xref: /linux/io_uring/io_uring.c (revision 7fe03f8ff55d33fe6398637f78a8620dd2a78b38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 #define IO_LOCAL_TW_DEFAULT_MAX		20
125 
126 struct io_defer_entry {
127 	struct list_head	list;
128 	struct io_kiocb		*req;
129 	u32			seq;
130 };
131 
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
135 
136 /*
137  * No waiters. It's larger than any valid value of the tw counter
138  * so that tests against ->cq_wait_nr would fail and skip wake_up().
139  */
140 #define IO_CQ_WAKE_INIT		(-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct io_uring_task *tctx,
146 					 bool cancel_all,
147 					 bool is_sqpoll_thread);
148 
149 static void io_queue_sqe(struct io_kiocb *req);
150 
151 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
152 
153 struct kmem_cache *req_cachep;
154 static struct workqueue_struct *iou_wq __ro_after_init;
155 
156 static int __read_mostly sysctl_io_uring_disabled;
157 static int __read_mostly sysctl_io_uring_group = -1;
158 
159 #ifdef CONFIG_SYSCTL
160 static const struct ctl_table kernel_io_uring_disabled_table[] = {
161 	{
162 		.procname	= "io_uring_disabled",
163 		.data		= &sysctl_io_uring_disabled,
164 		.maxlen		= sizeof(sysctl_io_uring_disabled),
165 		.mode		= 0644,
166 		.proc_handler	= proc_dointvec_minmax,
167 		.extra1		= SYSCTL_ZERO,
168 		.extra2		= SYSCTL_TWO,
169 	},
170 	{
171 		.procname	= "io_uring_group",
172 		.data		= &sysctl_io_uring_group,
173 		.maxlen		= sizeof(gid_t),
174 		.mode		= 0644,
175 		.proc_handler	= proc_dointvec,
176 	},
177 };
178 #endif
179 
180 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
181 {
182 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
183 }
184 
185 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
186 {
187 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
188 }
189 
190 static bool io_match_linked(struct io_kiocb *head)
191 {
192 	struct io_kiocb *req;
193 
194 	io_for_each_link(req, head) {
195 		if (req->flags & REQ_F_INFLIGHT)
196 			return true;
197 	}
198 	return false;
199 }
200 
201 /*
202  * As io_match_task() but protected against racing with linked timeouts.
203  * User must not hold timeout_lock.
204  */
205 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
206 			bool cancel_all)
207 {
208 	bool matched;
209 
210 	if (tctx && head->tctx != tctx)
211 		return false;
212 	if (cancel_all)
213 		return true;
214 
215 	if (head->flags & REQ_F_LINK_TIMEOUT) {
216 		struct io_ring_ctx *ctx = head->ctx;
217 
218 		/* protect against races with linked timeouts */
219 		raw_spin_lock_irq(&ctx->timeout_lock);
220 		matched = io_match_linked(head);
221 		raw_spin_unlock_irq(&ctx->timeout_lock);
222 	} else {
223 		matched = io_match_linked(head);
224 	}
225 	return matched;
226 }
227 
228 static inline void req_fail_link_node(struct io_kiocb *req, int res)
229 {
230 	req_set_fail(req);
231 	io_req_set_res(req, res, 0);
232 }
233 
234 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
235 {
236 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
237 }
238 
239 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
240 {
241 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
242 
243 	complete(&ctx->ref_comp);
244 }
245 
246 static __cold void io_fallback_req_func(struct work_struct *work)
247 {
248 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
249 						fallback_work.work);
250 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
251 	struct io_kiocb *req, *tmp;
252 	struct io_tw_state ts = {};
253 
254 	percpu_ref_get(&ctx->refs);
255 	mutex_lock(&ctx->uring_lock);
256 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
257 		req->io_task_work.func(req, &ts);
258 	io_submit_flush_completions(ctx);
259 	mutex_unlock(&ctx->uring_lock);
260 	percpu_ref_put(&ctx->refs);
261 }
262 
263 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
264 {
265 	unsigned int hash_buckets;
266 	int i;
267 
268 	do {
269 		hash_buckets = 1U << bits;
270 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
271 						GFP_KERNEL_ACCOUNT);
272 		if (table->hbs)
273 			break;
274 		if (bits == 1)
275 			return -ENOMEM;
276 		bits--;
277 	} while (1);
278 
279 	table->hash_bits = bits;
280 	for (i = 0; i < hash_buckets; i++)
281 		INIT_HLIST_HEAD(&table->hbs[i].list);
282 	return 0;
283 }
284 
285 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
286 {
287 	struct io_ring_ctx *ctx;
288 	int hash_bits;
289 	bool ret;
290 
291 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
292 	if (!ctx)
293 		return NULL;
294 
295 	xa_init(&ctx->io_bl_xa);
296 
297 	/*
298 	 * Use 5 bits less than the max cq entries, that should give us around
299 	 * 32 entries per hash list if totally full and uniformly spread, but
300 	 * don't keep too many buckets to not overconsume memory.
