xref: /linux/io_uring/io_uring.c (revision 83439a0f1ce6a592f95e41338320b5f01b98a356)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "alloc_cache.h"
98 
99 #define IORING_MAX_ENTRIES	32768
100 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
101 
102 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
103 				 IORING_REGISTER_LAST + IORING_OP_LAST)
104 
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
107 
108 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
110 
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
113 				REQ_F_ASYNC_DATA)
114 
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
116 				 IO_REQ_CLEAN_FLAGS)
117 
118 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
119 
120 #define IO_COMPL_BATCH			32
121 #define IO_REQ_ALLOC_BATCH		8
122 
123 enum {
124 	IO_CHECK_CQ_OVERFLOW_BIT,
125 	IO_CHECK_CQ_DROPPED_BIT,
126 };
127 
128 enum {
129 	IO_EVENTFD_OP_SIGNAL_BIT,
130 	IO_EVENTFD_OP_FREE_BIT,
131 };
132 
133 struct io_defer_entry {
134 	struct list_head	list;
135 	struct io_kiocb		*req;
136 	u32			seq;
137 };
138 
139 /* requests with any of those set should undergo io_disarm_next() */
140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
142 
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 					 struct task_struct *task,
145 					 bool cancel_all);
146 
147 static void io_dismantle_req(struct io_kiocb *req);
148 static void io_clean_op(struct io_kiocb *req);
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 
153 static struct kmem_cache *req_cachep;
154 
155 struct sock *io_uring_get_socket(struct file *file)
156 {
157 #if defined(CONFIG_UNIX)
158 	if (io_is_uring_fops(file)) {
159 		struct io_ring_ctx *ctx = file->private_data;
160 
161 		return ctx->ring_sock->sk;
162 	}
163 #endif
164 	return NULL;
165 }
166 EXPORT_SYMBOL(io_uring_get_socket);
167 
168 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
169 {
170 	if (!wq_list_empty(&ctx->submit_state.compl_reqs))
171 		__io_submit_flush_completions(ctx);
172 }
173 
174 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
175 {
176 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
177 }
178 
179 static bool io_match_linked(struct io_kiocb *head)
180 {
181 	struct io_kiocb *req;
182 
183 	io_for_each_link(req, head) {
184 		if (req->flags & REQ_F_INFLIGHT)
185 			return true;
186 	}
187 	return false;
188 }
189 
190 /*
191  * As io_match_task() but protected against racing with linked timeouts.
192  * User must not hold timeout_lock.
193  */
194 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
195 			bool cancel_all)
196 {
197 	bool matched;
198 
199 	if (task && head->task != task)
200 		return false;
201 	if (cancel_all)
202 		return true;
203 
204 	if (head->flags & REQ_F_LINK_TIMEOUT) {
205 		struct io_ring_ctx *ctx = head->ctx;
206 
207 		/* protect against races with linked timeouts */
208 		spin_lock_irq(&ctx->timeout_lock);
209 		matched = io_match_linked(head);
210 		spin_unlock_irq(&ctx->timeout_lock);
211 	} else {
212 		matched = io_match_linked(head);
213 	}
214 	return matched;
215 }
216 
217 static inline void req_fail_link_node(struct io_kiocb *req, int res)
218 {
219 	req_set_fail(req);
220 	io_req_set_res(req, res, 0);
221 }
222 
223 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
224 {
225 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
226 }
227 
228 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
229 {
230 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
231 
232 	complete(&ctx->ref_comp);
233 }
234 
235 static __cold void io_fallback_req_func(struct work_struct *work)
236 {
237 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
238 						fallback_work.work);
239 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
240 	struct io_kiocb *req, *tmp;
241 	bool locked = false;
242 
243 	percpu_ref_get(&ctx->refs);
244 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
245 		req->io_task_work.func(req, &locked);
246 
247 	if (locked) {
248 		io_submit_flush_completions(ctx);
249 		mutex_unlock(&ctx->uring_lock);
250 	}
251 	percpu_ref_put(&ctx->refs);
252 }
253 
254 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
255 {
256 	unsigned hash_buckets = 1U << bits;
257 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
258 
259 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
260 	if (!table->hbs)
261 		return -ENOMEM;
262 
263 	table->hash_bits = bits;
264 	init_hash_table(table, hash_buckets);
265 	return 0;
266 }
267 
268 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
269 {
270 	struct io_ring_ctx *ctx;
271 	int hash_bits;
272 
273 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
274 	if (!ctx)
275 		return NULL;
276 
277 	xa_init(&ctx->io_bl_xa);
278 
279 	/*
280 	 * Use 5 bits less than the max cq entries, that should give us around
281 	 * 32 entries per hash list if totally full and uniformly spread, but
282 	 * don't keep too many buckets to not overconsume memory.
283 	 */
284 	hash_bits = ilog2(p->cq_entries) - 5;
285 	hash_bits = clamp(hash_bits, 1, 8);
286 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
287 		goto err;
288 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
289 		goto err;
290 
291 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
292 	if (!ctx->dummy_ubuf)
293 		goto err;
294 	/* set invalid range, so io_import_fixed() fails meeting it */
295 	ctx->dummy_ubuf->ubuf = -1UL;
296 
297 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
298 			    0, GFP_KERNEL))
299 		goto err;
300 
301 	ctx->flags = p->flags;
302 	init_waitqueue_head(&ctx->sqo_sq_wait);
303 	INIT_LIST_HEAD(&ctx->sqd_list);
304 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
305 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
306 	io_alloc_cache_init(&ctx->apoll_cache);
307 	io_alloc_cache_init(&ctx->netmsg_cache);
308 	init_completion(&ctx->ref_comp);
309 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
310 	mutex_init(&ctx->uring_lock);
311 	init_waitqueue_head(&ctx->cq_wait);
312 	spin_lock_init(&ctx->completion_lock);
313 	spin_lock_init(&ctx->timeout_lock);
314 	INIT_WQ_LIST(&ctx->iopoll_list);
315 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
316 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
317 	INIT_LIST_HEAD(&ctx->defer_list);
318 	INIT_LIST_HEAD(&ctx->timeout_list);
319 	INIT_LIST_HEAD(&ctx->ltimeout_list);
320 	spin_lock_init(&ctx->rsrc_ref_lock);
321 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
322 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
323 	init_llist_head(&ctx->rsrc_put_llist);
324 	init_llist_head(&ctx->work_llist);
325 	INIT_LIST_HEAD(&ctx->tctx_list);
326 	ctx->submit_state.free_list.next = NULL;
327 	INIT_WQ_LIST(&ctx->locked_free_list);
328 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
329 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
330 	return ctx;
331 err:
332 	kfree(ctx->dummy_ubuf);
333 	kfree(ctx->cancel_table.hbs);
334 	kfree(ctx->cancel_table_locked.hbs);
335 	kfree(ctx->io_bl);
336 	xa_destroy(&ctx->io_bl_xa);
337 	kfree(ctx);
338 	return NULL;
339 }
340 
341 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
342 {
343 	struct io_rings *r = ctx->rings;
344 
345 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
346 	ctx->cq_extra--;
347 }
348 
349 static bool req_need_defer(struct io_kiocb *req, u32 seq)
350 {
351 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
352 		struct io_ring_ctx *ctx = req->ctx;
353 
354 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
355 	}
356 
357 	return false;
358 }
359 
360 static inline void io_req_track_inflight(struct io_kiocb *req)
361 {
362 	if (!(req->flags & REQ_F_INFLIGHT)) {
363 		req->flags |= REQ_F_INFLIGHT;
364 		atomic_inc(&req->task->io_uring->inflight_tracked);
365 	}
366 }
367 
368 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
369 {
370 	if (WARN_ON_ONCE(!req->link))
371 		return NULL;
372 
373 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
374 	req->flags |= REQ_F_LINK_TIMEOUT;
375 
376 	/* linked timeouts should have two refs once prep'ed */
377 	io_req_set_refcount(req);
378 	__io_req_set_refcount(req->link, 2);
379 	return req->link;
380 }
381 
382 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
383 {
384 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
385 		return NULL;
386 	return __io_prep_linked_timeout(req);
387 }
388 
389 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
390 {
391 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
392 }
393 
394 static inline void io_arm_ltimeout(struct io_kiocb *req)
395 {
396 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
397 		__io_arm_ltimeout(req);
398 }
399 
400 static void io_prep_async_work(struct io_kiocb *req)
401 {
402 	const struct io_op_def *def = &io_op_defs[req->opcode];
403 	struct io_ring_ctx *ctx = req->ctx;
404 
405 	if (!(req->flags & REQ_F_CREDS)) {
406 		req->flags |= REQ_F_CREDS;
407 		req->creds = get_current_cred();
408 	}
409 
410 	req->work.list.next = NULL;
411 	req->work.flags = 0;
412 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
413 	if (req->flags & REQ_F_FORCE_ASYNC)
414 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
415 
416 	if (req->file && !io_req_ffs_set(req))
417 		req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
418 
419 	if (req->flags & REQ_F_ISREG) {
420 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
421 			io_wq_hash_work(&req->work, file_inode(req->file));
422 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
423 		if (def->unbound_nonreg_file)
424 			req->work.flags |= IO_WQ_WORK_UNBOUND;
425 	}
426 }
427 
428 static void io_prep_async_link(struct io_kiocb *req)
429 {
430 	struct io_kiocb *cur;
431 
432 	if (req->flags & REQ_F_LINK_TIMEOUT) {
433 		struct io_ring_ctx *ctx = req->ctx;
434 
435 		spin_lock_irq(&ctx->timeout_lock);
436 		io_for_each_link(cur, req)
437 			io_prep_async_work(cur);
438 		spin_unlock_irq(&ctx->timeout_lock);
439 	} else {
440 		io_for_each_link(cur, req)
441 			io_prep_async_work(cur);
442 	}
443 }
444 
445 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
446 {
447 	struct io_kiocb *link = io_prep_linked_timeout(req);
448 	struct io_uring_task *tctx = req->task->io_uring;
449 
450 	BUG_ON(!tctx);
451 	BUG_ON(!tctx->io_wq);
452 
453 	/* init ->work of the whole link before punting */
454 	io_prep_async_link(req);
455 
456 	/*
457 	 * Not expected to happen, but if we do have a bug where this _can_
458 	 * happen, catch it here and ensure the request is marked as
459 	 * canceled. That will make io-wq go through the usual work cancel
460 	 * procedure rather than attempt to run this request (or create a new
461 	 * worker for it).
462 	 */
463 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
464 		req->work.flags |= IO_WQ_WORK_CANCEL;
465 
466 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
467 	io_wq_enqueue(tctx->io_wq, &req->work);
468 	if (link)
469 		io_queue_linked_timeout(link);
470 }
471 
472 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
473 {
474 	while (!list_empty(&ctx->defer_list)) {
475 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
476 						struct io_defer_entry, list);
477 
478 		if (req_need_defer(de->req, de->seq))
479 			break;
480 		list_del_init(&de->list);
481 		io_req_task_queue(de->req);
482 		kfree(de);
483 	}
484 }
485 
486 
487 static void io_eventfd_ops(struct rcu_head *rcu)
488 {
489 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
490 	int ops = atomic_xchg(&ev_fd->ops, 0);
491 
492 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
493 		eventfd_signal(ev_fd->cq_ev_fd, 1);
494 
495 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
496 	 * ordering in a race but if references are 0 we know we have to free
497 	 * it regardless.
498 	 */
499 	if (atomic_dec_and_test(&ev_fd->refs)) {
500 		eventfd_ctx_put(ev_fd->cq_ev_fd);
501 		kfree(ev_fd);
502 	}
503 }
504 
505 static void io_eventfd_signal(struct io_ring_ctx *ctx)
506 {
507 	struct io_ev_fd *ev_fd = NULL;
508 
509 	rcu_read_lock();
510 	/*
511 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
512 	 * and eventfd_signal
513 	 */
514 	ev_fd = rcu_dereference(ctx->io_ev_fd);
515 
516 	/*
517 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
518 	 * completed between the NULL check of ctx->io_ev_fd at the start of
519 	 * the function and rcu_read_lock.
520 	 */
521 	if (unlikely(!ev_fd))
522 		goto out;
523 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
524 		goto out;
525 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
526 		goto out;
527 
528 	if (likely(eventfd_signal_allowed())) {
529 		eventfd_signal(ev_fd->cq_ev_fd, 1);
530 	} else {
531 		atomic_inc(&ev_fd->refs);
532 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
533 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
534 		else
535 			atomic_dec(&ev_fd->refs);
536 	}
537 
538 out:
539 	rcu_read_unlock();
540 }
541 
542 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
543 {
544 	bool skip;
545 
546 	spin_lock(&ctx->completion_lock);
547 
548 	/*
549 	 * Eventfd should only get triggered when at least one event has been
550 	 * posted. Some applications rely on the eventfd notification count
551 	 * only changing IFF a new CQE has been added to the CQ ring. There's
552 	 * no depedency on 1:1 relationship between how many times this
553 	 * function is called (and hence the eventfd count) and number of CQEs
554 	 * posted to the CQ ring.
555 	 */
556 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
557 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
558 	spin_unlock(&ctx->completion_lock);
559 	if (skip)
560 		return;
561 
562 	io_eventfd_signal(ctx);
563 }
564 
565 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
566 {
567 	if (ctx->off_timeout_used || ctx->drain_active) {
568 		spin_lock(&ctx->completion_lock);
569 		if (ctx->off_timeout_used)
570 			io_flush_timeouts(ctx);
571 		if (ctx->drain_active)
572 			io_queue_deferred(ctx);
573 		spin_unlock(&ctx->completion_lock);
574 	}
575 	if (ctx->has_evfd)
576 		io_eventfd_flush_signal(ctx);
577 }
578 
579 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
580 {
581 	io_commit_cqring_flush(ctx);
582 	io_cqring_wake(ctx);
583 }
584 
585 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
586 	__releases(ctx->completion_lock)
587 {
588 	io_commit_cqring(ctx);
589 	spin_unlock(&ctx->completion_lock);
590 	io_cqring_ev_posted(ctx);
591 }
592 
593 void io_cq_unlock_post(struct io_ring_ctx *ctx)
594 {
595 	__io_cq_unlock_post(ctx);
596 }
597 
598 /* Returns true if there are no backlogged entries after the flush */
599 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
600 {
601 	bool all_flushed;
602 	size_t cqe_size = sizeof(struct io_uring_cqe);
603 
604 	if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
605 		return false;
606 
607 	if (ctx->flags & IORING_SETUP_CQE32)
608 		cqe_size <<= 1;
609 
610 	io_cq_lock(ctx);
611 	while (!list_empty(&ctx->cq_overflow_list)) {
612 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
613 		struct io_overflow_cqe *ocqe;
614 
615 		if (!cqe && !force)
616 			break;
617 		ocqe = list_first_entry(&ctx->cq_overflow_list,
618 					struct io_overflow_cqe, list);
619 		if (cqe)
620 			memcpy(cqe, &ocqe->cqe, cqe_size);
621 		else
622 			io_account_cq_overflow(ctx);
623 
624 		list_del(&ocqe->list);
625 		kfree(ocqe);
626 	}
627 
628 	all_flushed = list_empty(&ctx->cq_overflow_list);
629 	if (all_flushed) {
630 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
631 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
632 	}
633 
634 	io_cq_unlock_post(ctx);
635 	return all_flushed;
636 }
637 
638 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
639 {
640 	bool ret = true;
641 
642 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
643 		/* iopoll syncs against uring_lock, not completion_lock */
644 		if (ctx->flags & IORING_SETUP_IOPOLL)
645 			mutex_lock(&ctx->uring_lock);
646 		ret = __io_cqring_overflow_flush(ctx, false);
647 		if (ctx->flags & IORING_SETUP_IOPOLL)
648 			mutex_unlock(&ctx->uring_lock);
649 	}
650 
651 	return ret;
652 }
653 
654 void __io_put_task(struct task_struct *task, int nr)
655 {
656 	struct io_uring_task *tctx = task->io_uring;
657 
658 	percpu_counter_sub(&tctx->inflight, nr);
659 	if (unlikely(atomic_read(&tctx->in_idle)))
660 		wake_up(&tctx->wait);
661 	put_task_struct_many(task, nr);
662 }
663 
664 void io_task_refs_refill(struct io_uring_task *tctx)
665 {
666 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
667 
668 	percpu_counter_add(&tctx->inflight, refill);
669 	refcount_add(refill, &current->usage);
670 	tctx->cached_refs += refill;
671 }
672 
673 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
674 {
675 	struct io_uring_task *tctx = task->io_uring;
676 	unsigned int refs = tctx->cached_refs;
677 
678 	if (refs) {
679 		tctx->cached_refs = 0;
680 		percpu_counter_sub(&tctx->inflight, refs);
681 		put_task_struct_many(task, refs);
682 	}
683 }
684 
685 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
686 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
687 {
688 	struct io_overflow_cqe *ocqe;
689 	size_t ocq_size = sizeof(struct io_overflow_cqe);
690 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
691 
692 	if (is_cqe32)
693 		ocq_size += sizeof(struct io_uring_cqe);
694 
695 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
696 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
697 	if (!ocqe) {
698 		/*
699 		 * If we're in ring overflow flush mode, or in task cancel mode,
700 		 * or cannot allocate an overflow entry, then we need to drop it
701 		 * on the floor.
