xref: /linux/io_uring/io_uring.c (revision a8aa6a6ddce9b5585f2b74f27f3feea1427fb4e7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 #define IO_LOCAL_TW_DEFAULT_MAX		20
125 
126 struct io_defer_entry {
127 	struct list_head	list;
128 	struct io_kiocb		*req;
129 	u32			seq;
130 };
131 
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
135 
136 /*
137  * No waiters. It's larger than any valid value of the tw counter
138  * so that tests against ->cq_wait_nr would fail and skip wake_up().
139  */
140 #define IO_CQ_WAKE_INIT		(-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct io_uring_task *tctx,
146 					 bool cancel_all,
147 					 bool is_sqpoll_thread);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 
151 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
152 
153 struct kmem_cache *req_cachep;
154 static struct workqueue_struct *iou_wq __ro_after_init;
155 
156 static int __read_mostly sysctl_io_uring_disabled;
157 static int __read_mostly sysctl_io_uring_group = -1;
158 
159 #ifdef CONFIG_SYSCTL
160 static const struct ctl_table kernel_io_uring_disabled_table[] = {
161 	{
162 		.procname	= "io_uring_disabled",
163 		.data		= &sysctl_io_uring_disabled,
164 		.maxlen		= sizeof(sysctl_io_uring_disabled),
165 		.mode		= 0644,
166 		.proc_handler	= proc_dointvec_minmax,
167 		.extra1		= SYSCTL_ZERO,
168 		.extra2		= SYSCTL_TWO,
169 	},
170 	{
171 		.procname	= "io_uring_group",
172 		.data		= &sysctl_io_uring_group,
173 		.maxlen		= sizeof(gid_t),
174 		.mode		= 0644,
175 		.proc_handler	= proc_dointvec,
176 	},
177 };
178 #endif
179 
180 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
181 {
182 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
183 }
184 
185 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
186 {
187 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
188 }
189 
190 static bool io_match_linked(struct io_kiocb *head)
191 {
192 	struct io_kiocb *req;
193 
194 	io_for_each_link(req, head) {
195 		if (req->flags & REQ_F_INFLIGHT)
196 			return true;
197 	}
198 	return false;
199 }
200 
201 /*
202  * As io_match_task() but protected against racing with linked timeouts.
203  * User must not hold timeout_lock.
204  */
205 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
206 			bool cancel_all)
207 {
208 	bool matched;
209 
210 	if (tctx && head->tctx != tctx)
211 		return false;
212 	if (cancel_all)
213 		return true;
214 
215 	if (head->flags & REQ_F_LINK_TIMEOUT) {
216 		struct io_ring_ctx *ctx = head->ctx;
217 
218 		/* protect against races with linked timeouts */
219 		raw_spin_lock_irq(&ctx->timeout_lock);
220 		matched = io_match_linked(head);
221 		raw_spin_unlock_irq(&ctx->timeout_lock);
222 	} else {
223 		matched = io_match_linked(head);
224 	}
225 	return matched;
226 }
227 
228 static inline void req_fail_link_node(struct io_kiocb *req, int res)
229 {
230 	req_set_fail(req);
231 	io_req_set_res(req, res, 0);
232 }
233 
234 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
235 {
236 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
237 }
238 
239 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
240 {
241 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
242 
243 	complete(&ctx->ref_comp);
244 }
245 
246 static __cold void io_fallback_req_func(struct work_struct *work)
247 {
248 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
249 						fallback_work.work);
250 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
251 	struct io_kiocb *req, *tmp;
252 	struct io_tw_state ts = {};
253 
254 	percpu_ref_get(&ctx->refs);
255 	mutex_lock(&ctx->uring_lock);
256 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
257 		req->io_task_work.func(req, &ts);
258 	io_submit_flush_completions(ctx);
259 	mutex_unlock(&ctx->uring_lock);
260 	percpu_ref_put(&ctx->refs);
261 }
262 
263 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
264 {
265 	unsigned int hash_buckets;
266 	int i;
267 
268 	do {
269 		hash_buckets = 1U << bits;
270 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
271 						GFP_KERNEL_ACCOUNT);
272 		if (table->hbs)
273 			break;
274 		if (bits == 1)
275 			return -ENOMEM;
276 		bits--;
277 	} while (1);
278 
279 	table->hash_bits = bits;
280 	for (i = 0; i < hash_buckets; i++)
281 		INIT_HLIST_HEAD(&table->hbs[i].list);
282 	return 0;
283 }
284 
285 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
286 {
287 	struct io_ring_ctx *ctx;
288 	int hash_bits;
289 	bool ret;
290 
291 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
292 	if (!ctx)
293 		return NULL;
294 
295 	xa_init(&ctx->io_bl_xa);
296 
297 	/*
298 	 * Use 5 bits less than the max cq entries, that should give us around
299 	 * 32 entries per hash list if totally full and uniformly spread, but
300 	 * don't keep too many buckets to not overconsume memory.
301 	 */
302 	hash_bits = ilog2(p->cq_entries) - 5;
303 	hash_bits = clamp(hash_bits, 1, 8);
304 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
305 		goto err;
306 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 			    0, GFP_KERNEL))
308 		goto err;
309 
310 	ctx->flags = p->flags;
311 	ctx->hybrid_poll_time = LLONG_MAX;
312 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
313 	init_waitqueue_head(&ctx->sqo_sq_wait);
314 	INIT_LIST_HEAD(&ctx->sqd_list);
315 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
316 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
317 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
318 			    sizeof(struct async_poll));
319 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
320 			    sizeof(struct io_async_msghdr));
321 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
322 			    sizeof(struct io_async_rw));
323 	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
324 			    sizeof(struct io_uring_cmd_data));
325 	spin_lock_init(&ctx->msg_lock);
326 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
327 			    sizeof(struct io_kiocb));
328 	ret |= io_futex_cache_init(ctx);
329 	if (ret)
330 		goto free_ref;
331 	init_completion(&ctx->ref_comp);
332 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
333 	mutex_init(&ctx->uring_lock);
334 	init_waitqueue_head(&ctx->cq_wait);
335 	init_waitqueue_head(&ctx->poll_wq);
336 	spin_lock_init(&ctx->completion_lock);
337 	raw_spin_lock_init(&ctx->timeout_lock);
338 	INIT_WQ_LIST(&ctx->iopoll_list);
339 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
340 	INIT_LIST_HEAD(&ctx->defer_list);
341 	INIT_LIST_HEAD(&ctx->timeout_list);
342 	INIT_LIST_HEAD(&ctx->ltimeout_list);
343 	init_llist_head(&ctx->work_llist);
344 	INIT_LIST_HEAD(&ctx->tctx_list);
345 	ctx->submit_state.free_list.next = NULL;
346 	INIT_HLIST_HEAD(&ctx->waitid_list);
347 #ifdef CONFIG_FUTEX
348 	INIT_HLIST_HEAD(&ctx->futex_list);
349 #endif
350 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
351 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
352 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
353 	io_napi_init(ctx);
354 	mutex_init(&ctx->mmap_lock);
355 
356 	return ctx;
357 
358 free_ref:
359 	percpu_ref_exit(&ctx->refs);
360 err:
361 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
362 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
363 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
364 	io_alloc_cache_free(&ctx->uring_cache, kfree);
365 	io_alloc_cache_free(&ctx->msg_cache, kfree);
366 	io_futex_cache_free(ctx);
367 	kvfree(ctx->cancel_table.hbs);
368 	xa_destroy(&ctx->io_bl_xa);
369 	kfree(ctx);
370 	return NULL;
371 }
372 
373 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
374 {
375 	struct io_rings *r = ctx->rings;
376 
377 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
378 	ctx->cq_extra--;
379 }
380 
381 static bool req_need_defer(struct io_kiocb *req, u32 seq)
382 {
383 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
384 		struct io_ring_ctx *ctx = req->ctx;
385 
386 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
387 	}
388 
389 	return false;
390 }
391 
392 static void io_clean_op(struct io_kiocb *req)
393 {
394 	if (req->flags & REQ_F_BUFFER_SELECTED) {
395 		spin_lock(&req->ctx->completion_lock);
396 		io_kbuf_drop(req);
397 		spin_unlock(&req->ctx->completion_lock);
398 	}
399 
400 	if (req->flags & REQ_F_NEED_CLEANUP) {
401 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
402 
403 		if (def->cleanup)
404 			def->cleanup(req);
405 	}
406 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
407 		kfree(req->apoll->double_poll);
408 		kfree(req->apoll);
409 		req->apoll = NULL;
410 	}
411 	if (req->flags & REQ_F_INFLIGHT)
412 		atomic_dec(&req->tctx->inflight_tracked);
413 	if (req->flags & REQ_F_CREDS)
414 		put_cred(req->creds);
415 	if (req->flags & REQ_F_ASYNC_DATA) {
416 		kfree(req->async_data);
417 		req->async_data = NULL;
418 	}
419 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
420 }
421 
422 static inline void io_req_track_inflight(struct io_kiocb *req)
423 {
424 	if (!(req->flags & REQ_F_INFLIGHT)) {
425 		req->flags |= REQ_F_INFLIGHT;
426 		atomic_inc(&req->tctx->inflight_tracked);
427 	}
428 }
429 
430 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
431 {
432 	if (WARN_ON_ONCE(!req->link))
433 		return NULL;
434 
435 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
436 	req->flags |= REQ_F_LINK_TIMEOUT;
437 
438 	/* linked timeouts should have two refs once prep'ed */
439 	io_req_set_refcount(req);
440 	__io_req_set_refcount(req->link, 2);
441 	return req->link;
442 }
443 
444 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
445 {
446 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
447 		return NULL;
448 	return __io_prep_linked_timeout(req);
449 }
450 
451 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
452 {
453 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
454 }
455 
456 static inline void io_arm_ltimeout(struct io_kiocb *req)
457 {
458 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
459 		__io_arm_ltimeout(req);
460 }
461 
462 static void io_prep_async_work(struct io_kiocb *req)
463 {
464 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
465 	struct io_ring_ctx *ctx = req->ctx;
466 
467 	if (!(req->flags & REQ_F_CREDS)) {
468 		req->flags |= REQ_F_CREDS;
469 		req->creds = get_current_cred();
470 	}
471 
472 	req->work.list.next = NULL;
473 	atomic_set(&req->work.flags, 0);
474 	if (req->flags & REQ_F_FORCE_ASYNC)
475 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
476 
477 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
478 		req->flags |= io_file_get_flags(req->file);
479 
480 	if (req->file && (req->flags & REQ_F_ISREG)) {
481 		bool should_hash = def->hash_reg_file;
482 
483 		/* don't serialize this request if the fs doesn't need it */
484 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
485 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
486 			should_hash = false;
487 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
488 			io_wq_hash_work(&req->work, file_inode(req->file));
489 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
490 		if (def->unbound_nonreg_file)
491 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
492 	}
493 }
494 
495 static void io_prep_async_link(struct io_kiocb *req)
496 {
497 	struct io_kiocb *cur;
498 
499 	if (req->flags & REQ_F_LINK_TIMEOUT) {
500 		struct io_ring_ctx *ctx = req->ctx;
501 
502 		raw_spin_lock_irq(&ctx->timeout_lock);
503 		io_for_each_link(cur, req)
504 			io_prep_async_work(cur);
505 		raw_spin_unlock_irq(&ctx->timeout_lock);
506 	} else {
507 		io_for_each_link(cur, req)
508 			io_prep_async_work(cur);
509 	}
510 }
511 
512 static void io_queue_iowq(struct io_kiocb *req)
513 {
514 	struct io_kiocb *link = io_prep_linked_timeout(req);
515 	struct io_uring_task *tctx = req->tctx;
516 
517 	BUG_ON(!tctx);
518 
519 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
520 		io_req_task_queue_fail(req, -ECANCELED);
521 		return;
522 	}
523 
524 	/* init ->work of the whole link before punting */
525 	io_prep_async_link(req);
526 
527 	/*
528 	 * Not expected to happen, but if we do have a bug where this _can_
529 	 * happen, catch it here and ensure the request is marked as
530 	 * canceled. That will make io-wq go through the usual work cancel
531 	 * procedure rather than attempt to run this request (or create a new
532 	 * worker for it).
533 	 */
534 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
535 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
536 
537 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
538 	io_wq_enqueue(tctx->io_wq, &req->work);
539 	if (link)
540 		io_queue_linked_timeout(link);
541 }
542 
543 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
544 {
545 	io_queue_iowq(req);
546 }
547 
548 void io_req_queue_iowq(struct io_kiocb *req)
549 {
550 	req->io_task_work.func = io_req_queue_iowq_tw;
551 	io_req_task_work_add(req);
552 }
553 
554 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
555 {
556 	spin_lock(&ctx->completion_lock);
557 	while (!list_empty(&ctx->defer_list)) {
558 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
559 						struct io_defer_entry, list);
560 
561 		if (req_need_defer(de->req, de->seq))
562 			break;
563 		list_del_init(&de->list);
564 		io_req_task_queue(de->req);
565 		kfree(de);
566 	}
567 	spin_unlock(&ctx->completion_lock);
568 }
569 
570 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
571 {
572 	if (ctx->poll_activated)
573 		io_poll_wq_wake(ctx);
574 	if (ctx->off_timeout_used)
575 		io_flush_timeouts(ctx);
576 	if (ctx->drain_active)
577 		io_queue_deferred(ctx);
578 	if (ctx->has_evfd)
579 		io_eventfd_flush_signal(ctx);
580 }
581 
582 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
583 {
584 	if (!ctx->lockless_cq)
585 		spin_lock(&ctx->completion_lock);
586 }
587 
588 static inline void io_cq_lock(struct io_ring_ctx *ctx)
589 	__acquires(ctx->completion_lock)
590 {
591 	spin_lock(&ctx->completion_lock);
592 }
593 
594 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
595 {
596 	io_commit_cqring(ctx);
597 	if (!ctx->task_complete) {
598 		if (!ctx->lockless_cq)
599 			spin_unlock(&ctx->completion_lock);
600 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
601 		if (!ctx->syscall_iopoll)
602 			io_cqring_wake(ctx);
603 	}
604 	io_commit_cqring_flush(ctx);
605 }
606 
607 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
608 	__releases(ctx->completion_lock)
609 {
610 	io_commit_cqring(ctx);
611 	spin_unlock(&ctx->completion_lock);
612 	io_cqring_wake(ctx);
613 	io_commit_cqring_flush(ctx);
614 }
615 
616 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
617 {
618 	size_t cqe_size = sizeof(struct io_uring_cqe);
619 
620 	lockdep_assert_held(&ctx->uring_lock);
621 
622 	/* don't abort if we're dying, entries must get freed */
623 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
624 		return;
625 
626 	if (ctx->flags & IORING_SETUP_CQE32)
627 		cqe_size <<= 1;
628 
629 	io_cq_lock(ctx);
630 	while (!list_empty(&ctx->cq_overflow_list)) {
631 		struct io_uring_cqe *cqe;
632 		struct io_overflow_cqe *ocqe;
633 
634 		ocqe = list_first_entry(&ctx->cq_overflow_list,
635 					struct io_overflow_cqe, list);
636 
637 		if (!dying) {
638 			if (!io_get_cqe_overflow(ctx, &cqe, true))
639 				break;
640 			memcpy(cqe, &ocqe->cqe, cqe_size);
641 		}
642 		list_del(&ocqe->list);
643 		kfree(ocqe);
644 
645 		/*
646 		 * For silly syzbot cases that deliberately overflow by huge
647 		 * amounts, check if we need to resched and drop and
648 		 * reacquire the locks if so. Nothing real would ever hit this.
