1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <linux/anon_inodes.h> 63 #include <linux/sched/mm.h> 64 #include <linux/uaccess.h> 65 #include <linux/nospec.h> 66 #include <linux/highmem.h> 67 #include <linux/fsnotify.h> 68 #include <linux/fadvise.h> 69 #include <linux/task_work.h> 70 #include <linux/io_uring.h> 71 #include <linux/io_uring/cmd.h> 72 #include <linux/audit.h> 73 #include <linux/security.h> 74 #include <asm/shmparam.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "register.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 #include "waitid.h" 96 #include "futex.h" 97 #include "napi.h" 98 99 #include "timeout.h" 100 #include "poll.h" 101 #include "rw.h" 102 #include "alloc_cache.h" 103 104 #define IORING_MAX_ENTRIES 32768 105 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 struct io_defer_entry { 126 struct list_head list; 127 struct io_kiocb *req; 128 u32 seq; 129 }; 130 131 /* requests with any of those set should undergo io_disarm_next() */ 132 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 133 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 134 135 /* 136 * No waiters. It's larger than any valid value of the tw counter 137 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 138 */ 139 #define IO_CQ_WAKE_INIT (-1U) 140 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 141 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 142 143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 144 struct task_struct *task, 145 bool cancel_all); 146 147 static void io_queue_sqe(struct io_kiocb *req); 148 149 struct kmem_cache *req_cachep; 150 151 static int __read_mostly sysctl_io_uring_disabled; 152 static int __read_mostly sysctl_io_uring_group = -1; 153 154 #ifdef CONFIG_SYSCTL 155 static struct ctl_table kernel_io_uring_disabled_table[] = { 156 { 157 .procname = "io_uring_disabled", 158 .data = &sysctl_io_uring_disabled, 159 .maxlen = sizeof(sysctl_io_uring_disabled), 160 .mode = 0644, 161 .proc_handler = proc_dointvec_minmax, 162 .extra1 = SYSCTL_ZERO, 163 .extra2 = SYSCTL_TWO, 164 }, 165 { 166 .procname = "io_uring_group", 167 .data = &sysctl_io_uring_group, 168 .maxlen = sizeof(gid_t), 169 .mode = 0644, 170 .proc_handler = proc_dointvec, 171 }, 172 {}, 173 }; 174 #endif 175 176 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 177 { 178 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 179 ctx->submit_state.cqes_count) 180 __io_submit_flush_completions(ctx); 181 } 182 183 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 184 { 185 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 186 } 187 188 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 189 { 190 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 191 } 192 193 static bool io_match_linked(struct io_kiocb *head) 194 { 195 struct io_kiocb *req; 196 197 io_for_each_link(req, head) { 198 if (req->flags & REQ_F_INFLIGHT) 199 return true; 200 } 201 return false; 202 } 203 204 /* 205 * As io_match_task() but protected against racing with linked timeouts. 206 * User must not hold timeout_lock. 207 */ 208 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 209 bool cancel_all) 210 { 211 bool matched; 212 213 if (task && head->task != task) 214 return false; 215 if (cancel_all) 216 return true; 217 218 if (head->flags & REQ_F_LINK_TIMEOUT) { 219 struct io_ring_ctx *ctx = head->ctx; 220 221 /* protect against races with linked timeouts */ 222 spin_lock_irq(&ctx->timeout_lock); 223 matched = io_match_linked(head); 224 spin_unlock_irq(&ctx->timeout_lock); 225 } else { 226 matched = io_match_linked(head); 227 } 228 return matched; 229 } 230 231 static inline void req_fail_link_node(struct io_kiocb *req, int res) 232 { 233 req_set_fail(req); 234 io_req_set_res(req, res, 0); 235 } 236 237 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 238 { 239 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 240 } 241 242 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 243 { 244 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 245 246 complete(&ctx->ref_comp); 247 } 248 249 static __cold void io_fallback_req_func(struct work_struct *work) 250 { 251 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 252 fallback_work.work); 253 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 254 struct io_kiocb *req, *tmp; 255 struct io_tw_state ts = { .locked = true, }; 256 257 percpu_ref_get(&ctx->refs); 258 mutex_lock(&ctx->uring_lock); 259 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 260 req->io_task_work.func(req, &ts); 261 if (WARN_ON_ONCE(!ts.locked)) 262 return; 263 io_submit_flush_completions(ctx); 264 mutex_unlock(&ctx->uring_lock); 265 percpu_ref_put(&ctx->refs); 266 } 267 268 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 269 { 270 unsigned hash_buckets = 1U << bits; 271 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 272 273 table->hbs = kmalloc(hash_size, GFP_KERNEL); 274 if (!table->hbs) 275 return -ENOMEM; 276 277 table->hash_bits = bits; 278 init_hash_table(table, hash_buckets); 279 return 0; 280 } 281 282 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 283 { 284 struct io_ring_ctx *ctx; 285 int hash_bits; 286 287 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 288 if (!ctx) 289 return NULL; 290 291 xa_init(&ctx->io_bl_xa); 292 293 /* 294 * Use 5 bits less than the max cq entries, that should give us around 295 * 32 entries per hash list if totally full and uniformly spread, but 296 * don't keep too many buckets to not overconsume memory. 297 */ 298 hash_bits = ilog2(p->cq_entries) - 5; 299 hash_bits = clamp(hash_bits, 1, 8); 300 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 301 goto err; 302 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 303 goto err; 304 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 305 0, GFP_KERNEL)) 306 goto err; 307 308 ctx->flags = p->flags; 309 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 310 init_waitqueue_head(&ctx->sqo_sq_wait); 311 INIT_LIST_HEAD(&ctx->sqd_list); 312 INIT_LIST_HEAD(&ctx->cq_overflow_list); 313 INIT_LIST_HEAD(&ctx->io_buffers_cache); 314 INIT_HLIST_HEAD(&ctx->io_buf_list); 315 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 316 sizeof(struct io_rsrc_node)); 317 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 318 sizeof(struct async_poll)); 319 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 320 sizeof(struct io_async_msghdr)); 321 io_futex_cache_init(ctx); 322 init_completion(&ctx->ref_comp); 323 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 324 mutex_init(&ctx->uring_lock); 325 init_waitqueue_head(&ctx->cq_wait); 326 init_waitqueue_head(&ctx->poll_wq); 327 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 328 spin_lock_init(&ctx->completion_lock); 329 spin_lock_init(&ctx->timeout_lock); 330 INIT_WQ_LIST(&ctx->iopoll_list); 331 INIT_LIST_HEAD(&ctx->io_buffers_comp); 332 INIT_LIST_HEAD(&ctx->defer_list); 333 INIT_LIST_HEAD(&ctx->timeout_list); 334 INIT_LIST_HEAD(&ctx->ltimeout_list); 335 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 336 init_llist_head(&ctx->work_llist); 337 INIT_LIST_HEAD(&ctx->tctx_list); 338 ctx->submit_state.free_list.next = NULL; 339 INIT_WQ_LIST(&ctx->locked_free_list); 340 INIT_HLIST_HEAD(&ctx->waitid_list); 341 #ifdef CONFIG_FUTEX 342 INIT_HLIST_HEAD(&ctx->futex_list); 343 #endif 344 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 345 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 346 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 347 io_napi_init(ctx); 348 349 return ctx; 350 err: 351 kfree(ctx->cancel_table.hbs); 352 kfree(ctx->cancel_table_locked.hbs); 353 kfree(ctx->io_bl); 354 xa_destroy(&ctx->io_bl_xa); 355 kfree(ctx); 356 return NULL; 357 } 358 359 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 360 { 361 struct io_rings *r = ctx->rings; 362 363 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 364 ctx->cq_extra--; 365 } 366 367 static bool req_need_defer(struct io_kiocb *req, u32 seq) 368 { 369 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 370 struct io_ring_ctx *ctx = req->ctx; 371 372 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 373 } 374 375 return false; 376 } 377 378 static void io_clean_op(struct io_kiocb *req) 379 { 380 if (req->flags & REQ_F_BUFFER_SELECTED) { 381 spin_lock(&req->ctx->completion_lock); 382 io_put_kbuf_comp(req); 383 spin_unlock(&req->ctx->completion_lock); 384 } 385 386 if (req->flags & REQ_F_NEED_CLEANUP) { 387 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 388 389 if (def->cleanup) 390 def->cleanup(req); 391 } 392 if ((req->flags & REQ_F_POLLED) && req->apoll) { 393 kfree(req->apoll->double_poll); 394 kfree(req->apoll); 395 req->apoll = NULL; 396 } 397 if (req->flags & REQ_F_INFLIGHT) { 398 struct io_uring_task *tctx = req->task->io_uring; 399 400 atomic_dec(&tctx->inflight_tracked); 401 } 402 if (req->flags & REQ_F_CREDS) 403 put_cred(req->creds); 404 if (req->flags & REQ_F_ASYNC_DATA) { 405 kfree(req->async_data); 406 req->async_data = NULL; 407 } 408 req->flags &= ~IO_REQ_CLEAN_FLAGS; 409 } 410 411 static inline void io_req_track_inflight(struct io_kiocb *req) 412 { 413 if (!(req->flags & REQ_F_INFLIGHT)) { 414 req->flags |= REQ_F_INFLIGHT; 415 atomic_inc(&req->task->io_uring->inflight_tracked); 416 } 417 } 418 419 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 420 { 421 if (WARN_ON_ONCE(!req->link)) 422 return NULL; 423 424 req->flags &= ~REQ_F_ARM_LTIMEOUT; 425 req->flags |= REQ_F_LINK_TIMEOUT; 426 427 /* linked timeouts should have two refs once prep'ed */ 428 io_req_set_refcount(req); 429 __io_req_set_refcount(req->link, 2); 430 return req->link; 431 } 432 433 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 434 { 435 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 436 return NULL; 437 return __io_prep_linked_timeout(req); 438 } 439 440 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 441 { 442 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 443 } 444 445 static inline void io_arm_ltimeout(struct io_kiocb *req) 446 { 447 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 448 __io_arm_ltimeout(req); 449 } 450 451 static void io_prep_async_work(struct io_kiocb *req) 452 { 453 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 454 struct io_ring_ctx *ctx = req->ctx; 455 456 if (!(req->flags & REQ_F_CREDS)) { 457 req->flags |= REQ_F_CREDS; 458 req->creds = get_current_cred(); 459 } 460 461 req->work.list.next = NULL; 462 req->work.flags = 0; 463 if (req->flags & REQ_F_FORCE_ASYNC) 464 req->work.flags |= IO_WQ_WORK_CONCURRENT; 465 466 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 467 req->flags |= io_file_get_flags(req->file); 468 469 if (req->file && (req->flags & REQ_F_ISREG)) { 470 bool should_hash = def->hash_reg_file; 471 472 /* don't serialize this request if the fs doesn't need it */ 473 if (should_hash && (req->file->f_flags & O_DIRECT) && 474 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 475 should_hash = false; 476 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 477 io_wq_hash_work(&req->work, file_inode(req->file)); 478 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 479 if (def->unbound_nonreg_file) 480 req->work.flags |= IO_WQ_WORK_UNBOUND; 481 } 482 } 483 484 static void io_prep_async_link(struct io_kiocb *req) 485 { 486 struct io_kiocb *cur; 487 488 if (req->flags & REQ_F_LINK_TIMEOUT) { 489 struct io_ring_ctx *ctx = req->ctx; 490 491 spin_lock_irq(&ctx->timeout_lock); 492 io_for_each_link(cur, req) 493 io_prep_async_work(cur); 494 spin_unlock_irq(&ctx->timeout_lock); 495 } else { 496 io_for_each_link(cur, req) 497 io_prep_async_work(cur); 498 } 499 } 500 501 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 502 { 503 struct io_kiocb *link = io_prep_linked_timeout(req); 504 struct io_uring_task *tctx = req->task->io_uring; 505 506 BUG_ON(!tctx); 507 BUG_ON(!tctx->io_wq); 508 509 /* init ->work of the whole link before punting */ 510 io_prep_async_link(req); 511 512 /* 513 * Not expected to happen, but if we do have a bug where this _can_ 514 * happen, catch it here and ensure the request is marked as 515 * canceled. That will make io-wq go through the usual work cancel 516 * procedure rather than attempt to run this request (or create a new 517 * worker for it). 518 */ 519 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 520 req->work.flags |= IO_WQ_WORK_CANCEL; 521 522 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 523 io_wq_enqueue(tctx->io_wq, &req->work); 524 if (link) 525 io_queue_linked_timeout(link); 526 } 527 528 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 529 { 530 while (!list_empty(&ctx->defer_list)) { 531 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 532 struct io_defer_entry, list); 533 534 if (req_need_defer(de->req, de->seq)) 535 break; 536 list_del_init(&de->list); 537 io_req_task_queue(de->req); 538 kfree(de); 539 } 540 } 541 542 void io_eventfd_ops(struct rcu_head *rcu) 543 { 544 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 545 int ops = atomic_xchg(&ev_fd->ops, 0); 546 547 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 548 eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE); 549 550 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 551 * ordering in a race but if references are 0 we know we have to free 552 * it regardless. 