702 		 */
703 		io_account_cq_overflow(ctx);
704 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
705 		return false;
706 	}
707 	if (list_empty(&ctx->cq_overflow_list)) {
708 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
709 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
710 
711 	}
712 	ocqe->cqe.user_data = user_data;
713 	ocqe->cqe.res = res;
714 	ocqe->cqe.flags = cflags;
715 	if (is_cqe32) {
716 		ocqe->cqe.big_cqe[0] = extra1;
717 		ocqe->cqe.big_cqe[1] = extra2;
718 	}
719 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
720 	return true;
721 }
722 
723 bool io_req_cqe_overflow(struct io_kiocb *req)
724 {
725 	if (!(req->flags & REQ_F_CQE32_INIT)) {
726 		req->extra1 = 0;
727 		req->extra2 = 0;
728 	}
729 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
730 					req->cqe.res, req->cqe.flags,
731 					req->extra1, req->extra2);
732 }
733 
734 /*
735  * writes to the cq entry need to come after reading head; the
736  * control dependency is enough as we're using WRITE_ONCE to
737  * fill the cq entry
738  */
739 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
740 {
741 	struct io_rings *rings = ctx->rings;
742 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
743 	unsigned int free, queued, len;
744 
745 	/*
746 	 * Posting into the CQ when there are pending overflowed CQEs may break
747 	 * ordering guarantees, which will affect links, F_MORE users and more.
748 	 * Force overflow the completion.
749 	 */
750 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
751 		return NULL;
752 
753 	/* userspace may cheat modifying the tail, be safe and do min */
754 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
755 	free = ctx->cq_entries - queued;
756 	/* we need a contiguous range, limit based on the current array offset */
757 	len = min(free, ctx->cq_entries - off);
758 	if (!len)
759 		return NULL;
760 
761 	if (ctx->flags & IORING_SETUP_CQE32) {
762 		off <<= 1;
763 		len <<= 1;
764 	}
765 
766 	ctx->cqe_cached = &rings->cqes[off];
767 	ctx->cqe_sentinel = ctx->cqe_cached + len;
768 
769 	ctx->cached_cq_tail++;
770 	ctx->cqe_cached++;
771 	if (ctx->flags & IORING_SETUP_CQE32)
772 		ctx->cqe_cached++;
773 	return &rings->cqes[off];
774 }
775 
776 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
777 		     bool allow_overflow)
778 {
779 	struct io_uring_cqe *cqe;
780 
781 	ctx->cq_extra++;
782 
783 	/*
784 	 * If we can't get a cq entry, userspace overflowed the
785 	 * submission (by quite a lot). Increment the overflow count in
786 	 * the ring.
787 	 */
788 	cqe = io_get_cqe(ctx);
789 	if (likely(cqe)) {
790 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
791 
792 		WRITE_ONCE(cqe->user_data, user_data);
793 		WRITE_ONCE(cqe->res, res);
794 		WRITE_ONCE(cqe->flags, cflags);
795 
796 		if (ctx->flags & IORING_SETUP_CQE32) {
797 			WRITE_ONCE(cqe->big_cqe[0], 0);
798 			WRITE_ONCE(cqe->big_cqe[1], 0);
799 		}
800 		return true;
801 	}
802 
803 	if (allow_overflow)
804 		return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
805 
806 	return false;
807 }
808 
809 bool io_post_aux_cqe(struct io_ring_ctx *ctx,
810 		     u64 user_data, s32 res, u32 cflags,
811 		     bool allow_overflow)
812 {
813 	bool filled;
814 
815 	io_cq_lock(ctx);
816 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow);
817 	io_cq_unlock_post(ctx);
818 	return filled;
819 }
820 
821 static void __io_req_complete_put(struct io_kiocb *req)
822 {
823 	/*
824 	 * If we're the last reference to this request, add to our locked
825 	 * free_list cache.
826 	 */
827 	if (req_ref_put_and_test(req)) {
828 		struct io_ring_ctx *ctx = req->ctx;
829 
830 		if (req->flags & IO_REQ_LINK_FLAGS) {
831 			if (req->flags & IO_DISARM_MASK)
832 				io_disarm_next(req);
833 			if (req->link) {
834 				io_req_task_queue(req->link);
835 				req->link = NULL;
836 			}
837 		}
838 		io_req_put_rsrc(req);
839 		/*
840 		 * Selected buffer deallocation in io_clean_op() assumes that
841 		 * we don't hold ->completion_lock. Clean them here to avoid
842 		 * deadlocks.
843 		 */
844 		io_put_kbuf_comp(req);
845 		io_dismantle_req(req);
846 		io_put_task(req->task, 1);
847 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
848 		ctx->locked_free_nr++;
849 	}
850 }
851 
852 void __io_req_complete_post(struct io_kiocb *req)
853 {
854 	if (!(req->flags & REQ_F_CQE_SKIP))
855 		__io_fill_cqe_req(req->ctx, req);
856 	__io_req_complete_put(req);
857 }
858 
859 void io_req_complete_post(struct io_kiocb *req)
860 {
861 	struct io_ring_ctx *ctx = req->ctx;
862 
863 	io_cq_lock(ctx);
864 	__io_req_complete_post(req);
865 	io_cq_unlock_post(ctx);
866 }
867 
868 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags)
869 {
870 	io_req_complete_post(req);
871 }
872 
873 void io_req_complete_failed(struct io_kiocb *req, s32 res)
874 {
875 	const struct io_op_def *def = &io_op_defs[req->opcode];
876 
877 	req_set_fail(req);
878 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
879 	if (def->fail)
880 		def->fail(req);
881 	io_req_complete_post(req);
882 }
883 
884 /*
885  * Don't initialise the fields below on every allocation, but do that in
886  * advance and keep them valid across allocations.
887  */
888 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
889 {
890 	req->ctx = ctx;
891 	req->link = NULL;
892 	req->async_data = NULL;
893 	/* not necessary, but safer to zero */
894 	req->cqe.res = 0;
895 }
896 
897 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
898 					struct io_submit_state *state)
899 {
900 	spin_lock(&ctx->completion_lock);
901 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
902 	ctx->locked_free_nr = 0;
903 	spin_unlock(&ctx->completion_lock);
904 }
905 
906 /*
907  * A request might get retired back into the request caches even before opcode
908  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
909  * Because of that, io_alloc_req() should be called only under ->uring_lock
910  * and with extra caution to not get a request that is still worked on.
911  */
912 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
913 	__must_hold(&ctx->uring_lock)
914 {
915 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
916 	void *reqs[IO_REQ_ALLOC_BATCH];
917 	int ret, i;
918 
919 	/*
920 	 * If we have more than a batch's worth of requests in our IRQ side
921 	 * locked cache, grab the lock and move them over to our submission
922 	 * side cache.
923 	 */
924 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
925 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
926 		if (!io_req_cache_empty(ctx))
927 			return true;
928 	}
929 
930 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
931 
932 	/*
933 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
934 	 * retry single alloc to be on the safe side.
935 	 */
936 	if (unlikely(ret <= 0)) {
937 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
938 		if (!reqs[0])
939 			return false;
940 		ret = 1;
941 	}
942 
943 	percpu_ref_get_many(&ctx->refs, ret);
944 	for (i = 0; i < ret; i++) {
945 		struct io_kiocb *req = reqs[i];
946 
947 		io_preinit_req(req, ctx);
948 		io_req_add_to_cache(req, ctx);
949 	}
950 	return true;
951 }
952 
953 static inline void io_dismantle_req(struct io_kiocb *req)
954 {
955 	unsigned int flags = req->flags;
956 
957 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
958 		io_clean_op(req);
959 	if (!(flags & REQ_F_FIXED_FILE))
960 		io_put_file(req->file);
961 }
962 
963 __cold void io_free_req(struct io_kiocb *req)
964 {
965 	struct io_ring_ctx *ctx = req->ctx;
966 
967 	io_req_put_rsrc(req);
968 	io_dismantle_req(req);
969 	io_put_task(req->task, 1);
970 
971 	spin_lock(&ctx->completion_lock);
972 	wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
973 	ctx->locked_free_nr++;
974 	spin_unlock(&ctx->completion_lock);
975 }
976 
977 static void __io_req_find_next_prep(struct io_kiocb *req)
978 {
979 	struct io_ring_ctx *ctx = req->ctx;
980 
981 	io_cq_lock(ctx);
982 	io_disarm_next(req);
983 	io_cq_unlock_post(ctx);
984 }
985 
986 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
987 {
988 	struct io_kiocb *nxt;
989 
990 	/*
991 	 * If LINK is set, we have dependent requests in this chain. If we
992 	 * didn't fail this request, queue the first one up, moving any other
993 	 * dependencies to the next request. In case of failure, fail the rest
994 	 * of the chain.
995 	 */
996 	if (unlikely(req->flags & IO_DISARM_MASK))
997 		__io_req_find_next_prep(req);
998 	nxt = req->link;
999 	req->link = NULL;
1000 	return nxt;
1001 }
1002 
1003 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1004 {
1005 	if (!ctx)
1006 		return;
1007 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1008 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1009 	if (*locked) {
1010 		io_submit_flush_completions(ctx);
1011 		mutex_unlock(&ctx->uring_lock);
1012 		*locked = false;
1013 	}
1014 	percpu_ref_put(&ctx->refs);
1015 }
1016 
1017 static unsigned int handle_tw_list(struct llist_node *node,
1018 				   struct io_ring_ctx **ctx, bool *locked,
1019 				   struct llist_node *last)
1020 {
1021 	unsigned int count = 0;
1022 
1023 	while (node != last) {
1024 		struct llist_node *next = node->next;
1025 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1026 						    io_task_work.node);
1027 
1028 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1029 
1030 		if (req->ctx != *ctx) {
1031 			ctx_flush_and_put(*ctx, locked);
1032 			*ctx = req->ctx;
1033 			/* if not contended, grab and improve batching */
1034 			*locked = mutex_trylock(&(*ctx)->uring_lock);
1035 			percpu_ref_get(&(*ctx)->refs);
1036 		}
1037 		req->io_task_work.func(req, locked);
1038 		node = next;
1039 		count++;
1040 	}
1041 
1042 	return count;
1043 }
1044 
1045 /**
1046  * io_llist_xchg - swap all entries in a lock-less list
1047  * @head:	the head of lock-less list to delete all entries
1048  * @new:	new entry as the head of the list
1049  *
1050  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1051  * The order of entries returned is from the newest to the oldest added one.
1052  */
1053 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1054 					       struct llist_node *new)
1055 {
1056 	return xchg(&head->first, new);
1057 }
1058 
1059 /**
1060  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1061  * @head:	the head of lock-less list to delete all entries
1062  * @old:	expected old value of the first entry of the list
1063  * @new:	new entry as the head of the list
1064  *
1065  * perform a cmpxchg on the first entry of the list.