649 		 * Ideally we'd have a non-posting unlock for this, but hard
650 		 * to care for a non-real case.
651 		 */
652 		if (need_resched()) {
653 			io_cq_unlock_post(ctx);
654 			mutex_unlock(&ctx->uring_lock);
655 			cond_resched();
656 			mutex_lock(&ctx->uring_lock);
657 			io_cq_lock(ctx);
658 		}
659 	}
660 
661 	if (list_empty(&ctx->cq_overflow_list)) {
662 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
663 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
664 	}
665 	io_cq_unlock_post(ctx);
666 }
667 
668 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
669 {
670 	if (ctx->rings)
671 		__io_cqring_overflow_flush(ctx, true);
672 }
673 
674 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
675 {
676 	mutex_lock(&ctx->uring_lock);
677 	__io_cqring_overflow_flush(ctx, false);
678 	mutex_unlock(&ctx->uring_lock);
679 }
680 
681 /* must to be called somewhat shortly after putting a request */
682 static inline void io_put_task(struct io_kiocb *req)
683 {
684 	struct io_uring_task *tctx = req->tctx;
685 
686 	if (likely(tctx->task == current)) {
687 		tctx->cached_refs++;
688 	} else {
689 		percpu_counter_sub(&tctx->inflight, 1);
690 		if (unlikely(atomic_read(&tctx->in_cancel)))
691 			wake_up(&tctx->wait);
692 		put_task_struct(tctx->task);
693 	}
694 }
695 
696 void io_task_refs_refill(struct io_uring_task *tctx)
697 {
698 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
699 
700 	percpu_counter_add(&tctx->inflight, refill);
701 	refcount_add(refill, &current->usage);
702 	tctx->cached_refs += refill;
703 }
704 
705 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
706 {
707 	struct io_uring_task *tctx = task->io_uring;
708 	unsigned int refs = tctx->cached_refs;
709 
710 	if (refs) {
711 		tctx->cached_refs = 0;
712 		percpu_counter_sub(&tctx->inflight, refs);
713 		put_task_struct_many(task, refs);
714 	}
715 }
716 
717 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
718 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
719 {
720 	struct io_overflow_cqe *ocqe;
721 	size_t ocq_size = sizeof(struct io_overflow_cqe);
722 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
723 
724 	lockdep_assert_held(&ctx->completion_lock);
725 
726 	if (is_cqe32)
727 		ocq_size += sizeof(struct io_uring_cqe);
728 
729 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
730 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
731 	if (!ocqe) {
732 		/*
733 		 * If we're in ring overflow flush mode, or in task cancel mode,
734 		 * or cannot allocate an overflow entry, then we need to drop it
735 		 * on the floor.
736 		 */
737 		io_account_cq_overflow(ctx);
738 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
739 		return false;
740 	}
741 	if (list_empty(&ctx->cq_overflow_list)) {
742 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
743 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
744 
745 	}
746 	ocqe->cqe.user_data = user_data;
747 	ocqe->cqe.res = res;
748 	ocqe->cqe.flags = cflags;
749 	if (is_cqe32) {
750 		ocqe->cqe.big_cqe[0] = extra1;
751 		ocqe->cqe.big_cqe[1] = extra2;
752 	}
753 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
754 	return true;
755 }
756 
757 static void io_req_cqe_overflow(struct io_kiocb *req)
758 {
759 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
760 				req->cqe.res, req->cqe.flags,
761 				req->big_cqe.extra1, req->big_cqe.extra2);
762 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
763 }
764 
765 /*
766  * writes to the cq entry need to come after reading head; the
767  * control dependency is enough as we're using WRITE_ONCE to
768  * fill the cq entry
769  */
770 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
771 {
772 	struct io_rings *rings = ctx->rings;
773 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
774 	unsigned int free, queued, len;
775 
776 	/*
777 	 * Posting into the CQ when there are pending overflowed CQEs may break
778 	 * ordering guarantees, which will affect links, F_MORE users and more.
779 	 * Force overflow the completion.
780 	 */
781 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
782 		return false;
783 
784 	/* userspace may cheat modifying the tail, be safe and do min */
785 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
786 	free = ctx->cq_entries - queued;
787 	/* we need a contiguous range, limit based on the current array offset */
788 	len = min(free, ctx->cq_entries - off);
789 	if (!len)
790 		return false;
791 
792 	if (ctx->flags & IORING_SETUP_CQE32) {
793 		off <<= 1;
794 		len <<= 1;
795 	}
796 
797 	ctx->cqe_cached = &rings->cqes[off];
798 	ctx->cqe_sentinel = ctx->cqe_cached + len;
799 	return true;
800 }
801 
802 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
803 			      u32 cflags)
804 {
805 	struct io_uring_cqe *cqe;
806 
807 	ctx->cq_extra++;
808 
809 	/*
810 	 * If we can't get a cq entry, userspace overflowed the
811 	 * submission (by quite a lot). Increment the overflow count in
812 	 * the ring.
813 	 */
814 	if (likely(io_get_cqe(ctx, &cqe))) {
815 		WRITE_ONCE(cqe->user_data, user_data);
816 		WRITE_ONCE(cqe->res, res);
817 		WRITE_ONCE(cqe->flags, cflags);
818 
819 		if (ctx->flags & IORING_SETUP_CQE32) {
820 			WRITE_ONCE(cqe->big_cqe[0], 0);
821 			WRITE_ONCE(cqe->big_cqe[1], 0);
822 		}
823 
824 		trace_io_uring_complete(ctx, NULL, cqe);
825 		return true;
826 	}
827 	return false;
828 }
829 
830 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
831 			      u32 cflags)
832 {
833 	bool filled;
834 
835 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
836 	if (!filled)
837 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
838 
839 	return filled;
840 }
841 
842 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
843 {
844 	bool filled;
845 
846 	io_cq_lock(ctx);
847 	filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
848 	io_cq_unlock_post(ctx);
849 	return filled;
850 }
851 
852 /*
853  * Must be called from inline task_work so we now a flush will happen later,
854  * and obviously with ctx->uring_lock held (tw always has that).
855  */
856 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
857 {
858 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
859 		spin_lock(&ctx->completion_lock);
860 		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
861 		spin_unlock(&ctx->completion_lock);
862 	}
863 	ctx->submit_state.cq_flush = true;
864 }
865 
866 /*
867  * A helper for multishot requests posting additional CQEs.
868  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
869  */
870 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
871 {
872 	struct io_ring_ctx *ctx = req->ctx;
873 	bool posted;
874 
875 	lockdep_assert(!io_wq_current_is_worker());
876 	lockdep_assert_held(&ctx->uring_lock);
877 
878 	__io_cq_lock(ctx);
879 	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
880 	ctx->submit_state.cq_flush = true;
881 	__io_cq_unlock_post(ctx);
882 	return posted;
883 }
884 
885 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
886 {
887 	struct io_ring_ctx *ctx = req->ctx;
888 
889 	/*
890 	 * All execution paths but io-wq use the deferred completions by
891 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
892 	 */
893 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
894 		return;
895 
896 	/*
897 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
898 	 * the submitter task context, IOPOLL protects with uring_lock.
899 	 */
900 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
901 		req->io_task_work.func = io_req_task_complete;
902 		io_req_task_work_add(req);
903 		return;
904 	}
905 
906 	io_cq_lock(ctx);
907 	if (!(req->flags & REQ_F_CQE_SKIP)) {
908 		if (!io_fill_cqe_req(ctx, req))
909 			io_req_cqe_overflow(req);
910 	}
911 	io_cq_unlock_post(ctx);
912 
913 	/*
914 	 * We don't free the request here because we know it's called from
915 	 * io-wq only, which holds a reference, so it cannot be the last put.
916 	 */
917 	req_ref_put(req);
918 }
919 
920 void io_req_defer_failed(struct io_kiocb *req, s32 res)
921 	__must_hold(&ctx->uring_lock)
922 {
923 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
924 
925 	lockdep_assert_held(&req->ctx->uring_lock);
926 
927 	req_set_fail(req);
928 	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
929 	if (def->fail)
930 		def->fail(req);
931 	io_req_complete_defer(req);
932 }
933 
934 /*
935  * Don't initialise the fields below on every allocation, but do that in
936  * advance and keep them valid across allocations.
937  */
938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
939 {
940 	req->ctx = ctx;
941 	req->buf_node = NULL;
942 	req->file_node = NULL;
943 	req->link = NULL;
944 	req->async_data = NULL;
945 	/* not necessary, but safer to zero */
946 	memset(&req->cqe, 0, sizeof(req->cqe));
947 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
948 }
949 
950 /*
951  * A request might get retired back into the request caches even before opcode
952  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
953  * Because of that, io_alloc_req() should be called only under ->uring_lock
954  * and with extra caution to not get a request that is still worked on.
955  */
956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
957 	__must_hold(&ctx->uring_lock)
958 {
959 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
960 	void *reqs[IO_REQ_ALLOC_BATCH];
961 	int ret;
962 
963 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
964 
965 	/*
966 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
967 	 * retry single alloc to be on the safe side.
968 	 */
969 	if (unlikely(ret <= 0)) {
970 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
971 		if (!reqs[0])
972 			return false;
973 		ret = 1;
974 	}
975 
976 	percpu_ref_get_many(&ctx->refs, ret);
977 	while (ret--) {
978 		struct io_kiocb *req = reqs[ret];
979 
980 		io_preinit_req(req, ctx);
981 		io_req_add_to_cache(req, ctx);
982 	}
983 	return true;
984 }
985 
986 __cold void io_free_req(struct io_kiocb *req)
987 {
988 	/* refs were already put, restore them for io_req_task_complete() */
989 	req->flags &= ~REQ_F_REFCOUNT;
990 	/* we only want to free it, don't post CQEs */
991 	req->flags |= REQ_F_CQE_SKIP;
992 	req->io_task_work.func = io_req_task_complete;
993 	io_req_task_work_add(req);
994 }
995 
996 static void __io_req_find_next_prep(struct io_kiocb *req)
997 {
998 	struct io_ring_ctx *ctx = req->ctx;
999 
1000 	spin_lock(&ctx->completion_lock);
1001 	io_disarm_next(req);
1002 	spin_unlock(&ctx->completion_lock);
1003 }
1004 
1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1006 {
1007 	struct io_kiocb *nxt;
1008 
1009 	/*
1010 	 * If LINK is set, we have dependent requests in this chain. If we
1011 	 * didn't fail this request, queue the first one up, moving any other
1012 	 * dependencies to the next request. In case of failure, fail the rest
1013 	 * of the chain.
1014 	 */
1015 	if (unlikely(req->flags & IO_DISARM_MASK))
1016 		__io_req_find_next_prep(req);
1017 	nxt = req->link;
1018 	req->link = NULL;
1019 	return nxt;
1020 }
1021 
1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1023 {
1024 	if (!ctx)
1025 		return;
1026 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1027 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1028 
1029 	io_submit_flush_completions(ctx);
1030 	mutex_unlock(&ctx->uring_lock);
1031 	percpu_ref_put(&ctx->refs);
1032 }
1033 
1034 /*
1035  * Run queued task_work, returning the number of entries processed in *count.
1036  * If more entries than max_entries are available, stop processing once this
1037  * is reached and return the rest of the list.
