1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 #include "zcrx.h" 101 102 #include "timeout.h" 103 #include "poll.h" 104 #include "rw.h" 105 #include "alloc_cache.h" 106 #include "eventfd.h" 107 108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 109 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 110 111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 113 114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 118 REQ_F_ASYNC_DATA) 119 120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \ 121 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 #define IO_LOCAL_TW_DEFAULT_MAX 20 128 129 struct io_defer_entry { 130 struct list_head list; 131 struct io_kiocb *req; 132 u32 seq; 133 }; 134 135 /* requests with any of those set should undergo io_disarm_next() */ 136 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 137 138 /* 139 * No waiters. It's larger than any valid value of the tw counter 140 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 141 */ 142 #define IO_CQ_WAKE_INIT (-1U) 143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 145 146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 147 struct io_uring_task *tctx, 148 bool cancel_all, 149 bool is_sqpoll_thread); 150 151 static void io_queue_sqe(struct io_kiocb *req); 152 153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 154 155 struct kmem_cache *req_cachep; 156 static struct workqueue_struct *iou_wq __ro_after_init; 157 158 static int __read_mostly sysctl_io_uring_disabled; 159 static int __read_mostly sysctl_io_uring_group = -1; 160 161 #ifdef CONFIG_SYSCTL 162 static const struct ctl_table kernel_io_uring_disabled_table[] = { 163 { 164 .procname = "io_uring_disabled", 165 .data = &sysctl_io_uring_disabled, 166 .maxlen = sizeof(sysctl_io_uring_disabled), 167 .mode = 0644, 168 .proc_handler = proc_dointvec_minmax, 169 .extra1 = SYSCTL_ZERO, 170 .extra2 = SYSCTL_TWO, 171 }, 172 { 173 .procname = "io_uring_group", 174 .data = &sysctl_io_uring_group, 175 .maxlen = sizeof(gid_t), 176 .mode = 0644, 177 .proc_handler = proc_dointvec, 178 }, 179 }; 180 #endif 181 182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 183 { 184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 185 } 186 187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 188 { 189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 190 } 191 192 static bool io_match_linked(struct io_kiocb *head) 193 { 194 struct io_kiocb *req; 195 196 io_for_each_link(req, head) { 197 if (req->flags & REQ_F_INFLIGHT) 198 return true; 199 } 200 return false; 201 } 202 203 /* 204 * As io_match_task() but protected against racing with linked timeouts. 205 * User must not hold timeout_lock. 206 */ 207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 208 bool cancel_all) 209 { 210 bool matched; 211 212 if (tctx && head->tctx != tctx) 213 return false; 214 if (cancel_all) 215 return true; 216 217 if (head->flags & REQ_F_LINK_TIMEOUT) { 218 struct io_ring_ctx *ctx = head->ctx; 219 220 /* protect against races with linked timeouts */ 221 raw_spin_lock_irq(&ctx->timeout_lock); 222 matched = io_match_linked(head); 223 raw_spin_unlock_irq(&ctx->timeout_lock); 224 } else { 225 matched = io_match_linked(head); 226 } 227 return matched; 228 } 229 230 static inline void req_fail_link_node(struct io_kiocb *req, int res) 231 { 232 req_set_fail(req); 233 io_req_set_res(req, res, 0); 234 } 235 236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 237 { 238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 239 } 240 241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 242 { 243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 244 245 complete(&ctx->ref_comp); 246 } 247 248 static __cold void io_fallback_req_func(struct work_struct *work) 249 { 250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 251 fallback_work.work); 252 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 253 struct io_kiocb *req, *tmp; 254 struct io_tw_state ts = {}; 255 256 percpu_ref_get(&ctx->refs); 257 mutex_lock(&ctx->uring_lock); 258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 259 req->io_task_work.func(req, ts); 260 io_submit_flush_completions(ctx); 261 mutex_unlock(&ctx->uring_lock); 262 percpu_ref_put(&ctx->refs); 263 } 264 265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 266 { 267 unsigned int hash_buckets; 268 int i; 269 270 do { 271 hash_buckets = 1U << bits; 272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 273 GFP_KERNEL_ACCOUNT); 274 if (table->hbs) 275 break; 276 if (bits == 1) 277 return -ENOMEM; 278 bits--; 279 } while (1); 280 281 table->hash_bits = bits; 282 for (i = 0; i < hash_buckets; i++) 283 INIT_HLIST_HEAD(&table->hbs[i].list); 284 return 0; 285 } 286 287 static void io_free_alloc_caches(struct io_ring_ctx *ctx) 288 { 289 io_alloc_cache_free(&ctx->apoll_cache, kfree); 290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free); 293 io_alloc_cache_free(&ctx->msg_cache, kfree); 294 io_futex_cache_free(ctx); 295 io_rsrc_cache_free(ctx); 296 } 297 298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 299 { 300 struct io_ring_ctx *ctx; 301 int hash_bits; 302 bool ret; 303 304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 305 if (!ctx) 306 return NULL; 307 308 xa_init(&ctx->io_bl_xa); 309 310 /* 311 * Use 5 bits less than the max cq entries, that should give us around 312 * 32 entries per hash list if totally full and uniformly spread, but 313 * don't keep too many buckets to not overconsume memory. 314 */ 315 hash_bits = ilog2(p->cq_entries) - 5; 316 hash_bits = clamp(hash_bits, 1, 8); 317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 ctx->hybrid_poll_time = LLONG_MAX; 325 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 326 init_waitqueue_head(&ctx->sqo_sq_wait); 327 INIT_LIST_HEAD(&ctx->sqd_list); 328 INIT_LIST_HEAD(&ctx->cq_overflow_list); 329 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 330 sizeof(struct async_poll), 0); 331 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct io_async_msghdr), 333 offsetof(struct io_async_msghdr, clear)); 334 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 335 sizeof(struct io_async_rw), 336 offsetof(struct io_async_rw, clear)); 337 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX, 338 sizeof(struct io_async_cmd), 339 sizeof(struct io_async_cmd)); 340 spin_lock_init(&ctx->msg_lock); 341 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 342 sizeof(struct io_kiocb), 0); 343 ret |= io_futex_cache_init(ctx); 344 ret |= io_rsrc_cache_init(ctx); 345 if (ret) 346 goto free_ref; 347 init_completion(&ctx->ref_comp); 348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 349 mutex_init(&ctx->uring_lock); 350 init_waitqueue_head(&ctx->cq_wait); 351 init_waitqueue_head(&ctx->poll_wq); 352 spin_lock_init(&ctx->completion_lock); 353 raw_spin_lock_init(&ctx->timeout_lock); 354 INIT_WQ_LIST(&ctx->iopoll_list); 355 INIT_LIST_HEAD(&ctx->defer_list); 356 INIT_LIST_HEAD(&ctx->timeout_list); 357 INIT_LIST_HEAD(&ctx->ltimeout_list); 358 init_llist_head(&ctx->work_llist); 359 INIT_LIST_HEAD(&ctx->tctx_list); 360 ctx->submit_state.free_list.next = NULL; 361 INIT_HLIST_HEAD(&ctx->waitid_list); 362 #ifdef CONFIG_FUTEX 363 INIT_HLIST_HEAD(&ctx->futex_list); 364 #endif 365 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 366 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 367 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 368 io_napi_init(ctx); 369 mutex_init(&ctx->mmap_lock); 370 371 return ctx; 372 373 free_ref: 374 percpu_ref_exit(&ctx->refs); 375 err: 376 io_free_alloc_caches(ctx); 377 kvfree(ctx->cancel_table.hbs); 378 xa_destroy(&ctx->io_bl_xa); 379 kfree(ctx); 380 return NULL; 381 } 382 383 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 384 { 385 struct io_rings *r = ctx->rings; 386 387 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 388 ctx->cq_extra--; 389 } 390 391 static bool req_need_defer(struct io_kiocb *req, u32 seq) 392 { 393 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 394 struct io_ring_ctx *ctx = req->ctx; 395 396 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 397 } 398 399 return false; 400 } 401 402 static void io_clean_op(struct io_kiocb *req) 403 { 404 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED)) 405 io_kbuf_drop_legacy(req); 406 407 if (req->flags & REQ_F_NEED_CLEANUP) { 408 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 409 410 if (def->cleanup) 411 def->cleanup(req); 412 } 413 if ((req->flags & REQ_F_POLLED) && req->apoll) { 414 kfree(req->apoll->double_poll); 415 kfree(req->apoll); 416 req->apoll = NULL; 417 } 418 if (req->flags & REQ_F_INFLIGHT) 419 atomic_dec(&req->tctx->inflight_tracked); 420 if (req->flags & REQ_F_CREDS) 421 put_cred(req->creds); 422 if (req->flags & REQ_F_ASYNC_DATA) { 423 kfree(req->async_data); 424 req->async_data = NULL; 425 } 426 req->flags &= ~IO_REQ_CLEAN_FLAGS; 427 } 428 429 static inline void io_req_track_inflight(struct io_kiocb *req) 430 { 431 if (!(req->flags & REQ_F_INFLIGHT)) { 432 req->flags |= REQ_F_INFLIGHT; 433 atomic_inc(&req->tctx->inflight_tracked); 434 } 435 } 436 437 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 438 { 439 if (WARN_ON_ONCE(!req->link)) 440 return NULL; 441 442 req->flags &= ~REQ_F_ARM_LTIMEOUT; 443 req->flags |= REQ_F_LINK_TIMEOUT; 444 445 /* linked timeouts should have two refs once prep'ed */ 446 io_req_set_refcount(req); 447 __io_req_set_refcount(req->link, 2); 448 return req->link; 449 } 450 451 static void io_prep_async_work(struct io_kiocb *req) 452 { 453 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 454 struct io_ring_ctx *ctx = req->ctx; 455 456 if (!(req->flags & REQ_F_CREDS)) { 457 req->flags |= REQ_F_CREDS; 458 req->creds = get_current_cred(); 459 } 460 461 req->work.list.next = NULL; 462 atomic_set(&req->work.flags, 0); 463 if (req->flags & REQ_F_FORCE_ASYNC) 464 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 465 466 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 467 req->flags |= io_file_get_flags(req->file); 468 469 if (req->file && (req->flags & REQ_F_ISREG)) { 470 bool should_hash = def->hash_reg_file; 471 472 /* don't serialize this request if the fs doesn't need it */ 473 if (should_hash && (req->file->f_flags & O_DIRECT) && 474 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 475 should_hash = false; 476 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 477 io_wq_hash_work(&req->work, file_inode(req->file)); 478 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 479 if (def->unbound_nonreg_file) 480 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 481 } 482 } 483 484 static void io_prep_async_link(struct io_kiocb *req) 485 { 486 struct io_kiocb *cur; 487 488 if (req->flags & REQ_F_LINK_TIMEOUT) { 489 struct io_ring_ctx *ctx = req->ctx; 490 491 raw_spin_lock_irq(&ctx->timeout_lock); 492 io_for_each_link(cur, req) 493 io_prep_async_work(cur); 494 raw_spin_unlock_irq(&ctx->timeout_lock); 495 } else { 496 io_for_each_link(cur, req) 497 io_prep_async_work(cur); 498 } 499 } 500 501 static void io_queue_iowq(struct io_kiocb *req) 502 { 503 struct io_uring_task *tctx = req->tctx; 504 505 BUG_ON(!tctx); 506 507 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 508 io_req_task_queue_fail(req, -ECANCELED); 509 return; 510 } 511 512 /* init ->work of the whole link before punting */ 513 io_prep_async_link(req); 514 515 /* 516 * Not expected to happen, but if we do have a bug where this _can_ 517 * happen, catch it here and ensure the request is marked as 518 * canceled. That will make io-wq go through the usual work cancel 519 * procedure rather than attempt to run this request (or create a new 520 * worker for it). 521 */ 522 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 523 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 524 525 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 526 io_wq_enqueue(tctx->io_wq, &req->work); 527 } 528 529 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw) 530 { 531 io_queue_iowq(req); 532 } 533 534 void io_req_queue_iowq(struct io_kiocb *req) 535 { 536 req->io_task_work.func = io_req_queue_iowq_tw; 537 io_req_task_work_add(req); 538 } 539 540 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) 541 { 542 spin_lock(&ctx->completion_lock); 543 while (!list_empty(&ctx->defer_list)) { 544 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 545 struct io_defer_entry, list); 546 547 if (req_need_defer(de->req, de->seq)) 548 break; 549 list_del_init(&de->list); 550 io_req_task_queue(de->req); 551 kfree(de); 552 } 553 spin_unlock(&ctx->completion_lock); 554 } 555 556 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 557 { 558 if (ctx->poll_activated) 559 io_poll_wq_wake(ctx); 560 if (ctx->off_timeout_used) 561 io_flush_timeouts(ctx); 562 if (ctx->drain_active) 563 io_queue_deferred(ctx); 564 if (ctx->has_evfd) 565 io_eventfd_flush_signal(ctx); 566 } 567 568 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 569 { 570 if (!ctx->lockless_cq) 571 spin_lock(&ctx->completion_lock); 572 } 573 574 static inline void io_cq_lock(struct io_ring_ctx *ctx) 575 __acquires(ctx->completion_lock) 576 { 577 spin_lock(&ctx->completion_lock); 578 } 579 580 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 581 { 582 io_commit_cqring(ctx); 583 if (!ctx->task_complete) { 584 if (!ctx->lockless_cq) 585 spin_unlock(&ctx->completion_lock); 586 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 587 if (!ctx->syscall_iopoll) 588 io_cqring_wake(ctx); 589 } 590 io_commit_cqring_flush(ctx); 591 } 592 593 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 594 __releases(ctx->completion_lock) 595 { 596 io_commit_cqring(ctx); 597 spin_unlock(&ctx->completion_lock); 598 io_cqring_wake(ctx); 599 io_commit_cqring_flush(ctx); 600 } 601 602 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 603 { 604 size_t cqe_size = sizeof(struct io_uring_cqe); 605 606 lockdep_assert_held(&ctx->uring_lock); 607 608 /* don't abort if we're dying, entries must get freed */ 609 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 610 return; 611 612 if (ctx->flags & IORING_SETUP_CQE32) 613 cqe_size <<= 1; 614 615 io_cq_lock(ctx); 616 while (!list_empty(&ctx->cq_overflow_list)) { 617 struct io_uring_cqe *cqe; 618 struct io_overflow_cqe *ocqe; 619 620 ocqe = list_first_entry(&ctx->cq_overflow_list, 621 struct io_overflow_cqe, list); 622 623 if (!dying) { 