553 */ 554 if (atomic_dec_and_test(&ev_fd->refs)) { 555 eventfd_ctx_put(ev_fd->cq_ev_fd); 556 kfree(ev_fd); 557 } 558 } 559 560 static void io_eventfd_signal(struct io_ring_ctx *ctx) 561 { 562 struct io_ev_fd *ev_fd = NULL; 563 564 rcu_read_lock(); 565 /* 566 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 567 * and eventfd_signal 568 */ 569 ev_fd = rcu_dereference(ctx->io_ev_fd); 570 571 /* 572 * Check again if ev_fd exists incase an io_eventfd_unregister call 573 * completed between the NULL check of ctx->io_ev_fd at the start of 574 * the function and rcu_read_lock. 575 */ 576 if (unlikely(!ev_fd)) 577 goto out; 578 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 579 goto out; 580 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 581 goto out; 582 583 if (likely(eventfd_signal_allowed())) { 584 eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE); 585 } else { 586 atomic_inc(&ev_fd->refs); 587 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 588 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 589 else 590 atomic_dec(&ev_fd->refs); 591 } 592 593 out: 594 rcu_read_unlock(); 595 } 596 597 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 598 { 599 bool skip; 600 601 spin_lock(&ctx->completion_lock); 602 603 /* 604 * Eventfd should only get triggered when at least one event has been 605 * posted. Some applications rely on the eventfd notification count 606 * only changing IFF a new CQE has been added to the CQ ring. There's 607 * no depedency on 1:1 relationship between how many times this 608 * function is called (and hence the eventfd count) and number of CQEs 609 * posted to the CQ ring. 610 */ 611 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 612 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 613 spin_unlock(&ctx->completion_lock); 614 if (skip) 615 return; 616 617 io_eventfd_signal(ctx); 618 } 619 620 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 621 { 622 if (ctx->poll_activated) 623 io_poll_wq_wake(ctx); 624 if (ctx->off_timeout_used) 625 io_flush_timeouts(ctx); 626 if (ctx->drain_active) { 627 spin_lock(&ctx->completion_lock); 628 io_queue_deferred(ctx); 629 spin_unlock(&ctx->completion_lock); 630 } 631 if (ctx->has_evfd) 632 io_eventfd_flush_signal(ctx); 633 } 634 635 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 636 { 637 if (!ctx->lockless_cq) 638 spin_lock(&ctx->completion_lock); 639 } 640 641 static inline void io_cq_lock(struct io_ring_ctx *ctx) 642 __acquires(ctx->completion_lock) 643 { 644 spin_lock(&ctx->completion_lock); 645 } 646 647 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 648 { 649 io_commit_cqring(ctx); 650 if (!ctx->task_complete) { 651 if (!ctx->lockless_cq) 652 spin_unlock(&ctx->completion_lock); 653 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 654 if (!ctx->syscall_iopoll) 655 io_cqring_wake(ctx); 656 } 657 io_commit_cqring_flush(ctx); 658 } 659 660 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 661 __releases(ctx->completion_lock) 662 { 663 io_commit_cqring(ctx); 664 spin_unlock(&ctx->completion_lock); 665 io_cqring_wake(ctx); 666 io_commit_cqring_flush(ctx); 667 } 668 669 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 670 { 671 struct io_overflow_cqe *ocqe; 672 LIST_HEAD(list); 673 674 spin_lock(&ctx->completion_lock); 675 list_splice_init(&ctx->cq_overflow_list, &list); 676 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 677 spin_unlock(&ctx->completion_lock); 678 679 while (!list_empty(&list)) { 680 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 681 list_del(&ocqe->list); 682 kfree(ocqe); 683 } 684 } 685 686 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 687 { 688 size_t cqe_size = sizeof(struct io_uring_cqe); 689 690 if (__io_cqring_events(ctx) == ctx->cq_entries) 691 return; 692 693 if (ctx->flags & IORING_SETUP_CQE32) 694 cqe_size <<= 1; 695 696 io_cq_lock(ctx); 697 while (!list_empty(&ctx->cq_overflow_list)) { 698 struct io_uring_cqe *cqe; 699 struct io_overflow_cqe *ocqe; 700 701 if (!io_get_cqe_overflow(ctx, &cqe, true)) 702 break; 703 ocqe = list_first_entry(&ctx->cq_overflow_list, 704 struct io_overflow_cqe, list); 705 memcpy(cqe, &ocqe->cqe, cqe_size); 706 list_del(&ocqe->list); 707 kfree(ocqe); 708 } 709 710 if (list_empty(&ctx->cq_overflow_list)) { 711 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 712 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 713 } 714 io_cq_unlock_post(ctx); 715 } 716 717 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 718 { 719 /* iopoll syncs against uring_lock, not completion_lock */ 720 if (ctx->flags & IORING_SETUP_IOPOLL) 721 mutex_lock(&ctx->uring_lock); 722 __io_cqring_overflow_flush(ctx); 723 if (ctx->flags & IORING_SETUP_IOPOLL) 724 mutex_unlock(&ctx->uring_lock); 725 } 726 727 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 728 { 729 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 730 io_cqring_do_overflow_flush(ctx); 731 } 732 733 /* can be called by any task */ 734 static void io_put_task_remote(struct task_struct *task) 735 { 736 struct io_uring_task *tctx = task->io_uring; 737 738 percpu_counter_sub(&tctx->inflight, 1); 739 if (unlikely(atomic_read(&tctx->in_cancel))) 740 wake_up(&tctx->wait); 741 put_task_struct(task); 742 } 743 744 /* used by a task to put its own references */ 745 static void io_put_task_local(struct task_struct *task) 746 { 747 task->io_uring->cached_refs++; 748 } 749 750 /* must to be called somewhat shortly after putting a request */ 751 static inline void io_put_task(struct task_struct *task) 752 { 753 if (likely(task == current)) 754 io_put_task_local(task); 755 else 756 io_put_task_remote(task); 757 } 758 759 void io_task_refs_refill(struct io_uring_task *tctx) 760 { 761 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 762 763 percpu_counter_add(&tctx->inflight, refill); 764 refcount_add(refill, ¤t->usage); 765 tctx->cached_refs += refill; 766 } 767 768 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 769 { 770 struct io_uring_task *tctx = task->io_uring; 771 unsigned int refs = tctx->cached_refs; 772 773 if (refs) { 774 tctx->cached_refs = 0; 775 percpu_counter_sub(&tctx->inflight, refs); 776 put_task_struct_many(task, refs); 777 } 778 } 779 780 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 781 s32 res, u32 cflags, u64 extra1, u64 extra2) 782 { 783 struct io_overflow_cqe *ocqe; 784 size_t ocq_size = sizeof(struct io_overflow_cqe); 785 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 786 787 lockdep_assert_held(&ctx->completion_lock); 788 789 if (is_cqe32) 790 ocq_size += sizeof(struct io_uring_cqe); 791 792 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 793 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 794 if (!ocqe) { 795 /* 796 * If we're in ring overflow flush mode, or in task cancel mode, 797 * or cannot allocate an overflow entry, then we need to drop it 798 * on the floor. 799 */ 800 io_account_cq_overflow(ctx); 801 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 802 return false; 803 } 804 if (list_empty(&ctx->cq_overflow_list)) { 805 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 806 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 807 808 } 809 ocqe->cqe.user_data = user_data; 810 ocqe->cqe.res = res; 811 ocqe->cqe.flags = cflags; 812 if (is_cqe32) { 813 ocqe->cqe.big_cqe[0] = extra1; 814 ocqe->cqe.big_cqe[1] = extra2; 815 } 816 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 817 return true; 818 } 819 820 void io_req_cqe_overflow(struct io_kiocb *req) 821 { 822 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 823 req->cqe.res, req->cqe.flags, 824 req->big_cqe.extra1, req->big_cqe.extra2); 825 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 826 } 827 828 /* 829 * writes to the cq entry need to come after reading head; the 830 * control dependency is enough as we're using WRITE_ONCE to 831 * fill the cq entry 832 */ 833 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 834 { 835 struct io_rings *rings = ctx->rings; 836 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 837 unsigned int free, queued, len; 838 839 /* 840 * Posting into the CQ when there are pending overflowed CQEs may break 841 * ordering guarantees, which will affect links, F_MORE users and more. 842 * Force overflow the completion. 843 */ 844 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 845 return false; 846 847 /* userspace may cheat modifying the tail, be safe and do min */ 848 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 849 free = ctx->cq_entries - queued; 850 /* we need a contiguous range, limit based on the current array offset */ 851 len = min(free, ctx->cq_entries - off); 852 if (!len) 853 return false; 854 855 if (ctx->flags & IORING_SETUP_CQE32) { 856 off <<= 1; 857 len <<= 1; 858 } 859 860 ctx->cqe_cached = &rings->cqes[off]; 861 ctx->cqe_sentinel = ctx->cqe_cached + len; 862 return true; 863 } 864 865 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 866 u32 cflags) 867 { 868 struct io_uring_cqe *cqe; 869 870 ctx->cq_extra++; 871 872 /* 873 * If we can't get a cq entry, userspace overflowed the 874 * submission (by quite a lot). Increment the overflow count in 875 * the ring. 876 */ 877 if (likely(io_get_cqe(ctx, &cqe))) { 878 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 879 880 WRITE_ONCE(cqe->user_data, user_data); 881 WRITE_ONCE(cqe->res, res); 882 WRITE_ONCE(cqe->flags, cflags); 883 884 if (ctx->flags & IORING_SETUP_CQE32) { 885 WRITE_ONCE(cqe->big_cqe[0], 0); 886 WRITE_ONCE(cqe->big_cqe[1], 0); 887 } 888 return true; 889 } 890 return false; 891 } 892 893 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 894 __must_hold(&ctx->uring_lock) 895 { 896 struct io_submit_state *state = &ctx->submit_state; 897 unsigned int i; 898 899 lockdep_assert_held(&ctx->uring_lock); 900 for (i = 0; i < state->cqes_count; i++) { 901 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 902 903 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 904 if (ctx->lockless_cq) { 905 spin_lock(&ctx->completion_lock); 906 io_cqring_event_overflow(ctx, cqe->user_data, 907 cqe->res, cqe->flags, 0, 0); 908 spin_unlock(&ctx->completion_lock); 909 } else { 910 io_cqring_event_overflow(ctx, cqe->user_data, 911 cqe->res, cqe->flags, 0, 0); 912 } 913 } 914 } 915 state->cqes_count = 0; 916 } 917 918 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 919 bool allow_overflow) 920 { 921 bool filled; 922 923 io_cq_lock(ctx); 924 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 925 if (!filled && allow_overflow) 926 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 927 928 io_cq_unlock_post(ctx); 929 return filled; 930 } 931 932 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 933 { 934 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 935 } 936 937 /* 938 * A helper for multishot requests posting additional CQEs. 939 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 940 */ 941 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 942 { 943 struct io_ring_ctx *ctx = req->ctx; 944 u64 user_data = req->cqe.user_data; 945 struct io_uring_cqe *cqe; 946 947 lockdep_assert(!io_wq_current_is_worker()); 948 949 if (!defer) 950 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 951 952 lockdep_assert_held(&ctx->uring_lock); 953 954 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 955 __io_cq_lock(ctx); 956 __io_flush_post_cqes(ctx); 957 /* no need to flush - flush is deferred */ 958 __io_cq_unlock_post(ctx); 959 } 960 961 /* For defered completions this is not as strict as it is otherwise, 962 * however it's main job is to prevent unbounded posted completions, 963 * and in that it works just as well. 964 */ 965 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 966 return false; 967 968 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 969 cqe->user_data = user_data; 970 cqe->res = res; 971 cqe->flags = cflags; 972 return true; 973 } 974 975 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 976 { 977 struct io_ring_ctx *ctx = req->ctx; 978 struct io_rsrc_node *rsrc_node = NULL; 979 980 io_cq_lock(ctx); 981 if (!(req->flags & REQ_F_CQE_SKIP)) { 982 if (!io_fill_cqe_req(ctx, req)) 983 io_req_cqe_overflow(req); 984 } 985 986 /* 987 * If we're the last reference to this request, add to our locked 988 * free_list cache. 989 */ 990 if (req_ref_put_and_test(req)) { 991 if (req->flags & IO_REQ_LINK_FLAGS) { 992 if (req->flags & IO_DISARM_MASK) 993 io_disarm_next(req); 994 if (req->link) { 995 io_req_task_queue(req->link); 996 req->link = NULL; 997 } 998 } 999 io_put_kbuf_comp(req); 1000 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1001 io_clean_op(req); 1002 io_put_file(req); 1003 1004 rsrc_node = req->rsrc_node; 1005 /* 1006 * Selected buffer deallocation in io_clean_op() assumes that 1007 * we don't hold ->completion_lock. Clean them here to avoid 1008 * deadlocks. 1009 */ 1010 io_put_task_remote(req->task); 1011 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1012 ctx->locked_free_nr++; 1013 } 1014 io_cq_unlock_post(ctx); 1015 1016 if (rsrc_node) { 1017 io_ring_submit_lock(ctx, issue_flags); 1018 io_put_rsrc_node(ctx, rsrc_node); 1019 io_ring_submit_unlock(ctx, issue_flags); 1020 } 1021 } 1022 1023 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1024 { 1025 struct io_ring_ctx *ctx = req->ctx; 1026 1027 if (ctx->task_complete && ctx->submitter_task != current) { 1028 req->io_task_work.func = io_req_task_complete; 1029 io_req_task_work_add(req); 1030 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1031 !(ctx->flags & IORING_SETUP_IOPOLL)) { 1032 __io_req_complete_post(req, issue_flags); 1033 } else { 1034 mutex_lock(&ctx->uring_lock); 1035 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1036 mutex_unlock(&ctx->uring_lock); 1037 } 1038 } 1039 1040 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1041 __must_hold(&ctx->uring_lock) 1042 { 1043 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1044 1045 lockdep_assert_held(&req->ctx->uring_lock); 1046 1047 req_set_fail(req); 1048 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1049 if (def->fail) 1050 def->fail(req); 1051 io_req_complete_defer(req); 1052 } 1053 1054 /* 1055 * Don't initialise the fields below on every allocation, but do that in 1056 * advance and keep them valid across allocations. 1057 */ 1058 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1059 { 1060 req->ctx = ctx; 1061 req->link = NULL; 1062 req->async_data = NULL; 1063 /* not necessary, but safer to zero */ 1064 memset(&req->cqe, 0, sizeof(req->cqe)); 1065 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1066 } 1067 1068 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1069 struct io_submit_state *state) 1070 { 1071 spin_lock(&ctx->completion_lock); 1072 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1073 ctx->locked_free_nr = 0; 1074 spin_unlock(&ctx->completion_lock); 1075 } 1076 1077 /* 1078 * A request might get retired back into the request caches even before opcode 1079 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1080 * Because of that, io_alloc_req() should be called only under ->uring_lock 1081 * and with extra caution to not get a request that is still worked on. 1082 */ 1083 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1084 __must_hold(&ctx->uring_lock) 1085 { 1086 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1087 void *reqs[IO_REQ_ALLOC_BATCH]; 1088 int ret, i; 1089 1090 /* 1091 * If we have more than a batch's worth of requests in our IRQ side 1092 * locked cache, grab the lock and move them over to our submission 1093 * side cache. 1094 */ 1095 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1096 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1097 if (!io_req_cache_empty(ctx)) 1098 return true; 1099 } 1100 1101 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1102 1103 /* 1104 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1105 * retry single alloc to be on the safe side. 1106 */ 1107 if (unlikely(ret <= 0)) { 1108 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1109 if (!reqs[0]) 1110 return false; 1111 ret = 1; 1112 } 1113 1114 percpu_ref_get_many(&ctx->refs, ret); 1115 for (i = 0; i < ret; i++) { 1116 struct io_kiocb *req = reqs[i]; 1117 1118 io_preinit_req(req, ctx); 1119 io_req_add_to_cache(req, ctx); 1120 } 1121 return true; 1122 } 1123 1124 __cold void io_free_req(struct io_kiocb *req) 1125 { 1126 /* refs were already put, restore them for io_req_task_complete() */ 1127 req->flags &= ~REQ_F_REFCOUNT; 1128 /* we only want to free it, don't post CQEs */ 1129 req->flags |= REQ_F_CQE_SKIP; 1130 req->io_task_work.func = io_req_task_complete; 1131 io_req_task_work_add(req); 1132 } 1133 1134 static void __io_req_find_next_prep(struct io_kiocb *req) 1135 { 1136 struct io_ring_ctx *ctx = req->ctx; 1137 1138 spin_lock(&ctx->completion_lock); 1139 io_disarm_next(req); 1140 spin_unlock(&ctx->completion_lock); 1141 } 1142 1143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1144 { 1145 struct io_kiocb *nxt; 1146 1147 /* 1148 * If LINK is set, we have dependent requests in this chain. If we 1149 * didn't fail this request, queue the first one up, moving any other 1150 * dependencies to the next request. In case of failure, fail the rest 1151 * of the chain. 