1038  */
1039 struct llist_node *io_handle_tw_list(struct llist_node *node,
1040 				     unsigned int *count,
1041 				     unsigned int max_entries)
1042 {
1043 	struct io_ring_ctx *ctx = NULL;
1044 	struct io_tw_state ts = { };
1045 
1046 	do {
1047 		struct llist_node *next = node->next;
1048 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1049 						    io_task_work.node);
1050 
1051 		if (req->ctx != ctx) {
1052 			ctx_flush_and_put(ctx, &ts);
1053 			ctx = req->ctx;
1054 			mutex_lock(&ctx->uring_lock);
1055 			percpu_ref_get(&ctx->refs);
1056 		}
1057 		INDIRECT_CALL_2(req->io_task_work.func,
1058 				io_poll_task_func, io_req_rw_complete,
1059 				req, &ts);
1060 		node = next;
1061 		(*count)++;
1062 		if (unlikely(need_resched())) {
1063 			ctx_flush_and_put(ctx, &ts);
1064 			ctx = NULL;
1065 			cond_resched();
1066 		}
1067 	} while (node && *count < max_entries);
1068 
1069 	ctx_flush_and_put(ctx, &ts);
1070 	return node;
1071 }
1072 
1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1074 {
1075 	struct io_ring_ctx *last_ctx = NULL;
1076 	struct io_kiocb *req;
1077 
1078 	while (node) {
1079 		req = container_of(node, struct io_kiocb, io_task_work.node);
1080 		node = node->next;
1081 		if (sync && last_ctx != req->ctx) {
1082 			if (last_ctx) {
1083 				flush_delayed_work(&last_ctx->fallback_work);
1084 				percpu_ref_put(&last_ctx->refs);
1085 			}
1086 			last_ctx = req->ctx;
1087 			percpu_ref_get(&last_ctx->refs);
1088 		}
1089 		if (llist_add(&req->io_task_work.node,
1090 			      &req->ctx->fallback_llist))
1091 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1092 	}
1093 
1094 	if (last_ctx) {
1095 		flush_delayed_work(&last_ctx->fallback_work);
1096 		percpu_ref_put(&last_ctx->refs);
1097 	}
1098 }
1099 
1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1101 {
1102 	struct llist_node *node = llist_del_all(&tctx->task_list);
1103 
1104 	__io_fallback_tw(node, sync);
1105 }
1106 
1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1108 				      unsigned int max_entries,
1109 				      unsigned int *count)
1110 {
1111 	struct llist_node *node;
1112 
1113 	if (unlikely(current->flags & PF_EXITING)) {
1114 		io_fallback_tw(tctx, true);
1115 		return NULL;
1116 	}
1117 
1118 	node = llist_del_all(&tctx->task_list);
1119 	if (node) {
1120 		node = llist_reverse_order(node);
1121 		node = io_handle_tw_list(node, count, max_entries);
1122 	}
1123 
1124 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1125 	if (unlikely(atomic_read(&tctx->in_cancel)))
1126 		io_uring_drop_tctx_refs(current);
1127 
1128 	trace_io_uring_task_work_run(tctx, *count);
1129 	return node;
1130 }
1131 
1132 void tctx_task_work(struct callback_head *cb)
1133 {
1134 	struct io_uring_task *tctx;
1135 	struct llist_node *ret;
1136 	unsigned int count = 0;
1137 
1138 	tctx = container_of(cb, struct io_uring_task, task_work);
1139 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1140 	/* can't happen */
1141 	WARN_ON_ONCE(ret);
1142 }
1143 
1144 static inline void io_req_local_work_add(struct io_kiocb *req,
1145 					 struct io_ring_ctx *ctx,
1146 					 unsigned flags)
1147 {
1148 	unsigned nr_wait, nr_tw, nr_tw_prev;
1149 	struct llist_node *head;
1150 
1151 	/* See comment above IO_CQ_WAKE_INIT */
1152 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1153 
1154 	/*
1155 	 * We don't know how many reuqests is there in the link and whether
1156 	 * they can even be queued lazily, fall back to non-lazy.
1157 	 */
1158 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1159 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1160 
1161 	guard(rcu)();
1162 
1163 	head = READ_ONCE(ctx->work_llist.first);
1164 	do {
1165 		nr_tw_prev = 0;
1166 		if (head) {
1167 			struct io_kiocb *first_req = container_of(head,
1168 							struct io_kiocb,
1169 							io_task_work.node);
1170 			/*
1171 			 * Might be executed at any moment, rely on
1172 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1173 			 */
1174 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1175 		}
1176 
1177 		/*
1178 		 * Theoretically, it can overflow, but that's fine as one of
1179 		 * previous adds should've tried to wake the task.
1180 		 */
1181 		nr_tw = nr_tw_prev + 1;
1182 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1183 			nr_tw = IO_CQ_WAKE_FORCE;
1184 
1185 		req->nr_tw = nr_tw;
1186 		req->io_task_work.node.next = head;
1187 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1188 			      &req->io_task_work.node));
1189 
1190 	/*
1191 	 * cmpxchg implies a full barrier, which pairs with the barrier
1192 	 * in set_current_state() on the io_cqring_wait() side. It's used
1193 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1194 	 * going to sleep will observe the work added to the list, which
1195 	 * is similar to the wait/wawke task state sync.
1196 	 */
1197 
1198 	if (!head) {
1199 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1200 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1201 		if (ctx->has_evfd)
1202 			io_eventfd_signal(ctx);
1203 	}
1204 
1205 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1206 	/* not enough or no one is waiting */
1207 	if (nr_tw < nr_wait)
1208 		return;
1209 	/* the previous add has already woken it up */
1210 	if (nr_tw_prev >= nr_wait)
1211 		return;
1212 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1213 }
1214 
1215 static void io_req_normal_work_add(struct io_kiocb *req)
1216 {
1217 	struct io_uring_task *tctx = req->tctx;
1218 	struct io_ring_ctx *ctx = req->ctx;
1219 
1220 	/* task_work already pending, we're done */
1221 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1222 		return;
1223 
1224 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1225 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1226 
1227 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1228 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1229 		__set_notify_signal(tctx->task);
1230 		return;
1231 	}
1232 
1233 	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1234 		return;
1235 
1236 	io_fallback_tw(tctx, false);
1237 }
1238 
1239 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1240 {
1241 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1242 		io_req_local_work_add(req, req->ctx, flags);
1243 	else
1244 		io_req_normal_work_add(req);
1245 }
1246 
1247 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1248 				 unsigned flags)
1249 {
1250 	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1251 		return;
1252 	io_req_local_work_add(req, ctx, flags);
1253 }
1254 
1255 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1256 {
1257 	struct llist_node *node = llist_del_all(&ctx->work_llist);
1258 
1259 	__io_fallback_tw(node, false);
1260 	node = llist_del_all(&ctx->retry_llist);
1261 	__io_fallback_tw(node, false);
1262 }
1263 
1264 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1265 				       int min_events)
1266 {
1267 	if (!io_local_work_pending(ctx))
1268 		return false;
1269 	if (events < min_events)
1270 		return true;
1271 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1272 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1273 	return false;
1274 }
1275 
1276 static int __io_run_local_work_loop(struct llist_node **node,
1277 				    struct io_tw_state *ts,
1278 				    int events)
1279 {
1280 	int ret = 0;
1281 
1282 	while (*node) {
1283 		struct llist_node *next = (*node)->next;
1284 		struct io_kiocb *req = container_of(*node, struct io_kiocb,
1285 						    io_task_work.node);
1286 		INDIRECT_CALL_2(req->io_task_work.func,
1287 				io_poll_task_func, io_req_rw_complete,
1288 				req, ts);
1289 		*node = next;
1290 		if (++ret >= events)
1291 			break;
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1298 			       int min_events, int max_events)
1299 {
1300 	struct llist_node *node;
1301 	unsigned int loops = 0;
1302 	int ret = 0;
1303 
1304 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1305 		return -EEXIST;
1306 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1307 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1308 again:
1309 	min_events -= ret;
1310 	ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events);
1311 	if (ctx->retry_llist.first)
1312 		goto retry_done;
1313 
1314 	/*
1315 	 * llists are in reverse order, flip it back the right way before
1316 	 * running the pending items.
1317 	 */
1318 	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1319 	ret += __io_run_local_work_loop(&node, ts, max_events - ret);
1320 	ctx->retry_llist.first = node;
1321 	loops++;
1322 
1323 	if (io_run_local_work_continue(ctx, ret, min_events))
1324 		goto again;
1325 retry_done:
1326 	io_submit_flush_completions(ctx);
1327 	if (io_run_local_work_continue(ctx, ret, min_events))
1328 		goto again;
1329 
1330 	trace_io_uring_local_work_run(ctx, ret, loops);
1331 	return ret;
1332 }
1333 
1334 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1335 					   int min_events)
1336 {
1337 	struct io_tw_state ts = {};
1338 
1339 	if (!io_local_work_pending(ctx))
1340 		return 0;
1341 	return __io_run_local_work(ctx, &ts, min_events,
1342 					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1343 }
1344 
1345 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1346 			     int max_events)
1347 {
1348 	struct io_tw_state ts = {};
1349 	int ret;
1350 
1351 	mutex_lock(&ctx->uring_lock);
1352 	ret = __io_run_local_work(ctx, &ts, min_events, max_events);
1353 	mutex_unlock(&ctx->uring_lock);
1354 	return ret;
1355 }
1356 
1357 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1358 {
1359 	io_tw_lock(req->ctx, ts);
1360 	io_req_defer_failed(req, req->cqe.res);
1361 }
1362 
1363 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1364 {
1365 	io_tw_lock(req->ctx, ts);
1366 	if (unlikely(io_should_terminate_tw()))
1367 		io_req_defer_failed(req, -EFAULT);
1368 	else if (req->flags & REQ_F_FORCE_ASYNC)
1369 		io_queue_iowq(req);
1370 	else
1371 		io_queue_sqe(req);
1372 }
1373 
1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1375 {
1376 	io_req_set_res(req, ret, 0);
1377 	req->io_task_work.func = io_req_task_cancel;
1378 	io_req_task_work_add(req);
1379 }
1380 
1381 void io_req_task_queue(struct io_kiocb *req)
1382 {
1383 	req->io_task_work.func = io_req_task_submit;
1384 	io_req_task_work_add(req);
1385 }
1386 
1387 void io_queue_next(struct io_kiocb *req)
1388 {
1389 	struct io_kiocb *nxt = io_req_find_next(req);
1390 
1391 	if (nxt)
1392 		io_req_task_queue(nxt);
1393 }
1394 
1395 static void io_free_batch_list(struct io_ring_ctx *ctx,
1396 			       struct io_wq_work_node *node)
1397 	__must_hold(&ctx->uring_lock)
1398 {
1399 	do {
1400 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1401 						    comp_list);
1402 
1403 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1404 			if (req->flags & REQ_F_REISSUE) {
1405 				node = req->comp_list.next;
1406 				req->flags &= ~REQ_F_REISSUE;
1407 				io_queue_iowq(req);
1408 				continue;
1409 			}
1410 			if (req->flags & REQ_F_REFCOUNT) {
1411 				node = req->comp_list.next;
1412 				if (!req_ref_put_and_test(req))
1413 					continue;
1414 			}
1415 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1416 				struct async_poll *apoll = req->apoll;
1417 
1418 				if (apoll->double_poll)
1419 					kfree(apoll->double_poll);
1420 				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1421 					kfree(apoll);
1422 				req->flags &= ~REQ_F_POLLED;
1423 			}
1424 			if (req->flags & IO_REQ_LINK_FLAGS)
1425 				io_queue_next(req);
1426 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1427 				io_clean_op(req);
1428 		}
1429 		io_put_file(req);
1430 		io_req_put_rsrc_nodes(req);
1431 		io_put_task(req);
1432 
1433 		node = req->comp_list.next;
1434 		io_req_add_to_cache(req, ctx);
1435 	} while (node);
1436 }
1437 
1438 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1439 	__must_hold(&ctx->uring_lock)
1440 {
1441 	struct io_submit_state *state = &ctx->submit_state;
1442 	struct io_wq_work_node *node;
1443 
1444 	__io_cq_lock(ctx);
1445 	__wq_list_for_each(node, &state->compl_reqs) {
1446 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1447 					    comp_list);
1448 
1449 		/*
1450 		 * Requests marked with REQUEUE should not post a CQE, they
1451 		 * will go through the io-wq retry machinery and post one
1452 		 * later.
1453 		 */
1454 		if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1455 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1456 			if (ctx->lockless_cq) {
1457 				spin_lock(&ctx->completion_lock);
1458 				io_req_cqe_overflow(req);
1459 				spin_unlock(&ctx->completion_lock);
1460 			} else {
1461 				io_req_cqe_overflow(req);
1462 			}
1463 		}
1464 	}
1465 	__io_cq_unlock_post(ctx);
1466 
1467 	if (!wq_list_empty(&state->compl_reqs)) {
1468 		io_free_batch_list(ctx, state->compl_reqs.first);
1469 		INIT_WQ_LIST(&state->compl_reqs);
1470 	}
1471 	ctx->submit_state.cq_flush = false;
1472 }
1473 
1474 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1475 {
1476 	/* See comment at the top of this file */
1477 	smp_rmb();
1478 	return __io_cqring_events(ctx);
1479 }
1480 
1481 /*
1482  * We can't just wait for polled events to come to us, we have to actively
1483  * find and complete them.
1484  */
1485 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1486 {
1487 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1488 		return;
1489 
1490 	mutex_lock(&ctx->uring_lock);
1491 	while (!wq_list_empty(&ctx->iopoll_list)) {
1492 		/* let it sleep and repeat later if can't complete a request */
1493 		if (io_do_iopoll(ctx, true) == 0)
1494 			break;
1495 		/*
1496 		 * Ensure we allow local-to-the-cpu processing to take place,
1497 		 * in this case we need to ensure that we reap all events.
1498 		 * Also let task_work, etc. to progress by releasing the mutex
1499 		 */
1500 		if (need_resched()) {
1501 			mutex_unlock(&ctx->uring_lock);
1502 			cond_resched();
1503 			mutex_lock(&ctx->uring_lock);
1504 		}
1505 	}
1506 	mutex_unlock(&ctx->uring_lock);
1507 }
1508 
1509 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1510 {
1511 	unsigned int nr_events = 0;
1512 	unsigned long check_cq;
1513 
1514 	lockdep_assert_held(&ctx->uring_lock);
1515 
1516 	if (!io_allowed_run_tw(ctx))
1517 		return -EEXIST;
1518 
1519 	check_cq = READ_ONCE(ctx->check_cq);
1520 	if (unlikely(check_cq)) {
1521 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1522 			__io_cqring_overflow_flush(ctx, false);
1523 		/*
1524 		 * Similarly do not spin if we have not informed the user of any
1525 		 * dropped CQE.
1526 		 */
1527 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1528 			return -EBADR;
1529 	}
1530 	/*
1531 	 * Don't enter poll loop if we already have events pending.
1532 	 * If we do, we can potentially be spinning for commands that
1533 	 * already triggered a CQE (eg in error).
1534 	 */
1535 	if (io_cqring_events(ctx))
1536 		return 0;
1537 
1538 	do {
1539 		int ret = 0;
1540 
1541 		/*
1542 		 * If a submit got punted to a workqueue, we can have the
1543 		 * application entering polling for a command before it gets
1544 		 * issued. That app will hold the uring_lock for the duration
1545 		 * of the poll right here, so we need to take a breather every
1546 		 * now and then to ensure that the issue has a chance to add
1547 		 * the poll to the issued list. Otherwise we can spin here
1548 		 * forever, while the workqueue is stuck trying to acquire the
1549 		 * very same mutex.