624 if (!io_get_cqe_overflow(ctx, &cqe, true)) 625 break; 626 memcpy(cqe, &ocqe->cqe, cqe_size); 627 } 628 list_del(&ocqe->list); 629 kfree(ocqe); 630 631 /* 632 * For silly syzbot cases that deliberately overflow by huge 633 * amounts, check if we need to resched and drop and 634 * reacquire the locks if so. Nothing real would ever hit this. 635 * Ideally we'd have a non-posting unlock for this, but hard 636 * to care for a non-real case. 637 */ 638 if (need_resched()) { 639 ctx->cqe_sentinel = ctx->cqe_cached; 640 io_cq_unlock_post(ctx); 641 mutex_unlock(&ctx->uring_lock); 642 cond_resched(); 643 mutex_lock(&ctx->uring_lock); 644 io_cq_lock(ctx); 645 } 646 } 647 648 if (list_empty(&ctx->cq_overflow_list)) { 649 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 650 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 651 } 652 io_cq_unlock_post(ctx); 653 } 654 655 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 656 { 657 if (ctx->rings) 658 __io_cqring_overflow_flush(ctx, true); 659 } 660 661 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 662 { 663 mutex_lock(&ctx->uring_lock); 664 __io_cqring_overflow_flush(ctx, false); 665 mutex_unlock(&ctx->uring_lock); 666 } 667 668 /* must to be called somewhat shortly after putting a request */ 669 static inline void io_put_task(struct io_kiocb *req) 670 { 671 struct io_uring_task *tctx = req->tctx; 672 673 if (likely(tctx->task == current)) { 674 tctx->cached_refs++; 675 } else { 676 percpu_counter_sub(&tctx->inflight, 1); 677 if (unlikely(atomic_read(&tctx->in_cancel))) 678 wake_up(&tctx->wait); 679 put_task_struct(tctx->task); 680 } 681 } 682 683 void io_task_refs_refill(struct io_uring_task *tctx) 684 { 685 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 686 687 percpu_counter_add(&tctx->inflight, refill); 688 refcount_add(refill, ¤t->usage); 689 tctx->cached_refs += refill; 690 } 691 692 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 693 { 694 struct io_uring_task *tctx = task->io_uring; 695 unsigned int refs = tctx->cached_refs; 696 697 if (refs) { 698 tctx->cached_refs = 0; 699 percpu_counter_sub(&tctx->inflight, refs); 700 put_task_struct_many(task, refs); 701 } 702 } 703 704 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 705 s32 res, u32 cflags, u64 extra1, u64 extra2) 706 { 707 struct io_overflow_cqe *ocqe; 708 size_t ocq_size = sizeof(struct io_overflow_cqe); 709 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 710 711 lockdep_assert_held(&ctx->completion_lock); 712 713 if (is_cqe32) 714 ocq_size += sizeof(struct io_uring_cqe); 715 716 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 717 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 718 if (!ocqe) { 719 /* 720 * If we're in ring overflow flush mode, or in task cancel mode, 721 * or cannot allocate an overflow entry, then we need to drop it 722 * on the floor. 723 */ 724 io_account_cq_overflow(ctx); 725 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 726 return false; 727 } 728 if (list_empty(&ctx->cq_overflow_list)) { 729 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 730 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 731 732 } 733 ocqe->cqe.user_data = user_data; 734 ocqe->cqe.res = res; 735 ocqe->cqe.flags = cflags; 736 if (is_cqe32) { 737 ocqe->cqe.big_cqe[0] = extra1; 738 ocqe->cqe.big_cqe[1] = extra2; 739 } 740 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 741 return true; 742 } 743 744 static void io_req_cqe_overflow(struct io_kiocb *req) 745 { 746 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 747 req->cqe.res, req->cqe.flags, 748 req->big_cqe.extra1, req->big_cqe.extra2); 749 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 750 } 751 752 /* 753 * writes to the cq entry need to come after reading head; the 754 * control dependency is enough as we're using WRITE_ONCE to 755 * fill the cq entry 756 */ 757 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 758 { 759 struct io_rings *rings = ctx->rings; 760 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 761 unsigned int free, queued, len; 762 763 /* 764 * Posting into the CQ when there are pending overflowed CQEs may break 765 * ordering guarantees, which will affect links, F_MORE users and more. 766 * Force overflow the completion. 767 */ 768 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 769 return false; 770 771 /* userspace may cheat modifying the tail, be safe and do min */ 772 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 773 free = ctx->cq_entries - queued; 774 /* we need a contiguous range, limit based on the current array offset */ 775 len = min(free, ctx->cq_entries - off); 776 if (!len) 777 return false; 778 779 if (ctx->flags & IORING_SETUP_CQE32) { 780 off <<= 1; 781 len <<= 1; 782 } 783 784 ctx->cqe_cached = &rings->cqes[off]; 785 ctx->cqe_sentinel = ctx->cqe_cached + len; 786 return true; 787 } 788 789 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 790 u32 cflags) 791 { 792 struct io_uring_cqe *cqe; 793 794 ctx->cq_extra++; 795 796 /* 797 * If we can't get a cq entry, userspace overflowed the 798 * submission (by quite a lot). Increment the overflow count in 799 * the ring. 800 */ 801 if (likely(io_get_cqe(ctx, &cqe))) { 802 WRITE_ONCE(cqe->user_data, user_data); 803 WRITE_ONCE(cqe->res, res); 804 WRITE_ONCE(cqe->flags, cflags); 805 806 if (ctx->flags & IORING_SETUP_CQE32) { 807 WRITE_ONCE(cqe->big_cqe[0], 0); 808 WRITE_ONCE(cqe->big_cqe[1], 0); 809 } 810 811 trace_io_uring_complete(ctx, NULL, cqe); 812 return true; 813 } 814 return false; 815 } 816 817 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 818 { 819 bool filled; 820 821 io_cq_lock(ctx); 822 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 823 if (!filled) 824 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 825 io_cq_unlock_post(ctx); 826 return filled; 827 } 828 829 /* 830 * Must be called from inline task_work so we now a flush will happen later, 831 * and obviously with ctx->uring_lock held (tw always has that). 832 */ 833 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 834 { 835 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 836 spin_lock(&ctx->completion_lock); 837 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 838 spin_unlock(&ctx->completion_lock); 839 } 840 ctx->submit_state.cq_flush = true; 841 } 842 843 /* 844 * A helper for multishot requests posting additional CQEs. 845 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 846 */ 847 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 848 { 849 struct io_ring_ctx *ctx = req->ctx; 850 bool posted; 851 852 /* 853 * If multishot has already posted deferred completions, ensure that 854 * those are flushed first before posting this one. If not, CQEs 855 * could get reordered. 856 */ 857 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 858 __io_submit_flush_completions(ctx); 859 860 lockdep_assert(!io_wq_current_is_worker()); 861 lockdep_assert_held(&ctx->uring_lock); 862 863 if (!ctx->lockless_cq) { 864 spin_lock(&ctx->completion_lock); 865 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 866 spin_unlock(&ctx->completion_lock); 867 } else { 868 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 869 } 870 871 ctx->submit_state.cq_flush = true; 872 return posted; 873 } 874 875 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 876 { 877 struct io_ring_ctx *ctx = req->ctx; 878 bool completed = true; 879 880 /* 881 * All execution paths but io-wq use the deferred completions by 882 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 883 */ 884 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 885 return; 886 887 /* 888 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 889 * the submitter task context, IOPOLL protects with uring_lock. 890 */ 891 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) { 892 defer_complete: 893 req->io_task_work.func = io_req_task_complete; 894 io_req_task_work_add(req); 895 return; 896 } 897 898 io_cq_lock(ctx); 899 if (!(req->flags & REQ_F_CQE_SKIP)) 900 completed = io_fill_cqe_req(ctx, req); 901 io_cq_unlock_post(ctx); 902 903 if (!completed) 904 goto defer_complete; 905 906 /* 907 * We don't free the request here because we know it's called from 908 * io-wq only, which holds a reference, so it cannot be the last put. 909 */ 910 req_ref_put(req); 911 } 912 913 void io_req_defer_failed(struct io_kiocb *req, s32 res) 914 __must_hold(&ctx->uring_lock) 915 { 916 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 917 918 lockdep_assert_held(&req->ctx->uring_lock); 919 920 req_set_fail(req); 921 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 922 if (def->fail) 923 def->fail(req); 924 io_req_complete_defer(req); 925 } 926 927 /* 928 * Don't initialise the fields below on every allocation, but do that in 929 * advance and keep them valid across allocations. 930 */ 931 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 932 { 933 req->ctx = ctx; 934 req->buf_node = NULL; 935 req->file_node = NULL; 936 req->link = NULL; 937 req->async_data = NULL; 938 /* not necessary, but safer to zero */ 939 memset(&req->cqe, 0, sizeof(req->cqe)); 940 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 941 } 942 943 /* 944 * A request might get retired back into the request caches even before opcode 945 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 946 * Because of that, io_alloc_req() should be called only under ->uring_lock 947 * and with extra caution to not get a request that is still worked on. 948 */ 949 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 950 __must_hold(&ctx->uring_lock) 951 { 952 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 953 void *reqs[IO_REQ_ALLOC_BATCH]; 954 int ret; 955 956 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 957 958 /* 959 * Bulk alloc is all-or-nothing. If we fail to get a batch, 960 * retry single alloc to be on the safe side. 961 */ 962 if (unlikely(ret <= 0)) { 963 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 964 if (!reqs[0]) 965 return false; 966 ret = 1; 967 } 968 969 percpu_ref_get_many(&ctx->refs, ret); 970 while (ret--) { 971 struct io_kiocb *req = reqs[ret]; 972 973 io_preinit_req(req, ctx); 974 io_req_add_to_cache(req, ctx); 975 } 976 return true; 977 } 978 979 __cold void io_free_req(struct io_kiocb *req) 980 { 981 /* refs were already put, restore them for io_req_task_complete() */ 982 req->flags &= ~REQ_F_REFCOUNT; 983 /* we only want to free it, don't post CQEs */ 984 req->flags |= REQ_F_CQE_SKIP; 985 req->io_task_work.func = io_req_task_complete; 986 io_req_task_work_add(req); 987 } 988 989 static void __io_req_find_next_prep(struct io_kiocb *req) 990 { 991 struct io_ring_ctx *ctx = req->ctx; 992 993 spin_lock(&ctx->completion_lock); 994 io_disarm_next(req); 995 spin_unlock(&ctx->completion_lock); 996 } 997 998 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 999 { 1000 struct io_kiocb *nxt; 1001 1002 /* 1003 * If LINK is set, we have dependent requests in this chain. If we 1004 * didn't fail this request, queue the first one up, moving any other 1005 * dependencies to the next request. In case of failure, fail the rest 1006 * of the chain. 1007 */ 1008 if (unlikely(req->flags & IO_DISARM_MASK)) 1009 __io_req_find_next_prep(req); 1010 nxt = req->link; 1011 req->link = NULL; 1012 return nxt; 1013 } 1014 1015 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw) 1016 { 1017 if (!ctx) 1018 return; 1019 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1020 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1021 1022 io_submit_flush_completions(ctx); 1023 mutex_unlock(&ctx->uring_lock); 1024 percpu_ref_put(&ctx->refs); 1025 } 1026 1027 /* 1028 * Run queued task_work, returning the number of entries processed in *count. 1029 * If more entries than max_entries are available, stop processing once this 1030 * is reached and return the rest of the list. 1031 */ 1032 struct llist_node *io_handle_tw_list(struct llist_node *node, 1033 unsigned int *count, 1034 unsigned int max_entries) 1035 { 1036 struct io_ring_ctx *ctx = NULL; 1037 struct io_tw_state ts = { }; 1038 1039 do { 1040 struct llist_node *next = node->next; 1041 struct io_kiocb *req = container_of(node, struct io_kiocb, 1042 io_task_work.node); 1043 1044 if (req->ctx != ctx) { 1045 ctx_flush_and_put(ctx, ts); 1046 ctx = req->ctx; 1047 mutex_lock(&ctx->uring_lock); 1048 percpu_ref_get(&ctx->refs); 1049 } 1050 INDIRECT_CALL_2(req->io_task_work.func, 1051 io_poll_task_func, io_req_rw_complete, 1052 req, ts); 1053 node = next; 1054 (*count)++; 1055 if (unlikely(need_resched())) { 1056 ctx_flush_and_put(ctx, ts); 1057 ctx = NULL; 1058 cond_resched(); 1059 } 1060 } while (node && *count < max_entries); 1061 1062 ctx_flush_and_put(ctx, ts); 1063 return node; 1064 } 1065 1066 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1067 { 1068 struct io_ring_ctx *last_ctx = NULL; 1069 struct io_kiocb *req; 1070 1071 while (node) { 1072 req = container_of(node, struct io_kiocb, io_task_work.node); 1073 node = node->next; 1074 if (last_ctx != req->ctx) { 1075 if (last_ctx) { 1076 if (sync) 1077 flush_delayed_work(&last_ctx->fallback_work); 1078 percpu_ref_put(&last_ctx->refs); 1079 } 1080 last_ctx = req->ctx; 1081 percpu_ref_get(&last_ctx->refs); 1082 } 1083 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist)) 1084 schedule_delayed_work(&last_ctx->fallback_work, 1); 1085 } 1086 1087 if (last_ctx) { 1088 if (sync) 1089 flush_delayed_work(&last_ctx->fallback_work); 1090 percpu_ref_put(&last_ctx->refs); 1091 } 1092 } 1093 1094 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1095 { 1096 struct llist_node *node = llist_del_all(&tctx->task_list); 1097 1098 __io_fallback_tw(node, sync); 1099 } 1100 1101 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1102 unsigned int max_entries, 1103 unsigned int *count) 1104 { 1105 struct llist_node *node; 1106 1107 if (unlikely(current->flags & PF_EXITING)) { 1108 io_fallback_tw(tctx, true); 1109 return NULL; 1110 } 1111 1112 node = llist_del_all(&tctx->task_list); 1113 if (node) { 1114 node = llist_reverse_order(node); 1115 node = io_handle_tw_list(node, count, max_entries); 1116 } 1117 1118 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1119 if (unlikely(atomic_read(&tctx->in_cancel))) 1120 io_uring_drop_tctx_refs(current); 1121 1122 trace_io_uring_task_work_run(tctx, *count); 1123 return node; 1124 } 1125 1126 void tctx_task_work(struct