1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 101 #include "timeout.h" 102 #include "poll.h" 103 #include "rw.h" 104 #include "alloc_cache.h" 105 #include "eventfd.h" 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 #define IO_LOCAL_TW_DEFAULT_MAX 20 125 126 struct io_defer_entry { 127 struct list_head list; 128 struct io_kiocb *req; 129 u32 seq; 130 }; 131 132 /* requests with any of those set should undergo io_disarm_next() */ 133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 135 136 /* 137 * No waiters. It's larger than any valid value of the tw counter 138 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 139 */ 140 #define IO_CQ_WAKE_INIT (-1U) 141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct io_uring_task *tctx, 146 bool cancel_all, 147 bool is_sqpoll_thread); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 151 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 152 153 struct kmem_cache *req_cachep; 154 static struct workqueue_struct *iou_wq __ro_after_init; 155 156 static int __read_mostly sysctl_io_uring_disabled; 157 static int __read_mostly sysctl_io_uring_group = -1; 158 159 #ifdef CONFIG_SYSCTL 160 static const struct ctl_table kernel_io_uring_disabled_table[] = { 161 { 162 .procname = "io_uring_disabled", 163 .data = &sysctl_io_uring_disabled, 164 .maxlen = sizeof(sysctl_io_uring_disabled), 165 .mode = 0644, 166 .proc_handler = proc_dointvec_minmax, 167 .extra1 = SYSCTL_ZERO, 168 .extra2 = SYSCTL_TWO, 169 }, 170 { 171 .procname = "io_uring_group", 172 .data = &sysctl_io_uring_group, 173 .maxlen = sizeof(gid_t), 174 .mode = 0644, 175 .proc_handler = proc_dointvec, 176 }, 177 }; 178 #endif 179 180 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 181 { 182 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 183 } 184 185 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 186 { 187 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 188 } 189 190 static bool io_match_linked(struct io_kiocb *head) 191 { 192 struct io_kiocb *req; 193 194 io_for_each_link(req, head) { 195 if (req->flags & REQ_F_INFLIGHT) 196 return true; 197 } 198 return false; 199 } 200 201 /* 202 * As io_match_task() but protected against racing with linked timeouts. 203 * User must not hold timeout_lock. 204 */ 205 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 206 bool cancel_all) 207 { 208 bool matched; 209 210 if (tctx && head->tctx != tctx) 211 return false; 212 if (cancel_all) 213 return true; 214 215 if (head->flags & REQ_F_LINK_TIMEOUT) { 216 struct io_ring_ctx *ctx = head->ctx; 217 218 /* protect against races with linked timeouts */ 219 raw_spin_lock_irq(&ctx->timeout_lock); 220 matched = io_match_linked(head); 221 raw_spin_unlock_irq(&ctx->timeout_lock); 222 } else { 223 matched = io_match_linked(head); 224 } 225 return matched; 226 } 227 228 static inline void req_fail_link_node(struct io_kiocb *req, int res) 229 { 230 req_set_fail(req); 231 io_req_set_res(req, res, 0); 232 } 233 234 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 235 { 236 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 237 } 238 239 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 240 { 241 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 242 243 complete(&ctx->ref_comp); 244 } 245 246 static __cold void io_fallback_req_func(struct work_struct *work) 247 { 248 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 249 fallback_work.work); 250 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 251 struct io_kiocb *req, *tmp; 252 struct io_tw_state ts = {}; 253 254 percpu_ref_get(&ctx->refs); 255 mutex_lock(&ctx->uring_lock); 256 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 257 req->io_task_work.func(req, &ts); 258 io_submit_flush_completions(ctx); 259 mutex_unlock(&ctx->uring_lock); 260 percpu_ref_put(&ctx->refs); 261 } 262 263 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 264 { 265 unsigned int hash_buckets; 266 int i; 267 268 do { 269 hash_buckets = 1U << bits; 270 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 271 GFP_KERNEL_ACCOUNT); 272 if (table->hbs) 273 break; 274 if (bits == 1) 275 return -ENOMEM; 276 bits--; 277 } while (1); 278 279 table->hash_bits = bits; 280 for (i = 0; i < hash_buckets; i++) 281 INIT_HLIST_HEAD(&table->hbs[i].list); 282 return 0; 283 } 284 285 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 286 { 287 struct io_ring_ctx *ctx; 288 int hash_bits; 289 bool ret; 290 291 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 292 if (!ctx) 293 return NULL; 294 295 xa_init(&ctx->io_bl_xa); 296 297 /* 298 * Use 5 bits less than the max cq entries, that should give us around 299 * 32 entries per hash list if totally full and uniformly spread, but 300 * don't keep too many buckets to not overconsume memory. 301 */ 302 hash_bits = ilog2(p->cq_entries) - 5; 303 hash_bits = clamp(hash_bits, 1, 8); 304 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 305 goto err; 306 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 307 0, GFP_KERNEL)) 308 goto err; 309 310 ctx->flags = p->flags; 311 ctx->hybrid_poll_time = LLONG_MAX; 312 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 313 init_waitqueue_head(&ctx->sqo_sq_wait); 314 INIT_LIST_HEAD(&ctx->sqd_list); 315 INIT_LIST_HEAD(&ctx->cq_overflow_list); 316 INIT_LIST_HEAD(&ctx->io_buffers_cache); 317 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 318 sizeof(struct async_poll)); 319 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 320 sizeof(struct io_async_msghdr)); 321 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 322 sizeof(struct io_async_rw)); 323 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX, 324 sizeof(struct io_uring_cmd_data)); 325 spin_lock_init(&ctx->msg_lock); 326 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 327 sizeof(struct io_kiocb)); 328 ret |= io_futex_cache_init(ctx); 329 if (ret) 330 goto free_ref; 331 init_completion(&ctx->ref_comp); 332 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 333 mutex_init(&ctx->uring_lock); 334 init_waitqueue_head(&ctx->cq_wait); 335 init_waitqueue_head(&ctx->poll_wq); 336 spin_lock_init(&ctx->completion_lock); 337 raw_spin_lock_init(&ctx->timeout_lock); 338 INIT_WQ_LIST(&ctx->iopoll_list); 339 INIT_LIST_HEAD(&ctx->io_buffers_comp); 340 INIT_LIST_HEAD(&ctx->defer_list); 341 INIT_LIST_HEAD(&ctx->timeout_list); 342 INIT_LIST_HEAD(&ctx->ltimeout_list); 343 init_llist_head(&ctx->work_llist); 344 INIT_LIST_HEAD(&ctx->tctx_list); 345 ctx->submit_state.free_list.next = NULL; 346 INIT_HLIST_HEAD(&ctx->waitid_list); 347 #ifdef CONFIG_FUTEX 348 INIT_HLIST_HEAD(&ctx->futex_list); 349 #endif 350 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 351 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 352 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 353 io_napi_init(ctx); 354 mutex_init(&ctx->mmap_lock); 355 356 return ctx; 357 358 free_ref: 359 percpu_ref_exit(&ctx->refs); 360 err: 361 io_alloc_cache_free(&ctx->apoll_cache, kfree); 362 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 363 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 364 io_alloc_cache_free(&ctx->uring_cache, kfree); 365 io_alloc_cache_free(&ctx->msg_cache, kfree); 366 io_futex_cache_free(ctx); 367 kvfree(ctx->cancel_table.hbs); 368 xa_destroy(&ctx->io_bl_xa); 369 kfree(ctx); 370 return NULL; 371 } 372 373 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 374 { 375 struct io_rings *r = ctx->rings; 376 377 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 378 ctx->cq_extra--; 379 } 380 381 static bool req_need_defer(struct io_kiocb *req, u32 seq) 382 { 383 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 384 struct io_ring_ctx *ctx = req->ctx; 385 386 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 387 } 388 389 return false; 390 } 391 392 static void io_clean_op(struct io_kiocb *req) 393 { 394 if (req->flags & REQ_F_BUFFER_SELECTED) { 395 spin_lock(&req->ctx->completion_lock); 396 io_kbuf_drop(req); 397 spin_unlock(&req->ctx->completion_lock); 398 } 399 400 if (req->flags & REQ_F_NEED_CLEANUP) { 401 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 402 403 if (def->cleanup) 404 def->cleanup(req); 405 } 406 if ((req->flags & REQ_F_POLLED) && req->apoll) { 407 kfree(req->apoll->double_poll); 408 kfree(req->apoll); 409 req->apoll = NULL; 410 } 411 if (req->flags & REQ_F_INFLIGHT) 412 atomic_dec(&req->tctx->inflight_tracked); 413 if (req->flags & REQ_F_CREDS) 414 put_cred(req->creds); 415 if (req->flags & REQ_F_ASYNC_DATA) { 416 kfree(req->async_data); 417 req->async_data = NULL; 418 } 419 req->flags &= ~IO_REQ_CLEAN_FLAGS; 420 } 421 422 static inline void io_req_track_inflight(struct io_kiocb *req) 423 { 424 if (!(req->flags & REQ_F_INFLIGHT)) { 425 req->flags |= REQ_F_INFLIGHT; 426 atomic_inc(&req->tctx->inflight_tracked); 427 } 428 } 429 430 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 431 { 432 if (WARN_ON_ONCE(!req->link)) 433 return NULL; 434 435 req->flags &= ~REQ_F_ARM_LTIMEOUT; 436 req->flags |= REQ_F_LINK_TIMEOUT; 437 438 /* linked timeouts should have two refs once prep'ed */ 439 io_req_set_refcount(req); 440 __io_req_set_refcount(req->link, 2); 441 return req->link; 442 } 443 444 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 445 { 446 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 447 return NULL; 448 return __io_prep_linked_timeout(req); 449 } 450 451 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 452 { 453 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 454 } 455 456 static inline void io_arm_ltimeout(struct io_kiocb *req) 457 { 458 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 459 __io_arm_ltimeout(req); 460 } 461 462 static void io_prep_async_work(struct io_kiocb *req) 463 { 464 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 465 struct io_ring_ctx *ctx = req->ctx; 466 467 if (!(req->flags & REQ_F_CREDS)) { 468 req->flags |= REQ_F_CREDS; 469 req->creds = get_current_cred(); 470 } 471 472 req->work.list.next = NULL; 473 atomic_set(&req->work.flags, 0); 474 if (req->flags & REQ_F_FORCE_ASYNC) 475 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 476 477 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 478 req->flags |= io_file_get_flags(req->file); 479 480 if (req->file && (req->flags & REQ_F_ISREG)) { 481 bool should_hash = def->hash_reg_file; 482 483 /* don't serialize this request if the fs doesn't need it */ 484 if (should_hash && (req->file->f_flags & O_DIRECT) && 485 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 486 should_hash = false; 487 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 488 io_wq_hash_work(&req->work, file_inode(req->file)); 489 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 490 if (def->unbound_nonreg_file) 491 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 492 } 493 } 494 495 static void io_prep_async_link(struct io_kiocb *req) 496 { 497 struct io_kiocb *cur; 498 499 if (req->flags & REQ_F_LINK_TIMEOUT) { 500 struct io_ring_ctx *ctx = req->ctx; 501 502 raw_spin_lock_irq(&ctx->timeout_lock); 503 io_for_each_link(cur, req) 504 io_prep_async_work(cur); 505 raw_spin_unlock_irq(&ctx->timeout_lock); 506 } else { 507 io_for_each_link(cur, req) 508 io_prep_async_work(cur); 509 } 510 } 511 512 static void io_queue_iowq(struct io_kiocb *req) 513 { 514 struct io_kiocb *link = io_prep_linked_timeout(req); 515 struct io_uring_task *tctx = req->tctx; 516 517 BUG_ON(!tctx); 518 519 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 520 io_req_task_queue_fail(req, -ECANCELED); 521 return; 522 } 523 524 /* init ->work of the whole link before punting */ 525 io_prep_async_link(req); 526 527 /* 528 * Not expected to happen, but if we do have a bug where this _can_ 529 * happen, catch it here and ensure the request is marked as 530 * canceled. That will make io-wq go through the usual work cancel 531 * procedure rather than attempt to run this request (or create a new 532 * worker for it). 533 */ 534 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 535 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 536 537 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 538 io_wq_enqueue(tctx->io_wq, &req->work); 539 if (link) 540 io_queue_linked_timeout(link); 541 } 542 543 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts) 544 { 545 io_queue_iowq(req); 546 } 547 548 void io_req_queue_iowq(struct io_kiocb *req) 549 { 550 req->io_task_work.func = io_req_queue_iowq_tw; 551 io_req_task_work_add(req); 552 } 553 554 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) 555 { 556 spin_lock(&ctx->completion_lock); 557 while (!list_empty(&ctx->defer_list)) { 558 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 559 struct io_defer_entry, list); 560 561 if (req_need_defer(de->req, de->seq)) 562 break; 563 list_del_init(&de->list); 564 io_req_task_queue(de->req); 565 kfree(de); 566 } 567 spin_unlock(&ctx->completion_lock); 568 } 569 570 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 571 { 572 if (ctx->poll_activated) 573 io_poll_wq_wake(ctx); 574 if (ctx->off_timeout_used) 575 io_flush_timeouts(ctx); 576 if (ctx->drain_active) 577 io_queue_deferred(ctx); 578 if (ctx->has_evfd) 579 io_eventfd_flush_signal(ctx); 580 } 581 582 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 583 { 584 if (!ctx->lockless_cq) 585 spin_lock(&ctx->completion_lock); 586 } 587 588 static inline void io_cq_lock(struct io_ring_ctx *ctx) 589 __acquires(ctx->completion_lock) 590 { 591 spin_lock(&ctx->completion_lock); 592 } 593 594 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 595 { 596 io_commit_cqring(ctx); 597 if (!ctx->task_complete) { 598 if (!ctx->lockless_cq) 599 spin_unlock(&ctx->completion_lock); 600 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 601 if (!ctx->syscall_iopoll) 602 io_cqring_wake(ctx); 603 } 604 io_commit_cqring_flush(ctx); 605 } 606 607 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 608 __releases(ctx->completion_lock) 609 { 610 io_commit_cqring(ctx); 611 spin_unlock(&ctx->completion_lock); 612 io_cqring_wake(ctx); 613 io_commit_cqring_flush(ctx); 614 } 615 616 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 617 { 618 size_t cqe_size = sizeof(struct io_uring_cqe); 619 620 lockdep_assert_held(&ctx->uring_lock); 