	 */
1100 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1101 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1102 		if (!io_req_cache_empty(ctx))
1103 			return true;
1104 	}
1105 
1106 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1107 
1108 	/*
1109 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1110 	 * retry single alloc to be on the safe side.
1111 	 */
1112 	if (unlikely(ret <= 0)) {
1113 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1114 		if (!reqs[0])
1115 			return false;
1116 		ret = 1;
1117 	}
1118 
1119 	percpu_ref_get_many(&ctx->refs, ret);
1120 	for (i = 0; i < ret; i++) {
1121 		struct io_kiocb *req = reqs[i];
1122 
1123 		io_preinit_req(req, ctx);
1124 		io_req_add_to_cache(req, ctx);
1125 	}
1126 	return true;
1127 }
1128 
1129 __cold void io_free_req(struct io_kiocb *req)
1130 {
1131 	/* refs were already put, restore them for io_req_task_complete() */
1132 	req->flags &= ~REQ_F_REFCOUNT;
1133 	/* we only want to free it, don't post CQEs */
1134 	req->flags |= REQ_F_CQE_SKIP;
1135 	req->io_task_work.func = io_req_task_complete;
1136 	io_req_task_work_add(req);
1137 }
1138 
1139 static void __io_req_find_next_prep(struct io_kiocb *req)
1140 {
1141 	struct io_ring_ctx *ctx = req->ctx;
1142 
1143 	spin_lock(&ctx->completion_lock);
1144 	io_disarm_next(req);
1145 	spin_unlock(&ctx->completion_lock);
1146 }
1147 
1148 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1149 {
1150 	struct io_kiocb *nxt;
1151 
1152 	/*
1153 	 * If LINK is set, we have dependent requests in this chain. If we
1154 	 * didn't fail this request, queue the first one up, moving any other
1155 	 * dependencies to the next request. In case of failure, fail the rest
1156 	 * of the chain.
1157 	 */
1158 	if (unlikely(req->flags & IO_DISARM_MASK))
1159 		__io_req_find_next_prep(req);
1160 	nxt = req->link;
1161 	req->link = NULL;
1162 	return nxt;
1163 }
1164 
1165 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1166 {
1167 	if (!ctx)
1168 		return;
1169 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1170 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1171 	if (ts->locked) {
1172 		io_submit_flush_completions(ctx);
1173 		mutex_unlock(&ctx->uring_lock);
1174 		ts->locked = false;
1175 	}
1176 	percpu_ref_put(&ctx->refs);
1177 }
1178 
1179 static unsigned int handle_tw_list(struct llist_node *node,
1180 				   struct io_ring_ctx **ctx,
1181 				   struct io_tw_state *ts,
1182 				   struct llist_node *last)
1183 {
1184 	unsigned int count = 0;
1185 
1186 	while (node && node != last) {
1187 		struct llist_node *next = node->next;
1188 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1189 						    io_task_work.node);
1190 
1191 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1192 
1193 		if (req->ctx != *ctx) {
1194 			ctx_flush_and_put(*ctx, ts);
1195 			*ctx = req->ctx;
1196 			/* if not contended, grab and improve batching */
1197 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1198 			percpu_ref_get(&(*ctx)->refs);
1199 		}
1200 		INDIRECT_CALL_2(req->io_task_work.func,
1201 				io_poll_task_func, io_req_rw_complete,
1202 				req, ts);
1203 		node = next;
1204 		count++;
1205 		if (unlikely(need_resched())) {
1206 			ctx_flush_and_put(*ctx, ts);
1207 			*ctx = NULL;
1208 			cond_resched();
1209 		}
1210 	}
1211 
1212 	return count;
1213 }
1214 
1215 /**
1216  * io_llist_xchg - swap all entries in a lock-less list
1217  * @head:	the head of lock-less list to delete all entries
1218  * @new:	new entry as the head of the list
1219  *
1220  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1221  * The order of entries returned is from the newest to the oldest added one.
1222  */
1223 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1224 					       struct llist_node *new)
1225 {
1226 	return xchg(&head->first, new);
1227 }
1228 
1229 /**
1230  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1231  * @head:	the head of lock-less list to delete all entries
1232  * @old:	expected old value of the first entry of the list
1233  * @new:	new entry as the head of the list
1234  *
1235  * perform a cmpxchg on the first entry of the list.
1236  */
1237 
1238 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1239 						  struct llist_node *old,
1240 						  struct llist_node *new)
1241 {
1242 	return cmpxchg(&head->first, old, new);
1243 }
1244 
1245 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1246 {
1247 	struct llist_node *node = llist_del_all(&tctx->task_list);
1248 	struct io_ring_ctx *last_ctx = NULL;
1249 	struct io_kiocb *req;
1250 
1251 	while (node) {
1252 		req = container_of(node, struct io_kiocb, io_task_work.node);
1253 		node = node->next;
1254 		if (sync && last_ctx != req->ctx) {
1255 			if (last_ctx) {
1256 				flush_delayed_work(&last_ctx->fallback_work);
1257 				percpu_ref_put(&last_ctx->refs);
1258 			}
1259 			last_ctx = req->ctx;
1260 			percpu_ref_get(&last_ctx->refs);
1261 		}
1262 		if (llist_add(&req->io_task_work.node,
1263 			      &req->ctx->fallback_llist))
1264 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1265 	}
1266 
1267 	if (last_ctx) {
1268 		flush_delayed_work(&last_ctx->fallback_work);
1269 		percpu_ref_put(&last_ctx->refs);
1270 	}
1271 }
1272 
1273 void tctx_task_work(struct callback_head *cb)
1274 {
1275 	struct io_tw_state ts = {};
1276 	struct io_ring_ctx *ctx = NULL;
1277 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1278 						  task_work);
1279 	struct llist_node fake = {};
1280 	struct llist_node *node;
1281 	unsigned int loops = 0;
1282 	unsigned int count = 0;
1283 
1284 	if (unlikely(current->flags & PF_EXITING)) {
1285 		io_fallback_tw(tctx, true);
1286 		return;
1287 	}
1288 
1289 	do {
1290 		loops++;
1291 		node = io_llist_xchg(&tctx->task_list, &fake);
1292 		count += handle_tw_list(node, &ctx, &ts, &fake);
1293 
1294 		/* skip expensive cmpxchg if there are items in the list */
1295 		if (READ_ONCE(tctx->task_list.first) != &fake)
1296 			continue;
1297 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1298 			io_submit_flush_completions(ctx);
1299 			if (READ_ONCE(tctx->task_list.first) != &fake)
1300 				continue;
1301 		}
1302 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1303 	} while (node != &fake);
1304 
1305 	ctx_flush_and_put(ctx, &ts);
1306 
1307 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1308 	if (unlikely(atomic_read(&tctx->in_cancel)))
1309 		io_uring_drop_tctx_refs(current);
1310 
1311 	trace_io_uring_task_work_run(tctx, count, loops);
1312 }
1313 
1314 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1315 {
1316 	struct io_ring_ctx *ctx = req->ctx;
1317 	unsigned nr_wait, nr_tw, nr_tw_prev;
1318 	struct llist_node *first;
1319 
1320 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1321 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1322 
1323 	first = READ_ONCE(ctx->work_llist.first);
1324 	do {
1325 		nr_tw_prev = 0;
1326 		if (first) {
1327 			struct io_kiocb *first_req = container_of(first,
1328 							struct io_kiocb,
1329 							io_task_work.node);
1330 			/*
1331 			 * Might be executed at any moment, rely on
1332 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1333 			 */
1334 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1335 		}
1336 		nr_tw = nr_tw_prev + 1;
1337 		/* Large enough to fail the nr_wait comparison below */
1338 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1339 			nr_tw = -1U;
1340 
1341 		req->nr_tw = nr_tw;
1342 		req->io_task_work.node.next = first;
1343 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1344 			      &req->io_task_work.node));
1345 
1346 	if (!first) {
1347 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1348 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1349 		if (ctx->has_evfd)
1350 			io_eventfd_signal(ctx);
1351 	}
1352 
1353 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1354 	/* no one is waiting */
1355 	if (!nr_wait)
1356 		return;
1357 	/* either not enough or the previous add has already woken it up */
1358 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1359 		return;
1360 	/* pairs with set_current_state() in io_cqring_wait() */
1361 	smp_mb__after_atomic();
1362 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1363 }
1364 
1365 static void io_req_normal_work_add(struct io_kiocb *req)
1366 {
1367 	struct io_uring_task *tctx = req->task->io_uring;
1368 	struct io_ring_ctx *ctx = req->ctx;
1369 
1370 	/* task_work already pending, we're done */
1371 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1372 		return;
1373 
1374 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1375 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1376 
1377 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1378 		return;
1379 
1380 	io_fallback_tw(tctx, false);
1381 }
1382 
1383 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1384 {
1385 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1386 		rcu_read_lock();
1387 		io_req_local_work_add(req, flags);
1388 		rcu_read_unlock();
1389 	} else {
1390 		io_req_normal_work_add(req);
1391 	}
1392 }
1393 
1394 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1395 {
1396 	struct llist_node *node;
1397 
1398 	node = llist_del_all(&ctx->work_llist);
1399 	while (node) {
1400 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1401 						    io_task_work.node);
1402 
1403 		node = node->next;
1404 		io_req_normal_work_add(req);
1405 	}
1406 }
1407 
1408 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1409 {
1410 	struct llist_node *node;
1411 	unsigned int loops = 0;
1412 	int ret = 0;
1413 
1414 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1415 		return -EEXIST;
1416 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1417 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1418 again:
1419 	/*
1420 	 * llists are in reverse order, flip it back the right way before
1421 	 * running the pending items.
1422 	 */
1423 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1424 	while (node) {
1425 		struct llist_node *next = node->next;
1426 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1427 						    io_task_work.node);
1428 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1429 		INDIRECT_CALL_2(req->io_task_work.func,
1430 				io_poll_task_func, io_req_rw_complete,
1431 				req, ts);
1432 		ret++;
1433 		node = next;
1434 	}
1435 	loops++;
1436 
1437 	if (!llist_empty(&ctx->work_llist))
1438 		goto again;
1439 	if (ts->locked) {
1440 		io_submit_flush_completions(ctx);
1441 		if (!llist_empty(&ctx->work_llist))
1442 			goto again;
1443 	}
1444 	trace_io_uring_local_work_run(ctx, ret, loops);
1445 	return ret;
1446 }
1447 
1448 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1449 {
1450 	struct io_tw_state ts = { .locked = true, };
1451 	int ret;
1452 
1453 	if (llist_empty(&ctx->work_llist))
1454 		return 0;
1455 
1456 	ret = __io_run_local_work(ctx, &ts);
1457 	/* shouldn't happen! */
1458 	if (WARN_ON_ONCE(!ts.locked))
1459 		mutex_lock(&ctx->uring_lock);
1460 	return ret;
1461 }
1462 
1463 static int io_run_local_work(struct io_ring_ctx *ctx)
1464 {
1465 	struct io_tw_state ts = {};
1466 	int ret;
1467 
1468 	ts.locked = mutex_trylock(&ctx->uring_lock);
1469 	ret = __io_run_local_work(ctx, &ts);
1470 	if (ts.locked)
1471 		mutex_unlock(&ctx->uring_lock);
1472 
1473 	return ret;
1474 }
1475 
1476 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1477 {
1478 	io_tw_lock(req->ctx, ts);
1479 	io_req_defer_failed(req, req->cqe.res);
1480 }
1481 
1482 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1483 {
1484 	io_tw_lock(req->ctx, ts);
1485 	/* req->task == current here, checking PF_EXITING is safe */
1486 	if (unlikely(req->task->flags & PF_EXITING))
1487 		io_req_defer_failed(req, -EFAULT);
1488 	else if (req->flags & REQ_F_FORCE_ASYNC)
1489 		io_queue_iowq(req, ts);
1490 	else
1491 		io_queue_sqe(req);
1492 }
1493 
1494 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1495 {
1496 	io_req_set_res(req, ret, 0);
1497 	req->io_task_work.func = io_req_task_cancel;
1498 	io_req_task_work_add(req);
1499 }
1500 
1501 void io_req_task_queue(struct io_kiocb *req)
1502 {
1503 	req->io_task_work.func = io_req_task_submit;
1504 	io_req_task_work_add(req);
1505 }
1506 
1507 void io_queue_next(struct io_kiocb *req)
1508 {
1509 	struct io_kiocb *nxt = io_req_find_next(req);
1510 
1511 	if (nxt)
1512 		io_req_task_queue(nxt);
1513 }
1514 
1515 static void io_free_batch_list(struct io_ring_ctx *ctx,
1516 			       struct io_wq_work_node *node)
1517 	__must_hold(&ctx->uring_lock)
1518 {
1519 	do {
1520 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1521 						    comp_list);
1522 
1523 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1524 			if (req->flags & REQ_F_REFCOUNT) {
1525 				node = req->comp_list.next;
1526 				if (!req_ref_put_and_test(req))
1527 					continue;
1528 			}
1529 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1530 				struct async_poll *apoll = req->apoll;
1531 
1532 				if (apoll->double_poll)
1533 					kfree(apoll->double_poll);
1534 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1535 					kfree(apoll);
1536 				req->flags &= ~REQ_F_POLLED;
1537 			}
1538 			if (req->flags & IO_REQ_LINK_FLAGS)
1539 				io_queue_next(req);
1540 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1541 				io_clean_op(req);
1542 		}
1543 		io_put_file(req);
1544 
1545 		io_req_put_rsrc_locked(req, ctx);
1546 
1547 		io_put_task(req->task);
1548 		node = req->comp_list.next;
1549 		io_req_add_to_cache(req, ctx);
1550 	} while (node);
1551 }
1552 
1553 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1554 	__must_hold(&ctx->uring_lock)
1555 {
1556 	struct io_submit_state *state = &ctx->submit_state;
1557 	struct io_wq_work_node *node;
1558 
1559 	__io_cq_lock(ctx);
1560 	/* must come first to preserve CQE ordering in failure cases */
1561 	if (state->cqes_count)
1562 		__io_flush_post_cqes(ctx);
1563 	__wq_list_for_each(node, &state->compl_reqs) {
1564 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1565 					    comp_list);
1566 
1567 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1568 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1569 			if (ctx->lockless_cq) {
1570 				spin_lock(&ctx->completion_lock);
1571 				io_req_cqe_overflow(req);
1572 				spin_unlock(&ctx->completion_lock);
1573 			} else {
1574 				io_req_cqe_overflow(req);
1575 			}
1576 		}
1577 	}
1578 	__io_cq_unlock_post(ctx);
1579 
1580 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1581 		io_free_batch_list(ctx, state->compl_reqs.first);
1582 		INIT_WQ_LIST(&state->compl_reqs);
1583 	}
1584 }
1585 
1586 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1587 {
1588 	/* See comment at the top of this file */
1589 	smp_rmb();
1590 	return __io_cqring_events(ctx);
1591 }
1592 
1593 /*
1594  * We can't just wait for polled events to come to us, we have to actively
1595  * find and complete them.