callback_head *cb) 1127 { 1128 struct io_uring_task *tctx; 1129 struct llist_node *ret; 1130 unsigned int count = 0; 1131 1132 tctx = container_of(cb, struct io_uring_task, task_work); 1133 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1134 /* can't happen */ 1135 WARN_ON_ONCE(ret); 1136 } 1137 1138 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1139 { 1140 struct io_ring_ctx *ctx = req->ctx; 1141 unsigned nr_wait, nr_tw, nr_tw_prev; 1142 struct llist_node *head; 1143 1144 /* See comment above IO_CQ_WAKE_INIT */ 1145 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1146 1147 /* 1148 * We don't know how many reuqests is there in the link and whether 1149 * they can even be queued lazily, fall back to non-lazy. 1150 */ 1151 if (req->flags & IO_REQ_LINK_FLAGS) 1152 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1153 1154 guard(rcu)(); 1155 1156 head = READ_ONCE(ctx->work_llist.first); 1157 do { 1158 nr_tw_prev = 0; 1159 if (head) { 1160 struct io_kiocb *first_req = container_of(head, 1161 struct io_kiocb, 1162 io_task_work.node); 1163 /* 1164 * Might be executed at any moment, rely on 1165 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1166 */ 1167 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1168 } 1169 1170 /* 1171 * Theoretically, it can overflow, but that's fine as one of 1172 * previous adds should've tried to wake the task. 1173 */ 1174 nr_tw = nr_tw_prev + 1; 1175 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1176 nr_tw = IO_CQ_WAKE_FORCE; 1177 1178 req->nr_tw = nr_tw; 1179 req->io_task_work.node.next = head; 1180 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1181 &req->io_task_work.node)); 1182 1183 /* 1184 * cmpxchg implies a full barrier, which pairs with the barrier 1185 * in set_current_state() on the io_cqring_wait() side. It's used 1186 * to ensure that either we see updated ->cq_wait_nr, or waiters 1187 * going to sleep will observe the work added to the list, which 1188 * is similar to the wait/wawke task state sync. 1189 */ 1190 1191 if (!head) { 1192 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1193 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1194 if (ctx->has_evfd) 1195 io_eventfd_signal(ctx); 1196 } 1197 1198 nr_wait = atomic_read(&ctx->cq_wait_nr); 1199 /* not enough or no one is waiting */ 1200 if (nr_tw < nr_wait) 1201 return; 1202 /* the previous add has already woken it up */ 1203 if (nr_tw_prev >= nr_wait) 1204 return; 1205 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1206 } 1207 1208 static void io_req_normal_work_add(struct io_kiocb *req) 1209 { 1210 struct io_uring_task *tctx = req->tctx; 1211 struct io_ring_ctx *ctx = req->ctx; 1212 1213 /* task_work already pending, we're done */ 1214 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1215 return; 1216 1217 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1218 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1219 1220 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1221 if (ctx->flags & IORING_SETUP_SQPOLL) { 1222 __set_notify_signal(tctx->task); 1223 return; 1224 } 1225 1226 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1227 return; 1228 1229 io_fallback_tw(tctx, false); 1230 } 1231 1232 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1233 { 1234 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1235 io_req_local_work_add(req, flags); 1236 else 1237 io_req_normal_work_add(req); 1238 } 1239 1240 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags) 1241 { 1242 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1243 return; 1244 __io_req_task_work_add(req, flags); 1245 } 1246 1247 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1248 { 1249 struct llist_node *node = llist_del_all(&ctx->work_llist); 1250 1251 __io_fallback_tw(node, false); 1252 node = llist_del_all(&ctx->retry_llist); 1253 __io_fallback_tw(node, false); 1254 } 1255 1256 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1257 int min_events) 1258 { 1259 if (!io_local_work_pending(ctx)) 1260 return false; 1261 if (events < min_events) 1262 return true; 1263 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1264 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1265 return false; 1266 } 1267 1268 static int __io_run_local_work_loop(struct llist_node **node, 1269 io_tw_token_t tw, 1270 int events) 1271 { 1272 int ret = 0; 1273 1274 while (*node) { 1275 struct llist_node *next = (*node)->next; 1276 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1277 io_task_work.node); 1278 INDIRECT_CALL_2(req->io_task_work.func, 1279 io_poll_task_func, io_req_rw_complete, 1280 req, tw); 1281 *node = next; 1282 if (++ret >= events) 1283 break; 1284 } 1285 1286 return ret; 1287 } 1288 1289 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw, 1290 int min_events, int max_events) 1291 { 1292 struct llist_node *node; 1293 unsigned int loops = 0; 1294 int ret = 0; 1295 1296 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1297 return -EEXIST; 1298 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1299 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1300 again: 1301 min_events -= ret; 1302 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events); 1303 if (ctx->retry_llist.first) 1304 goto retry_done; 1305 1306 /* 1307 * llists are in reverse order, flip it back the right way before 1308 * running the pending items. 1309 */ 1310 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1311 ret += __io_run_local_work_loop(&node, tw, max_events - ret); 1312 ctx->retry_llist.first = node; 1313 loops++; 1314 1315 if (io_run_local_work_continue(ctx, ret, min_events)) 1316 goto again; 1317 retry_done: 1318 io_submit_flush_completions(ctx); 1319 if (io_run_local_work_continue(ctx, ret, min_events)) 1320 goto again; 1321 1322 trace_io_uring_local_work_run(ctx, ret, loops); 1323 return ret; 1324 } 1325 1326 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1327 int min_events) 1328 { 1329 struct io_tw_state ts = {}; 1330 1331 if (!io_local_work_pending(ctx)) 1332 return 0; 1333 return __io_run_local_work(ctx, ts, min_events, 1334 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1335 } 1336 1337 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1338 int max_events) 1339 { 1340 struct io_tw_state ts = {}; 1341 int ret; 1342 1343 mutex_lock(&ctx->uring_lock); 1344 ret = __io_run_local_work(ctx, ts, min_events, max_events); 1345 mutex_unlock(&ctx->uring_lock); 1346 return ret; 1347 } 1348 1349 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw) 1350 { 1351 io_tw_lock(req->ctx, tw); 1352 io_req_defer_failed(req, req->cqe.res); 1353 } 1354 1355 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw) 1356 { 1357 io_tw_lock(req->ctx, tw); 1358 if (unlikely(io_should_terminate_tw())) 1359 io_req_defer_failed(req, -EFAULT); 1360 else if (req->flags & REQ_F_FORCE_ASYNC) 1361 io_queue_iowq(req); 1362 else 1363 io_queue_sqe(req); 1364 } 1365 1366 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1367 { 1368 io_req_set_res(req, ret, 0); 1369 req->io_task_work.func = io_req_task_cancel; 1370 io_req_task_work_add(req); 1371 } 1372 1373 void io_req_task_queue(struct io_kiocb *req) 1374 { 1375 req->io_task_work.func = io_req_task_submit; 1376 io_req_task_work_add(req); 1377 } 1378 1379 void io_queue_next(struct io_kiocb *req) 1380 { 1381 struct io_kiocb *nxt = io_req_find_next(req); 1382 1383 if (nxt) 1384 io_req_task_queue(nxt); 1385 } 1386 1387 static void io_free_batch_list(struct io_ring_ctx *ctx, 1388 struct io_wq_work_node *node) 1389 __must_hold(&ctx->uring_lock) 1390 { 1391 do { 1392 struct io_kiocb *req = container_of(node, struct io_kiocb, 1393 comp_list); 1394 1395 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1396 if (req->flags & REQ_F_REISSUE) { 1397 node = req->comp_list.next; 1398 req->flags &= ~REQ_F_REISSUE; 1399 io_queue_iowq(req); 1400 continue; 1401 } 1402 if (req->flags & REQ_F_REFCOUNT) { 1403 node = req->comp_list.next; 1404 if (!req_ref_put_and_test(req)) 1405 continue; 1406 } 1407 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1408 struct async_poll *apoll = req->apoll; 1409 1410 if (apoll->double_poll) 1411 kfree(apoll->double_poll); 1412 io_cache_free(&ctx->apoll_cache, apoll); 1413 req->flags &= ~REQ_F_POLLED; 1414 } 1415 if (req->flags & IO_REQ_LINK_FLAGS) 1416 io_queue_next(req); 1417 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1418 io_clean_op(req); 1419 } 1420 io_put_file(req); 1421 io_req_put_rsrc_nodes(req); 1422 io_put_task(req); 1423 1424 node = req->comp_list.next; 1425 io_req_add_to_cache(req, ctx); 1426 } while (node); 1427 } 1428 1429 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1430 __must_hold(&ctx->uring_lock) 1431 { 1432 struct io_submit_state *state = &ctx->submit_state; 1433 struct io_wq_work_node *node; 1434 1435 __io_cq_lock(ctx); 1436 __wq_list_for_each(node, &state->compl_reqs) { 1437 struct io_kiocb *req = container_of(node, struct io_kiocb, 1438 comp_list); 1439 1440 /* 1441 * Requests marked with REQUEUE should not post a CQE, they 1442 * will go through the io-wq retry machinery and post one 1443 * later. 1444 */ 1445 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && 1446 unlikely(!io_fill_cqe_req(ctx, req))) { 1447 if (ctx->lockless_cq) { 1448 spin_lock(&ctx->completion_lock); 1449 io_req_cqe_overflow(req); 1450 spin_unlock(&ctx->completion_lock); 1451 } else { 1452 io_req_cqe_overflow(req); 1453 } 1454 } 1455 } 1456 __io_cq_unlock_post(ctx); 1457 1458 if (!wq_list_empty(&state->compl_reqs)) { 1459 io_free_batch_list(ctx, state->compl_reqs.first); 1460 INIT_WQ_LIST(&state->compl_reqs); 1461 } 1462 ctx->submit_state.cq_flush = false; 1463 } 1464 1465 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1466 { 1467 /* See comment at the top of this file */ 1468 smp_rmb(); 1469 return __io_cqring_events(ctx); 1470 } 1471 1472 /* 1473 * We can't just wait for polled events to come to us, we have to actively 1474 * find and complete them. 1475 */ 1476 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1477 { 1478 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1479 return; 1480 1481 mutex_lock(&ctx->uring_lock); 1482 while (!wq_list_empty(&ctx->iopoll_list)) { 1483 /* let it sleep and repeat later if can't complete a request */ 1484 if (io_do_iopoll(ctx, true) == 0) 1485 break; 1486 /* 1487 * Ensure we allow local-to-the-cpu processing to take place, 1488 * in this case we need to ensure that we reap all events. 1489 * Also let task_work, etc. to progress by releasing the mutex 1490 */ 1491 if (need_resched()) { 1492 mutex_unlock(&ctx->uring_lock); 1493 cond_resched(); 1494 mutex_lock(&ctx->uring_lock); 1495 } 1496 } 1497 mutex_unlock(&ctx->uring_lock); 1498 } 1499 1500 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events) 1501 { 1502 unsigned int nr_events = 0; 1503 unsigned long check_cq; 1504 1505 min_events = min(min_events, ctx->cq_entries); 1506 1507 lockdep_assert_held(&ctx->uring_lock); 1508 1509 if (!io_allowed_run_tw(ctx)) 1510 return -EEXIST; 1511 1512 check_cq = READ_ONCE(ctx->check_cq); 1513 if (unlikely(check_cq)) { 1514 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1515 __io_cqring_overflow_flush(ctx, false); 1516 /* 1517 * Similarly do not spin if we have not informed the user of any 1518 * dropped CQE. 1519 */ 1520 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1521 return -EBADR; 1522 } 1523 /* 1524 * Don't enter poll loop if we already have events pending. 1525 * If we do, we can potentially be spinning for commands that 1526 * already triggered a CQE (eg in error). 1527 */ 1528 if (io_cqring_events(ctx)) 1529 return 0; 1530 1531 do { 1532 int ret = 0; 1533 1534 /* 1535 * If a submit got punted to a workqueue, we can have the 1536 * application entering polling for a command before it gets 1537 * issued. That app will hold the uring_lock for the duration 1538 * of the poll right here, so we need to take a breather every 1539 * now and then to ensure that the issue has a chance to add 1540 * the poll to the issued list. Otherwise we can spin here 1541 * forever, while the workqueue is stuck trying to acquire the 1542 * very same mutex. 1543 */ 1544 if (wq_list_empty(&ctx->iopoll_list) || 1545 io_task_work_pending(ctx)) { 1546 u32 tail = ctx->cached_cq_tail; 1547 1548 (void) io_run_local_work_locked(ctx, min_events); 1549 1550 if (task_work_pending(current) || 1551 wq_list_empty(&ctx->iopoll_list)) { 1552 mutex_unlock(&ctx->uring_lock); 1553 io_run_task_work(); 1554 mutex_lock(&ctx->uring_lock); 1555 } 1556 /* some requests don't go through iopoll_list */ 1557 if (tail != ctx->cached_cq_tail || 1558 wq_list_empty(&ctx->iopoll_list)) 1559 break; 1560 } 1561 ret = io_do_iopoll(ctx, !min_events); 1562 if (unlikely(ret < 0)) 1563 return ret; 1564 1565 if (task_sigpending(current)) 1566 return -EINTR; 1567 if (need_resched()) 1568 break; 1569 1570 nr_events += ret; 1571 } while (nr_events < min_events); 1572 1573 return 0; 1574 } 1575 1576 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw) 1577 { 1578 io_req_complete_defer(req); 1579 } 1580 1581 /* 1582 * After the iocb has been issued, it's safe to be found on the poll list. 1583 * Adding the kiocb to the list AFTER submission ensures that we don't 1584 * find it from a io_do_iopoll() thread before the issuer is done 1585 * accessing the kiocb cookie. 1586 */ 1587 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1588 { 1589 struct io_ring_ctx *ctx = req->ctx; 1590 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1591 1592 /* workqueue context doesn't hold uring_lock, grab it now */ 1593 if (unlikely(needs_lock)) 1594 mutex_lock(&ctx->uring_lock); 1595 1596 /* 1597 * Track whether we have multiple files in our lists. This will impact 1598 * how we do polling eventually, not spinning if we're on potentially 1599 * different devices. 1600 */ 1601 if (wq_list_empty(&ctx->iopoll_list)) { 1602 ctx->poll_multi_queue = false; 1603 } else if (!ctx->poll_multi_queue) { 1604 struct io_kiocb *list_req; 1605 1606 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1607 comp_list); 1608 if (list_req->file != req->file) 1609 ctx->poll_multi_queue = true; 1610 } 1611 1612 /* 1613 * For fast devices, IO may have already completed. If it has, add 1614 * it to the front so we find it first. 