1152 */ 1153 if (unlikely(req->flags & IO_DISARM_MASK)) 1154 __io_req_find_next_prep(req); 1155 nxt = req->link; 1156 req->link = NULL; 1157 return nxt; 1158 } 1159 1160 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1161 { 1162 if (!ctx) 1163 return; 1164 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1165 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1166 if (ts->locked) { 1167 io_submit_flush_completions(ctx); 1168 mutex_unlock(&ctx->uring_lock); 1169 ts->locked = false; 1170 } 1171 percpu_ref_put(&ctx->refs); 1172 } 1173 1174 /* 1175 * Run queued task_work, returning the number of entries processed in *count. 1176 * If more entries than max_entries are available, stop processing once this 1177 * is reached and return the rest of the list. 1178 */ 1179 struct llist_node *io_handle_tw_list(struct llist_node *node, 1180 unsigned int *count, 1181 unsigned int max_entries) 1182 { 1183 struct io_ring_ctx *ctx = NULL; 1184 struct io_tw_state ts = { }; 1185 1186 do { 1187 struct llist_node *next = node->next; 1188 struct io_kiocb *req = container_of(node, struct io_kiocb, 1189 io_task_work.node); 1190 1191 if (req->ctx != ctx) { 1192 ctx_flush_and_put(ctx, &ts); 1193 ctx = req->ctx; 1194 /* if not contended, grab and improve batching */ 1195 ts.locked = mutex_trylock(&ctx->uring_lock); 1196 percpu_ref_get(&ctx->refs); 1197 } 1198 INDIRECT_CALL_2(req->io_task_work.func, 1199 io_poll_task_func, io_req_rw_complete, 1200 req, &ts); 1201 node = next; 1202 (*count)++; 1203 if (unlikely(need_resched())) { 1204 ctx_flush_and_put(ctx, &ts); 1205 ctx = NULL; 1206 cond_resched(); 1207 } 1208 } while (node && *count < max_entries); 1209 1210 ctx_flush_and_put(ctx, &ts); 1211 return node; 1212 } 1213 1214 /** 1215 * io_llist_xchg - swap all entries in a lock-less list 1216 * @head: the head of lock-less list to delete all entries 1217 * @new: new entry as the head of the list 1218 * 1219 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1220 * The order of entries returned is from the newest to the oldest added one. 1221 */ 1222 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1223 struct llist_node *new) 1224 { 1225 return xchg(&head->first, new); 1226 } 1227 1228 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1229 { 1230 struct llist_node *node = llist_del_all(&tctx->task_list); 1231 struct io_ring_ctx *last_ctx = NULL; 1232 struct io_kiocb *req; 1233 1234 while (node) { 1235 req = container_of(node, struct io_kiocb, io_task_work.node); 1236 node = node->next; 1237 if (sync && last_ctx != req->ctx) { 1238 if (last_ctx) { 1239 flush_delayed_work(&last_ctx->fallback_work); 1240 percpu_ref_put(&last_ctx->refs); 1241 } 1242 last_ctx = req->ctx; 1243 percpu_ref_get(&last_ctx->refs); 1244 } 1245 if (llist_add(&req->io_task_work.node, 1246 &req->ctx->fallback_llist)) 1247 schedule_delayed_work(&req->ctx->fallback_work, 1); 1248 } 1249 1250 if (last_ctx) { 1251 flush_delayed_work(&last_ctx->fallback_work); 1252 percpu_ref_put(&last_ctx->refs); 1253 } 1254 } 1255 1256 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1257 unsigned int max_entries, 1258 unsigned int *count) 1259 { 1260 struct llist_node *node; 1261 1262 if (unlikely(current->flags & PF_EXITING)) { 1263 io_fallback_tw(tctx, true); 1264 return NULL; 1265 } 1266 1267 node = llist_del_all(&tctx->task_list); 1268 if (node) { 1269 node = llist_reverse_order(node); 1270 node = io_handle_tw_list(node, count, max_entries); 1271 } 1272 1273 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1274 if (unlikely(atomic_read(&tctx->in_cancel))) 1275 io_uring_drop_tctx_refs(current); 1276 1277 trace_io_uring_task_work_run(tctx, *count); 1278 return node; 1279 } 1280 1281 void tctx_task_work(struct callback_head *cb) 1282 { 1283 struct io_uring_task *tctx; 1284 struct llist_node *ret; 1285 unsigned int count = 0; 1286 1287 tctx = container_of(cb, struct io_uring_task, task_work); 1288 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1289 /* can't happen */ 1290 WARN_ON_ONCE(ret); 1291 } 1292 1293 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1294 { 1295 struct io_ring_ctx *ctx = req->ctx; 1296 unsigned nr_wait, nr_tw, nr_tw_prev; 1297 struct llist_node *head; 1298 1299 /* See comment above IO_CQ_WAKE_INIT */ 1300 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1301 1302 /* 1303 * We don't know how many reuqests is there in the link and whether 1304 * they can even be queued lazily, fall back to non-lazy. 1305 */ 1306 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1307 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1308 1309 head = READ_ONCE(ctx->work_llist.first); 1310 do { 1311 nr_tw_prev = 0; 1312 if (head) { 1313 struct io_kiocb *first_req = container_of(head, 1314 struct io_kiocb, 1315 io_task_work.node); 1316 /* 1317 * Might be executed at any moment, rely on 1318 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1319 */ 1320 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1321 } 1322 1323 /* 1324 * Theoretically, it can overflow, but that's fine as one of 1325 * previous adds should've tried to wake the task. 1326 */ 1327 nr_tw = nr_tw_prev + 1; 1328 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1329 nr_tw = IO_CQ_WAKE_FORCE; 1330 1331 req->nr_tw = nr_tw; 1332 req->io_task_work.node.next = head; 1333 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1334 &req->io_task_work.node)); 1335 1336 /* 1337 * cmpxchg implies a full barrier, which pairs with the barrier 1338 * in set_current_state() on the io_cqring_wait() side. It's used 1339 * to ensure that either we see updated ->cq_wait_nr, or waiters 1340 * going to sleep will observe the work added to the list, which 1341 * is similar to the wait/wawke task state sync. 1342 */ 1343 1344 if (!head) { 1345 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1346 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1347 if (ctx->has_evfd) 1348 io_eventfd_signal(ctx); 1349 } 1350 1351 nr_wait = atomic_read(&ctx->cq_wait_nr); 1352 /* not enough or no one is waiting */ 1353 if (nr_tw < nr_wait) 1354 return; 1355 /* the previous add has already woken it up */ 1356 if (nr_tw_prev >= nr_wait) 1357 return; 1358 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1359 } 1360 1361 static void io_req_normal_work_add(struct io_kiocb *req) 1362 { 1363 struct io_uring_task *tctx = req->task->io_uring; 1364 struct io_ring_ctx *ctx = req->ctx; 1365 1366 /* task_work already pending, we're done */ 1367 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1368 return; 1369 1370 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1371 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1372 1373 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1374 if (ctx->flags & IORING_SETUP_SQPOLL) { 1375 struct io_sq_data *sqd = ctx->sq_data; 1376 1377 if (wq_has_sleeper(&sqd->wait)) 1378 wake_up(&sqd->wait); 1379 return; 1380 } 1381 1382 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1383 return; 1384 1385 io_fallback_tw(tctx, false); 1386 } 1387 1388 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1389 { 1390 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1391 rcu_read_lock(); 1392 io_req_local_work_add(req, flags); 1393 rcu_read_unlock(); 1394 } else { 1395 io_req_normal_work_add(req); 1396 } 1397 } 1398 1399 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1400 { 1401 struct llist_node *node; 1402 1403 node = llist_del_all(&ctx->work_llist); 1404 while (node) { 1405 struct io_kiocb *req = container_of(node, struct io_kiocb, 1406 io_task_work.node); 1407 1408 node = node->next; 1409 io_req_normal_work_add(req); 1410 } 1411 } 1412 1413 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1414 int min_events) 1415 { 1416 if (llist_empty(&ctx->work_llist)) 1417 return false; 1418 if (events < min_events) 1419 return true; 1420 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1421 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1422 return false; 1423 } 1424 1425 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1426 int min_events) 1427 { 1428 struct llist_node *node; 1429 unsigned int loops = 0; 1430 int ret = 0; 1431 1432 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1433 return -EEXIST; 1434 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1435 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1436 again: 1437 /* 1438 * llists are in reverse order, flip it back the right way before 1439 * running the pending items. 1440 */ 1441 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1442 while (node) { 1443 struct llist_node *next = node->next; 1444 struct io_kiocb *req = container_of(node, struct io_kiocb, 1445 io_task_work.node); 1446 INDIRECT_CALL_2(req->io_task_work.func, 1447 io_poll_task_func, io_req_rw_complete, 1448 req, ts); 1449 ret++; 1450 node = next; 1451 } 1452 loops++; 1453 1454 if (io_run_local_work_continue(ctx, ret, min_events)) 1455 goto again; 1456 if (ts->locked) { 1457 io_submit_flush_completions(ctx); 1458 if (io_run_local_work_continue(ctx, ret, min_events)) 1459 goto again; 1460 } 1461 1462 trace_io_uring_local_work_run(ctx, ret, loops); 1463 return ret; 1464 } 1465 1466 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1467 int min_events) 1468 { 1469 struct io_tw_state ts = { .locked = true, }; 1470 int ret; 1471 1472 if (llist_empty(&ctx->work_llist)) 1473 return 0; 1474 1475 ret = __io_run_local_work(ctx, &ts, min_events); 1476 /* shouldn't happen! */ 1477 if (WARN_ON_ONCE(!ts.locked)) 1478 mutex_lock(&ctx->uring_lock); 1479 return ret; 1480 } 1481 1482 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events) 1483 { 1484 struct io_tw_state ts = {}; 1485 int ret; 1486 1487 ts.locked = mutex_trylock(&ctx->uring_lock); 1488 ret = __io_run_local_work(ctx, &ts, min_events); 1489 if (ts.locked) 1490 mutex_unlock(&ctx->uring_lock); 1491 1492 return ret; 1493 } 1494 1495 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1496 { 1497 io_tw_lock(req->ctx, ts); 1498 io_req_defer_failed(req, req->cqe.res); 1499 } 1500 1501 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1502 { 1503 io_tw_lock(req->ctx, ts); 1504 /* req->task == current here, checking PF_EXITING is safe */ 1505 if (unlikely(req->task->flags & PF_EXITING)) 1506 io_req_defer_failed(req, -EFAULT); 1507 else if (req->flags & REQ_F_FORCE_ASYNC) 1508 io_queue_iowq(req, ts); 1509 else 1510 io_queue_sqe(req); 1511 } 1512 1513 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1514 { 1515 io_req_set_res(req, ret, 0); 1516 req->io_task_work.func = io_req_task_cancel; 1517 io_req_task_work_add(req); 1518 } 1519 1520 void io_req_task_queue(struct io_kiocb *req) 1521 { 1522 req->io_task_work.func = io_req_task_submit; 1523 io_req_task_work_add(req); 1524 } 1525 1526 void io_queue_next(struct io_kiocb *req) 1527 { 1528 struct io_kiocb *nxt = io_req_find_next(req); 1529 1530 if (nxt) 1531 io_req_task_queue(nxt); 1532 } 1533 1534 static void io_free_batch_list(struct io_ring_ctx *ctx, 1535 struct io_wq_work_node *node) 1536 __must_hold(&ctx->uring_lock) 1537 { 1538 do { 1539 struct io_kiocb *req = container_of(node, struct io_kiocb, 1540 comp_list); 1541 1542 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1543 if (req->flags & REQ_F_REFCOUNT) { 1544 node = req->comp_list.next; 1545 if (!req_ref_put_and_test(req)) 1546 continue; 1547 } 1548 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1549 struct async_poll *apoll = req->apoll; 1550 1551 if (apoll->double_poll) 1552 kfree(apoll->double_poll); 1553 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1554 kfree(apoll); 1555 req->flags &= ~REQ_F_POLLED; 1556 } 1557 if (req->flags & IO_REQ_LINK_FLAGS) 1558 io_queue_next(req); 1559 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1560 io_clean_op(req); 1561 } 1562 io_put_file(req); 1563 1564 io_req_put_rsrc_locked(req, ctx); 1565 1566 io_put_task(req->task); 1567 node = req->comp_list.next; 1568 io_req_add_to_cache(req, ctx); 1569 } while (node); 1570 } 1571 1572 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1573 __must_hold(&ctx->uring_lock) 1574 { 1575 struct io_submit_state *state = &ctx->submit_state; 1576 struct io_wq_work_node *node; 1577 1578 __io_cq_lock(ctx); 1579 /* must come first to preserve CQE ordering in failure cases */ 1580 if (state->cqes_count) 1581 __io_flush_post_cqes(ctx); 1582 __wq_list_for_each(node, &state->compl_reqs) { 1583 struct io_kiocb *req = container_of(node, struct io_kiocb, 1584 comp_list); 1585 1586 if (!(req->flags & REQ_F_CQE_SKIP) && 1587 unlikely(!io_fill_cqe_req(ctx, req))) { 1588 if (ctx->lockless_cq) { 1589 spin_lock(&ctx->completion_lock); 1590 io_req_cqe_overflow(req); 1591 spin_unlock(&ctx->completion_lock); 1592 } else { 1593 io_req_cqe_overflow(req); 1594 } 1595 } 1596 } 1597 __io_cq_unlock_post(ctx); 1598 1599 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1600 io_free_batch_list(ctx, state->compl_reqs.first); 1601 INIT_WQ_LIST(&state->compl_reqs); 1602 } 1603 } 1604 1605 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1606 { 1607 /* See comment at the top of this file */ 1608 smp_rmb(); 1609 return __io_cqring_events(ctx); 1610 } 1611 1612 /* 1613 * We can't just wait for polled events to come to us, we have to actively 1614 * find and complete them. 1615 */ 1616 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1617 { 1618 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1619 return; 1620 1621 mutex_lock(&ctx->uring_lock); 1622 while (!wq_list_empty(&ctx->iopoll_list)) { 1623 /* let it sleep and repeat later if can't complete a request */ 1624 if (io_do_iopoll(ctx, true) == 0) 1625 break; 1626 /* 1627 * Ensure we allow local-to-the-cpu processing to take place, 1628 * in this case we need to ensure that we reap all events. 1629 * Also let task_work, etc. to progress by releasing the mutex 1630 */ 1631 if (need_resched()) { 1632 mutex_unlock(&ctx->uring_lock); 1633 cond_resched(); 1634 mutex_lock(&ctx->uring_lock); 1635 } 1636 } 1637 mutex_unlock(&ctx->uring_lock); 1638 } 1639 1640 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1641 { 1642 unsigned int nr_events = 0; 1643 unsigned long check_cq; 1644 1645 if (!io_allowed_run_tw(ctx)) 1646 return -EEXIST; 1647 1648 check_cq = READ_ONCE(ctx->check_cq); 1649 if (unlikely(check_cq)) { 1650 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1651 __io_cqring_overflow_flush(ctx); 1652 /* 1653 * Similarly do not spin if we have not informed the user of any 1654 * dropped CQE. 1655 */ 1656 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1657 return -EBADR; 1658 } 1659 /* 1660 * Don't enter poll loop if we already have events pending. 1661 * If we do, we can potentially be spinning for commands that 1662 * already triggered a CQE (eg in error). 