1596  */
1597 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1598 {
1599 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1600 		return;
1601 
1602 	mutex_lock(&ctx->uring_lock);
1603 	while (!wq_list_empty(&ctx->iopoll_list)) {
1604 		/* let it sleep and repeat later if can't complete a request */
1605 		if (io_do_iopoll(ctx, true) == 0)
1606 			break;
1607 		/*
1608 		 * Ensure we allow local-to-the-cpu processing to take place,
1609 		 * in this case we need to ensure that we reap all events.
1610 		 * Also let task_work, etc. to progress by releasing the mutex
1611 		 */
1612 		if (need_resched()) {
1613 			mutex_unlock(&ctx->uring_lock);
1614 			cond_resched();
1615 			mutex_lock(&ctx->uring_lock);
1616 		}
1617 	}
1618 	mutex_unlock(&ctx->uring_lock);
1619 }
1620 
1621 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1622 {
1623 	unsigned int nr_events = 0;
1624 	unsigned long check_cq;
1625 
1626 	if (!io_allowed_run_tw(ctx))
1627 		return -EEXIST;
1628 
1629 	check_cq = READ_ONCE(ctx->check_cq);
1630 	if (unlikely(check_cq)) {
1631 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1632 			__io_cqring_overflow_flush(ctx);
1633 		/*
1634 		 * Similarly do not spin if we have not informed the user of any
1635 		 * dropped CQE.
1636 		 */
1637 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1638 			return -EBADR;
1639 	}
1640 	/*
1641 	 * Don't enter poll loop if we already have events pending.
1642 	 * If we do, we can potentially be spinning for commands that
1643 	 * already triggered a CQE (eg in error).
1644 	 */
1645 	if (io_cqring_events(ctx))
1646 		return 0;
1647 
1648 	do {
1649 		int ret = 0;
1650 
1651 		/*
1652 		 * If a submit got punted to a workqueue, we can have the
1653 		 * application entering polling for a command before it gets
1654 		 * issued. That app will hold the uring_lock for the duration
1655 		 * of the poll right here, so we need to take a breather every
1656 		 * now and then to ensure that the issue has a chance to add
1657 		 * the poll to the issued list. Otherwise we can spin here
1658 		 * forever, while the workqueue is stuck trying to acquire the
1659 		 * very same mutex.
1660 		 */
1661 		if (wq_list_empty(&ctx->iopoll_list) ||
1662 		    io_task_work_pending(ctx)) {
1663 			u32 tail = ctx->cached_cq_tail;
1664 
1665 			(void) io_run_local_work_locked(ctx);
1666 
1667 			if (task_work_pending(current) ||
1668 			    wq_list_empty(&ctx->iopoll_list)) {
1669 				mutex_unlock(&ctx->uring_lock);
1670 				io_run_task_work();
1671 				mutex_lock(&ctx->uring_lock);
1672 			}
1673 			/* some requests don't go through iopoll_list */
1674 			if (tail != ctx->cached_cq_tail ||
1675 			    wq_list_empty(&ctx->iopoll_list))
1676 				break;
1677 		}
1678 		ret = io_do_iopoll(ctx, !min);
1679 		if (unlikely(ret < 0))
1680 			return ret;
1681 
1682 		if (task_sigpending(current))
1683 			return -EINTR;
1684 		if (need_resched())
1685 			break;
1686 
1687 		nr_events += ret;
1688 	} while (nr_events < min);
1689 
1690 	return 0;
1691 }
1692 
1693 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1694 {
1695 	if (ts->locked)
1696 		io_req_complete_defer(req);
1697 	else
1698 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1699 }
1700 
1701 /*
1702  * After the iocb has been issued, it's safe to be found on the poll list.
1703  * Adding the kiocb to the list AFTER submission ensures that we don't
1704  * find it from a io_do_iopoll() thread before the issuer is done
1705  * accessing the kiocb cookie.
1706  */
1707 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1708 {
1709 	struct io_ring_ctx *ctx = req->ctx;
1710 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1711 
1712 	/* workqueue context doesn't hold uring_lock, grab it now */
1713 	if (unlikely(needs_lock))
1714 		mutex_lock(&ctx->uring_lock);
1715 
1716 	/*
1717 	 * Track whether we have multiple files in our lists. This will impact
1718 	 * how we do polling eventually, not spinning if we're on potentially
1719 	 * different devices.
1720 	 */
1721 	if (wq_list_empty(&ctx->iopoll_list)) {
1722 		ctx->poll_multi_queue = false;
1723 	} else if (!ctx->poll_multi_queue) {
1724 		struct io_kiocb *list_req;
1725 
1726 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1727 					comp_list);
1728 		if (list_req->file != req->file)
1729 			ctx->poll_multi_queue = true;
1730 	}
1731 
1732 	/*
1733 	 * For fast devices, IO may have already completed. If it has, add
1734 	 * it to the front so we find it first.
1735 	 */
1736 	if (READ_ONCE(req->iopoll_completed))
1737 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1738 	else
1739 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1740 
1741 	if (unlikely(needs_lock)) {
1742 		/*
1743 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1744 		 * in sq thread task context or in io worker task context. If
1745 		 * current task context is sq thread, we don't need to check
1746 		 * whether should wake up sq thread.
1747 		 */
1748 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1749 		    wq_has_sleeper(&ctx->sq_data->wait))
1750 			wake_up(&ctx->sq_data->wait);
1751 
1752 		mutex_unlock(&ctx->uring_lock);
1753 	}
1754 }
1755 
1756 unsigned int io_file_get_flags(struct file *file)
1757 {
1758 	unsigned int res = 0;
1759 
1760 	if (S_ISREG(file_inode(file)->i_mode))
1761 		res |= REQ_F_ISREG;
1762 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1763 		res |= REQ_F_SUPPORT_NOWAIT;
1764 	return res;
1765 }
1766 
1767 bool io_alloc_async_data(struct io_kiocb *req)
1768 {
1769 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1770 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1771 	if (req->async_data) {
1772 		req->flags |= REQ_F_ASYNC_DATA;
1773 		return false;
1774 	}
1775 	return true;
1776 }
1777 
1778 int io_req_prep_async(struct io_kiocb *req)
1779 {
1780 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1781 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1782 
1783 	/* assign early for deferred execution for non-fixed file */
1784 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1785 		req->file = io_file_get_normal(req, req->cqe.fd);
1786 	if (!cdef->prep_async)
1787 		return 0;
1788 	if (WARN_ON_ONCE(req_has_async_data(req)))
1789 		return -EFAULT;
1790 	if (!def->manual_alloc) {
1791 		if (io_alloc_async_data(req))
1792 			return -EAGAIN;
1793 	}
1794 	return cdef->prep_async(req);
1795 }
1796 
1797 static u32 io_get_sequence(struct io_kiocb *req)
1798 {
1799 	u32 seq = req->ctx->cached_sq_head;
1800 	struct io_kiocb *cur;
1801 
1802 	/* need original cached_sq_head, but it was increased for each req */
1803 	io_for_each_link(cur, req)
1804 		seq--;
1805 	return seq;
1806 }
1807 
1808 static __cold void io_drain_req(struct io_kiocb *req)
1809 	__must_hold(&ctx->uring_lock)
1810 {
1811 	struct io_ring_ctx *ctx = req->ctx;
1812 	struct io_defer_entry *de;
1813 	int ret;
1814 	u32 seq = io_get_sequence(req);
1815 
1816 	/* Still need defer if there is pending req in defer list. */
1817 	spin_lock(&ctx->completion_lock);
1818 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1819 		spin_unlock(&ctx->completion_lock);
1820 queue:
1821 		ctx->drain_active = false;
1822 		io_req_task_queue(req);
1823 		return;
1824 	}
1825 	spin_unlock(&ctx->completion_lock);
1826 
1827 	io_prep_async_link(req);
1828 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1829 	if (!de) {
1830 		ret = -ENOMEM;
1831 		io_req_defer_failed(req, ret);
1832 		return;
1833 	}
1834 
1835 	spin_lock(&ctx->completion_lock);
1836 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1837 		spin_unlock(&ctx->completion_lock);
1838 		kfree(de);
1839 		goto queue;
1840 	}
1841 
1842 	trace_io_uring_defer(req);
1843 	de->req = req;
1844 	de->seq = seq;
1845 	list_add_tail(&de->list, &ctx->defer_list);
1846 	spin_unlock(&ctx->completion_lock);
1847 }
1848 
1849 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1850 			   unsigned int issue_flags)
1851 {
1852 	if (req->file || !def->needs_file)
1853 		return true;
1854 
1855 	if (req->flags & REQ_F_FIXED_FILE)
1856 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1857 	else
1858 		req->file = io_file_get_normal(req, req->cqe.fd);
1859 
1860 	return !!req->file;
1861 }
1862 
1863 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1864 {
1865 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1866 	const struct cred *creds = NULL;
1867 	int ret;
1868 
1869 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1870 		return -EBADF;
1871 
1872 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1873 		creds = override_creds(req->creds);
1874 
1875 	if (!def->audit_skip)
1876 		audit_uring_entry(req->opcode);
1877 
1878 	ret = def->issue(req, issue_flags);
1879 
1880 	if (!def->audit_skip)
1881 		audit_uring_exit(!ret, ret);
1882 
1883 	if (creds)
1884 		revert_creds(creds);
1885 
1886 	if (ret == IOU_OK) {
1887 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1888 			io_req_complete_defer(req);
1889 		else
1890 			io_req_complete_post(req, issue_flags);
1891 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1892 		return ret;
1893 
1894 	/* If the op doesn't have a file, we're not polling for it */
1895 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1896 		io_iopoll_req_issued(req, issue_flags);
1897 
1898 	return 0;
1899 }
1900 
1901 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1902 {
1903 	io_tw_lock(req->ctx, ts);
1904 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1905 				 IO_URING_F_COMPLETE_DEFER);
1906 }
1907 
1908 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1909 {
1910 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1911 	struct io_kiocb *nxt = NULL;
1912 
1913 	if (req_ref_put_and_test(req)) {
1914 		if (req->flags & IO_REQ_LINK_FLAGS)
1915 			nxt = io_req_find_next(req);
1916 		io_free_req(req);
1917 	}
1918 	return nxt ? &nxt->work : NULL;
1919 }
1920 
1921 void io_wq_submit_work(struct io_wq_work *work)
1922 {
1923 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1924 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1925 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1926 	bool needs_poll = false;
1927 	int ret = 0, err = -ECANCELED;
1928 
1929 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1930 	if (!(req->flags & REQ_F_REFCOUNT))
1931 		__io_req_set_refcount(req, 2);
1932 	else
1933 		req_ref_get(req);
1934 
1935 	io_arm_ltimeout(req);
1936 
1937 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1938 	if (work->flags & IO_WQ_WORK_CANCEL) {
1939 fail:
1940 		io_req_task_queue_fail(req, err);
1941 		return;
1942 	}
1943 	if (!io_assign_file(req, def, issue_flags)) {
1944 		err = -EBADF;
1945 		work->flags |= IO_WQ_WORK_CANCEL;
1946 		goto fail;
1947 	}
1948 
1949 	if (req->flags & REQ_F_FORCE_ASYNC) {
1950 		bool opcode_poll = def->pollin || def->pollout;
1951 
1952 		if (opcode_poll && file_can_poll(req->file)) {
1953 			needs_poll = true;
1954 			issue_flags |= IO_URING_F_NONBLOCK;
1955 		}
1956 	}
1957 
1958 	do {
1959 		ret = io_issue_sqe(req, issue_flags);
1960 		if (ret != -EAGAIN)
1961 			break;
1962 
1963 		/*
1964 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1965 		 * poll. -EAGAIN is final for that case.
1966 		 */
1967 		if (req->flags & REQ_F_NOWAIT)
1968 			break;
1969 
1970 		/*
1971 		 * We can get EAGAIN for iopolled IO even though we're
1972 		 * forcing a sync submission from here, since we can't
1973 		 * wait for request slots on the block side.