1066  */
1067 
1068 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1069 						  struct llist_node *old,
1070 						  struct llist_node *new)
1071 {
1072 	return cmpxchg(&head->first, old, new);
1073 }
1074 
1075 void tctx_task_work(struct callback_head *cb)
1076 {
1077 	bool uring_locked = false;
1078 	struct io_ring_ctx *ctx = NULL;
1079 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1080 						  task_work);
1081 	struct llist_node fake = {};
1082 	struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake);
1083 	unsigned int loops = 1;
1084 	unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1085 
1086 	node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1087 	while (node != &fake) {
1088 		loops++;
1089 		node = io_llist_xchg(&tctx->task_list, &fake);
1090 		count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1091 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1092 	}
1093 
1094 	ctx_flush_and_put(ctx, &uring_locked);
1095 
1096 	/* relaxed read is enough as only the task itself sets ->in_idle */
1097 	if (unlikely(atomic_read(&tctx->in_idle)))
1098 		io_uring_drop_tctx_refs(current);
1099 
1100 	trace_io_uring_task_work_run(tctx, count, loops);
1101 }
1102 
1103 static void io_req_local_work_add(struct io_kiocb *req)
1104 {
1105 	struct io_ring_ctx *ctx = req->ctx;
1106 
1107 	if (!llist_add(&req->io_task_work.node, &ctx->work_llist))
1108 		return;
1109 
1110 	if (unlikely(atomic_read(&req->task->io_uring->in_idle))) {
1111 		io_move_task_work_from_local(ctx);
1112 		return;
1113 	}
1114 
1115 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1116 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1117 
1118 	if (ctx->has_evfd)
1119 		io_eventfd_signal(ctx);
1120 	io_cqring_wake(ctx);
1121 
1122 }
1123 
1124 static inline void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1125 {
1126 	struct io_uring_task *tctx = req->task->io_uring;
1127 	struct io_ring_ctx *ctx = req->ctx;
1128 	struct llist_node *node;
1129 
1130 	if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1131 		io_req_local_work_add(req);
1132 		return;
1133 	}
1134 
1135 	/* task_work already pending, we're done */
1136 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1137 		return;
1138 
1139 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1140 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1141 
1142 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1143 		return;
1144 
1145 	node = llist_del_all(&tctx->task_list);
1146 
1147 	while (node) {
1148 		req = container_of(node, struct io_kiocb, io_task_work.node);
1149 		node = node->next;
1150 		if (llist_add(&req->io_task_work.node,
1151 			      &req->ctx->fallback_llist))
1152 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1153 	}
1154 }
1155 
1156 void io_req_task_work_add(struct io_kiocb *req)
1157 {
1158 	__io_req_task_work_add(req, true);
1159 }
1160 
1161 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1162 {
1163 	struct llist_node *node;
1164 
1165 	node = llist_del_all(&ctx->work_llist);
1166 	while (node) {
1167 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1168 						    io_task_work.node);
1169 
1170 		node = node->next;
1171 		__io_req_task_work_add(req, false);
1172 	}
1173 }
1174 
1175 int __io_run_local_work(struct io_ring_ctx *ctx, bool locked)
1176 {
1177 	struct llist_node *node;
1178 	struct llist_node fake;
1179 	struct llist_node *current_final = NULL;
1180 	int ret;
1181 	unsigned int loops = 1;
1182 
1183 	if (unlikely(ctx->submitter_task != current))
1184 		return -EEXIST;
1185 
1186 	node = io_llist_xchg(&ctx->work_llist, &fake);
1187 	ret = 0;
1188 again:
1189 	while (node != current_final) {
1190 		struct llist_node *next = node->next;
1191 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1192 						    io_task_work.node);
1193 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1194 		req->io_task_work.func(req, &locked);
1195 		ret++;
1196 		node = next;
1197 	}
1198 
1199 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1200 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1201 
1202 	node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL);
1203 	if (node != &fake) {
1204 		loops++;
1205 		current_final = &fake;
1206 		node = io_llist_xchg(&ctx->work_llist, &fake);
1207 		goto again;
1208 	}
1209 
1210 	if (locked)
1211 		io_submit_flush_completions(ctx);
1212 	trace_io_uring_local_work_run(ctx, ret, loops);
1213 	return ret;
1214 
1215 }
1216 
1217 int io_run_local_work(struct io_ring_ctx *ctx)
1218 {
1219 	bool locked;
1220 	int ret;
1221 
1222 	if (llist_empty(&ctx->work_llist))
1223 		return 0;
1224 
1225 	__set_current_state(TASK_RUNNING);
1226 	locked = mutex_trylock(&ctx->uring_lock);
1227 	ret = __io_run_local_work(ctx, locked);
1228 	if (locked)
1229 		mutex_unlock(&ctx->uring_lock);
1230 
1231 	return ret;
1232 }
1233 
1234 static void io_req_tw_post(struct io_kiocb *req, bool *locked)
1235 {
1236 	io_req_complete_post(req);
1237 }
1238 
1239 void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags)
1240 {
1241 	io_req_set_res(req, res, cflags);
1242 	req->io_task_work.func = io_req_tw_post;
1243 	io_req_task_work_add(req);
1244 }
1245 
1246 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1247 {
1248 	/* not needed for normal modes, but SQPOLL depends on it */
1249 	io_tw_lock(req->ctx, locked);
1250 	io_req_complete_failed(req, req->cqe.res);
1251 }
1252 
1253 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1254 {
1255 	io_tw_lock(req->ctx, locked);
1256 	/* req->task == current here, checking PF_EXITING is safe */
1257 	if (likely(!(req->task->flags & PF_EXITING)))
1258 		io_queue_sqe(req);
1259 	else
1260 		io_req_complete_failed(req, -EFAULT);
1261 }
1262 
1263 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1264 {
1265 	io_req_set_res(req, ret, 0);
1266 	req->io_task_work.func = io_req_task_cancel;
1267 	io_req_task_work_add(req);
1268 }
1269 
1270 void io_req_task_queue(struct io_kiocb *req)
1271 {
1272 	req->io_task_work.func = io_req_task_submit;
1273 	io_req_task_work_add(req);
1274 }
1275 
1276 void io_queue_next(struct io_kiocb *req)
1277 {
1278 	struct io_kiocb *nxt = io_req_find_next(req);
1279 
1280 	if (nxt)
1281 		io_req_task_queue(nxt);
1282 }
1283 
1284 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1285 	__must_hold(&ctx->uring_lock)
1286 {
1287 	struct task_struct *task = NULL;
1288 	int task_refs = 0;
1289 
1290 	do {
1291 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1292 						    comp_list);
1293 
1294 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1295 			if (req->flags & REQ_F_REFCOUNT) {
1296 				node = req->comp_list.next;
1297 				if (!req_ref_put_and_test(req))
1298 					continue;
1299 			}
1300 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1301 				struct async_poll *apoll = req->apoll;
1302 
1303 				if (apoll->double_poll)
1304 					kfree(apoll->double_poll);
1305 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1306 					kfree(apoll);
1307 				req->flags &= ~REQ_F_POLLED;
1308 			}
1309 			if (req->flags & IO_REQ_LINK_FLAGS)
1310 				io_queue_next(req);
1311 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1312 				io_clean_op(req);
1313 		}
1314 		if (!(req->flags & REQ_F_FIXED_FILE))
1315 			io_put_file(req->file);
1316 
1317 		io_req_put_rsrc_locked(req, ctx);
1318 
1319 		if (req->task != task) {
1320 			if (task)
1321 				io_put_task(task, task_refs);
1322 			task = req->task;
1323 			task_refs = 0;
1324 		}
1325 		task_refs++;
1326 		node = req->comp_list.next;
1327 		io_req_add_to_cache(req, ctx);
1328 	} while (node);
1329 
1330 	if (task)
1331 		io_put_task(task, task_refs);
1332 }
1333 
1334 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1335 	__must_hold(&ctx->uring_lock)
1336 {
1337 	struct io_wq_work_node *node, *prev;
1338 	struct io_submit_state *state = &ctx->submit_state;
1339 
1340 	io_cq_lock(ctx);
1341 	wq_list_for_each(node, prev, &state->compl_reqs) {
1342 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1343 					    comp_list);
1344 
1345 		if (!(req->flags & REQ_F_CQE_SKIP))
1346 			__io_fill_cqe_req(ctx, req);
1347 	}
1348 	__io_cq_unlock_post(ctx);
1349 
1350 	io_free_batch_list(ctx, state->compl_reqs.first);
1351 	INIT_WQ_LIST(&state->compl_reqs);
1352 }
1353 
1354 /*
1355  * Drop reference to request, return next in chain (if there is one) if this
1356  * was the last reference to this request.
1357  */
1358 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1359 {
1360 	struct io_kiocb *nxt = NULL;
1361 
1362 	if (req_ref_put_and_test(req)) {
1363 		if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1364 			nxt = io_req_find_next(req);
1365 		io_free_req(req);
1366 	}
1367 	return nxt;
1368 }
1369 
1370 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1371 {
1372 	/* See comment at the top of this file */
1373 	smp_rmb();
1374 	return __io_cqring_events(ctx);
1375 }
1376 
1377 /*
1378  * We can't just wait for polled events to come to us, we have to actively
1379  * find and complete them.
1380  */
1381 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1382 {
1383 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1384 		return;
1385 
1386 	mutex_lock(&ctx->uring_lock);
1387 	while (!wq_list_empty(&ctx->iopoll_list)) {
1388 		/* let it sleep and repeat later if can't complete a request */
1389 		if (io_do_iopoll(ctx, true) == 0)
1390 			break;
1391 		/*
1392 		 * Ensure we allow local-to-the-cpu processing to take place,
1393 		 * in this case we need to ensure that we reap all events.
1394 		 * Also let task_work, etc. to progress by releasing the mutex
1395 		 */
1396 		if (need_resched()) {
1397 			mutex_unlock(&ctx->uring_lock);
1398 			cond_resched();
1399 			mutex_lock(&ctx->uring_lock);
1400 		}
1401 	}
1402 	mutex_unlock(&ctx->uring_lock);
1403 }
1404 
1405 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1406 {
1407 	unsigned int nr_events = 0;
1408 	int ret = 0;
1409 	unsigned long check_cq;
1410 
1411 	if (!io_allowed_run_tw(ctx))
1412 		return -EEXIST;
1413 
1414 	check_cq = READ_ONCE(ctx->check_cq);
1415 	if (unlikely(check_cq)) {
1416 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1417 			__io_cqring_overflow_flush(ctx, false);
1418 		/*
1419 		 * Similarly do not spin if we have not informed the user of any
1420 		 * dropped CQE.
1421 		 */
1422 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1423 			return -EBADR;
1424 	}
1425 	/*
1426 	 * Don't enter poll loop if we already have events pending.
1427 	 * If we do, we can potentially be spinning for commands that
1428 	 * already triggered a CQE (eg in error).
1429 	 */
1430 	if (io_cqring_events(ctx))
1431 		return 0;
1432 
1433 	do {
1434 		/*
1435 		 * If a submit got punted to a workqueue, we can have the
1436 		 * application entering polling for a command before it gets
1437 		 * issued. That app will hold the uring_lock for the duration
1438 		 * of the poll right here, so we need to take a breather every
1439 		 * now and then to ensure that the issue has a chance to add
1440 		 * the poll to the issued list. Otherwise we can spin here
1441 		 * forever, while the workqueue is stuck trying to acquire the
1442 		 * very same mutex.
1443 		 */
1444 		if (wq_list_empty(&ctx->iopoll_list) ||
1445 		    io_task_work_pending(ctx)) {
1446 			u32 tail = ctx->cached_cq_tail;
1447 
1448 			if (!llist_empty(&ctx->work_llist))
1449 				__io_run_local_work(ctx, true);
1450 
1451 			if (task_work_pending(current) ||
1452 			    wq_list_empty(&ctx->iopoll_list)) {
1453 				mutex_unlock(&ctx->uring_lock);
1454 				io_run_task_work();
1455 				mutex_lock(&ctx->uring_lock);
1456 			}
1457 			/* some requests don't go through iopoll_list */
1458 			if (tail != ctx->cached_cq_tail ||
1459 			    wq_list_empty(&ctx->iopoll_list))
1460 				break;
1461 		}
1462 		ret = io_do_iopoll(ctx, !min);
1463 		if (ret < 0)
1464 			break;
1465 		nr_events += ret;
1466 		ret = 0;
1467 	} while (nr_events < min && !need_resched());
1468 
1469 	return ret;
1470 }
1471 
1472 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1473 {
1474 	if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
1475 		unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED;
1476 
1477 		req->cqe.flags |= io_put_kbuf(req, issue_flags);
1478 	}
1479 
1480 	if (*locked)
1481 		io_req_complete_defer(req);
1482 	else
1483 		io_req_complete_post(req);
1484 }
1485 
1486 /*
1487  * After the iocb has been issued, it's safe to be found on the poll list.
1488  * Adding the kiocb to the list AFTER submission ensures that we don't
1489  * find it from a io_do_iopoll() thread before the issuer is done
1490  * accessing the kiocb cookie.
1491  */
1492 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1493 {
1494 	struct io_ring_ctx *ctx = req->ctx;
1495 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1496 
1497 	/* workqueue context doesn't hold uring_lock, grab it now */
1498 	if (unlikely(needs_lock))
1499 		mutex_lock(&ctx->uring_lock);
1500 
1501 	/*
1502 	 * Track whether we have multiple files in our lists. This will impact
1503 	 * how we do polling eventually, not spinning if we're on potentially
1504 	 * different devices.
1505 	 */
1506 	if (wq_list_empty(&ctx->iopoll_list)) {
1507 		ctx->poll_multi_queue = false;
1508 	} else if (!ctx->poll_multi_queue) {
1509 		struct io_kiocb *list_req;
1510 
1511 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1512 					comp_list);
1513 		if (list_req->file != req->file)
1514 			ctx->poll_multi_queue = true;
1515 	}
1516 
1517 	/*
1518 	 * For fast devices, IO may have already completed. If it has, add
1519 	 * it to the front so we find it first.
1520 	 */
1521 	if (READ_ONCE(req->iopoll_completed))
1522 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1523 	else
1524 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1525 
1526 	if (unlikely(needs_lock)) {
1527 		/*
1528 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1529 		 * in sq thread task context or in io worker task context. If
1530 		 * current task context is sq thread, we don't need to check
1531 		 * whether should wake up sq thread.
1532 		 */
1533 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1534 		    wq_has_sleeper(&ctx->sq_data->wait))
1535 			wake_up(&ctx->sq_data->wait);
1536 
1537 		mutex_unlock(&ctx->uring_lock);
1538 	}
1539 }
1540 
1541 static bool io_bdev_nowait(struct block_device *bdev)
1542 {
1543 	return !bdev || bdev_nowait(bdev);
1544 }
1545 
1546 /*
1547  * If we tracked the file through the SCM inflight mechanism, we could support
1548  * any file. For now, just ensure that anything potentially problematic is done
1549  * inline.
1550  */
1551 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1552 {
1553 	if (S_ISBLK(mode)) {
1554 		if (IS_ENABLED(CONFIG_BLOCK) &&
1555 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1556 			return true;
1557 		return false;
1558 	}
1559 	if (S_ISSOCK(mode))
1560 		return true;
1561 	if (S_ISREG(mode)) {
1562 		if (IS_ENABLED(CONFIG_BLOCK) &&
1563 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1564 		    !io_is_uring_fops(file))
1565 			return true;
1566 		return false;
1567 	}
1568 
1569 	/* any ->read/write should understand O_NONBLOCK */
1570 	if (file->f_flags & O_NONBLOCK)
1571 		return true;
1572 	return file->f_mode & FMODE_NOWAIT;
1573 }
1574 
1575 /*
1576  * If we tracked the file through the SCM inflight mechanism, we could support
1577  * any file. For now, just ensure that anything potentially problematic is done
1578  * inline.