621 622 /* don't abort if we're dying, entries must get freed */ 623 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 624 return; 625 626 if (ctx->flags & IORING_SETUP_CQE32) 627 cqe_size <<= 1; 628 629 io_cq_lock(ctx); 630 while (!list_empty(&ctx->cq_overflow_list)) { 631 struct io_uring_cqe *cqe; 632 struct io_overflow_cqe *ocqe; 633 634 ocqe = list_first_entry(&ctx->cq_overflow_list, 635 struct io_overflow_cqe, list); 636 637 if (!dying) { 638 if (!io_get_cqe_overflow(ctx, &cqe, true)) 639 break; 640 memcpy(cqe, &ocqe->cqe, cqe_size); 641 } 642 list_del(&ocqe->list); 643 kfree(ocqe); 644 645 /* 646 * For silly syzbot cases that deliberately overflow by huge 647 * amounts, check if we need to resched and drop and 648 * reacquire the locks if so. Nothing real would ever hit this. 649 * Ideally we'd have a non-posting unlock for this, but hard 650 * to care for a non-real case. 651 */ 652 if (need_resched()) { 653 io_cq_unlock_post(ctx); 654 mutex_unlock(&ctx->uring_lock); 655 cond_resched(); 656 mutex_lock(&ctx->uring_lock); 657 io_cq_lock(ctx); 658 } 659 } 660 661 if (list_empty(&ctx->cq_overflow_list)) { 662 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 663 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 664 } 665 io_cq_unlock_post(ctx); 666 } 667 668 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 669 { 670 if (ctx->rings) 671 __io_cqring_overflow_flush(ctx, true); 672 } 673 674 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 675 { 676 mutex_lock(&ctx->uring_lock); 677 __io_cqring_overflow_flush(ctx, false); 678 mutex_unlock(&ctx->uring_lock); 679 } 680 681 /* must to be called somewhat shortly after putting a request */ 682 static inline void io_put_task(struct io_kiocb *req) 683 { 684 struct io_uring_task *tctx = req->tctx; 685 686 if (likely(tctx->task == current)) { 687 tctx->cached_refs++; 688 } else { 689 percpu_counter_sub(&tctx->inflight, 1); 690 if (unlikely(atomic_read(&tctx->in_cancel))) 691 wake_up(&tctx->wait); 692 put_task_struct(tctx->task); 693 } 694 } 695 696 void io_task_refs_refill(struct io_uring_task *tctx) 697 { 698 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 699 700 percpu_counter_add(&tctx->inflight, refill); 701 refcount_add(refill, ¤t->usage); 702 tctx->cached_refs += refill; 703 } 704 705 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 706 { 707 struct io_uring_task *tctx = task->io_uring; 708 unsigned int refs = tctx->cached_refs; 709 710 if (refs) { 711 tctx->cached_refs = 0; 712 percpu_counter_sub(&tctx->inflight, refs); 713 put_task_struct_many(task, refs); 714 } 715 } 716 717 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 718 s32 res, u32 cflags, u64 extra1, u64 extra2) 719 { 720 struct io_overflow_cqe *ocqe; 721 size_t ocq_size = sizeof(struct io_overflow_cqe); 722 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 723 724 lockdep_assert_held(&ctx->completion_lock); 725 726 if (is_cqe32) 727 ocq_size += sizeof(struct io_uring_cqe); 728 729 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 730 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 731 if (!ocqe) { 732 /* 733 * If we're in ring overflow flush mode, or in task cancel mode, 734 * or cannot allocate an overflow entry, then we need to drop it 735 * on the floor. 736 */ 737 io_account_cq_overflow(ctx); 738 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 739 return false; 740 } 741 if (list_empty(&ctx->cq_overflow_list)) { 742 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 743 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 744 745 } 746 ocqe->cqe.user_data = user_data; 747 ocqe->cqe.res = res; 748 ocqe->cqe.flags = cflags; 749 if (is_cqe32) { 750 ocqe->cqe.big_cqe[0] = extra1; 751 ocqe->cqe.big_cqe[1] = extra2; 752 } 753 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 754 return true; 755 } 756 757 static void io_req_cqe_overflow(struct io_kiocb *req) 758 { 759 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 760 req->cqe.res, req->cqe.flags, 761 req->big_cqe.extra1, req->big_cqe.extra2); 762 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 763 } 764 765 /* 766 * writes to the cq entry need to come after reading head; the 767 * control dependency is enough as we're using WRITE_ONCE to 768 * fill the cq entry 769 */ 770 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 771 { 772 struct io_rings *rings = ctx->rings; 773 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 774 unsigned int free, queued, len; 775 776 /* 777 * Posting into the CQ when there are pending overflowed CQEs may break 778 * ordering guarantees, which will affect links, F_MORE users and more. 779 * Force overflow the completion. 780 */ 781 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 782 return false; 783 784 /* userspace may cheat modifying the tail, be safe and do min */ 785 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 786 free = ctx->cq_entries - queued; 787 /* we need a contiguous range, limit based on the current array offset */ 788 len = min(free, ctx->cq_entries - off); 789 if (!len) 790 return false; 791 792 if (ctx->flags & IORING_SETUP_CQE32) { 793 off <<= 1; 794 len <<= 1; 795 } 796 797 ctx->cqe_cached = &rings->cqes[off]; 798 ctx->cqe_sentinel = ctx->cqe_cached + len; 799 return true; 800 } 801 802 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 803 u32 cflags) 804 { 805 struct io_uring_cqe *cqe; 806 807 ctx->cq_extra++; 808 809 /* 810 * If we can't get a cq entry, userspace overflowed the 811 * submission (by quite a lot). Increment the overflow count in 812 * the ring. 813 */ 814 if (likely(io_get_cqe(ctx, &cqe))) { 815 WRITE_ONCE(cqe->user_data, user_data); 816 WRITE_ONCE(cqe->res, res); 817 WRITE_ONCE(cqe->flags, cflags); 818 819 if (ctx->flags & IORING_SETUP_CQE32) { 820 WRITE_ONCE(cqe->big_cqe[0], 0); 821 WRITE_ONCE(cqe->big_cqe[1], 0); 822 } 823 824 trace_io_uring_complete(ctx, NULL, cqe); 825 return true; 826 } 827 return false; 828 } 829 830 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, 831 u32 cflags) 832 { 833 bool filled; 834 835 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 836 if (!filled) 837 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 838 839 return filled; 840 } 841 842 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 843 { 844 bool filled; 845 846 io_cq_lock(ctx); 847 filled = __io_post_aux_cqe(ctx, user_data, res, cflags); 848 io_cq_unlock_post(ctx); 849 return filled; 850 } 851 852 /* 853 * Must be called from inline task_work so we now a flush will happen later, 854 * and obviously with ctx->uring_lock held (tw always has that). 855 */ 856 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 857 { 858 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 859 spin_lock(&ctx->completion_lock); 860 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 861 spin_unlock(&ctx->completion_lock); 862 } 863 ctx->submit_state.cq_flush = true; 864 } 865 866 /* 867 * A helper for multishot requests posting additional CQEs. 868 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 869 */ 870 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 871 { 872 struct io_ring_ctx *ctx = req->ctx; 873 bool posted; 874 875 lockdep_assert(!io_wq_current_is_worker()); 876 lockdep_assert_held(&ctx->uring_lock); 877 878 __io_cq_lock(ctx); 879 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 880 ctx->submit_state.cq_flush = true; 881 __io_cq_unlock_post(ctx); 882 return posted; 883 } 884 885 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 886 { 887 struct io_ring_ctx *ctx = req->ctx; 888 889 /* 890 * All execution paths but io-wq use the deferred completions by 891 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 892 */ 893 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 894 return; 895 896 /* 897 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 898 * the submitter task context, IOPOLL protects with uring_lock. 899 */ 900 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) { 901 req->io_task_work.func = io_req_task_complete; 902 io_req_task_work_add(req); 903 return; 904 } 905 906 io_cq_lock(ctx); 907 if (!(req->flags & REQ_F_CQE_SKIP)) { 908 if (!io_fill_cqe_req(ctx, req)) 909 io_req_cqe_overflow(req); 910 } 911 io_cq_unlock_post(ctx); 912 913 /* 914 * We don't free the request here because we know it's called from 915 * io-wq only, which holds a reference, so it cannot be the last put. 916 */ 917 req_ref_put(req); 918 } 919 920 void io_req_defer_failed(struct io_kiocb *req, s32 res) 921 __must_hold(&ctx->uring_lock) 922 { 923 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 924 925 lockdep_assert_held(&req->ctx->uring_lock); 926 927 req_set_fail(req); 928 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 929 if (def->fail) 930 def->fail(req); 931 io_req_complete_defer(req); 932 } 933 934 /* 935 * Don't initialise the fields below on every allocation, but do that in 936 * advance and keep them valid across allocations. 937 */ 938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 939 { 940 req->ctx = ctx; 941 req->buf_node = NULL; 942 req->file_node = NULL; 943 req->link = NULL; 944 req->async_data = NULL; 945 /* not necessary, but safer to zero */ 946 memset(&req->cqe, 0, sizeof(req->cqe)); 947 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 948 } 949 950 /* 951 * A request might get retired back into the request caches even before opcode 952 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 953 * Because of that, io_alloc_req() should be called only under ->uring_lock 954 * and with extra caution to not get a request that is still worked on. 955 */ 956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 957 __must_hold(&ctx->uring_lock) 958 { 959 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 960 void *reqs[IO_REQ_ALLOC_BATCH]; 961 int ret; 962 963 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 964 965 /* 966 * Bulk alloc is all-or-nothing. If we fail to get a batch, 967 * retry single alloc to be on the safe side. 968 */ 969 if (unlikely(ret <= 0)) { 970 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 971 if (!reqs[0]) 972 return false; 973 ret = 1; 974 } 975 976 percpu_ref_get_many(&ctx->refs, ret); 977 while (ret--) { 978 struct io_kiocb *req = reqs[ret]; 979 980 io_preinit_req(req, ctx); 981 io_req_add_to_cache(req, ctx); 982 } 983 return true; 984 } 985 986 __cold void io_free_req(struct io_kiocb *req) 987 { 988 /* refs were already put, restore them for io_req_task_complete() */ 989 req->flags &= ~REQ_F_REFCOUNT; 990 /* we only want to free it, don't post CQEs */ 991 req->flags |= REQ_F_CQE_SKIP; 992 req->io_task_work.func = io_req_task_complete; 993 io_req_task_work_add(req); 994 } 995 996 static void __io_req_find_next_prep(struct io_kiocb *req) 997 { 998 struct io_ring_ctx *ctx = req->ctx; 999 1000 spin_lock(&ctx->completion_lock); 1001 io_disarm_next(req); 1002 spin_unlock(&ctx->completion_lock); 1003 } 1004 1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1006 { 1007 struct io_kiocb *nxt; 1008 1009 /* 1010 * If LINK is set, we have dependent requests in this chain. If we 1011 * didn't fail this request, queue the first one up, moving any other 1012 * dependencies to the next request. In case of failure, fail the rest 1013 * of the chain. 1014 */ 1015 if (unlikely(req->flags & IO_DISARM_MASK)) 1016 __io_req_find_next_prep(req); 1017 nxt = req->link; 1018 req->link = NULL; 1019 return nxt; 1020 } 1021 1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1023 { 1024 if (!ctx) 1025 return; 1026 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1027 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1028 1029 io_submit_flush_completions(ctx); 1030 mutex_unlock(&ctx->uring_lock); 1031 percpu_ref_put(&ctx->refs); 1032 } 1033 1034 /* 1035 * Run queued task_work, returning the number of entries processed in *count. 1036 * If more entries than max_entries are available, stop processing once this 1037 * is reached and return the rest of the list. 1038 */ 1039 struct llist_node *io_handle_tw_list(struct llist_node *node, 1040 unsigned int *count, 1041 unsigned int max_entries) 1042 { 1043 struct io_ring_ctx *ctx = NULL; 1044 struct io_tw_state ts = { }; 1045 1046 do { 1047 struct llist_node *next = node->next; 1048 struct io_kiocb *req = container_of(node, struct io_kiocb, 1049 io_task_work.node); 1050 1051 if (req->ctx != ctx) { 1052 ctx_flush_and_put(ctx, &ts); 1053 ctx = req->ctx; 1054 mutex_lock(&ctx->uring_lock); 1055 percpu_ref_get(&ctx->refs); 1056 } 1057 INDIRECT_CALL_2(req->io_task_work.func, 1058 io_poll_task_func, io_req_rw_complete, 1059 req, &ts); 1060 node = next; 1061 (*count)++; 1062 if (unlikely(need_resched())) { 1063 ctx_flush_and_put(ctx, &ts); 1064 ctx = NULL; 1065 cond_resched(); 1066 } 1067 } while (node && *count < max_entries); 1068 1069 ctx_flush_and_put(ctx, &ts); 1070 return node; 1071 } 1072 1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1074 { 1075 struct io_ring_ctx *last_ctx = NULL; 1076 struct io_kiocb *req; 1077 1078 while (node) { 1079 req = container_of(node, struct io_kiocb, io_task_work.node); 1080 node = node->next; 1081 if (sync && last_ctx != req->ctx) { 1082 if (last_ctx) { 1083 flush_delayed_work(&last_ctx->fallback_work); 1084 percpu_ref_put(&last_ctx->refs); 1085 } 1086 last_ctx = req->ctx; 1087 percpu_ref_get(&last_ctx->refs); 1088 } 1089 if (llist_add(&req->io_task_work.node, 1090 &req->ctx->fallback_llist)) 1091 schedule_delayed_work(&req->ctx->fallback_work, 1); 1092 } 1093 1094 if (last_ctx) { 1095 flush_delayed_work(&last_ctx->fallback_work); 1096 percpu_ref_put(&last_ctx->refs); 1097 } 1098 } 1099 1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1101 { 1102 struct llist_node *node = llist_del_all(&tctx->task_list); 1103 1104 __io_fallback_tw(node, sync); 1105 } 1106 1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1108 unsigned int max_entries, 1109 unsigned int *count) 1110 { 1111 struct llist_node *node; 1112 1113 if (unlikely(current->flags & PF_EXITING)) { 1114 io_fallback_tw(tctx, true); 1115 return NULL; 1116 } 1117 1118 node = llist_del_all(&tctx->task_list); 1119 if (node) { 1120 node = llist_reverse_order(node); 1121 node = io_handle_tw_list(node, count, max_entries); 1122 } 1123 