1974 		 */
1975 		if (!needs_poll) {
1976 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1977 				break;
1978 			if (io_wq_worker_stopped())
1979 				break;
1980 			cond_resched();
1981 			continue;
1982 		}
1983 
1984 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1985 			return;
1986 		/* aborted or ready, in either case retry blocking */
1987 		needs_poll = false;
1988 		issue_flags &= ~IO_URING_F_NONBLOCK;
1989 	} while (1);
1990 
1991 	/* avoid locking problems by failing it from a clean context */
1992 	if (ret < 0)
1993 		io_req_task_queue_fail(req, ret);
1994 }
1995 
1996 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1997 				      unsigned int issue_flags)
1998 {
1999 	struct io_ring_ctx *ctx = req->ctx;
2000 	struct io_fixed_file *slot;
2001 	struct file *file = NULL;
2002 
2003 	io_ring_submit_lock(ctx, issue_flags);
2004 
2005 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2006 		goto out;
2007 	fd = array_index_nospec(fd, ctx->nr_user_files);
2008 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2009 	file = io_slot_file(slot);
2010 	req->flags |= io_slot_flags(slot);
2011 	io_req_set_rsrc_node(req, ctx, 0);
2012 out:
2013 	io_ring_submit_unlock(ctx, issue_flags);
2014 	return file;
2015 }
2016 
2017 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2018 {
2019 	struct file *file = fget(fd);
2020 
2021 	trace_io_uring_file_get(req, fd);
2022 
2023 	/* we don't allow fixed io_uring files */
2024 	if (file && io_is_uring_fops(file))
2025 		io_req_track_inflight(req);
2026 	return file;
2027 }
2028 
2029 static void io_queue_async(struct io_kiocb *req, int ret)
2030 	__must_hold(&req->ctx->uring_lock)
2031 {
2032 	struct io_kiocb *linked_timeout;
2033 
2034 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2035 		io_req_defer_failed(req, ret);
2036 		return;
2037 	}
2038 
2039 	linked_timeout = io_prep_linked_timeout(req);
2040 
2041 	switch (io_arm_poll_handler(req, 0)) {
2042 	case IO_APOLL_READY:
2043 		io_kbuf_recycle(req, 0);
2044 		io_req_task_queue(req);
2045 		break;
2046 	case IO_APOLL_ABORTED:
2047 		io_kbuf_recycle(req, 0);
2048 		io_queue_iowq(req, NULL);
2049 		break;
2050 	case IO_APOLL_OK:
2051 		break;
2052 	}
2053 
2054 	if (linked_timeout)
2055 		io_queue_linked_timeout(linked_timeout);
2056 }
2057 
2058 static inline void io_queue_sqe(struct io_kiocb *req)
2059 	__must_hold(&req->ctx->uring_lock)
2060 {
2061 	int ret;
2062 
2063 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2064 
2065 	/*
2066 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2067 	 * doesn't support non-blocking read/write attempts
2068 	 */
2069 	if (likely(!ret))
2070 		io_arm_ltimeout(req);
2071 	else
2072 		io_queue_async(req, ret);
2073 }
2074 
2075 static void io_queue_sqe_fallback(struct io_kiocb *req)
2076 	__must_hold(&req->ctx->uring_lock)
2077 {
2078 	if (unlikely(req->flags & REQ_F_FAIL)) {
2079 		/*
2080 		 * We don't submit, fail them all, for that replace hardlinks
2081 		 * with normal links. Extra REQ_F_LINK is tolerated.
2082 		 */
2083 		req->flags &= ~REQ_F_HARDLINK;
2084 		req->flags |= REQ_F_LINK;
2085 		io_req_defer_failed(req, req->cqe.res);
2086 	} else {
2087 		int ret = io_req_prep_async(req);
2088 
2089 		if (unlikely(ret)) {
2090 			io_req_defer_failed(req, ret);
2091 			return;
2092 		}
2093 
2094 		if (unlikely(req->ctx->drain_active))
2095 			io_drain_req(req);
2096 		else
2097 			io_queue_iowq(req, NULL);
2098 	}
2099 }
2100 
2101 /*
2102  * Check SQE restrictions (opcode and flags).
2103  *
2104  * Returns 'true' if SQE is allowed, 'false' otherwise.
2105  */
2106 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2107 					struct io_kiocb *req,
2108 					unsigned int sqe_flags)
2109 {
2110 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2111 		return false;
2112 
2113 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2114 	    ctx->restrictions.sqe_flags_required)
2115 		return false;
2116 
2117 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2118 			  ctx->restrictions.sqe_flags_required))
2119 		return false;
2120 
2121 	return true;
2122 }
2123 
2124 static void io_init_req_drain(struct io_kiocb *req)
2125 {
2126 	struct io_ring_ctx *ctx = req->ctx;
2127 	struct io_kiocb *head = ctx->submit_state.link.head;
2128 
2129 	ctx->drain_active = true;
2130 	if (head) {
2131 		/*
2132 		 * If we need to drain a request in the middle of a link, drain
2133 		 * the head request and the next request/link after the current
2134 		 * link. Considering sequential execution of links,
2135 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2136 		 * link.
2137 		 */
2138 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2139 		ctx->drain_next = true;
2140 	}
2141 }
2142 
2143 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2144 		       const struct io_uring_sqe *sqe)
2145 	__must_hold(&ctx->uring_lock)
2146 {
2147 	const struct io_issue_def *def;
2148 	unsigned int sqe_flags;
2149 	int personality;
2150 	u8 opcode;
2151 
2152 	/* req is partially pre-initialised, see io_preinit_req() */
2153 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2154 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2155 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2156 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2157 	req->file = NULL;
2158 	req->rsrc_node = NULL;
2159 	req->task = current;
2160 
2161 	if (unlikely(opcode >= IORING_OP_LAST)) {
2162 		req->opcode = 0;
2163 		return -EINVAL;
2164 	}
2165 	def = &io_issue_defs[opcode];
2166 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2167 		/* enforce forwards compatibility on users */
2168 		if (sqe_flags & ~SQE_VALID_FLAGS)
2169 			return -EINVAL;
2170 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2171 			if (!def->buffer_select)
2172 				return -EOPNOTSUPP;
2173 			req->buf_index = READ_ONCE(sqe->buf_group);
2174 		}
2175 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2176 			ctx->drain_disabled = true;
2177 		if (sqe_flags & IOSQE_IO_DRAIN) {
2178 			if (ctx->drain_disabled)
2179 				return -EOPNOTSUPP;
2180 			io_init_req_drain(req);
2181 		}
2182 	}
2183 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2184 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2185 			return -EACCES;
2186 		/* knock it to the slow queue path, will be drained there */
2187 		if (ctx->drain_active)
2188 			req->flags |= REQ_F_FORCE_ASYNC;
2189 		/* if there is no link, we're at "next" request and need to drain */
2190 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2191 			ctx->drain_next = false;
2192 			ctx->drain_active = true;
2193 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2194 		}
2195 	}
2196 
2197 	if (!def->ioprio && sqe->ioprio)
2198 		return -EINVAL;
2199 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2200 		return -EINVAL;
2201 
2202 	if (def->needs_file) {
2203 		struct io_submit_state *state = &ctx->submit_state;
2204 
2205 		req->cqe.fd = READ_ONCE(sqe->fd);
2206 
2207 		/*
2208 		 * Plug now if we have more than 2 IO left after this, and the
2209 		 * target is potentially a read/write to block based storage.
2210 		 */
2211 		if (state->need_plug && def->plug) {
2212 			state->plug_started = true;
2213 			state->need_plug = false;
2214 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2215 		}
2216 	}
2217 
2218 	personality = READ_ONCE(sqe->personality);
2219 	if (personality) {
2220 		int ret;
2221 
2222 		req->creds = xa_load(&ctx->personalities, personality);
2223 		if (!req->creds)
2224 			return -EINVAL;
2225 		get_cred(req->creds);
2226 		ret = security_uring_override_creds(req->creds);
2227 		if (ret) {
2228 			put_cred(req->creds);
2229 			return ret;
2230 		}
2231 		req->flags |= REQ_F_CREDS;
2232 	}
2233 
2234 	return def->prep(req, sqe);
2235 }
2236 
2237 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2238 				      struct io_kiocb *req, int ret)
2239 {
2240 	struct io_ring_ctx *ctx = req->ctx;
2241 	struct io_submit_link *link = &ctx->submit_state.link;
2242 	struct io_kiocb *head = link->head;
2243 
2244 	trace_io_uring_req_failed(sqe, req, ret);
2245 
2246 	/*
2247 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2248 	 * unusable. Instead of failing eagerly, continue assembling the link if
2249 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2250 	 * should find the flag and handle the rest.
2251 	 */
2252 	req_fail_link_node(req, ret);
2253 	if (head && !(head->flags & REQ_F_FAIL))
2254 		req_fail_link_node(head, -ECANCELED);
2255 
2256 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2257 		if (head) {
2258 			link->last->link = req;
2259 			link->head = NULL;
2260 			req = head;
2261 		}
2262 		io_queue_sqe_fallback(req);
2263 		return ret;
2264 	}
2265 
2266 	if (head)
2267 		link->last->link = req;
2268 	else
2269 		link->head = req;
2270 	link->last = req;
2271 	return 0;
2272 }
2273 
2274 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2275 			 const struct io_uring_sqe *sqe)
2276 	__must_hold(&ctx->uring_lock)
2277 {
2278 	struct io_submit_link *link = &ctx->submit_state.link;
2279 	int ret;
2280 
2281 	ret = io_init_req(ctx, req, sqe);
2282 	if (unlikely(ret))
2283 		return io_submit_fail_init(sqe, req, ret);
2284 
2285 	trace_io_uring_submit_req(req);
2286 
2287 	/*
2288 	 * If we already have a head request, queue this one for async
2289 	 * submittal once the head completes. If we don't have a head but
2290 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2291 	 * submitted sync once the chain is complete. If none of those
2292 	 * conditions are true (normal request), then just queue it.
2293 	 */
2294 	if (unlikely(link->head)) {
2295 		ret = io_req_prep_async(req);
2296 		if (unlikely(ret))
2297 			return io_submit_fail_init(sqe, req, ret);
2298 
2299 		trace_io_uring_link(req, link->head);
2300 		link->last->link = req;
2301 		link->last = req;
2302 
2303 		if (req->flags & IO_REQ_LINK_FLAGS)
2304 			return 0;
2305 		/* last request of the link, flush it */
2306 		req = link->head;
2307 		link->head = NULL;
2308 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2309 			goto fallback;
2310 
2311 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2312 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2313 		if (req->flags & IO_REQ_LINK_FLAGS) {
2314 			link->head = req;
2315 			link->last = req;
2316 		} else {
2317 fallback:
2318 			io_queue_sqe_fallback(req);
2319 		}
2320 		return 0;
2321 	}
2322 
2323 	io_queue_sqe(req);
2324 	return 0;
2325 }
2326 
2327 /*
2328  * Batched submission is done, ensure local IO is flushed out.
2329  */
2330 static void io_submit_state_end(struct io_ring_ctx *ctx)
2331 {
2332 	struct io_submit_state *state = &ctx->submit_state;
2333 
2334 	if (unlikely(state->link.head))
2335 		io_queue_sqe_fallback(state->link.head);
2336 	/* flush only after queuing links as they can generate completions */
2337 	io_submit_flush_completions(ctx);
2338 	if (state->plug_started)
2339 		blk_finish_plug(&state->plug);
2340 }
2341 
2342 /*
2343  * Start submission side cache.
2344  */
2345 static void io_submit_state_start(struct io_submit_state *state,
2346 				  unsigned int max_ios)
2347 {
2348 	state->plug_started = false;
2349 	state->need_plug = max_ios > 2;
2350 	state->submit_nr = max_ios;
2351 	/* set only head, no need to init link_last in advance */
2352 	state->link.head = NULL;
2353 }
2354 
2355 static void io_commit_sqring(struct io_ring_ctx *ctx)
2356 {
2357 	struct io_rings *rings = ctx->rings;
2358 
2359 	/*
2360 	 * Ensure any loads from the SQEs are done at this point,
2361 	 * since once we write the new head, the application could
2362 	 * write new data to them.
2363 	 */
2364 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2365 }
2366 
2367 /*
2368  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2369  * that is mapped by userspace. This means that care needs to be taken to
2370  * ensure that reads are stable, as we cannot rely on userspace always
2371  * being a good citizen. If members of the sqe are validated and then later
2372  * used, it's important that those reads are done through READ_ONCE() to
2373  * prevent a re-load down the line.
2374  */
2375 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2376 {
2377 	unsigned mask = ctx->sq_entries - 1;
2378 	unsigned head = ctx->cached_sq_head++ & mask;
2379 
2380 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2381 		head = READ_ONCE(ctx->sq_array[head]);
2382 		if (unlikely(head >= ctx->sq_entries)) {
2383 			/* drop invalid entries */
2384 			spin_lock(&ctx->completion_lock);
2385 			ctx->cq_extra--;
2386 			spin_unlock(&ctx->completion_lock);
2387 			WRITE_ONCE(ctx->rings->sq_dropped,
2388 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2389 			return false;
2390 		}
2391 	}
2392 
2393 	/*
2394 	 * The cached sq head (or cq tail) serves two purposes:
2395 	 *
2396 	 * 1) allows us to batch the cost of updating the user visible
2397 	 *    head updates.
2398 	 * 2) allows the kernel side to track the head on its own, even
2399 	 *    though the application is the one updating it.