1579  */
1580 unsigned int io_file_get_flags(struct file *file)
1581 {
1582 	umode_t mode = file_inode(file)->i_mode;
1583 	unsigned int res = 0;
1584 
1585 	if (S_ISREG(mode))
1586 		res |= FFS_ISREG;
1587 	if (__io_file_supports_nowait(file, mode))
1588 		res |= FFS_NOWAIT;
1589 	if (io_file_need_scm(file))
1590 		res |= FFS_SCM;
1591 	return res;
1592 }
1593 
1594 bool io_alloc_async_data(struct io_kiocb *req)
1595 {
1596 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1597 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1598 	if (req->async_data) {
1599 		req->flags |= REQ_F_ASYNC_DATA;
1600 		return false;
1601 	}
1602 	return true;
1603 }
1604 
1605 int io_req_prep_async(struct io_kiocb *req)
1606 {
1607 	const struct io_op_def *def = &io_op_defs[req->opcode];
1608 
1609 	/* assign early for deferred execution for non-fixed file */
1610 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1611 		req->file = io_file_get_normal(req, req->cqe.fd);
1612 	if (!def->prep_async)
1613 		return 0;
1614 	if (WARN_ON_ONCE(req_has_async_data(req)))
1615 		return -EFAULT;
1616 	if (!io_op_defs[req->opcode].manual_alloc) {
1617 		if (io_alloc_async_data(req))
1618 			return -EAGAIN;
1619 	}
1620 	return def->prep_async(req);
1621 }
1622 
1623 static u32 io_get_sequence(struct io_kiocb *req)
1624 {
1625 	u32 seq = req->ctx->cached_sq_head;
1626 	struct io_kiocb *cur;
1627 
1628 	/* need original cached_sq_head, but it was increased for each req */
1629 	io_for_each_link(cur, req)
1630 		seq--;
1631 	return seq;
1632 }
1633 
1634 static __cold void io_drain_req(struct io_kiocb *req)
1635 {
1636 	struct io_ring_ctx *ctx = req->ctx;
1637 	struct io_defer_entry *de;
1638 	int ret;
1639 	u32 seq = io_get_sequence(req);
1640 
1641 	/* Still need defer if there is pending req in defer list. */
1642 	spin_lock(&ctx->completion_lock);
1643 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1644 		spin_unlock(&ctx->completion_lock);
1645 queue:
1646 		ctx->drain_active = false;
1647 		io_req_task_queue(req);
1648 		return;
1649 	}
1650 	spin_unlock(&ctx->completion_lock);
1651 
1652 	ret = io_req_prep_async(req);
1653 	if (ret) {
1654 fail:
1655 		io_req_complete_failed(req, ret);
1656 		return;
1657 	}
1658 	io_prep_async_link(req);
1659 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1660 	if (!de) {
1661 		ret = -ENOMEM;
1662 		goto fail;
1663 	}
1664 
1665 	spin_lock(&ctx->completion_lock);
1666 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1667 		spin_unlock(&ctx->completion_lock);
1668 		kfree(de);
1669 		goto queue;
1670 	}
1671 
1672 	trace_io_uring_defer(req);
1673 	de->req = req;
1674 	de->seq = seq;
1675 	list_add_tail(&de->list, &ctx->defer_list);
1676 	spin_unlock(&ctx->completion_lock);
1677 }
1678 
1679 static void io_clean_op(struct io_kiocb *req)
1680 {
1681 	if (req->flags & REQ_F_BUFFER_SELECTED) {
1682 		spin_lock(&req->ctx->completion_lock);
1683 		io_put_kbuf_comp(req);
1684 		spin_unlock(&req->ctx->completion_lock);
1685 	}
1686 
1687 	if (req->flags & REQ_F_NEED_CLEANUP) {
1688 		const struct io_op_def *def = &io_op_defs[req->opcode];
1689 
1690 		if (def->cleanup)
1691 			def->cleanup(req);
1692 	}
1693 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
1694 		kfree(req->apoll->double_poll);
1695 		kfree(req->apoll);
1696 		req->apoll = NULL;
1697 	}
1698 	if (req->flags & REQ_F_INFLIGHT) {
1699 		struct io_uring_task *tctx = req->task->io_uring;
1700 
1701 		atomic_dec(&tctx->inflight_tracked);
1702 	}
1703 	if (req->flags & REQ_F_CREDS)
1704 		put_cred(req->creds);
1705 	if (req->flags & REQ_F_ASYNC_DATA) {
1706 		kfree(req->async_data);
1707 		req->async_data = NULL;
1708 	}
1709 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
1710 }
1711 
1712 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1713 {
1714 	if (req->file || !io_op_defs[req->opcode].needs_file)
1715 		return true;
1716 
1717 	if (req->flags & REQ_F_FIXED_FILE)
1718 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1719 	else
1720 		req->file = io_file_get_normal(req, req->cqe.fd);
1721 
1722 	return !!req->file;
1723 }
1724 
1725 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1726 {
1727 	const struct io_op_def *def = &io_op_defs[req->opcode];
1728 	const struct cred *creds = NULL;
1729 	int ret;
1730 
1731 	if (unlikely(!io_assign_file(req, issue_flags)))
1732 		return -EBADF;
1733 
1734 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1735 		creds = override_creds(req->creds);
1736 
1737 	if (!def->audit_skip)
1738 		audit_uring_entry(req->opcode);
1739 
1740 	ret = def->issue(req, issue_flags);
1741 
1742 	if (!def->audit_skip)
1743 		audit_uring_exit(!ret, ret);
1744 
1745 	if (creds)
1746 		revert_creds(creds);
1747 
1748 	if (ret == IOU_OK) {
1749 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1750 			io_req_complete_defer(req);
1751 		else
1752 			io_req_complete_post(req);
1753 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1754 		return ret;
1755 
1756 	/* If the op doesn't have a file, we're not polling for it */
1757 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
1758 		io_iopoll_req_issued(req, issue_flags);
1759 
1760 	return 0;
1761 }
1762 
1763 int io_poll_issue(struct io_kiocb *req, bool *locked)
1764 {
1765 	io_tw_lock(req->ctx, locked);
1766 	if (unlikely(req->task->flags & PF_EXITING))
1767 		return -EFAULT;
1768 	return io_issue_sqe(req, IO_URING_F_NONBLOCK);
1769 }
1770 
1771 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1772 {
1773 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1774 
1775 	req = io_put_req_find_next(req);
1776 	return req ? &req->work : NULL;
1777 }
1778 
1779 void io_wq_submit_work(struct io_wq_work *work)
1780 {
1781 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1782 	const struct io_op_def *def = &io_op_defs[req->opcode];
1783 	unsigned int issue_flags = IO_URING_F_UNLOCKED;
1784 	bool needs_poll = false;
1785 	int ret = 0, err = -ECANCELED;
1786 
1787 	/* one will be dropped by ->io_free_work() after returning to io-wq */
1788 	if (!(req->flags & REQ_F_REFCOUNT))
1789 		__io_req_set_refcount(req, 2);
1790 	else
1791 		req_ref_get(req);
1792 
1793 	io_arm_ltimeout(req);
1794 
1795 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1796 	if (work->flags & IO_WQ_WORK_CANCEL) {
1797 fail:
1798 		io_req_task_queue_fail(req, err);
1799 		return;
1800 	}
1801 	if (!io_assign_file(req, issue_flags)) {
1802 		err = -EBADF;
1803 		work->flags |= IO_WQ_WORK_CANCEL;
1804 		goto fail;
1805 	}
1806 
1807 	if (req->flags & REQ_F_FORCE_ASYNC) {
1808 		bool opcode_poll = def->pollin || def->pollout;
1809 
1810 		if (opcode_poll && file_can_poll(req->file)) {
1811 			needs_poll = true;
1812 			issue_flags |= IO_URING_F_NONBLOCK;
1813 		}
1814 	}
1815 
1816 	do {
1817 		ret = io_issue_sqe(req, issue_flags);
1818 		if (ret != -EAGAIN)
1819 			break;
1820 		/*
1821 		 * We can get EAGAIN for iopolled IO even though we're
1822 		 * forcing a sync submission from here, since we can't
1823 		 * wait for request slots on the block side.
1824 		 */
1825 		if (!needs_poll) {
1826 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1827 				break;
1828 			cond_resched();
1829 			continue;
1830 		}
1831 
1832 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1833 			return;
1834 		/* aborted or ready, in either case retry blocking */
1835 		needs_poll = false;
1836 		issue_flags &= ~IO_URING_F_NONBLOCK;
1837 	} while (1);
1838 
1839 	/* avoid locking problems by failing it from a clean context */
1840 	if (ret < 0)
1841 		io_req_task_queue_fail(req, ret);
1842 }
1843 
1844 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1845 				      unsigned int issue_flags)
1846 {
1847 	struct io_ring_ctx *ctx = req->ctx;
1848 	struct file *file = NULL;
1849 	unsigned long file_ptr;
1850 
1851 	io_ring_submit_lock(ctx, issue_flags);
1852 
1853 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1854 		goto out;
1855 	fd = array_index_nospec(fd, ctx->nr_user_files);
1856 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1857 	file = (struct file *) (file_ptr & FFS_MASK);
1858 	file_ptr &= ~FFS_MASK;
1859 	/* mask in overlapping REQ_F and FFS bits */
1860 	req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1861 	io_req_set_rsrc_node(req, ctx, 0);
1862 	WARN_ON_ONCE(file && !test_bit(fd, ctx->file_table.bitmap));
1863 out:
1864 	io_ring_submit_unlock(ctx, issue_flags);
1865 	return file;
1866 }
1867 
1868 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1869 {
1870 	struct file *file = fget(fd);
1871 
1872 	trace_io_uring_file_get(req, fd);
1873 
1874 	/* we don't allow fixed io_uring files */
1875 	if (file && io_is_uring_fops(file))
1876 		io_req_track_inflight(req);
1877 	return file;
1878 }
1879 
1880 static void io_queue_async(struct io_kiocb *req, int ret)
1881 	__must_hold(&req->ctx->uring_lock)
1882 {
1883 	struct io_kiocb *linked_timeout;
1884 
1885 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1886 		io_req_complete_failed(req, ret);
1887 		return;
1888 	}
1889 
1890 	linked_timeout = io_prep_linked_timeout(req);
1891 
1892 	switch (io_arm_poll_handler(req, 0)) {
1893 	case IO_APOLL_READY:
1894 		io_kbuf_recycle(req, 0);
1895 		io_req_task_queue(req);
1896 		break;
1897 	case IO_APOLL_ABORTED:
1898 		io_kbuf_recycle(req, 0);
1899 		io_queue_iowq(req, NULL);
1900 		break;
1901 	case IO_APOLL_OK:
1902 		break;
1903 	}
1904 
1905 	if (linked_timeout)
1906 		io_queue_linked_timeout(linked_timeout);
1907 }
1908 
1909 static inline void io_queue_sqe(struct io_kiocb *req)
1910 	__must_hold(&req->ctx->uring_lock)
1911 {
1912 	int ret;
1913 
1914 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1915 
1916 	/*
1917 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1918 	 * doesn't support non-blocking read/write attempts
1919 	 */
1920 	if (likely(!ret))
1921 		io_arm_ltimeout(req);
1922 	else
1923 		io_queue_async(req, ret);
1924 }
1925 
1926 static void io_queue_sqe_fallback(struct io_kiocb *req)
1927 	__must_hold(&req->ctx->uring_lock)
1928 {
1929 	if (unlikely(req->flags & REQ_F_FAIL)) {
1930 		/*
1931 		 * We don't submit, fail them all, for that replace hardlinks
1932 		 * with normal links. Extra REQ_F_LINK is tolerated.
1933 		 */
1934 		req->flags &= ~REQ_F_HARDLINK;
1935 		req->flags |= REQ_F_LINK;
1936 		io_req_complete_failed(req, req->cqe.res);
1937 	} else if (unlikely(req->ctx->drain_active)) {
1938 		io_drain_req(req);
1939 	} else {
1940 		int ret = io_req_prep_async(req);
1941 
1942 		if (unlikely(ret))
1943 			io_req_complete_failed(req, ret);
1944 		else
1945 			io_queue_iowq(req, NULL);
1946 	}
1947 }
1948 
1949 /*
1950  * Check SQE restrictions (opcode and flags).
1951  *
1952  * Returns 'true' if SQE is allowed, 'false' otherwise.
1953  */
1954 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1955 					struct io_kiocb *req,
1956 					unsigned int sqe_flags)
1957 {
1958 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1959 		return false;
1960 
1961 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1962 	    ctx->restrictions.sqe_flags_required)
1963 		return false;
1964 
1965 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1966 			  ctx->restrictions.sqe_flags_required))
1967 		return false;
1968 
1969 	return true;
1970 }
1971 
1972 static void io_init_req_drain(struct io_kiocb *req)
1973 {
1974 	struct io_ring_ctx *ctx = req->ctx;
1975 	struct io_kiocb *head = ctx->submit_state.link.head;
1976 
1977 	ctx->drain_active = true;
1978 	if (head) {
1979 		/*
1980 		 * If we need to drain a request in the middle of a link, drain
1981 		 * the head request and the next request/link after the current
1982 		 * link. Considering sequential execution of links,
1983 		 * REQ_F_IO_DRAIN will be maintained for every request of our
1984 		 * link.
1985 		 */
1986 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1987 		ctx->drain_next = true;
1988 	}
1989 }
1990 
1991 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
1992 		       const struct io_uring_sqe *sqe)
1993 	__must_hold(&ctx->uring_lock)
1994 {
1995 	const struct io_op_def *def;
1996 	unsigned int sqe_flags;
1997 	int personality;
1998 	u8 opcode;
1999 
2000 	/* req is partially pre-initialised, see io_preinit_req() */
2001 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2002 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2003 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2004 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2005 	req->file = NULL;
2006 	req->rsrc_node = NULL;
2007 	req->task = current;
2008 
2009 	if (unlikely(opcode >= IORING_OP_LAST)) {
2010 		req->opcode = 0;
2011 		return -EINVAL;
2012 	}
2013 	def = &io_op_defs[opcode];
2014 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2015 		/* enforce forwards compatibility on users */
2016 		if (sqe_flags & ~SQE_VALID_FLAGS)
2017 			return -EINVAL;
2018 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2019 			if (!def->buffer_select)
2020 				return -EOPNOTSUPP;
2021 			req->buf_index = READ_ONCE(sqe->buf_group);
2022 		}
2023 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2024 			ctx->drain_disabled = true;
2025 		if (sqe_flags & IOSQE_IO_DRAIN) {
2026 			if (ctx->drain_disabled)
2027 				return -EOPNOTSUPP;
2028 			io_init_req_drain(req);
2029 		}
2030 	}
2031 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2032 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2033 			return -EACCES;
2034 		/* knock it to the slow queue path, will be drained there */
2035 		if (ctx->drain_active)
2036 			req->flags |= REQ_F_FORCE_ASYNC;
2037 		/* if there is no link, we're at "next" request and need to drain */
2038 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2039 			ctx->drain_next = false;
2040 			ctx->drain_active = true;
2041 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2042 		}
2043 	}
2044 
2045 	if (!def->ioprio && sqe->ioprio)
2046 		return -EINVAL;
2047 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2048 		return -EINVAL;
2049 
2050 	if (def->needs_file) {
2051 		struct io_submit_state *state = &ctx->submit_state;
2052 
2053 		req->cqe.fd = READ_ONCE(sqe->fd);
2054 
2055 		/*
2056 		 * Plug now if we have more than 2 IO left after this, and the
2057 		 * target is potentially a read/write to block based storage.
2058 		 */
2059 		if (state->need_plug && def->plug) {
2060 			state->plug_started = true;
2061 			state->need_plug = false;
2062 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2063 		}
2064 	}
2065 
2066 	personality = READ_ONCE(sqe->personality);
2067 	if (personality) {
2068 		int ret;
2069 
2070 		req->creds = xa_load(&ctx->personalities, personality);
2071 		if (!req->creds)
2072 			return -EINVAL;
2073 		get_cred(req->creds);
2074 		ret = security_uring_override_creds(req->creds);
2075 		if (ret) {
2076 			put_cred(req->creds);
2077 			return ret;
2078 		}
2079 		req->flags |= REQ_F_CREDS;
2080 	}
2081 
2082 	return def->prep(req, sqe);
2083 }
2084 
2085 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2086 				      struct io_kiocb *req, int ret)
2087 {
2088 	struct io_ring_ctx *ctx = req->ctx;
2089 	struct io_submit_link *link = &ctx->submit_state.link;
2090 	struct io_kiocb *head = link->head;
2091 
2092 	trace_io_uring_req_failed(sqe, req, ret);
2093 
2094 	/*
2095 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2096 	 * unusable. Instead of failing eagerly, continue assembling the link if
2097 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2098 	 * should find the flag and handle the rest.
2099 	 */
2100 	req_fail_link_node(req, ret);
2101 	if (head && !(head->flags & REQ_F_FAIL))
2102 		req_fail_link_node(head, -ECANCELED);
2103 
2104 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2105 		if (head) {
2106 			link->last->link = req;
2107 			link->head = NULL;
2108 			req = head;
2109 		}
2110 		io_queue_sqe_fallback(req);
2111 		return ret;
2112 	}
2113 
2114 	if (head)
2115 		link->last->link = req;
2116 	else
2117 		link->head = req;
2118 	link->last = req;
2119 	return 0;
2120 }
2121 
2122 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2123 			 const struct io_uring_sqe *sqe)
2124 	__must_hold(&ctx->uring_lock)
2125 {
2126 	struct io_submit_link *link = &ctx->submit_state.link;
2127 	int ret;
2128 
2129 	ret = io_init_req(ctx, req, sqe);
2130 	if (unlikely(ret))
2131 		return io_submit_fail_init(sqe, req, ret);
2132 
2133 	/* don't need @sqe from now on */
2134 	trace_io_uring_submit_sqe(req, true);
2135 
2136 	/*
2137 	 * If we already have a head request, queue this one for async
2138 	 * submittal once the head completes. If we don't have a head but
2139 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2140 	 * submitted sync once the chain is complete. If none of those
2141 	 * conditions are true (normal request), then just queue it.
