1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "alloc_cache.h" 98 99 #define IORING_MAX_ENTRIES 32768 100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 101 102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 103 IORING_REGISTER_LAST + IORING_OP_LAST) 104 105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 106 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 107 108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 110 111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 113 REQ_F_ASYNC_DATA) 114 115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 116 IO_REQ_CLEAN_FLAGS) 117 118 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 119 120 #define IO_COMPL_BATCH 32 121 #define IO_REQ_ALLOC_BATCH 8 122 123 enum { 124 IO_CHECK_CQ_OVERFLOW_BIT, 125 IO_CHECK_CQ_DROPPED_BIT, 126 }; 127 128 enum { 129 IO_EVENTFD_OP_SIGNAL_BIT, 130 IO_EVENTFD_OP_FREE_BIT, 131 }; 132 133 struct io_defer_entry { 134 struct list_head list; 135 struct io_kiocb *req; 136 u32 seq; 137 }; 138 139 /* requests with any of those set should undergo io_disarm_next() */ 140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 142 143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 144 struct task_struct *task, 145 bool cancel_all); 146 147 static void io_dismantle_req(struct io_kiocb *req); 148 static void io_clean_op(struct io_kiocb *req); 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 153 static struct kmem_cache *req_cachep; 154 155 struct sock *io_uring_get_socket(struct file *file) 156 { 157 #if defined(CONFIG_UNIX) 158 if (io_is_uring_fops(file)) { 159 struct io_ring_ctx *ctx = file->private_data; 160 161 return ctx->ring_sock->sk; 162 } 163 #endif 164 return NULL; 165 } 166 EXPORT_SYMBOL(io_uring_get_socket); 167 168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 169 { 170 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 171 __io_submit_flush_completions(ctx); 172 } 173 174 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 175 { 176 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 177 } 178 179 static bool io_match_linked(struct io_kiocb *head) 180 { 181 struct io_kiocb *req; 182 183 io_for_each_link(req, head) { 184 if (req->flags & REQ_F_INFLIGHT) 185 return true; 186 } 187 return false; 188 } 189 190 /* 191 * As io_match_task() but protected against racing with linked timeouts. 192 * User must not hold timeout_lock. 193 */ 194 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 195 bool cancel_all) 196 { 197 bool matched; 198 199 if (task && head->task != task) 200 return false; 201 if (cancel_all) 202 return true; 203 204 if (head->flags & REQ_F_LINK_TIMEOUT) { 205 struct io_ring_ctx *ctx = head->ctx; 206 207 /* protect against races with linked timeouts */ 208 spin_lock_irq(&ctx->timeout_lock); 209 matched = io_match_linked(head); 210 spin_unlock_irq(&ctx->timeout_lock); 211 } else { 212 matched = io_match_linked(head); 213 } 214 return matched; 215 } 216 217 static inline void req_fail_link_node(struct io_kiocb *req, int res) 218 { 219 req_set_fail(req); 220 io_req_set_res(req, res, 0); 221 } 222 223 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 224 { 225 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 226 } 227 228 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 229 { 230 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 231 232 complete(&ctx->ref_comp); 233 } 234 235 static __cold void io_fallback_req_func(struct work_struct *work) 236 { 237 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 238 fallback_work.work); 239 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 240 struct io_kiocb *req, *tmp; 241 bool locked = false; 242 243 percpu_ref_get(&ctx->refs); 244 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 245 req->io_task_work.func(req, &locked); 246 247 if (locked) { 248 io_submit_flush_completions(ctx); 249 mutex_unlock(&ctx->uring_lock); 250 } 251 percpu_ref_put(&ctx->refs); 252 } 253 254 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 255 { 256 unsigned hash_buckets = 1U << bits; 257 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 258 259 table->hbs = kmalloc(hash_size, GFP_KERNEL); 260 if (!table->hbs) 261 return -ENOMEM; 262 263 table->hash_bits = bits; 264 init_hash_table(table, hash_buckets); 265 return 0; 266 } 267 268 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 269 { 270 struct io_ring_ctx *ctx; 271 int hash_bits; 272 273 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 274 if (!ctx) 275 return NULL; 276 277 xa_init(&ctx->io_bl_xa); 278 279 /* 280 * Use 5 bits less than the max cq entries, that should give us around 281 * 32 entries per hash list if totally full and uniformly spread, but 282 * don't keep too many buckets to not overconsume memory. 283 */ 284 hash_bits = ilog2(p->cq_entries) - 5; 285 hash_bits = clamp(hash_bits, 1, 8); 286 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 287 goto err; 288 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 289 goto err; 290 291 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 292 if (!ctx->dummy_ubuf) 293 goto err; 294 /* set invalid range, so io_import_fixed() fails meeting it */ 295 ctx->dummy_ubuf->ubuf = -1UL; 296 297 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 298 0, GFP_KERNEL)) 299 goto err; 300 301 ctx->flags = p->flags; 302 init_waitqueue_head(&ctx->sqo_sq_wait); 303 INIT_LIST_HEAD(&ctx->sqd_list); 304 INIT_LIST_HEAD(&ctx->cq_overflow_list); 305 INIT_LIST_HEAD(&ctx->io_buffers_cache); 306 io_alloc_cache_init(&ctx->apoll_cache); 307 io_alloc_cache_init(&ctx->netmsg_cache); 308 init_completion(&ctx->ref_comp); 309 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 310 mutex_init(&ctx->uring_lock); 311 init_waitqueue_head(&ctx->cq_wait); 312 spin_lock_init(&ctx->completion_lock); 313 spin_lock_init(&ctx->timeout_lock); 314 INIT_WQ_LIST(&ctx->iopoll_list); 315 INIT_LIST_HEAD(&ctx->io_buffers_pages); 316 INIT_LIST_HEAD(&ctx->io_buffers_comp); 317 INIT_LIST_HEAD(&ctx->defer_list); 318 INIT_LIST_HEAD(&ctx->timeout_list); 319 INIT_LIST_HEAD(&ctx->ltimeout_list); 320 spin_lock_init(&ctx->rsrc_ref_lock); 321 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 322 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); 323 init_llist_head(&ctx->rsrc_put_llist); 324 init_llist_head(&ctx->work_llist); 325 INIT_LIST_HEAD(&ctx->tctx_list); 326 ctx->submit_state.free_list.next = NULL; 327 INIT_WQ_LIST(&ctx->locked_free_list); 328 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 329 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 330 return ctx; 331 err: 332 kfree(ctx->dummy_ubuf); 333 kfree(ctx->cancel_table.hbs); 334 kfree(ctx->cancel_table_locked.hbs); 335 kfree(ctx->io_bl); 336 xa_destroy(&ctx->io_bl_xa); 337 kfree(ctx); 338 return NULL; 339 } 340 341 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 342 { 343 struct io_rings *r = ctx->rings; 344 345 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 346 ctx->cq_extra--; 347 } 348 349 static bool req_need_defer(struct io_kiocb *req, u32 seq) 350 { 351 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 352 struct io_ring_ctx *ctx = req->ctx; 353 354 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 355 } 356 357 return false; 358 } 359 360 static inline void io_req_track_inflight(struct io_kiocb *req) 361 { 362 if (!(req->flags & REQ_F_INFLIGHT)) { 363 req->flags |= REQ_F_INFLIGHT; 364 atomic_inc(&req->task->io_uring->inflight_tracked); 365 } 366 } 367 368 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 369 { 370 if (WARN_ON_ONCE(!req->link)) 371 return NULL; 372 373 req->flags &= ~REQ_F_ARM_LTIMEOUT; 374 req->flags |= REQ_F_LINK_TIMEOUT; 375 376 /* linked timeouts should have two refs once prep'ed */ 377 io_req_set_refcount(req); 378 __io_req_set_refcount(req->link, 2); 379 return req->link; 380 } 381 382 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 383 { 384 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 385 return NULL; 386 return __io_prep_linked_timeout(req); 387 } 388 389 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 390 { 391 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 392 } 393 394 static inline void io_arm_ltimeout(struct io_kiocb *req) 395 { 396 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 397 __io_arm_ltimeout(req); 398 } 399 400 static void io_prep_async_work(struct io_kiocb *req) 401 { 402 const struct io_op_def *def = &io_op_defs[req->opcode]; 403 struct io_ring_ctx *ctx = req->ctx; 404 405 if (!(req->flags & REQ_F_CREDS)) { 406 req->flags |= REQ_F_CREDS; 407 req->creds = get_current_cred(); 408 } 409 410 req->work.list.next = NULL; 411 req->work.flags = 0; 412 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 413 if (req->flags & REQ_F_FORCE_ASYNC) 414 req->work.flags |= IO_WQ_WORK_CONCURRENT; 415 416 if (req->file && !io_req_ffs_set(req)) 417 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 418 419 if (req->flags & REQ_F_ISREG) { 420 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) 421 io_wq_hash_work(&req->work, file_inode(req->file)); 422 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 423 if (def->unbound_nonreg_file) 424 req->work.flags |= IO_WQ_WORK_UNBOUND; 425 } 426 } 427 428 static void io_prep_async_link(struct io_kiocb *req) 429 { 430 struct io_kiocb *cur; 431 432 if (req->flags & REQ_F_LINK_TIMEOUT) { 433 struct io_ring_ctx *ctx = req->ctx; 434 435 spin_lock_irq(&ctx->timeout_lock); 436 io_for_each_link(cur, req) 437 io_prep_async_work(cur); 438 spin_unlock_irq(&ctx->timeout_lock); 439 } else { 440 io_for_each_link(cur, req) 441 io_prep_async_work(cur); 442 } 443 } 444 445 void io_queue_iowq(struct io_kiocb *req, bool *dont_use) 446 { 447 struct io_kiocb *link = io_prep_linked_timeout(req); 448 struct io_uring_task *tctx = req->task->io_uring; 449 450 BUG_ON(!tctx); 451 BUG_ON(!tctx->io_wq); 452 453 /* init ->work of the whole link before punting */ 454 io_prep_async_link(req); 455 456 /* 457 * Not expected to happen, but if we do have a bug where this _can_ 458 * happen, catch it here and ensure the request is marked as 459 * canceled. That will make io-wq go through the usual work cancel 460 * procedure rather than attempt to run this request (or create a new 461 * worker for it). 462 */ 463 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 464 req->work.flags |= IO_WQ_WORK_CANCEL; 465 466 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 467 io_wq_enqueue(tctx->io_wq, &req->work); 468 if (link) 469 io_queue_linked_timeout(link); 470 } 471 472 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 473 { 474 while (!list_empty(&ctx->defer_list)) { 475 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 476 struct io_defer_entry, list); 477 478 if (req_need_defer(de->req, de->seq)) 479 break; 480 list_del_init(&de->list); 481 io_req_task_queue(de->req); 482 kfree(de); 483 } 484 } 485 486 487 static void io_eventfd_ops(struct rcu_head *rcu) 488 { 489 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 490 int ops = atomic_xchg(&ev_fd->ops, 0); 491 492 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 493 eventfd_signal(ev_fd->cq_ev_fd, 1); 494 495 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 496 * ordering in a race but if references are 0 we know we have to free 497 * it regardless. 498 */ 499 if (atomic_dec_and_test(&ev_fd->refs)) { 500 eventfd_ctx_put(ev_fd->cq_ev_fd); 501 kfree(ev_fd); 502 } 503 } 504 505 static void io_eventfd_signal(struct io_ring_ctx *ctx) 506 { 507 struct io_ev_fd *ev_fd = NULL; 508 509 rcu_read_lock(); 510 /* 511 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 512 * and eventfd_signal 513 */ 514 ev_fd = rcu_dereference(ctx->io_ev_fd); 515 516 /* 517 * Check again if ev_fd exists incase an io_eventfd_unregister call 518 * completed between the NULL check of ctx->io_ev_fd at the start of 519 * the function and rcu_read_lock. 520 */ 521 if (unlikely(!ev_fd)) 522 goto out; 523 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 524 goto out; 525 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 526 goto out; 527 528 if (likely(eventfd_signal_allowed())) { 529 eventfd_signal(ev_fd->cq_ev_fd, 1); 530 } else { 531 atomic_inc(&ev_fd->refs); 532 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 533 call_rcu(&ev_fd->rcu, io_eventfd_ops); 534 else 535 atomic_dec(&ev_fd->refs); 536 } 537 538 out: 539 rcu_read_unlock(); 540 } 541 542 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 543 { 544 bool skip; 545 546 spin_lock(&ctx->completion_lock); 547 548 /* 549 * Eventfd should only get triggered when at least one event has been 550 * posted. Some applications rely on the eventfd notification count 551 * only changing IFF a new CQE has been added to the CQ ring. There's 552 * no depedency on 1:1 relationship between how many times this 553 * function is called (and hence the eventfd count) and number of CQEs 554 * posted to the CQ ring. 555 */ 556 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 557 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 558 spin_unlock(&ctx->completion_lock); 559 if (skip) 560 return; 561 562 io_eventfd_signal(ctx); 563 } 564 565 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 566 { 567 if (ctx->off_timeout_used || ctx->drain_active) { 568 spin_lock(&ctx->completion_lock); 569 if (ctx->off_timeout_used) 570 io_flush_timeouts(ctx); 571 if (ctx->drain_active) 572 io_queue_deferred(ctx); 573 spin_unlock(&ctx->completion_lock); 574 } 575 if (ctx->has_evfd) 576 io_eventfd_flush_signal(ctx); 577 } 578 579 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx) 580 { 581 io_commit_cqring_flush(ctx); 582 io_cqring_wake(ctx); 583 } 584 585 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 586 __releases(ctx->completion_lock) 587 { 588 io_commit_cqring(ctx); 589 spin_unlock(&ctx->completion_lock); 590 io_cqring_ev_posted(ctx); 591 } 592 593 void io_cq_unlock_post(struct io_ring_ctx *ctx) 594 { 595 __io_cq_unlock_post(ctx); 596 } 597 598 /* Returns true if there are no backlogged entries after the flush */ 599 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force) 600 { 601 bool all_flushed; 602 size_t cqe_size = sizeof(struct io_uring_cqe); 603 604 if (!force && __io_cqring_events(ctx) == ctx->cq_entries) 605 return false; 606 607 if (ctx->flags & IORING_SETUP_CQE32) 608 cqe_size <<= 1; 609 610 io_cq_lock(ctx); 611 while (!list_empty(&ctx->cq_overflow_list)) { 612 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 613 struct io_overflow_cqe *ocqe; 614 615 if (!cqe && !force) 616 break; 617 ocqe = list_first_entry(&ctx->cq_overflow_list, 618 struct io_overflow_cqe, list); 619 if (cqe) 620 memcpy(cqe, &ocqe->cqe, cqe_size); 621 else 622 io_account_cq_overflow(ctx); 623 624 list_del(&ocqe->list); 625 kfree(ocqe); 626 } 627 628 all_flushed = list_empty(&ctx->cq_overflow_list); 629 if (all_flushed) { 630 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 631 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 632 } 633 634 io_cq_unlock_post(ctx); 635 return all_flushed; 636 } 637 638 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx) 639 { 640 bool ret = true; 641 642 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 643 /* iopoll syncs against uring_lock, not completion_lock */ 644 if (ctx->flags & IORING_SETUP_IOPOLL) 645 mutex_lock(&ctx->uring_lock); 646 ret = __io_cqring_overflow_flush(ctx, false); 647 if (ctx->flags & IORING_SETUP_IOPOLL) 648 mutex_unlock(&ctx->uring_lock); 649 } 650 651 return ret; 652 } 653 654 void __io_put_task(struct task_struct *task, int nr) 655 { 656 struct io_uring_task *tctx = task->io_uring; 657 658 percpu_counter_sub(&tctx->inflight, nr); 659 if (unlikely(atomic_read(&tctx->in_idle))) 660 wake_up(&tctx->wait); 661 put_task_struct_many(task, nr); 662 } 663 664 void io_task_refs_refill(struct io_uring_task *tctx) 665 { 666 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 667 668 percpu_counter_add(&tctx->inflight, refill); 669 refcount_add(refill, ¤t->usage); 670 tctx->cached_refs += refill; 671 } 672 673 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 674 { 675 struct io_uring_task *tctx = task->io_uring; 676 unsigned int refs = tctx->cached_refs; 677 678 if (refs) { 679 tctx->cached_refs = 0; 680 percpu_counter_sub(&tctx->inflight, refs); 681 put_task_struct_many(task, refs); 682 } 683 } 684 685 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 686 s32 res, u32 cflags, u64 extra1, u64 extra2) 687 { 688 struct io_overflow_cqe *ocqe; 689 size_t ocq_size = sizeof(struct io_overflow_cqe); 690 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 691 692 if (is_cqe32) 693 ocq_size += sizeof(struct io_uring_cqe); 694 695 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 696 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 697 if (!ocqe) { 698 /* 699 * If we're in ring overflow flush mode, or in task cancel mode, 700 * or cannot allocate an overflow entry, then we need to drop it 701 * on the floor. 702 */ 703 io_account_cq_overflow(ctx); 704 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 705 return false; 706 } 707 if (list_empty(&ctx->cq_overflow_list)) { 708 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 709 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 710 711 } 712 ocqe->cqe.user_data = user_data; 713 ocqe->cqe.res = res; 714 ocqe->cqe.flags = cflags; 715 if (is_cqe32) { 716 ocqe->cqe.big_cqe[0] = extra1; 717 ocqe->cqe.big_cqe[1] = extra2; 718 } 719 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 720 return true; 721 } 722 723 bool io_req_cqe_overflow(struct io_kiocb *req) 724 { 725 if (!(req->flags & REQ_F_CQE32_INIT)) { 726 req->extra1 = 0; 727 req->extra2 = 0; 728 } 729 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 730 req->cqe.res, req->cqe.flags, 731 req->extra1, req->extra2); 732 } 733 734 /* 735 * writes to the cq entry need to come after reading head; the 736 * control dependency is enough as we're using WRITE_ONCE to 737 * fill the cq entry 738 */ 739 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 740 { 741 struct io_rings *rings = ctx->rings; 742 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 743 unsigned int free, queued, len; 744 745 /* 746 * Posting into the CQ when there are pending overflowed CQEs may break 747 * ordering guarantees, which will affect links, F_MORE users and more. 748 * Force overflow the completion. 749 */ 750 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 751 return NULL; 752 753 /* userspace may cheat modifying the tail, be safe and do min */ 754 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 755 free = ctx->cq_entries - queued; 756 /* we need a contiguous range, limit based on the current array offset */ 757 len = min(free, ctx->cq_entries - off); 758 if (!len) 759 return NULL; 760 761 if (ctx->flags & IORING_SETUP_CQE32) { 762 off <<= 1; 763 len <<= 1; 764 } 765 766 ctx->cqe_cached = &rings->cqes[off]; 767 ctx->cqe_sentinel = ctx->cqe_cached + len; 768 769 ctx->cached_cq_tail++; 770 ctx->cqe_cached++; 771 if (ctx->flags & IORING_SETUP_CQE32) 772 ctx->cqe_cached++; 773 return &rings->cqes[off]; 774 } 775 776 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 777 bool allow_overflow) 778 { 779 struct io_uring_cqe *cqe; 780 781 ctx->cq_extra++; 782 783 /* 784 * If we can't get a cq entry, userspace overflowed the 785 * submission (by quite a lot). Increment the overflow count in 786 * the ring. 787 */ 788 cqe = io_get_cqe(ctx); 789 if (likely(cqe)) { 790 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 791 792 WRITE_ONCE(cqe->user_data, user_data); 793 WRITE_ONCE(cqe->res, res); 794 WRITE_ONCE(cqe->flags, cflags); 795 796 if (ctx->flags & IORING_SETUP_CQE32) { 797 WRITE_ONCE(cqe->big_cqe[0], 0); 798 WRITE_ONCE(cqe->big_cqe[1], 0); 799 } 800 return true; 801 } 802 803 if (allow_overflow) 804 return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 805 806 return false; 807 } 808 809 bool io_post_aux_cqe(struct io_ring_ctx *ctx, 810 u64 user_data, s32 res, u32 cflags, 811 bool allow_overflow) 812 { 813 bool filled; 814 815 io_cq_lock(ctx); 816 filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow); 817 io_cq_unlock_post(ctx); 818 return filled; 819 } 820 821 static void __io_req_complete_put(struct io_kiocb *req) 822 { 823 /* 824 * If we're the last reference to this request, add to our locked 825 * free_list cache. 826 */ 827 if (req_ref_put_and_test(req)) { 828 struct io_ring_ctx *ctx = req->ctx; 829 830 if (req->flags & IO_REQ_LINK_FLAGS) { 831 if (req->flags & IO_DISARM_MASK) 832 io_disarm_next(req); 833 if (req->link) { 834 io_req_task_queue(req->link); 835 req->link = NULL; 836 } 837 } 838 io_req_put_rsrc(req); 839 /* 840 * Selected buffer deallocation in io_clean_op() assumes that 841 * we don't hold ->completion_lock. Clean them here to avoid 842 * deadlocks. 843 */ 844 io_put_kbuf_comp(req); 845 io_dismantle_req(req); 846 io_put_task(req->task, 1); 847 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 848 ctx->locked_free_nr++; 849 } 850 } 851 852 void __io_req_complete_post(struct io_kiocb *req) 853 { 854 if (!(req->flags & REQ_F_CQE_SKIP)) 855 __io_fill_cqe_req(req->ctx, req); 856 __io_req_complete_put(req); 857 } 858 859 void io_req_complete_post(struct io_kiocb *req) 860 { 861 struct io_ring_ctx *ctx = req->ctx; 862 863 io_cq_lock(ctx); 864 __io_req_complete_post(req); 865 io_cq_unlock_post(ctx); 866 } 867 868 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags) 869 { 870 io_req_complete_post(req); 871 } 872 873 void io_req_complete_failed(struct io_kiocb *req, s32 res) 874 { 875 const struct io_op_def *def = &io_op_defs[req->opcode]; 876 877 req_set_fail(req); 878 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 879 if (def->fail) 880 def->fail(req); 881 io_req_complete_post(req); 882 } 883 884 /* 885 * Don't initialise the fields below on every allocation, but do that in 886 * advance and keep them valid across allocations. 887 */ 888 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 889 { 890 req->ctx = ctx; 891 req->link = NULL; 892 req->async_data = NULL; 893 /* not necessary, but safer to zero */ 894 req->cqe.res = 0; 895 } 896 897 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 898 struct io_submit_state *state) 899 { 900 spin_lock(&ctx->completion_lock); 901 wq_list_splice(&ctx->locked_free_list, &state->free_list); 902 ctx->locked_free_nr = 0; 903 spin_unlock(&ctx->completion_lock); 904 } 905 906 /* 907 * A request might get retired back into the request caches even before opcode 908 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 909 * Because of that, io_alloc_req() should be called only under ->uring_lock 910 * and with extra caution to not get a request that is still worked on. 911 */ 912 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 913 __must_hold(&ctx->uring_lock) 914 { 915 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 916 void *reqs[IO_REQ_ALLOC_BATCH]; 917 int ret, i; 918 919 /* 920 * If we have more than a batch's worth of requests in our IRQ side 921 * locked cache, grab the lock and move them over to our submission 922 * side cache. 923 */ 924 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 925 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 926 if (!io_req_cache_empty(ctx)) 927 return true; 928 } 929 930 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 931 932 /* 933 * Bulk alloc is all-or-nothing. If we fail to get a batch, 934 * retry single alloc to be on the safe side. 935 */ 936 if (unlikely(ret <= 0)) { 937 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 938 if (!reqs[0]) 939 return false; 940 ret = 1; 941 } 942 943 percpu_ref_get_many(&ctx->refs, ret); 944 for (i = 0; i < ret; i++) { 945 struct io_kiocb *req = reqs[i]; 946 947 io_preinit_req(req, ctx); 948 io_req_add_to_cache(req, ctx); 949 } 950 return true; 951 } 952 953 static inline void io_dismantle_req(struct io_kiocb *req) 954 { 955 unsigned int flags = req->flags; 956 957 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 958 io_clean_op(req); 959 if (!(flags & REQ_F_FIXED_FILE)) 960 io_put_file(req->file); 961 } 962 963 __cold void io_free_req(struct io_kiocb *req) 964 { 965 struct io_ring_ctx *ctx = req->ctx; 966 967 io_req_put_rsrc(req); 968 io_dismantle_req(req); 969 io_put_task(req->task, 1); 970 971 spin_lock(&ctx->completion_lock); 972 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 973 ctx->locked_free_nr++; 974 spin_unlock(&ctx->completion_lock); 975 } 976 977 static void __io_req_find_next_prep(struct io_kiocb *req) 978 { 979 struct io_ring_ctx *ctx = req->ctx; 980 981 io_cq_lock(ctx); 982 io_disarm_next(req); 983 io_cq_unlock_post(ctx); 984 } 985 986 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 987 { 988 struct io_kiocb *nxt; 989 990 /* 991 * If LINK is set, we have dependent requests in this chain. If we 992 * didn't fail this request, queue the first one up, moving any other 993 * dependencies to the next request. In case of failure, fail the rest 994 * of the chain. 995 */ 996 if (unlikely(req->flags & IO_DISARM_MASK)) 997 __io_req_find_next_prep(req); 998 nxt = req->link; 999 req->link = NULL; 1000 return nxt; 1001 } 1002 1003 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) 1004 { 1005 if (!ctx) 1006 return; 1007 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1008 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1009 if (*locked) { 1010 io_submit_flush_completions(ctx); 1011 mutex_unlock(&ctx->uring_lock); 1012 *locked = false; 1013 } 1014 percpu_ref_put(&ctx->refs); 1015 } 1016 1017 static unsigned int handle_tw_list(struct llist_node *node, 1018 struct io_ring_ctx **ctx, bool *locked, 1019 struct llist_node *last) 1020 { 1021 unsigned int count = 0; 1022 1023 while (node != last) { 1024 struct llist_node *next = node->next; 1025 struct io_kiocb *req = container_of(node, struct io_kiocb, 1026 io_task_work.node); 1027 1028 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1029 1030 if (req->ctx != *ctx) { 1031 ctx_flush_and_put(*ctx, locked); 1032 *ctx = req->ctx; 1033 /* if not contended, grab and improve batching */ 1034 *locked = mutex_trylock(&(*ctx)->uring_lock); 1035 percpu_ref_get(&(*ctx)->refs); 1036 } 1037 req->io_task_work.func(req, locked); 1038 node = next; 1039 count++; 1040 } 1041 1042 return count; 1043 } 1044 1045 /** 1046 * io_llist_xchg - swap all entries in a lock-less list 1047 * @head: the head of lock-less list to delete all entries 1048 * @new: new entry as the head of the list 1049 * 1050 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1051 * The order of entries returned is from the newest to the oldest added one. 1052 */ 1053 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1054 struct llist_node *new) 1055 { 1056 return xchg(&head->first, new); 1057 } 1058 1059 /** 1060 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1061 * @head: the head of lock-less list to delete all entries 1062 * @old: expected old value of the first entry of the list 1063 * @new: new entry as the head of the list 1064 * 1065 * perform a cmpxchg on the first entry of the list. 1066 */ 1067 1068 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1069 struct llist_node *old, 1070 struct llist_node *new) 1071 { 1072 return cmpxchg(&head->first, old, new); 1073 } 1074 1075 void tctx_task_work(struct callback_head *cb) 1076 { 1077 bool uring_locked = false; 1078 struct io_ring_ctx *ctx = NULL; 1079 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1080 task_work); 1081 struct llist_node fake = {}; 1082 struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake); 1083 unsigned int loops = 1; 1084 unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL); 1085 1086 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1087 while (node != &fake) { 1088 loops++; 1089 node = io_llist_xchg(&tctx->task_list, &fake); 1090 count += handle_tw_list(node, &ctx, &uring_locked, &fake); 1091 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1092 } 1093 1094 ctx_flush_and_put(ctx, &uring_locked); 1095 1096 /* relaxed read is enough as only the task itself sets ->in_idle */ 1097 if (unlikely(atomic_read(&tctx->in_idle))) 1098 io_uring_drop_tctx_refs(current); 1099 1100 trace_io_uring_task_work_run(tctx, count, loops); 1101 } 1102 1103 static void io_req_local_work_add(struct io_kiocb *req) 1104 { 1105 struct io_ring_ctx *ctx = req->ctx; 1106 1107 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) 1108 return; 1109 1110 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) { 1111 io_move_task_work_from_local(ctx); 1112 return; 1113 } 1114 1115 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1116 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1117 1118 if (ctx->has_evfd) 1119 io_eventfd_signal(ctx); 1120 io_cqring_wake(ctx); 1121 1122 } 1123 1124 static inline void __io_req_task_work_add(struct io_kiocb *req, bool allow_local) 1125 { 1126 struct io_uring_task *tctx = req->task->io_uring; 1127 struct io_ring_ctx *ctx = req->ctx; 1128 struct llist_node *node; 1129 1130 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1131 io_req_local_work_add(req); 1132 return; 1133 } 1134 1135 /* task_work