2400 	 */
2401 
2402 	/* double index for 128-byte SQEs, twice as long */
2403 	if (ctx->flags & IORING_SETUP_SQE128)
2404 		head <<= 1;
2405 	*sqe = &ctx->sq_sqes[head];
2406 	return true;
2407 }
2408 
2409 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2410 	__must_hold(&ctx->uring_lock)
2411 {
2412 	unsigned int entries = io_sqring_entries(ctx);
2413 	unsigned int left;
2414 	int ret;
2415 
2416 	if (unlikely(!entries))
2417 		return 0;
2418 	/* make sure SQ entry isn't read before tail */
2419 	ret = left = min(nr, entries);
2420 	io_get_task_refs(left);
2421 	io_submit_state_start(&ctx->submit_state, left);
2422 
2423 	do {
2424 		const struct io_uring_sqe *sqe;
2425 		struct io_kiocb *req;
2426 
2427 		if (unlikely(!io_alloc_req(ctx, &req)))
2428 			break;
2429 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2430 			io_req_add_to_cache(req, ctx);
2431 			break;
2432 		}
2433 
2434 		/*
2435 		 * Continue submitting even for sqe failure if the
2436 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2437 		 */
2438 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2439 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2440 			left--;
2441 			break;
2442 		}
2443 	} while (--left);
2444 
2445 	if (unlikely(left)) {
2446 		ret -= left;
2447 		/* try again if it submitted nothing and can't allocate a req */
2448 		if (!ret && io_req_cache_empty(ctx))
2449 			ret = -EAGAIN;
2450 		current->io_uring->cached_refs += left;
2451 	}
2452 
2453 	io_submit_state_end(ctx);
2454 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2455 	io_commit_sqring(ctx);
2456 	return ret;
2457 }
2458 
2459 struct io_wait_queue {
2460 	struct wait_queue_entry wq;
2461 	struct io_ring_ctx *ctx;
2462 	unsigned cq_tail;
2463 	unsigned nr_timeouts;
2464 	ktime_t timeout;
2465 };
2466 
2467 static inline bool io_has_work(struct io_ring_ctx *ctx)
2468 {
2469 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2470 	       !llist_empty(&ctx->work_llist);
2471 }
2472 
2473 static inline bool io_should_wake(struct io_wait_queue *iowq)
2474 {
2475 	struct io_ring_ctx *ctx = iowq->ctx;
2476 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2477 
2478 	/*
2479 	 * Wake up if we have enough events, or if a timeout occurred since we
2480 	 * started waiting. For timeouts, we always want to return to userspace,
2481 	 * regardless of event count.
2482 	 */
2483 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2484 }
2485 
2486 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2487 			    int wake_flags, void *key)
2488 {
2489 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2490 
2491 	/*
2492 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2493 	 * the task, and the next invocation will do it.
2494 	 */
2495 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2496 		return autoremove_wake_function(curr, mode, wake_flags, key);
2497 	return -1;
2498 }
2499 
2500 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2501 {
2502 	if (!llist_empty(&ctx->work_llist)) {
2503 		__set_current_state(TASK_RUNNING);
2504 		if (io_run_local_work(ctx) > 0)
2505 			return 0;
2506 	}
2507 	if (io_run_task_work() > 0)
2508 		return 0;
2509 	if (task_sigpending(current))
2510 		return -EINTR;
2511 	return 0;
2512 }
2513 
2514 static bool current_pending_io(void)
2515 {
2516 	struct io_uring_task *tctx = current->io_uring;
2517 
2518 	if (!tctx)
2519 		return false;
2520 	return percpu_counter_read_positive(&tctx->inflight);
2521 }
2522 
2523 /* when returns >0, the caller should retry */
2524 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2525 					  struct io_wait_queue *iowq)
2526 {
2527 	int io_wait, ret;
2528 
2529 	if (unlikely(READ_ONCE(ctx->check_cq)))
2530 		return 1;
2531 	if (unlikely(!llist_empty(&ctx->work_llist)))
2532 		return 1;
2533 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2534 		return 1;
2535 	if (unlikely(task_sigpending(current)))
2536 		return -EINTR;
2537 	if (unlikely(io_should_wake(iowq)))
2538 		return 0;
2539 
2540 	/*
2541 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2542 	 * can take into account that the task is waiting for IO - turns out
2543 	 * to be important for low QD IO.
2544 	 */
2545 	io_wait = current->in_iowait;
2546 	if (current_pending_io())
2547 		current->in_iowait = 1;
2548 	ret = 0;
2549 	if (iowq->timeout == KTIME_MAX)
2550 		schedule();
2551 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2552 		ret = -ETIME;
2553 	current->in_iowait = io_wait;
2554 	return ret;
2555 }
2556 
2557 /*
2558  * Wait until events become available, if we don't already have some. The
2559  * application must reap them itself, as they reside on the shared cq ring.
2560  */
2561 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2562 			  const sigset_t __user *sig, size_t sigsz,
2563 			  struct __kernel_timespec __user *uts)
2564 {
2565 	struct io_wait_queue iowq;
2566 	struct io_rings *rings = ctx->rings;
2567 	int ret;
2568 
2569 	if (!io_allowed_run_tw(ctx))
2570 		return -EEXIST;
2571 	if (!llist_empty(&ctx->work_llist))
2572 		io_run_local_work(ctx);
2573 	io_run_task_work();
2574 	io_cqring_overflow_flush(ctx);
2575 	/* if user messes with these they will just get an early return */
2576 	if (__io_cqring_events_user(ctx) >= min_events)
2577 		return 0;
2578 
2579 	if (sig) {
2580 #ifdef CONFIG_COMPAT
2581 		if (in_compat_syscall())
2582 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2583 						      sigsz);
2584 		else
2585 #endif
2586 			ret = set_user_sigmask(sig, sigsz);
2587 
2588 		if (ret)
2589 			return ret;
2590 	}
2591 
2592 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2593 	iowq.wq.private = current;
2594 	INIT_LIST_HEAD(&iowq.wq.entry);
2595 	iowq.ctx = ctx;
2596 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2597 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2598 	iowq.timeout = KTIME_MAX;
2599 
2600 	if (uts) {
2601 		struct timespec64 ts;
2602 
2603 		if (get_timespec64(&ts, uts))
2604 			return -EFAULT;
2605 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2606 	}
2607 
2608 	trace_io_uring_cqring_wait(ctx, min_events);
2609 	do {
2610 		unsigned long check_cq;
2611 
2612 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2613 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2614 
2615 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2616 			set_current_state(TASK_INTERRUPTIBLE);
2617 		} else {
2618 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2619 							TASK_INTERRUPTIBLE);
2620 		}
2621 
2622 		ret = io_cqring_wait_schedule(ctx, &iowq);
2623 		__set_current_state(TASK_RUNNING);
2624 		atomic_set(&ctx->cq_wait_nr, 0);
2625 
2626 		if (ret < 0)
2627 			break;
2628 		/*
2629 		 * Run task_work after scheduling and before io_should_wake().
2630 		 * If we got woken because of task_work being processed, run it
2631 		 * now rather than let the caller do another wait loop.
2632 		 */
2633 		io_run_task_work();
2634 		if (!llist_empty(&ctx->work_llist))
2635 			io_run_local_work(ctx);
2636 
2637 		check_cq = READ_ONCE(ctx->check_cq);
2638 		if (unlikely(check_cq)) {
2639 			/* let the caller flush overflows, retry */
2640 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2641 				io_cqring_do_overflow_flush(ctx);
2642 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2643 				ret = -EBADR;
2644 				break;
2645 			}
2646 		}
2647 
2648 		if (io_should_wake(&iowq)) {
2649 			ret = 0;
2650 			break;
2651 		}
2652 		cond_resched();
2653 	} while (1);
2654 
2655 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2656 		finish_wait(&ctx->cq_wait, &iowq.wq);
2657 	restore_saved_sigmask_unless(ret == -EINTR);
2658 
2659 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2660 }
2661 
2662 static void io_mem_free(void *ptr)
2663 {
2664 	if (!ptr)
2665 		return;
2666 
2667 	folio_put(virt_to_folio(ptr));
2668 }
2669 
2670 static void io_pages_free(struct page ***pages, int npages)
2671 {
2672 	struct page **page_array;
2673 	int i;
2674 
2675 	if (!pages)
2676 		return;
2677 	page_array = *pages;
2678 	for (i = 0; i < npages; i++)
2679 		unpin_user_page(page_array[i]);
2680 	kvfree(page_array);
2681 	*pages = NULL;
2682 }
2683 
2684 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2685 			    unsigned long uaddr, size_t size)
2686 {
2687 	struct page **page_array;
2688 	unsigned int nr_pages;
2689 	int ret;
2690 
2691 	*npages = 0;
2692 
2693 	if (uaddr & (PAGE_SIZE - 1) || !size)
2694 		return ERR_PTR(-EINVAL);
2695 
2696 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2697 	if (nr_pages > USHRT_MAX)
2698 		return ERR_PTR(-EINVAL);
2699 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2700 	if (!page_array)
2701 		return ERR_PTR(-ENOMEM);
2702 
2703 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2704 					page_array);
2705 	if (ret != nr_pages) {
2706 err:
2707 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2708 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2709 	}
2710 	/*
2711 	 * Should be a single page. If the ring is small enough that we can
2712 	 * use a normal page, that is fine. If we need multiple pages, then
2713 	 * userspace should use a huge page. That's the only way to guarantee
2714 	 * that we get contigious memory, outside of just being lucky or
2715 	 * (currently) having low memory fragmentation.
2716 	 */
2717 	if (page_array[0] != page_array[ret - 1])
2718 		goto err;
2719 	*pages = page_array;
2720 	*npages = nr_pages;
2721 	return page_to_virt(page_array[0]);
2722 }
2723 
2724 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2725 			  size_t size)
2726 {
2727 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2728 				size);
2729 }
2730 
2731 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2732 			 size_t size)
2733 {
2734 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2735 				size);
2736 }
2737 
2738 static void io_rings_free(struct io_ring_ctx *ctx)
2739 {
2740 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2741 		io_mem_free(ctx->rings);
2742 		io_mem_free(ctx->sq_sqes);
2743 		ctx->rings = NULL;
2744 		ctx->sq_sqes = NULL;
2745 	} else {
2746 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2747 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2748 	}
2749 }
2750 
2751 static void *io_mem_alloc(size_t size)
2752 {
2753 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2754 	void *ret;
2755 
2756 	ret = (void *) __get_free_pages(gfp, get_order(size));
2757 	if (ret)
2758 		return ret;
2759 	return ERR_PTR(-ENOMEM);
2760 }
2761 
2762 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2763 				unsigned int cq_entries, size_t *sq_offset)
2764 {
2765 	struct io_rings *rings;
2766 	size_t off, sq_array_size;
2767 
2768 	off = struct_size(rings, cqes, cq_entries);
2769 	if (off == SIZE_MAX)
2770 		return SIZE_MAX;
2771 	if (ctx->flags & IORING_SETUP_CQE32) {
2772 		if (check_shl_overflow(off, 1, &off))
2773 			return SIZE_MAX;
2774 	}
2775 
2776 #ifdef CONFIG_SMP
2777 	off = ALIGN(off, SMP_CACHE_BYTES);
2778 	if (off == 0)
2779 		return SIZE_MAX;
2780 #endif
2781 
2782 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2783 		if (sq_offset)
2784 			*sq_offset = SIZE_MAX;
2785 		return off;
2786 	}
2787 
2788 	if (sq_offset)
2789 		*sq_offset = off;
2790 
2791 	sq_array_size = array_size(sizeof(u32), sq_entries);
2792 	if (sq_array_size == SIZE_MAX)
2793 		return SIZE_MAX;
2794 
2795 	if (check_add_overflow(off, sq_array_size, &off))
2796 		return SIZE_MAX;
2797 
2798 	return off;
2799 }
2800 
2801 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2802 			       unsigned int eventfd_async)
2803 {
2804 	struct io_ev_fd *ev_fd;
2805 	__s32 __user *fds = arg;
2806 	int fd;
2807 
2808 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2809 					lockdep_is_held(&ctx->uring_lock));
2810 	if (ev_fd)
2811 		return -EBUSY;
2812 
2813 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2814 		return -EFAULT;
2815 
2816 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2817 	if (!ev_fd)
2818 		return -ENOMEM;
2819 
2820 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2821 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2822 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2823 		kfree(ev_fd);
2824 		return ret;
2825 	}
2826 
2827 	spin_lock(&ctx->completion_lock);
2828 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2829 	spin_unlock(&ctx->completion_lock);
2830 
2831 	ev_fd->eventfd_async = eventfd_async;
2832 	ctx->has_evfd = true;
2833 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2834 	atomic_set(&ev_fd->refs, 1);
2835 	atomic_set(&ev_fd->ops, 0);
2836 	return 0;
2837 }
2838 
2839 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2840 {
2841 	struct io_ev_fd *ev_fd;
2842 
2843 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2844 					lockdep_is_held(&ctx->uring_lock));
2845 	if (ev_fd) {
2846 		ctx->has_evfd = false;
2847 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2848 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2849 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2850 		return 0;
2851 	}
2852 
2853 	return -ENXIO;
2854 }
2855 
2856 static void io_req_caches_free(struct io_ring_ctx *ctx)
2857 {
2858 	struct io_kiocb *req;
2859 	int nr = 0;
2860 
2861 	mutex_lock(&ctx->uring_lock);
2862 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2863 
2864 	while (!io_req_cache_empty(ctx)) {
2865 		req = io_extract_req(ctx);
2866 		kmem_cache_free(req_cachep, req);
2867 		nr++;
2868 	}
2869 	if (nr)
2870 		percpu_ref_put_many(&ctx->refs, nr);
2871 	mutex_unlock(&ctx->uring_lock);
2872 }
2873 
2874 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2875 {
2876 	kfree(container_of(entry, struct io_rsrc_node, cache));
2877 }
2878 
2879 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2880 {
2881 	io_sq_thread_finish(ctx);
2882 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2883 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2884 		return;
2885 
2886 	mutex_lock(&ctx->uring_lock);
2887 	if (ctx->buf_data)
2888 		__io_sqe_buffers_unregister(ctx);
2889 	if (ctx->file_data)
2890 		__io_sqe_files_unregister(ctx);
2891 	io_cqring_overflow_kill(ctx);
2892 	io_eventfd_unregister(ctx);
2893 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2894 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2895 	io_destroy_buffers(ctx);
2896 	mutex_unlock(&ctx->uring_lock);
2897 	if (ctx->sq_creds)
2898 		put_cred(ctx->sq_creds);
2899 	if (ctx->submitter_task)
2900 		put_task_struct(ctx->submitter_task);
2901 
2902 	/* there are no registered resources left, nobody uses it */
2903 	if (ctx->rsrc_node)
2904 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2905 
2906 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2907 
2908 #if defined(CONFIG_UNIX)
2909 	if (ctx->ring_sock) {
2910 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2911 		sock_release(ctx->ring_sock);
2912 	}
2913 #endif
2914 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2915 
2916 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2917 	if (ctx->mm_account) {
2918 		mmdrop(ctx->mm_account);
2919 		ctx->mm_account = NULL;
2920 	}
2921 	io_rings_free(ctx);
2922 
2923 	percpu_ref_exit(&ctx->refs);
2924 	free_uid(ctx->user);
2925 	io_req_caches_free(ctx);
2926 	if (ctx->hash_map)
2927 		io_wq_put_hash(ctx->hash_map);
2928 	kfree(ctx->cancel_table.hbs);
2929 	kfree(ctx->cancel_table_locked.hbs);
2930 	kfree(ctx->io_bl);
2931 	xa_destroy(&ctx->io_bl_xa);
2932 	kfree(ctx);
2933 }
2934 
2935 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2936 {
2937 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2938 					       poll_wq_task_work);
2939 
2940 	mutex_lock(&ctx->uring_lock);
2941 	ctx->poll_activated = true;
2942 	mutex_unlock(&ctx->uring_lock);
2943 
2944 	/*
2945 	 * Wake ups for some events between start of polling and activation
2946 	 * might've been lost due to loose synchronisation.