1615 */ 1616 if (READ_ONCE(req->iopoll_completed)) 1617 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1618 else 1619 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1620 1621 if (unlikely(needs_lock)) { 1622 /* 1623 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1624 * in sq thread task context or in io worker task context. If 1625 * current task context is sq thread, we don't need to check 1626 * whether should wake up sq thread. 1627 */ 1628 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1629 wq_has_sleeper(&ctx->sq_data->wait)) 1630 wake_up(&ctx->sq_data->wait); 1631 1632 mutex_unlock(&ctx->uring_lock); 1633 } 1634 } 1635 1636 io_req_flags_t io_file_get_flags(struct file *file) 1637 { 1638 io_req_flags_t res = 0; 1639 1640 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1); 1641 1642 if (S_ISREG(file_inode(file)->i_mode)) 1643 res |= REQ_F_ISREG; 1644 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1645 res |= REQ_F_SUPPORT_NOWAIT; 1646 return res; 1647 } 1648 1649 static u32 io_get_sequence(struct io_kiocb *req) 1650 { 1651 u32 seq = req->ctx->cached_sq_head; 1652 struct io_kiocb *cur; 1653 1654 /* need original cached_sq_head, but it was increased for each req */ 1655 io_for_each_link(cur, req) 1656 seq--; 1657 return seq; 1658 } 1659 1660 static __cold void io_drain_req(struct io_kiocb *req) 1661 __must_hold(&ctx->uring_lock) 1662 { 1663 struct io_ring_ctx *ctx = req->ctx; 1664 struct io_defer_entry *de; 1665 int ret; 1666 u32 seq = io_get_sequence(req); 1667 1668 /* Still need defer if there is pending req in defer list. */ 1669 spin_lock(&ctx->completion_lock); 1670 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1671 spin_unlock(&ctx->completion_lock); 1672 queue: 1673 ctx->drain_active = false; 1674 io_req_task_queue(req); 1675 return; 1676 } 1677 spin_unlock(&ctx->completion_lock); 1678 1679 io_prep_async_link(req); 1680 de = kmalloc(sizeof(*de), GFP_KERNEL); 1681 if (!de) { 1682 ret = -ENOMEM; 1683 io_req_defer_failed(req, ret); 1684 return; 1685 } 1686 1687 spin_lock(&ctx->completion_lock); 1688 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1689 spin_unlock(&ctx->completion_lock); 1690 kfree(de); 1691 goto queue; 1692 } 1693 1694 trace_io_uring_defer(req); 1695 de->req = req; 1696 de->seq = seq; 1697 list_add_tail(&de->list, &ctx->defer_list); 1698 spin_unlock(&ctx->completion_lock); 1699 } 1700 1701 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1702 unsigned int issue_flags) 1703 { 1704 if (req->file || !def->needs_file) 1705 return true; 1706 1707 if (req->flags & REQ_F_FIXED_FILE) 1708 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1709 else 1710 req->file = io_file_get_normal(req, req->cqe.fd); 1711 1712 return !!req->file; 1713 } 1714 1715 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT) 1716 1717 static inline int __io_issue_sqe(struct io_kiocb *req, 1718 unsigned int issue_flags, 1719 const struct io_issue_def *def) 1720 { 1721 const struct cred *creds = NULL; 1722 struct io_kiocb *link = NULL; 1723 int ret; 1724 1725 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) { 1726 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred()) 1727 creds = override_creds(req->creds); 1728 if (req->flags & REQ_F_ARM_LTIMEOUT) 1729 link = __io_prep_linked_timeout(req); 1730 } 1731 1732 if (!def->audit_skip) 1733 audit_uring_entry(req->opcode); 1734 1735 ret = def->issue(req, issue_flags); 1736 1737 if (!def->audit_skip) 1738 audit_uring_exit(!ret, ret); 1739 1740 if (unlikely(creds || link)) { 1741 if (creds) 1742 revert_creds(creds); 1743 if (link) 1744 io_queue_linked_timeout(link); 1745 } 1746 1747 return ret; 1748 } 1749 1750 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1751 { 1752 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1753 int ret; 1754 1755 if (unlikely(!io_assign_file(req, def, issue_flags))) 1756 return -EBADF; 1757 1758 ret = __io_issue_sqe(req, issue_flags, def); 1759 1760 if (ret == IOU_OK) { 1761 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1762 io_req_complete_defer(req); 1763 else 1764 io_req_complete_post(req, issue_flags); 1765 1766 return 0; 1767 } 1768 1769 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1770 ret = 0; 1771 1772 /* If the op doesn't have a file, we're not polling for it */ 1773 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1774 io_iopoll_req_issued(req, issue_flags); 1775 } 1776 return ret; 1777 } 1778 1779 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw) 1780 { 1781 const unsigned int issue_flags = IO_URING_F_NONBLOCK | 1782 IO_URING_F_MULTISHOT | 1783 IO_URING_F_COMPLETE_DEFER; 1784 int ret; 1785 1786 io_tw_lock(req->ctx, tw); 1787 1788 WARN_ON_ONCE(!req->file); 1789 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL)) 1790 return -EFAULT; 1791 1792 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]); 1793 1794 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE); 1795 return ret; 1796 } 1797 1798 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1799 { 1800 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1801 struct io_kiocb *nxt = NULL; 1802 1803 if (req_ref_put_and_test_atomic(req)) { 1804 if (req->flags & IO_REQ_LINK_FLAGS) 1805 nxt = io_req_find_next(req); 1806 io_free_req(req); 1807 } 1808 return nxt ? &nxt->work : NULL; 1809 } 1810 1811 void io_wq_submit_work(struct io_wq_work *work) 1812 { 1813 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1814 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1815 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1816 bool needs_poll = false; 1817 int ret = 0, err = -ECANCELED; 1818 1819 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1820 if (!(req->flags & REQ_F_REFCOUNT)) 1821 __io_req_set_refcount(req, 2); 1822 else 1823 req_ref_get(req); 1824 1825 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1826 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1827 fail: 1828 io_req_task_queue_fail(req, err); 1829 return; 1830 } 1831 if (!io_assign_file(req, def, issue_flags)) { 1832 err = -EBADF; 1833 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1834 goto fail; 1835 } 1836 1837 /* 1838 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1839 * submitter task context. Final request completions are handed to the 1840 * right context, however this is not the case of auxiliary CQEs, 1841 * which is the main mean of operation for multishot requests. 1842 * Don't allow any multishot execution from io-wq. It's more restrictive 1843 * than necessary and also cleaner. 1844 */ 1845 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) { 1846 err = -EBADFD; 1847 if (!io_file_can_poll(req)) 1848 goto fail; 1849 if (req->file->f_flags & O_NONBLOCK || 1850 req->file->f_mode & FMODE_NOWAIT) { 1851 err = -ECANCELED; 1852 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1853 goto fail; 1854 return; 1855 } else { 1856 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT); 1857 } 1858 } 1859 1860 if (req->flags & REQ_F_FORCE_ASYNC) { 1861 bool opcode_poll = def->pollin || def->pollout; 1862 1863 if (opcode_poll && io_file_can_poll(req)) { 1864 needs_poll = true; 1865 issue_flags |= IO_URING_F_NONBLOCK; 1866 } 1867 } 1868 1869 do { 1870 ret = io_issue_sqe(req, issue_flags); 1871 if (ret != -EAGAIN) 1872 break; 1873 1874 /* 1875 * If REQ_F_NOWAIT is set, then don't wait or retry with 1876 * poll. -EAGAIN is final for that case. 1877 */ 1878 if (req->flags & REQ_F_NOWAIT) 1879 break; 1880 1881 /* 1882 * We can get EAGAIN for iopolled IO even though we're 1883 * forcing a sync submission from here, since we can't 1884 * wait for request slots on the block side. 1885 */ 1886 if (!needs_poll) { 1887 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1888 break; 1889 if (io_wq_worker_stopped()) 1890 break; 1891 cond_resched(); 1892 continue; 1893 } 1894 1895 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1896 return; 1897 /* aborted or ready, in either case retry blocking */ 1898 needs_poll = false; 1899 issue_flags &= ~IO_URING_F_NONBLOCK; 1900 } while (1); 1901 1902 /* avoid locking problems by failing it from a clean context */ 1903 if (ret) 1904 io_req_task_queue_fail(req, ret); 1905 } 1906 1907 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1908 unsigned int issue_flags) 1909 { 1910 struct io_ring_ctx *ctx = req->ctx; 1911 struct io_rsrc_node *node; 1912 struct file *file = NULL; 1913 1914 io_ring_submit_lock(ctx, issue_flags); 1915 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1916 if (node) { 1917 io_req_assign_rsrc_node(&req->file_node, node); 1918 req->flags |= io_slot_flags(node); 1919 file = io_slot_file(node); 1920 } 1921 io_ring_submit_unlock(ctx, issue_flags); 1922 return file; 1923 } 1924 1925 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1926 { 1927 struct file *file = fget(fd); 1928 1929 trace_io_uring_file_get(req, fd); 1930 1931 /* we don't allow fixed io_uring files */ 1932 if (file && io_is_uring_fops(file)) 1933 io_req_track_inflight(req); 1934 return file; 1935 } 1936 1937 static void io_queue_async(struct io_kiocb *req, int ret) 1938 __must_hold(&req->ctx->uring_lock) 1939 { 1940 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1941 io_req_defer_failed(req, ret); 1942 return; 1943 } 1944 1945 switch (io_arm_poll_handler(req, 0)) { 1946 case IO_APOLL_READY: 1947 io_kbuf_recycle(req, 0); 1948 io_req_task_queue(req); 1949 break; 1950 case IO_APOLL_ABORTED: 1951 io_kbuf_recycle(req, 0); 1952 io_queue_iowq(req); 1953 break; 1954 case IO_APOLL_OK: 1955 break; 1956 } 1957 } 1958 1959 static inline void io_queue_sqe(struct io_kiocb *req) 1960 __must_hold(&req->ctx->uring_lock) 1961 { 1962 int ret; 1963 1964 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1965 1966 /* 1967 * We async punt it if the file wasn't marked NOWAIT, or if the file 1968 * doesn't support non-blocking read/write attempts 1969 */ 1970 if (unlikely(ret)) 1971 io_queue_async(req, ret); 1972 } 1973 1974 static void io_queue_sqe_fallback(struct io_kiocb *req) 1975 __must_hold(&req->ctx->uring_lock) 1976 { 1977 if (unlikely(req->flags & REQ_F_FAIL)) { 1978 /* 1979 * We don't submit, fail them all, for that replace hardlinks 1980 * with normal links. Extra REQ_F_LINK is tolerated. 1981 */ 1982 req->flags &= ~REQ_F_HARDLINK; 1983 req->flags |= REQ_F_LINK; 1984 io_req_defer_failed(req, req->cqe.res); 1985 } else { 1986 if (unlikely(req->ctx->drain_active)) 1987 io_drain_req(req); 1988 else 1989 io_queue_iowq(req); 1990 } 1991 } 1992 1993 /* 1994 * Check SQE restrictions (opcode and flags). 1995 * 1996 * Returns 'true' if SQE is allowed, 'false' otherwise. 1997 */ 1998 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1999 struct io_kiocb *req, 2000 unsigned int sqe_flags) 2001 { 2002 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2003 return false; 2004 2005 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2006 ctx->restrictions.sqe_flags_required) 2007 return false; 2008 2009 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2010 ctx->restrictions.sqe_flags_required)) 2011 return false; 2012 2013 return true; 2014 } 2015 2016 static void io_init_drain(struct io_ring_ctx *ctx) 2017 { 2018 struct io_kiocb *head = ctx->submit_state.link.head; 2019 2020 ctx->drain_active = true; 2021 if (head) { 2022 /* 2023 * If we need to drain a request in the middle of a link, drain 2024 * the head request and the next request/link after the current 2025 * link. Considering sequential execution of links, 2026 * REQ_F_IO_DRAIN will be maintained for every request of our 2027 * link. 2028 */ 2029 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2030 ctx->drain_next = true; 2031 } 2032 } 2033 2034 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2035 { 2036 /* ensure per-opcode data is cleared if we fail before prep */ 2037 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2038 return err; 2039 } 2040 2041 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2042 const struct io_uring_sqe *sqe) 2043 __must_hold(&ctx->uring_lock) 2044 { 2045 const struct io_issue_def *def; 2046 unsigned int sqe_flags; 2047 int personality; 2048 u8 opcode; 2049 2050 /* req is partially pre-initialised, see io_preinit_req() */ 2051 req->opcode = opcode = READ_ONCE(sqe->opcode); 2052 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2053 sqe_flags = READ_ONCE(sqe->flags); 2054 req->flags = (__force io_req_flags_t) sqe_flags; 2055 req->cqe.user_data = READ_ONCE(sqe->user_data); 2056 req->file = NULL; 2057 req->tctx = current->io_uring; 2058 req->cancel_seq_set = false; 2059 2060 if (unlikely(opcode >= IORING_OP_LAST)) { 2061 req->opcode = 0; 2062 return io_init_fail_req(req, -EINVAL); 2063 } 2064 opcode = array_index_nospec(opcode, IORING_OP_LAST); 2065 2066 def = &io_issue_defs[opcode]; 2067 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2068 /* enforce forwards compatibility on users */ 2069 if (sqe_flags & ~SQE_VALID_FLAGS) 2070 return io_init_fail_req(req, -EINVAL); 2071 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2072 if (!def->buffer_select) 2073 return io_init_fail_req(req, -EOPNOTSUPP); 2074 req->buf_index = READ_ONCE(sqe->buf_group); 2075 } 2076 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2077 ctx->drain_disabled = true; 2078 if (sqe_flags & IOSQE_IO_DRAIN) { 2079 if (ctx->drain_disabled) 2080 return io_init_fail_req(req, -EOPNOTSUPP); 2081 io_init_drain(ctx); 2082 } 2083 } 2084 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2085 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2086 return io_init_fail_req(req, -EACCES); 2087 /* knock it to the slow queue path, will be drained there */ 2088 if (ctx->drain_active) 2089 req->flags |= REQ_F_FORCE_ASYNC; 2090 /* if there is no link, we're at "next" request and need to drain */ 2091 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2092 ctx->drain_next = false; 2093 ctx->drain_active = true; 2094 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2095 } 2096 } 2097 2098 if (!def->ioprio && sqe->ioprio) 2099 return io_init_fail_req(req, -EINVAL); 2100 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2101 return io_init_fail_req(req, -EINVAL); 2102 2103 if (def->needs_file) { 2104 struct io_submit_state *state = &ctx->submit_state; 2105 2106 req->cqe.fd = READ_ONCE(sqe->fd); 2107 2108 /* 2109 * Plug now if we have more than 2 IO left after this, and the 2110 * target is potentially a read/write to block based storage. 