already pending, we're done */ 1136 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1137 return; 1138 1139 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1140 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1141 1142 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1143 return; 1144 1145 node = llist_del_all(&tctx->task_list); 1146 1147 while (node) { 1148 req = container_of(node, struct io_kiocb, io_task_work.node); 1149 node = node->next; 1150 if (llist_add(&req->io_task_work.node, 1151 &req->ctx->fallback_llist)) 1152 schedule_delayed_work(&req->ctx->fallback_work, 1); 1153 } 1154 } 1155 1156 void io_req_task_work_add(struct io_kiocb *req) 1157 { 1158 __io_req_task_work_add(req, true); 1159 } 1160 1161 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1162 { 1163 struct llist_node *node; 1164 1165 node = llist_del_all(&ctx->work_llist); 1166 while (node) { 1167 struct io_kiocb *req = container_of(node, struct io_kiocb, 1168 io_task_work.node); 1169 1170 node = node->next; 1171 __io_req_task_work_add(req, false); 1172 } 1173 } 1174 1175 int __io_run_local_work(struct io_ring_ctx *ctx, bool locked) 1176 { 1177 struct llist_node *node; 1178 struct llist_node fake; 1179 struct llist_node *current_final = NULL; 1180 int ret; 1181 unsigned int loops = 1; 1182 1183 if (unlikely(ctx->submitter_task != current)) 1184 return -EEXIST; 1185 1186 node = io_llist_xchg(&ctx->work_llist, &fake); 1187 ret = 0; 1188 again: 1189 while (node != current_final) { 1190 struct llist_node *next = node->next; 1191 struct io_kiocb *req = container_of(node, struct io_kiocb, 1192 io_task_work.node); 1193 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1194 req->io_task_work.func(req, &locked); 1195 ret++; 1196 node = next; 1197 } 1198 1199 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1200 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1201 1202 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL); 1203 if (node != &fake) { 1204 loops++; 1205 current_final = &fake; 1206 node = io_llist_xchg(&ctx->work_llist, &fake); 1207 goto again; 1208 } 1209 1210 if (locked) 1211 io_submit_flush_completions(ctx); 1212 trace_io_uring_local_work_run(ctx, ret, loops); 1213 return ret; 1214 1215 } 1216 1217 int io_run_local_work(struct io_ring_ctx *ctx) 1218 { 1219 bool locked; 1220 int ret; 1221 1222 if (llist_empty(&ctx->work_llist)) 1223 return 0; 1224 1225 __set_current_state(TASK_RUNNING); 1226 locked = mutex_trylock(&ctx->uring_lock); 1227 ret = __io_run_local_work(ctx, locked); 1228 if (locked) 1229 mutex_unlock(&ctx->uring_lock); 1230 1231 return ret; 1232 } 1233 1234 static void io_req_tw_post(struct io_kiocb *req, bool *locked) 1235 { 1236 io_req_complete_post(req); 1237 } 1238 1239 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags) 1240 { 1241 io_req_set_res(req, res, cflags); 1242 req->io_task_work.func = io_req_tw_post; 1243 io_req_task_work_add(req); 1244 } 1245 1246 static void io_req_task_cancel(struct io_kiocb *req, bool *locked) 1247 { 1248 /* not needed for normal modes, but SQPOLL depends on it */ 1249 io_tw_lock(req->ctx, locked); 1250 io_req_complete_failed(req, req->cqe.res); 1251 } 1252 1253 void io_req_task_submit(struct io_kiocb *req, bool *locked) 1254 { 1255 io_tw_lock(req->ctx, locked); 1256 /* req->task == current here, checking PF_EXITING is safe */ 1257 if (likely(!(req->task->flags & PF_EXITING))) 1258 io_queue_sqe(req); 1259 else 1260 io_req_complete_failed(req, -EFAULT); 1261 } 1262 1263 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1264 { 1265 io_req_set_res(req, ret, 0); 1266 req->io_task_work.func = io_req_task_cancel; 1267 io_req_task_work_add(req); 1268 } 1269 1270 void io_req_task_queue(struct io_kiocb *req) 1271 { 1272 req->io_task_work.func = io_req_task_submit; 1273 io_req_task_work_add(req); 1274 } 1275 1276 void io_queue_next(struct io_kiocb *req) 1277 { 1278 struct io_kiocb *nxt = io_req_find_next(req); 1279 1280 if (nxt) 1281 io_req_task_queue(nxt); 1282 } 1283 1284 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1285 __must_hold(&ctx->uring_lock) 1286 { 1287 struct task_struct *task = NULL; 1288 int task_refs = 0; 1289 1290 do { 1291 struct io_kiocb *req = container_of(node, struct io_kiocb, 1292 comp_list); 1293 1294 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1295 if (req->flags & REQ_F_REFCOUNT) { 1296 node = req->comp_list.next; 1297 if (!req_ref_put_and_test(req)) 1298 continue; 1299 } 1300 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1301 struct async_poll *apoll = req->apoll; 1302 1303 if (apoll->double_poll) 1304 kfree(apoll->double_poll); 1305 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1306 kfree(apoll); 1307 req->flags &= ~REQ_F_POLLED; 1308 } 1309 if (req->flags & IO_REQ_LINK_FLAGS) 1310 io_queue_next(req); 1311 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1312 io_clean_op(req); 1313 } 1314 if (!(req->flags & REQ_F_FIXED_FILE)) 1315 io_put_file(req->file); 1316 1317 io_req_put_rsrc_locked(req, ctx); 1318 1319 if (req->task != task) { 1320 if (task) 1321 io_put_task(task, task_refs); 1322 task = req->task; 1323 task_refs = 0; 1324 } 1325 task_refs++; 1326 node = req->comp_list.next; 1327 io_req_add_to_cache(req, ctx); 1328 } while (node); 1329 1330 if (task) 1331 io_put_task(task, task_refs); 1332 } 1333 1334 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1335 __must_hold(&ctx->uring_lock) 1336 { 1337 struct io_wq_work_node *node, *prev; 1338 struct io_submit_state *state = &ctx->submit_state; 1339 1340 io_cq_lock(ctx); 1341 wq_list_for_each(node, prev, &state->compl_reqs) { 1342 struct io_kiocb *req = container_of(node, struct io_kiocb, 1343 comp_list); 1344 1345 if (!(req->flags & REQ_F_CQE_SKIP)) 1346 __io_fill_cqe_req(ctx, req); 1347 } 1348 __io_cq_unlock_post(ctx); 1349 1350 io_free_batch_list(ctx, state->compl_reqs.first); 1351 INIT_WQ_LIST(&state->compl_reqs); 1352 } 1353 1354 /* 1355 * Drop reference to request, return next in chain (if there is one) if this 1356 * was the last reference to this request. 1357 */ 1358 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1359 { 1360 struct io_kiocb *nxt = NULL; 1361 1362 if (req_ref_put_and_test(req)) { 1363 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1364 nxt = io_req_find_next(req); 1365 io_free_req(req); 1366 } 1367 return nxt; 1368 } 1369 1370 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1371 { 1372 /* See comment at the top of this file */ 1373 smp_rmb(); 1374 return __io_cqring_events(ctx); 1375 } 1376 1377 /* 1378 * We can't just wait for polled events to come to us, we have to actively 1379 * find and complete them. 1380 */ 1381 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1382 { 1383 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1384 return; 1385 1386 mutex_lock(&ctx->uring_lock); 1387 while (!wq_list_empty(&ctx->iopoll_list)) { 1388 /* let it sleep and repeat later if can't complete a request */ 1389 if (io_do_iopoll(ctx, true) == 0) 1390 break; 1391 /* 1392 * Ensure we allow local-to-the-cpu processing to take place, 1393 * in this case we need to ensure that we reap all events. 1394 * Also let task_work, etc. to progress by releasing the mutex 1395 */ 1396 if (need_resched()) { 1397 mutex_unlock(&ctx->uring_lock); 1398 cond_resched(); 1399 mutex_lock(&ctx->uring_lock); 1400 } 1401 } 1402 mutex_unlock(&ctx->uring_lock); 1403 } 1404 1405 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1406 { 1407 unsigned int nr_events = 0; 1408 int ret = 0; 1409 unsigned long check_cq; 1410 1411 if (!io_allowed_run_tw(ctx)) 1412 return -EEXIST; 1413 1414 check_cq = READ_ONCE(ctx->check_cq); 1415 if (unlikely(check_cq)) { 1416 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1417 __io_cqring_overflow_flush(ctx, false); 1418 /* 1419 * Similarly do not spin if we have not informed the user of any 1420 * dropped CQE. 1421 */ 1422 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1423 return -EBADR; 1424 } 1425 /* 1426 * Don't enter poll loop if we already have events pending. 1427 * If we do, we can potentially be spinning for commands that 1428 * already triggered a CQE (eg in error). 1429 */ 1430 if (io_cqring_events(ctx)) 1431 return 0; 1432 1433 do { 1434 /* 1435 * If a submit got punted to a workqueue, we can have the 1436 * application entering polling for a command before it gets 1437 * issued. That app will hold the uring_lock for the duration 1438 * of the poll right here, so we need to take a breather every 1439 * now and then to ensure that the issue has a chance to add 1440 * the poll to the issued list. Otherwise we can spin here 1441 * forever, while the workqueue is stuck trying to acquire the 1442 * very same mutex. 1443 */ 1444 if (wq_list_empty(&ctx->iopoll_list) || 1445 io_task_work_pending(ctx)) { 1446 u32 tail = ctx->cached_cq_tail; 1447 1448 if (!llist_empty(&ctx->work_llist)) 1449 __io_run_local_work(ctx, true); 1450 1451 if (task_work_pending(current) || 1452 wq_list_empty(&ctx->iopoll_list)) { 1453 mutex_unlock(&ctx->uring_lock); 1454 io_run_task_work(); 1455 mutex_lock(&ctx->uring_lock); 1456 } 1457 /* some requests don't go through iopoll_list */ 1458 if (tail != ctx->cached_cq_tail || 1459 wq_list_empty(&ctx->iopoll_list)) 1460 break; 1461 } 1462 ret = io_do_iopoll(ctx, !min); 1463 if (ret < 0) 1464 break; 1465 nr_events += ret; 1466 ret = 0; 1467 } while (nr_events < min && !need_resched()); 1468 1469 return ret; 1470 } 1471 1472 void io_req_task_complete(struct io_kiocb *req, bool *locked) 1473 { 1474 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) { 1475 unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED; 1476 1477 req->cqe.flags |= io_put_kbuf(req, issue_flags); 1478 } 1479 1480 if (*locked) 1481 io_req_complete_defer(req); 1482 else 1483 io_req_complete_post(req); 1484 } 1485 1486 /* 1487 * After the iocb has been issued, it's safe to be found on the poll list. 1488 * Adding the kiocb to the list AFTER submission ensures that we don't 1489 * find it from a io_do_iopoll() thread before the issuer is done 1490 * accessing the kiocb cookie. 1491 */ 1492 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1493 { 1494 struct io_ring_ctx *ctx = req->ctx; 1495 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1496 1497 /* workqueue context doesn't hold uring_lock, grab it now */ 1498 if (unlikely(needs_lock)) 1499 mutex_lock(&ctx->uring_lock); 1500 1501 /* 1502 * Track whether we have multiple files in our lists. This will impact 1503 * how we do polling eventually, not spinning if we're on potentially 1504 * different devices. 1505 */ 1506 if (wq_list_empty(&ctx->iopoll_list)) { 1507 ctx->poll_multi_queue = false; 1508 } else if (!ctx->poll_multi_queue) { 1509 struct io_kiocb *list_req; 1510 1511 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1512 comp_list); 1513 if (list_req->file != req->file) 1514 ctx->poll_multi_queue = true; 1515 } 1516 1517 /* 1518 * For fast devices, IO may have already completed. If it has, add 1519 * it to the front so we find it first. 1520 */ 1521 if (READ_ONCE(req->iopoll_completed)) 1522 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1523 else 1524 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1525 1526 if (unlikely(needs_lock)) { 1527 /* 1528 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1529 * in sq thread task context or in io worker task context. If 1530 * current task context is sq thread, we don't need to check 1531 * whether should wake up sq thread. 1532 */ 1533 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1534 wq_has_sleeper(&ctx->sq_data->wait)) 1535 wake_up(&ctx->sq_data->wait); 1536 1537 mutex_unlock(&ctx->uring_lock); 1538 } 1539 } 1540 1541 static bool io_bdev_nowait(struct block_device *bdev) 1542 { 1543 return !bdev || bdev_nowait(bdev); 1544 } 1545 1546 /* 1547 * If we tracked the file through the SCM inflight mechanism, we could support 1548 * any file. For now, just ensure that anything potentially problematic is done 1549 * inline. 1550 */ 1551 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1552 { 1553 if (S_ISBLK(mode)) { 1554 if (IS_ENABLED(CONFIG_BLOCK) && 1555 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1556 return true; 1557 return false; 1558 } 1559 if (S_ISSOCK(mode)) 1560 return true; 1561 if (S_ISREG(mode)) { 1562 if (IS_ENABLED(CONFIG_BLOCK) && 1563 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1564 !io_is_uring_fops(file)) 1565 return true; 1566 return false; 1567 } 1568 1569 /* any ->read/write should understand O_NONBLOCK */ 1570 if (file->f_flags & O_NONBLOCK) 1571 return true; 1572 return file->f_mode & FMODE_NOWAIT; 1573 } 1574 1575 /* 1576 * If we tracked the file through the SCM inflight mechanism, we could support 1577 * any file. For now, just ensure that anything potentially problematic is done 1578 * inline. 