2142 	 */
2143 	if (unlikely(link->head)) {
2144 		ret = io_req_prep_async(req);
2145 		if (unlikely(ret))
2146 			return io_submit_fail_init(sqe, req, ret);
2147 
2148 		trace_io_uring_link(req, link->head);
2149 		link->last->link = req;
2150 		link->last = req;
2151 
2152 		if (req->flags & IO_REQ_LINK_FLAGS)
2153 			return 0;
2154 		/* last request of the link, flush it */
2155 		req = link->head;
2156 		link->head = NULL;
2157 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2158 			goto fallback;
2159 
2160 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2161 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2162 		if (req->flags & IO_REQ_LINK_FLAGS) {
2163 			link->head = req;
2164 			link->last = req;
2165 		} else {
2166 fallback:
2167 			io_queue_sqe_fallback(req);
2168 		}
2169 		return 0;
2170 	}
2171 
2172 	io_queue_sqe(req);
2173 	return 0;
2174 }
2175 
2176 /*
2177  * Batched submission is done, ensure local IO is flushed out.
2178  */
2179 static void io_submit_state_end(struct io_ring_ctx *ctx)
2180 {
2181 	struct io_submit_state *state = &ctx->submit_state;
2182 
2183 	if (unlikely(state->link.head))
2184 		io_queue_sqe_fallback(state->link.head);
2185 	/* flush only after queuing links as they can generate completions */
2186 	io_submit_flush_completions(ctx);
2187 	if (state->plug_started)
2188 		blk_finish_plug(&state->plug);
2189 }
2190 
2191 /*
2192  * Start submission side cache.
2193  */
2194 static void io_submit_state_start(struct io_submit_state *state,
2195 				  unsigned int max_ios)
2196 {
2197 	state->plug_started = false;
2198 	state->need_plug = max_ios > 2;
2199 	state->submit_nr = max_ios;
2200 	/* set only head, no need to init link_last in advance */
2201 	state->link.head = NULL;
2202 }
2203 
2204 static void io_commit_sqring(struct io_ring_ctx *ctx)
2205 {
2206 	struct io_rings *rings = ctx->rings;
2207 
2208 	/*
2209 	 * Ensure any loads from the SQEs are done at this point,
2210 	 * since once we write the new head, the application could
2211 	 * write new data to them.
2212 	 */
2213 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2214 }
2215 
2216 /*
2217  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2218  * that is mapped by userspace. This means that care needs to be taken to
2219  * ensure that reads are stable, as we cannot rely on userspace always
2220  * being a good citizen. If members of the sqe are validated and then later
2221  * used, it's important that those reads are done through READ_ONCE() to
2222  * prevent a re-load down the line.
2223  */
2224 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2225 {
2226 	unsigned head, mask = ctx->sq_entries - 1;
2227 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2228 
2229 	/*
2230 	 * The cached sq head (or cq tail) serves two purposes:
2231 	 *
2232 	 * 1) allows us to batch the cost of updating the user visible
2233 	 *    head updates.
2234 	 * 2) allows the kernel side to track the head on its own, even
2235 	 *    though the application is the one updating it.
2236 	 */
2237 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2238 	if (likely(head < ctx->sq_entries)) {
2239 		/* double index for 128-byte SQEs, twice as long */
2240 		if (ctx->flags & IORING_SETUP_SQE128)
2241 			head <<= 1;
2242 		return &ctx->sq_sqes[head];
2243 	}
2244 
2245 	/* drop invalid entries */
2246 	ctx->cq_extra--;
2247 	WRITE_ONCE(ctx->rings->sq_dropped,
2248 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2249 	return NULL;
2250 }
2251 
2252 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2253 	__must_hold(&ctx->uring_lock)
2254 {
2255 	unsigned int entries = io_sqring_entries(ctx);
2256 	unsigned int left;
2257 	int ret;
2258 
2259 	if (unlikely(!entries))
2260 		return 0;
2261 	/* make sure SQ entry isn't read before tail */
2262 	ret = left = min3(nr, ctx->sq_entries, entries);
2263 	io_get_task_refs(left);
2264 	io_submit_state_start(&ctx->submit_state, left);
2265 
2266 	do {
2267 		const struct io_uring_sqe *sqe;
2268 		struct io_kiocb *req;
2269 
2270 		if (unlikely(!io_alloc_req_refill(ctx)))
2271 			break;
2272 		req = io_alloc_req(ctx);
2273 		sqe = io_get_sqe(ctx);
2274 		if (unlikely(!sqe)) {
2275 			io_req_add_to_cache(req, ctx);
2276 			break;
2277 		}
2278 
2279 		/*
2280 		 * Continue submitting even for sqe failure if the
2281 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2282 		 */
2283 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2284 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2285 			left--;
2286 			break;
2287 		}
2288 	} while (--left);
2289 
2290 	if (unlikely(left)) {
2291 		ret -= left;
2292 		/* try again if it submitted nothing and can't allocate a req */
2293 		if (!ret && io_req_cache_empty(ctx))
2294 			ret = -EAGAIN;
2295 		current->io_uring->cached_refs += left;
2296 	}
2297 
2298 	io_submit_state_end(ctx);
2299 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2300 	io_commit_sqring(ctx);
2301 	return ret;
2302 }
2303 
2304 struct io_wait_queue {
2305 	struct wait_queue_entry wq;
2306 	struct io_ring_ctx *ctx;
2307 	unsigned cq_tail;
2308 	unsigned nr_timeouts;
2309 };
2310 
2311 static inline bool io_has_work(struct io_ring_ctx *ctx)
2312 {
2313 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2314 	       ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2315 		!llist_empty(&ctx->work_llist));
2316 }
2317 
2318 static inline bool io_should_wake(struct io_wait_queue *iowq)
2319 {
2320 	struct io_ring_ctx *ctx = iowq->ctx;
2321 	int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
2322 
2323 	/*
2324 	 * Wake up if we have enough events, or if a timeout occurred since we
2325 	 * started waiting. For timeouts, we always want to return to userspace,
2326 	 * regardless of event count.
2327 	 */
2328 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2329 }
2330 
2331 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2332 			    int wake_flags, void *key)
2333 {
2334 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2335 							wq);
2336 	struct io_ring_ctx *ctx = iowq->ctx;
2337 
2338 	/*
2339 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2340 	 * the task, and the next invocation will do it.
2341 	 */
2342 	if (io_should_wake(iowq) || io_has_work(ctx))
2343 		return autoremove_wake_function(curr, mode, wake_flags, key);
2344 	return -1;
2345 }
2346 
2347 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2348 {
2349 	if (io_run_task_work_ctx(ctx) > 0)
2350 		return 1;
2351 	if (task_sigpending(current))
2352 		return -EINTR;
2353 	return 0;
2354 }
2355 
2356 /* when returns >0, the caller should retry */
2357 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2358 					  struct io_wait_queue *iowq,
2359 					  ktime_t timeout)
2360 {
2361 	int ret;
2362 	unsigned long check_cq;
2363 
2364 	/* make sure we run task_work before checking for signals */
2365 	ret = io_run_task_work_sig(ctx);
2366 	if (ret || io_should_wake(iowq))
2367 		return ret;
2368 
2369 	check_cq = READ_ONCE(ctx->check_cq);
2370 	if (unlikely(check_cq)) {
2371 		/* let the caller flush overflows, retry */
2372 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2373 			return 1;
2374 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2375 			return -EBADR;
2376 	}
2377 	if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
2378 		return -ETIME;
2379 	return 1;
2380 }
2381 
2382 /*
2383  * Wait until events become available, if we don't already have some. The
2384  * application must reap them itself, as they reside on the shared cq ring.
2385  */
2386 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2387 			  const sigset_t __user *sig, size_t sigsz,
2388 			  struct __kernel_timespec __user *uts)
2389 {
2390 	struct io_wait_queue iowq;
2391 	struct io_rings *rings = ctx->rings;
2392 	ktime_t timeout = KTIME_MAX;
2393 	int ret;
2394 
2395 	if (!io_allowed_run_tw(ctx))
2396 		return -EEXIST;
2397 
2398 	do {
2399 		/* always run at least 1 task work to process local work */
2400 		ret = io_run_task_work_ctx(ctx);
2401 		if (ret < 0)
2402 			return ret;
2403 		io_cqring_overflow_flush(ctx);
2404 
2405 		if (io_cqring_events(ctx) >= min_events)
2406 			return 0;
2407 	} while (ret > 0);
2408 
2409 	if (sig) {
2410 #ifdef CONFIG_COMPAT
2411 		if (in_compat_syscall())
2412 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2413 						      sigsz);
2414 		else
2415 #endif
2416 			ret = set_user_sigmask(sig, sigsz);
2417 
2418 		if (ret)
2419 			return ret;
2420 	}
2421 
2422 	if (uts) {
2423 		struct timespec64 ts;
2424 
2425 		if (get_timespec64(&ts, uts))
2426 			return -EFAULT;
2427 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2428 	}
2429 
2430 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2431 	iowq.wq.private = current;
2432 	INIT_LIST_HEAD(&iowq.wq.entry);
2433 	iowq.ctx = ctx;
2434 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2435 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2436 
2437 	trace_io_uring_cqring_wait(ctx, min_events);
2438 	do {
2439 		/* if we can't even flush overflow, don't wait for more */
2440 		if (!io_cqring_overflow_flush(ctx)) {
2441 			ret = -EBUSY;
2442 			break;
2443 		}
2444 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2445 						TASK_INTERRUPTIBLE);
2446 		ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
2447 		cond_resched();
2448 	} while (ret > 0);
2449 
2450 	finish_wait(&ctx->cq_wait, &iowq.wq);
2451 	restore_saved_sigmask_unless(ret == -EINTR);
2452 
2453 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2454 }
2455 
2456 static void io_mem_free(void *ptr)
2457 {
2458 	struct page *page;
2459 
2460 	if (!ptr)
2461 		return;
2462 
2463 	page = virt_to_head_page(ptr);
2464 	if (put_page_testzero(page))
2465 		free_compound_page(page);
2466 }
2467 
2468 static void *io_mem_alloc(size_t size)
2469 {
2470 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2471 
2472 	return (void *) __get_free_pages(gfp, get_order(size));
2473 }
2474 
2475 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2476 				unsigned int cq_entries, size_t *sq_offset)
2477 {
2478 	struct io_rings *rings;
2479 	size_t off, sq_array_size;
2480 
2481 	off = struct_size(rings, cqes, cq_entries);
2482 	if (off == SIZE_MAX)
2483 		return SIZE_MAX;
2484 	if (ctx->flags & IORING_SETUP_CQE32) {
2485 		if (check_shl_overflow(off, 1, &off))
2486 			return SIZE_MAX;
2487 	}
2488 
2489 #ifdef CONFIG_SMP
2490 	off = ALIGN(off, SMP_CACHE_BYTES);
2491 	if (off == 0)
2492 		return SIZE_MAX;
2493 #endif
2494 
2495 	if (sq_offset)
2496 		*sq_offset = off;
2497 
2498 	sq_array_size = array_size(sizeof(u32), sq_entries);
2499 	if (sq_array_size == SIZE_MAX)
2500 		return SIZE_MAX;
2501 
2502 	if (check_add_overflow(off, sq_array_size, &off))
2503 		return SIZE_MAX;
2504 
2505 	return off;
2506 }
2507 
2508 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2509 			       unsigned int eventfd_async)
2510 {
2511 	struct io_ev_fd *ev_fd;
2512 	__s32 __user *fds = arg;
2513 	int fd;
2514 
2515 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2516 					lockdep_is_held(&ctx->uring_lock));
2517 	if (ev_fd)
2518 		return -EBUSY;
2519 
2520 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2521 		return -EFAULT;
2522 
2523 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2524 	if (!ev_fd)
2525 		return -ENOMEM;
2526 
2527 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2528 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2529 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2530 		kfree(ev_fd);
2531 		return ret;
2532 	}
2533 
2534 	spin_lock(&ctx->completion_lock);
2535 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2536 	spin_unlock(&ctx->completion_lock);
2537 
2538 	ev_fd->eventfd_async = eventfd_async;
2539 	ctx->has_evfd = true;
2540 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2541 	atomic_set(&ev_fd->refs, 1);
2542 	atomic_set(&ev_fd->ops, 0);
2543 	return 0;
2544 }
2545 
2546 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2547 {
2548 	struct io_ev_fd *ev_fd;
2549 
2550 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2551 					lockdep_is_held(&ctx->uring_lock));
2552 	if (ev_fd) {
2553 		ctx->has_evfd = false;
2554 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2555 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2556 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2557 		return 0;
2558 	}
2559 
2560 	return -ENXIO;
2561 }
2562 
2563 static void io_req_caches_free(struct io_ring_ctx *ctx)
2564 {
2565 	struct io_submit_state *state = &ctx->submit_state;
2566 	int nr = 0;
2567 
2568 	mutex_lock(&ctx->uring_lock);
2569 	io_flush_cached_locked_reqs(ctx, state);
2570 
2571 	while (!io_req_cache_empty(ctx)) {
2572 		struct io_wq_work_node *node;
2573 		struct io_kiocb *req;
2574 
2575 		node = wq_stack_extract(&state->free_list);
2576 		req = container_of(node, struct io_kiocb, comp_list);
2577 		kmem_cache_free(req_cachep, req);
2578 		nr++;
2579 	}
2580 	if (nr)
2581 		percpu_ref_put_many(&ctx->refs, nr);
2582 	mutex_unlock(&ctx->uring_lock);
2583 }
2584 
2585 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2586 {
2587 	io_sq_thread_finish(ctx);
2588 
2589 	if (ctx->mm_account) {
2590 		mmdrop(ctx->mm_account);
2591 		ctx->mm_account = NULL;
2592 	}
2593 
2594 	io_rsrc_refs_drop(ctx);
2595 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2596 	io_wait_rsrc_data(ctx->buf_data);
2597 	io_wait_rsrc_data(ctx->file_data);
2598 
2599 	mutex_lock(&ctx->uring_lock);
2600 	if (ctx->buf_data)
2601 		__io_sqe_buffers_unregister(ctx);
2602 	if (ctx->file_data)
2603 		__io_sqe_files_unregister(ctx);
2604 	if (ctx->rings)
2605 		__io_cqring_overflow_flush(ctx, true);
2606 	io_eventfd_unregister(ctx);
2607 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2608 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2609 	mutex_unlock(&ctx->uring_lock);
2610 	io_destroy_buffers(ctx);
2611 	if (ctx->sq_creds)
2612 		put_cred(ctx->sq_creds);
2613 	if (ctx->submitter_task)
2614 		put_task_struct(ctx->submitter_task);
2615 
2616 	/* there are no registered resources left, nobody uses it */
2617 	if (ctx->rsrc_node)
2618 		io_rsrc_node_destroy(ctx->rsrc_node);
2619 	if (ctx->rsrc_backup_node)
2620 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
2621 	flush_delayed_work(&ctx->rsrc_put_work);
2622 	flush_delayed_work(&ctx->fallback_work);
2623 
2624 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2625 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2626 
2627 #if defined(CONFIG_UNIX)
2628 	if (ctx->ring_sock) {
2629 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2630 		sock_release(ctx->ring_sock);
2631 	}
2632 #endif
2633 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2634 	WARN_ON_ONCE(ctx->notif_slots || ctx->nr_notif_slots);
2635 
2636 	io_mem_free(ctx->rings);
2637 	io_mem_free(ctx->sq_sqes);
2638 
2639 	percpu_ref_exit(&ctx->refs);
2640 	free_uid(ctx->user);
2641 	io_req_caches_free(ctx);
2642 	if (ctx->hash_map)
2643 		io_wq_put_hash(ctx->hash_map);
2644 	kfree(ctx->cancel_table.hbs);
2645 	kfree(ctx->cancel_table_locked.hbs);
2646 	kfree(ctx->dummy_ubuf);
2647 	kfree(ctx->io_bl);
2648 	xa_destroy(&ctx->io_bl_xa);
2649 	kfree(ctx);
2650 }
2651 
2652 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2653 {
2654 	struct io_ring_ctx *ctx = file->private_data;
2655 	__poll_t mask = 0;
2656 
2657 	poll_wait(file, &ctx->cq_wait, wait);
2658 	/*
2659 	 * synchronizes with barrier from wq_has_sleeper call in
2660 	 * io_commit_cqring
2661 	 */
2662 	smp_rmb();
2663 	if (!io_sqring_full(ctx))
2664 		mask |= EPOLLOUT | EPOLLWRNORM;
2665 
2666 	/*
2667 	 * Don't flush cqring overflow list here, just do a simple check.