2111 */ 2112 if (state->need_plug && def->plug) { 2113 state->plug_started = true; 2114 state->need_plug = false; 2115 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2116 } 2117 } 2118 2119 personality = READ_ONCE(sqe->personality); 2120 if (personality) { 2121 int ret; 2122 2123 req->creds = xa_load(&ctx->personalities, personality); 2124 if (!req->creds) 2125 return io_init_fail_req(req, -EINVAL); 2126 get_cred(req->creds); 2127 ret = security_uring_override_creds(req->creds); 2128 if (ret) { 2129 put_cred(req->creds); 2130 return io_init_fail_req(req, ret); 2131 } 2132 req->flags |= REQ_F_CREDS; 2133 } 2134 2135 return def->prep(req, sqe); 2136 } 2137 2138 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2139 struct io_kiocb *req, int ret) 2140 { 2141 struct io_ring_ctx *ctx = req->ctx; 2142 struct io_submit_link *link = &ctx->submit_state.link; 2143 struct io_kiocb *head = link->head; 2144 2145 trace_io_uring_req_failed(sqe, req, ret); 2146 2147 /* 2148 * Avoid breaking links in the middle as it renders links with SQPOLL 2149 * unusable. Instead of failing eagerly, continue assembling the link if 2150 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2151 * should find the flag and handle the rest. 2152 */ 2153 req_fail_link_node(req, ret); 2154 if (head && !(head->flags & REQ_F_FAIL)) 2155 req_fail_link_node(head, -ECANCELED); 2156 2157 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2158 if (head) { 2159 link->last->link = req; 2160 link->head = NULL; 2161 req = head; 2162 } 2163 io_queue_sqe_fallback(req); 2164 return ret; 2165 } 2166 2167 if (head) 2168 link->last->link = req; 2169 else 2170 link->head = req; 2171 link->last = req; 2172 return 0; 2173 } 2174 2175 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2176 const struct io_uring_sqe *sqe) 2177 __must_hold(&ctx->uring_lock) 2178 { 2179 struct io_submit_link *link = &ctx->submit_state.link; 2180 int ret; 2181 2182 ret = io_init_req(ctx, req, sqe); 2183 if (unlikely(ret)) 2184 return io_submit_fail_init(sqe, req, ret); 2185 2186 trace_io_uring_submit_req(req); 2187 2188 /* 2189 * If we already have a head request, queue this one for async 2190 * submittal once the head completes. If we don't have a head but 2191 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2192 * submitted sync once the chain is complete. If none of those 2193 * conditions are true (normal request), then just queue it. 2194 */ 2195 if (unlikely(link->head)) { 2196 trace_io_uring_link(req, link->last); 2197 link->last->link = req; 2198 link->last = req; 2199 2200 if (req->flags & IO_REQ_LINK_FLAGS) 2201 return 0; 2202 /* last request of the link, flush it */ 2203 req = link->head; 2204 link->head = NULL; 2205 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2206 goto fallback; 2207 2208 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2209 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2210 if (req->flags & IO_REQ_LINK_FLAGS) { 2211 link->head = req; 2212 link->last = req; 2213 } else { 2214 fallback: 2215 io_queue_sqe_fallback(req); 2216 } 2217 return 0; 2218 } 2219 2220 io_queue_sqe(req); 2221 return 0; 2222 } 2223 2224 /* 2225 * Batched submission is done, ensure local IO is flushed out. 2226 */ 2227 static void io_submit_state_end(struct io_ring_ctx *ctx) 2228 { 2229 struct io_submit_state *state = &ctx->submit_state; 2230 2231 if (unlikely(state->link.head)) 2232 io_queue_sqe_fallback(state->link.head); 2233 /* flush only after queuing links as they can generate completions */ 2234 io_submit_flush_completions(ctx); 2235 if (state->plug_started) 2236 blk_finish_plug(&state->plug); 2237 } 2238 2239 /* 2240 * Start submission side cache. 2241 */ 2242 static void io_submit_state_start(struct io_submit_state *state, 2243 unsigned int max_ios) 2244 { 2245 state->plug_started = false; 2246 state->need_plug = max_ios > 2; 2247 state->submit_nr = max_ios; 2248 /* set only head, no need to init link_last in advance */ 2249 state->link.head = NULL; 2250 } 2251 2252 static void io_commit_sqring(struct io_ring_ctx *ctx) 2253 { 2254 struct io_rings *rings = ctx->rings; 2255 2256 /* 2257 * Ensure any loads from the SQEs are done at this point, 2258 * since once we write the new head, the application could 2259 * write new data to them. 2260 */ 2261 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2262 } 2263 2264 /* 2265 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2266 * that is mapped by userspace. This means that care needs to be taken to 2267 * ensure that reads are stable, as we cannot rely on userspace always 2268 * being a good citizen. If members of the sqe are validated and then later 2269 * used, it's important that those reads are done through READ_ONCE() to 2270 * prevent a re-load down the line. 2271 */ 2272 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2273 { 2274 unsigned mask = ctx->sq_entries - 1; 2275 unsigned head = ctx->cached_sq_head++ & mask; 2276 2277 if (static_branch_unlikely(&io_key_has_sqarray) && 2278 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2279 head = READ_ONCE(ctx->sq_array[head]); 2280 if (unlikely(head >= ctx->sq_entries)) { 2281 /* drop invalid entries */ 2282 spin_lock(&ctx->completion_lock); 2283 ctx->cq_extra--; 2284 spin_unlock(&ctx->completion_lock); 2285 WRITE_ONCE(ctx->rings->sq_dropped, 2286 READ_ONCE(ctx->rings->sq_dropped) + 1); 2287 return false; 2288 } 2289 head = array_index_nospec(head, ctx->sq_entries); 2290 } 2291 2292 /* 2293 * The cached sq head (or cq tail) serves two purposes: 2294 * 2295 * 1) allows us to batch the cost of updating the user visible 2296 * head updates. 2297 * 2) allows the kernel side to track the head on its own, even 2298 * though the application is the one updating it. 2299 */ 2300 2301 /* double index for 128-byte SQEs, twice as long */ 2302 if (ctx->flags & IORING_SETUP_SQE128) 2303 head <<= 1; 2304 *sqe = &ctx->sq_sqes[head]; 2305 return true; 2306 } 2307 2308 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2309 __must_hold(&ctx->uring_lock) 2310 { 2311 unsigned int entries = io_sqring_entries(ctx); 2312 unsigned int left; 2313 int ret; 2314 2315 if (unlikely(!entries)) 2316 return 0; 2317 /* make sure SQ entry isn't read before tail */ 2318 ret = left = min(nr, entries); 2319 io_get_task_refs(left); 2320 io_submit_state_start(&ctx->submit_state, left); 2321 2322 do { 2323 const struct io_uring_sqe *sqe; 2324 struct io_kiocb *req; 2325 2326 if (unlikely(!io_alloc_req(ctx, &req))) 2327 break; 2328 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2329 io_req_add_to_cache(req, ctx); 2330 break; 2331 } 2332 2333 /* 2334 * Continue submitting even for sqe failure if the 2335 * ring was setup with IORING_SETUP_SUBMIT_ALL 2336 */ 2337 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2338 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2339 left--; 2340 break; 2341 } 2342 } while (--left); 2343 2344 if (unlikely(left)) { 2345 ret -= left; 2346 /* try again if it submitted nothing and can't allocate a req */ 2347 if (!ret && io_req_cache_empty(ctx)) 2348 ret = -EAGAIN; 2349 current->io_uring->cached_refs += left; 2350 } 2351 2352 io_submit_state_end(ctx); 2353 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2354 io_commit_sqring(ctx); 2355 return ret; 2356 } 2357 2358 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2359 int wake_flags, void *key) 2360 { 2361 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2362 2363 /* 2364 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2365 * the task, and the next invocation will do it. 2366 */ 2367 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2368 return autoremove_wake_function(curr, mode, wake_flags, key); 2369 return -1; 2370 } 2371 2372 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2373 { 2374 if (io_local_work_pending(ctx)) { 2375 __set_current_state(TASK_RUNNING); 2376 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2377 return 0; 2378 } 2379 if (io_run_task_work() > 0) 2380 return 0; 2381 if (task_sigpending(current)) 2382 return -EINTR; 2383 return 0; 2384 } 2385 2386 static bool current_pending_io(void) 2387 { 2388 struct io_uring_task *tctx = current->io_uring; 2389 2390 if (!tctx) 2391 return false; 2392 return percpu_counter_read_positive(&tctx->inflight); 2393 } 2394 2395 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2396 { 2397 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2398 2399 WRITE_ONCE(iowq->hit_timeout, 1); 2400 iowq->min_timeout = 0; 2401 wake_up_process(iowq->wq.private); 2402 return HRTIMER_NORESTART; 2403 } 2404 2405 /* 2406 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2407 * wake up. If not, and we have a normal timeout, switch to that and keep 2408 * sleeping. 2409 */ 2410 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2411 { 2412 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2413 struct io_ring_ctx *ctx = iowq->ctx; 2414 2415 /* no general timeout, or shorter (or equal), we are done */ 2416 if (iowq->timeout == KTIME_MAX || 2417 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2418 goto out_wake; 2419 /* work we may need to run, wake function will see if we need to wake */ 2420 if (io_has_work(ctx)) 2421 goto out_wake; 2422 /* got events since we started waiting, min timeout is done */ 2423 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2424 goto out_wake; 2425 /* if we have any events and min timeout expired, we're done */ 2426 if (io_cqring_events(ctx)) 2427 goto out_wake; 2428 2429 /* 2430 * If using deferred task_work running and application is waiting on 2431 * more than one request, ensure we reset it now where we are switching 2432 * to normal sleeps. Any request completion post min_wait should wake 2433 * the task and return. 2434 */ 2435 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2436 atomic_set(&ctx->cq_wait_nr, 1); 2437 smp_mb(); 2438 if (!llist_empty(&ctx->work_llist)) 2439 goto out_wake; 2440 } 2441 2442 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup); 2443 hrtimer_set_expires(timer, iowq->timeout); 2444 return HRTIMER_RESTART; 2445 out_wake: 2446 return io_cqring_timer_wakeup(timer); 2447 } 2448 2449 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2450 clockid_t clock_id, ktime_t start_time) 2451 { 2452 ktime_t timeout; 2453 2454 if (iowq->min_timeout) { 2455 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2456 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2457 HRTIMER_MODE_ABS); 2458 } else { 2459 timeout = iowq->timeout; 2460 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2461 HRTIMER_MODE_ABS); 2462 } 2463 2464 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2465 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2466 2467 if (!READ_ONCE(iowq->hit_timeout)) 2468 schedule(); 2469 2470 hrtimer_cancel(&iowq->t); 2471 destroy_hrtimer_on_stack(&iowq->t); 2472 __set_current_state(TASK_RUNNING); 2473 2474 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2475 } 2476 2477 struct ext_arg { 2478 size_t argsz; 2479 struct timespec64 ts; 2480 const sigset_t __user *sig; 2481 ktime_t min_time; 2482 bool ts_set; 2483 bool iowait; 2484 }; 2485 2486 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2487 struct io_wait_queue *iowq, 2488 struct ext_arg *ext_arg, 2489 ktime_t start_time) 2490 { 2491 int ret = 0; 2492 2493 /* 2494 * Mark us as being in io_wait if we have pending requests, so cpufreq 2495 * can take into account that the task is waiting for IO - turns out 2496 * to be important for low QD IO. 2497 */ 2498 if (ext_arg->iowait && current_pending_io()) 2499 current->in_iowait = 1; 2500 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2501 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2502 else 2503 schedule(); 2504 current->in_iowait = 0; 2505 return ret; 2506 } 2507 2508 /* If this returns > 0, the caller should retry */ 2509 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2510 struct io_wait_queue *iowq, 2511 struct ext_arg *ext_arg, 2512 ktime_t start_time) 2513 { 2514 if (unlikely(READ_ONCE(ctx->check_cq))) 2515 return 1; 2516 if (unlikely(io_local_work_pending(ctx))) 2517 return 1; 2518 if (unlikely(task_work_pending(current))) 2519 return 1; 2520 if (unlikely(task_sigpending(current))) 2521 return -EINTR; 2522 if (unlikely(io_should_wake(iowq))) 2523 return 0; 2524 2525 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time); 2526 } 2527 2528 /* 2529 * Wait until events become available, if we don't already have some. The 2530 * application must reap them itself, as they reside on the shared cq ring. 2531 */ 2532 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2533 struct ext_arg *ext_arg) 2534 { 2535 struct io_wait_queue iowq; 2536 struct io_rings *rings = ctx->rings; 2537 ktime_t start_time; 2538 int ret; 2539 2540 min_events = min_t(int, min_events, ctx->cq_entries); 2541 2542 if (!io_allowed_run_tw(ctx)) 2543 return -EEXIST; 2544 if (io_local_work_pending(ctx)) 2545 io_run_local_work(ctx, min_events, 2546 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2547 io_run_task_work(); 2548 2549 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2550 io_cqring_do_overflow_flush(ctx); 2551 if (__io_cqring_events_user(ctx) >= min_events) 2552 return 0; 2553 2554 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2555 iowq.wq.private = current; 2556 INIT_LIST_HEAD(&iowq.wq.entry); 2557 iowq.ctx = ctx; 2558 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2559 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2560 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2561 iowq.hit_timeout = 0; 2562 iowq.min_timeout = ext_arg->min_time; 2563 iowq.timeout = KTIME_MAX; 2564 start_time = io_get_time(ctx); 2565 2566 if (ext_arg->ts_set) { 2567 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2568 if (!(flags & IORING_ENTER_ABS_TIMER)) 2569 iowq.timeout = ktime_add(iowq.timeout, start_time); 2570 } 2571 2572 if (ext_arg->sig) { 2573 #ifdef CONFIG_COMPAT 2574 if (in_compat_syscall()) 2575 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2576 ext_arg->argsz); 2577 else 2578 #endif 2579 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2580 2581 if (ret) 2582 return ret; 2583 } 2584 2585 io_napi_busy_loop(ctx, &iowq); 2586 2587 trace_io_uring_cqring_wait(ctx, min_events); 2588 do { 2589 unsigned long check_cq; 2590 int nr_wait; 2591 2592 /* if min timeout has been hit, don't reset wait count */ 2593 if (!iowq.hit_timeout) 2594 nr_wait = (int) iowq.cq_tail - 2595 READ_ONCE(ctx->rings->cq.tail); 2596 else 2597 nr_wait = 1; 2598 2599 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2600 atomic_set(&ctx->cq_wait_nr, nr_wait); 2601 set_current_state(TASK_INTERRUPTIBLE); 2602 } else { 2603 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2604 TASK_INTERRUPTIBLE); 2605 } 2606 2607 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time); 2608 __set_current_state(TASK_RUNNING); 2609 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2610 2611 /* 2612 * Run task_work after scheduling and before io_should_wake(). 