1579 */ 1580 unsigned int io_file_get_flags(struct file *file) 1581 { 1582 umode_t mode = file_inode(file)->i_mode; 1583 unsigned int res = 0; 1584 1585 if (S_ISREG(mode)) 1586 res |= FFS_ISREG; 1587 if (__io_file_supports_nowait(file, mode)) 1588 res |= FFS_NOWAIT; 1589 if (io_file_need_scm(file)) 1590 res |= FFS_SCM; 1591 return res; 1592 } 1593 1594 bool io_alloc_async_data(struct io_kiocb *req) 1595 { 1596 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size); 1597 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL); 1598 if (req->async_data) { 1599 req->flags |= REQ_F_ASYNC_DATA; 1600 return false; 1601 } 1602 return true; 1603 } 1604 1605 int io_req_prep_async(struct io_kiocb *req) 1606 { 1607 const struct io_op_def *def = &io_op_defs[req->opcode]; 1608 1609 /* assign early for deferred execution for non-fixed file */ 1610 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE)) 1611 req->file = io_file_get_normal(req, req->cqe.fd); 1612 if (!def->prep_async) 1613 return 0; 1614 if (WARN_ON_ONCE(req_has_async_data(req))) 1615 return -EFAULT; 1616 if (!io_op_defs[req->opcode].manual_alloc) { 1617 if (io_alloc_async_data(req)) 1618 return -EAGAIN; 1619 } 1620 return def->prep_async(req); 1621 } 1622 1623 static u32 io_get_sequence(struct io_kiocb *req) 1624 { 1625 u32 seq = req->ctx->cached_sq_head; 1626 struct io_kiocb *cur; 1627 1628 /* need original cached_sq_head, but it was increased for each req */ 1629 io_for_each_link(cur, req) 1630 seq--; 1631 return seq; 1632 } 1633 1634 static __cold void io_drain_req(struct io_kiocb *req) 1635 { 1636 struct io_ring_ctx *ctx = req->ctx; 1637 struct io_defer_entry *de; 1638 int ret; 1639 u32 seq = io_get_sequence(req); 1640 1641 /* Still need defer if there is pending req in defer list. */ 1642 spin_lock(&ctx->completion_lock); 1643 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1644 spin_unlock(&ctx->completion_lock); 1645 queue: 1646 ctx->drain_active = false; 1647 io_req_task_queue(req); 1648 return; 1649 } 1650 spin_unlock(&ctx->completion_lock); 1651 1652 ret = io_req_prep_async(req); 1653 if (ret) { 1654 fail: 1655 io_req_complete_failed(req, ret); 1656 return; 1657 } 1658 io_prep_async_link(req); 1659 de = kmalloc(sizeof(*de), GFP_KERNEL); 1660 if (!de) { 1661 ret = -ENOMEM; 1662 goto fail; 1663 } 1664 1665 spin_lock(&ctx->completion_lock); 1666 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1667 spin_unlock(&ctx->completion_lock); 1668 kfree(de); 1669 goto queue; 1670 } 1671 1672 trace_io_uring_defer(req); 1673 de->req = req; 1674 de->seq = seq; 1675 list_add_tail(&de->list, &ctx->defer_list); 1676 spin_unlock(&ctx->completion_lock); 1677 } 1678 1679 static void io_clean_op(struct io_kiocb *req) 1680 { 1681 if (req->flags & REQ_F_BUFFER_SELECTED) { 1682 spin_lock(&req->ctx->completion_lock); 1683 io_put_kbuf_comp(req); 1684 spin_unlock(&req->ctx->completion_lock); 1685 } 1686 1687 if (req->flags & REQ_F_NEED_CLEANUP) { 1688 const struct io_op_def *def = &io_op_defs[req->opcode]; 1689 1690 if (def->cleanup) 1691 def->cleanup(req); 1692 } 1693 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1694 kfree(req->apoll->double_poll); 1695 kfree(req->apoll); 1696 req->apoll = NULL; 1697 } 1698 if (req->flags & REQ_F_INFLIGHT) { 1699 struct io_uring_task *tctx = req->task->io_uring; 1700 1701 atomic_dec(&tctx->inflight_tracked); 1702 } 1703 if (req->flags & REQ_F_CREDS) 1704 put_cred(req->creds); 1705 if (req->flags & REQ_F_ASYNC_DATA) { 1706 kfree(req->async_data); 1707 req->async_data = NULL; 1708 } 1709 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1710 } 1711 1712 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags) 1713 { 1714 if (req->file || !io_op_defs[req->opcode].needs_file) 1715 return true; 1716 1717 if (req->flags & REQ_F_FIXED_FILE) 1718 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1719 else 1720 req->file = io_file_get_normal(req, req->cqe.fd); 1721 1722 return !!req->file; 1723 } 1724 1725 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1726 { 1727 const struct io_op_def *def = &io_op_defs[req->opcode]; 1728 const struct cred *creds = NULL; 1729 int ret; 1730 1731 if (unlikely(!io_assign_file(req, issue_flags))) 1732 return -EBADF; 1733 1734 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1735 creds = override_creds(req->creds); 1736 1737 if (!def->audit_skip) 1738 audit_uring_entry(req->opcode); 1739 1740 ret = def->issue(req, issue_flags); 1741 1742 if (!def->audit_skip) 1743 audit_uring_exit(!ret, ret); 1744 1745 if (creds) 1746 revert_creds(creds); 1747 1748 if (ret == IOU_OK) { 1749 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1750 io_req_complete_defer(req); 1751 else 1752 io_req_complete_post(req); 1753 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1754 return ret; 1755 1756 /* If the op doesn't have a file, we're not polling for it */ 1757 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file) 1758 io_iopoll_req_issued(req, issue_flags); 1759 1760 return 0; 1761 } 1762 1763 int io_poll_issue(struct io_kiocb *req, bool *locked) 1764 { 1765 io_tw_lock(req->ctx, locked); 1766 if (unlikely(req->task->flags & PF_EXITING)) 1767 return -EFAULT; 1768 return io_issue_sqe(req, IO_URING_F_NONBLOCK); 1769 } 1770 1771 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1772 { 1773 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1774 1775 req = io_put_req_find_next(req); 1776 return req ? &req->work : NULL; 1777 } 1778 1779 void io_wq_submit_work(struct io_wq_work *work) 1780 { 1781 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1782 const struct io_op_def *def = &io_op_defs[req->opcode]; 1783 unsigned int issue_flags = IO_URING_F_UNLOCKED; 1784 bool needs_poll = false; 1785 int ret = 0, err = -ECANCELED; 1786 1787 /* one will be dropped by ->io_free_work() after returning to io-wq */ 1788 if (!(req->flags & REQ_F_REFCOUNT)) 1789 __io_req_set_refcount(req, 2); 1790 else 1791 req_ref_get(req); 1792 1793 io_arm_ltimeout(req); 1794 1795 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1796 if (work->flags & IO_WQ_WORK_CANCEL) { 1797 fail: 1798 io_req_task_queue_fail(req, err); 1799 return; 1800 } 1801 if (!io_assign_file(req, issue_flags)) { 1802 err = -EBADF; 1803 work->flags |= IO_WQ_WORK_CANCEL; 1804 goto fail; 1805 } 1806 1807 if (req->flags & REQ_F_FORCE_ASYNC) { 1808 bool opcode_poll = def->pollin || def->pollout; 1809 1810 if (opcode_poll && file_can_poll(req->file)) { 1811 needs_poll = true; 1812 issue_flags |= IO_URING_F_NONBLOCK; 1813 } 1814 } 1815 1816 do { 1817 ret = io_issue_sqe(req, issue_flags); 1818 if (ret != -EAGAIN) 1819 break; 1820 /* 1821 * We can get EAGAIN for iopolled IO even though we're 1822 * forcing a sync submission from here, since we can't 1823 * wait for request slots on the block side. 1824 */ 1825 if (!needs_poll) { 1826 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1827 break; 1828 cond_resched(); 1829 continue; 1830 } 1831 1832 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1833 return; 1834 /* aborted or ready, in either case retry blocking */ 1835 needs_poll = false; 1836 issue_flags &= ~IO_URING_F_NONBLOCK; 1837 } while (1); 1838 1839 /* avoid locking problems by failing it from a clean context */ 1840 if (ret < 0) 1841 io_req_task_queue_fail(req, ret); 1842 } 1843 1844 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1845 unsigned int issue_flags) 1846 { 1847 struct io_ring_ctx *ctx = req->ctx; 1848 struct file *file = NULL; 1849 unsigned long file_ptr; 1850 1851 io_ring_submit_lock(ctx, issue_flags); 1852 1853 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1854 goto out; 1855 fd = array_index_nospec(fd, ctx->nr_user_files); 1856 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 1857 file = (struct file *) (file_ptr & FFS_MASK); 1858 file_ptr &= ~FFS_MASK; 1859 /* mask in overlapping REQ_F and FFS bits */ 1860 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 1861 io_req_set_rsrc_node(req, ctx, 0); 1862 WARN_ON_ONCE(file && !test_bit(fd, ctx->file_table.bitmap)); 1863 out: 1864 io_ring_submit_unlock(ctx, issue_flags); 1865 return file; 1866 } 1867 1868 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1869 { 1870 struct file *file = fget(fd); 1871 1872 trace_io_uring_file_get(req, fd); 1873 1874 /* we don't allow fixed io_uring files */ 1875 if (file && io_is_uring_fops(file)) 1876 io_req_track_inflight(req); 1877 return file; 1878 } 1879 1880 static void io_queue_async(struct io_kiocb *req, int ret) 1881 __must_hold(&req->ctx->uring_lock) 1882 { 1883 struct io_kiocb *linked_timeout; 1884 1885 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1886 io_req_complete_failed(req, ret); 1887 return; 1888 } 1889 1890 linked_timeout = io_prep_linked_timeout(req); 1891 1892 switch (io_arm_poll_handler(req, 0)) { 1893 case IO_APOLL_READY: 1894 io_kbuf_recycle(req, 0); 1895 io_req_task_queue(req); 1896 break; 1897 case IO_APOLL_ABORTED: 1898 io_kbuf_recycle(req, 0); 1899 io_queue_iowq(req, NULL); 1900 break; 1901 case IO_APOLL_OK: 1902 break; 1903 } 1904 1905 if (linked_timeout) 1906 io_queue_linked_timeout(linked_timeout); 1907 } 1908 1909 static inline void io_queue_sqe(struct io_kiocb *req) 1910 __must_hold(&req->ctx->uring_lock) 1911 { 1912 int ret; 1913 1914 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1915 1916 /* 1917 * We async punt it if the file wasn't marked NOWAIT, or if the file 1918 * doesn't support non-blocking read/write attempts 1919 */ 1920 if (likely(!ret)) 1921 io_arm_ltimeout(req); 1922 else 1923 io_queue_async(req, ret); 1924 } 1925 1926 static void io_queue_sqe_fallback(struct io_kiocb *req) 1927 __must_hold(&req->ctx->uring_lock) 1928 { 1929 if (unlikely(req->flags & REQ_F_FAIL)) { 1930 /* 1931 * We don't submit, fail them all, for that replace hardlinks 1932 * with normal links. Extra REQ_F_LINK is tolerated. 1933 */ 1934 req->flags &= ~REQ_F_HARDLINK; 1935 req->flags |= REQ_F_LINK; 1936 io_req_complete_failed(req, req->cqe.res); 1937 } else if (unlikely(req->ctx->drain_active)) { 1938 io_drain_req(req); 1939 } else { 1940 int ret = io_req_prep_async(req); 1941 1942 if (unlikely(ret)) 1943 io_req_complete_failed(req, ret); 1944 else 1945 io_queue_iowq(req, NULL); 1946 } 1947 } 1948 1949 /* 1950 * Check SQE restrictions (opcode and flags). 1951 * 1952 * Returns 'true' if SQE is allowed, 'false' otherwise. 1953 */ 1954 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1955 struct io_kiocb *req, 1956 unsigned int sqe_flags) 1957 { 1958 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1959 return false; 1960 1961 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1962 ctx->restrictions.sqe_flags_required) 1963 return false; 1964 1965 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1966 ctx->restrictions.sqe_flags_required)) 1967 return false; 1968 1969 return true; 1970 } 1971 1972 static void io_init_req_drain(struct io_kiocb *req) 1973 { 1974 struct io_ring_ctx *ctx = req->ctx; 1975 struct io_kiocb *head = ctx->submit_state.link.head; 1976 1977 ctx->drain_active = true; 1978 if (head) { 1979 /* 1980 * If we need to drain a request in the middle of a link, drain 1981 * the head request and the next request/link after the current 1982 * link. Considering sequential execution of links, 1983 * REQ_F_IO_DRAIN will be maintained for every request of our 1984 * link. 1985 */ 1986 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 1987 ctx->drain_next = true; 1988 } 1989 } 1990 1991 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 1992 const struct io_uring_sqe *sqe) 1993 __must_hold(&ctx->uring_lock) 1994 { 1995 const struct io_op_def *def; 1996 unsigned int sqe_flags; 1997 int personality; 1998 u8 opcode; 1999 2000 /* req is partially pre-initialised, see io_preinit_req() */ 2001 req->opcode = opcode = READ_ONCE(sqe->opcode); 2002 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2003 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2004 req->cqe.user_data = READ_ONCE(sqe->user_data); 2005 req->file = NULL; 2006 req->rsrc_node = NULL; 2007 req->task = current; 2008 2009 if (unlikely(opcode >= IORING_OP_LAST)) { 2010 req->opcode = 0; 2011 return -EINVAL; 2012 } 2013 def = &io_op_defs[opcode]; 2014 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2015 /* enforce forwards compatibility on users */ 2016 if (sqe_flags & ~SQE_VALID_FLAGS) 2017 return -EINVAL; 2018 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2019 if (!def->buffer_select) 2020 return -EOPNOTSUPP; 2021 req->buf_index = READ_ONCE(sqe->buf_group); 2022 } 2023 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2024 ctx->drain_disabled = true; 2025 if (sqe_flags & IOSQE_IO_DRAIN) { 2026 if (ctx->drain_disabled) 2027 return -EOPNOTSUPP; 2028 io_init_req_drain(req); 2029 } 2030 } 2031 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2032 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2033 return -EACCES; 2034 /* knock it to the slow queue path, will be drained there */ 2035 if (ctx->drain_active) 2036 req->flags |= REQ_F_FORCE_ASYNC; 2037 /* if there is no link, we're at "next" request and need to drain */ 2038 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2039 ctx->drain_next = false; 2040 ctx->drain_active = true; 2041 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2042 } 2043 } 2044 2045 if (!def->ioprio && sqe->ioprio) 2046 return -EINVAL; 2047 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2048 return -EINVAL; 2049 2050 if (def->needs_file) { 2051 struct io_submit_state *state = &ctx->submit_state; 2052 2053 req->cqe.fd = READ_ONCE(sqe->fd); 2054 2055 /* 2056 * Plug now if we have more than 2 IO left after this, and the 2057 * target is potentially a read/write to block based storage. 2058 */ 2059 if (state->need_plug && def->plug) { 2060 state->plug_started = true; 2061 state->need_plug = false; 2062 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2063 } 2064 } 2065 2066 personality = READ_ONCE(sqe->personality); 2067 if (personality) { 2068 int ret; 2069 2070 req->creds = xa_load(&ctx->personalities, personality); 2071 if (!req->creds) 2072 return -EINVAL; 2073 get_cred(req->creds); 2074 ret = security_uring_override_creds(req->creds); 2075 if (ret) { 2076 put_cred(req->creds); 2077 return ret; 2078 } 2079 req->flags |= REQ_F_CREDS; 2080 } 2081 2082 return def->prep(req, sqe); 2083 } 2084 2085 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2086 struct io_kiocb *req, int ret) 2087 { 2088 struct io_ring_ctx *ctx = req->ctx; 2089 struct io_submit_link *link = &ctx->submit_state.link; 2090 struct io_kiocb *head = link->head; 2091 2092 trace_io_uring_req_failed(sqe, req, ret); 2093 2094 /* 2095 * Avoid breaking links in the middle as it renders links with SQPOLL 2096 * unusable. Instead of failing eagerly, continue assembling the link if 2097 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2098 * should find the flag and handle the rest. 2099 */ 2100 req_fail_link_node(req, ret); 2101 if (head && !(head->flags & REQ_F_FAIL)) 2102 req_fail_link_node(head, -ECANCELED); 2103 2104 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2105 if (head) { 2106 link->last->link = req; 2107 link->head = NULL; 2108 req = head; 2109 } 2110 io_queue_sqe_fallback(req); 2111 return ret; 2112 } 2113 2114 if (head) 2115 link->last->link = req; 2116 else 2117 link->head = req; 2118 link->last = req; 2119 return 0; 2120 } 2121 2122 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2123 const struct io_uring_sqe *sqe) 2124 __must_hold(&ctx->uring_lock) 2125 { 2126 struct io_submit_link *link = &ctx->submit_state.link; 2127 int ret; 2128 2129 ret = io_init_req(ctx, req, sqe); 2130 if (unlikely(ret)) 2131 return io_submit_fail_init(sqe, req, ret); 2132 2133 /* don't need @sqe from now on */ 2134 trace_io_uring_submit_sqe(req, true); 2135 2136 /* 2137 * If we already have a head request, queue this one for async 2138 * submittal once the head completes. If we don't have a head but 2139 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2140 * submitted sync once the chain is complete. If none of those 2141 * conditions are true (normal request), then just queue it. 2142 */ 2143 if (unlikely(link->head)) { 2144 ret = io_req_prep_async(req); 2145 if (unlikely(ret)) 2146 return io_submit_fail_init(sqe, req, ret); 2147 2148 trace_io_uring_link(req, link->head); 2149 link->last->link = req; 2150 link->last = req; 2151 2152 if (req->flags & IO_REQ_LINK_FLAGS) 2153 return 0; 2154 /* last request of the link, flush it */ 2155 req = link->head; 2156 link->head = NULL; 2157 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2158 goto fallback; 2159 2160 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2161 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2162 if (req->flags & IO_REQ_LINK_FLAGS) { 2163 link->head = req; 2164 link->last = req; 2165 } else { 2166 fallback: 2167 io_queue_sqe_fallback(req); 2168 } 2169 return 0; 2170 } 2171 2172 io_queue_sqe(req); 2173 return 0; 2174 } 2175 2176 /* 2177 * Batched submission is done, ensure local IO is flushed out. 2178 */ 2179 static void io_submit_state_end(struct io_ring_ctx *ctx) 2180 { 2181 struct io_submit_state *state = &ctx->submit_state; 2182 2183 if (unlikely(state->link.head)) 2184 io_queue_sqe_fallback(state->link.head); 2185 /* flush only after queuing links as they can generate completions */ 2186 io_submit_flush_completions(ctx); 2187 if (state->plug_started) 2188 blk_finish_plug(&state->plug); 2189 } 2190 2191 /* 2192 * Start submission side cache. 