1550 		 */
1551 		if (wq_list_empty(&ctx->iopoll_list) ||
1552 		    io_task_work_pending(ctx)) {
1553 			u32 tail = ctx->cached_cq_tail;
1554 
1555 			(void) io_run_local_work_locked(ctx, min);
1556 
1557 			if (task_work_pending(current) ||
1558 			    wq_list_empty(&ctx->iopoll_list)) {
1559 				mutex_unlock(&ctx->uring_lock);
1560 				io_run_task_work();
1561 				mutex_lock(&ctx->uring_lock);
1562 			}
1563 			/* some requests don't go through iopoll_list */
1564 			if (tail != ctx->cached_cq_tail ||
1565 			    wq_list_empty(&ctx->iopoll_list))
1566 				break;
1567 		}
1568 		ret = io_do_iopoll(ctx, !min);
1569 		if (unlikely(ret < 0))
1570 			return ret;
1571 
1572 		if (task_sigpending(current))
1573 			return -EINTR;
1574 		if (need_resched())
1575 			break;
1576 
1577 		nr_events += ret;
1578 	} while (nr_events < min);
1579 
1580 	return 0;
1581 }
1582 
1583 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1584 {
1585 	io_req_complete_defer(req);
1586 }
1587 
1588 /*
1589  * After the iocb has been issued, it's safe to be found on the poll list.
1590  * Adding the kiocb to the list AFTER submission ensures that we don't
1591  * find it from a io_do_iopoll() thread before the issuer is done
1592  * accessing the kiocb cookie.
1593  */
1594 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1595 {
1596 	struct io_ring_ctx *ctx = req->ctx;
1597 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1598 
1599 	/* workqueue context doesn't hold uring_lock, grab it now */
1600 	if (unlikely(needs_lock))
1601 		mutex_lock(&ctx->uring_lock);
1602 
1603 	/*
1604 	 * Track whether we have multiple files in our lists. This will impact
1605 	 * how we do polling eventually, not spinning if we're on potentially
1606 	 * different devices.
1607 	 */
1608 	if (wq_list_empty(&ctx->iopoll_list)) {
1609 		ctx->poll_multi_queue = false;
1610 	} else if (!ctx->poll_multi_queue) {
1611 		struct io_kiocb *list_req;
1612 
1613 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1614 					comp_list);
1615 		if (list_req->file != req->file)
1616 			ctx->poll_multi_queue = true;
1617 	}
1618 
1619 	/*
1620 	 * For fast devices, IO may have already completed. If it has, add
1621 	 * it to the front so we find it first.
1622 	 */
1623 	if (READ_ONCE(req->iopoll_completed))
1624 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1625 	else
1626 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1627 
1628 	if (unlikely(needs_lock)) {
1629 		/*
1630 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1631 		 * in sq thread task context or in io worker task context. If
1632 		 * current task context is sq thread, we don't need to check
1633 		 * whether should wake up sq thread.
1634 		 */
1635 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1636 		    wq_has_sleeper(&ctx->sq_data->wait))
1637 			wake_up(&ctx->sq_data->wait);
1638 
1639 		mutex_unlock(&ctx->uring_lock);
1640 	}
1641 }
1642 
1643 io_req_flags_t io_file_get_flags(struct file *file)
1644 {
1645 	io_req_flags_t res = 0;
1646 
1647 	if (S_ISREG(file_inode(file)->i_mode))
1648 		res |= REQ_F_ISREG;
1649 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1650 		res |= REQ_F_SUPPORT_NOWAIT;
1651 	return res;
1652 }
1653 
1654 static u32 io_get_sequence(struct io_kiocb *req)
1655 {
1656 	u32 seq = req->ctx->cached_sq_head;
1657 	struct io_kiocb *cur;
1658 
1659 	/* need original cached_sq_head, but it was increased for each req */
1660 	io_for_each_link(cur, req)
1661 		seq--;
1662 	return seq;
1663 }
1664 
1665 static __cold void io_drain_req(struct io_kiocb *req)
1666 	__must_hold(&ctx->uring_lock)
1667 {
1668 	struct io_ring_ctx *ctx = req->ctx;
1669 	struct io_defer_entry *de;
1670 	int ret;
1671 	u32 seq = io_get_sequence(req);
1672 
1673 	/* Still need defer if there is pending req in defer list. */
1674 	spin_lock(&ctx->completion_lock);
1675 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1676 		spin_unlock(&ctx->completion_lock);
1677 queue:
1678 		ctx->drain_active = false;
1679 		io_req_task_queue(req);
1680 		return;
1681 	}
1682 	spin_unlock(&ctx->completion_lock);
1683 
1684 	io_prep_async_link(req);
1685 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1686 	if (!de) {
1687 		ret = -ENOMEM;
1688 		io_req_defer_failed(req, ret);
1689 		return;
1690 	}
1691 
1692 	spin_lock(&ctx->completion_lock);
1693 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1694 		spin_unlock(&ctx->completion_lock);
1695 		kfree(de);
1696 		goto queue;
1697 	}
1698 
1699 	trace_io_uring_defer(req);
1700 	de->req = req;
1701 	de->seq = seq;
1702 	list_add_tail(&de->list, &ctx->defer_list);
1703 	spin_unlock(&ctx->completion_lock);
1704 }
1705 
1706 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1707 			   unsigned int issue_flags)
1708 {
1709 	if (req->file || !def->needs_file)
1710 		return true;
1711 
1712 	if (req->flags & REQ_F_FIXED_FILE)
1713 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1714 	else
1715 		req->file = io_file_get_normal(req, req->cqe.fd);
1716 
1717 	return !!req->file;
1718 }
1719 
1720 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1721 {
1722 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1723 	const struct cred *creds = NULL;
1724 	int ret;
1725 
1726 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1727 		return -EBADF;
1728 
1729 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1730 		creds = override_creds(req->creds);
1731 
1732 	if (!def->audit_skip)
1733 		audit_uring_entry(req->opcode);
1734 
1735 	ret = def->issue(req, issue_flags);
1736 
1737 	if (!def->audit_skip)
1738 		audit_uring_exit(!ret, ret);
1739 
1740 	if (creds)
1741 		revert_creds(creds);
1742 
1743 	if (ret == IOU_OK) {
1744 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1745 			io_req_complete_defer(req);
1746 		else
1747 			io_req_complete_post(req, issue_flags);
1748 
1749 		return 0;
1750 	}
1751 
1752 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1753 		ret = 0;
1754 		io_arm_ltimeout(req);
1755 
1756 		/* If the op doesn't have a file, we're not polling for it */
1757 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1758 			io_iopoll_req_issued(req, issue_flags);
1759 	}
1760 	return ret;
1761 }
1762 
1763 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1764 {
1765 	io_tw_lock(req->ctx, ts);
1766 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1767 				 IO_URING_F_COMPLETE_DEFER);
1768 }
1769 
1770 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1771 {
1772 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1773 	struct io_kiocb *nxt = NULL;
1774 
1775 	if (req_ref_put_and_test(req)) {
1776 		if (req->flags & IO_REQ_LINK_FLAGS)
1777 			nxt = io_req_find_next(req);
1778 		io_free_req(req);
1779 	}
1780 	return nxt ? &nxt->work : NULL;
1781 }
1782 
1783 void io_wq_submit_work(struct io_wq_work *work)
1784 {
1785 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1786 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1787 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1788 	bool needs_poll = false;
1789 	int ret = 0, err = -ECANCELED;
1790 
1791 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1792 	if (!(req->flags & REQ_F_REFCOUNT))
1793 		__io_req_set_refcount(req, 2);
1794 	else
1795 		req_ref_get(req);
1796 
1797 	io_arm_ltimeout(req);
1798 
1799 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1800 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1801 fail:
1802 		io_req_task_queue_fail(req, err);
1803 		return;
1804 	}
1805 	if (!io_assign_file(req, def, issue_flags)) {
1806 		err = -EBADF;
1807 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1808 		goto fail;
1809 	}
1810 
1811 	/*
1812 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1813 	 * submitter task context. Final request completions are handed to the
1814 	 * right context, however this is not the case of auxiliary CQEs,
1815 	 * which is the main mean of operation for multishot requests.
1816 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1817 	 * than necessary and also cleaner.
1818 	 */
1819 	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1820 		err = -EBADFD;
1821 		if (!io_file_can_poll(req))
1822 			goto fail;
1823 		if (req->file->f_flags & O_NONBLOCK ||
1824 		    req->file->f_mode & FMODE_NOWAIT) {
1825 			err = -ECANCELED;
1826 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1827 				goto fail;
1828 			return;
1829 		} else {
1830 			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1831 		}
1832 	}
1833 
1834 	if (req->flags & REQ_F_FORCE_ASYNC) {
1835 		bool opcode_poll = def->pollin || def->pollout;
1836 
1837 		if (opcode_poll && io_file_can_poll(req)) {
1838 			needs_poll = true;
1839 			issue_flags |= IO_URING_F_NONBLOCK;
1840 		}
1841 	}
1842 
1843 	do {
1844 		ret = io_issue_sqe(req, issue_flags);
1845 		if (ret != -EAGAIN)
1846 			break;
1847 
1848 		/*
1849 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1850 		 * poll. -EAGAIN is final for that case.
1851 		 */
1852 		if (req->flags & REQ_F_NOWAIT)
1853 			break;
1854 
1855 		/*
1856 		 * We can get EAGAIN for iopolled IO even though we're
1857 		 * forcing a sync submission from here, since we can't
1858 		 * wait for request slots on the block side.
1859 		 */
1860 		if (!needs_poll) {
1861 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1862 				break;
1863 			if (io_wq_worker_stopped())
1864 				break;
1865 			cond_resched();
1866 			continue;
1867 		}
1868 
1869 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1870 			return;
1871 		/* aborted or ready, in either case retry blocking */
1872 		needs_poll = false;
1873 		issue_flags &= ~IO_URING_F_NONBLOCK;
1874 	} while (1);
1875 
1876 	/* avoid locking problems by failing it from a clean context */
1877 	if (ret)
1878 		io_req_task_queue_fail(req, ret);
1879 }
1880 
1881 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1882 				      unsigned int issue_flags)
1883 {
1884 	struct io_ring_ctx *ctx = req->ctx;
1885 	struct io_rsrc_node *node;
1886 	struct file *file = NULL;
1887 
1888 	io_ring_submit_lock(ctx, issue_flags);
1889 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1890 	if (node) {
1891 		io_req_assign_rsrc_node(&req->file_node, node);
1892 		req->flags |= io_slot_flags(node);
1893 		file = io_slot_file(node);
1894 	}
1895 	io_ring_submit_unlock(ctx, issue_flags);
1896 	return file;
1897 }
1898 
1899 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1900 {
1901 	struct file *file = fget(fd);
1902 
1903 	trace_io_uring_file_get(req, fd);
1904 
1905 	/* we don't allow fixed io_uring files */
1906 	if (file && io_is_uring_fops(file))
1907 		io_req_track_inflight(req);
1908 	return file;
1909 }
1910 
1911 static void io_queue_async(struct io_kiocb *req, int ret)
1912 	__must_hold(&req->ctx->uring_lock)
1913 {
1914 	struct io_kiocb *linked_timeout;
1915 
1916 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1917 		io_req_defer_failed(req, ret);
1918 		return;
1919 	}
1920 
1921 	linked_timeout = io_prep_linked_timeout(req);
1922 
1923 	switch (io_arm_poll_handler(req, 0)) {
1924 	case IO_APOLL_READY:
1925 		io_kbuf_recycle(req, 0);
1926 		io_req_task_queue(req);
1927 		break;
1928 	case IO_APOLL_ABORTED:
1929 		io_kbuf_recycle(req, 0);
1930 		io_queue_iowq(req);
1931 		break;
1932 	case IO_APOLL_OK:
1933 		break;
1934 	}
1935 
1936 	if (linked_timeout)
1937 		io_queue_linked_timeout(linked_timeout);
1938 }
1939 
1940 static inline void io_queue_sqe(struct io_kiocb *req)
1941 	__must_hold(&req->ctx->uring_lock)
1942 {
1943 	int ret;
1944 
1945 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1946 
1947 	/*
1948 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1949 	 * doesn't support non-blocking read/write attempts
1950 	 */
1951 	if (unlikely(ret))
1952 		io_queue_async(req, ret);
1953 }
1954 
1955 static void io_queue_sqe_fallback(struct io_kiocb *req)
1956 	__must_hold(&req->ctx->uring_lock)
1957 {
1958 	if (unlikely(req->flags & REQ_F_FAIL)) {
1959 		/*
1960 		 * We don't submit, fail them all, for that replace hardlinks
1961 		 * with normal links. Extra REQ_F_LINK is tolerated.
1962 		 */
1963 		req->flags &= ~REQ_F_HARDLINK;
1964 		req->flags |= REQ_F_LINK;
1965 		io_req_defer_failed(req, req->cqe.res);
1966 	} else {
1967 		if (unlikely(req->ctx->drain_active))
1968 			io_drain_req(req);
1969 		else
1970 			io_queue_iowq(req);
1971 	}
1972 }
1973 
1974 /*
1975  * Check SQE restrictions (opcode and flags).
1976  *
1977  * Returns 'true' if SQE is allowed, 'false' otherwise.
1978  */
1979 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1980 					struct io_kiocb *req,
1981 					unsigned int sqe_flags)
1982 {
1983 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1984 		return false;
1985 
1986 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1987 	    ctx->restrictions.sqe_flags_required)
1988 		return false;
1989 
1990 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1991 			  ctx->restrictions.sqe_flags_required))
1992 		return false;
1993 
1994 	return true;
1995 }
1996 
1997 static void io_init_req_drain(struct io_kiocb *req)
1998 {
1999 	struct io_ring_ctx *ctx = req->ctx;
2000 	struct io_kiocb *head = ctx->submit_state.link.head;
2001 
2002 	ctx->drain_active = true;
2003 	if (head) {
2004 		/*
2005 		 * If we need to drain a request in the middle of a link, drain
2006 		 * the head request and the next request/link after the current
2007 		 * link. Considering sequential execution of links,
2008 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2009 		 * link.