2668 	 * Otherwise there could possible be ABBA deadlock:
2669 	 *      CPU0                    CPU1
2670 	 *      ----                    ----
2671 	 * lock(&ctx->uring_lock);
2672 	 *                              lock(&ep->mtx);
2673 	 *                              lock(&ctx->uring_lock);
2674 	 * lock(&ep->mtx);
2675 	 *
2676 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2677 	 * pushs them to do the flush.
2678 	 */
2679 
2680 	if (io_cqring_events(ctx) || io_has_work(ctx))
2681 		mask |= EPOLLIN | EPOLLRDNORM;
2682 
2683 	return mask;
2684 }
2685 
2686 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2687 {
2688 	const struct cred *creds;
2689 
2690 	creds = xa_erase(&ctx->personalities, id);
2691 	if (creds) {
2692 		put_cred(creds);
2693 		return 0;
2694 	}
2695 
2696 	return -EINVAL;
2697 }
2698 
2699 struct io_tctx_exit {
2700 	struct callback_head		task_work;
2701 	struct completion		completion;
2702 	struct io_ring_ctx		*ctx;
2703 };
2704 
2705 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2706 {
2707 	struct io_uring_task *tctx = current->io_uring;
2708 	struct io_tctx_exit *work;
2709 
2710 	work = container_of(cb, struct io_tctx_exit, task_work);
2711 	/*
2712 	 * When @in_idle, we're in cancellation and it's racy to remove the
2713 	 * node. It'll be removed by the end of cancellation, just ignore it.
2714 	 */
2715 	if (!atomic_read(&tctx->in_idle))
2716 		io_uring_del_tctx_node((unsigned long)work->ctx);
2717 	complete(&work->completion);
2718 }
2719 
2720 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2721 {
2722 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2723 
2724 	return req->ctx == data;
2725 }
2726 
2727 static __cold void io_ring_exit_work(struct work_struct *work)
2728 {
2729 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2730 	unsigned long timeout = jiffies + HZ * 60 * 5;
2731 	unsigned long interval = HZ / 20;
2732 	struct io_tctx_exit exit;
2733 	struct io_tctx_node *node;
2734 	int ret;
2735 
2736 	/*
2737 	 * If we're doing polled IO and end up having requests being
2738 	 * submitted async (out-of-line), then completions can come in while
2739 	 * we're waiting for refs to drop. We need to reap these manually,
2740 	 * as nobody else will be looking for them.
2741 	 */
2742 	do {
2743 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2744 			io_move_task_work_from_local(ctx);
2745 
2746 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2747 			cond_resched();
2748 
2749 		if (ctx->sq_data) {
2750 			struct io_sq_data *sqd = ctx->sq_data;
2751 			struct task_struct *tsk;
2752 
2753 			io_sq_thread_park(sqd);
2754 			tsk = sqd->thread;
2755 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2756 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2757 						io_cancel_ctx_cb, ctx, true);
2758 			io_sq_thread_unpark(sqd);
2759 		}
2760 
2761 		io_req_caches_free(ctx);
2762 
2763 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2764 			/* there is little hope left, don't run it too often */
2765 			interval = HZ * 60;
2766 		}
2767 	} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2768 
2769 	init_completion(&exit.completion);
2770 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2771 	exit.ctx = ctx;
2772 	/*
2773 	 * Some may use context even when all refs and requests have been put,
2774 	 * and they are free to do so while still holding uring_lock or
2775 	 * completion_lock, see io_req_task_submit(). Apart from other work,
2776 	 * this lock/unlock section also waits them to finish.
2777 	 */
2778 	mutex_lock(&ctx->uring_lock);
2779 	while (!list_empty(&ctx->tctx_list)) {
2780 		WARN_ON_ONCE(time_after(jiffies, timeout));
2781 
2782 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2783 					ctx_node);
2784 		/* don't spin on a single task if cancellation failed */
2785 		list_rotate_left(&ctx->tctx_list);
2786 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2787 		if (WARN_ON_ONCE(ret))
2788 			continue;
2789 
2790 		mutex_unlock(&ctx->uring_lock);
2791 		wait_for_completion(&exit.completion);
2792 		mutex_lock(&ctx->uring_lock);
2793 	}
2794 	mutex_unlock(&ctx->uring_lock);
2795 	spin_lock(&ctx->completion_lock);
2796 	spin_unlock(&ctx->completion_lock);
2797 
2798 	io_ring_ctx_free(ctx);
2799 }
2800 
2801 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2802 {
2803 	unsigned long index;
2804 	struct creds *creds;
2805 
2806 	mutex_lock(&ctx->uring_lock);
2807 	percpu_ref_kill(&ctx->refs);
2808 	if (ctx->rings)
2809 		__io_cqring_overflow_flush(ctx, true);
2810 	xa_for_each(&ctx->personalities, index, creds)
2811 		io_unregister_personality(ctx, index);
2812 	if (ctx->rings)
2813 		io_poll_remove_all(ctx, NULL, true);
2814 	mutex_unlock(&ctx->uring_lock);
2815 
2816 	/* failed during ring init, it couldn't have issued any requests */
2817 	if (ctx->rings) {
2818 		io_kill_timeouts(ctx, NULL, true);
2819 		/* if we failed setting up the ctx, we might not have any rings */
2820 		io_iopoll_try_reap_events(ctx);
2821 		/* drop cached put refs after potentially doing completions */
2822 		if (current->io_uring)
2823 			io_uring_drop_tctx_refs(current);
2824 	}
2825 
2826 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2827 	/*
2828 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2829 	 * if we're exiting a ton of rings at the same time. It just adds
2830 	 * noise and overhead, there's no discernable change in runtime
2831 	 * over using system_wq.
2832 	 */
2833 	queue_work(system_unbound_wq, &ctx->exit_work);
2834 }
2835 
2836 static int io_uring_release(struct inode *inode, struct file *file)
2837 {
2838 	struct io_ring_ctx *ctx = file->private_data;
2839 
2840 	file->private_data = NULL;
2841 	io_ring_ctx_wait_and_kill(ctx);
2842 	return 0;
2843 }
2844 
2845 struct io_task_cancel {
2846 	struct task_struct *task;
2847 	bool all;
2848 };
2849 
2850 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2851 {
2852 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2853 	struct io_task_cancel *cancel = data;
2854 
2855 	return io_match_task_safe(req, cancel->task, cancel->all);
2856 }
2857 
2858 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2859 					 struct task_struct *task,
2860 					 bool cancel_all)
2861 {
2862 	struct io_defer_entry *de;
2863 	LIST_HEAD(list);
2864 
2865 	spin_lock(&ctx->completion_lock);
2866 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2867 		if (io_match_task_safe(de->req, task, cancel_all)) {
2868 			list_cut_position(&list, &ctx->defer_list, &de->list);
2869 			break;
2870 		}
2871 	}
2872 	spin_unlock(&ctx->completion_lock);
2873 	if (list_empty(&list))
2874 		return false;
2875 
2876 	while (!list_empty(&list)) {
2877 		de = list_first_entry(&list, struct io_defer_entry, list);
2878 		list_del_init(&de->list);
2879 		io_req_complete_failed(de->req, -ECANCELED);
2880 		kfree(de);
2881 	}
2882 	return true;
2883 }
2884 
2885 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2886 {
2887 	struct io_tctx_node *node;
2888 	enum io_wq_cancel cret;
2889 	bool ret = false;
2890 
2891 	mutex_lock(&ctx->uring_lock);
2892 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2893 		struct io_uring_task *tctx = node->task->io_uring;
2894 
2895 		/*
2896 		 * io_wq will stay alive while we hold uring_lock, because it's
2897 		 * killed after ctx nodes, which requires to take the lock.
2898 		 */
2899 		if (!tctx || !tctx->io_wq)
2900 			continue;
2901 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2902 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2903 	}
2904 	mutex_unlock(&ctx->uring_lock);
2905 
2906 	return ret;
2907 }
2908 
2909 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2910 						struct task_struct *task,
2911 						bool cancel_all)
2912 {
2913 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2914 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
2915 	enum io_wq_cancel cret;
2916 	bool ret = false;
2917 
2918 	/* failed during ring init, it couldn't have issued any requests */
2919 	if (!ctx->rings)
2920 		return false;
2921 
2922 	if (!task) {
2923 		ret |= io_uring_try_cancel_iowq(ctx);
2924 	} else if (tctx && tctx->io_wq) {
2925 		/*
2926 		 * Cancels requests of all rings, not only @ctx, but
2927 		 * it's fine as the task is in exit/exec.
2928 		 */
2929 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
2930 				       &cancel, true);
2931 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2932 	}
2933 
2934 	/* SQPOLL thread does its own polling */
2935 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
2936 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
2937 		while (!wq_list_empty(&ctx->iopoll_list)) {
2938 			io_iopoll_try_reap_events(ctx);
2939 			ret = true;
2940 		}
2941 	}
2942 
2943 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2944 		ret |= io_run_local_work(ctx) > 0;
2945 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
2946 	mutex_lock(&ctx->uring_lock);
2947 	ret |= io_poll_remove_all(ctx, task, cancel_all);
2948 	mutex_unlock(&ctx->uring_lock);
2949 	ret |= io_kill_timeouts(ctx, task, cancel_all);
2950 	if (task)
2951 		ret |= io_run_task_work() > 0;
2952 	return ret;
2953 }
2954 
2955 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
2956 {
2957 	if (tracked)
2958 		return atomic_read(&tctx->inflight_tracked);
2959 	return percpu_counter_sum(&tctx->inflight);
2960 }
2961 
2962 /*
2963  * Find any io_uring ctx that this task has registered or done IO on, and cancel
2964  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
2965  */
2966 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
2967 {
2968 	struct io_uring_task *tctx = current->io_uring;
2969 	struct io_ring_ctx *ctx;
2970 	s64 inflight;
2971 	DEFINE_WAIT(wait);
2972 
2973 	WARN_ON_ONCE(sqd && sqd->thread != current);
2974 
2975 	if (!current->io_uring)
2976 		return;
2977 	if (tctx->io_wq)
2978 		io_wq_exit_start(tctx->io_wq);
2979 
2980 	atomic_inc(&tctx->in_idle);
2981 	do {
2982 		bool loop = false;
2983 
2984 		io_uring_drop_tctx_refs(current);
2985 		/* read completions before cancelations */
2986 		inflight = tctx_inflight(tctx, !cancel_all);
2987 		if (!inflight)
2988 			break;
2989 
2990 		if (!sqd) {
2991 			struct io_tctx_node *node;
2992 			unsigned long index;
2993 
2994 			xa_for_each(&tctx->xa, index, node) {
2995 				/* sqpoll task will cancel all its requests */
2996 				if (node->ctx->sq_data)
2997 					continue;
2998 				loop |= io_uring_try_cancel_requests(node->ctx,
2999 							current, cancel_all);
3000 			}
3001 		} else {
3002 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3003 				loop |= io_uring_try_cancel_requests(ctx,
3004 								     current,
3005 								     cancel_all);
3006 		}
3007 
3008 		if (loop) {
3009 			cond_resched();
3010 			continue;
3011 		}
3012 
3013 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3014 		io_run_task_work();
3015 		io_uring_drop_tctx_refs(current);
3016 
3017 		/*
3018 		 * If we've seen completions, retry without waiting. This
3019 		 * avoids a race where a completion comes in before we did
3020 		 * prepare_to_wait().
3021 		 */
3022 		if (inflight == tctx_inflight(tctx, !cancel_all))
3023 			schedule();
3024 		finish_wait(&tctx->wait, &wait);
3025 	} while (1);
3026 
3027 	io_uring_clean_tctx(tctx);
3028 	if (cancel_all) {
3029 		/*
3030 		 * We shouldn't run task_works after cancel, so just leave
3031 		 * ->in_idle set for normal exit.
3032 		 */
3033 		atomic_dec(&tctx->in_idle);
3034 		/* for exec all current's requests should be gone, kill tctx */
3035 		__io_uring_free(current);
3036 	}
3037 }
3038 
3039 void __io_uring_cancel(bool cancel_all)
3040 {
3041 	io_uring_cancel_generic(cancel_all, NULL);
3042 }
3043 
3044 static void *io_uring_validate_mmap_request(struct file *file,
3045 					    loff_t pgoff, size_t sz)
3046 {
3047 	struct io_ring_ctx *ctx = file->private_data;
3048 	loff_t offset = pgoff << PAGE_SHIFT;
3049 	struct page *page;
3050 	void *ptr;
3051 
3052 	switch (offset) {
3053 	case IORING_OFF_SQ_RING:
3054 	case IORING_OFF_CQ_RING:
3055 		ptr = ctx->rings;
3056 		break;
3057 	case IORING_OFF_SQES:
3058 		ptr = ctx->sq_sqes;
3059 		break;
3060 	default:
3061 		return ERR_PTR(-EINVAL);
3062 	}
3063 
3064 	page = virt_to_head_page(ptr);
3065 	if (sz > page_size(page))
3066 		return ERR_PTR(-EINVAL);
3067 
3068 	return ptr;
3069 }
3070 
3071 #ifdef CONFIG_MMU
3072 
3073 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3074 {
3075 	size_t sz = vma->vm_end - vma->vm_start;
3076 	unsigned long pfn;
3077 	void *ptr;
3078 
3079 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3080 	if (IS_ERR(ptr))
3081 		return PTR_ERR(ptr);
3082 
3083 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3084 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3085 }
3086 
3087 #else /* !CONFIG_MMU */
3088 
3089 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3090 {
3091 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
3092 }
3093 
3094 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3095 {
3096 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3097 }
3098 
3099 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3100 	unsigned long addr, unsigned long len,
3101 	unsigned long pgoff, unsigned long flags)
3102 {
3103 	void *ptr;
3104 
3105 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3106 	if (IS_ERR(ptr))
3107 		return PTR_ERR(ptr);
3108 
3109 	return (unsigned long) ptr;
3110 }
3111 
3112 #endif /* !CONFIG_MMU */
3113 
3114 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3115 {
3116 	if (flags & IORING_ENTER_EXT_ARG) {
3117 		struct io_uring_getevents_arg arg;
3118 
3119 		if (argsz != sizeof(arg))
3120 			return -EINVAL;
3121 		if (copy_from_user(&arg, argp, sizeof(arg)))
3122 			return -EFAULT;
3123 	}
3124 	return 0;
3125 }
3126 
3127 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3128 			  struct __kernel_timespec __user **ts,
3129 			  const sigset_t __user **sig)
3130 {
3131 	struct io_uring_getevents_arg arg;
3132 
3133 	/*
3134 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3135 	 * is just a pointer to the sigset_t.