2193 */ 2194 static void io_submit_state_start(struct io_submit_state *state, 2195 unsigned int max_ios) 2196 { 2197 state->plug_started = false; 2198 state->need_plug = max_ios > 2; 2199 state->submit_nr = max_ios; 2200 /* set only head, no need to init link_last in advance */ 2201 state->link.head = NULL; 2202 } 2203 2204 static void io_commit_sqring(struct io_ring_ctx *ctx) 2205 { 2206 struct io_rings *rings = ctx->rings; 2207 2208 /* 2209 * Ensure any loads from the SQEs are done at this point, 2210 * since once we write the new head, the application could 2211 * write new data to them. 2212 */ 2213 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2214 } 2215 2216 /* 2217 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2218 * that is mapped by userspace. This means that care needs to be taken to 2219 * ensure that reads are stable, as we cannot rely on userspace always 2220 * being a good citizen. If members of the sqe are validated and then later 2221 * used, it's important that those reads are done through READ_ONCE() to 2222 * prevent a re-load down the line. 2223 */ 2224 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx) 2225 { 2226 unsigned head, mask = ctx->sq_entries - 1; 2227 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2228 2229 /* 2230 * The cached sq head (or cq tail) serves two purposes: 2231 * 2232 * 1) allows us to batch the cost of updating the user visible 2233 * head updates. 2234 * 2) allows the kernel side to track the head on its own, even 2235 * though the application is the one updating it. 2236 */ 2237 head = READ_ONCE(ctx->sq_array[sq_idx]); 2238 if (likely(head < ctx->sq_entries)) { 2239 /* double index for 128-byte SQEs, twice as long */ 2240 if (ctx->flags & IORING_SETUP_SQE128) 2241 head <<= 1; 2242 return &ctx->sq_sqes[head]; 2243 } 2244 2245 /* drop invalid entries */ 2246 ctx->cq_extra--; 2247 WRITE_ONCE(ctx->rings->sq_dropped, 2248 READ_ONCE(ctx->rings->sq_dropped) + 1); 2249 return NULL; 2250 } 2251 2252 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2253 __must_hold(&ctx->uring_lock) 2254 { 2255 unsigned int entries = io_sqring_entries(ctx); 2256 unsigned int left; 2257 int ret; 2258 2259 if (unlikely(!entries)) 2260 return 0; 2261 /* make sure SQ entry isn't read before tail */ 2262 ret = left = min3(nr, ctx->sq_entries, entries); 2263 io_get_task_refs(left); 2264 io_submit_state_start(&ctx->submit_state, left); 2265 2266 do { 2267 const struct io_uring_sqe *sqe; 2268 struct io_kiocb *req; 2269 2270 if (unlikely(!io_alloc_req_refill(ctx))) 2271 break; 2272 req = io_alloc_req(ctx); 2273 sqe = io_get_sqe(ctx); 2274 if (unlikely(!sqe)) { 2275 io_req_add_to_cache(req, ctx); 2276 break; 2277 } 2278 2279 /* 2280 * Continue submitting even for sqe failure if the 2281 * ring was setup with IORING_SETUP_SUBMIT_ALL 2282 */ 2283 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2284 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2285 left--; 2286 break; 2287 } 2288 } while (--left); 2289 2290 if (unlikely(left)) { 2291 ret -= left; 2292 /* try again if it submitted nothing and can't allocate a req */ 2293 if (!ret && io_req_cache_empty(ctx)) 2294 ret = -EAGAIN; 2295 current->io_uring->cached_refs += left; 2296 } 2297 2298 io_submit_state_end(ctx); 2299 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2300 io_commit_sqring(ctx); 2301 return ret; 2302 } 2303 2304 struct io_wait_queue { 2305 struct wait_queue_entry wq; 2306 struct io_ring_ctx *ctx; 2307 unsigned cq_tail; 2308 unsigned nr_timeouts; 2309 }; 2310 2311 static inline bool io_has_work(struct io_ring_ctx *ctx) 2312 { 2313 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2314 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 2315 !llist_empty(&ctx->work_llist)); 2316 } 2317 2318 static inline bool io_should_wake(struct io_wait_queue *iowq) 2319 { 2320 struct io_ring_ctx *ctx = iowq->ctx; 2321 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail; 2322 2323 /* 2324 * Wake up if we have enough events, or if a timeout occurred since we 2325 * started waiting. For timeouts, we always want to return to userspace, 2326 * regardless of event count. 2327 */ 2328 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2329 } 2330 2331 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2332 int wake_flags, void *key) 2333 { 2334 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, 2335 wq); 2336 struct io_ring_ctx *ctx = iowq->ctx; 2337 2338 /* 2339 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2340 * the task, and the next invocation will do it. 2341 */ 2342 if (io_should_wake(iowq) || io_has_work(ctx)) 2343 return autoremove_wake_function(curr, mode, wake_flags, key); 2344 return -1; 2345 } 2346 2347 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2348 { 2349 if (io_run_task_work_ctx(ctx) > 0) 2350 return 1; 2351 if (task_sigpending(current)) 2352 return -EINTR; 2353 return 0; 2354 } 2355 2356 /* when returns >0, the caller should retry */ 2357 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2358 struct io_wait_queue *iowq, 2359 ktime_t timeout) 2360 { 2361 int ret; 2362 unsigned long check_cq; 2363 2364 /* make sure we run task_work before checking for signals */ 2365 ret = io_run_task_work_sig(ctx); 2366 if (ret || io_should_wake(iowq)) 2367 return ret; 2368 2369 check_cq = READ_ONCE(ctx->check_cq); 2370 if (unlikely(check_cq)) { 2371 /* let the caller flush overflows, retry */ 2372 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2373 return 1; 2374 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 2375 return -EBADR; 2376 } 2377 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS)) 2378 return -ETIME; 2379 return 1; 2380 } 2381 2382 /* 2383 * Wait until events become available, if we don't already have some. The 2384 * application must reap them itself, as they reside on the shared cq ring. 2385 */ 2386 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2387 const sigset_t __user *sig, size_t sigsz, 2388 struct __kernel_timespec __user *uts) 2389 { 2390 struct io_wait_queue iowq; 2391 struct io_rings *rings = ctx->rings; 2392 ktime_t timeout = KTIME_MAX; 2393 int ret; 2394 2395 if (!io_allowed_run_tw(ctx)) 2396 return -EEXIST; 2397 2398 do { 2399 /* always run at least 1 task work to process local work */ 2400 ret = io_run_task_work_ctx(ctx); 2401 if (ret < 0) 2402 return ret; 2403 io_cqring_overflow_flush(ctx); 2404 2405 if (io_cqring_events(ctx) >= min_events) 2406 return 0; 2407 } while (ret > 0); 2408 2409 if (sig) { 2410 #ifdef CONFIG_COMPAT 2411 if (in_compat_syscall()) 2412 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2413 sigsz); 2414 else 2415 #endif 2416 ret = set_user_sigmask(sig, sigsz); 2417 2418 if (ret) 2419 return ret; 2420 } 2421 2422 if (uts) { 2423 struct timespec64 ts; 2424 2425 if (get_timespec64(&ts, uts)) 2426 return -EFAULT; 2427 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2428 } 2429 2430 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2431 iowq.wq.private = current; 2432 INIT_LIST_HEAD(&iowq.wq.entry); 2433 iowq.ctx = ctx; 2434 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2435 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2436 2437 trace_io_uring_cqring_wait(ctx, min_events); 2438 do { 2439 /* if we can't even flush overflow, don't wait for more */ 2440 if (!io_cqring_overflow_flush(ctx)) { 2441 ret = -EBUSY; 2442 break; 2443 } 2444 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2445 TASK_INTERRUPTIBLE); 2446 ret = io_cqring_wait_schedule(ctx, &iowq, timeout); 2447 cond_resched(); 2448 } while (ret > 0); 2449 2450 finish_wait(&ctx->cq_wait, &iowq.wq); 2451 restore_saved_sigmask_unless(ret == -EINTR); 2452 2453 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2454 } 2455 2456 static void io_mem_free(void *ptr) 2457 { 2458 struct page *page; 2459 2460 if (!ptr) 2461 return; 2462 2463 page = virt_to_head_page(ptr); 2464 if (put_page_testzero(page)) 2465 free_compound_page(page); 2466 } 2467 2468 static void *io_mem_alloc(size_t size) 2469 { 2470 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2471 2472 return (void *) __get_free_pages(gfp, get_order(size)); 2473 } 2474 2475 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2476 unsigned int cq_entries, size_t *sq_offset) 2477 { 2478 struct io_rings *rings; 2479 size_t off, sq_array_size; 2480 2481 off = struct_size(rings, cqes, cq_entries); 2482 if (off == SIZE_MAX) 2483 return SIZE_MAX; 2484 if (ctx->flags & IORING_SETUP_CQE32) { 2485 if (check_shl_overflow(off, 1, &off)) 2486 return SIZE_MAX; 2487 } 2488 2489 #ifdef CONFIG_SMP 2490 off = ALIGN(off, SMP_CACHE_BYTES); 2491 if (off == 0) 2492 return SIZE_MAX; 2493 #endif 2494 2495 if (sq_offset) 2496 *sq_offset = off; 2497 2498 sq_array_size = array_size(sizeof(u32), sq_entries); 2499 if (sq_array_size == SIZE_MAX) 2500 return SIZE_MAX; 2501 2502 if (check_add_overflow(off, sq_array_size, &off)) 2503 return SIZE_MAX; 2504 2505 return off; 2506 } 2507 2508 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2509 unsigned int eventfd_async) 2510 { 2511 struct io_ev_fd *ev_fd; 2512 __s32 __user *fds = arg; 2513 int fd; 2514 2515 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2516 lockdep_is_held(&ctx->uring_lock)); 2517 if (ev_fd) 2518 return -EBUSY; 2519 2520 if (copy_from_user(&fd, fds, sizeof(*fds))) 2521 return -EFAULT; 2522 2523 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2524 if (!ev_fd) 2525 return -ENOMEM; 2526 2527 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2528 if (IS_ERR(ev_fd->cq_ev_fd)) { 2529 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2530 kfree(ev_fd); 2531 return ret; 2532 } 2533 2534 spin_lock(&ctx->completion_lock); 2535 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2536 spin_unlock(&ctx->completion_lock); 2537 2538 ev_fd->eventfd_async = eventfd_async; 2539 ctx->has_evfd = true; 2540 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2541 atomic_set(&ev_fd->refs, 1); 2542 atomic_set(&ev_fd->ops, 0); 2543 return 0; 2544 } 2545 2546 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2547 { 2548 struct io_ev_fd *ev_fd; 2549 2550 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2551 lockdep_is_held(&ctx->uring_lock)); 2552 if (ev_fd) { 2553 ctx->has_evfd = false; 2554 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2555 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2556 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2557 return 0; 2558 } 2559 2560 return -ENXIO; 2561 } 2562 2563 static void io_req_caches_free(struct io_ring_ctx *ctx) 2564 { 2565 struct io_submit_state *state = &ctx->submit_state; 2566 int nr = 0; 2567 2568 mutex_lock(&ctx->uring_lock); 2569 io_flush_cached_locked_reqs(ctx, state); 2570 2571 while (!io_req_cache_empty(ctx)) { 2572 struct io_wq_work_node *node; 2573 struct io_kiocb *req; 2574 2575 node = wq_stack_extract(&state->free_list); 2576 req = container_of(node, struct io_kiocb, comp_list); 2577 kmem_cache_free(req_cachep, req); 2578 nr++; 2579 } 2580 if (nr) 2581 percpu_ref_put_many(&ctx->refs, nr); 2582 mutex_unlock(&ctx->uring_lock); 2583 } 2584 2585 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2586 { 2587 io_sq_thread_finish(ctx); 2588 2589 if (ctx->mm_account) { 2590 mmdrop(ctx->mm_account); 2591 ctx->mm_account = NULL; 2592 } 2593 2594 io_rsrc_refs_drop(ctx); 2595 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2596 io_wait_rsrc_data(ctx->buf_data); 2597 io_wait_rsrc_data(ctx->file_data); 2598 2599 mutex_lock(&ctx->uring_lock); 2600 if (ctx->buf_data) 2601 __io_sqe_buffers_unregister(ctx); 2602 if (ctx->file_data) 2603 __io_sqe_files_unregister(ctx); 2604 if (ctx->rings) 2605 __io_cqring_overflow_flush(ctx, true); 2606 io_eventfd_unregister(ctx); 2607 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2608 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2609 mutex_unlock(&ctx->uring_lock); 2610 io_destroy_buffers(ctx); 2611 if (ctx->sq_creds) 2612 put_cred(ctx->sq_creds); 2613 if (ctx->submitter_task) 2614 put_task_struct(ctx->submitter_task); 2615 2616 /* there are no registered resources left, nobody uses it */ 2617 if (ctx->rsrc_node) 2618 io_rsrc_node_destroy(ctx->rsrc_node); 2619 if (ctx->rsrc_backup_node) 2620 io_rsrc_node_destroy(ctx->rsrc_backup_node); 2621 flush_delayed_work(&ctx->rsrc_put_work); 2622 flush_delayed_work(&ctx->fallback_work); 2623 2624 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2625 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); 2626 2627 #if defined(CONFIG_UNIX) 2628 if (ctx->ring_sock) { 2629 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2630 sock_release(ctx->ring_sock); 2631 } 2632 #endif 2633 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2634 WARN_ON_ONCE(ctx->notif_slots || ctx->nr_notif_slots); 2635 2636 io_mem_free(ctx->rings); 2637 io_mem_free(ctx->sq_sqes); 2638 2639 percpu_ref_exit(&ctx->refs); 2640 free_uid(ctx->user); 2641 io_req_caches_free(ctx); 2642 if (ctx->hash_map) 2643 io_wq_put_hash(ctx->hash_map); 2644 kfree(ctx->cancel_table.hbs); 2645 kfree(ctx->cancel_table_locked.hbs); 2646 kfree(ctx->dummy_ubuf); 2647 kfree(ctx->io_bl); 2648 xa_destroy(&ctx->io_bl_xa); 2649 kfree(ctx); 2650 } 2651 2652 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2653 { 2654 struct io_ring_ctx *ctx = file->private_data; 2655 __poll_t mask = 0; 2656 2657 poll_wait(file, &ctx->cq_wait, wait); 2658 /* 2659 * synchronizes with barrier from wq_has_sleeper call in 2660 * io_commit_cqring 2661 */ 2662 smp_rmb(); 2663 if (!io_sqring_full(ctx)) 2664 mask |= EPOLLOUT | EPOLLWRNORM; 2665 2666 /* 2667 * Don't flush cqring overflow list here, just do a simple check. 