2010 		 */
2011 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2012 		ctx->drain_next = true;
2013 	}
2014 }
2015 
2016 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2017 {
2018 	/* ensure per-opcode data is cleared if we fail before prep */
2019 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2020 	return err;
2021 }
2022 
2023 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2024 		       const struct io_uring_sqe *sqe)
2025 	__must_hold(&ctx->uring_lock)
2026 {
2027 	const struct io_issue_def *def;
2028 	unsigned int sqe_flags;
2029 	int personality;
2030 	u8 opcode;
2031 
2032 	/* req is partially pre-initialised, see io_preinit_req() */
2033 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2034 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2035 	sqe_flags = READ_ONCE(sqe->flags);
2036 	req->flags = (__force io_req_flags_t) sqe_flags;
2037 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2038 	req->file = NULL;
2039 	req->tctx = current->io_uring;
2040 	req->cancel_seq_set = false;
2041 
2042 	if (unlikely(opcode >= IORING_OP_LAST)) {
2043 		req->opcode = 0;
2044 		return io_init_fail_req(req, -EINVAL);
2045 	}
2046 	def = &io_issue_defs[opcode];
2047 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2048 		/* enforce forwards compatibility on users */
2049 		if (sqe_flags & ~SQE_VALID_FLAGS)
2050 			return io_init_fail_req(req, -EINVAL);
2051 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2052 			if (!def->buffer_select)
2053 				return io_init_fail_req(req, -EOPNOTSUPP);
2054 			req->buf_index = READ_ONCE(sqe->buf_group);
2055 		}
2056 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2057 			ctx->drain_disabled = true;
2058 		if (sqe_flags & IOSQE_IO_DRAIN) {
2059 			if (ctx->drain_disabled)
2060 				return io_init_fail_req(req, -EOPNOTSUPP);
2061 			io_init_req_drain(req);
2062 		}
2063 	}
2064 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2065 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2066 			return io_init_fail_req(req, -EACCES);
2067 		/* knock it to the slow queue path, will be drained there */
2068 		if (ctx->drain_active)
2069 			req->flags |= REQ_F_FORCE_ASYNC;
2070 		/* if there is no link, we're at "next" request and need to drain */
2071 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2072 			ctx->drain_next = false;
2073 			ctx->drain_active = true;
2074 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2075 		}
2076 	}
2077 
2078 	if (!def->ioprio && sqe->ioprio)
2079 		return io_init_fail_req(req, -EINVAL);
2080 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2081 		return io_init_fail_req(req, -EINVAL);
2082 
2083 	if (def->needs_file) {
2084 		struct io_submit_state *state = &ctx->submit_state;
2085 
2086 		req->cqe.fd = READ_ONCE(sqe->fd);
2087 
2088 		/*
2089 		 * Plug now if we have more than 2 IO left after this, and the
2090 		 * target is potentially a read/write to block based storage.
2091 		 */
2092 		if (state->need_plug && def->plug) {
2093 			state->plug_started = true;
2094 			state->need_plug = false;
2095 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2096 		}
2097 	}
2098 
2099 	personality = READ_ONCE(sqe->personality);
2100 	if (personality) {
2101 		int ret;
2102 
2103 		req->creds = xa_load(&ctx->personalities, personality);
2104 		if (!req->creds)
2105 			return io_init_fail_req(req, -EINVAL);
2106 		get_cred(req->creds);
2107 		ret = security_uring_override_creds(req->creds);
2108 		if (ret) {
2109 			put_cred(req->creds);
2110 			return io_init_fail_req(req, ret);
2111 		}
2112 		req->flags |= REQ_F_CREDS;
2113 	}
2114 
2115 	return def->prep(req, sqe);
2116 }
2117 
2118 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2119 				      struct io_kiocb *req, int ret)
2120 {
2121 	struct io_ring_ctx *ctx = req->ctx;
2122 	struct io_submit_link *link = &ctx->submit_state.link;
2123 	struct io_kiocb *head = link->head;
2124 
2125 	trace_io_uring_req_failed(sqe, req, ret);
2126 
2127 	/*
2128 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2129 	 * unusable. Instead of failing eagerly, continue assembling the link if
2130 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2131 	 * should find the flag and handle the rest.
2132 	 */
2133 	req_fail_link_node(req, ret);
2134 	if (head && !(head->flags & REQ_F_FAIL))
2135 		req_fail_link_node(head, -ECANCELED);
2136 
2137 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2138 		if (head) {
2139 			link->last->link = req;
2140 			link->head = NULL;
2141 			req = head;
2142 		}
2143 		io_queue_sqe_fallback(req);
2144 		return ret;
2145 	}
2146 
2147 	if (head)
2148 		link->last->link = req;
2149 	else
2150 		link->head = req;
2151 	link->last = req;
2152 	return 0;
2153 }
2154 
2155 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2156 			 const struct io_uring_sqe *sqe)
2157 	__must_hold(&ctx->uring_lock)
2158 {
2159 	struct io_submit_link *link = &ctx->submit_state.link;
2160 	int ret;
2161 
2162 	ret = io_init_req(ctx, req, sqe);
2163 	if (unlikely(ret))
2164 		return io_submit_fail_init(sqe, req, ret);
2165 
2166 	trace_io_uring_submit_req(req);
2167 
2168 	/*
2169 	 * If we already have a head request, queue this one for async
2170 	 * submittal once the head completes. If we don't have a head but
2171 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2172 	 * submitted sync once the chain is complete. If none of those
2173 	 * conditions are true (normal request), then just queue it.
2174 	 */
2175 	if (unlikely(link->head)) {
2176 		trace_io_uring_link(req, link->last);
2177 		link->last->link = req;
2178 		link->last = req;
2179 
2180 		if (req->flags & IO_REQ_LINK_FLAGS)
2181 			return 0;
2182 		/* last request of the link, flush it */
2183 		req = link->head;
2184 		link->head = NULL;
2185 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2186 			goto fallback;
2187 
2188 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2189 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2190 		if (req->flags & IO_REQ_LINK_FLAGS) {
2191 			link->head = req;
2192 			link->last = req;
2193 		} else {
2194 fallback:
2195 			io_queue_sqe_fallback(req);
2196 		}
2197 		return 0;
2198 	}
2199 
2200 	io_queue_sqe(req);
2201 	return 0;
2202 }
2203 
2204 /*
2205  * Batched submission is done, ensure local IO is flushed out.
2206  */
2207 static void io_submit_state_end(struct io_ring_ctx *ctx)
2208 {
2209 	struct io_submit_state *state = &ctx->submit_state;
2210 
2211 	if (unlikely(state->link.head))
2212 		io_queue_sqe_fallback(state->link.head);
2213 	/* flush only after queuing links as they can generate completions */
2214 	io_submit_flush_completions(ctx);
2215 	if (state->plug_started)
2216 		blk_finish_plug(&state->plug);
2217 }
2218 
2219 /*
2220  * Start submission side cache.
2221  */
2222 static void io_submit_state_start(struct io_submit_state *state,
2223 				  unsigned int max_ios)
2224 {
2225 	state->plug_started = false;
2226 	state->need_plug = max_ios > 2;
2227 	state->submit_nr = max_ios;
2228 	/* set only head, no need to init link_last in advance */
2229 	state->link.head = NULL;
2230 }
2231 
2232 static void io_commit_sqring(struct io_ring_ctx *ctx)
2233 {
2234 	struct io_rings *rings = ctx->rings;
2235 
2236 	/*
2237 	 * Ensure any loads from the SQEs are done at this point,
2238 	 * since once we write the new head, the application could
2239 	 * write new data to them.
2240 	 */
2241 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2242 }
2243 
2244 /*
2245  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2246  * that is mapped by userspace. This means that care needs to be taken to
2247  * ensure that reads are stable, as we cannot rely on userspace always
2248  * being a good citizen. If members of the sqe are validated and then later
2249  * used, it's important that those reads are done through READ_ONCE() to
2250  * prevent a re-load down the line.
2251  */
2252 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2253 {
2254 	unsigned mask = ctx->sq_entries - 1;
2255 	unsigned head = ctx->cached_sq_head++ & mask;
2256 
2257 	if (static_branch_unlikely(&io_key_has_sqarray) &&
2258 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2259 		head = READ_ONCE(ctx->sq_array[head]);
2260 		if (unlikely(head >= ctx->sq_entries)) {
2261 			/* drop invalid entries */
2262 			spin_lock(&ctx->completion_lock);
2263 			ctx->cq_extra--;
2264 			spin_unlock(&ctx->completion_lock);
2265 			WRITE_ONCE(ctx->rings->sq_dropped,
2266 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2267 			return false;
2268 		}
2269 		head = array_index_nospec(head, ctx->sq_entries);
2270 	}
2271 
2272 	/*
2273 	 * The cached sq head (or cq tail) serves two purposes:
2274 	 *
2275 	 * 1) allows us to batch the cost of updating the user visible
2276 	 *    head updates.
2277 	 * 2) allows the kernel side to track the head on its own, even
2278 	 *    though the application is the one updating it.
2279 	 */
2280 
2281 	/* double index for 128-byte SQEs, twice as long */
2282 	if (ctx->flags & IORING_SETUP_SQE128)
2283 		head <<= 1;
2284 	*sqe = &ctx->sq_sqes[head];
2285 	return true;
2286 }
2287 
2288 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2289 	__must_hold(&ctx->uring_lock)
2290 {
2291 	unsigned int entries = io_sqring_entries(ctx);
2292 	unsigned int left;
2293 	int ret;
2294 
2295 	if (unlikely(!entries))
2296 		return 0;
2297 	/* make sure SQ entry isn't read before tail */
2298 	ret = left = min(nr, entries);
2299 	io_get_task_refs(left);
2300 	io_submit_state_start(&ctx->submit_state, left);
2301 
2302 	do {
2303 		const struct io_uring_sqe *sqe;
2304 		struct io_kiocb *req;
2305 
2306 		if (unlikely(!io_alloc_req(ctx, &req)))
2307 			break;
2308 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2309 			io_req_add_to_cache(req, ctx);
2310 			break;
2311 		}
2312 
2313 		/*
2314 		 * Continue submitting even for sqe failure if the
2315 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2316 		 */
2317 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2318 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2319 			left--;
2320 			break;
2321 		}
2322 	} while (--left);
2323 
2324 	if (unlikely(left)) {
2325 		ret -= left;
2326 		/* try again if it submitted nothing and can't allocate a req */
2327 		if (!ret && io_req_cache_empty(ctx))
2328 			ret = -EAGAIN;
2329 		current->io_uring->cached_refs += left;
2330 	}
2331 
2332 	io_submit_state_end(ctx);
2333 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2334 	io_commit_sqring(ctx);
2335 	return ret;
2336 }
2337 
2338 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2339 			    int wake_flags, void *key)
2340 {
2341 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2342 
2343 	/*
2344 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2345 	 * the task, and the next invocation will do it.
2346 	 */
2347 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2348 		return autoremove_wake_function(curr, mode, wake_flags, key);
2349 	return -1;
2350 }
2351 
2352 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2353 {
2354 	if (io_local_work_pending(ctx)) {
2355 		__set_current_state(TASK_RUNNING);
2356 		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2357 			return 0;
2358 	}
2359 	if (io_run_task_work() > 0)
2360 		return 0;
2361 	if (task_sigpending(current))
2362 		return -EINTR;
2363 	return 0;
2364 }
2365 
2366 static bool current_pending_io(void)
2367 {
2368 	struct io_uring_task *tctx = current->io_uring;
2369 
2370 	if (!tctx)
2371 		return false;
2372 	return percpu_counter_read_positive(&tctx->inflight);
2373 }
2374 
2375 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2376 {
2377 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2378 
2379 	WRITE_ONCE(iowq->hit_timeout, 1);
2380 	iowq->min_timeout = 0;
2381 	wake_up_process(iowq->wq.private);
2382 	return HRTIMER_NORESTART;
2383 }
2384 
2385 /*
2386  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2387  * wake up. If not, and we have a normal timeout, switch to that and keep
2388  * sleeping.
2389  */
2390 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2391 {
2392 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2393 	struct io_ring_ctx *ctx = iowq->ctx;
2394 
2395 	/* no general timeout, or shorter (or equal), we are done */
2396 	if (iowq->timeout == KTIME_MAX ||
2397 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2398 		goto out_wake;
2399 	/* work we may need to run, wake function will see if we need to wake */
2400 	if (io_has_work(ctx))
2401 		goto out_wake;
2402 	/* got events since we started waiting, min timeout is done */
2403 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2404 		goto out_wake;
2405 	/* if we have any events and min timeout expired, we're done */
2406 	if (io_cqring_events(ctx))
2407 		goto out_wake;
2408 
2409 	/*
2410 	 * If using deferred task_work running and application is waiting on
2411 	 * more than one request, ensure we reset it now where we are switching
2412 	 * to normal sleeps. Any request completion post min_wait should wake
2413 	 * the task and return.
2414 	 */
2415 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2416 		atomic_set(&ctx->cq_wait_nr, 1);
2417 		smp_mb();
2418 		if (!llist_empty(&ctx->work_llist))
2419 			goto out_wake;
2420 	}
2421 
2422 	iowq->t.function = io_cqring_timer_wakeup;
2423 	hrtimer_set_expires(timer, iowq->timeout);
2424 	return HRTIMER_RESTART;
2425 out_wake:
2426 	return io_cqring_timer_wakeup(timer);
2427 }
2428 
2429 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2430 				      clockid_t clock_id, ktime_t start_time)
2431 {
2432 	ktime_t timeout;
2433 
2434 	if (iowq->min_timeout) {
2435 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2436 		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2437 				       HRTIMER_MODE_ABS);
2438 	} else {
2439 		timeout = iowq->timeout;
2440 		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2441 				       HRTIMER_MODE_ABS);
2442 	}
2443 
2444 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2445 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2446 
2447 	if (!READ_ONCE(iowq->hit_timeout))
2448 		schedule();
2449 
2450 	hrtimer_cancel(&iowq->t);
2451 	destroy_hrtimer_on_stack(&iowq->t);
2452 	__set_current_state(TASK_RUNNING);
2453 
2454 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2455 }
2456 
2457 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2458 				     struct io_wait_queue *iowq,
2459 				     ktime_t start_time)
2460 {
2461 	int ret = 0;
2462 
2463 	/*
2464 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2465 	 * can take into account that the task is waiting for IO - turns out
2466 	 * to be important for low QD IO.
2467 	 */
2468 	if (current_pending_io())
2469 		current->in_iowait = 1;
2470 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2471 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2472 	else
2473 		schedule();
2474 	current->in_iowait = 0;
2475 	return ret;
2476 }
2477 
2478 /* If this returns > 0, the caller should retry */
2479 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2480 					  struct io_wait_queue *iowq,
2481 					  ktime_t start_time)
2482 {
2483 	if (unlikely(READ_ONCE(ctx->check_cq)))
2484 		return 1;
2485 	if (unlikely(io_local_work_pending(ctx)))
2486 		return 1;
2487 	if (unlikely(task_work_pending(current)))
2488 		return 1;
2489 	if (unlikely(task_sigpending(current)))
2490 		return -EINTR;
2491 	if (unlikely(io_should_wake(iowq)))
2492 		return 0;
2493 
2494 	return __io_cqring_wait_schedule(ctx, iowq, start_time);
2495 }
2496 
2497 struct ext_arg {
2498 	size_t argsz;
2499 	struct timespec64 ts;
2500 	const sigset_t __user *sig;
2501 	ktime_t min_time;
2502 	bool ts_set;
2503 };
2504 
2505 /*
2506  * Wait until events become available, if we don't already have some. The
2507  * application must reap them itself, as they reside on the shared cq ring.