1663 */ 1664 if (io_cqring_events(ctx)) 1665 return 0; 1666 1667 do { 1668 int ret = 0; 1669 1670 /* 1671 * If a submit got punted to a workqueue, we can have the 1672 * application entering polling for a command before it gets 1673 * issued. That app will hold the uring_lock for the duration 1674 * of the poll right here, so we need to take a breather every 1675 * now and then to ensure that the issue has a chance to add 1676 * the poll to the issued list. Otherwise we can spin here 1677 * forever, while the workqueue is stuck trying to acquire the 1678 * very same mutex. 1679 */ 1680 if (wq_list_empty(&ctx->iopoll_list) || 1681 io_task_work_pending(ctx)) { 1682 u32 tail = ctx->cached_cq_tail; 1683 1684 (void) io_run_local_work_locked(ctx, min); 1685 1686 if (task_work_pending(current) || 1687 wq_list_empty(&ctx->iopoll_list)) { 1688 mutex_unlock(&ctx->uring_lock); 1689 io_run_task_work(); 1690 mutex_lock(&ctx->uring_lock); 1691 } 1692 /* some requests don't go through iopoll_list */ 1693 if (tail != ctx->cached_cq_tail || 1694 wq_list_empty(&ctx->iopoll_list)) 1695 break; 1696 } 1697 ret = io_do_iopoll(ctx, !min); 1698 if (unlikely(ret < 0)) 1699 return ret; 1700 1701 if (task_sigpending(current)) 1702 return -EINTR; 1703 if (need_resched()) 1704 break; 1705 1706 nr_events += ret; 1707 } while (nr_events < min); 1708 1709 return 0; 1710 } 1711 1712 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1713 { 1714 if (ts->locked) 1715 io_req_complete_defer(req); 1716 else 1717 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1718 } 1719 1720 /* 1721 * After the iocb has been issued, it's safe to be found on the poll list. 1722 * Adding the kiocb to the list AFTER submission ensures that we don't 1723 * find it from a io_do_iopoll() thread before the issuer is done 1724 * accessing the kiocb cookie. 1725 */ 1726 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1727 { 1728 struct io_ring_ctx *ctx = req->ctx; 1729 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1730 1731 /* workqueue context doesn't hold uring_lock, grab it now */ 1732 if (unlikely(needs_lock)) 1733 mutex_lock(&ctx->uring_lock); 1734 1735 /* 1736 * Track whether we have multiple files in our lists. This will impact 1737 * how we do polling eventually, not spinning if we're on potentially 1738 * different devices. 1739 */ 1740 if (wq_list_empty(&ctx->iopoll_list)) { 1741 ctx->poll_multi_queue = false; 1742 } else if (!ctx->poll_multi_queue) { 1743 struct io_kiocb *list_req; 1744 1745 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1746 comp_list); 1747 if (list_req->file != req->file) 1748 ctx->poll_multi_queue = true; 1749 } 1750 1751 /* 1752 * For fast devices, IO may have already completed. If it has, add 1753 * it to the front so we find it first. 1754 */ 1755 if (READ_ONCE(req->iopoll_completed)) 1756 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1757 else 1758 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1759 1760 if (unlikely(needs_lock)) { 1761 /* 1762 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1763 * in sq thread task context or in io worker task context. If 1764 * current task context is sq thread, we don't need to check 1765 * whether should wake up sq thread. 1766 */ 1767 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1768 wq_has_sleeper(&ctx->sq_data->wait)) 1769 wake_up(&ctx->sq_data->wait); 1770 1771 mutex_unlock(&ctx->uring_lock); 1772 } 1773 } 1774 1775 io_req_flags_t io_file_get_flags(struct file *file) 1776 { 1777 io_req_flags_t res = 0; 1778 1779 if (S_ISREG(file_inode(file)->i_mode)) 1780 res |= REQ_F_ISREG; 1781 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1782 res |= REQ_F_SUPPORT_NOWAIT; 1783 return res; 1784 } 1785 1786 bool io_alloc_async_data(struct io_kiocb *req) 1787 { 1788 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1789 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1790 if (req->async_data) { 1791 req->flags |= REQ_F_ASYNC_DATA; 1792 return false; 1793 } 1794 return true; 1795 } 1796 1797 int io_req_prep_async(struct io_kiocb *req) 1798 { 1799 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1800 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1801 1802 /* assign early for deferred execution for non-fixed file */ 1803 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1804 req->file = io_file_get_normal(req, req->cqe.fd); 1805 if (!cdef->prep_async) 1806 return 0; 1807 if (WARN_ON_ONCE(req_has_async_data(req))) 1808 return -EFAULT; 1809 if (!def->manual_alloc) { 1810 if (io_alloc_async_data(req)) 1811 return -EAGAIN; 1812 } 1813 return cdef->prep_async(req); 1814 } 1815 1816 static u32 io_get_sequence(struct io_kiocb *req) 1817 { 1818 u32 seq = req->ctx->cached_sq_head; 1819 struct io_kiocb *cur; 1820 1821 /* need original cached_sq_head, but it was increased for each req */ 1822 io_for_each_link(cur, req) 1823 seq--; 1824 return seq; 1825 } 1826 1827 static __cold void io_drain_req(struct io_kiocb *req) 1828 __must_hold(&ctx->uring_lock) 1829 { 1830 struct io_ring_ctx *ctx = req->ctx; 1831 struct io_defer_entry *de; 1832 int ret; 1833 u32 seq = io_get_sequence(req); 1834 1835 /* Still need defer if there is pending req in defer list. */ 1836 spin_lock(&ctx->completion_lock); 1837 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1838 spin_unlock(&ctx->completion_lock); 1839 queue: 1840 ctx->drain_active = false; 1841 io_req_task_queue(req); 1842 return; 1843 } 1844 spin_unlock(&ctx->completion_lock); 1845 1846 io_prep_async_link(req); 1847 de = kmalloc(sizeof(*de), GFP_KERNEL); 1848 if (!de) { 1849 ret = -ENOMEM; 1850 io_req_defer_failed(req, ret); 1851 return; 1852 } 1853 1854 spin_lock(&ctx->completion_lock); 1855 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1856 spin_unlock(&ctx->completion_lock); 1857 kfree(de); 1858 goto queue; 1859 } 1860 1861 trace_io_uring_defer(req); 1862 de->req = req; 1863 de->seq = seq; 1864 list_add_tail(&de->list, &ctx->defer_list); 1865 spin_unlock(&ctx->completion_lock); 1866 } 1867 1868 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1869 unsigned int issue_flags) 1870 { 1871 if (req->file || !def->needs_file) 1872 return true; 1873 1874 if (req->flags & REQ_F_FIXED_FILE) 1875 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1876 else 1877 req->file = io_file_get_normal(req, req->cqe.fd); 1878 1879 return !!req->file; 1880 } 1881 1882 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1883 { 1884 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1885 const struct cred *creds = NULL; 1886 int ret; 1887 1888 if (unlikely(!io_assign_file(req, def, issue_flags))) 1889 return -EBADF; 1890 1891 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1892 creds = override_creds(req->creds); 1893 1894 if (!def->audit_skip) 1895 audit_uring_entry(req->opcode); 1896 1897 ret = def->issue(req, issue_flags); 1898 1899 if (!def->audit_skip) 1900 audit_uring_exit(!ret, ret); 1901 1902 if (creds) 1903 revert_creds(creds); 1904 1905 if (ret == IOU_OK) { 1906 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1907 io_req_complete_defer(req); 1908 else 1909 io_req_complete_post(req, issue_flags); 1910 1911 return 0; 1912 } 1913 1914 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1915 ret = 0; 1916 io_arm_ltimeout(req); 1917 1918 /* If the op doesn't have a file, we're not polling for it */ 1919 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1920 io_iopoll_req_issued(req, issue_flags); 1921 } 1922 return ret; 1923 } 1924 1925 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1926 { 1927 io_tw_lock(req->ctx, ts); 1928 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1929 IO_URING_F_COMPLETE_DEFER); 1930 } 1931 1932 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1933 { 1934 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1935 struct io_kiocb *nxt = NULL; 1936 1937 if (req_ref_put_and_test(req)) { 1938 if (req->flags & IO_REQ_LINK_FLAGS) 1939 nxt = io_req_find_next(req); 1940 io_free_req(req); 1941 } 1942 return nxt ? &nxt->work : NULL; 1943 } 1944 1945 void io_wq_submit_work(struct io_wq_work *work) 1946 { 1947 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1948 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1949 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1950 bool needs_poll = false; 1951 int ret = 0, err = -ECANCELED; 1952 1953 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1954 if (!(req->flags & REQ_F_REFCOUNT)) 1955 __io_req_set_refcount(req, 2); 1956 else 1957 req_ref_get(req); 1958 1959 io_arm_ltimeout(req); 1960 1961 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1962 if (work->flags & IO_WQ_WORK_CANCEL) { 1963 fail: 1964 io_req_task_queue_fail(req, err); 1965 return; 1966 } 1967 if (!io_assign_file(req, def, issue_flags)) { 1968 err = -EBADF; 1969 work->flags |= IO_WQ_WORK_CANCEL; 1970 goto fail; 1971 } 1972 1973 /* 1974 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1975 * submitter task context. Final request completions are handed to the 1976 * right context, however this is not the case of auxiliary CQEs, 1977 * which is the main mean of operation for multishot requests. 1978 * Don't allow any multishot execution from io-wq. It's more restrictive 1979 * than necessary and also cleaner. 1980 */ 1981 if (req->flags & REQ_F_APOLL_MULTISHOT) { 1982 err = -EBADFD; 1983 if (!io_file_can_poll(req)) 1984 goto fail; 1985 err = -ECANCELED; 1986 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1987 goto fail; 1988 return; 1989 } 1990 1991 if (req->flags & REQ_F_FORCE_ASYNC) { 1992 bool opcode_poll = def->pollin || def->pollout; 1993 1994 if (opcode_poll && io_file_can_poll(req)) { 1995 needs_poll = true; 1996 issue_flags |= IO_URING_F_NONBLOCK; 1997 } 1998 } 1999 2000 do { 2001 ret = io_issue_sqe(req, issue_flags); 2002 if (ret != -EAGAIN) 2003 break; 2004 2005 /* 2006 * If REQ_F_NOWAIT is set, then don't wait or retry with 2007 * poll. -EAGAIN is final for that case. 2008 */ 2009 if (req->flags & REQ_F_NOWAIT) 2010 break; 2011 2012 /* 2013 * We can get EAGAIN for iopolled IO even though we're 2014 * forcing a sync submission from here, since we can't 2015 * wait for request slots on the block side. 2016 */ 2017 if (!needs_poll) { 2018 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 2019 break; 2020 if (io_wq_worker_stopped()) 2021 break; 2022 cond_resched(); 2023 continue; 2024 } 2025 2026 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 2027 return; 2028 /* aborted or ready, in either case retry blocking */ 2029 needs_poll = false; 2030 issue_flags &= ~IO_URING_F_NONBLOCK; 2031 } while (1); 2032 2033 /* avoid locking problems by failing it from a clean context */ 2034 if (ret < 0) 2035 io_req_task_queue_fail(req, ret); 2036 } 2037 2038 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2039 unsigned int issue_flags) 2040 { 2041 struct io_ring_ctx *ctx = req->ctx; 2042 struct io_fixed_file *slot; 2043 struct file *file = NULL; 2044 2045 io_ring_submit_lock(ctx, issue_flags); 2046 2047 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2048 goto out; 2049 fd = array_index_nospec(fd, ctx->nr_user_files); 2050 slot = io_fixed_file_slot(&ctx->file_table, fd); 2051 if (!req->rsrc_node) 2052 __io_req_set_rsrc_node(req, ctx); 2053 req->flags |= io_slot_flags(slot); 2054 file = io_slot_file(slot); 2055 out: 2056 io_ring_submit_unlock(ctx, issue_flags); 2057 return file; 2058 } 2059 2060 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2061 { 2062 struct file *file = fget(fd); 2063 2064 trace_io_uring_file_get(req, fd); 2065 2066 /* we don't allow fixed io_uring files */ 2067 if (file && io_is_uring_fops(file)) 2068 io_req_track_inflight(req); 2069 return file; 2070 } 2071 2072 static void io_queue_async(struct io_kiocb *req, int ret) 2073 __must_hold(&req->ctx->uring_lock) 2074 { 2075 struct io_kiocb *linked_timeout; 2076 2077 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2078 io_req_defer_failed(req, ret); 2079 return; 2080 } 2081 2082 linked_timeout = io_prep_linked_timeout(req); 2083 2084 switch (io_arm_poll_handler(req, 0)) { 2085 case IO_APOLL_READY: 2086 io_kbuf_recycle(req, 0); 2087 io_req_task_queue(req); 2088 break; 2089 case IO_APOLL_ABORTED: 2090 io_kbuf_recycle(req, 0); 2091 io_queue_iowq(req, NULL); 2092 break; 2093 case IO_APOLL_OK: 2094 break; 2095 } 2096 2097 if (linked_timeout) 2098 io_queue_linked_timeout(linked_timeout); 2099 } 2100 2101 static inline void io_queue_sqe(struct io_kiocb *req) 2102 __must_hold(&req->ctx->uring_lock) 2103 { 2104 int ret; 2105 2106 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2107 2108 /* 2109 * We async punt it if the file wasn't marked NOWAIT, or if the file 2110 * doesn't support non-blocking read/write attempts 2111 */ 2112 if (unlikely(ret)) 2113 io_queue_async(req, ret); 2114 } 2115 2116 static void io_queue_sqe_fallback(struct io_kiocb *req) 2117 __must_hold(&req->ctx->uring_lock) 2118 { 2119 if (unlikely(req->flags & REQ_F_FAIL)) { 2120 /* 2121 * We don't submit, fail them all, for that replace hardlinks 2122 * with normal links. Extra REQ_F_LINK is tolerated. 2123 */ 2124 req->flags &= ~REQ_F_HARDLINK; 2125 req->flags |= REQ_F_LINK; 2126 io_req_defer_failed(req, req->cqe.res); 2127 } else { 2128 int ret = io_req_prep_async(req); 2129 2130 if (unlikely(ret)) { 2131 io_req_defer_failed(req, ret); 2132 return; 2133 } 2134 2135 if (unlikely(req->ctx->drain_active)) 2136 io_drain_req(req); 2137 else 2138 io_queue_iowq(req, NULL); 2139 } 2140 } 2141 2142 /* 2143 * Check SQE restrictions (opcode and flags). 2144 * 2145 * Returns 'true' if SQE is allowed, 'false' otherwise. 