3136 	 */
3137 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3138 		*sig = (const sigset_t __user *) argp;
3139 		*ts = NULL;
3140 		return 0;
3141 	}
3142 
3143 	/*
3144 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3145 	 * timespec and sigset_t pointers if good.
3146 	 */
3147 	if (*argsz != sizeof(arg))
3148 		return -EINVAL;
3149 	if (copy_from_user(&arg, argp, sizeof(arg)))
3150 		return -EFAULT;
3151 	if (arg.pad)
3152 		return -EINVAL;
3153 	*sig = u64_to_user_ptr(arg.sigmask);
3154 	*argsz = arg.sigmask_sz;
3155 	*ts = u64_to_user_ptr(arg.ts);
3156 	return 0;
3157 }
3158 
3159 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3160 		u32, min_complete, u32, flags, const void __user *, argp,
3161 		size_t, argsz)
3162 {
3163 	struct io_ring_ctx *ctx;
3164 	struct fd f;
3165 	long ret;
3166 
3167 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3168 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3169 			       IORING_ENTER_REGISTERED_RING)))
3170 		return -EINVAL;
3171 
3172 	/*
3173 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3174 	 * need only dereference our task private array to find it.
3175 	 */
3176 	if (flags & IORING_ENTER_REGISTERED_RING) {
3177 		struct io_uring_task *tctx = current->io_uring;
3178 
3179 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3180 			return -EINVAL;
3181 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3182 		f.file = tctx->registered_rings[fd];
3183 		f.flags = 0;
3184 		if (unlikely(!f.file))
3185 			return -EBADF;
3186 	} else {
3187 		f = fdget(fd);
3188 		if (unlikely(!f.file))
3189 			return -EBADF;
3190 		ret = -EOPNOTSUPP;
3191 		if (unlikely(!io_is_uring_fops(f.file)))
3192 			goto out;
3193 	}
3194 
3195 	ctx = f.file->private_data;
3196 	ret = -EBADFD;
3197 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3198 		goto out;
3199 
3200 	/*
3201 	 * For SQ polling, the thread will do all submissions and completions.
3202 	 * Just return the requested submit count, and wake the thread if
3203 	 * we were asked to.
3204 	 */
3205 	ret = 0;
3206 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3207 		io_cqring_overflow_flush(ctx);
3208 
3209 		if (unlikely(ctx->sq_data->thread == NULL)) {
3210 			ret = -EOWNERDEAD;
3211 			goto out;
3212 		}
3213 		if (flags & IORING_ENTER_SQ_WAKEUP)
3214 			wake_up(&ctx->sq_data->wait);
3215 		if (flags & IORING_ENTER_SQ_WAIT) {
3216 			ret = io_sqpoll_wait_sq(ctx);
3217 			if (ret)
3218 				goto out;
3219 		}
3220 		ret = to_submit;
3221 	} else if (to_submit) {
3222 		ret = io_uring_add_tctx_node(ctx);
3223 		if (unlikely(ret))
3224 			goto out;
3225 
3226 		mutex_lock(&ctx->uring_lock);
3227 		ret = io_submit_sqes(ctx, to_submit);
3228 		if (ret != to_submit) {
3229 			mutex_unlock(&ctx->uring_lock);
3230 			goto out;
3231 		}
3232 		if ((flags & IORING_ENTER_GETEVENTS) && ctx->syscall_iopoll)
3233 			goto iopoll_locked;
3234 		mutex_unlock(&ctx->uring_lock);
3235 	}
3236 
3237 	if (flags & IORING_ENTER_GETEVENTS) {
3238 		int ret2;
3239 
3240 		if (ctx->syscall_iopoll) {
3241 			/*
3242 			 * We disallow the app entering submit/complete with
3243 			 * polling, but we still need to lock the ring to
3244 			 * prevent racing with polled issue that got punted to
3245 			 * a workqueue.
3246 			 */
3247 			mutex_lock(&ctx->uring_lock);
3248 iopoll_locked:
3249 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3250 			if (likely(!ret2)) {
3251 				min_complete = min(min_complete,
3252 						   ctx->cq_entries);
3253 				ret2 = io_iopoll_check(ctx, min_complete);
3254 			}
3255 			mutex_unlock(&ctx->uring_lock);
3256 		} else {
3257 			const sigset_t __user *sig;
3258 			struct __kernel_timespec __user *ts;
3259 
3260 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3261 			if (likely(!ret2)) {
3262 				min_complete = min(min_complete,
3263 						   ctx->cq_entries);
3264 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3265 						      argsz, ts);
3266 			}
3267 		}
3268 
3269 		if (!ret) {
3270 			ret = ret2;
3271 
3272 			/*
3273 			 * EBADR indicates that one or more CQE were dropped.
3274 			 * Once the user has been informed we can clear the bit
3275 			 * as they are obviously ok with those drops.
3276 			 */
3277 			if (unlikely(ret2 == -EBADR))
3278 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3279 					  &ctx->check_cq);
3280 		}
3281 	}
3282 out:
3283 	fdput(f);
3284 	return ret;
3285 }
3286 
3287 static const struct file_operations io_uring_fops = {
3288 	.release	= io_uring_release,
3289 	.mmap		= io_uring_mmap,
3290 #ifndef CONFIG_MMU
3291 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3292 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3293 #endif
3294 	.poll		= io_uring_poll,
3295 #ifdef CONFIG_PROC_FS
3296 	.show_fdinfo	= io_uring_show_fdinfo,
3297 #endif
3298 };
3299 
3300 bool io_is_uring_fops(struct file *file)
3301 {
3302 	return file->f_op == &io_uring_fops;
3303 }
3304 
3305 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3306 					 struct io_uring_params *p)
3307 {
3308 	struct io_rings *rings;
3309 	size_t size, sq_array_offset;
3310 
3311 	/* make sure these are sane, as we already accounted them */
3312 	ctx->sq_entries = p->sq_entries;
3313 	ctx->cq_entries = p->cq_entries;
3314 
3315 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3316 	if (size == SIZE_MAX)
3317 		return -EOVERFLOW;
3318 
3319 	rings = io_mem_alloc(size);
3320 	if (!rings)
3321 		return -ENOMEM;
3322 
3323 	ctx->rings = rings;
3324 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3325 	rings->sq_ring_mask = p->sq_entries - 1;
3326 	rings->cq_ring_mask = p->cq_entries - 1;
3327 	rings->sq_ring_entries = p->sq_entries;
3328 	rings->cq_ring_entries = p->cq_entries;
3329 
3330 	if (p->flags & IORING_SETUP_SQE128)
3331 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3332 	else
3333 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3334 	if (size == SIZE_MAX) {
3335 		io_mem_free(ctx->rings);
3336 		ctx->rings = NULL;
3337 		return -EOVERFLOW;
3338 	}
3339 
3340 	ctx->sq_sqes = io_mem_alloc(size);
3341 	if (!ctx->sq_sqes) {
3342 		io_mem_free(ctx->rings);
3343 		ctx->rings = NULL;
3344 		return -ENOMEM;
3345 	}
3346 
3347 	return 0;
3348 }
3349 
3350 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3351 {
3352 	int ret, fd;
3353 
3354 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3355 	if (fd < 0)
3356 		return fd;
3357 
3358 	ret = __io_uring_add_tctx_node(ctx, false);
3359 	if (ret) {
3360 		put_unused_fd(fd);
3361 		return ret;
3362 	}
3363 	fd_install(fd, file);
3364 	return fd;
3365 }
3366 
3367 /*
3368  * Allocate an anonymous fd, this is what constitutes the application
3369  * visible backing of an io_uring instance. The application mmaps this
3370  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3371  * we have to tie this fd to a socket for file garbage collection purposes.
3372  */
3373 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3374 {
3375 	struct file *file;
3376 #if defined(CONFIG_UNIX)
3377 	int ret;
3378 
3379 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3380 				&ctx->ring_sock);
3381 	if (ret)
3382 		return ERR_PTR(ret);
3383 #endif
3384 
3385 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3386 					 O_RDWR | O_CLOEXEC, NULL);
3387 #if defined(CONFIG_UNIX)
3388 	if (IS_ERR(file)) {
3389 		sock_release(ctx->ring_sock);
3390 		ctx->ring_sock = NULL;
3391 	} else {
3392 		ctx->ring_sock->file = file;
3393 	}
3394 #endif
3395 	return file;
3396 }
3397 
3398 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3399 				  struct io_uring_params __user *params)
3400 {
3401 	struct io_ring_ctx *ctx;
3402 	struct file *file;
3403 	int ret;
3404 
3405 	if (!entries)
3406 		return -EINVAL;
3407 	if (entries > IORING_MAX_ENTRIES) {
3408 		if (!(p->flags & IORING_SETUP_CLAMP))
3409 			return -EINVAL;
3410 		entries = IORING_MAX_ENTRIES;
3411 	}
3412 
3413 	/*
3414 	 * Use twice as many entries for the CQ ring. It's possible for the
3415 	 * application to drive a higher depth than the size of the SQ ring,
3416 	 * since the sqes are only used at submission time. This allows for
3417 	 * some flexibility in overcommitting a bit. If the application has
3418 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3419 	 * of CQ ring entries manually.
3420 	 */
3421 	p->sq_entries = roundup_pow_of_two(entries);
3422 	if (p->flags & IORING_SETUP_CQSIZE) {
3423 		/*
3424 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3425 		 * to a power-of-two, if it isn't already. We do NOT impose
3426 		 * any cq vs sq ring sizing.
3427 		 */
3428 		if (!p->cq_entries)
3429 			return -EINVAL;
3430 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3431 			if (!(p->flags & IORING_SETUP_CLAMP))
3432 				return -EINVAL;
3433 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3434 		}
3435 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3436 		if (p->cq_entries < p->sq_entries)
3437 			return -EINVAL;
3438 	} else {
3439 		p->cq_entries = 2 * p->sq_entries;
3440 	}
3441 
3442 	ctx = io_ring_ctx_alloc(p);
3443 	if (!ctx)
3444 		return -ENOMEM;
3445 
3446 	/*
3447 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3448 	 * space applications don't need to do io completion events
3449 	 * polling again, they can rely on io_sq_thread to do polling
3450 	 * work, which can reduce cpu usage and uring_lock contention.
3451 	 */
3452 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3453 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3454 		ctx->syscall_iopoll = 1;
3455 
3456 	ctx->compat = in_compat_syscall();
3457 	if (!capable(CAP_IPC_LOCK))
3458 		ctx->user = get_uid(current_user());
3459 
3460 	/*
3461 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3462 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3463 	 */
3464 	ret = -EINVAL;
3465 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3466 		/* IPI related flags don't make sense with SQPOLL */
3467 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3468 				  IORING_SETUP_TASKRUN_FLAG |
3469 				  IORING_SETUP_DEFER_TASKRUN))
3470 			goto err;
3471 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3472 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3473 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3474 	} else {
3475 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3476 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3477 			goto err;
3478 		ctx->notify_method = TWA_SIGNAL;
3479 	}
3480 
3481 	/*
3482 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3483 	 * submission task. This implies that there is only one submitter, so enforce
3484 	 * that.
3485 	 */
3486 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3487 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3488 		goto err;
3489 	}
3490 
3491 	/*
3492 	 * This is just grabbed for accounting purposes. When a process exits,
3493 	 * the mm is exited and dropped before the files, hence we need to hang
3494 	 * on to this mm purely for the purposes of being able to unaccount
3495 	 * memory (locked/pinned vm). It's not used for anything else.
3496 	 */
3497 	mmgrab(current->mm);
3498 	ctx->mm_account = current->mm;
3499 
3500 	ret = io_allocate_scq_urings(ctx, p);
3501 	if (ret)
3502 		goto err;
3503 
3504 	ret = io_sq_offload_create(ctx, p);
3505 	if (ret)
3506 		goto err;
3507 	/* always set a rsrc node */
3508 	ret = io_rsrc_node_switch_start(ctx);
3509 	if (ret)
3510 		goto err;
3511 	io_rsrc_node_switch(ctx, NULL);
3512 
3513 	memset(&p->sq_off, 0, sizeof(p->sq_off));
3514 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3515 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3516 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3517 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3518 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3519 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3520 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3521 
3522 	memset(&p->cq_off, 0, sizeof(p->cq_off));
3523 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3524 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3525 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3526 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3527 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3528 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3529 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3530 
3531 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3532 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3533 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3534 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3535 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3536 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3537 			IORING_FEAT_LINKED_FILE;
3538 
3539 	if (copy_to_user(params, p, sizeof(*p))) {
3540 		ret = -EFAULT;
3541 		goto err;
3542 	}
3543 
3544 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3545 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3546 		ctx->submitter_task = get_task_struct(current);
3547 
3548 	file = io_uring_get_file(ctx);
3549 	if (IS_ERR(file)) {
3550 		ret = PTR_ERR(file);
3551 		goto err;
3552 	}
3553 
3554 	/*
3555 	 * Install ring fd as the very last thing, so we don't risk someone
3556 	 * having closed it before we finish setup
3557 	 */
3558 	ret = io_uring_install_fd(ctx, file);
3559 	if (ret < 0) {
3560 		/* fput will clean it up */
3561 		fput(file);
3562 		return ret;
3563 	}
3564 
3565 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3566 	return ret;
3567 err:
3568 	io_ring_ctx_wait_and_kill(ctx);
3569 	return ret;
3570 }
3571 
3572 /*
3573  * Sets up an aio uring context, and returns the fd. Applications asks for a
3574  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3575  * params structure passed in.