1124 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1125 if (unlikely(atomic_read(&tctx->in_cancel))) 1126 io_uring_drop_tctx_refs(current); 1127 1128 trace_io_uring_task_work_run(tctx, *count); 1129 return node; 1130 } 1131 1132 void tctx_task_work(struct callback_head *cb) 1133 { 1134 struct io_uring_task *tctx; 1135 struct llist_node *ret; 1136 unsigned int count = 0; 1137 1138 tctx = container_of(cb, struct io_uring_task, task_work); 1139 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1140 /* can't happen */ 1141 WARN_ON_ONCE(ret); 1142 } 1143 1144 static inline void io_req_local_work_add(struct io_kiocb *req, 1145 struct io_ring_ctx *ctx, 1146 unsigned flags) 1147 { 1148 unsigned nr_wait, nr_tw, nr_tw_prev; 1149 struct llist_node *head; 1150 1151 /* See comment above IO_CQ_WAKE_INIT */ 1152 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1153 1154 /* 1155 * We don't know how many reuqests is there in the link and whether 1156 * they can even be queued lazily, fall back to non-lazy. 1157 */ 1158 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1159 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1160 1161 guard(rcu)(); 1162 1163 head = READ_ONCE(ctx->work_llist.first); 1164 do { 1165 nr_tw_prev = 0; 1166 if (head) { 1167 struct io_kiocb *first_req = container_of(head, 1168 struct io_kiocb, 1169 io_task_work.node); 1170 /* 1171 * Might be executed at any moment, rely on 1172 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1173 */ 1174 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1175 } 1176 1177 /* 1178 * Theoretically, it can overflow, but that's fine as one of 1179 * previous adds should've tried to wake the task. 1180 */ 1181 nr_tw = nr_tw_prev + 1; 1182 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1183 nr_tw = IO_CQ_WAKE_FORCE; 1184 1185 req->nr_tw = nr_tw; 1186 req->io_task_work.node.next = head; 1187 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1188 &req->io_task_work.node)); 1189 1190 /* 1191 * cmpxchg implies a full barrier, which pairs with the barrier 1192 * in set_current_state() on the io_cqring_wait() side. It's used 1193 * to ensure that either we see updated ->cq_wait_nr, or waiters 1194 * going to sleep will observe the work added to the list, which 1195 * is similar to the wait/wawke task state sync. 1196 */ 1197 1198 if (!head) { 1199 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1200 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1201 if (ctx->has_evfd) 1202 io_eventfd_signal(ctx); 1203 } 1204 1205 nr_wait = atomic_read(&ctx->cq_wait_nr); 1206 /* not enough or no one is waiting */ 1207 if (nr_tw < nr_wait) 1208 return; 1209 /* the previous add has already woken it up */ 1210 if (nr_tw_prev >= nr_wait) 1211 return; 1212 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1213 } 1214 1215 static void io_req_normal_work_add(struct io_kiocb *req) 1216 { 1217 struct io_uring_task *tctx = req->tctx; 1218 struct io_ring_ctx *ctx = req->ctx; 1219 1220 /* task_work already pending, we're done */ 1221 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1222 return; 1223 1224 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1225 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1226 1227 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1228 if (ctx->flags & IORING_SETUP_SQPOLL) { 1229 __set_notify_signal(tctx->task); 1230 return; 1231 } 1232 1233 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1234 return; 1235 1236 io_fallback_tw(tctx, false); 1237 } 1238 1239 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1240 { 1241 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1242 io_req_local_work_add(req, req->ctx, flags); 1243 else 1244 io_req_normal_work_add(req); 1245 } 1246 1247 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 1248 unsigned flags) 1249 { 1250 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1251 return; 1252 io_req_local_work_add(req, ctx, flags); 1253 } 1254 1255 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1256 { 1257 struct llist_node *node = llist_del_all(&ctx->work_llist); 1258 1259 __io_fallback_tw(node, false); 1260 node = llist_del_all(&ctx->retry_llist); 1261 __io_fallback_tw(node, false); 1262 } 1263 1264 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1265 int min_events) 1266 { 1267 if (!io_local_work_pending(ctx)) 1268 return false; 1269 if (events < min_events) 1270 return true; 1271 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1272 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1273 return false; 1274 } 1275 1276 static int __io_run_local_work_loop(struct llist_node **node, 1277 struct io_tw_state *ts, 1278 int events) 1279 { 1280 int ret = 0; 1281 1282 while (*node) { 1283 struct llist_node *next = (*node)->next; 1284 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1285 io_task_work.node); 1286 INDIRECT_CALL_2(req->io_task_work.func, 1287 io_poll_task_func, io_req_rw_complete, 1288 req, ts); 1289 *node = next; 1290 if (++ret >= events) 1291 break; 1292 } 1293 1294 return ret; 1295 } 1296 1297 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1298 int min_events, int max_events) 1299 { 1300 struct llist_node *node; 1301 unsigned int loops = 0; 1302 int ret = 0; 1303 1304 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1305 return -EEXIST; 1306 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1307 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1308 again: 1309 min_events -= ret; 1310 ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events); 1311 if (ctx->retry_llist.first) 1312 goto retry_done; 1313 1314 /* 1315 * llists are in reverse order, flip it back the right way before 1316 * running the pending items. 1317 */ 1318 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1319 ret += __io_run_local_work_loop(&node, ts, max_events - ret); 1320 ctx->retry_llist.first = node; 1321 loops++; 1322 1323 if (io_run_local_work_continue(ctx, ret, min_events)) 1324 goto again; 1325 retry_done: 1326 io_submit_flush_completions(ctx); 1327 if (io_run_local_work_continue(ctx, ret, min_events)) 1328 goto again; 1329 1330 trace_io_uring_local_work_run(ctx, ret, loops); 1331 return ret; 1332 } 1333 1334 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1335 int min_events) 1336 { 1337 struct io_tw_state ts = {}; 1338 1339 if (!io_local_work_pending(ctx)) 1340 return 0; 1341 return __io_run_local_work(ctx, &ts, min_events, 1342 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1343 } 1344 1345 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1346 int max_events) 1347 { 1348 struct io_tw_state ts = {}; 1349 int ret; 1350 1351 mutex_lock(&ctx->uring_lock); 1352 ret = __io_run_local_work(ctx, &ts, min_events, max_events); 1353 mutex_unlock(&ctx->uring_lock); 1354 return ret; 1355 } 1356 1357 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1358 { 1359 io_tw_lock(req->ctx, ts); 1360 io_req_defer_failed(req, req->cqe.res); 1361 } 1362 1363 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1364 { 1365 io_tw_lock(req->ctx, ts); 1366 if (unlikely(io_should_terminate_tw())) 1367 io_req_defer_failed(req, -EFAULT); 1368 else if (req->flags & REQ_F_FORCE_ASYNC) 1369 io_queue_iowq(req); 1370 else 1371 io_queue_sqe(req); 1372 } 1373 1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1375 { 1376 io_req_set_res(req, ret, 0); 1377 req->io_task_work.func = io_req_task_cancel; 1378 io_req_task_work_add(req); 1379 } 1380 1381 void io_req_task_queue(struct io_kiocb *req) 1382 { 1383 req->io_task_work.func = io_req_task_submit; 1384 io_req_task_work_add(req); 1385 } 1386 1387 void io_queue_next(struct io_kiocb *req) 1388 { 1389 struct io_kiocb *nxt = io_req_find_next(req); 1390 1391 if (nxt) 1392 io_req_task_queue(nxt); 1393 } 1394 1395 static void io_free_batch_list(struct io_ring_ctx *ctx, 1396 struct io_wq_work_node *node) 1397 __must_hold(&ctx->uring_lock) 1398 { 1399 do { 1400 struct io_kiocb *req = container_of(node, struct io_kiocb, 1401 comp_list); 1402 1403 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1404 if (req->flags & REQ_F_REISSUE) { 1405 node = req->comp_list.next; 1406 req->flags &= ~REQ_F_REISSUE; 1407 io_queue_iowq(req); 1408 continue; 1409 } 1410 if (req->flags & REQ_F_REFCOUNT) { 1411 node = req->comp_list.next; 1412 if (!req_ref_put_and_test(req)) 1413 continue; 1414 } 1415 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1416 struct async_poll *apoll = req->apoll; 1417 1418 if (apoll->double_poll) 1419 kfree(apoll->double_poll); 1420 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll)) 1421 kfree(apoll); 1422 req->flags &= ~REQ_F_POLLED; 1423 } 1424 if (req->flags & IO_REQ_LINK_FLAGS) 1425 io_queue_next(req); 1426 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1427 io_clean_op(req); 1428 } 1429 io_put_file(req); 1430 io_req_put_rsrc_nodes(req); 1431 io_put_task(req); 1432 1433 node = req->comp_list.next; 1434 io_req_add_to_cache(req, ctx); 1435 } while (node); 1436 } 1437 1438 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1439 __must_hold(&ctx->uring_lock) 1440 { 1441 struct io_submit_state *state = &ctx->submit_state; 1442 struct io_wq_work_node *node; 1443 1444 __io_cq_lock(ctx); 1445 __wq_list_for_each(node, &state->compl_reqs) { 1446 struct io_kiocb *req = container_of(node, struct io_kiocb, 1447 comp_list); 1448 1449 /* 1450 * Requests marked with REQUEUE should not post a CQE, they 1451 * will go through the io-wq retry machinery and post one 1452 * later. 1453 */ 1454 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && 1455 unlikely(!io_fill_cqe_req(ctx, req))) { 1456 if (ctx->lockless_cq) { 1457 spin_lock(&ctx->completion_lock); 1458 io_req_cqe_overflow(req); 1459 spin_unlock(&ctx->completion_lock); 1460 } else { 1461 io_req_cqe_overflow(req); 1462 } 1463 } 1464 } 1465 __io_cq_unlock_post(ctx); 1466 1467 if (!wq_list_empty(&state->compl_reqs)) { 1468 io_free_batch_list(ctx, state->compl_reqs.first); 1469 INIT_WQ_LIST(&state->compl_reqs); 1470 } 1471 ctx->submit_state.cq_flush = false; 1472 } 1473 1474 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1475 { 1476 /* See comment at the top of this file */ 1477 smp_rmb(); 1478 return __io_cqring_events(ctx); 1479 } 1480 1481 /* 1482 * We can't just wait for polled events to come to us, we have to actively 1483 * find and complete them. 1484 */ 1485 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1486 { 1487 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1488 return; 1489 1490 mutex_lock(&ctx->uring_lock); 1491 while (!wq_list_empty(&ctx->iopoll_list)) { 1492 /* let it sleep and repeat later if can't complete a request */ 1493 if (io_do_iopoll(ctx, true) == 0) 1494 break; 1495 /* 1496 * Ensure we allow local-to-the-cpu processing to take place, 1497 * in this case we need to ensure that we reap all events. 1498 * Also let task_work, etc. to progress by releasing the mutex 1499 */ 1500 if (need_resched()) { 1501 mutex_unlock(&ctx->uring_lock); 1502 cond_resched(); 1503 mutex_lock(&ctx->uring_lock); 1504 } 1505 } 1506 mutex_unlock(&ctx->uring_lock); 1507 } 1508 1509 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1510 { 1511 unsigned int nr_events = 0; 1512 unsigned long check_cq; 1513 1514 lockdep_assert_held(&ctx->uring_lock); 1515 1516 if (!io_allowed_run_tw(ctx)) 1517 return -EEXIST; 1518 1519 check_cq = READ_ONCE(ctx->check_cq); 1520 if (unlikely(check_cq)) { 1521 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1522 __io_cqring_overflow_flush(ctx, false); 1523 /* 1524 * Similarly do not spin if we have not informed the user of any 1525 * dropped CQE. 1526 */ 1527 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1528 return -EBADR; 1529 } 1530 /* 1531 * Don't enter poll loop if we already have events pending. 1532 * If we do, we can potentially be spinning for commands that 1533 * already triggered a CQE (eg in error). 1534 */ 1535 if (io_cqring_events(ctx)) 1536 return 0; 1537 1538 do { 1539 int ret = 0; 1540 1541 /* 1542 * If a submit got punted to a workqueue, we can have the 1543 * application entering polling for a command before it gets 1544 * issued. That app will hold the uring_lock for the duration 1545 * of the poll right here, so we need to take a breather every 1546 * now and then to ensure that the issue has a chance to add 1547 * the poll to the issued list. Otherwise we can spin here 1548 * forever, while the workqueue is stuck trying to acquire the 1549 * very same mutex. 1550 */ 1551 if (wq_list_empty(&ctx->iopoll_list) || 1552 io_task_work_pending(ctx)) { 1553 u32 tail = ctx->cached_cq_tail; 1554 1555 (void) io_run_local_work_locked(ctx, min); 1556 1557 if (task_work_pending(current) || 1558 wq_list_empty(&ctx->iopoll_list)) { 1559 mutex_unlock(&ctx->uring_lock); 1560 io_run_task_work(); 1561 mutex_lock(&ctx->uring_lock); 1562 } 1563 /* some requests don't go through iopoll_list */ 1564 if (tail != ctx->cached_cq_tail || 1565 wq_list_empty(&ctx->iopoll_list)) 1566 break; 1567 } 1568 ret = io_do_iopoll(ctx, !min); 1569 if (unlikely(ret < 0)) 1570 return ret; 1571 1572 if (task_sigpending(current)) 1573 return -EINTR; 1574 if (need_resched()) 1575 break; 1576 1577 nr_events += ret; 1578 } while (nr_events < min); 1579 1580 return 0; 1581 } 1582 1583 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1584 { 1585 io_req_complete_defer(req); 1586 } 1587 1588 /* 1589 * After the iocb has been issued, it's safe to be found on the poll list. 1590 * Adding the kiocb to the list AFTER submission ensures that we don't 1591 * find it from a io_do_iopoll() thread before the issuer is done 1592 * accessing the kiocb cookie. 1593 */ 1594 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1595 { 1596 struct io_ring_ctx *ctx = req->ctx; 1597 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1598 1599 /* workqueue context doesn't hold uring_lock, grab it now */ 1600 if (unlikely(needs_lock)) 1601 mutex_lock(&ctx->uring_lock); 1602 1603 /* 1604 * Track whether we have multiple files in our lists. This will impact 1605 * how we do polling eventually, not spinning if we're on potentially 1606 * different devices. 