2146 */ 2147 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2148 struct io_kiocb *req, 2149 unsigned int sqe_flags) 2150 { 2151 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2152 return false; 2153 2154 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2155 ctx->restrictions.sqe_flags_required) 2156 return false; 2157 2158 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2159 ctx->restrictions.sqe_flags_required)) 2160 return false; 2161 2162 return true; 2163 } 2164 2165 static void io_init_req_drain(struct io_kiocb *req) 2166 { 2167 struct io_ring_ctx *ctx = req->ctx; 2168 struct io_kiocb *head = ctx->submit_state.link.head; 2169 2170 ctx->drain_active = true; 2171 if (head) { 2172 /* 2173 * If we need to drain a request in the middle of a link, drain 2174 * the head request and the next request/link after the current 2175 * link. Considering sequential execution of links, 2176 * REQ_F_IO_DRAIN will be maintained for every request of our 2177 * link. 2178 */ 2179 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2180 ctx->drain_next = true; 2181 } 2182 } 2183 2184 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2185 { 2186 /* ensure per-opcode data is cleared if we fail before prep */ 2187 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2188 return err; 2189 } 2190 2191 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2192 const struct io_uring_sqe *sqe) 2193 __must_hold(&ctx->uring_lock) 2194 { 2195 const struct io_issue_def *def; 2196 unsigned int sqe_flags; 2197 int personality; 2198 u8 opcode; 2199 2200 /* req is partially pre-initialised, see io_preinit_req() */ 2201 req->opcode = opcode = READ_ONCE(sqe->opcode); 2202 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2203 sqe_flags = READ_ONCE(sqe->flags); 2204 req->flags = (io_req_flags_t) sqe_flags; 2205 req->cqe.user_data = READ_ONCE(sqe->user_data); 2206 req->file = NULL; 2207 req->rsrc_node = NULL; 2208 req->task = current; 2209 2210 if (unlikely(opcode >= IORING_OP_LAST)) { 2211 req->opcode = 0; 2212 return io_init_fail_req(req, -EINVAL); 2213 } 2214 def = &io_issue_defs[opcode]; 2215 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2216 /* enforce forwards compatibility on users */ 2217 if (sqe_flags & ~SQE_VALID_FLAGS) 2218 return io_init_fail_req(req, -EINVAL); 2219 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2220 if (!def->buffer_select) 2221 return io_init_fail_req(req, -EOPNOTSUPP); 2222 req->buf_index = READ_ONCE(sqe->buf_group); 2223 } 2224 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2225 ctx->drain_disabled = true; 2226 if (sqe_flags & IOSQE_IO_DRAIN) { 2227 if (ctx->drain_disabled) 2228 return io_init_fail_req(req, -EOPNOTSUPP); 2229 io_init_req_drain(req); 2230 } 2231 } 2232 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2233 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2234 return io_init_fail_req(req, -EACCES); 2235 /* knock it to the slow queue path, will be drained there */ 2236 if (ctx->drain_active) 2237 req->flags |= REQ_F_FORCE_ASYNC; 2238 /* if there is no link, we're at "next" request and need to drain */ 2239 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2240 ctx->drain_next = false; 2241 ctx->drain_active = true; 2242 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2243 } 2244 } 2245 2246 if (!def->ioprio && sqe->ioprio) 2247 return io_init_fail_req(req, -EINVAL); 2248 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2249 return io_init_fail_req(req, -EINVAL); 2250 2251 if (def->needs_file) { 2252 struct io_submit_state *state = &ctx->submit_state; 2253 2254 req->cqe.fd = READ_ONCE(sqe->fd); 2255 2256 /* 2257 * Plug now if we have more than 2 IO left after this, and the 2258 * target is potentially a read/write to block based storage. 2259 */ 2260 if (state->need_plug && def->plug) { 2261 state->plug_started = true; 2262 state->need_plug = false; 2263 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2264 } 2265 } 2266 2267 personality = READ_ONCE(sqe->personality); 2268 if (personality) { 2269 int ret; 2270 2271 req->creds = xa_load(&ctx->personalities, personality); 2272 if (!req->creds) 2273 return io_init_fail_req(req, -EINVAL); 2274 get_cred(req->creds); 2275 ret = security_uring_override_creds(req->creds); 2276 if (ret) { 2277 put_cred(req->creds); 2278 return io_init_fail_req(req, ret); 2279 } 2280 req->flags |= REQ_F_CREDS; 2281 } 2282 2283 return def->prep(req, sqe); 2284 } 2285 2286 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2287 struct io_kiocb *req, int ret) 2288 { 2289 struct io_ring_ctx *ctx = req->ctx; 2290 struct io_submit_link *link = &ctx->submit_state.link; 2291 struct io_kiocb *head = link->head; 2292 2293 trace_io_uring_req_failed(sqe, req, ret); 2294 2295 /* 2296 * Avoid breaking links in the middle as it renders links with SQPOLL 2297 * unusable. Instead of failing eagerly, continue assembling the link if 2298 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2299 * should find the flag and handle the rest. 2300 */ 2301 req_fail_link_node(req, ret); 2302 if (head && !(head->flags & REQ_F_FAIL)) 2303 req_fail_link_node(head, -ECANCELED); 2304 2305 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2306 if (head) { 2307 link->last->link = req; 2308 link->head = NULL; 2309 req = head; 2310 } 2311 io_queue_sqe_fallback(req); 2312 return ret; 2313 } 2314 2315 if (head) 2316 link->last->link = req; 2317 else 2318 link->head = req; 2319 link->last = req; 2320 return 0; 2321 } 2322 2323 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2324 const struct io_uring_sqe *sqe) 2325 __must_hold(&ctx->uring_lock) 2326 { 2327 struct io_submit_link *link = &ctx->submit_state.link; 2328 int ret; 2329 2330 ret = io_init_req(ctx, req, sqe); 2331 if (unlikely(ret)) 2332 return io_submit_fail_init(sqe, req, ret); 2333 2334 trace_io_uring_submit_req(req); 2335 2336 /* 2337 * If we already have a head request, queue this one for async 2338 * submittal once the head completes. If we don't have a head but 2339 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2340 * submitted sync once the chain is complete. If none of those 2341 * conditions are true (normal request), then just queue it. 2342 */ 2343 if (unlikely(link->head)) { 2344 ret = io_req_prep_async(req); 2345 if (unlikely(ret)) 2346 return io_submit_fail_init(sqe, req, ret); 2347 2348 trace_io_uring_link(req, link->head); 2349 link->last->link = req; 2350 link->last = req; 2351 2352 if (req->flags & IO_REQ_LINK_FLAGS) 2353 return 0; 2354 /* last request of the link, flush it */ 2355 req = link->head; 2356 link->head = NULL; 2357 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2358 goto fallback; 2359 2360 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2361 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2362 if (req->flags & IO_REQ_LINK_FLAGS) { 2363 link->head = req; 2364 link->last = req; 2365 } else { 2366 fallback: 2367 io_queue_sqe_fallback(req); 2368 } 2369 return 0; 2370 } 2371 2372 io_queue_sqe(req); 2373 return 0; 2374 } 2375 2376 /* 2377 * Batched submission is done, ensure local IO is flushed out. 2378 */ 2379 static void io_submit_state_end(struct io_ring_ctx *ctx) 2380 { 2381 struct io_submit_state *state = &ctx->submit_state; 2382 2383 if (unlikely(state->link.head)) 2384 io_queue_sqe_fallback(state->link.head); 2385 /* flush only after queuing links as they can generate completions */ 2386 io_submit_flush_completions(ctx); 2387 if (state->plug_started) 2388 blk_finish_plug(&state->plug); 2389 } 2390 2391 /* 2392 * Start submission side cache. 2393 */ 2394 static void io_submit_state_start(struct io_submit_state *state, 2395 unsigned int max_ios) 2396 { 2397 state->plug_started = false; 2398 state->need_plug = max_ios > 2; 2399 state->submit_nr = max_ios; 2400 /* set only head, no need to init link_last in advance */ 2401 state->link.head = NULL; 2402 } 2403 2404 static void io_commit_sqring(struct io_ring_ctx *ctx) 2405 { 2406 struct io_rings *rings = ctx->rings; 2407 2408 /* 2409 * Ensure any loads from the SQEs are done at this point, 2410 * since once we write the new head, the application could 2411 * write new data to them. 2412 */ 2413 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2414 } 2415 2416 /* 2417 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2418 * that is mapped by userspace. This means that care needs to be taken to 2419 * ensure that reads are stable, as we cannot rely on userspace always 2420 * being a good citizen. If members of the sqe are validated and then later 2421 * used, it's important that those reads are done through READ_ONCE() to 2422 * prevent a re-load down the line. 2423 */ 2424 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2425 { 2426 unsigned mask = ctx->sq_entries - 1; 2427 unsigned head = ctx->cached_sq_head++ & mask; 2428 2429 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2430 head = READ_ONCE(ctx->sq_array[head]); 2431 if (unlikely(head >= ctx->sq_entries)) { 2432 /* drop invalid entries */ 2433 spin_lock(&ctx->completion_lock); 2434 ctx->cq_extra--; 2435 spin_unlock(&ctx->completion_lock); 2436 WRITE_ONCE(ctx->rings->sq_dropped, 2437 READ_ONCE(ctx->rings->sq_dropped) + 1); 2438 return false; 2439 } 2440 } 2441 2442 /* 2443 * The cached sq head (or cq tail) serves two purposes: 2444 * 2445 * 1) allows us to batch the cost of updating the user visible 2446 * head updates. 2447 * 2) allows the kernel side to track the head on its own, even 2448 * though the application is the one updating it. 2449 */ 2450 2451 /* double index for 128-byte SQEs, twice as long */ 2452 if (ctx->flags & IORING_SETUP_SQE128) 2453 head <<= 1; 2454 *sqe = &ctx->sq_sqes[head]; 2455 return true; 2456 } 2457 2458 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2459 __must_hold(&ctx->uring_lock) 2460 { 2461 unsigned int entries = io_sqring_entries(ctx); 2462 unsigned int left; 2463 int ret; 2464 2465 if (unlikely(!entries)) 2466 return 0; 2467 /* make sure SQ entry isn't read before tail */ 2468 ret = left = min(nr, entries); 2469 io_get_task_refs(left); 2470 io_submit_state_start(&ctx->submit_state, left); 2471 2472 do { 2473 const struct io_uring_sqe *sqe; 2474 struct io_kiocb *req; 2475 2476 if (unlikely(!io_alloc_req(ctx, &req))) 2477 break; 2478 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2479 io_req_add_to_cache(req, ctx); 2480 break; 2481 } 2482 2483 /* 2484 * Continue submitting even for sqe failure if the 2485 * ring was setup with IORING_SETUP_SUBMIT_ALL 2486 */ 2487 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2488 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2489 left--; 2490 break; 2491 } 2492 } while (--left); 2493 2494 if (unlikely(left)) { 2495 ret -= left; 2496 /* try again if it submitted nothing and can't allocate a req */ 2497 if (!ret && io_req_cache_empty(ctx)) 2498 ret = -EAGAIN; 2499 current->io_uring->cached_refs += left; 2500 } 2501 2502 io_submit_state_end(ctx); 2503 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2504 io_commit_sqring(ctx); 2505 return ret; 2506 } 2507 2508 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2509 int wake_flags, void *key) 2510 { 2511 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2512 2513 /* 2514 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2515 * the task, and the next invocation will do it. 2516 */ 2517 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2518 return autoremove_wake_function(curr, mode, wake_flags, key); 2519 return -1; 2520 } 2521 2522 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2523 { 2524 if (!llist_empty(&ctx->work_llist)) { 2525 __set_current_state(TASK_RUNNING); 2526 if (io_run_local_work(ctx, INT_MAX) > 0) 2527 return 0; 2528 } 2529 if (io_run_task_work() > 0) 2530 return 0; 2531 if (task_sigpending(current)) 2532 return -EINTR; 2533 return 0; 2534 } 2535 2536 static bool current_pending_io(void) 2537 { 2538 struct io_uring_task *tctx = current->io_uring; 2539 2540 if (!tctx) 2541 return false; 2542 return percpu_counter_read_positive(&tctx->inflight); 2543 } 2544 2545 /* when returns >0, the caller should retry */ 2546 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2547 struct io_wait_queue *iowq) 2548 { 2549 int ret; 2550 2551 if (unlikely(READ_ONCE(ctx->check_cq))) 2552 return 1; 2553 if (unlikely(!llist_empty(&ctx->work_llist))) 2554 return 1; 2555 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2556 return 1; 2557 if (unlikely(task_sigpending(current))) 2558 return -EINTR; 2559 if (unlikely(io_should_wake(iowq))) 2560 return 0; 2561 2562 /* 2563 * Mark us as being in io_wait if we have pending requests, so cpufreq 2564 * can take into account that the task is waiting for IO - turns out 2565 * to be important for low QD IO. 2566 */ 2567 if (current_pending_io()) 2568 current->in_iowait = 1; 2569 ret = 0; 2570 if (iowq->timeout == KTIME_MAX) 2571 schedule(); 2572 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2573 ret = -ETIME; 2574 current->in_iowait = 0; 2575 return ret; 2576 } 2577 2578 /* 2579 * Wait until events become available, if we don't already have some. The 2580 * application must reap them itself, as they reside on the shared cq ring. 2581 */ 2582 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2583 const sigset_t __user *sig, size_t sigsz, 2584 struct __kernel_timespec __user *uts) 2585 { 2586 struct io_wait_queue iowq; 2587 struct io_rings *rings = ctx->rings; 2588 int ret; 2589 2590 if (!io_allowed_run_tw(ctx)) 2591 return -EEXIST; 2592 if (!llist_empty(&ctx->work_llist)) 2593 io_run_local_work(ctx, min_events); 2594 io_run_task_work(); 2595 io_cqring_overflow_flush(ctx); 2596 /* if user messes with these they will just get an early return */ 2597 if (__io_cqring_events_user(ctx) >= min_events) 2598 return 0; 2599 2600 if (sig) { 2601 #ifdef CONFIG_COMPAT 2602 if (in_compat_syscall()) 2603 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2604 sigsz); 2605 else 2606 #endif 2607 ret = set_user_sigmask(sig, sigsz); 2608 2609 if (ret) 2610 return ret; 2611 } 2612 2613 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2614 iowq.wq.private = current; 2615 INIT_LIST_HEAD(&iowq.wq.entry); 2616 iowq.ctx = ctx; 2617 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2618 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2619 iowq.timeout = KTIME_MAX; 2620 2621 if (uts) { 2622 struct timespec64 ts; 2623 2624 if (get_timespec64(&ts, uts)) 2625 return -EFAULT; 2626 2627 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2628 io_napi_adjust_timeout(ctx, &iowq, &ts); 2629 } 2630 2631 io_napi_busy_loop(ctx, &iowq); 2632 2633 trace_io_uring_cqring_wait(ctx, min_events); 2634 do { 2635 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2636 unsigned long check_cq; 2637 2638 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2639 atomic_set(&ctx->cq_wait_nr, nr_wait); 2640 set_current_state(TASK_INTERRUPTIBLE); 2641 } else { 2642 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2643 TASK_INTERRUPTIBLE); 2644 } 2645 2646 ret = io_cqring_wait_schedule(ctx, &iowq); 2647 __set_current_state(TASK_RUNNING); 2648 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2649 2650 /* 2651 * Run task_work after scheduling and before io_should_wake(). 2652 * If we got woken because of task_work being processed, run it 2653 * now rather than let the caller do another wait loop. 2654 */ 2655 io_run_task_work(); 2656 if (!llist_empty(&ctx->work_llist)) 2657 io_run_local_work(ctx, nr_wait); 2658 2659 /* 2660 * Non-local task_work will be run on exit to userspace, but 2661 * if we're using DEFER_TASKRUN, then we could have waited 2662 * with a timeout for a number of requests. If the timeout 2663 * hits, we could have some requests ready to process. Ensure 2664 * this break is _after_ we have run task_work, to avoid 2665 * deferring running potentially pending requests until the 2666 * next time we wait for events. 2667 */ 2668 if (ret < 0) 2669 break; 2670 2671 check_cq = READ_ONCE(ctx->check_cq); 2672 if (unlikely(check_cq)) { 2673 /* let the caller flush overflows, retry */ 2674 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2675 io_cqring_do_overflow_flush(ctx); 2676 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2677 ret = -EBADR; 2678 break; 2679 } 2680 } 2681 2682 if (io_should_wake(&iowq)) { 2683 ret = 0; 2684 break; 2685 } 2686 cond_resched(); 2687 } while (1); 2688 2689 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2690 finish_wait(&ctx->cq_wait, &iowq.wq); 2691 restore_saved_sigmask_unless(ret == -EINTR); 2692 2693 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2694 } 2695 2696 void io_mem_free(void *ptr) 2697 { 2698 if (!ptr) 2699 return; 2700 2701 folio_put(virt_to_folio(ptr)); 2702 } 2703 2704 static void io_pages_free(struct page ***pages, int npages) 2705 { 2706 struct page **page_array = *pages; 2707 int i; 2708 2709 if (!page_array) 2710 return; 2711 2712 for (i = 0; i < npages; i++) 2713 unpin_user_page(page_array[i]); 2714 kvfree(page_array); 2715 *pages = NULL; 2716 } 2717 2718 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2719 unsigned long uaddr, size_t size) 2720 { 2721 struct page **page_array; 2722 unsigned int nr_pages; 2723 void *page_addr; 2724 int ret, i, pinned; 2725 2726 *npages = 0; 2727 2728 if (uaddr & (PAGE_SIZE - 1) || !size) 2729 return ERR_PTR(-EINVAL); 2730 2731 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2732 if (nr_pages > USHRT_MAX) 2733 return ERR_PTR(-EINVAL); 2734 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2735 if (!page_array) 2736 return ERR_PTR(-ENOMEM); 2737 2738 2739 pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2740 page_array); 2741 if (pinned != nr_pages) { 2742 ret = (pinned < 0) ? pinned : -EFAULT; 2743 goto free_pages; 2744 } 2745 2746 page_addr = page_address(page_array[0]); 2747 for (i = 0; i < nr_pages; i++) { 2748 ret = -EINVAL; 2749 2750 /* 2751 * Can't support mapping user allocated ring memory on 32-bit 2752 * archs where it could potentially reside in highmem. Just 2753 * fail those with -EINVAL, just like we did on kernels that 2754 * didn't support this feature. 