2508  */
2509 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2510 			  struct ext_arg *ext_arg)
2511 {
2512 	struct io_wait_queue iowq;
2513 	struct io_rings *rings = ctx->rings;
2514 	ktime_t start_time;
2515 	int ret;
2516 
2517 	if (!io_allowed_run_tw(ctx))
2518 		return -EEXIST;
2519 	if (io_local_work_pending(ctx))
2520 		io_run_local_work(ctx, min_events,
2521 				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2522 	io_run_task_work();
2523 
2524 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2525 		io_cqring_do_overflow_flush(ctx);
2526 	if (__io_cqring_events_user(ctx) >= min_events)
2527 		return 0;
2528 
2529 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2530 	iowq.wq.private = current;
2531 	INIT_LIST_HEAD(&iowq.wq.entry);
2532 	iowq.ctx = ctx;
2533 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2534 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2535 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2536 	iowq.hit_timeout = 0;
2537 	iowq.min_timeout = ext_arg->min_time;
2538 	iowq.timeout = KTIME_MAX;
2539 	start_time = io_get_time(ctx);
2540 
2541 	if (ext_arg->ts_set) {
2542 		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2543 		if (!(flags & IORING_ENTER_ABS_TIMER))
2544 			iowq.timeout = ktime_add(iowq.timeout, start_time);
2545 	}
2546 
2547 	if (ext_arg->sig) {
2548 #ifdef CONFIG_COMPAT
2549 		if (in_compat_syscall())
2550 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2551 						      ext_arg->argsz);
2552 		else
2553 #endif
2554 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2555 
2556 		if (ret)
2557 			return ret;
2558 	}
2559 
2560 	io_napi_busy_loop(ctx, &iowq);
2561 
2562 	trace_io_uring_cqring_wait(ctx, min_events);
2563 	do {
2564 		unsigned long check_cq;
2565 		int nr_wait;
2566 
2567 		/* if min timeout has been hit, don't reset wait count */
2568 		if (!iowq.hit_timeout)
2569 			nr_wait = (int) iowq.cq_tail -
2570 					READ_ONCE(ctx->rings->cq.tail);
2571 		else
2572 			nr_wait = 1;
2573 
2574 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2575 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2576 			set_current_state(TASK_INTERRUPTIBLE);
2577 		} else {
2578 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2579 							TASK_INTERRUPTIBLE);
2580 		}
2581 
2582 		ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2583 		__set_current_state(TASK_RUNNING);
2584 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2585 
2586 		/*
2587 		 * Run task_work after scheduling and before io_should_wake().
2588 		 * If we got woken because of task_work being processed, run it
2589 		 * now rather than let the caller do another wait loop.
2590 		 */
2591 		if (io_local_work_pending(ctx))
2592 			io_run_local_work(ctx, nr_wait, nr_wait);
2593 		io_run_task_work();
2594 
2595 		/*
2596 		 * Non-local task_work will be run on exit to userspace, but
2597 		 * if we're using DEFER_TASKRUN, then we could have waited
2598 		 * with a timeout for a number of requests. If the timeout
2599 		 * hits, we could have some requests ready to process. Ensure
2600 		 * this break is _after_ we have run task_work, to avoid
2601 		 * deferring running potentially pending requests until the
2602 		 * next time we wait for events.
2603 		 */
2604 		if (ret < 0)
2605 			break;
2606 
2607 		check_cq = READ_ONCE(ctx->check_cq);
2608 		if (unlikely(check_cq)) {
2609 			/* let the caller flush overflows, retry */
2610 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2611 				io_cqring_do_overflow_flush(ctx);
2612 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2613 				ret = -EBADR;
2614 				break;
2615 			}
2616 		}
2617 
2618 		if (io_should_wake(&iowq)) {
2619 			ret = 0;
2620 			break;
2621 		}
2622 		cond_resched();
2623 	} while (1);
2624 
2625 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2626 		finish_wait(&ctx->cq_wait, &iowq.wq);
2627 	restore_saved_sigmask_unless(ret == -EINTR);
2628 
2629 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2630 }
2631 
2632 static void io_rings_free(struct io_ring_ctx *ctx)
2633 {
2634 	io_free_region(ctx, &ctx->sq_region);
2635 	io_free_region(ctx, &ctx->ring_region);
2636 	ctx->rings = NULL;
2637 	ctx->sq_sqes = NULL;
2638 }
2639 
2640 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2641 			 unsigned int cq_entries, size_t *sq_offset)
2642 {
2643 	struct io_rings *rings;
2644 	size_t off, sq_array_size;
2645 
2646 	off = struct_size(rings, cqes, cq_entries);
2647 	if (off == SIZE_MAX)
2648 		return SIZE_MAX;
2649 	if (flags & IORING_SETUP_CQE32) {
2650 		if (check_shl_overflow(off, 1, &off))
2651 			return SIZE_MAX;
2652 	}
2653 
2654 #ifdef CONFIG_SMP
2655 	off = ALIGN(off, SMP_CACHE_BYTES);
2656 	if (off == 0)
2657 		return SIZE_MAX;
2658 #endif
2659 
2660 	if (flags & IORING_SETUP_NO_SQARRAY) {
2661 		*sq_offset = SIZE_MAX;
2662 		return off;
2663 	}
2664 
2665 	*sq_offset = off;
2666 
2667 	sq_array_size = array_size(sizeof(u32), sq_entries);
2668 	if (sq_array_size == SIZE_MAX)
2669 		return SIZE_MAX;
2670 
2671 	if (check_add_overflow(off, sq_array_size, &off))
2672 		return SIZE_MAX;
2673 
2674 	return off;
2675 }
2676 
2677 static void io_req_caches_free(struct io_ring_ctx *ctx)
2678 {
2679 	struct io_kiocb *req;
2680 	int nr = 0;
2681 
2682 	mutex_lock(&ctx->uring_lock);
2683 
2684 	while (!io_req_cache_empty(ctx)) {
2685 		req = io_extract_req(ctx);
2686 		kmem_cache_free(req_cachep, req);
2687 		nr++;
2688 	}
2689 	if (nr)
2690 		percpu_ref_put_many(&ctx->refs, nr);
2691 	mutex_unlock(&ctx->uring_lock);
2692 }
2693 
2694 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2695 {
2696 	io_sq_thread_finish(ctx);
2697 
2698 	mutex_lock(&ctx->uring_lock);
2699 	io_sqe_buffers_unregister(ctx);
2700 	io_sqe_files_unregister(ctx);
2701 	io_cqring_overflow_kill(ctx);
2702 	io_eventfd_unregister(ctx);
2703 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2704 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2705 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2706 	io_alloc_cache_free(&ctx->uring_cache, kfree);
2707 	io_alloc_cache_free(&ctx->msg_cache, kfree);
2708 	io_futex_cache_free(ctx);
2709 	io_destroy_buffers(ctx);
2710 	io_free_region(ctx, &ctx->param_region);
2711 	mutex_unlock(&ctx->uring_lock);
2712 	if (ctx->sq_creds)
2713 		put_cred(ctx->sq_creds);
2714 	if (ctx->submitter_task)
2715 		put_task_struct(ctx->submitter_task);
2716 
2717 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2718 
2719 	if (ctx->mm_account) {
2720 		mmdrop(ctx->mm_account);
2721 		ctx->mm_account = NULL;
2722 	}
2723 	io_rings_free(ctx);
2724 
2725 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2726 		static_branch_dec(&io_key_has_sqarray);
2727 
2728 	percpu_ref_exit(&ctx->refs);
2729 	free_uid(ctx->user);
2730 	io_req_caches_free(ctx);
2731 	if (ctx->hash_map)
2732 		io_wq_put_hash(ctx->hash_map);
2733 	io_napi_free(ctx);
2734 	kvfree(ctx->cancel_table.hbs);
2735 	xa_destroy(&ctx->io_bl_xa);
2736 	kfree(ctx);
2737 }
2738 
2739 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2740 {
2741 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2742 					       poll_wq_task_work);
2743 
2744 	mutex_lock(&ctx->uring_lock);
2745 	ctx->poll_activated = true;
2746 	mutex_unlock(&ctx->uring_lock);
2747 
2748 	/*
2749 	 * Wake ups for some events between start of polling and activation
2750 	 * might've been lost due to loose synchronisation.
2751 	 */
2752 	wake_up_all(&ctx->poll_wq);
2753 	percpu_ref_put(&ctx->refs);
2754 }
2755 
2756 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2757 {
2758 	spin_lock(&ctx->completion_lock);
2759 	/* already activated or in progress */
2760 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2761 		goto out;
2762 	if (WARN_ON_ONCE(!ctx->task_complete))
2763 		goto out;
2764 	if (!ctx->submitter_task)
2765 		goto out;
2766 	/*
2767 	 * with ->submitter_task only the submitter task completes requests, we
2768 	 * only need to sync with it, which is done by injecting a tw
2769 	 */
2770 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2771 	percpu_ref_get(&ctx->refs);
2772 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2773 		percpu_ref_put(&ctx->refs);
2774 out:
2775 	spin_unlock(&ctx->completion_lock);
2776 }
2777 
2778 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2779 {
2780 	struct io_ring_ctx *ctx = file->private_data;
2781 	__poll_t mask = 0;
2782 
2783 	if (unlikely(!ctx->poll_activated))
2784 		io_activate_pollwq(ctx);
2785 	/*
2786 	 * provides mb() which pairs with barrier from wq_has_sleeper
2787 	 * call in io_commit_cqring
2788 	 */
2789 	poll_wait(file, &ctx->poll_wq, wait);
2790 
2791 	if (!io_sqring_full(ctx))
2792 		mask |= EPOLLOUT | EPOLLWRNORM;
2793 
2794 	/*
2795 	 * Don't flush cqring overflow list here, just do a simple check.
2796 	 * Otherwise there could possible be ABBA deadlock:
2797 	 *      CPU0                    CPU1
2798 	 *      ----                    ----
2799 	 * lock(&ctx->uring_lock);
2800 	 *                              lock(&ep->mtx);
2801 	 *                              lock(&ctx->uring_lock);
2802 	 * lock(&ep->mtx);
2803 	 *
2804 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2805 	 * pushes them to do the flush.
2806 	 */
2807 
2808 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2809 		mask |= EPOLLIN | EPOLLRDNORM;
2810 
2811 	return mask;
2812 }
2813 
2814 struct io_tctx_exit {
2815 	struct callback_head		task_work;
2816 	struct completion		completion;
2817 	struct io_ring_ctx		*ctx;
2818 };
2819 
2820 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2821 {
2822 	struct io_uring_task *tctx = current->io_uring;
2823 	struct io_tctx_exit *work;
2824 
2825 	work = container_of(cb, struct io_tctx_exit, task_work);
2826 	/*
2827 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2828 	 * node. It'll be removed by the end of cancellation, just ignore it.
2829 	 * tctx can be NULL if the queueing of this task_work raced with
2830 	 * work cancelation off the exec path.
2831 	 */
2832 	if (tctx && !atomic_read(&tctx->in_cancel))
2833 		io_uring_del_tctx_node((unsigned long)work->ctx);
2834 	complete(&work->completion);
2835 }
2836 
2837 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2838 {
2839 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2840 
2841 	return req->ctx == data;
2842 }
2843 
2844 static __cold void io_ring_exit_work(struct work_struct *work)
2845 {
2846 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2847 	unsigned long timeout = jiffies + HZ * 60 * 5;
2848 	unsigned long interval = HZ / 20;
2849 	struct io_tctx_exit exit;
2850 	struct io_tctx_node *node;
2851 	int ret;
2852 
2853 	/*
2854 	 * If we're doing polled IO and end up having requests being
2855 	 * submitted async (out-of-line), then completions can come in while
2856 	 * we're waiting for refs to drop. We need to reap these manually,
2857 	 * as nobody else will be looking for them.
2858 	 */
2859 	do {
2860 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2861 			mutex_lock(&ctx->uring_lock);
2862 			io_cqring_overflow_kill(ctx);
2863 			mutex_unlock(&ctx->uring_lock);
2864 		}
2865 
2866 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2867 			io_move_task_work_from_local(ctx);
2868 
2869 		/* The SQPOLL thread never reaches this path */
2870 		while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2871 			cond_resched();
2872 
2873 		if (ctx->sq_data) {
2874 			struct io_sq_data *sqd = ctx->sq_data;
2875 			struct task_struct *tsk;
2876 
2877 			io_sq_thread_park(sqd);
2878 			tsk = sqd->thread;
2879 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2880 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2881 						io_cancel_ctx_cb, ctx, true);
2882 			io_sq_thread_unpark(sqd);
2883 		}
2884 
2885 		io_req_caches_free(ctx);
2886 
2887 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2888 			/* there is little hope left, don't run it too often */
2889 			interval = HZ * 60;
2890 		}
2891 		/*
2892 		 * This is really an uninterruptible wait, as it has to be
2893 		 * complete. But it's also run from a kworker, which doesn't
2894 		 * take signals, so it's fine to make it interruptible. This
2895 		 * avoids scenarios where we knowingly can wait much longer
2896 		 * on completions, for example if someone does a SIGSTOP on
2897 		 * a task that needs to finish task_work to make this loop
2898 		 * complete. That's a synthetic situation that should not
2899 		 * cause a stuck task backtrace, and hence a potential panic
2900 		 * on stuck tasks if that is enabled.
2901 		 */
2902 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2903 
2904 	init_completion(&exit.completion);
2905 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2906 	exit.ctx = ctx;
2907 
2908 	mutex_lock(&ctx->uring_lock);
2909 	while (!list_empty(&ctx->tctx_list)) {
2910 		WARN_ON_ONCE(time_after(jiffies, timeout));
2911 
2912 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2913 					ctx_node);
2914 		/* don't spin on a single task if cancellation failed */
2915 		list_rotate_left(&ctx->tctx_list);
2916 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2917 		if (WARN_ON_ONCE(ret))
2918 			continue;
2919 
2920 		mutex_unlock(&ctx->uring_lock);
2921 		/*
2922 		 * See comment above for
2923 		 * wait_for_completion_interruptible_timeout() on why this
2924 		 * wait is marked as interruptible.