1607 */ 1608 if (wq_list_empty(&ctx->iopoll_list)) { 1609 ctx->poll_multi_queue = false; 1610 } else if (!ctx->poll_multi_queue) { 1611 struct io_kiocb *list_req; 1612 1613 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1614 comp_list); 1615 if (list_req->file != req->file) 1616 ctx->poll_multi_queue = true; 1617 } 1618 1619 /* 1620 * For fast devices, IO may have already completed. If it has, add 1621 * it to the front so we find it first. 1622 */ 1623 if (READ_ONCE(req->iopoll_completed)) 1624 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1625 else 1626 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1627 1628 if (unlikely(needs_lock)) { 1629 /* 1630 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1631 * in sq thread task context or in io worker task context. If 1632 * current task context is sq thread, we don't need to check 1633 * whether should wake up sq thread. 1634 */ 1635 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1636 wq_has_sleeper(&ctx->sq_data->wait)) 1637 wake_up(&ctx->sq_data->wait); 1638 1639 mutex_unlock(&ctx->uring_lock); 1640 } 1641 } 1642 1643 io_req_flags_t io_file_get_flags(struct file *file) 1644 { 1645 io_req_flags_t res = 0; 1646 1647 if (S_ISREG(file_inode(file)->i_mode)) 1648 res |= REQ_F_ISREG; 1649 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1650 res |= REQ_F_SUPPORT_NOWAIT; 1651 return res; 1652 } 1653 1654 static u32 io_get_sequence(struct io_kiocb *req) 1655 { 1656 u32 seq = req->ctx->cached_sq_head; 1657 struct io_kiocb *cur; 1658 1659 /* need original cached_sq_head, but it was increased for each req */ 1660 io_for_each_link(cur, req) 1661 seq--; 1662 return seq; 1663 } 1664 1665 static __cold void io_drain_req(struct io_kiocb *req) 1666 __must_hold(&ctx->uring_lock) 1667 { 1668 struct io_ring_ctx *ctx = req->ctx; 1669 struct io_defer_entry *de; 1670 int ret; 1671 u32 seq = io_get_sequence(req); 1672 1673 /* Still need defer if there is pending req in defer list. */ 1674 spin_lock(&ctx->completion_lock); 1675 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1676 spin_unlock(&ctx->completion_lock); 1677 queue: 1678 ctx->drain_active = false; 1679 io_req_task_queue(req); 1680 return; 1681 } 1682 spin_unlock(&ctx->completion_lock); 1683 1684 io_prep_async_link(req); 1685 de = kmalloc(sizeof(*de), GFP_KERNEL); 1686 if (!de) { 1687 ret = -ENOMEM; 1688 io_req_defer_failed(req, ret); 1689 return; 1690 } 1691 1692 spin_lock(&ctx->completion_lock); 1693 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1694 spin_unlock(&ctx->completion_lock); 1695 kfree(de); 1696 goto queue; 1697 } 1698 1699 trace_io_uring_defer(req); 1700 de->req = req; 1701 de->seq = seq; 1702 list_add_tail(&de->list, &ctx->defer_list); 1703 spin_unlock(&ctx->completion_lock); 1704 } 1705 1706 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1707 unsigned int issue_flags) 1708 { 1709 if (req->file || !def->needs_file) 1710 return true; 1711 1712 if (req->flags & REQ_F_FIXED_FILE) 1713 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1714 else 1715 req->file = io_file_get_normal(req, req->cqe.fd); 1716 1717 return !!req->file; 1718 } 1719 1720 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1721 { 1722 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1723 const struct cred *creds = NULL; 1724 int ret; 1725 1726 if (unlikely(!io_assign_file(req, def, issue_flags))) 1727 return -EBADF; 1728 1729 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1730 creds = override_creds(req->creds); 1731 1732 if (!def->audit_skip) 1733 audit_uring_entry(req->opcode); 1734 1735 ret = def->issue(req, issue_flags); 1736 1737 if (!def->audit_skip) 1738 audit_uring_exit(!ret, ret); 1739 1740 if (creds) 1741 revert_creds(creds); 1742 1743 if (ret == IOU_OK) { 1744 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1745 io_req_complete_defer(req); 1746 else 1747 io_req_complete_post(req, issue_flags); 1748 1749 return 0; 1750 } 1751 1752 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1753 ret = 0; 1754 io_arm_ltimeout(req); 1755 1756 /* If the op doesn't have a file, we're not polling for it */ 1757 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1758 io_iopoll_req_issued(req, issue_flags); 1759 } 1760 return ret; 1761 } 1762 1763 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1764 { 1765 io_tw_lock(req->ctx, ts); 1766 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1767 IO_URING_F_COMPLETE_DEFER); 1768 } 1769 1770 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1771 { 1772 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1773 struct io_kiocb *nxt = NULL; 1774 1775 if (req_ref_put_and_test(req)) { 1776 if (req->flags & IO_REQ_LINK_FLAGS) 1777 nxt = io_req_find_next(req); 1778 io_free_req(req); 1779 } 1780 return nxt ? &nxt->work : NULL; 1781 } 1782 1783 void io_wq_submit_work(struct io_wq_work *work) 1784 { 1785 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1786 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1787 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1788 bool needs_poll = false; 1789 int ret = 0, err = -ECANCELED; 1790 1791 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1792 if (!(req->flags & REQ_F_REFCOUNT)) 1793 __io_req_set_refcount(req, 2); 1794 else 1795 req_ref_get(req); 1796 1797 io_arm_ltimeout(req); 1798 1799 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1800 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1801 fail: 1802 io_req_task_queue_fail(req, err); 1803 return; 1804 } 1805 if (!io_assign_file(req, def, issue_flags)) { 1806 err = -EBADF; 1807 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1808 goto fail; 1809 } 1810 1811 /* 1812 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1813 * submitter task context. Final request completions are handed to the 1814 * right context, however this is not the case of auxiliary CQEs, 1815 * which is the main mean of operation for multishot requests. 1816 * Don't allow any multishot execution from io-wq. It's more restrictive 1817 * than necessary and also cleaner. 1818 */ 1819 if (req->flags & REQ_F_APOLL_MULTISHOT) { 1820 err = -EBADFD; 1821 if (!io_file_can_poll(req)) 1822 goto fail; 1823 if (req->file->f_flags & O_NONBLOCK || 1824 req->file->f_mode & FMODE_NOWAIT) { 1825 err = -ECANCELED; 1826 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1827 goto fail; 1828 return; 1829 } else { 1830 req->flags &= ~REQ_F_APOLL_MULTISHOT; 1831 } 1832 } 1833 1834 if (req->flags & REQ_F_FORCE_ASYNC) { 1835 bool opcode_poll = def->pollin || def->pollout; 1836 1837 if (opcode_poll && io_file_can_poll(req)) { 1838 needs_poll = true; 1839 issue_flags |= IO_URING_F_NONBLOCK; 1840 } 1841 } 1842 1843 do { 1844 ret = io_issue_sqe(req, issue_flags); 1845 if (ret != -EAGAIN) 1846 break; 1847 1848 /* 1849 * If REQ_F_NOWAIT is set, then don't wait or retry with 1850 * poll. -EAGAIN is final for that case. 1851 */ 1852 if (req->flags & REQ_F_NOWAIT) 1853 break; 1854 1855 /* 1856 * We can get EAGAIN for iopolled IO even though we're 1857 * forcing a sync submission from here, since we can't 1858 * wait for request slots on the block side. 1859 */ 1860 if (!needs_poll) { 1861 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1862 break; 1863 if (io_wq_worker_stopped()) 1864 break; 1865 cond_resched(); 1866 continue; 1867 } 1868 1869 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1870 return; 1871 /* aborted or ready, in either case retry blocking */ 1872 needs_poll = false; 1873 issue_flags &= ~IO_URING_F_NONBLOCK; 1874 } while (1); 1875 1876 /* avoid locking problems by failing it from a clean context */ 1877 if (ret) 1878 io_req_task_queue_fail(req, ret); 1879 } 1880 1881 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1882 unsigned int issue_flags) 1883 { 1884 struct io_ring_ctx *ctx = req->ctx; 1885 struct io_rsrc_node *node; 1886 struct file *file = NULL; 1887 1888 io_ring_submit_lock(ctx, issue_flags); 1889 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1890 if (node) { 1891 io_req_assign_rsrc_node(&req->file_node, node); 1892 req->flags |= io_slot_flags(node); 1893 file = io_slot_file(node); 1894 } 1895 io_ring_submit_unlock(ctx, issue_flags); 1896 return file; 1897 } 1898 1899 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1900 { 1901 struct file *file = fget(fd); 1902 1903 trace_io_uring_file_get(req, fd); 1904 1905 /* we don't allow fixed io_uring files */ 1906 if (file && io_is_uring_fops(file)) 1907 io_req_track_inflight(req); 1908 return file; 1909 } 1910 1911 static void io_queue_async(struct io_kiocb *req, int ret) 1912 __must_hold(&req->ctx->uring_lock) 1913 { 1914 struct io_kiocb *linked_timeout; 1915 1916 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1917 io_req_defer_failed(req, ret); 1918 return; 1919 } 1920 1921 linked_timeout = io_prep_linked_timeout(req); 1922 1923 switch (io_arm_poll_handler(req, 0)) { 1924 case IO_APOLL_READY: 1925 io_kbuf_recycle(req, 0); 1926 io_req_task_queue(req); 1927 break; 1928 case IO_APOLL_ABORTED: 1929 io_kbuf_recycle(req, 0); 1930 io_queue_iowq(req); 1931 break; 1932 case IO_APOLL_OK: 1933 break; 1934 } 1935 1936 if (linked_timeout) 1937 io_queue_linked_timeout(linked_timeout); 1938 } 1939 1940 static inline void io_queue_sqe(struct io_kiocb *req) 1941 __must_hold(&req->ctx->uring_lock) 1942 { 1943 int ret; 1944 1945 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1946 1947 /* 1948 * We async punt it if the file wasn't marked NOWAIT, or if the file 1949 * doesn't support non-blocking read/write attempts 1950 */ 1951 if (unlikely(ret)) 1952 io_queue_async(req, ret); 1953 } 1954 1955 static void io_queue_sqe_fallback(struct io_kiocb *req) 1956 __must_hold(&req->ctx->uring_lock) 1957 { 1958 if (unlikely(req->flags & REQ_F_FAIL)) { 1959 /* 1960 * We don't submit, fail them all, for that replace hardlinks 1961 * with normal links. Extra REQ_F_LINK is tolerated. 1962 */ 1963 req->flags &= ~REQ_F_HARDLINK; 1964 req->flags |= REQ_F_LINK; 1965 io_req_defer_failed(req, req->cqe.res); 1966 } else { 1967 if (unlikely(req->ctx->drain_active)) 1968 io_drain_req(req); 1969 else 1970 io_queue_iowq(req); 1971 } 1972 } 1973 1974 /* 1975 * Check SQE restrictions (opcode and flags). 1976 * 1977 * Returns 'true' if SQE is allowed, 'false' otherwise. 1978 */ 1979 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1980 struct io_kiocb *req, 1981 unsigned int sqe_flags) 1982 { 1983 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1984 return false; 1985 1986 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1987 ctx->restrictions.sqe_flags_required) 1988 return false; 1989 1990 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1991 ctx->restrictions.sqe_flags_required)) 1992 return false; 1993 1994 return true; 1995 } 1996 1997 static void io_init_req_drain(struct io_kiocb *req) 1998 { 1999 struct io_ring_ctx *ctx = req->ctx; 2000 struct io_kiocb *head = ctx->submit_state.link.head; 2001 2002 ctx->drain_active = true; 2003 if (head) { 2004 /* 2005 * If we need to drain a request in the middle of a link, drain 2006 * the head request and the next request/link after the current 2007 * link. Considering sequential execution of links, 2008 * REQ_F_IO_DRAIN will be maintained for every request of our 2009 * link. 2010 */ 2011 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2012 ctx->drain_next = true; 2013 } 2014 } 2015 2016 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2017 { 2018 /* ensure per-opcode data is cleared if we fail before prep */ 2019 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2020 return err; 2021 } 2022 2023 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2024 const struct io_uring_sqe *sqe) 2025 __must_hold(&ctx->uring_lock) 2026 { 2027 const struct io_issue_def *def; 2028 unsigned int sqe_flags; 2029 int personality; 2030 u8 opcode; 2031 2032 /* req is partially pre-initialised, see io_preinit_req() */ 2033 req->opcode = opcode = READ_ONCE(sqe->opcode); 2034 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2035 sqe_flags = READ_ONCE(sqe->flags); 2036 req->flags = (__force io_req_flags_t) sqe_flags; 2037 req->cqe.user_data = READ_ONCE(sqe->user_data); 2038 req->file = NULL; 2039 req->tctx = current->io_uring; 2040 req->cancel_seq_set = false; 2041 2042 if (unlikely(opcode >= IORING_OP_LAST)) { 2043 req->opcode = 0; 2044 return io_init_fail_req(req, -EINVAL); 2045 } 2046 def = &io_issue_defs[opcode]; 2047 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2048 /* enforce forwards compatibility on users */ 2049 if (sqe_flags & ~SQE_VALID_FLAGS) 2050 return io_init_fail_req(req, -EINVAL); 2051 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2052 if (!def->buffer_select) 2053 return io_init_fail_req(req, -EOPNOTSUPP); 2054 req->buf_index = READ_ONCE(sqe->buf_group); 2055 } 2056 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2057 ctx->drain_disabled = true; 2058 if (sqe_flags & IOSQE_IO_DRAIN) { 2059 if (ctx->drain_disabled) 2060 return io_init_fail_req(req, -EOPNOTSUPP); 2061 io_init_req_drain(req); 2062 } 2063 } 2064 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2065 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2066 return io_init_fail_req(req, -EACCES); 2067 /* knock it to the slow queue path, will be drained there */ 2068 if (ctx->drain_active) 2069 req->flags |= REQ_F_FORCE_ASYNC; 2070 /* if there is no link, we're at "next" request and need to drain */ 2071 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2072 ctx->drain_next = false; 2073 ctx->drain_active = true; 2074 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2075 } 2076 } 2077 2078 if (!def->ioprio && sqe->ioprio) 2079 return io_init_fail_req(req, -EINVAL); 2080 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2081 return io_init_fail_req(req, -EINVAL); 2082 2083 if (def->needs_file) { 2084 struct io_submit_state *state = &ctx->submit_state; 2085 2086 req->cqe.fd = READ_ONCE(sqe->fd); 2087 2088 /* 2089 * Plug now if we have more than 2 IO left after this, and the 2090 * target is potentially a read/write to block based storage. 