2755 */ 2756 if (PageHighMem(page_array[i])) 2757 goto free_pages; 2758 2759 /* 2760 * No support for discontig pages for now, should either be a 2761 * single normal page, or a huge page. Later on we can add 2762 * support for remapping discontig pages, for now we will 2763 * just fail them with EINVAL. 2764 */ 2765 if (page_address(page_array[i]) != page_addr) 2766 goto free_pages; 2767 page_addr += PAGE_SIZE; 2768 } 2769 2770 *pages = page_array; 2771 *npages = nr_pages; 2772 return page_to_virt(page_array[0]); 2773 2774 free_pages: 2775 io_pages_free(&page_array, pinned > 0 ? pinned : 0); 2776 return ERR_PTR(ret); 2777 } 2778 2779 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2780 size_t size) 2781 { 2782 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2783 size); 2784 } 2785 2786 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2787 size_t size) 2788 { 2789 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2790 size); 2791 } 2792 2793 static void io_rings_free(struct io_ring_ctx *ctx) 2794 { 2795 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2796 io_mem_free(ctx->rings); 2797 io_mem_free(ctx->sq_sqes); 2798 } else { 2799 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2800 ctx->n_ring_pages = 0; 2801 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2802 ctx->n_sqe_pages = 0; 2803 } 2804 2805 ctx->rings = NULL; 2806 ctx->sq_sqes = NULL; 2807 } 2808 2809 void *io_mem_alloc(size_t size) 2810 { 2811 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2812 void *ret; 2813 2814 ret = (void *) __get_free_pages(gfp, get_order(size)); 2815 if (ret) 2816 return ret; 2817 return ERR_PTR(-ENOMEM); 2818 } 2819 2820 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2821 unsigned int cq_entries, size_t *sq_offset) 2822 { 2823 struct io_rings *rings; 2824 size_t off, sq_array_size; 2825 2826 off = struct_size(rings, cqes, cq_entries); 2827 if (off == SIZE_MAX) 2828 return SIZE_MAX; 2829 if (ctx->flags & IORING_SETUP_CQE32) { 2830 if (check_shl_overflow(off, 1, &off)) 2831 return SIZE_MAX; 2832 } 2833 2834 #ifdef CONFIG_SMP 2835 off = ALIGN(off, SMP_CACHE_BYTES); 2836 if (off == 0) 2837 return SIZE_MAX; 2838 #endif 2839 2840 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2841 if (sq_offset) 2842 *sq_offset = SIZE_MAX; 2843 return off; 2844 } 2845 2846 if (sq_offset) 2847 *sq_offset = off; 2848 2849 sq_array_size = array_size(sizeof(u32), sq_entries); 2850 if (sq_array_size == SIZE_MAX) 2851 return SIZE_MAX; 2852 2853 if (check_add_overflow(off, sq_array_size, &off)) 2854 return SIZE_MAX; 2855 2856 return off; 2857 } 2858 2859 static void io_req_caches_free(struct io_ring_ctx *ctx) 2860 { 2861 struct io_kiocb *req; 2862 int nr = 0; 2863 2864 mutex_lock(&ctx->uring_lock); 2865 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2866 2867 while (!io_req_cache_empty(ctx)) { 2868 req = io_extract_req(ctx); 2869 kmem_cache_free(req_cachep, req); 2870 nr++; 2871 } 2872 if (nr) 2873 percpu_ref_put_many(&ctx->refs, nr); 2874 mutex_unlock(&ctx->uring_lock); 2875 } 2876 2877 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2878 { 2879 kfree(container_of(entry, struct io_rsrc_node, cache)); 2880 } 2881 2882 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2883 { 2884 io_sq_thread_finish(ctx); 2885 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2886 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2887 return; 2888 2889 mutex_lock(&ctx->uring_lock); 2890 if (ctx->buf_data) 2891 __io_sqe_buffers_unregister(ctx); 2892 if (ctx->file_data) 2893 __io_sqe_files_unregister(ctx); 2894 io_cqring_overflow_kill(ctx); 2895 io_eventfd_unregister(ctx); 2896 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2897 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2898 io_futex_cache_free(ctx); 2899 io_destroy_buffers(ctx); 2900 mutex_unlock(&ctx->uring_lock); 2901 if (ctx->sq_creds) 2902 put_cred(ctx->sq_creds); 2903 if (ctx->submitter_task) 2904 put_task_struct(ctx->submitter_task); 2905 2906 /* there are no registered resources left, nobody uses it */ 2907 if (ctx->rsrc_node) 2908 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2909 2910 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2911 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2912 2913 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2914 if (ctx->mm_account) { 2915 mmdrop(ctx->mm_account); 2916 ctx->mm_account = NULL; 2917 } 2918 io_rings_free(ctx); 2919 io_kbuf_mmap_list_free(ctx); 2920 2921 percpu_ref_exit(&ctx->refs); 2922 free_uid(ctx->user); 2923 io_req_caches_free(ctx); 2924 if (ctx->hash_map) 2925 io_wq_put_hash(ctx->hash_map); 2926 io_napi_free(ctx); 2927 kfree(ctx->cancel_table.hbs); 2928 kfree(ctx->cancel_table_locked.hbs); 2929 kfree(ctx->io_bl); 2930 xa_destroy(&ctx->io_bl_xa); 2931 kfree(ctx); 2932 } 2933 2934 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2935 { 2936 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2937 poll_wq_task_work); 2938 2939 mutex_lock(&ctx->uring_lock); 2940 ctx->poll_activated = true; 2941 mutex_unlock(&ctx->uring_lock); 2942 2943 /* 2944 * Wake ups for some events between start of polling and activation 2945 * might've been lost due to loose synchronisation. 2946 */ 2947 wake_up_all(&ctx->poll_wq); 2948 percpu_ref_put(&ctx->refs); 2949 } 2950 2951 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2952 { 2953 spin_lock(&ctx->completion_lock); 2954 /* already activated or in progress */ 2955 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2956 goto out; 2957 if (WARN_ON_ONCE(!ctx->task_complete)) 2958 goto out; 2959 if (!ctx->submitter_task) 2960 goto out; 2961 /* 2962 * with ->submitter_task only the submitter task completes requests, we 2963 * only need to sync with it, which is done by injecting a tw 2964 */ 2965 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2966 percpu_ref_get(&ctx->refs); 2967 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2968 percpu_ref_put(&ctx->refs); 2969 out: 2970 spin_unlock(&ctx->completion_lock); 2971 } 2972 2973 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2974 { 2975 struct io_ring_ctx *ctx = file->private_data; 2976 __poll_t mask = 0; 2977 2978 if (unlikely(!ctx->poll_activated)) 2979 io_activate_pollwq(ctx); 2980 2981 poll_wait(file, &ctx->poll_wq, wait); 2982 /* 2983 * synchronizes with barrier from wq_has_sleeper call in 2984 * io_commit_cqring 2985 */ 2986 smp_rmb(); 2987 if (!io_sqring_full(ctx)) 2988 mask |= EPOLLOUT | EPOLLWRNORM; 2989 2990 /* 2991 * Don't flush cqring overflow list here, just do a simple check. 2992 * Otherwise there could possible be ABBA deadlock: 2993 * CPU0 CPU1 2994 * ---- ---- 2995 * lock(&ctx->uring_lock); 2996 * lock(&ep->mtx); 2997 * lock(&ctx->uring_lock); 2998 * lock(&ep->mtx); 2999 * 3000 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3001 * pushes them to do the flush. 3002 */ 3003 3004 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3005 mask |= EPOLLIN | EPOLLRDNORM; 3006 3007 return mask; 3008 } 3009 3010 struct io_tctx_exit { 3011 struct callback_head task_work; 3012 struct completion completion; 3013 struct io_ring_ctx *ctx; 3014 }; 3015 3016 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3017 { 3018 struct io_uring_task *tctx = current->io_uring; 3019 struct io_tctx_exit *work; 3020 3021 work = container_of(cb, struct io_tctx_exit, task_work); 3022 /* 3023 * When @in_cancel, we're in cancellation and it's racy to remove the 3024 * node. It'll be removed by the end of cancellation, just ignore it. 3025 * tctx can be NULL if the queueing of this task_work raced with 3026 * work cancelation off the exec path. 3027 */ 3028 if (tctx && !atomic_read(&tctx->in_cancel)) 3029 io_uring_del_tctx_node((unsigned long)work->ctx); 3030 complete(&work->completion); 3031 } 3032 3033 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3034 { 3035 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3036 3037 return req->ctx == data; 3038 } 3039 3040 static __cold void io_ring_exit_work(struct work_struct *work) 3041 { 3042 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3043 unsigned long timeout = jiffies + HZ * 60 * 5; 3044 unsigned long interval = HZ / 20; 3045 struct io_tctx_exit exit; 3046 struct io_tctx_node *node; 3047 int ret; 3048 3049 /* 3050 * If we're doing polled IO and end up having requests being 3051 * submitted async (out-of-line), then completions can come in while 3052 * we're waiting for refs to drop. We need to reap these manually, 3053 * as nobody else will be looking for them. 3054 */ 3055 do { 3056 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3057 mutex_lock(&ctx->uring_lock); 3058 io_cqring_overflow_kill(ctx); 3059 mutex_unlock(&ctx->uring_lock); 3060 } 3061 3062 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3063 io_move_task_work_from_local(ctx); 3064 3065 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3066 cond_resched(); 3067 3068 if (ctx->sq_data) { 3069 struct io_sq_data *sqd = ctx->sq_data; 3070 struct task_struct *tsk; 3071 3072 io_sq_thread_park(sqd); 3073 tsk = sqd->thread; 3074 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3075 io_wq_cancel_cb(tsk->io_uring->io_wq, 3076 io_cancel_ctx_cb, ctx, true); 3077 io_sq_thread_unpark(sqd); 3078 } 3079 3080 io_req_caches_free(ctx); 3081 3082 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3083 /* there is little hope left, don't run it too often */ 3084 interval = HZ * 60; 3085 } 3086 /* 3087 * This is really an uninterruptible wait, as it has to be 3088 * complete. But it's also run from a kworker, which doesn't 3089 * take signals, so it's fine to make it interruptible. This 3090 * avoids scenarios where we knowingly can wait much longer 3091 * on completions, for example if someone does a SIGSTOP on 3092 * a task that needs to finish task_work to make this loop 3093 * complete. That's a synthetic situation that should not 3094 * cause a stuck task backtrace, and hence a potential panic 3095 * on stuck tasks if that is enabled. 3096 */ 3097 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3098 3099 init_completion(&exit.completion); 3100 init_task_work(&exit.task_work, io_tctx_exit_cb); 3101 exit.ctx = ctx; 3102 3103 mutex_lock(&ctx->uring_lock); 3104 while (!list_empty(&ctx->tctx_list)) { 3105 WARN_ON_ONCE(time_after(jiffies, timeout)); 3106 3107 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3108 ctx_node); 3109 /* don't spin on a single task if cancellation failed */ 3110 list_rotate_left(&ctx->tctx_list); 3111 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3112 if (WARN_ON_ONCE(ret)) 3113 continue; 3114 3115 mutex_unlock(&ctx->uring_lock); 3116 /* 3117 * See comment above for 3118 * wait_for_completion_interruptible_timeout() on why this 3119 * wait is marked as interruptible. 3120 */ 3121 wait_for_completion_interruptible(&exit.completion); 3122 mutex_lock(&ctx->uring_lock); 3123 } 3124 mutex_unlock(&ctx->uring_lock); 3125 spin_lock(&ctx->completion_lock); 3126 spin_unlock(&ctx->completion_lock); 3127 3128 /* pairs with RCU read section in io_req_local_work_add() */ 3129 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3130 synchronize_rcu(); 3131 3132 io_ring_ctx_free(ctx); 3133 } 3134 3135 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3136 { 3137 unsigned long index; 3138 struct creds *creds; 3139 3140 mutex_lock(&ctx->uring_lock); 3141 percpu_ref_kill(&ctx->refs); 3142 xa_for_each(&ctx->personalities, index, creds) 3143 io_unregister_personality(ctx, index); 3144 if (ctx->rings) 3145 io_poll_remove_all(ctx, NULL, true); 3146 mutex_unlock(&ctx->uring_lock); 3147 3148 /* 3149 * If we failed setting up the ctx, we might not have any rings 3150 * and therefore did not submit any requests 3151 */ 3152 if (ctx->rings) 3153 io_kill_timeouts(ctx, NULL, true); 3154 3155 flush_delayed_work(&ctx->fallback_work); 3156 3157 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3158 /* 3159 * Use system_unbound_wq to avoid spawning tons of event kworkers 3160 * if we're exiting a ton of rings at the same time. It just adds 3161 * noise and overhead, there's no discernable change in runtime 3162 * over using system_wq. 3163 */ 3164 queue_work(system_unbound_wq, &ctx->exit_work); 3165 } 3166 3167 static int io_uring_release(struct inode *inode, struct file *file) 3168 { 3169 struct io_ring_ctx *ctx = file->private_data; 3170 3171 file->private_data = NULL; 3172 io_ring_ctx_wait_and_kill(ctx); 3173 return 0; 3174 } 3175 3176 struct io_task_cancel { 3177 struct task_struct *task; 3178 bool all; 3179 }; 3180 3181 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3182 { 3183 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3184 struct io_task_cancel *cancel = data; 3185 3186 return io_match_task_safe(req, cancel->task, cancel->all); 3187 } 3188 3189 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3190 struct task_struct *task, 3191 bool cancel_all) 3192 { 3193 struct io_defer_entry *de; 3194 LIST_HEAD(list); 3195 3196 spin_lock(&ctx->completion_lock); 3197 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3198 if (io_match_task_safe(de->req, task, cancel_all)) { 3199 list_cut_position(&list, &ctx->defer_list, &de->list); 3200 break; 3201 } 3202 } 3203 spin_unlock(&ctx->completion_lock); 3204 if (list_empty(&list)) 3205 return false; 3206 3207 while (!list_empty(&list)) { 3208 de = list_first_entry(&list, struct io_defer_entry, list); 3209 list_del_init(&de->list); 3210 io_req_task_queue_fail(de->req, -ECANCELED); 3211 kfree(de); 3212 } 3213 return true; 3214 } 3215 3216 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3217 { 3218 struct io_tctx_node *node; 3219 enum io_wq_cancel cret; 3220 bool ret = false; 3221 3222 mutex_lock(&ctx->uring_lock); 3223 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3224 struct io_uring_task *tctx = node->task->io_uring; 3225 3226 /* 3227 * io_wq will stay alive while we hold uring_lock, because it's 3228 * killed after ctx nodes, which requires to take the lock. 3229 */ 3230 if (!tctx || !tctx->io_wq) 3231 continue; 3232 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3233 