2613 * If we got woken because of task_work being processed, run it 2614 * now rather than let the caller do another wait loop. 2615 */ 2616 if (io_local_work_pending(ctx)) 2617 io_run_local_work(ctx, nr_wait, nr_wait); 2618 io_run_task_work(); 2619 2620 /* 2621 * Non-local task_work will be run on exit to userspace, but 2622 * if we're using DEFER_TASKRUN, then we could have waited 2623 * with a timeout for a number of requests. If the timeout 2624 * hits, we could have some requests ready to process. Ensure 2625 * this break is _after_ we have run task_work, to avoid 2626 * deferring running potentially pending requests until the 2627 * next time we wait for events. 2628 */ 2629 if (ret < 0) 2630 break; 2631 2632 check_cq = READ_ONCE(ctx->check_cq); 2633 if (unlikely(check_cq)) { 2634 /* let the caller flush overflows, retry */ 2635 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2636 io_cqring_do_overflow_flush(ctx); 2637 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2638 ret = -EBADR; 2639 break; 2640 } 2641 } 2642 2643 if (io_should_wake(&iowq)) { 2644 ret = 0; 2645 break; 2646 } 2647 cond_resched(); 2648 } while (1); 2649 2650 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2651 finish_wait(&ctx->cq_wait, &iowq.wq); 2652 restore_saved_sigmask_unless(ret == -EINTR); 2653 2654 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2655 } 2656 2657 static void io_rings_free(struct io_ring_ctx *ctx) 2658 { 2659 io_free_region(ctx, &ctx->sq_region); 2660 io_free_region(ctx, &ctx->ring_region); 2661 ctx->rings = NULL; 2662 ctx->sq_sqes = NULL; 2663 } 2664 2665 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2666 unsigned int cq_entries, size_t *sq_offset) 2667 { 2668 struct io_rings *rings; 2669 size_t off, sq_array_size; 2670 2671 off = struct_size(rings, cqes, cq_entries); 2672 if (off == SIZE_MAX) 2673 return SIZE_MAX; 2674 if (flags & IORING_SETUP_CQE32) { 2675 if (check_shl_overflow(off, 1, &off)) 2676 return SIZE_MAX; 2677 } 2678 2679 #ifdef CONFIG_SMP 2680 off = ALIGN(off, SMP_CACHE_BYTES); 2681 if (off == 0) 2682 return SIZE_MAX; 2683 #endif 2684 2685 if (flags & IORING_SETUP_NO_SQARRAY) { 2686 *sq_offset = SIZE_MAX; 2687 return off; 2688 } 2689 2690 *sq_offset = off; 2691 2692 sq_array_size = array_size(sizeof(u32), sq_entries); 2693 if (sq_array_size == SIZE_MAX) 2694 return SIZE_MAX; 2695 2696 if (check_add_overflow(off, sq_array_size, &off)) 2697 return SIZE_MAX; 2698 2699 return off; 2700 } 2701 2702 static void io_req_caches_free(struct io_ring_ctx *ctx) 2703 { 2704 struct io_kiocb *req; 2705 int nr = 0; 2706 2707 mutex_lock(&ctx->uring_lock); 2708 2709 while (!io_req_cache_empty(ctx)) { 2710 req = io_extract_req(ctx); 2711 kmem_cache_free(req_cachep, req); 2712 nr++; 2713 } 2714 if (nr) 2715 percpu_ref_put_many(&ctx->refs, nr); 2716 mutex_unlock(&ctx->uring_lock); 2717 } 2718 2719 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2720 { 2721 io_sq_thread_finish(ctx); 2722 2723 mutex_lock(&ctx->uring_lock); 2724 io_sqe_buffers_unregister(ctx); 2725 io_sqe_files_unregister(ctx); 2726 io_unregister_zcrx_ifqs(ctx); 2727 io_cqring_overflow_kill(ctx); 2728 io_eventfd_unregister(ctx); 2729 io_free_alloc_caches(ctx); 2730 io_destroy_buffers(ctx); 2731 io_free_region(ctx, &ctx->param_region); 2732 mutex_unlock(&ctx->uring_lock); 2733 if (ctx->sq_creds) 2734 put_cred(ctx->sq_creds); 2735 if (ctx->submitter_task) 2736 put_task_struct(ctx->submitter_task); 2737 2738 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2739 2740 if (ctx->mm_account) { 2741 mmdrop(ctx->mm_account); 2742 ctx->mm_account = NULL; 2743 } 2744 io_rings_free(ctx); 2745 2746 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2747 static_branch_dec(&io_key_has_sqarray); 2748 2749 percpu_ref_exit(&ctx->refs); 2750 free_uid(ctx->user); 2751 io_req_caches_free(ctx); 2752 if (ctx->hash_map) 2753 io_wq_put_hash(ctx->hash_map); 2754 io_napi_free(ctx); 2755 kvfree(ctx->cancel_table.hbs); 2756 xa_destroy(&ctx->io_bl_xa); 2757 kfree(ctx); 2758 } 2759 2760 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2761 { 2762 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2763 poll_wq_task_work); 2764 2765 mutex_lock(&ctx->uring_lock); 2766 ctx->poll_activated = true; 2767 mutex_unlock(&ctx->uring_lock); 2768 2769 /* 2770 * Wake ups for some events between start of polling and activation 2771 * might've been lost due to loose synchronisation. 2772 */ 2773 wake_up_all(&ctx->poll_wq); 2774 percpu_ref_put(&ctx->refs); 2775 } 2776 2777 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2778 { 2779 spin_lock(&ctx->completion_lock); 2780 /* already activated or in progress */ 2781 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2782 goto out; 2783 if (WARN_ON_ONCE(!ctx->task_complete)) 2784 goto out; 2785 if (!ctx->submitter_task) 2786 goto out; 2787 /* 2788 * with ->submitter_task only the submitter task completes requests, we 2789 * only need to sync with it, which is done by injecting a tw 2790 */ 2791 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2792 percpu_ref_get(&ctx->refs); 2793 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2794 percpu_ref_put(&ctx->refs); 2795 out: 2796 spin_unlock(&ctx->completion_lock); 2797 } 2798 2799 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2800 { 2801 struct io_ring_ctx *ctx = file->private_data; 2802 __poll_t mask = 0; 2803 2804 if (unlikely(!ctx->poll_activated)) 2805 io_activate_pollwq(ctx); 2806 /* 2807 * provides mb() which pairs with barrier from wq_has_sleeper 2808 * call in io_commit_cqring 2809 */ 2810 poll_wait(file, &ctx->poll_wq, wait); 2811 2812 if (!io_sqring_full(ctx)) 2813 mask |= EPOLLOUT | EPOLLWRNORM; 2814 2815 /* 2816 * Don't flush cqring overflow list here, just do a simple check. 2817 * Otherwise there could possible be ABBA deadlock: 2818 * CPU0 CPU1 2819 * ---- ---- 2820 * lock(&ctx->uring_lock); 2821 * lock(&ep->mtx); 2822 * lock(&ctx->uring_lock); 2823 * lock(&ep->mtx); 2824 * 2825 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2826 * pushes them to do the flush. 2827 */ 2828 2829 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2830 mask |= EPOLLIN | EPOLLRDNORM; 2831 2832 return mask; 2833 } 2834 2835 struct io_tctx_exit { 2836 struct callback_head task_work; 2837 struct completion completion; 2838 struct io_ring_ctx *ctx; 2839 }; 2840 2841 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2842 { 2843 struct io_uring_task *tctx = current->io_uring; 2844 struct io_tctx_exit *work; 2845 2846 work = container_of(cb, struct io_tctx_exit, task_work); 2847 /* 2848 * When @in_cancel, we're in cancellation and it's racy to remove the 2849 * node. It'll be removed by the end of cancellation, just ignore it. 2850 * tctx can be NULL if the queueing of this task_work raced with 2851 * work cancelation off the exec path. 2852 */ 2853 if (tctx && !atomic_read(&tctx->in_cancel)) 2854 io_uring_del_tctx_node((unsigned long)work->ctx); 2855 complete(&work->completion); 2856 } 2857 2858 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2859 { 2860 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2861 2862 return req->ctx == data; 2863 } 2864 2865 static __cold void io_ring_exit_work(struct work_struct *work) 2866 { 2867 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2868 unsigned long timeout = jiffies + HZ * 60 * 5; 2869 unsigned long interval = HZ / 20; 2870 struct io_tctx_exit exit; 2871 struct io_tctx_node *node; 2872 int ret; 2873 2874 /* 2875 * If we're doing polled IO and end up having requests being 2876 * submitted async (out-of-line), then completions can come in while 2877 * we're waiting for refs to drop. We need to reap these manually, 2878 * as nobody else will be looking for them. 2879 */ 2880 do { 2881 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2882 mutex_lock(&ctx->uring_lock); 2883 io_cqring_overflow_kill(ctx); 2884 mutex_unlock(&ctx->uring_lock); 2885 } 2886 if (ctx->ifq) { 2887 mutex_lock(&ctx->uring_lock); 2888 io_shutdown_zcrx_ifqs(ctx); 2889 mutex_unlock(&ctx->uring_lock); 2890 } 2891 2892 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2893 io_move_task_work_from_local(ctx); 2894 2895 /* The SQPOLL thread never reaches this path */ 2896 while (io_uring_try_cancel_requests(ctx, NULL, true, false)) 2897 cond_resched(); 2898 2899 if (ctx->sq_data) { 2900 struct io_sq_data *sqd = ctx->sq_data; 2901 struct task_struct *tsk; 2902 2903 io_sq_thread_park(sqd); 2904 tsk = sqd->thread; 2905 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2906 io_wq_cancel_cb(tsk->io_uring->io_wq, 2907 io_cancel_ctx_cb, ctx, true); 2908 io_sq_thread_unpark(sqd); 2909 } 2910 2911 io_req_caches_free(ctx); 2912 2913 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2914 /* there is little hope left, don't run it too often */ 2915 interval = HZ * 60; 2916 } 2917 /* 2918 * This is really an uninterruptible wait, as it has to be 2919 * complete. But it's also run from a kworker, which doesn't 2920 * take signals, so it's fine to make it interruptible. This 2921 * avoids scenarios where we knowingly can wait much longer 2922 * on completions, for example if someone does a SIGSTOP on 2923 * a task that needs to finish task_work to make this loop 2924 * complete. That's a synthetic situation that should not 2925 * cause a stuck task backtrace, and hence a potential panic 2926 * on stuck tasks if that is enabled. 2927 */ 2928 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2929 2930 init_completion(&exit.completion); 2931 init_task_work(&exit.task_work, io_tctx_exit_cb); 2932 exit.ctx = ctx; 2933 2934 mutex_lock(&ctx->uring_lock); 2935 while (!list_empty(&ctx->tctx_list)) { 2936 WARN_ON_ONCE(time_after(jiffies, timeout)); 2937 2938 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2939 ctx_node); 2940 /* don't spin on a single task if cancellation failed */ 2941 list_rotate_left(&ctx->tctx_list); 2942 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2943 if (WARN_ON_ONCE(ret)) 2944 continue; 2945 2946 mutex_unlock(&ctx->uring_lock); 2947 /* 2948 * See comment above for 2949 * wait_for_completion_interruptible_timeout() on why this 2950 * wait is marked as interruptible. 2951 */ 2952 wait_for_completion_interruptible(&exit.completion); 2953 mutex_lock(&ctx->uring_lock); 2954 } 2955 mutex_unlock(&ctx->uring_lock); 2956 spin_lock(&ctx->completion_lock); 2957 spin_unlock(&ctx->completion_lock); 2958 2959 /* pairs with RCU read section in io_req_local_work_add() */ 2960 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2961 synchronize_rcu(); 2962 2963 io_ring_ctx_free(ctx); 2964 } 2965 2966 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2967 { 2968 unsigned long index; 2969 struct creds *creds; 2970 2971 mutex_lock(&ctx->uring_lock); 2972 percpu_ref_kill(&ctx->refs); 2973 xa_for_each(&ctx->personalities, index, creds) 2974 io_unregister_personality(ctx, index); 2975 mutex_unlock(&ctx->uring_lock); 2976 2977 flush_delayed_work(&ctx->fallback_work); 2978 2979 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2980 /* 2981 * Use system_unbound_wq to avoid spawning tons of event kworkers 2982 * if we're exiting a ton of rings at the same time. It just adds 2983 * noise and overhead, there's no discernable change in runtime 2984 * over using system_wq. 2985 */ 2986 queue_work(iou_wq, &ctx->exit_work); 2987 } 2988 2989 static int io_uring_release(struct inode *inode, struct file *file) 2990 { 2991 struct io_ring_ctx *ctx = file->private_data; 2992 2993 file->private_data = NULL; 2994 io_ring_ctx_wait_and_kill(ctx); 2995 return 0; 2996 } 2997 2998 struct io_task_cancel { 2999 struct io_uring_task *tctx; 3000 bool all; 3001 }; 3002 3003 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3004 { 3005 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3006 struct io_task_cancel *cancel = data; 3007 3008 return io_match_task_safe(req, cancel->tctx, cancel->all); 3009 } 3010 3011 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3012 struct io_uring_task *tctx, 3013 bool cancel_all) 3014 { 3015 struct io_defer_entry *de; 3016 LIST_HEAD(list); 3017 3018 spin_lock(&ctx->completion_lock); 3019 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3020 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3021 list_cut_position(&list, &ctx->defer_list, &de->list); 3022 break; 3023 } 3024 } 3025 spin_unlock(&ctx->completion_lock); 3026 if (list_empty(&list)) 3027 return false; 3028 3029 while (!list_empty(&list)) { 3030 de = list_first_entry(&list, struct io_defer_entry, list); 3031 list_del_init(&de->list); 3032 io_req_task_queue_fail(de->req, -ECANCELED); 3033 kfree(de); 3034 } 3035 return true; 3036 } 3037 3038 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3039 { 3040 struct io_tctx_node *node; 3041 enum io_wq_cancel cret; 3042 bool ret = false; 3043 3044 mutex_lock(&ctx->uring_lock); 3045 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3046 struct io_uring_task *tctx = node->task->io_uring; 3047 3048 /* 3049 * io_wq will stay alive while we hold uring_lock, because it's 3050 * killed after ctx nodes, which requires to take the lock. 3051 */ 3052 if (!tctx || !tctx->io_wq) 3053 continue; 3054 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3055 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3056 } 3057 mutex_unlock(&ctx->uring_lock); 3058 3059 return ret; 3060 } 3061 3062 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3063 struct io_uring_task *tctx, 3064 bool cancel_all, 3065 bool is_sqpoll_thread) 3066 { 3067 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3068 enum io_wq_cancel cret; 3069 bool ret = false; 3070 3071 /* set it so io_req_local_work_add() would wake us up */ 3072 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3073 atomic_set(&ctx->cq_wait_nr, 1); 3074 smp_mb(); 3075 } 3076 3077 /* failed during ring init, it