2091 */ 2092 if (state->need_plug && def->plug) { 2093 state->plug_started = true; 2094 state->need_plug = false; 2095 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2096 } 2097 } 2098 2099 personality = READ_ONCE(sqe->personality); 2100 if (personality) { 2101 int ret; 2102 2103 req->creds = xa_load(&ctx->personalities, personality); 2104 if (!req->creds) 2105 return io_init_fail_req(req, -EINVAL); 2106 get_cred(req->creds); 2107 ret = security_uring_override_creds(req->creds); 2108 if (ret) { 2109 put_cred(req->creds); 2110 return io_init_fail_req(req, ret); 2111 } 2112 req->flags |= REQ_F_CREDS; 2113 } 2114 2115 return def->prep(req, sqe); 2116 } 2117 2118 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2119 struct io_kiocb *req, int ret) 2120 { 2121 struct io_ring_ctx *ctx = req->ctx; 2122 struct io_submit_link *link = &ctx->submit_state.link; 2123 struct io_kiocb *head = link->head; 2124 2125 trace_io_uring_req_failed(sqe, req, ret); 2126 2127 /* 2128 * Avoid breaking links in the middle as it renders links with SQPOLL 2129 * unusable. Instead of failing eagerly, continue assembling the link if 2130 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2131 * should find the flag and handle the rest. 2132 */ 2133 req_fail_link_node(req, ret); 2134 if (head && !(head->flags & REQ_F_FAIL)) 2135 req_fail_link_node(head, -ECANCELED); 2136 2137 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2138 if (head) { 2139 link->last->link = req; 2140 link->head = NULL; 2141 req = head; 2142 } 2143 io_queue_sqe_fallback(req); 2144 return ret; 2145 } 2146 2147 if (head) 2148 link->last->link = req; 2149 else 2150 link->head = req; 2151 link->last = req; 2152 return 0; 2153 } 2154 2155 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2156 const struct io_uring_sqe *sqe) 2157 __must_hold(&ctx->uring_lock) 2158 { 2159 struct io_submit_link *link = &ctx->submit_state.link; 2160 int ret; 2161 2162 ret = io_init_req(ctx, req, sqe); 2163 if (unlikely(ret)) 2164 return io_submit_fail_init(sqe, req, ret); 2165 2166 trace_io_uring_submit_req(req); 2167 2168 /* 2169 * If we already have a head request, queue this one for async 2170 * submittal once the head completes. If we don't have a head but 2171 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2172 * submitted sync once the chain is complete. If none of those 2173 * conditions are true (normal request), then just queue it. 2174 */ 2175 if (unlikely(link->head)) { 2176 trace_io_uring_link(req, link->last); 2177 link->last->link = req; 2178 link->last = req; 2179 2180 if (req->flags & IO_REQ_LINK_FLAGS) 2181 return 0; 2182 /* last request of the link, flush it */ 2183 req = link->head; 2184 link->head = NULL; 2185 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2186 goto fallback; 2187 2188 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2189 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2190 if (req->flags & IO_REQ_LINK_FLAGS) { 2191 link->head = req; 2192 link->last = req; 2193 } else { 2194 fallback: 2195 io_queue_sqe_fallback(req); 2196 } 2197 return 0; 2198 } 2199 2200 io_queue_sqe(req); 2201 return 0; 2202 } 2203 2204 /* 2205 * Batched submission is done, ensure local IO is flushed out. 2206 */ 2207 static void io_submit_state_end(struct io_ring_ctx *ctx) 2208 { 2209 struct io_submit_state *state = &ctx->submit_state; 2210 2211 if (unlikely(state->link.head)) 2212 io_queue_sqe_fallback(state->link.head); 2213 /* flush only after queuing links as they can generate completions */ 2214 io_submit_flush_completions(ctx); 2215 if (state->plug_started) 2216 blk_finish_plug(&state->plug); 2217 } 2218 2219 /* 2220 * Start submission side cache. 2221 */ 2222 static void io_submit_state_start(struct io_submit_state *state, 2223 unsigned int max_ios) 2224 { 2225 state->plug_started = false; 2226 state->need_plug = max_ios > 2; 2227 state->submit_nr = max_ios; 2228 /* set only head, no need to init link_last in advance */ 2229 state->link.head = NULL; 2230 } 2231 2232 static void io_commit_sqring(struct io_ring_ctx *ctx) 2233 { 2234 struct io_rings *rings = ctx->rings; 2235 2236 /* 2237 * Ensure any loads from the SQEs are done at this point, 2238 * since once we write the new head, the application could 2239 * write new data to them. 2240 */ 2241 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2242 } 2243 2244 /* 2245 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2246 * that is mapped by userspace. This means that care needs to be taken to 2247 * ensure that reads are stable, as we cannot rely on userspace always 2248 * being a good citizen. If members of the sqe are validated and then later 2249 * used, it's important that those reads are done through READ_ONCE() to 2250 * prevent a re-load down the line. 2251 */ 2252 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2253 { 2254 unsigned mask = ctx->sq_entries - 1; 2255 unsigned head = ctx->cached_sq_head++ & mask; 2256 2257 if (static_branch_unlikely(&io_key_has_sqarray) && 2258 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2259 head = READ_ONCE(ctx->sq_array[head]); 2260 if (unlikely(head >= ctx->sq_entries)) { 2261 /* drop invalid entries */ 2262 spin_lock(&ctx->completion_lock); 2263 ctx->cq_extra--; 2264 spin_unlock(&ctx->completion_lock); 2265 WRITE_ONCE(ctx->rings->sq_dropped, 2266 READ_ONCE(ctx->rings->sq_dropped) + 1); 2267 return false; 2268 } 2269 head = array_index_nospec(head, ctx->sq_entries); 2270 } 2271 2272 /* 2273 * The cached sq head (or cq tail) serves two purposes: 2274 * 2275 * 1) allows us to batch the cost of updating the user visible 2276 * head updates. 2277 * 2) allows the kernel side to track the head on its own, even 2278 * though the application is the one updating it. 2279 */ 2280 2281 /* double index for 128-byte SQEs, twice as long */ 2282 if (ctx->flags & IORING_SETUP_SQE128) 2283 head <<= 1; 2284 *sqe = &ctx->sq_sqes[head]; 2285 return true; 2286 } 2287 2288 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2289 __must_hold(&ctx->uring_lock) 2290 { 2291 unsigned int entries = io_sqring_entries(ctx); 2292 unsigned int left; 2293 int ret; 2294 2295 if (unlikely(!entries)) 2296 return 0; 2297 /* make sure SQ entry isn't read before tail */ 2298 ret = left = min(nr, entries); 2299 io_get_task_refs(left); 2300 io_submit_state_start(&ctx->submit_state, left); 2301 2302 do { 2303 const struct io_uring_sqe *sqe; 2304 struct io_kiocb *req; 2305 2306 if (unlikely(!io_alloc_req(ctx, &req))) 2307 break; 2308 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2309 io_req_add_to_cache(req, ctx); 2310 break; 2311 } 2312 2313 /* 2314 * Continue submitting even for sqe failure if the 2315 * ring was setup with IORING_SETUP_SUBMIT_ALL 2316 */ 2317 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2318 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2319 left--; 2320 break; 2321 } 2322 } while (--left); 2323 2324 if (unlikely(left)) { 2325 ret -= left; 2326 /* try again if it submitted nothing and can't allocate a req */ 2327 if (!ret && io_req_cache_empty(ctx)) 2328 ret = -EAGAIN; 2329 current->io_uring->cached_refs += left; 2330 } 2331 2332 io_submit_state_end(ctx); 2333 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2334 io_commit_sqring(ctx); 2335 return ret; 2336 } 2337 2338 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2339 int wake_flags, void *key) 2340 { 2341 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2342 2343 /* 2344 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2345 * the task, and the next invocation will do it. 2346 */ 2347 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2348 return autoremove_wake_function(curr, mode, wake_flags, key); 2349 return -1; 2350 } 2351 2352 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2353 { 2354 if (io_local_work_pending(ctx)) { 2355 __set_current_state(TASK_RUNNING); 2356 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2357 return 0; 2358 } 2359 if (io_run_task_work() > 0) 2360 return 0; 2361 if (task_sigpending(current)) 2362 return -EINTR; 2363 return 0; 2364 } 2365 2366 static bool current_pending_io(void) 2367 { 2368 struct io_uring_task *tctx = current->io_uring; 2369 2370 if (!tctx) 2371 return false; 2372 return percpu_counter_read_positive(&tctx->inflight); 2373 } 2374 2375 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2376 { 2377 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2378 2379 WRITE_ONCE(iowq->hit_timeout, 1); 2380 iowq->min_timeout = 0; 2381 wake_up_process(iowq->wq.private); 2382 return HRTIMER_NORESTART; 2383 } 2384 2385 /* 2386 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2387 * wake up. If not, and we have a normal timeout, switch to that and keep 2388 * sleeping. 2389 */ 2390 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2391 { 2392 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2393 struct io_ring_ctx *ctx = iowq->ctx; 2394 2395 /* no general timeout, or shorter (or equal), we are done */ 2396 if (iowq->timeout == KTIME_MAX || 2397 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2398 goto out_wake; 2399 /* work we may need to run, wake function will see if we need to wake */ 2400 if (io_has_work(ctx)) 2401 goto out_wake; 2402 /* got events since we started waiting, min timeout is done */ 2403 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2404 goto out_wake; 2405 /* if we have any events and min timeout expired, we're done */ 2406 if (io_cqring_events(ctx)) 2407 goto out_wake; 2408 2409 /* 2410 * If using deferred task_work running and application is waiting on 2411 * more than one request, ensure we reset it now where we are switching 2412 * to normal sleeps. Any request completion post min_wait should wake 2413 * the task and return. 2414 */ 2415 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2416 atomic_set(&ctx->cq_wait_nr, 1); 2417 smp_mb(); 2418 if (!llist_empty(&ctx->work_llist)) 2419 goto out_wake; 2420 } 2421 2422 iowq->t.function = io_cqring_timer_wakeup; 2423 hrtimer_set_expires(timer, iowq->timeout); 2424 return HRTIMER_RESTART; 2425 out_wake: 2426 return io_cqring_timer_wakeup(timer); 2427 } 2428 2429 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2430 clockid_t clock_id, ktime_t start_time) 2431 { 2432 ktime_t timeout; 2433 2434 if (iowq->min_timeout) { 2435 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2436 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2437 HRTIMER_MODE_ABS); 2438 } else { 2439 timeout = iowq->timeout; 2440 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2441 HRTIMER_MODE_ABS); 2442 } 2443 2444 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2445 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2446 2447 if (!READ_ONCE(iowq->hit_timeout)) 2448 schedule(); 2449 2450 hrtimer_cancel(&iowq->t); 2451 destroy_hrtimer_on_stack(&iowq->t); 2452 __set_current_state(TASK_RUNNING); 2453 2454 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2455 } 2456 2457 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2458 struct io_wait_queue *iowq, 2459 ktime_t start_time) 2460 { 2461 int ret = 0; 2462 2463 /* 2464 * Mark us as being in io_wait if we have pending requests, so cpufreq 2465 * can take into account that the task is waiting for IO - turns out 2466 * to be important for low QD IO. 2467 */ 2468 if (current_pending_io()) 2469 current->in_iowait = 1; 2470 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2471 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2472 else 2473 schedule(); 2474 current->in_iowait = 0; 2475 return ret; 2476 } 2477 2478 /* If this returns > 0, the caller should retry */ 2479 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2480 struct io_wait_queue *iowq, 2481 ktime_t start_time) 2482 { 2483 if (unlikely(READ_ONCE(ctx->check_cq))) 2484 return 1; 2485 if (unlikely(io_local_work_pending(ctx))) 2486 return 1; 2487 if (unlikely(task_work_pending(current))) 2488 return 1; 2489 if (unlikely(task_sigpending(current))) 2490 return -EINTR; 2491 if (unlikely(io_should_wake(iowq))) 2492 return 0; 2493 2494 return __io_cqring_wait_schedule(ctx, iowq, start_time); 2495 } 2496 2497 struct ext_arg { 2498 size_t argsz; 2499 struct timespec64 ts; 2500 const sigset_t __user *sig; 2501 ktime_t min_time; 2502 bool ts_set; 2503 }; 2504 2505 /* 2506 * Wait until events become available, if we don't already have some. The 2507 * application must reap them itself, as they reside on the shared cq ring. 2508 */ 2509 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2510 struct ext_arg *ext_arg) 2511 { 2512 struct io_wait_queue iowq; 2513 struct io_rings *rings = ctx->rings; 2514 ktime_t start_time; 2515 int ret; 2516 2517 if (!io_allowed_run_tw(ctx)) 2518 return -EEXIST; 2519 if (io_local_work_pending(ctx)) 2520 io_run_local_work(ctx, min_events, 2521 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2522 io_run_task_work(); 2523 2524 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2525 io_cqring_do_overflow_flush(ctx); 2526 if (__io_cqring_events_user(ctx) >= min_events) 2527 return 0; 2528 2529 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2530 iowq.wq.private = current; 2531 INIT_LIST_HEAD(&iowq.wq.entry); 2532 iowq.ctx = ctx; 2533 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2534 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2535 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2536 iowq.hit_timeout = 0; 2537 iowq.min_timeout = ext_arg->min_time; 2538 iowq.timeout = KTIME_MAX; 2539 start_time = io_get_time(ctx); 2540 2541 if (ext_arg->ts_set) { 2542 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2543 if (!(flags & IORING_ENTER_ABS_TIMER)) 2544 iowq.timeout = ktime_add(iowq.timeout, start_time); 2545 } 2546 2547 if (ext_arg->sig) { 2548 #ifdef CONFIG_COMPAT 2549 if (in_compat_syscall()) 2550 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2551 ext_arg->argsz); 2552 else 2553 #endif 2554 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2555 2556 if (ret) 2557 return ret; 2558 } 2559 2560 io_napi_busy_loop(ctx, &iowq); 2561 2562 trace_io_uring_cqring_wait(ctx, min_events); 2563 do { 2564 unsigned long check_cq; 2565 int nr_wait; 2566 2567 /* if min timeout has been hit, don't reset wait count */ 2568 if (!iowq.hit_timeout) 2569 nr_wait = (int) iowq.cq_tail - 2570 READ_ONCE(ctx->rings->cq.tail); 2571 else 2572 nr_wait = 1; 2573 2574 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2575 atomic_set(&ctx->cq_wait_nr, nr_wait); 2576 set_current_state(TASK_INTERRUPTIBLE); 2577 } else { 2578 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2579 TASK_INTERRUPTIBLE); 2580 } 2581 2582 ret = io_cqring_wait_schedule(ctx, &iowq, start_time); 2583 __set_current_state(TASK_RUNNING); 2584 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2585 2586 /* 2587 * Run task_work after scheduling and before io_should_wake(). 