2947 	 */
2948 	wake_up_all(&ctx->poll_wq);
2949 	percpu_ref_put(&ctx->refs);
2950 }
2951 
2952 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2953 {
2954 	spin_lock(&ctx->completion_lock);
2955 	/* already activated or in progress */
2956 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2957 		goto out;
2958 	if (WARN_ON_ONCE(!ctx->task_complete))
2959 		goto out;
2960 	if (!ctx->submitter_task)
2961 		goto out;
2962 	/*
2963 	 * with ->submitter_task only the submitter task completes requests, we
2964 	 * only need to sync with it, which is done by injecting a tw
2965 	 */
2966 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2967 	percpu_ref_get(&ctx->refs);
2968 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2969 		percpu_ref_put(&ctx->refs);
2970 out:
2971 	spin_unlock(&ctx->completion_lock);
2972 }
2973 
2974 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2975 {
2976 	struct io_ring_ctx *ctx = file->private_data;
2977 	__poll_t mask = 0;
2978 
2979 	if (unlikely(!ctx->poll_activated))
2980 		io_activate_pollwq(ctx);
2981 
2982 	poll_wait(file, &ctx->poll_wq, wait);
2983 	/*
2984 	 * synchronizes with barrier from wq_has_sleeper call in
2985 	 * io_commit_cqring
2986 	 */
2987 	smp_rmb();
2988 	if (!io_sqring_full(ctx))
2989 		mask |= EPOLLOUT | EPOLLWRNORM;
2990 
2991 	/*
2992 	 * Don't flush cqring overflow list here, just do a simple check.
2993 	 * Otherwise there could possible be ABBA deadlock:
2994 	 *      CPU0                    CPU1
2995 	 *      ----                    ----
2996 	 * lock(&ctx->uring_lock);
2997 	 *                              lock(&ep->mtx);
2998 	 *                              lock(&ctx->uring_lock);
2999 	 * lock(&ep->mtx);
3000 	 *
3001 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3002 	 * pushes them to do the flush.
3003 	 */
3004 
3005 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3006 		mask |= EPOLLIN | EPOLLRDNORM;
3007 
3008 	return mask;
3009 }
3010 
3011 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3012 {
3013 	const struct cred *creds;
3014 
3015 	creds = xa_erase(&ctx->personalities, id);
3016 	if (creds) {
3017 		put_cred(creds);
3018 		return 0;
3019 	}
3020 
3021 	return -EINVAL;
3022 }
3023 
3024 struct io_tctx_exit {
3025 	struct callback_head		task_work;
3026 	struct completion		completion;
3027 	struct io_ring_ctx		*ctx;
3028 };
3029 
3030 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3031 {
3032 	struct io_uring_task *tctx = current->io_uring;
3033 	struct io_tctx_exit *work;
3034 
3035 	work = container_of(cb, struct io_tctx_exit, task_work);
3036 	/*
3037 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3038 	 * node. It'll be removed by the end of cancellation, just ignore it.
3039 	 * tctx can be NULL if the queueing of this task_work raced with
3040 	 * work cancelation off the exec path.
3041 	 */
3042 	if (tctx && !atomic_read(&tctx->in_cancel))
3043 		io_uring_del_tctx_node((unsigned long)work->ctx);
3044 	complete(&work->completion);
3045 }
3046 
3047 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3048 {
3049 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3050 
3051 	return req->ctx == data;
3052 }
3053 
3054 static __cold void io_ring_exit_work(struct work_struct *work)
3055 {
3056 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3057 	unsigned long timeout = jiffies + HZ * 60 * 5;
3058 	unsigned long interval = HZ / 20;
3059 	struct io_tctx_exit exit;
3060 	struct io_tctx_node *node;
3061 	int ret;
3062 
3063 	/*
3064 	 * If we're doing polled IO and end up having requests being
3065 	 * submitted async (out-of-line), then completions can come in while
3066 	 * we're waiting for refs to drop. We need to reap these manually,
3067 	 * as nobody else will be looking for them.
3068 	 */
3069 	do {
3070 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3071 			mutex_lock(&ctx->uring_lock);
3072 			io_cqring_overflow_kill(ctx);
3073 			mutex_unlock(&ctx->uring_lock);
3074 		}
3075 
3076 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3077 			io_move_task_work_from_local(ctx);
3078 
3079 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3080 			cond_resched();
3081 
3082 		if (ctx->sq_data) {
3083 			struct io_sq_data *sqd = ctx->sq_data;
3084 			struct task_struct *tsk;
3085 
3086 			io_sq_thread_park(sqd);
3087 			tsk = sqd->thread;
3088 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3089 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3090 						io_cancel_ctx_cb, ctx, true);
3091 			io_sq_thread_unpark(sqd);
3092 		}
3093 
3094 		io_req_caches_free(ctx);
3095 
3096 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3097 			/* there is little hope left, don't run it too often */
3098 			interval = HZ * 60;
3099 		}
3100 		/*
3101 		 * This is really an uninterruptible wait, as it has to be
3102 		 * complete. But it's also run from a kworker, which doesn't
3103 		 * take signals, so it's fine to make it interruptible. This
3104 		 * avoids scenarios where we knowingly can wait much longer
3105 		 * on completions, for example if someone does a SIGSTOP on
3106 		 * a task that needs to finish task_work to make this loop
3107 		 * complete. That's a synthetic situation that should not
3108 		 * cause a stuck task backtrace, and hence a potential panic
3109 		 * on stuck tasks if that is enabled.
3110 		 */
3111 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3112 
3113 	init_completion(&exit.completion);
3114 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3115 	exit.ctx = ctx;
3116 	/*
3117 	 * Some may use context even when all refs and requests have been put,
3118 	 * and they are free to do so while still holding uring_lock or
3119 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3120 	 * this lock/unlock section also waits them to finish.
3121 	 */
3122 	mutex_lock(&ctx->uring_lock);
3123 	while (!list_empty(&ctx->tctx_list)) {
3124 		WARN_ON_ONCE(time_after(jiffies, timeout));
3125 
3126 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3127 					ctx_node);
3128 		/* don't spin on a single task if cancellation failed */
3129 		list_rotate_left(&ctx->tctx_list);
3130 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3131 		if (WARN_ON_ONCE(ret))
3132 			continue;
3133 
3134 		mutex_unlock(&ctx->uring_lock);
3135 		/*
3136 		 * See comment above for
3137 		 * wait_for_completion_interruptible_timeout() on why this
3138 		 * wait is marked as interruptible.
3139 		 */
3140 		wait_for_completion_interruptible(&exit.completion);
3141 		mutex_lock(&ctx->uring_lock);
3142 	}
3143 	mutex_unlock(&ctx->uring_lock);
3144 	spin_lock(&ctx->completion_lock);
3145 	spin_unlock(&ctx->completion_lock);
3146 
3147 	/* pairs with RCU read section in io_req_local_work_add() */
3148 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3149 		synchronize_rcu();
3150 
3151 	io_ring_ctx_free(ctx);
3152 }
3153 
3154 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3155 {
3156 	unsigned long index;
3157 	struct creds *creds;
3158 
3159 	mutex_lock(&ctx->uring_lock);
3160 	percpu_ref_kill(&ctx->refs);
3161 	xa_for_each(&ctx->personalities, index, creds)
3162 		io_unregister_personality(ctx, index);
3163 	if (ctx->rings)
3164 		io_poll_remove_all(ctx, NULL, true);
3165 	mutex_unlock(&ctx->uring_lock);
3166 
3167 	/*
3168 	 * If we failed setting up the ctx, we might not have any rings
3169 	 * and therefore did not submit any requests
3170 	 */
3171 	if (ctx->rings)
3172 		io_kill_timeouts(ctx, NULL, true);
3173 
3174 	flush_delayed_work(&ctx->fallback_work);
3175 
3176 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3177 	/*
3178 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3179 	 * if we're exiting a ton of rings at the same time. It just adds
3180 	 * noise and overhead, there's no discernable change in runtime
3181 	 * over using system_wq.
3182 	 */
3183 	queue_work(system_unbound_wq, &ctx->exit_work);
3184 }
3185 
3186 static int io_uring_release(struct inode *inode, struct file *file)
3187 {
3188 	struct io_ring_ctx *ctx = file->private_data;
3189 
3190 	file->private_data = NULL;
3191 	io_ring_ctx_wait_and_kill(ctx);
3192 	return 0;
3193 }
3194 
3195 struct io_task_cancel {
3196 	struct task_struct *task;
3197 	bool all;
3198 };
3199 
3200 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3201 {
3202 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3203 	struct io_task_cancel *cancel = data;
3204 
3205 	return io_match_task_safe(req, cancel->task, cancel->all);
3206 }
3207 
3208 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3209 					 struct task_struct *task,
3210 					 bool cancel_all)
3211 {
3212 	struct io_defer_entry *de;
3213 	LIST_HEAD(list);
3214 
3215 	spin_lock(&ctx->completion_lock);
3216 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3217 		if (io_match_task_safe(de->req, task, cancel_all)) {
3218 			list_cut_position(&list, &ctx->defer_list, &de->list);
3219 			break;
3220 		}
3221 	}
3222 	spin_unlock(&ctx->completion_lock);
3223 	if (list_empty(&list))
3224 		return false;
3225 
3226 	while (!list_empty(&list)) {
3227 		de = list_first_entry(&list, struct io_defer_entry, list);
3228 		list_del_init(&de->list);
3229 		io_req_task_queue_fail(de->req, -ECANCELED);
3230 		kfree(de);
3231 	}
3232 	return true;
3233 }
3234 
3235 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3236 {
3237 	struct io_tctx_node *node;
3238 	enum io_wq_cancel cret;
3239 	bool ret = false;
3240 
3241 	mutex_lock(&ctx->uring_lock);
3242 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3243 		struct io_uring_task *tctx = node->task->io_uring;
3244 
3245 		/*
3246 		 * io_wq will stay alive while we hold uring_lock, because it's
3247 		 * killed after ctx nodes, which requires to take the lock.
3248 		 */
3249 		if (!tctx || !tctx->io_wq)
3250 			continue;
3251 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3252 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3253 	}
3254 	mutex_unlock(&ctx->uring_lock);
3255 
3256 	return ret;
3257 }
3258 
3259 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3260 						struct task_struct *task,
3261 						bool cancel_all)
3262 {
3263 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3264 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3265 	enum io_wq_cancel cret;
3266 	bool ret = false;
3267 
3268 	/* set it so io_req_local_work_add() would wake us up */
3269 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3270 		atomic_set(&ctx->cq_wait_nr, 1);
3271 		smp_mb();
3272 	}
3273 
3274 	/* failed during ring init, it couldn't have issued any requests */
3275 	if (!ctx->rings)
3276 		return false;
3277 
3278 	if (!task) {
3279 		ret |= io_uring_try_cancel_iowq(ctx);
3280 	} else if (tctx && tctx->io_wq) {
3281 		/*
3282 		 * Cancels requests of all rings, not only @ctx, but
3283 		 * it's fine as the task is in exit/exec.