2668 * Otherwise there could possible be ABBA deadlock: 2669 * CPU0 CPU1 2670 * ---- ---- 2671 * lock(&ctx->uring_lock); 2672 * lock(&ep->mtx); 2673 * lock(&ctx->uring_lock); 2674 * lock(&ep->mtx); 2675 * 2676 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2677 * pushs them to do the flush. 2678 */ 2679 2680 if (io_cqring_events(ctx) || io_has_work(ctx)) 2681 mask |= EPOLLIN | EPOLLRDNORM; 2682 2683 return mask; 2684 } 2685 2686 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2687 { 2688 const struct cred *creds; 2689 2690 creds = xa_erase(&ctx->personalities, id); 2691 if (creds) { 2692 put_cred(creds); 2693 return 0; 2694 } 2695 2696 return -EINVAL; 2697 } 2698 2699 struct io_tctx_exit { 2700 struct callback_head task_work; 2701 struct completion completion; 2702 struct io_ring_ctx *ctx; 2703 }; 2704 2705 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2706 { 2707 struct io_uring_task *tctx = current->io_uring; 2708 struct io_tctx_exit *work; 2709 2710 work = container_of(cb, struct io_tctx_exit, task_work); 2711 /* 2712 * When @in_idle, we're in cancellation and it's racy to remove the 2713 * node. It'll be removed by the end of cancellation, just ignore it. 2714 */ 2715 if (!atomic_read(&tctx->in_idle)) 2716 io_uring_del_tctx_node((unsigned long)work->ctx); 2717 complete(&work->completion); 2718 } 2719 2720 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2721 { 2722 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2723 2724 return req->ctx == data; 2725 } 2726 2727 static __cold void io_ring_exit_work(struct work_struct *work) 2728 { 2729 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2730 unsigned long timeout = jiffies + HZ * 60 * 5; 2731 unsigned long interval = HZ / 20; 2732 struct io_tctx_exit exit; 2733 struct io_tctx_node *node; 2734 int ret; 2735 2736 /* 2737 * If we're doing polled IO and end up having requests being 2738 * submitted async (out-of-line), then completions can come in while 2739 * we're waiting for refs to drop. We need to reap these manually, 2740 * as nobody else will be looking for them. 2741 */ 2742 do { 2743 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2744 io_move_task_work_from_local(ctx); 2745 2746 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2747 cond_resched(); 2748 2749 if (ctx->sq_data) { 2750 struct io_sq_data *sqd = ctx->sq_data; 2751 struct task_struct *tsk; 2752 2753 io_sq_thread_park(sqd); 2754 tsk = sqd->thread; 2755 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2756 io_wq_cancel_cb(tsk->io_uring->io_wq, 2757 io_cancel_ctx_cb, ctx, true); 2758 io_sq_thread_unpark(sqd); 2759 } 2760 2761 io_req_caches_free(ctx); 2762 2763 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2764 /* there is little hope left, don't run it too often */ 2765 interval = HZ * 60; 2766 } 2767 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 2768 2769 init_completion(&exit.completion); 2770 init_task_work(&exit.task_work, io_tctx_exit_cb); 2771 exit.ctx = ctx; 2772 /* 2773 * Some may use context even when all refs and requests have been put, 2774 * and they are free to do so while still holding uring_lock or 2775 * completion_lock, see io_req_task_submit(). Apart from other work, 2776 * this lock/unlock section also waits them to finish. 2777 */ 2778 mutex_lock(&ctx->uring_lock); 2779 while (!list_empty(&ctx->tctx_list)) { 2780 WARN_ON_ONCE(time_after(jiffies, timeout)); 2781 2782 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2783 ctx_node); 2784 /* don't spin on a single task if cancellation failed */ 2785 list_rotate_left(&ctx->tctx_list); 2786 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2787 if (WARN_ON_ONCE(ret)) 2788 continue; 2789 2790 mutex_unlock(&ctx->uring_lock); 2791 wait_for_completion(&exit.completion); 2792 mutex_lock(&ctx->uring_lock); 2793 } 2794 mutex_unlock(&ctx->uring_lock); 2795 spin_lock(&ctx->completion_lock); 2796 spin_unlock(&ctx->completion_lock); 2797 2798 io_ring_ctx_free(ctx); 2799 } 2800 2801 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2802 { 2803 unsigned long index; 2804 struct creds *creds; 2805 2806 mutex_lock(&ctx->uring_lock); 2807 percpu_ref_kill(&ctx->refs); 2808 if (ctx->rings) 2809 __io_cqring_overflow_flush(ctx, true); 2810 xa_for_each(&ctx->personalities, index, creds) 2811 io_unregister_personality(ctx, index); 2812 if (ctx->rings) 2813 io_poll_remove_all(ctx, NULL, true); 2814 mutex_unlock(&ctx->uring_lock); 2815 2816 /* failed during ring init, it couldn't have issued any requests */ 2817 if (ctx->rings) { 2818 io_kill_timeouts(ctx, NULL, true); 2819 /* if we failed setting up the ctx, we might not have any rings */ 2820 io_iopoll_try_reap_events(ctx); 2821 /* drop cached put refs after potentially doing completions */ 2822 if (current->io_uring) 2823 io_uring_drop_tctx_refs(current); 2824 } 2825 2826 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2827 /* 2828 * Use system_unbound_wq to avoid spawning tons of event kworkers 2829 * if we're exiting a ton of rings at the same time. It just adds 2830 * noise and overhead, there's no discernable change in runtime 2831 * over using system_wq. 2832 */ 2833 queue_work(system_unbound_wq, &ctx->exit_work); 2834 } 2835 2836 static int io_uring_release(struct inode *inode, struct file *file) 2837 { 2838 struct io_ring_ctx *ctx = file->private_data; 2839 2840 file->private_data = NULL; 2841 io_ring_ctx_wait_and_kill(ctx); 2842 return 0; 2843 } 2844 2845 struct io_task_cancel { 2846 struct task_struct *task; 2847 bool all; 2848 }; 2849 2850 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2851 { 2852 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2853 struct io_task_cancel *cancel = data; 2854 2855 return io_match_task_safe(req, cancel->task, cancel->all); 2856 } 2857 2858 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2859 struct task_struct *task, 2860 bool cancel_all) 2861 { 2862 struct io_defer_entry *de; 2863 LIST_HEAD(list); 2864 2865 spin_lock(&ctx->completion_lock); 2866 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2867 if (io_match_task_safe(de->req, task, cancel_all)) { 2868 list_cut_position(&list, &ctx->defer_list, &de->list); 2869 break; 2870 } 2871 } 2872 spin_unlock(&ctx->completion_lock); 2873 if (list_empty(&list)) 2874 return false; 2875 2876 while (!list_empty(&list)) { 2877 de = list_first_entry(&list, struct io_defer_entry, list); 2878 list_del_init(&de->list); 2879 io_req_complete_failed(de->req, -ECANCELED); 2880 kfree(de); 2881 } 2882 return true; 2883 } 2884 2885 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 2886 { 2887 struct io_tctx_node *node; 2888 enum io_wq_cancel cret; 2889 bool ret = false; 2890 2891 mutex_lock(&ctx->uring_lock); 2892 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 2893 struct io_uring_task *tctx = node->task->io_uring; 2894 2895 /* 2896 * io_wq will stay alive while we hold uring_lock, because it's 2897 * killed after ctx nodes, which requires to take the lock. 2898 */ 2899 if (!tctx || !tctx->io_wq) 2900 continue; 2901 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 2902 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2903 } 2904 mutex_unlock(&ctx->uring_lock); 2905 2906 return ret; 2907 } 2908 2909 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 2910 struct task_struct *task, 2911 bool cancel_all) 2912 { 2913 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 2914 struct io_uring_task *tctx = task ? task->io_uring : NULL; 2915 enum io_wq_cancel cret; 2916 bool ret = false; 2917 2918 /* failed during ring init, it couldn't have issued any requests */ 2919 if (!ctx->rings) 2920 return false; 2921 2922 if (!task) { 2923 ret |= io_uring_try_cancel_iowq(ctx); 2924 } else if (tctx && tctx->io_wq) { 2925 /* 2926 * Cancels requests of all rings, not only @ctx, but 2927 * it's fine as the task is in exit/exec. 2928 */ 2929 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 2930 &cancel, true); 2931 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2932 } 2933 2934 /* SQPOLL thread does its own polling */ 2935 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 2936 (ctx->sq_data && ctx->sq_data->thread == current)) { 2937 while (!wq_list_empty(&ctx->iopoll_list)) { 2938 io_iopoll_try_reap_events(ctx); 2939 ret = true; 2940 } 2941 } 2942 2943 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2944 ret |= io_run_local_work(ctx) > 0; 2945 ret |= io_cancel_defer_files(ctx, task, cancel_all); 2946 mutex_lock(&ctx->uring_lock); 2947 ret |= io_poll_remove_all(ctx, task, cancel_all); 2948 mutex_unlock(&ctx->uring_lock); 2949 ret |= io_kill_timeouts(ctx, task, cancel_all); 2950 if (task) 2951 ret |= io_run_task_work() > 0; 2952 return ret; 2953 } 2954 2955 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 2956 { 2957 if (tracked) 2958 return atomic_read(&tctx->inflight_tracked); 2959 return percpu_counter_sum(&tctx->inflight); 2960 } 2961 2962 /* 2963 * Find any io_uring ctx that this task has registered or done IO on, and cancel 2964 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 2965 */ 2966 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 2967 { 2968 struct io_uring_task *tctx = current->io_uring; 2969 struct io_ring_ctx *ctx; 2970 s64 inflight; 2971 DEFINE_WAIT(wait); 2972 2973 WARN_ON_ONCE(sqd && sqd->thread != current); 2974 2975 if (!current->io_uring) 2976 return; 2977 if (tctx->io_wq) 2978 io_wq_exit_start(tctx->io_wq); 2979 2980 atomic_inc(&tctx->in_idle); 2981 do { 2982 bool loop = false; 2983 2984 io_uring_drop_tctx_refs(current); 2985 /* read completions before cancelations */ 2986 inflight = tctx_inflight(tctx, !cancel_all); 2987 if (!inflight) 2988 break; 2989 2990 if (!sqd) { 2991 struct io_tctx_node *node; 2992 unsigned long index; 2993 2994 xa_for_each(&tctx->xa, index, node) { 2995 /* sqpoll task will cancel all its requests */ 2996 if (node->ctx->sq_data) 2997 continue; 2998 loop |= io_uring_try_cancel_requests(node->ctx, 2999 current, cancel_all); 3000 } 3001 } else { 3002 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3003 loop |= io_uring_try_cancel_requests(ctx, 3004 current, 3005 cancel_all); 3006 } 3007 3008 if (loop) { 3009 cond_resched(); 3010 continue; 3011 } 3012 3013 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3014 io_run_task_work(); 3015 io_uring_drop_tctx_refs(current); 3016 3017 /* 3018 * If we've seen completions, retry without waiting. This 3019 * avoids a race where a completion comes in before we did 3020 * prepare_to_wait(). 3021 */ 3022 if (inflight == tctx_inflight(tctx, !cancel_all)) 3023 schedule(); 3024 finish_wait(&tctx->wait, &wait); 3025 } while (1); 3026 3027 io_uring_clean_tctx(tctx); 3028 if (cancel_all) { 3029 /* 3030 * We shouldn't run task_works after cancel, so just leave 3031 * ->in_idle set for normal exit. 3032 */ 3033 atomic_dec(&tctx->in_idle); 3034 /* for exec all current's requests should be gone, kill tctx */ 3035 __io_uring_free(current); 3036 } 3037 } 3038 3039 void __io_uring_cancel(bool cancel_all) 3040 { 3041 io_uring_cancel_generic(cancel_all, NULL); 3042 } 3043 3044 static void *io_uring_validate_mmap_request(struct file *file, 3045 loff_t pgoff, size_t sz) 3046 { 3047 struct io_ring_ctx *ctx = file->private_data; 3048 loff_t offset = pgoff << PAGE_SHIFT; 3049 struct page *page; 3050 void *ptr; 3051 3052 switch (offset) { 3053 case IORING_OFF_SQ_RING: 3054 case IORING_OFF_CQ_RING: 3055 ptr = ctx->rings; 3056 break; 3057 case IORING_OFF_SQES: 3058 ptr = ctx->sq_sqes; 3059 break; 3060 default: 3061 return ERR_PTR(-EINVAL); 3062 } 3063 3064 page = virt_to_head_page(ptr); 3065 if (sz > page_size(page)) 3066 return ERR_PTR(-EINVAL); 3067 3068 return ptr; 3069 } 3070 3071 #ifdef CONFIG_MMU 3072 3073 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3074 { 3075 size_t sz = vma->vm_end - vma->vm_start; 3076 unsigned long pfn; 3077 void *ptr; 3078 3079 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3080 if (IS_ERR(ptr)) 3081 return PTR_ERR(ptr); 3082 3083 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3084 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3085 } 3086 3087 #else /* !CONFIG_MMU */ 3088 3089 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3090 { 3091 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL; 3092 } 3093 3094 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3095 { 3096 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3097 } 3098 3099 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3100 unsigned long addr, unsigned long len, 3101 unsigned long pgoff, unsigned long flags) 3102 { 3103 void *ptr; 3104 3105 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3106 if (IS_ERR(ptr)) 3107 return PTR_ERR(ptr); 3108 3109 return (unsigned long) ptr; 3110 } 3111 3112 #endif /* !CONFIG_MMU */ 3113 3114 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3115 { 3116 if (flags & IORING_ENTER_EXT_ARG) { 3117 struct io_uring_getevents_arg arg; 3118 3119 if (argsz != sizeof(arg)) 3120 return -EINVAL; 3121 if (copy_from_user(&arg, argp, sizeof(arg))) 3122 return -EFAULT; 3123 } 3124 return 0; 3125 } 3126 3127 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3128 struct __kernel_timespec __user **ts, 3129 const sigset_t __user **sig) 3130 { 3131 struct io_uring_getevents_arg arg; 3132 3133 /* 3134 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3135 * is just a pointer to the sigset_t. 3136 */ 3137 if (!