2925 		 */
2926 		wait_for_completion_interruptible(&exit.completion);
2927 		mutex_lock(&ctx->uring_lock);
2928 	}
2929 	mutex_unlock(&ctx->uring_lock);
2930 	spin_lock(&ctx->completion_lock);
2931 	spin_unlock(&ctx->completion_lock);
2932 
2933 	/* pairs with RCU read section in io_req_local_work_add() */
2934 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2935 		synchronize_rcu();
2936 
2937 	io_ring_ctx_free(ctx);
2938 }
2939 
2940 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2941 {
2942 	unsigned long index;
2943 	struct creds *creds;
2944 
2945 	mutex_lock(&ctx->uring_lock);
2946 	percpu_ref_kill(&ctx->refs);
2947 	xa_for_each(&ctx->personalities, index, creds)
2948 		io_unregister_personality(ctx, index);
2949 	mutex_unlock(&ctx->uring_lock);
2950 
2951 	flush_delayed_work(&ctx->fallback_work);
2952 
2953 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2954 	/*
2955 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2956 	 * if we're exiting a ton of rings at the same time. It just adds
2957 	 * noise and overhead, there's no discernable change in runtime
2958 	 * over using system_wq.
2959 	 */
2960 	queue_work(iou_wq, &ctx->exit_work);
2961 }
2962 
2963 static int io_uring_release(struct inode *inode, struct file *file)
2964 {
2965 	struct io_ring_ctx *ctx = file->private_data;
2966 
2967 	file->private_data = NULL;
2968 	io_ring_ctx_wait_and_kill(ctx);
2969 	return 0;
2970 }
2971 
2972 struct io_task_cancel {
2973 	struct io_uring_task *tctx;
2974 	bool all;
2975 };
2976 
2977 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2978 {
2979 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2980 	struct io_task_cancel *cancel = data;
2981 
2982 	return io_match_task_safe(req, cancel->tctx, cancel->all);
2983 }
2984 
2985 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2986 					 struct io_uring_task *tctx,
2987 					 bool cancel_all)
2988 {
2989 	struct io_defer_entry *de;
2990 	LIST_HEAD(list);
2991 
2992 	spin_lock(&ctx->completion_lock);
2993 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2994 		if (io_match_task_safe(de->req, tctx, cancel_all)) {
2995 			list_cut_position(&list, &ctx->defer_list, &de->list);
2996 			break;
2997 		}
2998 	}
2999 	spin_unlock(&ctx->completion_lock);
3000 	if (list_empty(&list))
3001 		return false;
3002 
3003 	while (!list_empty(&list)) {
3004 		de = list_first_entry(&list, struct io_defer_entry, list);
3005 		list_del_init(&de->list);
3006 		io_req_task_queue_fail(de->req, -ECANCELED);
3007 		kfree(de);
3008 	}
3009 	return true;
3010 }
3011 
3012 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3013 {
3014 	struct io_tctx_node *node;
3015 	enum io_wq_cancel cret;
3016 	bool ret = false;
3017 
3018 	mutex_lock(&ctx->uring_lock);
3019 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3020 		struct io_uring_task *tctx = node->task->io_uring;
3021 
3022 		/*
3023 		 * io_wq will stay alive while we hold uring_lock, because it's
3024 		 * killed after ctx nodes, which requires to take the lock.
3025 		 */
3026 		if (!tctx || !tctx->io_wq)
3027 			continue;
3028 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3029 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3030 	}
3031 	mutex_unlock(&ctx->uring_lock);
3032 
3033 	return ret;
3034 }
3035 
3036 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3037 						struct io_uring_task *tctx,
3038 						bool cancel_all,
3039 						bool is_sqpoll_thread)
3040 {
3041 	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3042 	enum io_wq_cancel cret;
3043 	bool ret = false;
3044 
3045 	/* set it so io_req_local_work_add() would wake us up */
3046 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3047 		atomic_set(&ctx->cq_wait_nr, 1);
3048 		smp_mb();
3049 	}
3050 
3051 	/* failed during ring init, it couldn't have issued any requests */
3052 	if (!ctx->rings)
3053 		return false;
3054 
3055 	if (!tctx) {
3056 		ret |= io_uring_try_cancel_iowq(ctx);
3057 	} else if (tctx->io_wq) {
3058 		/*
3059 		 * Cancels requests of all rings, not only @ctx, but
3060 		 * it's fine as the task is in exit/exec.
3061 		 */
3062 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3063 				       &cancel, true);
3064 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3065 	}
3066 
3067 	/* SQPOLL thread does its own polling */
3068 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3069 	    is_sqpoll_thread) {
3070 		while (!wq_list_empty(&ctx->iopoll_list)) {
3071 			io_iopoll_try_reap_events(ctx);
3072 			ret = true;
3073 			cond_resched();
3074 		}
3075 	}
3076 
3077 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3078 	    io_allowed_defer_tw_run(ctx))
3079 		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3080 	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3081 	mutex_lock(&ctx->uring_lock);
3082 	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3083 	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3084 	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3085 	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3086 	mutex_unlock(&ctx->uring_lock);
3087 	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3088 	if (tctx)
3089 		ret |= io_run_task_work() > 0;
3090 	else
3091 		ret |= flush_delayed_work(&ctx->fallback_work);
3092 	return ret;
3093 }
3094 
3095 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3096 {
3097 	if (tracked)
3098 		return atomic_read(&tctx->inflight_tracked);
3099 	return percpu_counter_sum(&tctx->inflight);
3100 }
3101 
3102 /*
3103  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3104  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3105  */
3106 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3107 {
3108 	struct io_uring_task *tctx = current->io_uring;
3109 	struct io_ring_ctx *ctx;
3110 	struct io_tctx_node *node;
3111 	unsigned long index;
3112 	s64 inflight;
3113 	DEFINE_WAIT(wait);
3114 
3115 	WARN_ON_ONCE(sqd && sqd->thread != current);
3116 
3117 	if (!current->io_uring)
3118 		return;
3119 	if (tctx->io_wq)
3120 		io_wq_exit_start(tctx->io_wq);
3121 
3122 	atomic_inc(&tctx->in_cancel);
3123 	do {
3124 		bool loop = false;
3125 
3126 		io_uring_drop_tctx_refs(current);
3127 		if (!tctx_inflight(tctx, !cancel_all))
3128 			break;
3129 
3130 		/* read completions before cancelations */
3131 		inflight = tctx_inflight(tctx, false);
3132 		if (!inflight)
3133 			break;
3134 
3135 		if (!sqd) {
3136 			xa_for_each(&tctx->xa, index, node) {
3137 				/* sqpoll task will cancel all its requests */
3138 				if (node->ctx->sq_data)
3139 					continue;
3140 				loop |= io_uring_try_cancel_requests(node->ctx,
3141 							current->io_uring,
3142 							cancel_all,
3143 							false);
3144 			}
3145 		} else {
3146 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3147 				loop |= io_uring_try_cancel_requests(ctx,
3148 								     current->io_uring,
3149 								     cancel_all,
3150 								     true);
3151 		}
3152 
3153 		if (loop) {
3154 			cond_resched();
3155 			continue;
3156 		}
3157 
3158 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3159 		io_run_task_work();
3160 		io_uring_drop_tctx_refs(current);
3161 		xa_for_each(&tctx->xa, index, node) {
3162 			if (io_local_work_pending(node->ctx)) {
3163 				WARN_ON_ONCE(node->ctx->submitter_task &&
3164 					     node->ctx->submitter_task != current);
3165 				goto end_wait;
3166 			}
3167 		}
3168 		/*
3169 		 * If we've seen completions, retry without waiting. This
3170 		 * avoids a race where a completion comes in before we did
3171 		 * prepare_to_wait().
3172 		 */
3173 		if (inflight == tctx_inflight(tctx, !cancel_all))
3174 			schedule();
3175 end_wait:
3176 		finish_wait(&tctx->wait, &wait);
3177 	} while (1);
3178 
3179 	io_uring_clean_tctx(tctx);
3180 	if (cancel_all) {
3181 		/*
3182 		 * We shouldn't run task_works after cancel, so just leave
3183 		 * ->in_cancel set for normal exit.
3184 		 */
3185 		atomic_dec(&tctx->in_cancel);
3186 		/* for exec all current's requests should be gone, kill tctx */
3187 		__io_uring_free(current);
3188 	}
3189 }
3190 
3191 void __io_uring_cancel(bool cancel_all)
3192 {
3193 	io_uring_unreg_ringfd();
3194 	io_uring_cancel_generic(cancel_all, NULL);
3195 }
3196 
3197 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3198 			const struct io_uring_getevents_arg __user *uarg)
3199 {
3200 	unsigned long size = sizeof(struct io_uring_reg_wait);
3201 	unsigned long offset = (uintptr_t)uarg;
3202 	unsigned long end;
3203 
3204 	if (unlikely(offset % sizeof(long)))
3205 		return ERR_PTR(-EFAULT);
3206 
3207 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3208 	if (unlikely(check_add_overflow(offset, size, &end) ||
3209 		     end > ctx->cq_wait_size))
3210 		return ERR_PTR(-EFAULT);
3211 
3212 	offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3213 	return ctx->cq_wait_arg + offset;
3214 }
3215 
3216 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3217 			       const void __user *argp, size_t argsz)
3218 {
3219 	struct io_uring_getevents_arg arg;
3220 
3221 	if (!(flags & IORING_ENTER_EXT_ARG))
3222 		return 0;
3223 	if (flags & IORING_ENTER_EXT_ARG_REG)
3224 		return -EINVAL;
3225 	if (argsz != sizeof(arg))
3226 		return -EINVAL;
3227 	if (copy_from_user(&arg, argp, sizeof(arg)))
3228 		return -EFAULT;
3229 	return 0;
3230 }
3231 
3232 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3233 			  const void __user *argp, struct ext_arg *ext_arg)
3234 {
3235 	const struct io_uring_getevents_arg __user *uarg = argp;
3236 	struct io_uring_getevents_arg arg;
3237 
3238 	/*
3239 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3240 	 * is just a pointer to the sigset_t.
3241 	 */
3242 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3243 		ext_arg->sig = (const sigset_t __user *) argp;
3244 		return 0;
3245 	}
3246 
3247 	if (flags & IORING_ENTER_EXT_ARG_REG) {
3248 		struct io_uring_reg_wait *w;
3249 
3250 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3251 			return -EINVAL;
3252 		w = io_get_ext_arg_reg(ctx, argp);
3253 		if (IS_ERR(w))
3254 			return PTR_ERR(w);
3255 
3256 		if (w->flags & ~IORING_REG_WAIT_TS)
3257 			return -EINVAL;
3258 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3259 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3260 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3261 		if (w->flags & IORING_REG_WAIT_TS) {
3262 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3263 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3264 			ext_arg->ts_set = true;
3265 		}
3266 		return 0;
3267 	}
3268 
3269 	/*
3270 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3271 	 * timespec and sigset_t pointers if good.
3272 	 */
3273 	if (ext_arg->argsz != sizeof(arg))
3274 		return -EINVAL;
3275 #ifdef CONFIG_64BIT
3276 	if (!user_access_begin(uarg, sizeof(*uarg)))
3277 		return -EFAULT;
3278 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3279 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3280 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3281 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3282 	user_access_end();
3283 #else
3284 	if (copy_from_user(&arg, uarg, sizeof(arg)))
3285 		return -EFAULT;
3286 #endif
3287 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3288 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3289 	ext_arg->argsz = arg.sigmask_sz;
3290 	if (arg.ts) {
3291 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3292 			return -EFAULT;
3293 		ext_arg->ts_set = true;
3294 	}
3295 	return 0;
3296 #ifdef CONFIG_64BIT
3297 uaccess_end:
3298 	user_access_end();
3299 	return -EFAULT;
3300 #endif
3301 }
3302 
3303 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3304 		u32, min_complete, u32, flags, const void __user *, argp,
3305 		size_t, argsz)
3306 {
3307 	struct io_ring_ctx *ctx;
3308 	struct file *file;
3309 	long ret;
3310 
3311 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3312 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3313 			       IORING_ENTER_REGISTERED_RING |
3314 			       IORING_ENTER_ABS_TIMER |
3315 			       IORING_ENTER_EXT_ARG_REG)))
3316 		return -EINVAL;
3317 
3318 	/*
3319 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3320 	 * need only dereference our task private array to find it.
3321 	 */
3322 	if (flags & IORING_ENTER_REGISTERED_RING) {
3323 		struct io_uring_task *tctx = current->io_uring;
3324 
3325 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3326 			return -EINVAL;
3327 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3328 		file = tctx->registered_rings[fd];
3329 		if (unlikely(!file))
3330 			return -EBADF;
3331 	} else {
3332 		file = fget(fd);
3333 		if (unlikely(!file))
3334 			return -EBADF;
3335 		ret = -EOPNOTSUPP;
3336 		if (unlikely(!io_is_uring_fops(file)))
3337 			goto out;
3338 	}
3339 
3340 	ctx = file->private_data;
3341 	ret = -EBADFD;
3342 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3343 		goto out;
3344 
3345 	/*
3346 	 * For SQ polling, the thread will do all submissions and completions.
3347 	 * Just return the requested submit count, and wake the thread if
3348 	 * we were asked to.
3349 	 */
3350 	ret = 0;
3351 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3352 		if (unlikely(ctx->sq_data->thread == NULL)) {
3353 			ret = -EOWNERDEAD;
3354 			goto out;
3355 		}
3356 		if (flags & IORING_ENTER_SQ_WAKEUP)
3357 			wake_up(&ctx->sq_data->wait);
3358 		if (flags & IORING_ENTER_SQ_WAIT)
3359 			io_sqpoll_wait_sq(ctx);
3360 
3361 		ret = to_submit;
3362 	} else if (to_submit) {
3363 		ret = io_uring_add_tctx_node(ctx);
3364 		if (unlikely(ret))
3365 			goto out;
3366 
3367 		mutex_lock(&ctx->uring_lock);
3368 		ret = io_submit_sqes(ctx, to_submit);
3369 		if (ret != to_submit) {
3370 			mutex_unlock(&ctx->uring_lock);
3371 			goto out;
3372 		}
3373 		if (flags & IORING_ENTER_GETEVENTS) {
3374 			if (ctx->syscall_iopoll)
3375 				goto iopoll_locked;
3376 			/*
3377 			 * Ignore errors, we'll soon call io_cqring_wait() and
3378 			 * it should handle ownership problems if any.