3284 		 */
3285 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3286 				       &cancel, true);
3287 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3288 	}
3289 
3290 	/* SQPOLL thread does its own polling */
3291 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3292 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3293 		while (!wq_list_empty(&ctx->iopoll_list)) {
3294 			io_iopoll_try_reap_events(ctx);
3295 			ret = true;
3296 			cond_resched();
3297 		}
3298 	}
3299 
3300 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3301 	    io_allowed_defer_tw_run(ctx))
3302 		ret |= io_run_local_work(ctx) > 0;
3303 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3304 	mutex_lock(&ctx->uring_lock);
3305 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3306 	mutex_unlock(&ctx->uring_lock);
3307 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3308 	if (task)
3309 		ret |= io_run_task_work() > 0;
3310 	return ret;
3311 }
3312 
3313 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3314 {
3315 	if (tracked)
3316 		return atomic_read(&tctx->inflight_tracked);
3317 	return percpu_counter_sum(&tctx->inflight);
3318 }
3319 
3320 /*
3321  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3322  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3323  */
3324 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3325 {
3326 	struct io_uring_task *tctx = current->io_uring;
3327 	struct io_ring_ctx *ctx;
3328 	struct io_tctx_node *node;
3329 	unsigned long index;
3330 	s64 inflight;
3331 	DEFINE_WAIT(wait);
3332 
3333 	WARN_ON_ONCE(sqd && sqd->thread != current);
3334 
3335 	if (!current->io_uring)
3336 		return;
3337 	if (tctx->io_wq)
3338 		io_wq_exit_start(tctx->io_wq);
3339 
3340 	atomic_inc(&tctx->in_cancel);
3341 	do {
3342 		bool loop = false;
3343 
3344 		io_uring_drop_tctx_refs(current);
3345 		/* read completions before cancelations */
3346 		inflight = tctx_inflight(tctx, !cancel_all);
3347 		if (!inflight)
3348 			break;
3349 
3350 		if (!sqd) {
3351 			xa_for_each(&tctx->xa, index, node) {
3352 				/* sqpoll task will cancel all its requests */
3353 				if (node->ctx->sq_data)
3354 					continue;
3355 				loop |= io_uring_try_cancel_requests(node->ctx,
3356 							current, cancel_all);
3357 			}
3358 		} else {
3359 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3360 				loop |= io_uring_try_cancel_requests(ctx,
3361 								     current,
3362 								     cancel_all);
3363 		}
3364 
3365 		if (loop) {
3366 			cond_resched();
3367 			continue;
3368 		}
3369 
3370 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3371 		io_run_task_work();
3372 		io_uring_drop_tctx_refs(current);
3373 		xa_for_each(&tctx->xa, index, node) {
3374 			if (!llist_empty(&node->ctx->work_llist)) {
3375 				WARN_ON_ONCE(node->ctx->submitter_task &&
3376 					     node->ctx->submitter_task != current);
3377 				goto end_wait;
3378 			}
3379 		}
3380 		/*
3381 		 * If we've seen completions, retry without waiting. This
3382 		 * avoids a race where a completion comes in before we did
3383 		 * prepare_to_wait().
3384 		 */
3385 		if (inflight == tctx_inflight(tctx, !cancel_all))
3386 			schedule();
3387 end_wait:
3388 		finish_wait(&tctx->wait, &wait);
3389 	} while (1);
3390 
3391 	io_uring_clean_tctx(tctx);
3392 	if (cancel_all) {
3393 		/*
3394 		 * We shouldn't run task_works after cancel, so just leave
3395 		 * ->in_cancel set for normal exit.
3396 		 */
3397 		atomic_dec(&tctx->in_cancel);
3398 		/* for exec all current's requests should be gone, kill tctx */
3399 		__io_uring_free(current);
3400 	}
3401 }
3402 
3403 void __io_uring_cancel(bool cancel_all)
3404 {
3405 	io_uring_cancel_generic(cancel_all, NULL);
3406 }
3407 
3408 static void *io_uring_validate_mmap_request(struct file *file,
3409 					    loff_t pgoff, size_t sz)
3410 {
3411 	struct io_ring_ctx *ctx = file->private_data;
3412 	loff_t offset = pgoff << PAGE_SHIFT;
3413 	struct page *page;
3414 	void *ptr;
3415 
3416 	/* Don't allow mmap if the ring was setup without it */
3417 	if (ctx->flags & IORING_SETUP_NO_MMAP)
3418 		return ERR_PTR(-EINVAL);
3419 
3420 	switch (offset & IORING_OFF_MMAP_MASK) {
3421 	case IORING_OFF_SQ_RING:
3422 	case IORING_OFF_CQ_RING:
3423 		ptr = ctx->rings;
3424 		break;
3425 	case IORING_OFF_SQES:
3426 		ptr = ctx->sq_sqes;
3427 		break;
3428 	case IORING_OFF_PBUF_RING: {
3429 		unsigned int bgid;
3430 
3431 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3432 		mutex_lock(&ctx->uring_lock);
3433 		ptr = io_pbuf_get_address(ctx, bgid);
3434 		mutex_unlock(&ctx->uring_lock);
3435 		if (!ptr)
3436 			return ERR_PTR(-EINVAL);
3437 		break;
3438 		}
3439 	default:
3440 		return ERR_PTR(-EINVAL);
3441 	}
3442 
3443 	page = virt_to_head_page(ptr);
3444 	if (sz > page_size(page))
3445 		return ERR_PTR(-EINVAL);
3446 
3447 	return ptr;
3448 }
3449 
3450 #ifdef CONFIG_MMU
3451 
3452 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3453 {
3454 	size_t sz = vma->vm_end - vma->vm_start;
3455 	unsigned long pfn;
3456 	void *ptr;
3457 
3458 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3459 	if (IS_ERR(ptr))
3460 		return PTR_ERR(ptr);
3461 
3462 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3463 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3464 }
3465 
3466 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3467 			unsigned long addr, unsigned long len,
3468 			unsigned long pgoff, unsigned long flags)
3469 {
3470 	void *ptr;
3471 
3472 	/*
3473 	 * Do not allow to map to user-provided address to avoid breaking the
3474 	 * aliasing rules. Userspace is not able to guess the offset address of
3475 	 * kernel kmalloc()ed memory area.
3476 	 */
3477 	if (addr)
3478 		return -EINVAL;
3479 
3480 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3481 	if (IS_ERR(ptr))
3482 		return -ENOMEM;
3483 
3484 	/*
3485 	 * Some architectures have strong cache aliasing requirements.
3486 	 * For such architectures we need a coherent mapping which aliases
3487 	 * kernel memory *and* userspace memory. To achieve that:
3488 	 * - use a NULL file pointer to reference physical memory, and
3489 	 * - use the kernel virtual address of the shared io_uring context
3490 	 *   (instead of the userspace-provided address, which has to be 0UL
3491 	 *   anyway).
3492 	 * - use the same pgoff which the get_unmapped_area() uses to
3493 	 *   calculate the page colouring.
3494 	 * For architectures without such aliasing requirements, the
3495 	 * architecture will return any suitable mapping because addr is 0.
3496 	 */
3497 	filp = NULL;
3498 	flags |= MAP_SHARED;
3499 	pgoff = 0;	/* has been translated to ptr above */
3500 #ifdef SHM_COLOUR
3501 	addr = (uintptr_t) ptr;
3502 	pgoff = addr >> PAGE_SHIFT;
3503 #else
3504 	addr = 0UL;
3505 #endif
3506 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3507 }
3508 
3509 #else /* !CONFIG_MMU */
3510 
3511 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3512 {
3513 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3514 }
3515 
3516 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3517 {
3518 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3519 }
3520 
3521 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3522 	unsigned long addr, unsigned long len,
3523 	unsigned long pgoff, unsigned long flags)
3524 {
3525 	void *ptr;
3526 
3527 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3528 	if (IS_ERR(ptr))
3529 		return PTR_ERR(ptr);
3530 
3531 	return (unsigned long) ptr;
3532 }
3533 
3534 #endif /* !CONFIG_MMU */
3535 
3536 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3537 {
3538 	if (flags & IORING_ENTER_EXT_ARG) {
3539 		struct io_uring_getevents_arg arg;
3540 
3541 		if (argsz != sizeof(arg))
3542 			return -EINVAL;
3543 		if (copy_from_user(&arg, argp, sizeof(arg)))
3544 			return -EFAULT;
3545 	}
3546 	return 0;
3547 }
3548 
3549 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3550 			  struct __kernel_timespec __user **ts,
3551 			  const sigset_t __user **sig)
3552 {
3553 	struct io_uring_getevents_arg arg;
3554 
3555 	/*
3556 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3557 	 * is just a pointer to the sigset_t.
3558 	 */
3559 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3560 		*sig = (const sigset_t __user *) argp;
3561 		*ts = NULL;
3562 		return 0;
3563 	}
3564 
3565 	/*
3566 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3567 	 * timespec and sigset_t pointers if good.
3568 	 */
3569 	if (*argsz != sizeof(arg))
3570 		return -EINVAL;
3571 	if (copy_from_user(&arg, argp, sizeof(arg)))
3572 		return -EFAULT;
3573 	if (arg.pad)
3574 		return -EINVAL;
3575 	*sig = u64_to_user_ptr(arg.sigmask);
3576 	*argsz = arg.sigmask_sz;
3577 	*ts = u64_to_user_ptr(arg.ts);
3578 	return 0;
3579 }
3580 
3581 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3582 		u32, min_complete, u32, flags, const void __user *, argp,
3583 		size_t, argsz)
3584 {
3585 	struct io_ring_ctx *ctx;
3586 	struct fd f;
3587 	long ret;
3588 
3589 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3590 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3591 			       IORING_ENTER_REGISTERED_RING)))
3592 		return -EINVAL;
3593 
3594 	/*
3595 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3596 	 * need only dereference our task private array to find it.
3597 	 */
3598 	if (flags & IORING_ENTER_REGISTERED_RING) {
3599 		struct io_uring_task *tctx = current->io_uring;
3600 
3601 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3602 			return -EINVAL;
3603 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3604 		f.file = tctx->registered_rings[fd];
3605 		f.flags = 0;
3606 		if (unlikely(!f.file))
3607 			return -EBADF;
3608 	} else {
3609 		f = fdget(fd);
3610 		if (unlikely(!f.file))
3611 			return -EBADF;
3612 		ret = -EOPNOTSUPP;
3613 		if (unlikely(!io_is_uring_fops(f.file)))
3614 			goto out;
3615 	}
3616 
3617 	ctx = f.file->private_data;
3618 	ret = -EBADFD;
3619 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3620 		goto out;
3621 
3622 	/*
3623 	 * For SQ polling, the thread will do all submissions and completions.
3624 	 * Just return the requested submit count, and wake the thread if
3625 	 * we were asked to.
3626 	 */
3627 	ret = 0;
3628 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3629 		io_cqring_overflow_flush(ctx);
3630 
3631 		if (unlikely(ctx->sq_data->thread == NULL)) {
3632 			ret = -EOWNERDEAD;
3633 			goto out;
3634 		}
3635 		if (flags & IORING_ENTER_SQ_WAKEUP)
3636 			wake_up(&ctx->sq_data->wait);
3637 		if (flags & IORING_ENTER_SQ_WAIT)
3638 			io_sqpoll_wait_sq(ctx);
3639 
3640 		ret = to_submit;
3641 	} else if (to_submit) {
3642 		ret = io_uring_add_tctx_node(ctx);
3643 		if (unlikely(ret))
3644 			goto out;
3645 
3646 		mutex_lock(&ctx->uring_lock);
3647 		ret = io_submit_sqes(ctx, to_submit);
3648 		if (ret != to_submit) {
3649 			mutex_unlock(&ctx->uring_lock);
3650 			goto out;
3651 		}
3652 		if (flags & IORING_ENTER_GETEVENTS) {
3653 			if (ctx->syscall_iopoll)
3654 				goto iopoll_locked;
3655 			/*
3656 			 * Ignore errors, we'll soon call io_cqring_wait() and
3657 			 * it should handle ownership problems if any.
3658 			 */
3659 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3660 				(void)io_run_local_work_locked(ctx);
3661 		}
3662 		mutex_unlock(&ctx->uring_lock);
3663 	}
3664 
3665 	if (flags & IORING_ENTER_GETEVENTS) {
3666 		int ret2;
3667 
3668 		if (ctx->syscall_iopoll) {
3669 			/*
3670 			 * We disallow the app entering submit/complete with
3671 			 * polling, but we still need to lock the ring to
3672 			 * prevent racing with polled issue that got punted to
3673 			 * a workqueue.
3674 			 */
3675 			mutex_lock(&ctx->uring_lock);
3676 iopoll_locked:
3677 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3678 			if (likely(!ret2)) {
3679 				min_complete = min(min_complete,
3680 						   ctx->cq_entries);
3681 				ret2 = io_iopoll_check(ctx, min_complete);
3682 			}
3683 			mutex_unlock(&ctx->uring_lock);
3684 		} else {
3685 			const sigset_t __user *sig;
3686 			struct __kernel_timespec __user *ts;
3687 
3688 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3689 			if (likely(!ret2)) {
3690 				min_complete = min(min_complete,
3691 						   ctx->cq_entries);
3692 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3693 						      argsz, ts);
3694 			}
3695 		}
3696 
3697 		if (!ret) {
3698 			ret = ret2;
3699 
3700 			/*
3701 			 * EBADR indicates that one or more CQE were dropped.
3702 			 * Once the user has been informed we can clear the bit
3703 			 * as they are obviously ok with those drops.