2588 * If we got woken because of task_work being processed, run it 2589 * now rather than let the caller do another wait loop. 2590 */ 2591 if (io_local_work_pending(ctx)) 2592 io_run_local_work(ctx, nr_wait, nr_wait); 2593 io_run_task_work(); 2594 2595 /* 2596 * Non-local task_work will be run on exit to userspace, but 2597 * if we're using DEFER_TASKRUN, then we could have waited 2598 * with a timeout for a number of requests. If the timeout 2599 * hits, we could have some requests ready to process. Ensure 2600 * this break is _after_ we have run task_work, to avoid 2601 * deferring running potentially pending requests until the 2602 * next time we wait for events. 2603 */ 2604 if (ret < 0) 2605 break; 2606 2607 check_cq = READ_ONCE(ctx->check_cq); 2608 if (unlikely(check_cq)) { 2609 /* let the caller flush overflows, retry */ 2610 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2611 io_cqring_do_overflow_flush(ctx); 2612 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2613 ret = -EBADR; 2614 break; 2615 } 2616 } 2617 2618 if (io_should_wake(&iowq)) { 2619 ret = 0; 2620 break; 2621 } 2622 cond_resched(); 2623 } while (1); 2624 2625 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2626 finish_wait(&ctx->cq_wait, &iowq.wq); 2627 restore_saved_sigmask_unless(ret == -EINTR); 2628 2629 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2630 } 2631 2632 static void io_rings_free(struct io_ring_ctx *ctx) 2633 { 2634 io_free_region(ctx, &ctx->sq_region); 2635 io_free_region(ctx, &ctx->ring_region); 2636 ctx->rings = NULL; 2637 ctx->sq_sqes = NULL; 2638 } 2639 2640 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2641 unsigned int cq_entries, size_t *sq_offset) 2642 { 2643 struct io_rings *rings; 2644 size_t off, sq_array_size; 2645 2646 off = struct_size(rings, cqes, cq_entries); 2647 if (off == SIZE_MAX) 2648 return SIZE_MAX; 2649 if (flags & IORING_SETUP_CQE32) { 2650 if (check_shl_overflow(off, 1, &off)) 2651 return SIZE_MAX; 2652 } 2653 2654 #ifdef CONFIG_SMP 2655 off = ALIGN(off, SMP_CACHE_BYTES); 2656 if (off == 0) 2657 return SIZE_MAX; 2658 #endif 2659 2660 if (flags & IORING_SETUP_NO_SQARRAY) { 2661 *sq_offset = SIZE_MAX; 2662 return off; 2663 } 2664 2665 *sq_offset = off; 2666 2667 sq_array_size = array_size(sizeof(u32), sq_entries); 2668 if (sq_array_size == SIZE_MAX) 2669 return SIZE_MAX; 2670 2671 if (check_add_overflow(off, sq_array_size, &off)) 2672 return SIZE_MAX; 2673 2674 return off; 2675 } 2676 2677 static void io_req_caches_free(struct io_ring_ctx *ctx) 2678 { 2679 struct io_kiocb *req; 2680 int nr = 0; 2681 2682 mutex_lock(&ctx->uring_lock); 2683 2684 while (!io_req_cache_empty(ctx)) { 2685 req = io_extract_req(ctx); 2686 kmem_cache_free(req_cachep, req); 2687 nr++; 2688 } 2689 if (nr) 2690 percpu_ref_put_many(&ctx->refs, nr); 2691 mutex_unlock(&ctx->uring_lock); 2692 } 2693 2694 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2695 { 2696 io_sq_thread_finish(ctx); 2697 2698 mutex_lock(&ctx->uring_lock); 2699 io_sqe_buffers_unregister(ctx); 2700 io_sqe_files_unregister(ctx); 2701 io_cqring_overflow_kill(ctx); 2702 io_eventfd_unregister(ctx); 2703 io_alloc_cache_free(&ctx->apoll_cache, kfree); 2704 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2705 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 2706 io_alloc_cache_free(&ctx->uring_cache, kfree); 2707 io_alloc_cache_free(&ctx->msg_cache, kfree); 2708 io_futex_cache_free(ctx); 2709 io_destroy_buffers(ctx); 2710 io_free_region(ctx, &ctx->param_region); 2711 mutex_unlock(&ctx->uring_lock); 2712 if (ctx->sq_creds) 2713 put_cred(ctx->sq_creds); 2714 if (ctx->submitter_task) 2715 put_task_struct(ctx->submitter_task); 2716 2717 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2718 2719 if (ctx->mm_account) { 2720 mmdrop(ctx->mm_account); 2721 ctx->mm_account = NULL; 2722 } 2723 io_rings_free(ctx); 2724 2725 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2726 static_branch_dec(&io_key_has_sqarray); 2727 2728 percpu_ref_exit(&ctx->refs); 2729 free_uid(ctx->user); 2730 io_req_caches_free(ctx); 2731 if (ctx->hash_map) 2732 io_wq_put_hash(ctx->hash_map); 2733 io_napi_free(ctx); 2734 kvfree(ctx->cancel_table.hbs); 2735 xa_destroy(&ctx->io_bl_xa); 2736 kfree(ctx); 2737 } 2738 2739 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2740 { 2741 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2742 poll_wq_task_work); 2743 2744 mutex_lock(&ctx->uring_lock); 2745 ctx->poll_activated = true; 2746 mutex_unlock(&ctx->uring_lock); 2747 2748 /* 2749 * Wake ups for some events between start of polling and activation 2750 * might've been lost due to loose synchronisation. 2751 */ 2752 wake_up_all(&ctx->poll_wq); 2753 percpu_ref_put(&ctx->refs); 2754 } 2755 2756 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2757 { 2758 spin_lock(&ctx->completion_lock); 2759 /* already activated or in progress */ 2760 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2761 goto out; 2762 if (WARN_ON_ONCE(!ctx->task_complete)) 2763 goto out; 2764 if (!ctx->submitter_task) 2765 goto out; 2766 /* 2767 * with ->submitter_task only the submitter task completes requests, we 2768 * only need to sync with it, which is done by injecting a tw 2769 */ 2770 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2771 percpu_ref_get(&ctx->refs); 2772 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2773 percpu_ref_put(&ctx->refs); 2774 out: 2775 spin_unlock(&ctx->completion_lock); 2776 } 2777 2778 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2779 { 2780 struct io_ring_ctx *ctx = file->private_data; 2781 __poll_t mask = 0; 2782 2783 if (unlikely(!ctx->poll_activated)) 2784 io_activate_pollwq(ctx); 2785 /* 2786 * provides mb() which pairs with barrier from wq_has_sleeper 2787 * call in io_commit_cqring 2788 */ 2789 poll_wait(file, &ctx->poll_wq, wait); 2790 2791 if (!io_sqring_full(ctx)) 2792 mask |= EPOLLOUT | EPOLLWRNORM; 2793 2794 /* 2795 * Don't flush cqring overflow list here, just do a simple check. 2796 * Otherwise there could possible be ABBA deadlock: 2797 * CPU0 CPU1 2798 * ---- ---- 2799 * lock(&ctx->uring_lock); 2800 * lock(&ep->mtx); 2801 * lock(&ctx->uring_lock); 2802 * lock(&ep->mtx); 2803 * 2804 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2805 * pushes them to do the flush. 2806 */ 2807 2808 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2809 mask |= EPOLLIN | EPOLLRDNORM; 2810 2811 return mask; 2812 } 2813 2814 struct io_tctx_exit { 2815 struct callback_head task_work; 2816 struct completion completion; 2817 struct io_ring_ctx *ctx; 2818 }; 2819 2820 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2821 { 2822 struct io_uring_task *tctx = current->io_uring; 2823 struct io_tctx_exit *work; 2824 2825 work = container_of(cb, struct io_tctx_exit, task_work); 2826 /* 2827 * When @in_cancel, we're in cancellation and it's racy to remove the 2828 * node. It'll be removed by the end of cancellation, just ignore it. 2829 * tctx can be NULL if the queueing of this task_work raced with 2830 * work cancelation off the exec path. 2831 */ 2832 if (tctx && !atomic_read(&tctx->in_cancel)) 2833 io_uring_del_tctx_node((unsigned long)work->ctx); 2834 complete(&work->completion); 2835 } 2836 2837 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2838 { 2839 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2840 2841 return req->ctx == data; 2842 } 2843 2844 static __cold void io_ring_exit_work(struct work_struct *work) 2845 { 2846 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2847 unsigned long timeout = jiffies + HZ * 60 * 5; 2848 unsigned long interval = HZ / 20; 2849 struct io_tctx_exit exit; 2850 struct io_tctx_node *node; 2851 int ret; 2852 2853 /* 2854 * If we're doing polled IO and end up having requests being 2855 * submitted async (out-of-line), then completions can come in while 2856 * we're waiting for refs to drop. We need to reap these manually, 2857 * as nobody else will be looking for them. 2858 */ 2859 do { 2860 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2861 mutex_lock(&ctx->uring_lock); 2862 io_cqring_overflow_kill(ctx); 2863 mutex_unlock(&ctx->uring_lock); 2864 } 2865 2866 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2867 io_move_task_work_from_local(ctx); 2868 2869 /* The SQPOLL thread never reaches this path */ 2870 while (io_uring_try_cancel_requests(ctx, NULL, true, false)) 2871 cond_resched(); 2872 2873 if (ctx->sq_data) { 2874 struct io_sq_data *sqd = ctx->sq_data; 2875 struct task_struct *tsk; 2876 2877 io_sq_thread_park(sqd); 2878 tsk = sqd->thread; 2879 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2880 io_wq_cancel_cb(tsk->io_uring->io_wq, 2881 io_cancel_ctx_cb, ctx, true); 2882 io_sq_thread_unpark(sqd); 2883 } 2884 2885 io_req_caches_free(ctx); 2886 2887 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2888 /* there is little hope left, don't run it too often */ 2889 interval = HZ * 60; 2890 } 2891 /* 2892 * This is really an uninterruptible wait, as it has to be 2893 * complete. But it's also run from a kworker, which doesn't 2894 * take signals, so it's fine to make it interruptible. This 2895 * avoids scenarios where we knowingly can wait much longer 2896 * on completions, for example if someone does a SIGSTOP on 2897 * a task that needs to finish task_work to make this loop 2898 * complete. That's a synthetic situation that should not 2899 * cause a stuck task backtrace, and hence a potential panic 2900 * on stuck tasks if that is enabled. 2901 */ 2902 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2903 2904 init_completion(&exit.completion); 2905 init_task_work(&exit.task_work, io_tctx_exit_cb); 2906 exit.ctx = ctx; 2907 2908 mutex_lock(&ctx->uring_lock); 2909 while (!list_empty(&ctx->tctx_list)) { 2910 WARN_ON_ONCE(time_after(jiffies, timeout)); 2911 2912 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2913 ctx_node); 2914 /* don't spin on a single task if cancellation failed */ 2915 list_rotate_left(&ctx->tctx_list); 2916 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2917 if (WARN_ON_ONCE(ret)) 2918 continue; 2919 2920 mutex_unlock(&ctx->uring_lock); 2921 /* 2922 * See comment above for 2923 * wait_for_completion_interruptible_timeout() on why this 2924 * wait is marked as interruptible. 2925 */ 2926 wait_for_completion_interruptible(&exit.completion); 2927 mutex_lock(&ctx->uring_lock); 2928 } 2929 mutex_unlock(&ctx->uring_lock); 2930 spin_lock(&ctx->completion_lock); 2931 spin_unlock(&ctx->completion_lock); 2932 2933 /* pairs with RCU read section in io_req_local_work_add() */ 2934 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2935 synchronize_rcu(); 2936 2937 io_ring_ctx_free(ctx); 2938 } 2939 2940 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2941 { 2942 unsigned long index; 2943 struct creds *creds; 2944 2945 mutex_lock(&ctx->uring_lock); 2946 percpu_ref_kill(&ctx->refs); 2947 xa_for_each(&ctx->personalities, index, creds) 2948 io_unregister_personality(ctx, index); 2949 mutex_unlock(&ctx->uring_lock); 2950 2951 flush_delayed_work(&ctx->fallback_work); 2952 2953 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2954 /* 2955 * Use system_unbound_wq to avoid spawning tons of event kworkers 2956 * if we're exiting a ton of rings at the same time. It just adds 2957 * noise and overhead, there's no discernable change in runtime 2958 * over using system_wq. 2959 */ 2960 queue_work(iou_wq, &ctx->exit_work); 2961 } 2962 2963 static int io_uring_release(struct inode *inode, struct file *file) 2964 { 2965 struct io_ring_ctx *ctx = file->private_data; 2966 2967 file->private_data = NULL; 2968 io_ring_ctx_wait_and_kill(ctx); 2969 return 0; 2970 } 2971 2972 struct io_task_cancel { 2973 struct io_uring_task *tctx; 2974 bool all; 2975 }; 2976 2977 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2978 { 2979 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2980 struct io_task_cancel *cancel = data; 2981 2982 return io_match_task_safe(req, cancel->tctx, cancel->all); 2983 } 2984 2985 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2986 struct io_uring_task *tctx, 2987 bool cancel_all) 2988 { 2989 struct io_defer_entry *de; 2990 LIST_HEAD(list); 2991 2992 spin_lock(&ctx->completion_lock); 2993 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2994 if (io_match_task_safe(de->req, tctx, cancel_all)) { 2995 list_cut_position(&list, &ctx->defer_list, &de->list); 2996 break; 2997 } 2998 } 2999 spin_unlock(&ctx->completion_lock); 3000 if (list_empty(&list)) 3001 return false; 3002 3003 while (!list_empty(&list)) { 3004 de = list_first_entry(&list, struct io_defer_entry, list); 3005 list_del_init(&de->list); 3006 io_req_task_queue_fail(de->req, -ECANCELED); 3007 kfree(de); 3008 } 3009 return true; 3010 } 3011 3012 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3013 { 3014 struct io_tctx_node *node; 3015 enum io_wq_cancel cret; 3016 bool ret = false; 3017 3018 mutex_lock(&ctx->uring_lock); 3019 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3020 struct io_uring_task *tctx = node->task->io_uring; 3021 3022 /* 3023 * io_wq will stay alive while we hold uring_lock, because it's 3024 * killed after ctx nodes, which requires to take the lock. 3025 */ 3026 if (!tctx || !tctx->io_wq) 3027 continue; 3028 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3029 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3030 } 3031 mutex_unlock(&ctx->uring_lock); 3032 3033 return ret; 3034 } 3035 3036 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3037 struct io_uring_task *tctx, 3038 bool cancel_all, 3039 bool is_sqpoll_thread) 3040 { 3041 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3042 enum io_wq_cancel cret; 3043 bool ret = false; 3044 3045 /* set it so io_req_local_work_add() would wake us up */ 3046 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3047 atomic_set(&ctx->cq_wait_nr, 1); 3048 smp_mb(); 3049 } 3050 3051 /* failed during ring init, it couldn't have issued any requests */ 3052 if (!ctx->rings) 3053 return false; 3054 3055 if (!tctx) { 3056 ret |= io_uring_try_cancel_iowq(ctx); 3057 } else if (tctx->io_wq) { 3058 /* 3059 * Cancels requests of all rings, not only @ctx, but 3060 * it's fine as the task is in exit/exec. 3061 */ 3062 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3063 &cancel, true); 3064 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3065 } 3066 3067 /* SQPOLL thread does its own polling */ 3068 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3069 is_sqpoll_thread) { 3070 while (!wq_list_empty(&ctx->iopoll_list)) { 3071 io_iopoll_try_reap_events(ctx); 3072 ret = true; 3073 cond_resched(); 3074 } 3075 } 3076 3077 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3078 io_allowed_defer_tw_run(ctx)) 3079 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3080 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3081 mutex_lock(&ctx->uring_lock); 3082 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3083 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3084 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3085 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3086 mutex_unlock(&ctx->uring_lock); 3087 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3088 if (tctx) 3089 ret |= io_run_task_work() > 0; 3090 else 3091 ret |= flush_delayed_work(&ctx->fallback_work); 3092 return ret; 3093 } 3094 3095 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3096 { 3097 if (tracked) 3098 return atomic_read(&tctx->inflight_tracked); 3099 return percpu_counter_sum(&tctx->inflight); 3100 } 3101 3102 /* 3103 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3104 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3105 */ 3106 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3107 { 3108 struct io_uring_task *tctx = current->io_uring; 3109 struct io_ring_ctx *ctx; 3110 struct io_tctx_node *node; 3111 unsigned long index; 3112 s64 inflight; 3113 DEFINE_WAIT(wait); 3114 3115 WARN_ON_ONCE(sqd && sqd->thread != current); 3116 3117 if (!current->io_uring) 3118 return; 3119 if (tctx->io_wq) 3120 io_wq_exit_start(tctx->io_wq); 3121 3122 atomic_inc(&tctx->in_cancel); 3123 do { 3124 bool loop = false; 3125 3126 io_uring_drop_tctx_refs(current); 3127 if (!tctx_inflight(tctx, !cancel_all)) 3128 break; 3129 3130 /* read completions before cancelations */ 3131 inflight = tctx_inflight(tctx, false); 3132 if (!inflight) 3133 break; 3134 3135 if (!sqd) { 3136 xa_for_each(&tctx->xa, index, node) { 3137 /* sqpoll task will cancel all its requests */ 3138 if (node->ctx->sq_data) 3139 continue; 3140 loop |= io_uring_try_cancel_requests(node->ctx, 3141 current->io_uring, 3142 cancel_all, 3143 false); 3144 } 3145 } else { 3146 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3147 loop |= io_uring_try_cancel_requests(ctx, 3148 current->io_uring, 3149 cancel_all, 3150 true); 3151 } 3152 3153 if (loop) { 3154 cond_resched(); 3155 continue; 3156 } 3157 3158 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3159 io_run_task_work(); 3160 io_uring_drop_tctx_refs(current); 3161 xa_for_each(&tctx->xa, index, node) { 3162 if (io_local_work_pending(node->ctx)) { 3163 WARN_ON_ONCE(node->ctx->submitter_task && 3164 node->ctx->submitter_task != current); 3165 goto end_wait; 3166 } 3167 } 3168 /* 3169 * If we've seen completions, retry without waiting. This 3170 * avoids a race where a completion comes in before we did 3171 * prepare_to_wait(). 3172 */ 3173 if (inflight == tctx_inflight(tctx, !cancel_all)) 3174 schedule(); 3175 end_wait: 3176 finish_wait(&tctx->wait, &wait); 3177 } while (1); 3178 3179 io_uring_clean_tctx(tctx); 3180 if (cancel_all) { 3181 /* 3182 * We shouldn't run task_works after cancel, so just leave 3183 * ->in_cancel set for normal exit. 3184 */ 3185 atomic_dec(&tctx->in_cancel); 3186 /* for exec all current's requests should be gone, kill tctx */ 3187 __io_uring_free(current); 3188 } 3189 } 3190 3191 void __io_uring_cancel(bool cancel_all) 3192 { 3193 io_uring_unreg_ringfd(); 3194 io_uring_cancel_generic(cancel_all, NULL); 3195 } 3196 3197 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3198 const struct io_uring_getevents_arg __user *uarg) 3199 { 3200 unsigned long size = sizeof(struct io_uring_reg_wait); 3201 unsigned long offset = (uintptr_t)uarg; 3202 unsigned long end; 3203 3204 if (unlikely(offset % sizeof(long))) 3205 return ERR_PTR(-EFAULT); 3206 3207 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3208 if (unlikely(check_add_overflow(offset, size, &end) || 3209 end > ctx->cq_wait_size)) 3210 return ERR_PTR(-EFAULT); 3211 3212 offset = array_index_nospec(offset, ctx->cq_wait_size - size); 3213 return ctx->cq_wait_arg + offset; 3214 } 3215 3216 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3217 const void __user *argp, size_t argsz) 3218 { 3219 struct io_uring_getevents_arg arg; 3220 3221 if (!(flags & IORING_ENTER_EXT_ARG)) 3222 return 0; 3223 if (flags & IORING_ENTER_EXT_ARG_REG) 3224 return -EINVAL; 3225 if (argsz != sizeof(arg)) 3226 return -EINVAL; 3227 if (copy_from_user(&arg, argp, sizeof(arg))) 3228 return -EFAULT; 3229 return 0; 3230 } 3231 3232 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3233 const void __user *argp, struct ext_arg *ext_arg) 3234 { 3235 const struct io_uring_getevents_arg __user *uarg = argp; 3236 struct io_uring_getevents_arg arg; 3237 3238 /* 3239 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3240 * is just a pointer to the sigset_t. 3241 */ 3242 if (!(flags & IORING_ENTER_EXT_ARG)) { 3243 ext_arg->sig = (const sigset_t __user *) argp; 3244 return 0; 3245 } 3246 3247 if (flags & IORING_ENTER_EXT_ARG_REG) { 3248 struct io_uring_reg_wait *w; 3249 3250 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3251 return -EINVAL; 3252 w = io_get_ext_arg_reg(ctx, argp); 3253 if (IS_ERR(w)) 3254 return PTR_ERR(w); 3255 3256 if (w->flags & ~IORING_REG_WAIT_TS) 3257 return -EINVAL; 3258 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3259 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3260 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3261 if (w->flags & IORING_REG_WAIT_TS) { 3262 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3263 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3264 ext_arg->ts_set = true; 3265 } 3266 return 0; 3267 } 3268 3269 /* 3270 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3271 * timespec and sigset_t pointers if good. 3272 */ 3273 if (ext_arg->argsz != sizeof(arg)) 3274 return -EINVAL; 3275 #ifdef CONFIG_64BIT 3276 if (!user_access_begin(uarg, sizeof(*uarg))) 3277 return -EFAULT; 3278 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3279 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3280 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3281 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3282 user_access_end(); 3283 #else 3284 if (copy_from_user(&arg, uarg, sizeof(arg))) 3285 return -EFAULT; 3286 #endif 3287 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3288 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3289 ext_arg->argsz = arg.sigmask_sz; 3290 if (arg.ts) { 3291 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3292 return -EFAULT; 3293 ext_arg->ts_set = true; 3294 } 3295 return 0; 3296 #ifdef CONFIG_64BIT 3297 uaccess_end: 3298 user_access_end(); 3299 return -EFAULT; 3300 #endif 3301 } 3302 3303 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3304 u32, min_complete, u32, flags, const void __user *, argp, 3305 size_t, argsz) 3306 { 3307 struct io_ring_ctx *ctx; 3308 struct file *file; 3309 long ret; 3310 3311 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3312 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3313 IORING_ENTER_REGISTERED_RING | 3314 IORING_ENTER_ABS_TIMER | 3315 IORING_ENTER_EXT_ARG_REG))) 3316 return -EINVAL; 3317 3318 /* 3319 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3320 * need only dereference our task private array to find it. 3321 */ 3322 if (flags & IORING_ENTER_REGISTERED_RING) { 3323 struct io_uring_task *tctx = current->io_uring; 3324 3325 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3326 return -EINVAL; 3327 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3328 file = tctx->registered_rings[fd]; 3329 if (unlikely(!file)) 3330 return -EBADF; 3331 } else { 3332 file = fget(fd); 3333 if (unlikely(!file)) 3334 return -EBADF; 3335 ret = -EOPNOTSUPP; 3336 if (unlikely(!io_is_uring_fops(file))) 3337 goto out; 3338 } 3339 3340 ctx = file->private_data; 3341 ret = -EBADFD; 3342 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3343 goto out; 3344 3345 /* 3346 * For SQ polling, the thread will do all submissions and completions. 3347 * Just return the requested submit count, and wake the thread if 3348 * we were asked to. 3349 */ 3350 ret = 0; 3351 if (ctx->flags & IORING_SETUP_SQPOLL) { 3352 if (unlikely(ctx->sq_data->thread == NULL)) { 3353 ret = -EOWNERDEAD; 3354 goto out; 3355 } 3356 if (flags & IORING_ENTER_SQ_WAKEUP) 3357 wake_up(&ctx->sq_data->wait); 3358 if (flags & IORING_ENTER_SQ_WAIT) 3359 io_sqpoll_wait_sq(ctx); 3360 3361 ret = to_submit; 3362 } else if (to_submit) { 3363 ret = io_uring_add_tctx_node(ctx); 3364 if (unlikely(ret)) 3365 goto out; 3366 3367 mutex_lock(&ctx->uring_lock); 3368 ret = io_submit_sqes(ctx, to_submit); 3369 if (ret != to_submit) { 3370 mutex_unlock(&ctx->uring_lock); 3371 goto out; 3372 } 3373 if (flags & IORING_ENTER_GETEVENTS) { 3374 if (ctx->syscall_iopoll) 3375 goto iopoll_locked; 3376 /* 3377 * Ignore errors, we'll soon call io_cqring_wait() and 3378 * it should handle ownership problems if any. 3379 */ 3380 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3381 (void)io_run_local_work_locked(ctx, min_complete); 3382 } 3383 mutex_unlock(&ctx->uring_lock); 3384 } 3385 3386 if (flags & IORING_ENTER_GETEVENTS) { 3387 int ret2; 3388 3389 if (ctx->syscall_iopoll) { 3390 /* 3391 * We disallow the app entering submit/complete with 3392 * polling, but we still need to lock the ring to 3393 * prevent racing with polled issue that got punted to 3394 * a workqueue. 3395 */ 3396 mutex_lock(&ctx->uring_lock); 3397 iopoll_locked: 3398 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3399 if (likely(!ret2)) { 3400 min_complete = min(min_complete, 3401 ctx->cq_entries); 3402 ret2 = io_iopoll_check(ctx, min_complete); 3403 } 3404 mutex_unlock(&ctx->uring_lock); 3405 } else { 3406 struct ext_arg ext_arg = { .argsz = argsz }; 3407 3408 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3409 if (likely(!ret2)) { 3410 min_complete = min(min_complete, 3411 ctx->cq_entries); 3412 ret2 = io_cqring_wait(ctx, min_complete, flags, 3413 &ext_arg); 3414 } 3415 } 3416 3417 if (!ret) { 3418 ret = ret2; 3419 3420 /* 3421 * EBADR indicates that one or more CQE were dropped. 3422 * Once the user has been informed we can clear the bit 3423 * as they are obviously ok with those drops. 3424 */ 3425 if (unlikely(ret2 == -EBADR)) 3426 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3427 &ctx->check_cq); 3428 } 3429 } 3430 out: 3431 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3432 fput(file); 3433 return ret; 3434 } 3435 3436 static const struct file_operations io_uring_fops = { 3437 .release = io_uring_release, 3438 .mmap = io_uring_mmap, 3439 .get_unmapped_area = io_uring_get_unmapped_area, 3440 #ifndef CONFIG_MMU 3441 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3442 #endif 3443 .poll = io_uring_poll, 3444 #ifdef CONFIG_PROC_FS 3445 .show_fdinfo = io_uring_show_fdinfo, 3446 #endif 3447 }; 3448 3449 bool io_is_uring_fops(struct file *file) 3450 { 3451 return file->f_op == &io_uring_fops; 3452 } 3453 3454 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3455 struct io_uring_params *p) 3456 { 3457 struct io_uring_region_desc rd; 3458 struct io_rings *rings; 3459 size_t size, sq_array_offset; 3460 int ret; 3461 3462 /* make sure these are sane, as we already accounted them */ 3463 ctx->sq_entries = p->sq_entries; 3464 ctx->cq_entries = p->cq_entries; 3465 3466 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3467 &sq_array_offset); 3468 if (size == SIZE_MAX) 3469 return -EOVERFLOW; 3470 3471 memset(&rd, 0, sizeof(rd)); 3472 rd.size = PAGE_ALIGN(size); 3473 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3474 rd.user_addr = p->cq_off.user_addr; 3475 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3476 } 3477 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); 3478 if (ret) 3479 return ret; 3480 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); 3481 3482 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3483 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3484 rings->sq_ring_mask = p->sq_entries - 1; 3485 rings->cq_ring_mask = p->cq_entries - 1; 3486 rings->sq_ring_entries = p->sq_entries; 3487 rings->cq_ring_entries = p->cq_entries; 3488 3489 if (p->flags & IORING_SETUP_SQE128) 3490 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3491 else 3492 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3493 if (size == SIZE_MAX) { 3494 io_rings_free(ctx); 3495 return -EOVERFLOW; 3496 } 3497 3498 memset(&rd, 0, sizeof(rd)); 3499 rd.size = PAGE_ALIGN(size); 3500 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3501 rd.user_addr = p->sq_off.user_addr; 3502 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3503 } 3504 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); 3505 if (ret) { 3506 io_rings_free(ctx); 3507 return ret; 3508 } 3509 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); 3510 return 0; 3511 } 3512 3513 static int io_uring_install_fd(struct file *file) 3514 { 3515 int fd; 3516 3517 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3518 if (fd < 0) 3519 return fd; 3520 fd_install(fd, file); 3521 return fd; 3522 } 3523 3524 /* 3525 * Allocate an anonymous fd, this is what constitutes the application 3526 * visible backing of an io_uring instance. The application mmaps this 3527 * fd to gain access to the SQ/CQ ring details. 3528 */ 3529 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3530 { 3531 /* Create a new inode so that the LSM can block the creation. */ 3532 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3533 O_RDWR | O_CLOEXEC, NULL); 3534 } 3535 3536 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3537 { 3538 if (!entries) 3539 return -EINVAL; 3540 if (entries > IORING_MAX_ENTRIES) { 3541 if (!