couldn't have issued any requests */ 3078 if (!ctx->rings) 3079 return false; 3080 3081 if (!tctx) { 3082 ret |= io_uring_try_cancel_iowq(ctx); 3083 } else if (tctx->io_wq) { 3084 /* 3085 * Cancels requests of all rings, not only @ctx, but 3086 * it's fine as the task is in exit/exec. 3087 */ 3088 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3089 &cancel, true); 3090 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3091 } 3092 3093 /* SQPOLL thread does its own polling */ 3094 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3095 is_sqpoll_thread) { 3096 while (!wq_list_empty(&ctx->iopoll_list)) { 3097 io_iopoll_try_reap_events(ctx); 3098 ret = true; 3099 cond_resched(); 3100 } 3101 } 3102 3103 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3104 io_allowed_defer_tw_run(ctx)) 3105 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3106 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3107 mutex_lock(&ctx->uring_lock); 3108 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3109 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3110 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3111 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3112 mutex_unlock(&ctx->uring_lock); 3113 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3114 if (tctx) 3115 ret |= io_run_task_work() > 0; 3116 else 3117 ret |= flush_delayed_work(&ctx->fallback_work); 3118 return ret; 3119 } 3120 3121 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3122 { 3123 if (tracked) 3124 return atomic_read(&tctx->inflight_tracked); 3125 return percpu_counter_sum(&tctx->inflight); 3126 } 3127 3128 /* 3129 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3130 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3131 */ 3132 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3133 { 3134 struct io_uring_task *tctx = current->io_uring; 3135 struct io_ring_ctx *ctx; 3136 struct io_tctx_node *node; 3137 unsigned long index; 3138 s64 inflight; 3139 DEFINE_WAIT(wait); 3140 3141 WARN_ON_ONCE(sqd && sqd->thread != current); 3142 3143 if (!current->io_uring) 3144 return; 3145 if (tctx->io_wq) 3146 io_wq_exit_start(tctx->io_wq); 3147 3148 atomic_inc(&tctx->in_cancel); 3149 do { 3150 bool loop = false; 3151 3152 io_uring_drop_tctx_refs(current); 3153 if (!tctx_inflight(tctx, !cancel_all)) 3154 break; 3155 3156 /* read completions before cancelations */ 3157 inflight = tctx_inflight(tctx, false); 3158 if (!inflight) 3159 break; 3160 3161 if (!sqd) { 3162 xa_for_each(&tctx->xa, index, node) { 3163 /* sqpoll task will cancel all its requests */ 3164 if (node->ctx->sq_data) 3165 continue; 3166 loop |= io_uring_try_cancel_requests(node->ctx, 3167 current->io_uring, 3168 cancel_all, 3169 false); 3170 } 3171 } else { 3172 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3173 loop |= io_uring_try_cancel_requests(ctx, 3174 current->io_uring, 3175 cancel_all, 3176 true); 3177 } 3178 3179 if (loop) { 3180 cond_resched(); 3181 continue; 3182 } 3183 3184 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3185 io_run_task_work(); 3186 io_uring_drop_tctx_refs(current); 3187 xa_for_each(&tctx->xa, index, node) { 3188 if (io_local_work_pending(node->ctx)) { 3189 WARN_ON_ONCE(node->ctx->submitter_task && 3190 node->ctx->submitter_task != current); 3191 goto end_wait; 3192 } 3193 } 3194 /* 3195 * If we've seen completions, retry without waiting. This 3196 * avoids a race where a completion comes in before we did 3197 * prepare_to_wait(). 3198 */ 3199 if (inflight == tctx_inflight(tctx, !cancel_all)) 3200 schedule(); 3201 end_wait: 3202 finish_wait(&tctx->wait, &wait); 3203 } while (1); 3204 3205 io_uring_clean_tctx(tctx); 3206 if (cancel_all) { 3207 /* 3208 * We shouldn't run task_works after cancel, so just leave 3209 * ->in_cancel set for normal exit. 3210 */ 3211 atomic_dec(&tctx->in_cancel); 3212 /* for exec all current's requests should be gone, kill tctx */ 3213 __io_uring_free(current); 3214 } 3215 } 3216 3217 void __io_uring_cancel(bool cancel_all) 3218 { 3219 io_uring_unreg_ringfd(); 3220 io_uring_cancel_generic(cancel_all, NULL); 3221 } 3222 3223 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3224 const struct io_uring_getevents_arg __user *uarg) 3225 { 3226 unsigned long size = sizeof(struct io_uring_reg_wait); 3227 unsigned long offset = (uintptr_t)uarg; 3228 unsigned long end; 3229 3230 if (unlikely(offset % sizeof(long))) 3231 return ERR_PTR(-EFAULT); 3232 3233 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3234 if (unlikely(check_add_overflow(offset, size, &end) || 3235 end > ctx->cq_wait_size)) 3236 return ERR_PTR(-EFAULT); 3237 3238 offset = array_index_nospec(offset, ctx->cq_wait_size - size); 3239 return ctx->cq_wait_arg + offset; 3240 } 3241 3242 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3243 const void __user *argp, size_t argsz) 3244 { 3245 struct io_uring_getevents_arg arg; 3246 3247 if (!(flags & IORING_ENTER_EXT_ARG)) 3248 return 0; 3249 if (flags & IORING_ENTER_EXT_ARG_REG) 3250 return -EINVAL; 3251 if (argsz != sizeof(arg)) 3252 return -EINVAL; 3253 if (copy_from_user(&arg, argp, sizeof(arg))) 3254 return -EFAULT; 3255 return 0; 3256 } 3257 3258 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3259 const void __user *argp, struct ext_arg *ext_arg) 3260 { 3261 const struct io_uring_getevents_arg __user *uarg = argp; 3262 struct io_uring_getevents_arg arg; 3263 3264 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT); 3265 3266 /* 3267 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3268 * is just a pointer to the sigset_t. 3269 */ 3270 if (!(flags & IORING_ENTER_EXT_ARG)) { 3271 ext_arg->sig = (const sigset_t __user *) argp; 3272 return 0; 3273 } 3274 3275 if (flags & IORING_ENTER_EXT_ARG_REG) { 3276 struct io_uring_reg_wait *w; 3277 3278 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3279 return -EINVAL; 3280 w = io_get_ext_arg_reg(ctx, argp); 3281 if (IS_ERR(w)) 3282 return PTR_ERR(w); 3283 3284 if (w->flags & ~IORING_REG_WAIT_TS) 3285 return -EINVAL; 3286 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3287 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3288 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3289 if (w->flags & IORING_REG_WAIT_TS) { 3290 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3291 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3292 ext_arg->ts_set = true; 3293 } 3294 return 0; 3295 } 3296 3297 /* 3298 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3299 * timespec and sigset_t pointers if good. 3300 */ 3301 if (ext_arg->argsz != sizeof(arg)) 3302 return -EINVAL; 3303 #ifdef CONFIG_64BIT 3304 if (!user_access_begin(uarg, sizeof(*uarg))) 3305 return -EFAULT; 3306 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3307 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3308 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3309 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3310 user_access_end(); 3311 #else 3312 if (copy_from_user(&arg, uarg, sizeof(arg))) 3313 return -EFAULT; 3314 #endif 3315 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3316 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3317 ext_arg->argsz = arg.sigmask_sz; 3318 if (arg.ts) { 3319 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3320 return -EFAULT; 3321 ext_arg->ts_set = true; 3322 } 3323 return 0; 3324 #ifdef CONFIG_64BIT 3325 uaccess_end: 3326 user_access_end(); 3327 return -EFAULT; 3328 #endif 3329 } 3330 3331 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3332 u32, min_complete, u32, flags, const void __user *, argp, 3333 size_t, argsz) 3334 { 3335 struct io_ring_ctx *ctx; 3336 struct file *file; 3337 long ret; 3338 3339 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3340 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3341 IORING_ENTER_REGISTERED_RING | 3342 IORING_ENTER_ABS_TIMER | 3343 IORING_ENTER_EXT_ARG_REG | 3344 IORING_ENTER_NO_IOWAIT))) 3345 return -EINVAL; 3346 3347 /* 3348 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3349 * need only dereference our task private array to find it. 3350 */ 3351 if (flags & IORING_ENTER_REGISTERED_RING) { 3352 struct io_uring_task *tctx = current->io_uring; 3353 3354 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3355 return -EINVAL; 3356 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3357 file = tctx->registered_rings[fd]; 3358 if (unlikely(!file)) 3359 return -EBADF; 3360 } else { 3361 file = fget(fd); 3362 if (unlikely(!file)) 3363 return -EBADF; 3364 ret = -EOPNOTSUPP; 3365 if (unlikely(!io_is_uring_fops(file))) 3366 goto out; 3367 } 3368 3369 ctx = file->private_data; 3370 ret = -EBADFD; 3371 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3372 goto out; 3373 3374 /* 3375 * For SQ polling, the thread will do all submissions and completions. 3376 * Just return the requested submit count, and wake the thread if 3377 * we were asked to. 3378 */ 3379 ret = 0; 3380 if (ctx->flags & IORING_SETUP_SQPOLL) { 3381 if (unlikely(ctx->sq_data->thread == NULL)) { 3382 ret = -EOWNERDEAD; 3383 goto out; 3384 } 3385 if (flags & IORING_ENTER_SQ_WAKEUP) 3386 wake_up(&ctx->sq_data->wait); 3387 if (flags & IORING_ENTER_SQ_WAIT) 3388 io_sqpoll_wait_sq(ctx); 3389 3390 ret = to_submit; 3391 } else if (to_submit) { 3392 ret = io_uring_add_tctx_node(ctx); 3393 if (unlikely(ret)) 3394 goto out; 3395 3396 mutex_lock(&ctx->uring_lock); 3397 ret = io_submit_sqes(ctx, to_submit); 3398 if (ret != to_submit) { 3399 mutex_unlock(&ctx->uring_lock); 3400 goto out; 3401 } 3402 if (flags & IORING_ENTER_GETEVENTS) { 3403 if (ctx->syscall_iopoll) 3404 goto iopoll_locked; 3405 /* 3406 * Ignore errors, we'll soon call io_cqring_wait() and 3407 * it should handle ownership problems if any. 3408 */ 3409 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3410 (void)io_run_local_work_locked(ctx, min_complete); 3411 } 3412 mutex_unlock(&ctx->uring_lock); 3413 } 3414 3415 if (flags & IORING_ENTER_GETEVENTS) { 3416 int ret2; 3417 3418 if (ctx->syscall_iopoll) { 3419 /* 3420 * We disallow the app entering submit/complete with 3421 * polling, but we still need to lock the ring to 3422 * prevent racing with polled issue that got punted to 3423 * a workqueue. 3424 */ 3425 mutex_lock(&ctx->uring_lock); 3426 iopoll_locked: 3427 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3428 if (likely(!ret2)) 3429 ret2 = io_iopoll_check(ctx, min_complete); 3430 mutex_unlock(&ctx->uring_lock); 3431 } else { 3432 struct ext_arg ext_arg = { .argsz = argsz }; 3433 3434 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3435 if (likely(!ret2)) 3436 ret2 = io_cqring_wait(ctx, min_complete, flags, 3437 &ext_arg); 3438 } 3439 3440 if (!ret) { 3441 ret = ret2; 3442 3443 /* 3444 * EBADR indicates that one or more CQE were dropped. 3445 * Once the user has been informed we can clear the bit 3446 * as they are obviously ok with those drops. 3447 */ 3448 if (unlikely(ret2 == -EBADR)) 3449 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3450 &ctx->check_cq); 3451 } 3452 } 3453 out: 3454 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3455 fput(file); 3456 return ret; 3457 } 3458 3459 static const struct file_operations io_uring_fops = { 3460 .release = io_uring_release, 3461 .mmap = io_uring_mmap, 3462 .get_unmapped_area = io_uring_get_unmapped_area, 3463 #ifndef CONFIG_MMU 3464 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3465 #endif 3466 .poll = io_uring_poll, 3467 #ifdef CONFIG_PROC_FS 3468 .show_fdinfo = io_uring_show_fdinfo, 3469 #endif 3470 }; 3471 3472 bool io_is_uring_fops(struct file *file) 3473 { 3474 return file->f_op == &io_uring_fops; 3475 } 3476 3477 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3478 struct io_uring_params *p) 3479 { 3480 struct io_uring_region_desc rd; 3481 struct io_rings *rings; 3482 size_t size, sq_array_offset; 3483 int ret; 3484 3485 /* make sure these are sane, as we already accounted them */ 3486 ctx->sq_entries = p->sq_entries; 3487 ctx->cq_entries = p->cq_entries; 3488 3489 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3490 &sq_array_offset); 3491 if (size == SIZE_MAX) 3492 return -EOVERFLOW; 3493 3494 memset(&rd, 0, sizeof(rd)); 3495 rd.size = PAGE_ALIGN(size); 3496 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3497 rd.user_addr = p->cq_off.user_addr; 3498 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3499 } 3500 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); 3501 if (ret) 3502 return ret; 3503 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); 3504 3505 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3506 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3507 rings->sq_ring_mask = p->sq_entries - 1; 3508 rings->cq_ring_mask = p->cq_entries - 1; 3509 rings->sq_ring_entries = p->sq_entries; 3510 rings->cq_ring_entries = p->cq_entries; 3511 3512 if (p->flags & IORING_SETUP_SQE128) 3513 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3514 else 3515 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3516 if (size == SIZE_MAX) { 3517 io_rings_free(ctx); 3518 return -EOVERFLOW; 3519 } 3520 3521 memset(&rd, 0, sizeof(rd)); 3522 rd.size = PAGE_ALIGN(size); 3523 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3524 rd.user_addr = p->sq_off.user_addr; 3525 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3526 } 3527 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); 3528 if (ret) { 3529 io_rings_free(ctx); 3530 return ret; 3531 } 3532 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); 3533 return 0; 3534 } 3535 3536 static int io_uring_install_fd(struct file *file) 3537 { 3538 int fd; 3539 3540 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3541 if (fd < 0) 3542 return fd; 3543 fd_install(fd, file); 3544 return fd; 3545 } 3546 3547 /* 3548 * Allocate an anonymous fd, this is what constitutes the application 3549 * visible backing of an io_uring instance. The application mmaps this 3550 * fd to gain access to the SQ/CQ ring details. 3551 */ 3552 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3553 { 3554 /* Create a new inode so that the LSM can block the creation. */ 3555 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3556 O_RDWR | O_CLOEXEC, NULL); 3557 } 3558 3559 static int io_uring_sanitise_params(struct io_uring_params *p) 3560 { 3561 unsigned flags = p->flags; 3562 3563 /* There is no way to mmap rings without a real fd */ 3564 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) && 3565 !