3379 			 */
3380 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3381 				(void)io_run_local_work_locked(ctx, min_complete);
3382 		}
3383 		mutex_unlock(&ctx->uring_lock);
3384 	}
3385 
3386 	if (flags & IORING_ENTER_GETEVENTS) {
3387 		int ret2;
3388 
3389 		if (ctx->syscall_iopoll) {
3390 			/*
3391 			 * We disallow the app entering submit/complete with
3392 			 * polling, but we still need to lock the ring to
3393 			 * prevent racing with polled issue that got punted to
3394 			 * a workqueue.
3395 			 */
3396 			mutex_lock(&ctx->uring_lock);
3397 iopoll_locked:
3398 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3399 			if (likely(!ret2)) {
3400 				min_complete = min(min_complete,
3401 						   ctx->cq_entries);
3402 				ret2 = io_iopoll_check(ctx, min_complete);
3403 			}
3404 			mutex_unlock(&ctx->uring_lock);
3405 		} else {
3406 			struct ext_arg ext_arg = { .argsz = argsz };
3407 
3408 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3409 			if (likely(!ret2)) {
3410 				min_complete = min(min_complete,
3411 						   ctx->cq_entries);
3412 				ret2 = io_cqring_wait(ctx, min_complete, flags,
3413 						      &ext_arg);
3414 			}
3415 		}
3416 
3417 		if (!ret) {
3418 			ret = ret2;
3419 
3420 			/*
3421 			 * EBADR indicates that one or more CQE were dropped.
3422 			 * Once the user has been informed we can clear the bit
3423 			 * as they are obviously ok with those drops.
3424 			 */
3425 			if (unlikely(ret2 == -EBADR))
3426 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3427 					  &ctx->check_cq);
3428 		}
3429 	}
3430 out:
3431 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3432 		fput(file);
3433 	return ret;
3434 }
3435 
3436 static const struct file_operations io_uring_fops = {
3437 	.release	= io_uring_release,
3438 	.mmap		= io_uring_mmap,
3439 	.get_unmapped_area = io_uring_get_unmapped_area,
3440 #ifndef CONFIG_MMU
3441 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3442 #endif
3443 	.poll		= io_uring_poll,
3444 #ifdef CONFIG_PROC_FS
3445 	.show_fdinfo	= io_uring_show_fdinfo,
3446 #endif
3447 };
3448 
3449 bool io_is_uring_fops(struct file *file)
3450 {
3451 	return file->f_op == &io_uring_fops;
3452 }
3453 
3454 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3455 					 struct io_uring_params *p)
3456 {
3457 	struct io_uring_region_desc rd;
3458 	struct io_rings *rings;
3459 	size_t size, sq_array_offset;
3460 	int ret;
3461 
3462 	/* make sure these are sane, as we already accounted them */
3463 	ctx->sq_entries = p->sq_entries;
3464 	ctx->cq_entries = p->cq_entries;
3465 
3466 	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3467 			  &sq_array_offset);
3468 	if (size == SIZE_MAX)
3469 		return -EOVERFLOW;
3470 
3471 	memset(&rd, 0, sizeof(rd));
3472 	rd.size = PAGE_ALIGN(size);
3473 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3474 		rd.user_addr = p->cq_off.user_addr;
3475 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3476 	}
3477 	ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3478 	if (ret)
3479 		return ret;
3480 	ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3481 
3482 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3483 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3484 	rings->sq_ring_mask = p->sq_entries - 1;
3485 	rings->cq_ring_mask = p->cq_entries - 1;
3486 	rings->sq_ring_entries = p->sq_entries;
3487 	rings->cq_ring_entries = p->cq_entries;
3488 
3489 	if (p->flags & IORING_SETUP_SQE128)
3490 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3491 	else
3492 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3493 	if (size == SIZE_MAX) {
3494 		io_rings_free(ctx);
3495 		return -EOVERFLOW;
3496 	}
3497 
3498 	memset(&rd, 0, sizeof(rd));
3499 	rd.size = PAGE_ALIGN(size);
3500 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3501 		rd.user_addr = p->sq_off.user_addr;
3502 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3503 	}
3504 	ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3505 	if (ret) {
3506 		io_rings_free(ctx);
3507 		return ret;
3508 	}
3509 	ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3510 	return 0;
3511 }
3512 
3513 static int io_uring_install_fd(struct file *file)
3514 {
3515 	int fd;
3516 
3517 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3518 	if (fd < 0)
3519 		return fd;
3520 	fd_install(fd, file);
3521 	return fd;
3522 }
3523 
3524 /*
3525  * Allocate an anonymous fd, this is what constitutes the application
3526  * visible backing of an io_uring instance. The application mmaps this
3527  * fd to gain access to the SQ/CQ ring details.
3528  */
3529 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3530 {
3531 	/* Create a new inode so that the LSM can block the creation.  */
3532 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3533 					 O_RDWR | O_CLOEXEC, NULL);
3534 }
3535 
3536 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3537 {
3538 	if (!entries)
3539 		return -EINVAL;
3540 	if (entries > IORING_MAX_ENTRIES) {
3541 		if (!(p->flags & IORING_SETUP_CLAMP))
3542 			return -EINVAL;
3543 		entries = IORING_MAX_ENTRIES;
3544 	}
3545 
3546 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3547 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3548 		return -EINVAL;
3549 
3550 	/*
3551 	 * Use twice as many entries for the CQ ring. It's possible for the
3552 	 * application to drive a higher depth than the size of the SQ ring,
3553 	 * since the sqes are only used at submission time. This allows for
3554 	 * some flexibility in overcommitting a bit. If the application has
3555 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3556 	 * of CQ ring entries manually.
3557 	 */
3558 	p->sq_entries = roundup_pow_of_two(entries);
3559 	if (p->flags & IORING_SETUP_CQSIZE) {
3560 		/*
3561 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3562 		 * to a power-of-two, if it isn't already. We do NOT impose
3563 		 * any cq vs sq ring sizing.
3564 		 */
3565 		if (!p->cq_entries)
3566 			return -EINVAL;
3567 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3568 			if (!(p->flags & IORING_SETUP_CLAMP))
3569 				return -EINVAL;
3570 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3571 		}
3572 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3573 		if (p->cq_entries < p->sq_entries)
3574 			return -EINVAL;
3575 	} else {
3576 		p->cq_entries = 2 * p->sq_entries;
3577 	}
3578 
3579 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3580 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3581 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3582 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3583 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3584 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3585 	p->sq_off.resv1 = 0;
3586 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3587 		p->sq_off.user_addr = 0;
3588 
3589 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3590 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3591 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3592 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3593 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3594 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3595 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3596 	p->cq_off.resv1 = 0;
3597 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3598 		p->cq_off.user_addr = 0;
3599 
3600 	return 0;
3601 }
3602 
3603 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3604 				  struct io_uring_params __user *params)
3605 {
3606 	struct io_ring_ctx *ctx;
3607 	struct io_uring_task *tctx;
3608 	struct file *file;
3609 	int ret;
3610 
3611 	ret = io_uring_fill_params(entries, p);
3612 	if (unlikely(ret))
3613 		return ret;
3614 
3615 	ctx = io_ring_ctx_alloc(p);
3616 	if (!ctx)
3617 		return -ENOMEM;
3618 
3619 	ctx->clockid = CLOCK_MONOTONIC;
3620 	ctx->clock_offset = 0;
3621 
3622 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3623 		static_branch_inc(&io_key_has_sqarray);
3624 
3625 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3626 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3627 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3628 		ctx->task_complete = true;
3629 
3630 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3631 		ctx->lockless_cq = true;
3632 
3633 	/*
3634 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3635 	 * purposes, see io_activate_pollwq()
3636 	 */
3637 	if (!ctx->task_complete)
3638 		ctx->poll_activated = true;
3639 
3640 	/*
3641 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3642 	 * space applications don't need to do io completion events
3643 	 * polling again, they can rely on io_sq_thread to do polling
3644 	 * work, which can reduce cpu usage and uring_lock contention.
3645 	 */
3646 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3647 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3648 		ctx->syscall_iopoll = 1;
3649 
3650 	ctx->compat = in_compat_syscall();
3651 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3652 		ctx->user = get_uid(current_user());
3653 
3654 	/*
3655 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3656 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3657 	 */
3658 	ret = -EINVAL;
3659 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3660 		/* IPI related flags don't make sense with SQPOLL */
3661 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3662 				  IORING_SETUP_TASKRUN_FLAG |
3663 				  IORING_SETUP_DEFER_TASKRUN))
3664 			goto err;
3665 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3666 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3667 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3668 	} else {
3669 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3670 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3671 			goto err;
3672 		ctx->notify_method = TWA_SIGNAL;
3673 	}
3674 
3675 	/* HYBRID_IOPOLL only valid with IOPOLL */
3676 	if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3677 			IORING_SETUP_HYBRID_IOPOLL)
3678 		goto err;
3679 
3680 	/*
3681 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3682 	 * submission task. This implies that there is only one submitter, so enforce
3683 	 * that.
3684 	 */
3685 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3686 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3687 		goto err;
3688 	}
3689 
3690 	/*
3691 	 * This is just grabbed for accounting purposes. When a process exits,
3692 	 * the mm is exited and dropped before the files, hence we need to hang
3693 	 * on to this mm purely for the purposes of being able to unaccount
3694 	 * memory (locked/pinned vm). It's not used for anything else.
3695 	 */
3696 	mmgrab(current->mm);
3697 	ctx->mm_account = current->mm;
3698 
3699 	ret = io_allocate_scq_urings(ctx, p);
3700 	if (ret)
3701 		goto err;
3702 
3703 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3704 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3705 
3706 	ret = io_sq_offload_create(ctx, p);
3707 	if (ret)
3708 		goto err;
3709 
3710 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3711 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3712 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3713 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3714 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3715 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3716 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3717 			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3718 			IORING_FEAT_RW_ATTR;
3719 
3720 	if (copy_to_user(params, p, sizeof(*p))) {
3721 		ret = -EFAULT;
3722 		goto err;
3723 	}
3724 
3725 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3726 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3727 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3728 
3729 	file = io_uring_get_file(ctx);
3730 	if (IS_ERR(file)) {
3731 		ret = PTR_ERR(file);
3732 		goto err;
3733 	}
3734 
3735 	ret = __io_uring_add_tctx_node(ctx);
3736 	if (ret)
3737 		goto err_fput;
3738 	tctx = current->io_uring;
3739 
3740 	/*
3741 	 * Install ring fd as the very last thing, so we don't risk someone
3742 	 * having closed it before we finish setup
3743 	 */
3744 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3745 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3746 	else
3747 		ret = io_uring_install_fd(file);
3748 	if (ret < 0)
3749 		goto err_fput;
3750 
3751 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3752 	return ret;
3753 err:
3754 	io_ring_ctx_wait_and_kill(ctx);
3755 	return ret;
3756 err_fput:
3757 	fput(file);
3758 	return ret;
3759 }
3760 
3761 /*
3762  * Sets up an aio uring context, and returns the fd. Applications asks for a
3763  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3764  * params structure passed in.
3765  */
3766 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3767 {
3768 	struct io_uring_params p;
3769 	int i;
3770 
3771 	if (copy_from_user(&p, params, sizeof(p)))
3772 		return -EFAULT;
3773 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3774 		if (p.resv[i])
3775 			return -EINVAL;
3776 	}
3777 
3778 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3779 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3780 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3781 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3782 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3783 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3784 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3785 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3786 			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3787 		return -EINVAL;
3788 
3789 	return io_uring_create(entries, &p, params);
3790 }
3791 
3792 static inline bool io_uring_allowed(void)
3793 {
3794 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3795 	kgid_t io_uring_group;
3796 
3797 	if (disabled == 2)
3798 		return false;
3799 
3800 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3801 		return true;
3802 
3803 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3804 	if (!gid_valid(io_uring_group))
3805 		return false;
3806 
3807 	return in_group_p(io_uring_group);
3808 }
3809 
3810 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3811 		struct io_uring_params __user *, params)
3812 {
3813 	if (!io_uring_allowed())
3814 		return -EPERM;
3815 
3816 	return io_uring_setup(entries, params);
3817 }
3818 
3819 static int __init io_uring_init(void)
3820 {
3821 	struct kmem_cache_args kmem_args = {
3822 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3823 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3824 		.freeptr_offset = offsetof(struct io_kiocb, work),
3825 		.use_freeptr_offset = true,
3826 	};
3827 
3828 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3829 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3830 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3831 } while (0)
3832 
3833 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3834 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3835 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3836 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3837 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3838 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3839 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3840 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3841 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3842 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3843 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3844 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3845 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3846 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3847 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3848 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3849 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3850 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3851 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3852 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3853 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3854 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3855 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3856 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3857 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3858 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3859 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3860 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3861 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3862 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3863 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3864 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3865 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3866 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3867 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3868 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3869 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3870 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3871 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3872 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3873 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3874 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3875 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3876 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3877 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3878 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3879 	BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3880 	BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3881 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3882 
3883 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3884 		     sizeof(struct io_uring_rsrc_update));
3885 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3886 		     sizeof(struct io_uring_rsrc_update2));
3887 
3888 	/* ->buf_index is u16 */
3889 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3890 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3891 		     offsetof(struct io_uring_buf_ring, tail));
3892 
3893 	/* should fit into one byte */
3894 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3895 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3896 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3897 
3898 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3899 
3900 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3901 
3902 	/* top 8bits are for internal use */
3903 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3904 
3905 	io_uring_optable_init();
3906 
3907 	/*
3908 	 * Allow user copy in the per-command field, which starts after the
3909 	 * file in io_kiocb and until the opcode field. The openat2 handling
3910 	 * requires copying in user memory into the io_kiocb object in that
3911 	 * range, and HARDENED_USERCOPY will complain if we haven't
3912 	 * correctly annotated this range.
3913 	 */
3914 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3915 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3916 				SLAB_TYPESAFE_BY_RCU);
3917 	io_buf_cachep = KMEM_CACHE(io_buffer,
3918 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3919 
3920 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3921 
3922 #ifdef CONFIG_SYSCTL
3923 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3924 #endif
3925 
3926 	return 0;
3927 };
3928 __initcall(io_uring_init);
3929