(p->flags & IORING_SETUP_CLAMP)) 3542 return -EINVAL; 3543 entries = IORING_MAX_ENTRIES; 3544 } 3545 3546 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3547 && !(p->flags & IORING_SETUP_NO_MMAP)) 3548 return -EINVAL; 3549 3550 /* 3551 * Use twice as many entries for the CQ ring. It's possible for the 3552 * application to drive a higher depth than the size of the SQ ring, 3553 * since the sqes are only used at submission time. This allows for 3554 * some flexibility in overcommitting a bit. If the application has 3555 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3556 * of CQ ring entries manually. 3557 */ 3558 p->sq_entries = roundup_pow_of_two(entries); 3559 if (p->flags & IORING_SETUP_CQSIZE) { 3560 /* 3561 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3562 * to a power-of-two, if it isn't already. We do NOT impose 3563 * any cq vs sq ring sizing. 3564 */ 3565 if (!p->cq_entries) 3566 return -EINVAL; 3567 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3568 if (!(p->flags & IORING_SETUP_CLAMP)) 3569 return -EINVAL; 3570 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3571 } 3572 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3573 if (p->cq_entries < p->sq_entries) 3574 return -EINVAL; 3575 } else { 3576 p->cq_entries = 2 * p->sq_entries; 3577 } 3578 3579 p->sq_off.head = offsetof(struct io_rings, sq.head); 3580 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3581 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3582 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3583 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3584 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3585 p->sq_off.resv1 = 0; 3586 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3587 p->sq_off.user_addr = 0; 3588 3589 p->cq_off.head = offsetof(struct io_rings, cq.head); 3590 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3591 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3592 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3593 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3594 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3595 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3596 p->cq_off.resv1 = 0; 3597 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3598 p->cq_off.user_addr = 0; 3599 3600 return 0; 3601 } 3602 3603 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3604 struct io_uring_params __user *params) 3605 { 3606 struct io_ring_ctx *ctx; 3607 struct io_uring_task *tctx; 3608 struct file *file; 3609 int ret; 3610 3611 ret = io_uring_fill_params(entries, p); 3612 if (unlikely(ret)) 3613 return ret; 3614 3615 ctx = io_ring_ctx_alloc(p); 3616 if (!ctx) 3617 return -ENOMEM; 3618 3619 ctx->clockid = CLOCK_MONOTONIC; 3620 ctx->clock_offset = 0; 3621 3622 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3623 static_branch_inc(&io_key_has_sqarray); 3624 3625 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3626 !(ctx->flags & IORING_SETUP_IOPOLL) && 3627 !(ctx->flags & IORING_SETUP_SQPOLL)) 3628 ctx->task_complete = true; 3629 3630 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3631 ctx->lockless_cq = true; 3632 3633 /* 3634 * lazy poll_wq activation relies on ->task_complete for synchronisation 3635 * purposes, see io_activate_pollwq() 3636 */ 3637 if (!ctx->task_complete) 3638 ctx->poll_activated = true; 3639 3640 /* 3641 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3642 * space applications don't need to do io completion events 3643 * polling again, they can rely on io_sq_thread to do polling 3644 * work, which can reduce cpu usage and uring_lock contention. 3645 */ 3646 if (ctx->flags & IORING_SETUP_IOPOLL && 3647 !(ctx->flags & IORING_SETUP_SQPOLL)) 3648 ctx->syscall_iopoll = 1; 3649 3650 ctx->compat = in_compat_syscall(); 3651 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3652 ctx->user = get_uid(current_user()); 3653 3654 /* 3655 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3656 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3657 */ 3658 ret = -EINVAL; 3659 if (ctx->flags & IORING_SETUP_SQPOLL) { 3660 /* IPI related flags don't make sense with SQPOLL */ 3661 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3662 IORING_SETUP_TASKRUN_FLAG | 3663 IORING_SETUP_DEFER_TASKRUN)) 3664 goto err; 3665 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3666 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3667 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3668 } else { 3669 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3670 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3671 goto err; 3672 ctx->notify_method = TWA_SIGNAL; 3673 } 3674 3675 /* HYBRID_IOPOLL only valid with IOPOLL */ 3676 if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) == 3677 IORING_SETUP_HYBRID_IOPOLL) 3678 goto err; 3679 3680 /* 3681 * For DEFER_TASKRUN we require the completion task to be the same as the 3682 * submission task. This implies that there is only one submitter, so enforce 3683 * that. 3684 */ 3685 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3686 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3687 goto err; 3688 } 3689 3690 /* 3691 * This is just grabbed for accounting purposes. When a process exits, 3692 * the mm is exited and dropped before the files, hence we need to hang 3693 * on to this mm purely for the purposes of being able to unaccount 3694 * memory (locked/pinned vm). It's not used for anything else. 3695 */ 3696 mmgrab(current->mm); 3697 ctx->mm_account = current->mm; 3698 3699 ret = io_allocate_scq_urings(ctx, p); 3700 if (ret) 3701 goto err; 3702 3703 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3704 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3705 3706 ret = io_sq_offload_create(ctx, p); 3707 if (ret) 3708 goto err; 3709 3710 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3711 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3712 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3713 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3714 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3715 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3716 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3717 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT | 3718 IORING_FEAT_RW_ATTR; 3719 3720 if (copy_to_user(params, p, sizeof(*p))) { 3721 ret = -EFAULT; 3722 goto err; 3723 } 3724 3725 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3726 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3727 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3728 3729 file = io_uring_get_file(ctx); 3730 if (IS_ERR(file)) { 3731 ret = PTR_ERR(file); 3732 goto err; 3733 } 3734 3735 ret = __io_uring_add_tctx_node(ctx); 3736 if (ret) 3737 goto err_fput; 3738 tctx = current->io_uring; 3739 3740 /* 3741 * Install ring fd as the very last thing, so we don't risk someone 3742 * having closed it before we finish setup 3743 */ 3744 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3745 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3746 else 3747 ret = io_uring_install_fd(file); 3748 if (ret < 0) 3749 goto err_fput; 3750 3751 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3752 return ret; 3753 err: 3754 io_ring_ctx_wait_and_kill(ctx); 3755 return ret; 3756 err_fput: 3757 fput(file); 3758 return ret; 3759 } 3760 3761 /* 3762 * Sets up an aio uring context, and returns the fd. Applications asks for a 3763 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3764 * params structure passed in. 3765 */ 3766 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3767 { 3768 struct io_uring_params p; 3769 int i; 3770 3771 if (copy_from_user(&p, params, sizeof(p))) 3772 return -EFAULT; 3773 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3774 if (p.resv[i]) 3775 return -EINVAL; 3776 } 3777 3778 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3779 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3780 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3781 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3782 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3783 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3784 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3785 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3786 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3787 return -EINVAL; 3788 3789 return io_uring_create(entries, &p, params); 3790 } 3791 3792 static inline bool io_uring_allowed(void) 3793 { 3794 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3795 kgid_t io_uring_group; 3796 3797 if (disabled == 2) 3798 return false; 3799 3800 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3801 return true; 3802 3803 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3804 if (!gid_valid(io_uring_group)) 3805 return false; 3806 3807 return in_group_p(io_uring_group); 3808 } 3809 3810 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3811 struct io_uring_params __user *, params) 3812 { 3813 if (!io_uring_allowed()) 3814 return -EPERM; 3815 3816 return io_uring_setup(entries, params); 3817 } 3818 3819 static int __init io_uring_init(void) 3820 { 3821 struct kmem_cache_args kmem_args = { 3822 .useroffset = offsetof(struct io_kiocb, cmd.data), 3823 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3824 .freeptr_offset = offsetof(struct io_kiocb, work), 3825 .use_freeptr_offset = true, 3826 }; 3827 3828 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3829 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3830 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3831 } while (0) 3832 3833 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3834 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3835 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3836 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3837 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3838 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3839 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3840 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3841 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3842 BUILD_BUG_SQE_ELEM(8, __u64, off); 3843 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3844 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3845 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3846 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3847 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3848 BUILD_BUG_SQE_ELEM(24, __u32, len); 3849 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3850 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3851 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3852 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3853 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3854 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3855 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3856 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3857 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3858 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3859 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3860 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3861 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3862 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3863 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3864 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3865 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3866 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3867 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3868 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3869 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3870 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3871 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3872 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3873 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3874 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3875 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3876 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3877 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3878 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3879 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); 3880 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); 3881 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3882 3883 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3884 sizeof(struct io_uring_rsrc_update)); 3885 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3886 sizeof(struct io_uring_rsrc_update2)); 3887 3888 /* ->buf_index is u16 */ 3889 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3890 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3891 offsetof(struct io_uring_buf_ring, tail)); 3892 3893 /* should fit into one byte */ 3894 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3895 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3896 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3897 3898 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3899 3900 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3901 3902 /* top 8bits are for internal use */ 3903 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3904 3905 io_uring_optable_init(); 3906 3907 /* 3908 * Allow user copy in the per-command field, which starts after the 3909 * file in io_kiocb and until the opcode field. The openat2 handling 3910 * requires copying in user memory into the io_kiocb object in that 3911 * range, and HARDENED_USERCOPY will complain if we haven't 3912 * correctly annotated this range. 3913 */ 3914 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3915 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3916 SLAB_TYPESAFE_BY_RCU); 3917 io_buf_cachep = KMEM_CACHE(io_buffer, 3918 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 3919 3920 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3921 3922 #ifdef CONFIG_SYSCTL 3923 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3924 #endif 3925 3926 return 0; 3927 }; 3928 __initcall(io_uring_init); 3929