3576  */
3577 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3578 {
3579 	struct io_uring_params p;
3580 	int i;
3581 
3582 	if (copy_from_user(&p, params, sizeof(p)))
3583 		return -EFAULT;
3584 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3585 		if (p.resv[i])
3586 			return -EINVAL;
3587 	}
3588 
3589 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3590 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3591 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3592 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3593 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3594 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3595 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3596 		return -EINVAL;
3597 
3598 	return io_uring_create(entries, &p, params);
3599 }
3600 
3601 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3602 		struct io_uring_params __user *, params)
3603 {
3604 	return io_uring_setup(entries, params);
3605 }
3606 
3607 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3608 			   unsigned nr_args)
3609 {
3610 	struct io_uring_probe *p;
3611 	size_t size;
3612 	int i, ret;
3613 
3614 	size = struct_size(p, ops, nr_args);
3615 	if (size == SIZE_MAX)
3616 		return -EOVERFLOW;
3617 	p = kzalloc(size, GFP_KERNEL);
3618 	if (!p)
3619 		return -ENOMEM;
3620 
3621 	ret = -EFAULT;
3622 	if (copy_from_user(p, arg, size))
3623 		goto out;
3624 	ret = -EINVAL;
3625 	if (memchr_inv(p, 0, size))
3626 		goto out;
3627 
3628 	p->last_op = IORING_OP_LAST - 1;
3629 	if (nr_args > IORING_OP_LAST)
3630 		nr_args = IORING_OP_LAST;
3631 
3632 	for (i = 0; i < nr_args; i++) {
3633 		p->ops[i].op = i;
3634 		if (!io_op_defs[i].not_supported)
3635 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
3636 	}
3637 	p->ops_len = i;
3638 
3639 	ret = 0;
3640 	if (copy_to_user(arg, p, size))
3641 		ret = -EFAULT;
3642 out:
3643 	kfree(p);
3644 	return ret;
3645 }
3646 
3647 static int io_register_personality(struct io_ring_ctx *ctx)
3648 {
3649 	const struct cred *creds;
3650 	u32 id;
3651 	int ret;
3652 
3653 	creds = get_current_cred();
3654 
3655 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3656 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3657 	if (ret < 0) {
3658 		put_cred(creds);
3659 		return ret;
3660 	}
3661 	return id;
3662 }
3663 
3664 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3665 					   void __user *arg, unsigned int nr_args)
3666 {
3667 	struct io_uring_restriction *res;
3668 	size_t size;
3669 	int i, ret;
3670 
3671 	/* Restrictions allowed only if rings started disabled */
3672 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3673 		return -EBADFD;
3674 
3675 	/* We allow only a single restrictions registration */
3676 	if (ctx->restrictions.registered)
3677 		return -EBUSY;
3678 
3679 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3680 		return -EINVAL;
3681 
3682 	size = array_size(nr_args, sizeof(*res));
3683 	if (size == SIZE_MAX)
3684 		return -EOVERFLOW;
3685 
3686 	res = memdup_user(arg, size);
3687 	if (IS_ERR(res))
3688 		return PTR_ERR(res);
3689 
3690 	ret = 0;
3691 
3692 	for (i = 0; i < nr_args; i++) {
3693 		switch (res[i].opcode) {
3694 		case IORING_RESTRICTION_REGISTER_OP:
3695 			if (res[i].register_op >= IORING_REGISTER_LAST) {
3696 				ret = -EINVAL;
3697 				goto out;
3698 			}
3699 
3700 			__set_bit(res[i].register_op,
3701 				  ctx->restrictions.register_op);
3702 			break;
3703 		case IORING_RESTRICTION_SQE_OP:
3704 			if (res[i].sqe_op >= IORING_OP_LAST) {
3705 				ret = -EINVAL;
3706 				goto out;
3707 			}
3708 
3709 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3710 			break;
3711 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3712 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3713 			break;
3714 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3715 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3716 			break;
3717 		default:
3718 			ret = -EINVAL;
3719 			goto out;
3720 		}
3721 	}
3722 
3723 out:
3724 	/* Reset all restrictions if an error happened */
3725 	if (ret != 0)
3726 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3727 	else
3728 		ctx->restrictions.registered = true;
3729 
3730 	kfree(res);
3731 	return ret;
3732 }
3733 
3734 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3735 {
3736 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3737 		return -EBADFD;
3738 
3739 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task)
3740 		ctx->submitter_task = get_task_struct(current);
3741 
3742 	if (ctx->restrictions.registered)
3743 		ctx->restricted = 1;
3744 
3745 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
3746 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3747 		wake_up(&ctx->sq_data->wait);
3748 	return 0;
3749 }
3750 
3751 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3752 				       void __user *arg, unsigned len)
3753 {
3754 	struct io_uring_task *tctx = current->io_uring;
3755 	cpumask_var_t new_mask;
3756 	int ret;
3757 
3758 	if (!tctx || !tctx->io_wq)
3759 		return -EINVAL;
3760 
3761 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3762 		return -ENOMEM;
3763 
3764 	cpumask_clear(new_mask);
3765 	if (len > cpumask_size())
3766 		len = cpumask_size();
3767 
3768 	if (in_compat_syscall()) {
3769 		ret = compat_get_bitmap(cpumask_bits(new_mask),
3770 					(const compat_ulong_t __user *)arg,
3771 					len * 8 /* CHAR_BIT */);
3772 	} else {
3773 		ret = copy_from_user(new_mask, arg, len);
3774 	}
3775 
3776 	if (ret) {
3777 		free_cpumask_var(new_mask);
3778 		return -EFAULT;
3779 	}
3780 
3781 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3782 	free_cpumask_var(new_mask);
3783 	return ret;
3784 }
3785 
3786 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3787 {
3788 	struct io_uring_task *tctx = current->io_uring;
3789 
3790 	if (!tctx || !tctx->io_wq)
3791 		return -EINVAL;
3792 
3793 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
3794 }
3795 
3796 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3797 					       void __user *arg)
3798 	__must_hold(&ctx->uring_lock)
3799 {
3800 	struct io_tctx_node *node;
3801 	struct io_uring_task *tctx = NULL;
3802 	struct io_sq_data *sqd = NULL;
3803 	__u32 new_count[2];
3804 	int i, ret;
3805 
3806 	if (copy_from_user(new_count, arg, sizeof(new_count)))
3807 		return -EFAULT;
3808 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3809 		if (new_count[i] > INT_MAX)
3810 			return -EINVAL;
3811 
3812 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3813 		sqd = ctx->sq_data;
3814 		if (sqd) {
3815 			/*
3816 			 * Observe the correct sqd->lock -> ctx->uring_lock
3817 			 * ordering. Fine to drop uring_lock here, we hold
3818 			 * a ref to the ctx.
3819 			 */
3820 			refcount_inc(&sqd->refs);
3821 			mutex_unlock(&ctx->uring_lock);
3822 			mutex_lock(&sqd->lock);
3823 			mutex_lock(&ctx->uring_lock);
3824 			if (sqd->thread)
3825 				tctx = sqd->thread->io_uring;
3826 		}
3827 	} else {
3828 		tctx = current->io_uring;
3829 	}
3830 
3831 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3832 
3833 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3834 		if (new_count[i])
3835 			ctx->iowq_limits[i] = new_count[i];
3836 	ctx->iowq_limits_set = true;
3837 
3838 	if (tctx && tctx->io_wq) {
3839 		ret = io_wq_max_workers(tctx->io_wq, new_count);
3840 		if (ret)
3841 			goto err;
3842 	} else {
3843 		memset(new_count, 0, sizeof(new_count));
3844 	}
3845 
3846 	if (sqd) {
3847 		mutex_unlock(&sqd->lock);
3848 		io_put_sq_data(sqd);
3849 	}
3850 
3851 	if (copy_to_user(arg, new_count, sizeof(new_count)))
3852 		return -EFAULT;
3853 
3854 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
3855 	if (sqd)
3856 		return 0;
3857 
3858 	/* now propagate the restriction to all registered users */
3859 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3860 		struct io_uring_task *tctx = node->task->io_uring;
3861 
3862 		if (WARN_ON_ONCE(!tctx->io_wq))
3863 			continue;
3864 
3865 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
3866 			new_count[i] = ctx->iowq_limits[i];
3867 		/* ignore errors, it always returns zero anyway */
3868 		(void)io_wq_max_workers(tctx->io_wq, new_count);
3869 	}
3870 	return 0;
3871 err:
3872 	if (sqd) {
3873 		mutex_unlock(&sqd->lock);
3874 		io_put_sq_data(sqd);
3875 	}
3876 	return ret;
3877 }
3878 
3879 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3880 			       void __user *arg, unsigned nr_args)
3881 	__releases(ctx->uring_lock)
3882 	__acquires(ctx->uring_lock)
3883 {
3884 	int ret;
3885 
3886 	/*
3887 	 * We don't quiesce the refs for register anymore and so it can't be
3888 	 * dying as we're holding a file ref here.
3889 	 */
3890 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
3891 		return -ENXIO;
3892 
3893 	if (ctx->restricted) {
3894 		if (opcode >= IORING_REGISTER_LAST)
3895 			return -EINVAL;
3896 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
3897 		if (!test_bit(opcode, ctx->restrictions.register_op))
3898 			return -EACCES;
3899 	}
3900 
3901 	switch (opcode) {
3902 	case IORING_REGISTER_BUFFERS:
3903 		ret = -EFAULT;
3904 		if (!arg)
3905 			break;
3906 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
3907 		break;
3908 	case IORING_UNREGISTER_BUFFERS:
3909 		ret = -EINVAL;
3910 		if (arg || nr_args)
3911 			break;
3912 		ret = io_sqe_buffers_unregister(ctx);
3913 		break;
3914 	case IORING_REGISTER_FILES:
3915 		ret = -EFAULT;
3916 		if (!arg)
3917 			break;
3918 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
3919 		break;
3920 	case IORING_UNREGISTER_FILES:
3921 		ret = -EINVAL;
3922 		if (arg || nr_args)
3923 			break;
3924 		ret = io_sqe_files_unregister(ctx);
3925 		break;
3926 	case IORING_REGISTER_FILES_UPDATE:
3927 		ret = io_register_files_update(ctx, arg, nr_args);
3928 		break;
3929 	case IORING_REGISTER_EVENTFD:
3930 		ret = -EINVAL;
3931 		if (nr_args != 1)
3932 			break;
3933 		ret = io_eventfd_register(ctx, arg, 0);
3934 		break;
3935 	case IORING_REGISTER_EVENTFD_ASYNC:
3936 		ret = -EINVAL;
3937 		if (nr_args != 1)
3938 			break;
3939 		ret = io_eventfd_register(ctx, arg, 1);
3940 		break;
3941 	case IORING_UNREGISTER_EVENTFD:
3942 		ret = -EINVAL;
3943 		if (arg || nr_args)
3944 			break;
3945 		ret = io_eventfd_unregister(ctx);
3946 		break;
3947 	case IORING_REGISTER_PROBE:
3948 		ret = -EINVAL;
3949 		if (!arg || nr_args > 256)
3950 			break;
3951 		ret = io_probe(ctx, arg, nr_args);
3952 		break;
3953 	case IORING_REGISTER_PERSONALITY:
3954 		ret = -EINVAL;
3955 		if (arg || nr_args)
3956 			break;
3957 		ret = io_register_personality(ctx);
3958 		break;
3959 	case IORING_UNREGISTER_PERSONALITY:
3960 		ret = -EINVAL;
3961 		if (arg)
3962 			break;
3963 		ret = io_unregister_personality(ctx, nr_args);
3964 		break;
3965 	case IORING_REGISTER_ENABLE_RINGS:
3966 		ret = -EINVAL;
3967 		if (arg || nr_args)
3968 			break;
3969 		ret = io_register_enable_rings(ctx);
3970 		break;
3971 	case IORING_REGISTER_RESTRICTIONS:
3972 		ret = io_register_restrictions(ctx, arg, nr_args);
3973 		break;
3974 	case IORING_REGISTER_FILES2:
3975 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
3976 		break;
3977 	case IORING_REGISTER_FILES_UPDATE2:
3978 		ret = io_register_rsrc_update(ctx, arg, nr_args,
3979 					      IORING_RSRC_FILE);
3980 		break;
3981 	case IORING_REGISTER_BUFFERS2:
3982 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
3983 		break;
3984 	case IORING_REGISTER_BUFFERS_UPDATE:
3985 		ret = io_register_rsrc_update(ctx, arg, nr_args,
3986 					      IORING_RSRC_BUFFER);
3987 		break;
3988 	case IORING_REGISTER_IOWQ_AFF:
3989 		ret = -EINVAL;
3990 		if (!arg || !nr_args)
3991 			break;
3992 		ret = io_register_iowq_aff(ctx, arg, nr_args);
3993 		break;
3994 	case IORING_UNREGISTER_IOWQ_AFF:
3995 		ret = -EINVAL;
3996 		if (arg || nr_args)
3997 			break;
3998 		ret = io_unregister_iowq_aff(ctx);
3999 		break;
4000 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4001 		ret = -EINVAL;
4002 		if (!arg || nr_args != 2)
4003 			break;
4004 		ret = io_register_iowq_max_workers(ctx, arg);
4005 		break;
4006 	case IORING_REGISTER_RING_FDS:
4007 		ret = io_ringfd_register(ctx, arg, nr_args);
4008 		break;
4009 	case IORING_UNREGISTER_RING_FDS:
4010 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4011 		break;
4012 	case IORING_REGISTER_PBUF_RING:
4013 		ret = -EINVAL;
4014 		if (!arg || nr_args != 1)
4015 			break;
4016 		ret = io_register_pbuf_ring(ctx, arg);
4017 		break;
4018 	case IORING_UNREGISTER_PBUF_RING:
4019 		ret = -EINVAL;
4020 		if (!arg || nr_args != 1)
4021 			break;
4022 		ret = io_unregister_pbuf_ring(ctx, arg);
4023 		break;
4024 	case IORING_REGISTER_SYNC_CANCEL:
4025 		ret = -EINVAL;
4026 		if (!arg || nr_args != 1)
4027 			break;
4028 		ret = io_sync_cancel(ctx, arg);
4029 		break;
4030 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4031 		ret = -EINVAL;
4032 		if (!arg || nr_args)
4033 			break;
4034 		ret = io_register_file_alloc_range(ctx, arg);
4035 		break;
4036 	default:
4037 		ret = -EINVAL;
4038 		break;
4039 	}
4040 
4041 	return ret;
4042 }
4043 
4044 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4045 		void __user *, arg, unsigned int, nr_args)
4046 {
4047 	struct io_ring_ctx *ctx;
4048 	long ret = -EBADF;
4049 	struct fd f;
4050 
4051 	f = fdget(fd);
4052 	if (!f.file)
4053 		return -EBADF;
4054 
4055 	ret = -EOPNOTSUPP;
4056 	if (!io_is_uring_fops(f.file))
4057 		goto out_fput;
4058 
4059 	ctx = f.file->private_data;
4060 
4061 	io_run_task_work_ctx(ctx);
4062 
4063 	mutex_lock(&ctx->uring_lock);
4064 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4065 	mutex_unlock(&ctx->uring_lock);
4066 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4067 out_fput:
4068 	fdput(f);
4069 	return ret;
4070 }
4071 
4072 static int __init io_uring_init(void)
4073 {
4074 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4075 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4076 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4077 } while (0)
4078 
4079 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4080 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4081 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4082 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4083 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4084 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4085 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4086 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4087 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4088 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4089 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4090 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4091 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4092 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4093 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4094 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4095 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4096 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4097 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4098 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4099 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4100 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4101 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4102 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4103 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4104 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4105 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4106 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4107 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4108 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4109 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4110 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4111 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4112 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4113 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4114 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4115 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4116 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4117 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4118 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4119 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4120 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4121 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4122 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4123 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4124 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4125 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4126 
4127 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4128 		     sizeof(struct io_uring_rsrc_update));
4129 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4130 		     sizeof(struct io_uring_rsrc_update2));
4131 
4132 	/* ->buf_index is u16 */
4133 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4134 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4135 		     offsetof(struct io_uring_buf_ring, tail));
4136 
4137 	/* should fit into one byte */
4138 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4139 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4140 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4141 
4142 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4143 
4144 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4145 
4146 	io_uring_optable_init();
4147 
4148 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4149 				SLAB_ACCOUNT);
4150 	return 0;
4151 };
4152 __initcall(io_uring_init);
4153