(flags & IORING_SETUP_NO_MMAP)) 3566 return -EINVAL; 3567 3568 if (flags & IORING_SETUP_SQPOLL) { 3569 /* IPI related flags don't make sense with SQPOLL */ 3570 if (flags & (IORING_SETUP_COOP_TASKRUN | 3571 IORING_SETUP_TASKRUN_FLAG | 3572 IORING_SETUP_DEFER_TASKRUN)) 3573 return -EINVAL; 3574 } 3575 3576 if (flags & IORING_SETUP_TASKRUN_FLAG) { 3577 if (!(flags & (IORING_SETUP_COOP_TASKRUN | 3578 IORING_SETUP_DEFER_TASKRUN))) 3579 return -EINVAL; 3580 } 3581 3582 /* HYBRID_IOPOLL only valid with IOPOLL */ 3583 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL)) 3584 return -EINVAL; 3585 3586 /* 3587 * For DEFER_TASKRUN we require the completion task to be the same as 3588 * the submission task. This implies that there is only one submitter. 3589 */ 3590 if ((flags & IORING_SETUP_DEFER_TASKRUN) && 3591 !(flags & IORING_SETUP_SINGLE_ISSUER)) 3592 return -EINVAL; 3593 3594 return 0; 3595 } 3596 3597 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3598 { 3599 if (!entries) 3600 return -EINVAL; 3601 if (entries > IORING_MAX_ENTRIES) { 3602 if (!(p->flags & IORING_SETUP_CLAMP)) 3603 return -EINVAL; 3604 entries = IORING_MAX_ENTRIES; 3605 } 3606 3607 /* 3608 * Use twice as many entries for the CQ ring. It's possible for the 3609 * application to drive a higher depth than the size of the SQ ring, 3610 * since the sqes are only used at submission time. This allows for 3611 * some flexibility in overcommitting a bit. If the application has 3612 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3613 * of CQ ring entries manually. 3614 */ 3615 p->sq_entries = roundup_pow_of_two(entries); 3616 if (p->flags & IORING_SETUP_CQSIZE) { 3617 /* 3618 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3619 * to a power-of-two, if it isn't already. We do NOT impose 3620 * any cq vs sq ring sizing. 3621 */ 3622 if (!p->cq_entries) 3623 return -EINVAL; 3624 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3625 if (!(p->flags & IORING_SETUP_CLAMP)) 3626 return -EINVAL; 3627 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3628 } 3629 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3630 if (p->cq_entries < p->sq_entries) 3631 return -EINVAL; 3632 } else { 3633 p->cq_entries = 2 * p->sq_entries; 3634 } 3635 3636 p->sq_off.head = offsetof(struct io_rings, sq.head); 3637 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3638 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3639 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3640 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3641 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3642 p->sq_off.resv1 = 0; 3643 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3644 p->sq_off.user_addr = 0; 3645 3646 p->cq_off.head = offsetof(struct io_rings, cq.head); 3647 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3648 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3649 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3650 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3651 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3652 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3653 p->cq_off.resv1 = 0; 3654 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3655 p->cq_off.user_addr = 0; 3656 3657 return 0; 3658 } 3659 3660 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3661 struct io_uring_params __user *params) 3662 { 3663 struct io_ring_ctx *ctx; 3664 struct io_uring_task *tctx; 3665 struct file *file; 3666 int ret; 3667 3668 ret = io_uring_sanitise_params(p); 3669 if (ret) 3670 return ret; 3671 3672 ret = io_uring_fill_params(entries, p); 3673 if (unlikely(ret)) 3674 return ret; 3675 3676 ctx = io_ring_ctx_alloc(p); 3677 if (!ctx) 3678 return -ENOMEM; 3679 3680 ctx->clockid = CLOCK_MONOTONIC; 3681 ctx->clock_offset = 0; 3682 3683 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3684 static_branch_inc(&io_key_has_sqarray); 3685 3686 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3687 !(ctx->flags & IORING_SETUP_IOPOLL) && 3688 !(ctx->flags & IORING_SETUP_SQPOLL)) 3689 ctx->task_complete = true; 3690 3691 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3692 ctx->lockless_cq = true; 3693 3694 /* 3695 * lazy poll_wq activation relies on ->task_complete for synchronisation 3696 * purposes, see io_activate_pollwq() 3697 */ 3698 if (!ctx->task_complete) 3699 ctx->poll_activated = true; 3700 3701 /* 3702 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3703 * space applications don't need to do io completion events 3704 * polling again, they can rely on io_sq_thread to do polling 3705 * work, which can reduce cpu usage and uring_lock contention. 3706 */ 3707 if (ctx->flags & IORING_SETUP_IOPOLL && 3708 !(ctx->flags & IORING_SETUP_SQPOLL)) 3709 ctx->syscall_iopoll = 1; 3710 3711 ctx->compat = in_compat_syscall(); 3712 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3713 ctx->user = get_uid(current_user()); 3714 3715 /* 3716 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3717 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3718 */ 3719 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN)) 3720 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3721 else 3722 ctx->notify_method = TWA_SIGNAL; 3723 3724 /* 3725 * This is just grabbed for accounting purposes. When a process exits, 3726 * the mm is exited and dropped before the files, hence we need to hang 3727 * on to this mm purely for the purposes of being able to unaccount 3728 * memory (locked/pinned vm). It's not used for anything else. 3729 */ 3730 mmgrab(current->mm); 3731 ctx->mm_account = current->mm; 3732 3733 ret = io_allocate_scq_urings(ctx, p); 3734 if (ret) 3735 goto err; 3736 3737 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3738 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3739 3740 ret = io_sq_offload_create(ctx, p); 3741 if (ret) 3742 goto err; 3743 3744 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3745 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3746 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3747 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3748 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3749 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3750 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3751 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT | 3752 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT; 3753 3754 if (copy_to_user(params, p, sizeof(*p))) { 3755 ret = -EFAULT; 3756 goto err; 3757 } 3758 3759 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3760 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3761 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3762 3763 file = io_uring_get_file(ctx); 3764 if (IS_ERR(file)) { 3765 ret = PTR_ERR(file); 3766 goto err; 3767 } 3768 3769 ret = __io_uring_add_tctx_node(ctx); 3770 if (ret) 3771 goto err_fput; 3772 tctx = current->io_uring; 3773 3774 /* 3775 * Install ring fd as the very last thing, so we don't risk someone 3776 * having closed it before we finish setup 3777 */ 3778 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3779 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3780 else 3781 ret = io_uring_install_fd(file); 3782 if (ret < 0) 3783 goto err_fput; 3784 3785 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3786 return ret; 3787 err: 3788 io_ring_ctx_wait_and_kill(ctx); 3789 return ret; 3790 err_fput: 3791 fput(file); 3792 return ret; 3793 } 3794 3795 /* 3796 * Sets up an aio uring context, and returns the fd. Applications asks for a 3797 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3798 * params structure passed in. 3799 */ 3800 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3801 { 3802 struct io_uring_params p; 3803 int i; 3804 3805 if (copy_from_user(&p, params, sizeof(p))) 3806 return -EFAULT; 3807 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3808 if (p.resv[i]) 3809 return -EINVAL; 3810 } 3811 3812 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3813 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3814 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3815 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3816 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3817 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3818 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3819 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3820 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3821 return -EINVAL; 3822 3823 return io_uring_create(entries, &p, params); 3824 } 3825 3826 static inline int io_uring_allowed(void) 3827 { 3828 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3829 kgid_t io_uring_group; 3830 3831 if (disabled == 2) 3832 return -EPERM; 3833 3834 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3835 goto allowed_lsm; 3836 3837 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3838 if (!gid_valid(io_uring_group)) 3839 return -EPERM; 3840 3841 if (!in_group_p(io_uring_group)) 3842 return -EPERM; 3843 3844 allowed_lsm: 3845 return security_uring_allowed(); 3846 } 3847 3848 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3849 struct io_uring_params __user *, params) 3850 { 3851 int ret; 3852 3853 ret = io_uring_allowed(); 3854 if (ret) 3855 return ret; 3856 3857 return io_uring_setup(entries, params); 3858 } 3859 3860 static int __init io_uring_init(void) 3861 { 3862 struct kmem_cache_args kmem_args = { 3863 .useroffset = offsetof(struct io_kiocb, cmd.data), 3864 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3865 .freeptr_offset = offsetof(struct io_kiocb, work), 3866 .use_freeptr_offset = true, 3867 }; 3868 3869 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3870 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3871 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3872 } while (0) 3873 3874 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3875 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3876 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3877 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3878 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3879 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3880 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3881 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3882 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3883 BUILD_BUG_SQE_ELEM(8, __u64, off); 3884 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3885 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3886 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3887 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3888 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3889 BUILD_BUG_SQE_ELEM(24, __u32, len); 3890 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3891 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3892 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3893 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3894 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3895 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3896 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3897 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3898 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3899 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3900 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3901 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3902 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3903 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3904 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3905 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3906 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3907 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3908 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3909 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3910 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3911 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3912 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3913 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3914 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3915 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3916 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3917 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3918 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3919 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3920 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); 3921 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); 3922 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3923 3924 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3925 sizeof(struct io_uring_rsrc_update)); 3926 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3927 sizeof(struct io_uring_rsrc_update2)); 3928 3929 /* ->buf_index is u16 */ 3930 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3931 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3932 offsetof(struct io_uring_buf_ring, tail)); 3933 3934 /* should fit into one byte */ 3935 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3936 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3937 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3938 3939 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3940 3941 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3942 3943 /* top 8bits are for internal use */ 3944 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3945 3946 io_uring_optable_init(); 3947 3948 /* imu->dir is u8 */ 3949 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX); 3950 3951 /* 3952 * Allow user copy in the per-command field, which starts after the 3953 * file in io_kiocb and until the opcode field. The openat2 handling 3954 * requires copying in user memory into the io_kiocb object in that 3955 * range, and HARDENED_USERCOPY will complain if we haven't 3956 * correctly annotated this range. 3957 */ 3958 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3959 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3960 SLAB_TYPESAFE_BY_RCU); 3961 3962 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3963 BUG_ON(!iou_wq); 3964 3965 #ifdef CONFIG_SYSCTL 3966 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3967 #endif 3968 3969 return 0; 3970 }; 3971 __initcall(io_uring_init); 3972