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3234 } 3235 mutex_unlock(&ctx->uring_lock); 3236 3237 return ret; 3238 } 3239 3240 static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx, 3241 struct task_struct *task, bool cancel_all) 3242 { 3243 struct hlist_node *tmp; 3244 struct io_kiocb *req; 3245 bool ret = false; 3246 3247 lockdep_assert_held(&ctx->uring_lock); 3248 3249 hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd, 3250 hash_node) { 3251 struct io_uring_cmd *cmd = io_kiocb_to_cmd(req, 3252 struct io_uring_cmd); 3253 struct file *file = req->file; 3254 3255 if (!cancel_all && req->task != task) 3256 continue; 3257 3258 if (cmd->flags & IORING_URING_CMD_CANCELABLE) { 3259 /* ->sqe isn't available if no async data */ 3260 if (!req_has_async_data(req)) 3261 cmd->sqe = NULL; 3262 file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL); 3263 ret = true; 3264 } 3265 } 3266 io_submit_flush_completions(ctx); 3267 3268 return ret; 3269 } 3270 3271 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3272 struct task_struct *task, 3273 bool cancel_all) 3274 { 3275 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3276 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3277 enum io_wq_cancel cret; 3278 bool ret = false; 3279 3280 /* set it so io_req_local_work_add() would wake us up */ 3281 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3282 atomic_set(&ctx->cq_wait_nr, 1); 3283 smp_mb(); 3284 } 3285 3286 /* failed during ring init, it couldn't have issued any requests */ 3287 if (!ctx->rings) 3288 return false; 3289 3290 if (!task) { 3291 ret |= io_uring_try_cancel_iowq(ctx); 3292 } else if (tctx && tctx->io_wq) { 3293 /* 3294 * Cancels requests of all rings, not only @ctx, but 3295 * it's fine as the task is in exit/exec. 3296 */ 3297 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3298 &cancel, true); 3299 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3300 } 3301 3302 /* SQPOLL thread does its own polling */ 3303 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3304 (ctx->sq_data && ctx->sq_data->thread == current)) { 3305 while (!wq_list_empty(&ctx->iopoll_list)) { 3306 io_iopoll_try_reap_events(ctx); 3307 ret = true; 3308 cond_resched(); 3309 } 3310 } 3311 3312 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3313 io_allowed_defer_tw_run(ctx)) 3314 ret |= io_run_local_work(ctx, INT_MAX) > 0; 3315 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3316 mutex_lock(&ctx->uring_lock); 3317 ret |= io_poll_remove_all(ctx, task, cancel_all); 3318 ret |= io_waitid_remove_all(ctx, task, cancel_all); 3319 ret |= io_futex_remove_all(ctx, task, cancel_all); 3320 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); 3321 mutex_unlock(&ctx->uring_lock); 3322 ret |= io_kill_timeouts(ctx, task, cancel_all); 3323 if (task) 3324 ret |= io_run_task_work() > 0; 3325 return ret; 3326 } 3327 3328 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3329 { 3330 if (tracked) 3331 return atomic_read(&tctx->inflight_tracked); 3332 return percpu_counter_sum(&tctx->inflight); 3333 } 3334 3335 /* 3336 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3337 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3338 */ 3339 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3340 { 3341 struct io_uring_task *tctx = current->io_uring; 3342 struct io_ring_ctx *ctx; 3343 struct io_tctx_node *node; 3344 unsigned long index; 3345 s64 inflight; 3346 DEFINE_WAIT(wait); 3347 3348 WARN_ON_ONCE(sqd && sqd->thread != current); 3349 3350 if (!current->io_uring) 3351 return; 3352 if (tctx->io_wq) 3353 io_wq_exit_start(tctx->io_wq); 3354 3355 atomic_inc(&tctx->in_cancel); 3356 do { 3357 bool loop = false; 3358 3359 io_uring_drop_tctx_refs(current); 3360 /* read completions before cancelations */ 3361 inflight = tctx_inflight(tctx, !cancel_all); 3362 if (!inflight) 3363 break; 3364 3365 if (!sqd) { 3366 xa_for_each(&tctx->xa, index, node) { 3367 /* sqpoll task will cancel all its requests */ 3368 if (node->ctx->sq_data) 3369 continue; 3370 loop |= io_uring_try_cancel_requests(node->ctx, 3371 current, cancel_all); 3372 } 3373 } else { 3374 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3375 loop |= io_uring_try_cancel_requests(ctx, 3376 current, 3377 cancel_all); 3378 } 3379 3380 if (loop) { 3381 cond_resched(); 3382 continue; 3383 } 3384 3385 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3386 io_run_task_work(); 3387 io_uring_drop_tctx_refs(current); 3388 xa_for_each(&tctx->xa, index, node) { 3389 if (!llist_empty(&node->ctx->work_llist)) { 3390 WARN_ON_ONCE(node->ctx->submitter_task && 3391 node->ctx->submitter_task != current); 3392 goto end_wait; 3393 } 3394 } 3395 /* 3396 * If we've seen completions, retry without waiting. This 3397 * avoids a race where a completion comes in before we did 3398 * prepare_to_wait(). 3399 */ 3400 if (inflight == tctx_inflight(tctx, !cancel_all)) 3401 schedule(); 3402 end_wait: 3403 finish_wait(&tctx->wait, &wait); 3404 } while (1); 3405 3406 io_uring_clean_tctx(tctx); 3407 if (cancel_all) { 3408 /* 3409 * We shouldn't run task_works after cancel, so just leave 3410 * ->in_cancel set for normal exit. 3411 */ 3412 atomic_dec(&tctx->in_cancel); 3413 /* for exec all current's requests should be gone, kill tctx */ 3414 __io_uring_free(current); 3415 } 3416 } 3417 3418 void __io_uring_cancel(bool cancel_all) 3419 { 3420 io_uring_cancel_generic(cancel_all, NULL); 3421 } 3422 3423 static void *io_uring_validate_mmap_request(struct file *file, 3424 loff_t pgoff, size_t sz) 3425 { 3426 struct io_ring_ctx *ctx = file->private_data; 3427 loff_t offset = pgoff << PAGE_SHIFT; 3428 struct page *page; 3429 void *ptr; 3430 3431 switch (offset & IORING_OFF_MMAP_MASK) { 3432 case IORING_OFF_SQ_RING: 3433 case IORING_OFF_CQ_RING: 3434 /* Don't allow mmap if the ring was setup without it */ 3435 if (ctx->flags & IORING_SETUP_NO_MMAP) 3436 return ERR_PTR(-EINVAL); 3437 ptr = ctx->rings; 3438 break; 3439 case IORING_OFF_SQES: 3440 /* Don't allow mmap if the ring was setup without it */ 3441 if (ctx->flags & IORING_SETUP_NO_MMAP) 3442 return ERR_PTR(-EINVAL); 3443 ptr = ctx->sq_sqes; 3444 break; 3445 case IORING_OFF_PBUF_RING: { 3446 unsigned int bgid; 3447 3448 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3449 rcu_read_lock(); 3450 ptr = io_pbuf_get_address(ctx, bgid); 3451 rcu_read_unlock(); 3452 if (!ptr) 3453 return ERR_PTR(-EINVAL); 3454 break; 3455 } 3456 default: 3457 return ERR_PTR(-EINVAL); 3458 } 3459 3460 page = virt_to_head_page(ptr); 3461 if (sz > page_size(page)) 3462 return ERR_PTR(-EINVAL); 3463 3464 return ptr; 3465 } 3466 3467 #ifdef CONFIG_MMU 3468 3469 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3470 { 3471 size_t sz = vma->vm_end - vma->vm_start; 3472 unsigned long pfn; 3473 void *ptr; 3474 3475 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3476 if (IS_ERR(ptr)) 3477 return PTR_ERR(ptr); 3478 3479 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3480 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3481 } 3482 3483 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3484 unsigned long addr, unsigned long len, 3485 unsigned long pgoff, unsigned long flags) 3486 { 3487 void *ptr; 3488 3489 /* 3490 * Do not allow to map to user-provided address to avoid breaking the 3491 * aliasing rules. Userspace is not able to guess the offset address of 3492 * kernel kmalloc()ed memory area. 3493 */ 3494 if (addr) 3495 return -EINVAL; 3496 3497 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3498 if (IS_ERR(ptr)) 3499 return -ENOMEM; 3500 3501 /* 3502 * Some architectures have strong cache aliasing requirements. 3503 * For such architectures we need a coherent mapping which aliases 3504 * kernel memory *and* userspace memory. To achieve that: 3505 * - use a NULL file pointer to reference physical memory, and 3506 * - use the kernel virtual address of the shared io_uring context 3507 * (instead of the userspace-provided address, which has to be 0UL 3508 * anyway). 3509 * - use the same pgoff which the get_unmapped_area() uses to 3510 * calculate the page colouring. 3511 * For architectures without such aliasing requirements, the 3512 * architecture will return any suitable mapping because addr is 0. 3513 */ 3514 filp = NULL; 3515 flags |= MAP_SHARED; 3516 pgoff = 0; /* has been translated to ptr above */ 3517 #ifdef SHM_COLOUR 3518 addr = (uintptr_t) ptr; 3519 pgoff = addr >> PAGE_SHIFT; 3520 #else 3521 addr = 0UL; 3522 #endif 3523 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3524 } 3525 3526 #else /* !CONFIG_MMU */ 3527 3528 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3529 { 3530 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3531 } 3532 3533 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3534 { 3535 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3536 } 3537 3538 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3539 unsigned long addr, unsigned long len, 3540 unsigned long pgoff, unsigned long flags) 3541 { 3542 void *ptr; 3543 3544 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3545 if (IS_ERR(ptr)) 3546 return PTR_ERR(ptr); 3547 3548 return (unsigned long) ptr; 3549 } 3550 3551 #endif /* !CONFIG_MMU */ 3552 3553 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3554 { 3555 if (flags & IORING_ENTER_EXT_ARG) { 3556 struct io_uring_getevents_arg arg; 3557 3558 if (argsz != sizeof(arg)) 3559 return -EINVAL; 3560 if (copy_from_user(&arg, argp, sizeof(arg))) 3561 return -EFAULT; 3562 } 3563 return 0; 3564 } 3565 3566 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3567 struct __kernel_timespec __user **ts, 3568 const sigset_t __user **sig) 3569 { 3570 struct io_uring_getevents_arg arg; 3571 3572 /* 3573 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3574 * is just a pointer to the sigset_t. 3575 */ 3576 if (!(flags & IORING_ENTER_EXT_ARG)) { 3577 *sig = (const sigset_t __user *) argp; 3578 *ts = NULL; 3579 return 0; 3580 } 3581 3582 /* 3583 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3584 * timespec and sigset_t pointers if good. 3585 */ 3586 if (*argsz != sizeof(arg)) 3587 return -EINVAL; 3588 if (copy_from_user(&arg, argp, sizeof(arg))) 3589 return -EFAULT; 3590 if (arg.pad) 3591 return -EINVAL; 3592 *sig = u64_to_user_ptr(arg.sigmask); 3593 *argsz = arg.sigmask_sz; 3594 *ts = u64_to_user_ptr(arg.ts); 3595 return 0; 3596 } 3597 3598 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3599 u32, min_complete, u32, flags, const void __user *, argp, 3600 size_t, argsz) 3601 { 3602 struct io_ring_ctx *ctx; 3603 struct file *file; 3604 long ret; 3605 3606 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3607 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3608 IORING_ENTER_REGISTERED_RING))) 3609 return -EINVAL; 3610 3611 /* 3612 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3613 * need only dereference our task private array to find it. 3614 */ 3615 if (flags & IORING_ENTER_REGISTERED_RING) { 3616 struct io_uring_task *tctx = current->io_uring; 3617 3618 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3619 return -EINVAL; 3620 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3621 file = tctx->registered_rings[fd]; 3622 if (unlikely(!file)) 3623 return -EBADF; 3624 } else { 3625 file = fget(fd); 3626 if (unlikely(!file)) 3627 return -EBADF; 3628 ret = -EOPNOTSUPP; 3629 if (unlikely(!io_is_uring_fops(file))) 3630 goto out; 3631 } 3632 3633 ctx = file->private_data; 3634 ret = -EBADFD; 3635 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3636 goto out; 3637 3638 /* 3639 * For SQ polling, the thread will do all submissions and completions. 3640 * Just return the requested submit count, and wake the thread if 3641 * we were asked to. 3642 */ 3643 ret = 0; 3644 if (ctx->flags & IORING_SETUP_SQPOLL) { 3645 io_cqring_overflow_flush(ctx); 3646 3647 if (unlikely(ctx->sq_data->thread == NULL)) { 3648 ret = -EOWNERDEAD; 3649 goto out; 3650 } 3651 if (flags & IORING_ENTER_SQ_WAKEUP) 3652 wake_up(&ctx->sq_data->wait); 3653 if (flags & IORING_ENTER_SQ_WAIT) 3654 io_sqpoll_wait_sq(ctx); 3655 3656 ret = to_submit; 3657 } else if (to_submit) { 3658 ret = io_uring_add_tctx_node(ctx); 3659 if (unlikely(ret)) 3660 goto out; 3661 3662 mutex_lock(&ctx->uring_lock); 3663 ret = io_submit_sqes(ctx, to_submit); 3664 if (ret != to_submit) { 3665 mutex_unlock(&ctx->uring_lock); 3666 goto out; 3667 } 3668 if (flags & IORING_ENTER_GETEVENTS) { 3669 if (ctx->syscall_iopoll) 3670 goto iopoll_locked; 3671 /* 3672 * Ignore errors, we'll soon call io_cqring_wait() and 3673 * it should handle ownership problems if any. 3674 */ 3675 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3676 (void)io_run_local_work_locked(ctx, min_complete); 3677 } 3678 mutex_unlock(&ctx->uring_lock); 3679 } 3680 3681 if (flags & IORING_ENTER_GETEVENTS) { 3682 int ret2; 3683 3684 if (ctx->syscall_iopoll) { 3685 /* 3686 * We disallow the app entering submit/complete with 3687 * polling, but we still need to lock the ring to 3688 * prevent racing with polled issue that got punted to 3689 * a workqueue. 3690 */ 3691 mutex_lock(&ctx->uring_lock); 3692 iopoll_locked: 3693 ret2 = io_validate_ext_arg(flags, argp, argsz); 3694 if (likely(!ret2)) { 3695 min_complete = min(min_complete, 3696 ctx->cq_entries); 3697 ret2 = io_iopoll_check(ctx, min_complete); 3698 } 3699 mutex_unlock(&ctx->uring_lock); 3700 } else { 3701 const sigset_t __user *sig; 3702 struct __kernel_timespec __user *ts; 3703 3704 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3705 if (likely(!ret2)) { 3706 min_complete = min(min_complete, 3707 ctx->cq_entries); 3708 ret2 = io_cqring_wait(ctx, min_complete, sig, 3709 argsz, ts); 3710 } 3711 } 3712 3713 if (!ret) { 3714 ret = ret2; 3715 3716 /* 3717 * EBADR indicates that one or more CQE were dropped. 3718 * Once the user has been informed we can clear the bit 3719 * as they are obviously ok with those drops. 