(flags & IORING_ENTER_EXT_ARG)) { 3138 *sig = (const sigset_t __user *) argp; 3139 *ts = NULL; 3140 return 0; 3141 } 3142 3143 /* 3144 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3145 * timespec and sigset_t pointers if good. 3146 */ 3147 if (*argsz != sizeof(arg)) 3148 return -EINVAL; 3149 if (copy_from_user(&arg, argp, sizeof(arg))) 3150 return -EFAULT; 3151 if (arg.pad) 3152 return -EINVAL; 3153 *sig = u64_to_user_ptr(arg.sigmask); 3154 *argsz = arg.sigmask_sz; 3155 *ts = u64_to_user_ptr(arg.ts); 3156 return 0; 3157 } 3158 3159 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3160 u32, min_complete, u32, flags, const void __user *, argp, 3161 size_t, argsz) 3162 { 3163 struct io_ring_ctx *ctx; 3164 struct fd f; 3165 long ret; 3166 3167 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3168 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3169 IORING_ENTER_REGISTERED_RING))) 3170 return -EINVAL; 3171 3172 /* 3173 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3174 * need only dereference our task private array to find it. 3175 */ 3176 if (flags & IORING_ENTER_REGISTERED_RING) { 3177 struct io_uring_task *tctx = current->io_uring; 3178 3179 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3180 return -EINVAL; 3181 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3182 f.file = tctx->registered_rings[fd]; 3183 f.flags = 0; 3184 if (unlikely(!f.file)) 3185 return -EBADF; 3186 } else { 3187 f = fdget(fd); 3188 if (unlikely(!f.file)) 3189 return -EBADF; 3190 ret = -EOPNOTSUPP; 3191 if (unlikely(!io_is_uring_fops(f.file))) 3192 goto out; 3193 } 3194 3195 ctx = f.file->private_data; 3196 ret = -EBADFD; 3197 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3198 goto out; 3199 3200 /* 3201 * For SQ polling, the thread will do all submissions and completions. 3202 * Just return the requested submit count, and wake the thread if 3203 * we were asked to. 3204 */ 3205 ret = 0; 3206 if (ctx->flags & IORING_SETUP_SQPOLL) { 3207 io_cqring_overflow_flush(ctx); 3208 3209 if (unlikely(ctx->sq_data->thread == NULL)) { 3210 ret = -EOWNERDEAD; 3211 goto out; 3212 } 3213 if (flags & IORING_ENTER_SQ_WAKEUP) 3214 wake_up(&ctx->sq_data->wait); 3215 if (flags & IORING_ENTER_SQ_WAIT) { 3216 ret = io_sqpoll_wait_sq(ctx); 3217 if (ret) 3218 goto out; 3219 } 3220 ret = to_submit; 3221 } else if (to_submit) { 3222 ret = io_uring_add_tctx_node(ctx); 3223 if (unlikely(ret)) 3224 goto out; 3225 3226 mutex_lock(&ctx->uring_lock); 3227 ret = io_submit_sqes(ctx, to_submit); 3228 if (ret != to_submit) { 3229 mutex_unlock(&ctx->uring_lock); 3230 goto out; 3231 } 3232 if ((flags & IORING_ENTER_GETEVENTS) && ctx->syscall_iopoll) 3233 goto iopoll_locked; 3234 mutex_unlock(&ctx->uring_lock); 3235 } 3236 3237 if (flags & IORING_ENTER_GETEVENTS) { 3238 int ret2; 3239 3240 if (ctx->syscall_iopoll) { 3241 /* 3242 * We disallow the app entering submit/complete with 3243 * polling, but we still need to lock the ring to 3244 * prevent racing with polled issue that got punted to 3245 * a workqueue. 3246 */ 3247 mutex_lock(&ctx->uring_lock); 3248 iopoll_locked: 3249 ret2 = io_validate_ext_arg(flags, argp, argsz); 3250 if (likely(!ret2)) { 3251 min_complete = min(min_complete, 3252 ctx->cq_entries); 3253 ret2 = io_iopoll_check(ctx, min_complete); 3254 } 3255 mutex_unlock(&ctx->uring_lock); 3256 } else { 3257 const sigset_t __user *sig; 3258 struct __kernel_timespec __user *ts; 3259 3260 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3261 if (likely(!ret2)) { 3262 min_complete = min(min_complete, 3263 ctx->cq_entries); 3264 ret2 = io_cqring_wait(ctx, min_complete, sig, 3265 argsz, ts); 3266 } 3267 } 3268 3269 if (!ret) { 3270 ret = ret2; 3271 3272 /* 3273 * EBADR indicates that one or more CQE were dropped. 3274 * Once the user has been informed we can clear the bit 3275 * as they are obviously ok with those drops. 3276 */ 3277 if (unlikely(ret2 == -EBADR)) 3278 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3279 &ctx->check_cq); 3280 } 3281 } 3282 out: 3283 fdput(f); 3284 return ret; 3285 } 3286 3287 static const struct file_operations io_uring_fops = { 3288 .release = io_uring_release, 3289 .mmap = io_uring_mmap, 3290 #ifndef CONFIG_MMU 3291 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3292 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3293 #endif 3294 .poll = io_uring_poll, 3295 #ifdef CONFIG_PROC_FS 3296 .show_fdinfo = io_uring_show_fdinfo, 3297 #endif 3298 }; 3299 3300 bool io_is_uring_fops(struct file *file) 3301 { 3302 return file->f_op == &io_uring_fops; 3303 } 3304 3305 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3306 struct io_uring_params *p) 3307 { 3308 struct io_rings *rings; 3309 size_t size, sq_array_offset; 3310 3311 /* make sure these are sane, as we already accounted them */ 3312 ctx->sq_entries = p->sq_entries; 3313 ctx->cq_entries = p->cq_entries; 3314 3315 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3316 if (size == SIZE_MAX) 3317 return -EOVERFLOW; 3318 3319 rings = io_mem_alloc(size); 3320 if (!rings) 3321 return -ENOMEM; 3322 3323 ctx->rings = rings; 3324 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3325 rings->sq_ring_mask = p->sq_entries - 1; 3326 rings->cq_ring_mask = p->cq_entries - 1; 3327 rings->sq_ring_entries = p->sq_entries; 3328 rings->cq_ring_entries = p->cq_entries; 3329 3330 if (p->flags & IORING_SETUP_SQE128) 3331 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3332 else 3333 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3334 if (size == SIZE_MAX) { 3335 io_mem_free(ctx->rings); 3336 ctx->rings = NULL; 3337 return -EOVERFLOW; 3338 } 3339 3340 ctx->sq_sqes = io_mem_alloc(size); 3341 if (!ctx->sq_sqes) { 3342 io_mem_free(ctx->rings); 3343 ctx->rings = NULL; 3344 return -ENOMEM; 3345 } 3346 3347 return 0; 3348 } 3349 3350 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3351 { 3352 int ret, fd; 3353 3354 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3355 if (fd < 0) 3356 return fd; 3357 3358 ret = __io_uring_add_tctx_node(ctx, false); 3359 if (ret) { 3360 put_unused_fd(fd); 3361 return ret; 3362 } 3363 fd_install(fd, file); 3364 return fd; 3365 } 3366 3367 /* 3368 * Allocate an anonymous fd, this is what constitutes the application 3369 * visible backing of an io_uring instance. The application mmaps this 3370 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3371 * we have to tie this fd to a socket for file garbage collection purposes. 3372 */ 3373 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3374 { 3375 struct file *file; 3376 #if defined(CONFIG_UNIX) 3377 int ret; 3378 3379 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3380 &ctx->ring_sock); 3381 if (ret) 3382 return ERR_PTR(ret); 3383 #endif 3384 3385 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3386 O_RDWR | O_CLOEXEC, NULL); 3387 #if defined(CONFIG_UNIX) 3388 if (IS_ERR(file)) { 3389 sock_release(ctx->ring_sock); 3390 ctx->ring_sock = NULL; 3391 } else { 3392 ctx->ring_sock->file = file; 3393 } 3394 #endif 3395 return file; 3396 } 3397 3398 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3399 struct io_uring_params __user *params) 3400 { 3401 struct io_ring_ctx *ctx; 3402 struct file *file; 3403 int ret; 3404 3405 if (!entries) 3406 return -EINVAL; 3407 if (entries > IORING_MAX_ENTRIES) { 3408 if (!(p->flags & IORING_SETUP_CLAMP)) 3409 return -EINVAL; 3410 entries = IORING_MAX_ENTRIES; 3411 } 3412 3413 /* 3414 * Use twice as many entries for the CQ ring. It's possible for the 3415 * application to drive a higher depth than the size of the SQ ring, 3416 * since the sqes are only used at submission time. This allows for 3417 * some flexibility in overcommitting a bit. If the application has 3418 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3419 * of CQ ring entries manually. 3420 */ 3421 p->sq_entries = roundup_pow_of_two(entries); 3422 if (p->flags & IORING_SETUP_CQSIZE) { 3423 /* 3424 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3425 * to a power-of-two, if it isn't already. We do NOT impose 3426 * any cq vs sq ring sizing. 3427 */ 3428 if (!p->cq_entries) 3429 return -EINVAL; 3430 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3431 if (!(p->flags & IORING_SETUP_CLAMP)) 3432 return -EINVAL; 3433 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3434 } 3435 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3436 if (p->cq_entries < p->sq_entries) 3437 return -EINVAL; 3438 } else { 3439 p->cq_entries = 2 * p->sq_entries; 3440 } 3441 3442 ctx = io_ring_ctx_alloc(p); 3443 if (!ctx) 3444 return -ENOMEM; 3445 3446 /* 3447 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3448 * space applications don't need to do io completion events 3449 * polling again, they can rely on io_sq_thread to do polling 3450 * work, which can reduce cpu usage and uring_lock contention. 3451 */ 3452 if (ctx->flags & IORING_SETUP_IOPOLL && 3453 !(ctx->flags & IORING_SETUP_SQPOLL)) 3454 ctx->syscall_iopoll = 1; 3455 3456 ctx->compat = in_compat_syscall(); 3457 if (!capable(CAP_IPC_LOCK)) 3458 ctx->user = get_uid(current_user()); 3459 3460 /* 3461 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3462 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3463 */ 3464 ret = -EINVAL; 3465 if (ctx->flags & IORING_SETUP_SQPOLL) { 3466 /* IPI related flags don't make sense with SQPOLL */ 3467 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3468 IORING_SETUP_TASKRUN_FLAG | 3469 IORING_SETUP_DEFER_TASKRUN)) 3470 goto err; 3471 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3472 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3473 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3474 } else { 3475 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3476 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3477 goto err; 3478 ctx->notify_method = TWA_SIGNAL; 3479 } 3480 3481 /* 3482 * For DEFER_TASKRUN we require the completion task to be the same as the 3483 * submission task. This implies that there is only one submitter, so enforce 3484 * that. 3485 */ 3486 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3487 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3488 goto err; 3489 } 3490 3491 /* 3492 * This is just grabbed for accounting purposes. When a process exits, 3493 * the mm is exited and dropped before the files, hence we need to hang 3494 * on to this mm purely for the purposes of being able to unaccount 3495 * memory (locked/pinned vm). It's not used for anything else. 3496 */ 3497 mmgrab(current->mm); 3498 ctx->mm_account = current->mm; 3499 3500 ret = io_allocate_scq_urings(ctx, p); 3501 if (ret) 3502 goto err; 3503 3504 ret = io_sq_offload_create(ctx, p); 3505 if (ret) 3506 goto err; 3507 /* always set a rsrc node */ 3508 ret = io_rsrc_node_switch_start(ctx); 3509 if (ret) 3510 goto err; 3511 io_rsrc_node_switch(ctx, NULL); 3512 3513 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3514 p->sq_off.head = offsetof(struct io_rings, sq.head); 3515 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3516 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3517 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3518 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3519 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3520 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3521 3522 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3523 p->cq_off.head = offsetof(struct io_rings, cq.head); 3524 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3525 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3526 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3527 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3528 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3529 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3530 3531 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3532 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3533 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3534 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3535 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3536 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3537 IORING_FEAT_LINKED_FILE; 3538 3539 if (copy_to_user(params, p, sizeof(*p))) { 3540 ret = -EFAULT; 3541 goto err; 3542 } 3543 3544 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3545 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3546 ctx->submitter_task = get_task_struct(current); 3547 3548 file = io_uring_get_file(ctx); 3549 if (IS_ERR(file)) { 3550 ret = PTR_ERR(file); 3551 goto err; 3552 } 3553 3554 /* 3555 * Install ring fd as the very last thing, so we don't risk someone 3556 * having closed it before we finish setup 3557 */ 3558 ret = io_uring_install_fd(ctx, file); 3559 if (ret < 0) { 3560 /* fput will clean it up */ 3561 fput(file); 3562 return ret; 3563 } 3564 3565 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3566 return ret; 3567 err: 3568 io_ring_ctx_wait_and_kill(ctx); 3569 return ret; 3570 } 3571 3572 /* 3573 * Sets up an aio uring context, and returns the fd. Applications asks for a 3574 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3575 * params structure passed in. 3576 */ 3577 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3578 { 3579 struct io_uring_params p; 3580 int i; 3581 3582 if (copy_from_user(&p, params, sizeof(p))) 3583 return -EFAULT; 3584 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3585 if (p.resv[i]) 3586 return -EINVAL; 3587 } 3588 3589 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3590 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3591 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3592 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3593 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3594 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3595 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN)) 3596 return -EINVAL; 3597 3598 return io_uring_create(entries, &p, params); 3599 } 3600 3601 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3602 struct io_uring_params __user *, params) 3603 { 3604 return io_uring_setup(entries, params); 3605 } 3606 3607 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3608 unsigned nr_args) 3609 { 3610 struct io_uring_probe *p; 3611 size_t size; 3612 int i, ret; 3613 3614 size = struct_size(p, ops, nr_args); 3615 if (size == SIZE_MAX) 3616 return -EOVERFLOW; 3617 p = kzalloc(size, GFP_KERNEL); 3618 if (!p) 3619 return -ENOMEM; 3620 3621 ret = -EFAULT; 3622 if (copy_from_user(p, arg, size)) 3623 goto out; 3624 ret = -EINVAL; 3625 if (memchr_inv(p, 0, size)) 3626 goto out; 3627 3628 p->last_op = IORING_OP_LAST - 1; 3629 if (nr_args > IORING_OP_LAST) 3630 nr_args = IORING_OP_LAST; 3631 3632 for (i = 0; i < nr_args; i++) { 3633 p->ops[i].op = i; 3634 if (!io_op_defs[i].not_supported) 3635 p->ops[i].flags = IO_URING_OP_SUPPORTED; 3636 } 3637 p->ops_len = i; 3638 3639 ret = 0; 3640 if (copy_to_user(arg, p, size)) 3641 ret = -EFAULT; 3642 out: 3643 kfree(p); 3644 return ret; 3645 } 3646 3647 static int io_register_personality(struct io_ring_ctx *ctx) 3648 { 3649 const struct cred *creds; 3650 u32 id; 3651 int ret; 3652 3653 creds = get_current_cred(); 3654 3655 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 3656 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 3657 if (ret < 0) { 3658 put_cred(creds); 3659 return ret; 3660 } 3661 return id; 3662 } 3663 3664 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 