3704 			 */
3705 			if (unlikely(ret2 == -EBADR))
3706 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3707 					  &ctx->check_cq);
3708 		}
3709 	}
3710 out:
3711 	fdput(f);
3712 	return ret;
3713 }
3714 
3715 static const struct file_operations io_uring_fops = {
3716 	.release	= io_uring_release,
3717 	.mmap		= io_uring_mmap,
3718 #ifndef CONFIG_MMU
3719 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3720 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3721 #else
3722 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3723 #endif
3724 	.poll		= io_uring_poll,
3725 #ifdef CONFIG_PROC_FS
3726 	.show_fdinfo	= io_uring_show_fdinfo,
3727 #endif
3728 };
3729 
3730 bool io_is_uring_fops(struct file *file)
3731 {
3732 	return file->f_op == &io_uring_fops;
3733 }
3734 
3735 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3736 					 struct io_uring_params *p)
3737 {
3738 	struct io_rings *rings;
3739 	size_t size, sq_array_offset;
3740 	void *ptr;
3741 
3742 	/* make sure these are sane, as we already accounted them */
3743 	ctx->sq_entries = p->sq_entries;
3744 	ctx->cq_entries = p->cq_entries;
3745 
3746 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3747 	if (size == SIZE_MAX)
3748 		return -EOVERFLOW;
3749 
3750 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3751 		rings = io_mem_alloc(size);
3752 	else
3753 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3754 
3755 	if (IS_ERR(rings))
3756 		return PTR_ERR(rings);
3757 
3758 	ctx->rings = rings;
3759 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3760 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3761 	rings->sq_ring_mask = p->sq_entries - 1;
3762 	rings->cq_ring_mask = p->cq_entries - 1;
3763 	rings->sq_ring_entries = p->sq_entries;
3764 	rings->cq_ring_entries = p->cq_entries;
3765 
3766 	if (p->flags & IORING_SETUP_SQE128)
3767 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3768 	else
3769 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3770 	if (size == SIZE_MAX) {
3771 		io_rings_free(ctx);
3772 		return -EOVERFLOW;
3773 	}
3774 
3775 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3776 		ptr = io_mem_alloc(size);
3777 	else
3778 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3779 
3780 	if (IS_ERR(ptr)) {
3781 		io_rings_free(ctx);
3782 		return PTR_ERR(ptr);
3783 	}
3784 
3785 	ctx->sq_sqes = ptr;
3786 	return 0;
3787 }
3788 
3789 static int io_uring_install_fd(struct file *file)
3790 {
3791 	int fd;
3792 
3793 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3794 	if (fd < 0)
3795 		return fd;
3796 	fd_install(fd, file);
3797 	return fd;
3798 }
3799 
3800 /*
3801  * Allocate an anonymous fd, this is what constitutes the application
3802  * visible backing of an io_uring instance. The application mmaps this
3803  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3804  * we have to tie this fd to a socket for file garbage collection purposes.
3805  */
3806 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3807 {
3808 	struct file *file;
3809 #if defined(CONFIG_UNIX)
3810 	int ret;
3811 
3812 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3813 				&ctx->ring_sock);
3814 	if (ret)
3815 		return ERR_PTR(ret);
3816 #endif
3817 
3818 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3819 					 O_RDWR | O_CLOEXEC, NULL);
3820 #if defined(CONFIG_UNIX)
3821 	if (IS_ERR(file)) {
3822 		sock_release(ctx->ring_sock);
3823 		ctx->ring_sock = NULL;
3824 	} else {
3825 		ctx->ring_sock->file = file;
3826 	}
3827 #endif
3828 	return file;
3829 }
3830 
3831 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3832 				  struct io_uring_params __user *params)
3833 {
3834 	struct io_ring_ctx *ctx;
3835 	struct io_uring_task *tctx;
3836 	struct file *file;
3837 	int ret;
3838 
3839 	if (!entries)
3840 		return -EINVAL;
3841 	if (entries > IORING_MAX_ENTRIES) {
3842 		if (!(p->flags & IORING_SETUP_CLAMP))
3843 			return -EINVAL;
3844 		entries = IORING_MAX_ENTRIES;
3845 	}
3846 
3847 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3848 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3849 		return -EINVAL;
3850 
3851 	/*
3852 	 * Use twice as many entries for the CQ ring. It's possible for the
3853 	 * application to drive a higher depth than the size of the SQ ring,
3854 	 * since the sqes are only used at submission time. This allows for
3855 	 * some flexibility in overcommitting a bit. If the application has
3856 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3857 	 * of CQ ring entries manually.
3858 	 */
3859 	p->sq_entries = roundup_pow_of_two(entries);
3860 	if (p->flags & IORING_SETUP_CQSIZE) {
3861 		/*
3862 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3863 		 * to a power-of-two, if it isn't already. We do NOT impose
3864 		 * any cq vs sq ring sizing.
3865 		 */
3866 		if (!p->cq_entries)
3867 			return -EINVAL;
3868 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3869 			if (!(p->flags & IORING_SETUP_CLAMP))
3870 				return -EINVAL;
3871 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3872 		}
3873 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3874 		if (p->cq_entries < p->sq_entries)
3875 			return -EINVAL;
3876 	} else {
3877 		p->cq_entries = 2 * p->sq_entries;
3878 	}
3879 
3880 	ctx = io_ring_ctx_alloc(p);
3881 	if (!ctx)
3882 		return -ENOMEM;
3883 
3884 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3885 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3886 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3887 		ctx->task_complete = true;
3888 
3889 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3890 		ctx->lockless_cq = true;
3891 
3892 	/*
3893 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3894 	 * purposes, see io_activate_pollwq()
3895 	 */
3896 	if (!ctx->task_complete)
3897 		ctx->poll_activated = true;
3898 
3899 	/*
3900 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3901 	 * space applications don't need to do io completion events
3902 	 * polling again, they can rely on io_sq_thread to do polling
3903 	 * work, which can reduce cpu usage and uring_lock contention.
3904 	 */
3905 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3906 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3907 		ctx->syscall_iopoll = 1;
3908 
3909 	ctx->compat = in_compat_syscall();
3910 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3911 		ctx->user = get_uid(current_user());
3912 
3913 	/*
3914 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3915 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3916 	 */
3917 	ret = -EINVAL;
3918 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3919 		/* IPI related flags don't make sense with SQPOLL */
3920 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3921 				  IORING_SETUP_TASKRUN_FLAG |
3922 				  IORING_SETUP_DEFER_TASKRUN))
3923 			goto err;
3924 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3925 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3926 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3927 	} else {
3928 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3929 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3930 			goto err;
3931 		ctx->notify_method = TWA_SIGNAL;
3932 	}
3933 
3934 	/*
3935 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3936 	 * submission task. This implies that there is only one submitter, so enforce
3937 	 * that.
3938 	 */
3939 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3940 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3941 		goto err;
3942 	}
3943 
3944 	/*
3945 	 * This is just grabbed for accounting purposes. When a process exits,
3946 	 * the mm is exited and dropped before the files, hence we need to hang
3947 	 * on to this mm purely for the purposes of being able to unaccount
3948 	 * memory (locked/pinned vm). It's not used for anything else.
3949 	 */
3950 	mmgrab(current->mm);
3951 	ctx->mm_account = current->mm;
3952 
3953 	ret = io_allocate_scq_urings(ctx, p);
3954 	if (ret)
3955 		goto err;
3956 
3957 	ret = io_sq_offload_create(ctx, p);
3958 	if (ret)
3959 		goto err;
3960 
3961 	ret = io_rsrc_init(ctx);
3962 	if (ret)
3963 		goto err;
3964 
3965 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3966 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3967 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3968 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3969 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3970 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3971 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3972 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3973 	p->sq_off.resv1 = 0;
3974 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3975 		p->sq_off.user_addr = 0;
3976 
3977 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3978 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3979 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3980 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3981 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3982 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3983 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3984 	p->cq_off.resv1 = 0;
3985 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3986 		p->cq_off.user_addr = 0;
3987 
3988 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3989 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3990 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3991 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3992 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3993 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3994 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3995 
3996 	if (copy_to_user(params, p, sizeof(*p))) {
3997 		ret = -EFAULT;
3998 		goto err;
3999 	}
4000 
4001 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4002 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4003 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4004 
4005 	file = io_uring_get_file(ctx);
4006 	if (IS_ERR(file)) {
4007 		ret = PTR_ERR(file);
4008 		goto err;
4009 	}
4010 
4011 	ret = __io_uring_add_tctx_node(ctx);
4012 	if (ret)
4013 		goto err_fput;
4014 	tctx = current->io_uring;
4015 
4016 	/*
4017 	 * Install ring fd as the very last thing, so we don't risk someone
4018 	 * having closed it before we finish setup
4019 	 */
4020 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4021 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4022 	else
4023 		ret = io_uring_install_fd(file);
4024 	if (ret < 0)
4025 		goto err_fput;
4026 
4027 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4028 	return ret;
4029 err:
4030 	io_ring_ctx_wait_and_kill(ctx);
4031 	return ret;
4032 err_fput:
4033 	fput(file);
4034 	return ret;
4035 }
4036 
4037 /*
4038  * Sets up an aio uring context, and returns the fd. Applications asks for a
4039  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4040  * params structure passed in.
4041  */
4042 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4043 {
4044 	struct io_uring_params p;
4045 	int i;
4046 
4047 	if (copy_from_user(&p, params, sizeof(p)))
4048 		return -EFAULT;
4049 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4050 		if (p.resv[i])
4051 			return -EINVAL;
4052 	}
4053 
4054 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4055 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4056 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4057 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4058 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4059 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4060 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4061 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4062 			IORING_SETUP_NO_SQARRAY))
4063 		return -EINVAL;
4064 
4065 	return io_uring_create(entries, &p, params);
4066 }
4067 
4068 static inline bool io_uring_allowed(void)
4069 {
4070 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4071 	kgid_t io_uring_group;
4072 
4073 	if (disabled == 2)
4074 		return false;
4075 
4076 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4077 		return true;
4078 
4079 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4080 	if (!gid_valid(io_uring_group))
4081 		return false;
4082 
4083 	return in_group_p(io_uring_group);
4084 }
4085 
4086 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4087 		struct io_uring_params __user *, params)
4088 {
4089 	if (!io_uring_allowed())
4090 		return -EPERM;
4091 
4092 	return io_uring_setup(entries, params);
4093 }
4094 
4095 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4096 			   unsigned nr_args)
4097 {
4098 	struct io_uring_probe *p;
4099 	size_t size;
4100 	int i, ret;
4101 
4102 	size = struct_size(p, ops, nr_args);
4103 	if (size == SIZE_MAX)
4104 		return -EOVERFLOW;
4105 	p = kzalloc(size, GFP_KERNEL);
4106 	if (!p)
4107 		return -ENOMEM;
4108 
4109 	ret = -EFAULT;
4110 	if (copy_from_user(p, arg, size))
4111 		goto out;
4112 	ret = -EINVAL;
4113 	if (memchr_inv(p, 0, size))
4114 		goto out;
4115 
4116 	p->last_op = IORING_OP_LAST - 1;
4117 	if (nr_args > IORING_OP_LAST)
4118 		nr_args = IORING_OP_LAST;
4119 
4120 	for (i = 0; i < nr_args; i++) {
4121 		p->ops[i].op = i;
4122 		if (!io_issue_defs[i].not_supported)
4123 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4124 	}
4125 	p->ops_len = i;
4126 
4127 	ret = 0;
4128 	if (copy_to_user(arg, p, size))
4129 		ret = -EFAULT;
4130 out:
4131 	kfree(p);
4132 	return ret;
4133 }
4134 
4135 static int io_register_personality(struct io_ring_ctx *ctx)
4136 {
4137 	const struct cred *creds;
4138 	u32 id;
4139 	int ret;
4140 
4141 	creds = get_current_cred();
4142 
4143 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4144 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4145 	if (ret < 0) {
4146 		put_cred(creds);
4147 		return ret;
4148 	}
4149 	return id;
4150 }
4151 
4152 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4153 					   void __user *arg, unsigned int nr_args)
4154 {
4155 	struct io_uring_restriction *res;
4156 	size_t size;
4157 	int i, ret;
4158 
4159 	/* Restrictions allowed only if rings started disabled */
4160 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4161 		return -EBADFD;
4162 
4163 	/* We allow only a single restrictions registration */
4164 	if (ctx->restrictions.registered)
4165 		return -EBUSY;
4166 
4167 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4168 		return -EINVAL;
4169 
4170 	size = array_size(nr_args, sizeof(*res));
4171 	if (size == SIZE_MAX)
4172 		return -EOVERFLOW;
4173 
4174 	res = memdup_user(arg, size);
4175 	if (IS_ERR(res))
4176 		return PTR_ERR(res);
4177 
4178 	ret = 0;
4179 
4180 	for (i = 0; i < nr_args; i++) {
4181 		switch (res[i].opcode) {
4182 		case IORING_RESTRICTION_REGISTER_OP:
4183 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4184 				ret = -EINVAL;
4185 				goto out;
4186 			}
4187 
4188 			__set_bit(res[i].register_op,
4189 				  ctx->restrictions.register_op);
4190 			break;
4191 		case IORING_RESTRICTION_SQE_OP:
4192 			if (res[i].sqe_op >= IORING_OP_LAST) {
4193 				ret = -EINVAL;
4194 				goto out;
4195 			}
4196 
4197 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4198 			break;
4199 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4200 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4201 			break;
4202 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4203 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4204 			break;
4205 		default:
4206 			ret = -EINVAL;
4207 			goto out;
4208 		}
4209 	}
4210 
4211 out:
4212 	/* Reset all restrictions if an error happened */
4213 	if (ret != 0)
4214 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4215 	else
4216 		ctx->restrictions.registered = true;
4217 
4218 	kfree(res);
4219 	return ret;
4220 }
4221 
4222 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4223 {
4224 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4225 		return -EBADFD;
4226 
4227 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4228 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4229 		/*
4230 		 * Lazy activation attempts would fail if it was polled before
4231 		 * submitter_task is set.