3720 */ 3721 if (unlikely(ret2 == -EBADR)) 3722 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3723 &ctx->check_cq); 3724 } 3725 } 3726 out: 3727 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3728 fput(file); 3729 return ret; 3730 } 3731 3732 static const struct file_operations io_uring_fops = { 3733 .release = io_uring_release, 3734 .mmap = io_uring_mmap, 3735 #ifndef CONFIG_MMU 3736 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3737 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3738 #else 3739 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3740 #endif 3741 .poll = io_uring_poll, 3742 #ifdef CONFIG_PROC_FS 3743 .show_fdinfo = io_uring_show_fdinfo, 3744 #endif 3745 }; 3746 3747 bool io_is_uring_fops(struct file *file) 3748 { 3749 return file->f_op == &io_uring_fops; 3750 } 3751 3752 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3753 struct io_uring_params *p) 3754 { 3755 struct io_rings *rings; 3756 size_t size, sq_array_offset; 3757 void *ptr; 3758 3759 /* make sure these are sane, as we already accounted them */ 3760 ctx->sq_entries = p->sq_entries; 3761 ctx->cq_entries = p->cq_entries; 3762 3763 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3764 if (size == SIZE_MAX) 3765 return -EOVERFLOW; 3766 3767 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3768 rings = io_mem_alloc(size); 3769 else 3770 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3771 3772 if (IS_ERR(rings)) 3773 return PTR_ERR(rings); 3774 3775 ctx->rings = rings; 3776 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3777 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3778 rings->sq_ring_mask = p->sq_entries - 1; 3779 rings->cq_ring_mask = p->cq_entries - 1; 3780 rings->sq_ring_entries = p->sq_entries; 3781 rings->cq_ring_entries = p->cq_entries; 3782 3783 if (p->flags & IORING_SETUP_SQE128) 3784 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3785 else 3786 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3787 if (size == SIZE_MAX) { 3788 io_rings_free(ctx); 3789 return -EOVERFLOW; 3790 } 3791 3792 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3793 ptr = io_mem_alloc(size); 3794 else 3795 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3796 3797 if (IS_ERR(ptr)) { 3798 io_rings_free(ctx); 3799 return PTR_ERR(ptr); 3800 } 3801 3802 ctx->sq_sqes = ptr; 3803 return 0; 3804 } 3805 3806 static int io_uring_install_fd(struct file *file) 3807 { 3808 int fd; 3809 3810 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3811 if (fd < 0) 3812 return fd; 3813 fd_install(fd, file); 3814 return fd; 3815 } 3816 3817 /* 3818 * Allocate an anonymous fd, this is what constitutes the application 3819 * visible backing of an io_uring instance. The application mmaps this 3820 * fd to gain access to the SQ/CQ ring details. 3821 */ 3822 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3823 { 3824 /* Create a new inode so that the LSM can block the creation. */ 3825 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3826 O_RDWR | O_CLOEXEC, NULL); 3827 } 3828 3829 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3830 struct io_uring_params __user *params) 3831 { 3832 struct io_ring_ctx *ctx; 3833 struct io_uring_task *tctx; 3834 struct file *file; 3835 int ret; 3836 3837 if (!entries) 3838 return -EINVAL; 3839 if (entries > IORING_MAX_ENTRIES) { 3840 if (!(p->flags & IORING_SETUP_CLAMP)) 3841 return -EINVAL; 3842 entries = IORING_MAX_ENTRIES; 3843 } 3844 3845 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3846 && !(p->flags & IORING_SETUP_NO_MMAP)) 3847 return -EINVAL; 3848 3849 /* 3850 * Use twice as many entries for the CQ ring. It's possible for the 3851 * application to drive a higher depth than the size of the SQ ring, 3852 * since the sqes are only used at submission time. This allows for 3853 * some flexibility in overcommitting a bit. If the application has 3854 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3855 * of CQ ring entries manually. 3856 */ 3857 p->sq_entries = roundup_pow_of_two(entries); 3858 if (p->flags & IORING_SETUP_CQSIZE) { 3859 /* 3860 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3861 * to a power-of-two, if it isn't already. We do NOT impose 3862 * any cq vs sq ring sizing. 3863 */ 3864 if (!p->cq_entries) 3865 return -EINVAL; 3866 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3867 if (!(p->flags & IORING_SETUP_CLAMP)) 3868 return -EINVAL; 3869 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3870 } 3871 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3872 if (p->cq_entries < p->sq_entries) 3873 return -EINVAL; 3874 } else { 3875 p->cq_entries = 2 * p->sq_entries; 3876 } 3877 3878 ctx = io_ring_ctx_alloc(p); 3879 if (!ctx) 3880 return -ENOMEM; 3881 3882 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3883 !(ctx->flags & IORING_SETUP_IOPOLL) && 3884 !(ctx->flags & IORING_SETUP_SQPOLL)) 3885 ctx->task_complete = true; 3886 3887 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3888 ctx->lockless_cq = true; 3889 3890 /* 3891 * lazy poll_wq activation relies on ->task_complete for synchronisation 3892 * purposes, see io_activate_pollwq() 3893 */ 3894 if (!ctx->task_complete) 3895 ctx->poll_activated = true; 3896 3897 /* 3898 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3899 * space applications don't need to do io completion events 3900 * polling again, they can rely on io_sq_thread to do polling 3901 * work, which can reduce cpu usage and uring_lock contention. 3902 */ 3903 if (ctx->flags & IORING_SETUP_IOPOLL && 3904 !(ctx->flags & IORING_SETUP_SQPOLL)) 3905 ctx->syscall_iopoll = 1; 3906 3907 ctx->compat = in_compat_syscall(); 3908 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3909 ctx->user = get_uid(current_user()); 3910 3911 /* 3912 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3913 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3914 */ 3915 ret = -EINVAL; 3916 if (ctx->flags & IORING_SETUP_SQPOLL) { 3917 /* IPI related flags don't make sense with SQPOLL */ 3918 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3919 IORING_SETUP_TASKRUN_FLAG | 3920 IORING_SETUP_DEFER_TASKRUN)) 3921 goto err; 3922 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3923 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3924 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3925 } else { 3926 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3927 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3928 goto err; 3929 ctx->notify_method = TWA_SIGNAL; 3930 } 3931 3932 /* 3933 * For DEFER_TASKRUN we require the completion task to be the same as the 3934 * submission task. This implies that there is only one submitter, so enforce 3935 * that. 3936 */ 3937 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3938 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3939 goto err; 3940 } 3941 3942 /* 3943 * This is just grabbed for accounting purposes. When a process exits, 3944 * the mm is exited and dropped before the files, hence we need to hang 3945 * on to this mm purely for the purposes of being able to unaccount 3946 * memory (locked/pinned vm). It's not used for anything else. 3947 */ 3948 mmgrab(current->mm); 3949 ctx->mm_account = current->mm; 3950 3951 ret = io_allocate_scq_urings(ctx, p); 3952 if (ret) 3953 goto err; 3954 3955 ret = io_sq_offload_create(ctx, p); 3956 if (ret) 3957 goto err; 3958 3959 ret = io_rsrc_init(ctx); 3960 if (ret) 3961 goto err; 3962 3963 p->sq_off.head = offsetof(struct io_rings, sq.head); 3964 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3965 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3966 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3967 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3968 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3969 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3970 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3971 p->sq_off.resv1 = 0; 3972 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3973 p->sq_off.user_addr = 0; 3974 3975 p->cq_off.head = offsetof(struct io_rings, cq.head); 3976 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3977 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3978 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3979 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3980 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3981 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3982 p->cq_off.resv1 = 0; 3983 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3984 p->cq_off.user_addr = 0; 3985 3986 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3987 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3988 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3989 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3990 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3991 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3992 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3993 3994 if (copy_to_user(params, p, sizeof(*p))) { 3995 ret = -EFAULT; 3996 goto err; 3997 } 3998 3999 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4000 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4001 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4002 4003 file = io_uring_get_file(ctx); 4004 if (IS_ERR(file)) { 4005 ret = PTR_ERR(file); 4006 goto err; 4007 } 4008 4009 ret = __io_uring_add_tctx_node(ctx); 4010 if (ret) 4011 goto err_fput; 4012 tctx = current->io_uring; 4013 4014 /* 4015 * Install ring fd as the very last thing, so we don't risk someone 4016 * having closed it before we finish setup 4017 */ 4018 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4019 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4020 else 4021 ret = io_uring_install_fd(file); 4022 if (ret < 0) 4023 goto err_fput; 4024 4025 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4026 return ret; 4027 err: 4028 io_ring_ctx_wait_and_kill(ctx); 4029 return ret; 4030 err_fput: 4031 fput(file); 4032 return ret; 4033 } 4034 4035 /* 4036 * Sets up an aio uring context, and returns the fd. Applications asks for a 4037 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4038 * params structure passed in. 4039 */ 4040 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4041 { 4042 struct io_uring_params p; 4043 int i; 4044 4045 if (copy_from_user(&p, params, sizeof(p))) 4046 return -EFAULT; 4047 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4048 if (p.resv[i]) 4049 return -EINVAL; 4050 } 4051 4052 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4053 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4054 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4055 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4056 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4057 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4058 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4059 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4060 IORING_SETUP_NO_SQARRAY)) 4061 return -EINVAL; 4062 4063 return io_uring_create(entries, &p, params); 4064 } 4065 4066 static inline bool io_uring_allowed(void) 4067 { 4068 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4069 kgid_t io_uring_group; 4070 4071 if (disabled == 2) 4072 return false; 4073 4074 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4075 return true; 4076 4077 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4078 if (!gid_valid(io_uring_group)) 4079 return false; 4080 4081 return in_group_p(io_uring_group); 4082 } 4083 4084 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4085 struct io_uring_params __user *, params) 4086 { 4087 if (!io_uring_allowed()) 4088 return -EPERM; 4089 4090 return io_uring_setup(entries, params); 4091 } 4092 4093 static int __init io_uring_init(void) 4094 { 4095 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4096 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4097 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4098 } while (0) 4099 4100 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4101 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4102 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4103 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4104 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4105 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4106 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4107 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4108 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4109 BUILD_BUG_SQE_ELEM(8, __u64, off); 4110 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4111 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4112 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4113 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4114 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4115 BUILD_BUG_SQE_ELEM(24, __u32, len); 4116 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4117 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4118 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4119 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4120 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4121 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4122 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4123 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4124 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4125 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4126 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4127 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4128 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4129 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4130 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4131 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4132 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4133 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4134 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4135 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4136 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4137 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4138 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4139 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4140 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4141 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4142 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4143 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4144 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4145 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4146 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4147 4148 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4149 sizeof(struct io_uring_rsrc_update)); 4150 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4151 sizeof(struct io_uring_rsrc_update2)); 4152 4153 /* ->buf_index is u16 */ 4154 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4155 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4156 offsetof(struct io_uring_buf_ring, tail)); 4157 4158 /* should fit into one byte */ 4159 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4160 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4161 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4162 4163 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 4164 4165 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4166 4167 /* top 8bits are for internal use */ 4168 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 4169 4170 io_uring_optable_init(); 4171 4172 /* 4173 * Allow user copy in the per-command field, which starts after the 4174 * file in io_kiocb and until the opcode field. The openat2 handling 4175 * requires copying in user memory into the io_kiocb object in that 4176 * range, and HARDENED_USERCOPY will complain if we haven't 4177 * correctly annotated this range. 4178 */ 4179 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4180 sizeof(struct io_kiocb), 0, 4181 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4182 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4183 offsetof(struct io_kiocb, cmd.data), 4184 sizeof_field(struct io_kiocb, cmd.data), NULL); 4185 io_buf_cachep = KMEM_CACHE(io_buffer, 4186 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 4187 4188 #ifdef CONFIG_SYSCTL 4189 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4190 #endif 4191 4192 return 0; 4193 }; 4194 __initcall(io_uring_init); 4195