3665 void __user *arg, unsigned int nr_args) 3666 { 3667 struct io_uring_restriction *res; 3668 size_t size; 3669 int i, ret; 3670 3671 /* Restrictions allowed only if rings started disabled */ 3672 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3673 return -EBADFD; 3674 3675 /* We allow only a single restrictions registration */ 3676 if (ctx->restrictions.registered) 3677 return -EBUSY; 3678 3679 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 3680 return -EINVAL; 3681 3682 size = array_size(nr_args, sizeof(*res)); 3683 if (size == SIZE_MAX) 3684 return -EOVERFLOW; 3685 3686 res = memdup_user(arg, size); 3687 if (IS_ERR(res)) 3688 return PTR_ERR(res); 3689 3690 ret = 0; 3691 3692 for (i = 0; i < nr_args; i++) { 3693 switch (res[i].opcode) { 3694 case IORING_RESTRICTION_REGISTER_OP: 3695 if (res[i].register_op >= IORING_REGISTER_LAST) { 3696 ret = -EINVAL; 3697 goto out; 3698 } 3699 3700 __set_bit(res[i].register_op, 3701 ctx->restrictions.register_op); 3702 break; 3703 case IORING_RESTRICTION_SQE_OP: 3704 if (res[i].sqe_op >= IORING_OP_LAST) { 3705 ret = -EINVAL; 3706 goto out; 3707 } 3708 3709 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 3710 break; 3711 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 3712 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 3713 break; 3714 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 3715 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 3716 break; 3717 default: 3718 ret = -EINVAL; 3719 goto out; 3720 } 3721 } 3722 3723 out: 3724 /* Reset all restrictions if an error happened */ 3725 if (ret != 0) 3726 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 3727 else 3728 ctx->restrictions.registered = true; 3729 3730 kfree(res); 3731 return ret; 3732 } 3733 3734 static int io_register_enable_rings(struct io_ring_ctx *ctx) 3735 { 3736 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3737 return -EBADFD; 3738 3739 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) 3740 ctx->submitter_task = get_task_struct(current); 3741 3742 if (ctx->restrictions.registered) 3743 ctx->restricted = 1; 3744 3745 ctx->flags &= ~IORING_SETUP_R_DISABLED; 3746 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 3747 wake_up(&ctx->sq_data->wait); 3748 return 0; 3749 } 3750 3751 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 3752 void __user *arg, unsigned len) 3753 { 3754 struct io_uring_task *tctx = current->io_uring; 3755 cpumask_var_t new_mask; 3756 int ret; 3757 3758 if (!tctx || !tctx->io_wq) 3759 return -EINVAL; 3760 3761 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3762 return -ENOMEM; 3763 3764 cpumask_clear(new_mask); 3765 if (len > cpumask_size()) 3766 len = cpumask_size(); 3767 3768 if (in_compat_syscall()) { 3769 ret = compat_get_bitmap(cpumask_bits(new_mask), 3770 (const compat_ulong_t __user *)arg, 3771 len * 8 /* CHAR_BIT */); 3772 } else { 3773 ret = copy_from_user(new_mask, arg, len); 3774 } 3775 3776 if (ret) { 3777 free_cpumask_var(new_mask); 3778 return -EFAULT; 3779 } 3780 3781 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 3782 free_cpumask_var(new_mask); 3783 return ret; 3784 } 3785 3786 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 3787 { 3788 struct io_uring_task *tctx = current->io_uring; 3789 3790 if (!tctx || !tctx->io_wq) 3791 return -EINVAL; 3792 3793 return io_wq_cpu_affinity(tctx->io_wq, NULL); 3794 } 3795 3796 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 3797 void __user *arg) 3798 __must_hold(&ctx->uring_lock) 3799 { 3800 struct io_tctx_node *node; 3801 struct io_uring_task *tctx = NULL; 3802 struct io_sq_data *sqd = NULL; 3803 __u32 new_count[2]; 3804 int i, ret; 3805 3806 if (copy_from_user(new_count, arg, sizeof(new_count))) 3807 return -EFAULT; 3808 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3809 if (new_count[i] > INT_MAX) 3810 return -EINVAL; 3811 3812 if (ctx->flags & IORING_SETUP_SQPOLL) { 3813 sqd = ctx->sq_data; 3814 if (sqd) { 3815 /* 3816 * Observe the correct sqd->lock -> ctx->uring_lock 3817 * ordering. Fine to drop uring_lock here, we hold 3818 * a ref to the ctx. 3819 */ 3820 refcount_inc(&sqd->refs); 3821 mutex_unlock(&ctx->uring_lock); 3822 mutex_lock(&sqd->lock); 3823 mutex_lock(&ctx->uring_lock); 3824 if (sqd->thread) 3825 tctx = sqd->thread->io_uring; 3826 } 3827 } else { 3828 tctx = current->io_uring; 3829 } 3830 3831 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 3832 3833 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3834 if (new_count[i]) 3835 ctx->iowq_limits[i] = new_count[i]; 3836 ctx->iowq_limits_set = true; 3837 3838 if (tctx && tctx->io_wq) { 3839 ret = io_wq_max_workers(tctx->io_wq, new_count); 3840 if (ret) 3841 goto err; 3842 } else { 3843 memset(new_count, 0, sizeof(new_count)); 3844 } 3845 3846 if (sqd) { 3847 mutex_unlock(&sqd->lock); 3848 io_put_sq_data(sqd); 3849 } 3850 3851 if (copy_to_user(arg, new_count, sizeof(new_count))) 3852 return -EFAULT; 3853 3854 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 3855 if (sqd) 3856 return 0; 3857 3858 /* now propagate the restriction to all registered users */ 3859 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3860 struct io_uring_task *tctx = node->task->io_uring; 3861 3862 if (WARN_ON_ONCE(!tctx->io_wq)) 3863 continue; 3864 3865 for (i = 0; i < ARRAY_SIZE(new_count); i++) 3866 new_count[i] = ctx->iowq_limits[i]; 3867 /* ignore errors, it always returns zero anyway */ 3868 (void)io_wq_max_workers(tctx->io_wq, new_count); 3869 } 3870 return 0; 3871 err: 3872 if (sqd) { 3873 mutex_unlock(&sqd->lock); 3874 io_put_sq_data(sqd); 3875 } 3876 return ret; 3877 } 3878 3879 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 3880 void __user *arg, unsigned nr_args) 3881 __releases(ctx->uring_lock) 3882 __acquires(ctx->uring_lock) 3883 { 3884 int ret; 3885 3886 /* 3887 * We don't quiesce the refs for register anymore and so it can't be 3888 * dying as we're holding a file ref here. 3889 */ 3890 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 3891 return -ENXIO; 3892 3893 if (ctx->restricted) { 3894 if (opcode >= IORING_REGISTER_LAST) 3895 return -EINVAL; 3896 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 3897 if (!test_bit(opcode, ctx->restrictions.register_op)) 3898 return -EACCES; 3899 } 3900 3901 switch (opcode) { 3902 case IORING_REGISTER_BUFFERS: 3903 ret = -EFAULT; 3904 if (!arg) 3905 break; 3906 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 3907 break; 3908 case IORING_UNREGISTER_BUFFERS: 3909 ret = -EINVAL; 3910 if (arg || nr_args) 3911 break; 3912 ret = io_sqe_buffers_unregister(ctx); 3913 break; 3914 case IORING_REGISTER_FILES: 3915 ret = -EFAULT; 3916 if (!arg) 3917 break; 3918 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 3919 break; 3920 case IORING_UNREGISTER_FILES: 3921 ret = -EINVAL; 3922 if (arg || nr_args) 3923 break; 3924 ret = io_sqe_files_unregister(ctx); 3925 break; 3926 case IORING_REGISTER_FILES_UPDATE: 3927 ret = io_register_files_update(ctx, arg, nr_args); 3928 break; 3929 case IORING_REGISTER_EVENTFD: 3930 ret = -EINVAL; 3931 if (nr_args != 1) 3932 break; 3933 ret = io_eventfd_register(ctx, arg, 0); 3934 break; 3935 case IORING_REGISTER_EVENTFD_ASYNC: 3936 ret = -EINVAL; 3937 if (nr_args != 1) 3938 break; 3939 ret = io_eventfd_register(ctx, arg, 1); 3940 break; 3941 case IORING_UNREGISTER_EVENTFD: 3942 ret = -EINVAL; 3943 if (arg || nr_args) 3944 break; 3945 ret = io_eventfd_unregister(ctx); 3946 break; 3947 case IORING_REGISTER_PROBE: 3948 ret = -EINVAL; 3949 if (!arg || nr_args > 256) 3950 break; 3951 ret = io_probe(ctx, arg, nr_args); 3952 break; 3953 case IORING_REGISTER_PERSONALITY: 3954 ret = -EINVAL; 3955 if (arg || nr_args) 3956 break; 3957 ret = io_register_personality(ctx); 3958 break; 3959 case IORING_UNREGISTER_PERSONALITY: 3960 ret = -EINVAL; 3961 if (arg) 3962 break; 3963 ret = io_unregister_personality(ctx, nr_args); 3964 break; 3965 case IORING_REGISTER_ENABLE_RINGS: 3966 ret = -EINVAL; 3967 if (arg || nr_args) 3968 break; 3969 ret = io_register_enable_rings(ctx); 3970 break; 3971 case IORING_REGISTER_RESTRICTIONS: 3972 ret = io_register_restrictions(ctx, arg, nr_args); 3973 break; 3974 case IORING_REGISTER_FILES2: 3975 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 3976 break; 3977 case IORING_REGISTER_FILES_UPDATE2: 3978 ret = io_register_rsrc_update(ctx, arg, nr_args, 3979 IORING_RSRC_FILE); 3980 break; 3981 case IORING_REGISTER_BUFFERS2: 3982 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 3983 break; 3984 case IORING_REGISTER_BUFFERS_UPDATE: 3985 ret = io_register_rsrc_update(ctx, arg, nr_args, 3986 IORING_RSRC_BUFFER); 3987 break; 3988 case IORING_REGISTER_IOWQ_AFF: 3989 ret = -EINVAL; 3990 if (!arg || !nr_args) 3991 break; 3992 ret = io_register_iowq_aff(ctx, arg, nr_args); 3993 break; 3994 case IORING_UNREGISTER_IOWQ_AFF: 3995 ret = -EINVAL; 3996 if (arg || nr_args) 3997 break; 3998 ret = io_unregister_iowq_aff(ctx); 3999 break; 4000 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4001 ret = -EINVAL; 4002 if (!arg || nr_args != 2) 4003 break; 4004 ret = io_register_iowq_max_workers(ctx, arg); 4005 break; 4006 case IORING_REGISTER_RING_FDS: 4007 ret = io_ringfd_register(ctx, arg, nr_args); 4008 break; 4009 case IORING_UNREGISTER_RING_FDS: 4010 ret = io_ringfd_unregister(ctx, arg, nr_args); 4011 break; 4012 case IORING_REGISTER_PBUF_RING: 4013 ret = -EINVAL; 4014 if (!arg || nr_args != 1) 4015 break; 4016 ret = io_register_pbuf_ring(ctx, arg); 4017 break; 4018 case IORING_UNREGISTER_PBUF_RING: 4019 ret = -EINVAL; 4020 if (!arg || nr_args != 1) 4021 break; 4022 ret = io_unregister_pbuf_ring(ctx, arg); 4023 break; 4024 case IORING_REGISTER_SYNC_CANCEL: 4025 ret = -EINVAL; 4026 if (!arg || nr_args != 1) 4027 break; 4028 ret = io_sync_cancel(ctx, arg); 4029 break; 4030 case IORING_REGISTER_FILE_ALLOC_RANGE: 4031 ret = -EINVAL; 4032 if (!arg || nr_args) 4033 break; 4034 ret = io_register_file_alloc_range(ctx, arg); 4035 break; 4036 default: 4037 ret = -EINVAL; 4038 break; 4039 } 4040 4041 return ret; 4042 } 4043 4044 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4045 void __user *, arg, unsigned int, nr_args) 4046 { 4047 struct io_ring_ctx *ctx; 4048 long ret = -EBADF; 4049 struct fd f; 4050 4051 f = fdget(fd); 4052 if (!f.file) 4053 return -EBADF; 4054 4055 ret = -EOPNOTSUPP; 4056 if (!io_is_uring_fops(f.file)) 4057 goto out_fput; 4058 4059 ctx = f.file->private_data; 4060 4061 io_run_task_work_ctx(ctx); 4062 4063 mutex_lock(&ctx->uring_lock); 4064 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4065 mutex_unlock(&ctx->uring_lock); 4066 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4067 out_fput: 4068 fdput(f); 4069 return ret; 4070 } 4071 4072 static int __init io_uring_init(void) 4073 { 4074 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4075 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4076 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4077 } while (0) 4078 4079 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4080 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4081 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4082 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4083 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4084 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4085 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4086 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4087 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4088 BUILD_BUG_SQE_ELEM(8, __u64, off); 4089 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4090 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4091 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4092 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4093 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4094 BUILD_BUG_SQE_ELEM(24, __u32, len); 4095 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4096 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4097 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4098 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4099 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4100 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4101 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4102 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4103 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4104 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4105 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4106 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4107 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4108 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4109 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4110 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4111 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4112 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4113 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4114 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4115 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4116 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4117 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4118 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4119 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4120 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4121 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4122 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4123 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4124 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4125 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4126 4127 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4128 sizeof(struct io_uring_rsrc_update)); 4129 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4130 sizeof(struct io_uring_rsrc_update2)); 4131 4132 /* ->buf_index is u16 */ 4133 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4134 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4135 offsetof(struct io_uring_buf_ring, tail)); 4136 4137 /* should fit into one byte */ 4138 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4139 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4140 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4141 4142 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4143 4144 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4145 4146 io_uring_optable_init(); 4147 4148 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4149 SLAB_ACCOUNT); 4150 return 0; 4151 }; 4152 __initcall(io_uring_init); 4153