4232 		 */
4233 		if (wq_has_sleeper(&ctx->poll_wq))
4234 			io_activate_pollwq(ctx);
4235 	}
4236 
4237 	if (ctx->restrictions.registered)
4238 		ctx->restricted = 1;
4239 
4240 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4241 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4242 		wake_up(&ctx->sq_data->wait);
4243 	return 0;
4244 }
4245 
4246 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4247 					 cpumask_var_t new_mask)
4248 {
4249 	int ret;
4250 
4251 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4252 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4253 	} else {
4254 		mutex_unlock(&ctx->uring_lock);
4255 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4256 		mutex_lock(&ctx->uring_lock);
4257 	}
4258 
4259 	return ret;
4260 }
4261 
4262 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4263 				       void __user *arg, unsigned len)
4264 {
4265 	cpumask_var_t new_mask;
4266 	int ret;
4267 
4268 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4269 		return -ENOMEM;
4270 
4271 	cpumask_clear(new_mask);
4272 	if (len > cpumask_size())
4273 		len = cpumask_size();
4274 
4275 	if (in_compat_syscall()) {
4276 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4277 					(const compat_ulong_t __user *)arg,
4278 					len * 8 /* CHAR_BIT */);
4279 	} else {
4280 		ret = copy_from_user(new_mask, arg, len);
4281 	}
4282 
4283 	if (ret) {
4284 		free_cpumask_var(new_mask);
4285 		return -EFAULT;
4286 	}
4287 
4288 	ret = __io_register_iowq_aff(ctx, new_mask);
4289 	free_cpumask_var(new_mask);
4290 	return ret;
4291 }
4292 
4293 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4294 {
4295 	return __io_register_iowq_aff(ctx, NULL);
4296 }
4297 
4298 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4299 					       void __user *arg)
4300 	__must_hold(&ctx->uring_lock)
4301 {
4302 	struct io_tctx_node *node;
4303 	struct io_uring_task *tctx = NULL;
4304 	struct io_sq_data *sqd = NULL;
4305 	__u32 new_count[2];
4306 	int i, ret;
4307 
4308 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4309 		return -EFAULT;
4310 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4311 		if (new_count[i] > INT_MAX)
4312 			return -EINVAL;
4313 
4314 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4315 		sqd = ctx->sq_data;
4316 		if (sqd) {
4317 			/*
4318 			 * Observe the correct sqd->lock -> ctx->uring_lock
4319 			 * ordering. Fine to drop uring_lock here, we hold
4320 			 * a ref to the ctx.
4321 			 */
4322 			refcount_inc(&sqd->refs);
4323 			mutex_unlock(&ctx->uring_lock);
4324 			mutex_lock(&sqd->lock);
4325 			mutex_lock(&ctx->uring_lock);
4326 			if (sqd->thread)
4327 				tctx = sqd->thread->io_uring;
4328 		}
4329 	} else {
4330 		tctx = current->io_uring;
4331 	}
4332 
4333 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4334 
4335 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4336 		if (new_count[i])
4337 			ctx->iowq_limits[i] = new_count[i];
4338 	ctx->iowq_limits_set = true;
4339 
4340 	if (tctx && tctx->io_wq) {
4341 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4342 		if (ret)
4343 			goto err;
4344 	} else {
4345 		memset(new_count, 0, sizeof(new_count));
4346 	}
4347 
4348 	if (sqd) {
4349 		mutex_unlock(&sqd->lock);
4350 		io_put_sq_data(sqd);
4351 	}
4352 
4353 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4354 		return -EFAULT;
4355 
4356 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4357 	if (sqd)
4358 		return 0;
4359 
4360 	/* now propagate the restriction to all registered users */
4361 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4362 		struct io_uring_task *tctx = node->task->io_uring;
4363 
4364 		if (WARN_ON_ONCE(!tctx->io_wq))
4365 			continue;
4366 
4367 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4368 			new_count[i] = ctx->iowq_limits[i];
4369 		/* ignore errors, it always returns zero anyway */
4370 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4371 	}
4372 	return 0;
4373 err:
4374 	if (sqd) {
4375 		mutex_unlock(&sqd->lock);
4376 		io_put_sq_data(sqd);
4377 	}
4378 	return ret;
4379 }
4380 
4381 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4382 			       void __user *arg, unsigned nr_args)
4383 	__releases(ctx->uring_lock)
4384 	__acquires(ctx->uring_lock)
4385 {
4386 	int ret;
4387 
4388 	/*
4389 	 * We don't quiesce the refs for register anymore and so it can't be
4390 	 * dying as we're holding a file ref here.
4391 	 */
4392 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4393 		return -ENXIO;
4394 
4395 	if (ctx->submitter_task && ctx->submitter_task != current)
4396 		return -EEXIST;
4397 
4398 	if (ctx->restricted) {
4399 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4400 		if (!test_bit(opcode, ctx->restrictions.register_op))
4401 			return -EACCES;
4402 	}
4403 
4404 	switch (opcode) {
4405 	case IORING_REGISTER_BUFFERS:
4406 		ret = -EFAULT;
4407 		if (!arg)
4408 			break;
4409 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4410 		break;
4411 	case IORING_UNREGISTER_BUFFERS:
4412 		ret = -EINVAL;
4413 		if (arg || nr_args)
4414 			break;
4415 		ret = io_sqe_buffers_unregister(ctx);
4416 		break;
4417 	case IORING_REGISTER_FILES:
4418 		ret = -EFAULT;
4419 		if (!arg)
4420 			break;
4421 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4422 		break;
4423 	case IORING_UNREGISTER_FILES:
4424 		ret = -EINVAL;
4425 		if (arg || nr_args)
4426 			break;
4427 		ret = io_sqe_files_unregister(ctx);
4428 		break;
4429 	case IORING_REGISTER_FILES_UPDATE:
4430 		ret = io_register_files_update(ctx, arg, nr_args);
4431 		break;
4432 	case IORING_REGISTER_EVENTFD:
4433 		ret = -EINVAL;
4434 		if (nr_args != 1)
4435 			break;
4436 		ret = io_eventfd_register(ctx, arg, 0);
4437 		break;
4438 	case IORING_REGISTER_EVENTFD_ASYNC:
4439 		ret = -EINVAL;
4440 		if (nr_args != 1)
4441 			break;
4442 		ret = io_eventfd_register(ctx, arg, 1);
4443 		break;
4444 	case IORING_UNREGISTER_EVENTFD:
4445 		ret = -EINVAL;
4446 		if (arg || nr_args)
4447 			break;
4448 		ret = io_eventfd_unregister(ctx);
4449 		break;
4450 	case IORING_REGISTER_PROBE:
4451 		ret = -EINVAL;
4452 		if (!arg || nr_args > 256)
4453 			break;
4454 		ret = io_probe(ctx, arg, nr_args);
4455 		break;
4456 	case IORING_REGISTER_PERSONALITY:
4457 		ret = -EINVAL;
4458 		if (arg || nr_args)
4459 			break;
4460 		ret = io_register_personality(ctx);
4461 		break;
4462 	case IORING_UNREGISTER_PERSONALITY:
4463 		ret = -EINVAL;
4464 		if (arg)
4465 			break;
4466 		ret = io_unregister_personality(ctx, nr_args);
4467 		break;
4468 	case IORING_REGISTER_ENABLE_RINGS:
4469 		ret = -EINVAL;
4470 		if (arg || nr_args)
4471 			break;
4472 		ret = io_register_enable_rings(ctx);
4473 		break;
4474 	case IORING_REGISTER_RESTRICTIONS:
4475 		ret = io_register_restrictions(ctx, arg, nr_args);
4476 		break;
4477 	case IORING_REGISTER_FILES2:
4478 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4479 		break;
4480 	case IORING_REGISTER_FILES_UPDATE2:
4481 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4482 					      IORING_RSRC_FILE);
4483 		break;
4484 	case IORING_REGISTER_BUFFERS2:
4485 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4486 		break;
4487 	case IORING_REGISTER_BUFFERS_UPDATE:
4488 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4489 					      IORING_RSRC_BUFFER);
4490 		break;
4491 	case IORING_REGISTER_IOWQ_AFF:
4492 		ret = -EINVAL;
4493 		if (!arg || !nr_args)
4494 			break;
4495 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4496 		break;
4497 	case IORING_UNREGISTER_IOWQ_AFF:
4498 		ret = -EINVAL;
4499 		if (arg || nr_args)
4500 			break;
4501 		ret = io_unregister_iowq_aff(ctx);
4502 		break;
4503 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4504 		ret = -EINVAL;
4505 		if (!arg || nr_args != 2)
4506 			break;
4507 		ret = io_register_iowq_max_workers(ctx, arg);
4508 		break;
4509 	case IORING_REGISTER_RING_FDS:
4510 		ret = io_ringfd_register(ctx, arg, nr_args);
4511 		break;
4512 	case IORING_UNREGISTER_RING_FDS:
4513 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4514 		break;
4515 	case IORING_REGISTER_PBUF_RING:
4516 		ret = -EINVAL;
4517 		if (!arg || nr_args != 1)
4518 			break;
4519 		ret = io_register_pbuf_ring(ctx, arg);
4520 		break;
4521 	case IORING_UNREGISTER_PBUF_RING:
4522 		ret = -EINVAL;
4523 		if (!arg || nr_args != 1)
4524 			break;
4525 		ret = io_unregister_pbuf_ring(ctx, arg);
4526 		break;
4527 	case IORING_REGISTER_SYNC_CANCEL:
4528 		ret = -EINVAL;
4529 		if (!arg || nr_args != 1)
4530 			break;
4531 		ret = io_sync_cancel(ctx, arg);
4532 		break;
4533 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4534 		ret = -EINVAL;
4535 		if (!arg || nr_args)
4536 			break;
4537 		ret = io_register_file_alloc_range(ctx, arg);
4538 		break;
4539 	default:
4540 		ret = -EINVAL;
4541 		break;
4542 	}
4543 
4544 	return ret;
4545 }
4546 
4547 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4548 		void __user *, arg, unsigned int, nr_args)
4549 {
4550 	struct io_ring_ctx *ctx;
4551 	long ret = -EBADF;
4552 	struct fd f;
4553 	bool use_registered_ring;
4554 
4555 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4556 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4557 
4558 	if (opcode >= IORING_REGISTER_LAST)
4559 		return -EINVAL;
4560 
4561 	if (use_registered_ring) {
4562 		/*
4563 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4564 		 * need only dereference our task private array to find it.
4565 		 */
4566 		struct io_uring_task *tctx = current->io_uring;
4567 
4568 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4569 			return -EINVAL;
4570 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4571 		f.file = tctx->registered_rings[fd];
4572 		f.flags = 0;
4573 		if (unlikely(!f.file))
4574 			return -EBADF;
4575 	} else {
4576 		f = fdget(fd);
4577 		if (unlikely(!f.file))
4578 			return -EBADF;
4579 		ret = -EOPNOTSUPP;
4580 		if (!io_is_uring_fops(f.file))
4581 			goto out_fput;
4582 	}
4583 
4584 	ctx = f.file->private_data;
4585 
4586 	mutex_lock(&ctx->uring_lock);
4587 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4588 	mutex_unlock(&ctx->uring_lock);
4589 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4590 out_fput:
4591 	fdput(f);
4592 	return ret;
4593 }
4594 
4595 static int __init io_uring_init(void)
4596 {
4597 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4598 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4599 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4600 } while (0)
4601 
4602 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4603 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4604 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4605 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4606 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4607 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4608 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4609 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4610 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4611 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4612 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4613 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4614 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4615 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4616 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4617 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4618 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4619 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4620 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4621 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4622 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4623 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4624 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4625 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4626 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4627 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4628 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4629 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4630 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4631 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4632 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4633 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4634 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4635 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4636 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4637 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4638 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4639 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4640 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4641 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4642 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4643 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4644 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4645 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4646 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4647 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4648 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4649 
4650 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4651 		     sizeof(struct io_uring_rsrc_update));
4652 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4653 		     sizeof(struct io_uring_rsrc_update2));
4654 
4655 	/* ->buf_index is u16 */
4656 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4657 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4658 		     offsetof(struct io_uring_buf_ring, tail));
4659 
4660 	/* should fit into one byte */
4661 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4662 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4663 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4664 
4665 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4666 
4667 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4668 
4669 	io_uring_optable_init();
4670 
4671 	/*
4672 	 * Allow user copy in the per-command field, which starts after the
4673 	 * file in io_kiocb and until the opcode field. The openat2 handling
4674 	 * requires copying in user memory into the io_kiocb object in that
4675 	 * range, and HARDENED_USERCOPY will complain if we haven't
4676 	 * correctly annotated this range.
4677 	 */
4678 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4679 				sizeof(struct io_kiocb), 0,
4680 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4681 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4682 				offsetof(struct io_kiocb, cmd.data),
4683 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4684 
4685 #ifdef CONFIG_SYSCTL
4686 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4687 #endif
4688 
4689 	return 0;
4690 };
4691 __initcall(io_uring_init);
4692