301 	 */
302 	hash_bits = ilog2(p->cq_entries) - 5;
303 	hash_bits = clamp(hash_bits, 1, 8);
304 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
305 		goto err;
306 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 			    0, GFP_KERNEL))
308 		goto err;
309 
310 	ctx->flags = p->flags;
311 	ctx->hybrid_poll_time = LLONG_MAX;
312 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
313 	init_waitqueue_head(&ctx->sqo_sq_wait);
314 	INIT_LIST_HEAD(&ctx->sqd_list);
315 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
316 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
317 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
318 			    sizeof(struct async_poll), 0);
319 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
320 			    sizeof(struct io_async_msghdr),
321 			    offsetof(struct io_async_msghdr, clear));
322 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
323 			    sizeof(struct io_async_rw),
324 			    offsetof(struct io_async_rw, clear));
325 	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
326 			    sizeof(struct io_uring_cmd_data), 0);
327 	spin_lock_init(&ctx->msg_lock);
328 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
329 			    sizeof(struct io_kiocb), 0);
330 	ret |= io_futex_cache_init(ctx);
331 	if (ret)
332 		goto free_ref;
333 	init_completion(&ctx->ref_comp);
334 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
335 	mutex_init(&ctx->uring_lock);
336 	init_waitqueue_head(&ctx->cq_wait);
337 	init_waitqueue_head(&ctx->poll_wq);
338 	spin_lock_init(&ctx->completion_lock);
339 	raw_spin_lock_init(&ctx->timeout_lock);
340 	INIT_WQ_LIST(&ctx->iopoll_list);
341 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
342 	INIT_LIST_HEAD(&ctx->defer_list);
343 	INIT_LIST_HEAD(&ctx->timeout_list);
344 	INIT_LIST_HEAD(&ctx->ltimeout_list);
345 	init_llist_head(&ctx->work_llist);
346 	INIT_LIST_HEAD(&ctx->tctx_list);
347 	ctx->submit_state.free_list.next = NULL;
348 	INIT_HLIST_HEAD(&ctx->waitid_list);
349 #ifdef CONFIG_FUTEX
350 	INIT_HLIST_HEAD(&ctx->futex_list);
351 #endif
352 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
353 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
354 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
355 	io_napi_init(ctx);
356 	mutex_init(&ctx->mmap_lock);
357 
358 	return ctx;
359 
360 free_ref:
361 	percpu_ref_exit(&ctx->refs);
362 err:
363 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
364 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
365 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
366 	io_alloc_cache_free(&ctx->uring_cache, kfree);
367 	io_alloc_cache_free(&ctx->msg_cache, kfree);
368 	io_futex_cache_free(ctx);
369 	kvfree(ctx->cancel_table.hbs);
370 	xa_destroy(&ctx->io_bl_xa);
371 	kfree(ctx);
372 	return NULL;
373 }
374 
375 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
376 {
377 	struct io_rings *r = ctx->rings;
378 
379 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
380 	ctx->cq_extra--;
381 }
382 
383 static bool req_need_defer(struct io_kiocb *req, u32 seq)
384 {
385 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
386 		struct io_ring_ctx *ctx = req->ctx;
387 
388 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
389 	}
390 
391 	return false;
392 }
393 
394 static void io_clean_op(struct io_kiocb *req)
395 {
396 	if (req->flags & REQ_F_BUFFER_SELECTED) {
397 		spin_lock(&req->ctx->completion_lock);
398 		io_kbuf_drop(req);
399 		spin_unlock(&req->ctx->completion_lock);
400 	}
401 
402 	if (req->flags & REQ_F_NEED_CLEANUP) {
403 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
404 
405 		if (def->cleanup)
406 			def->cleanup(req);
407 	}
408 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
409 		kfree(req->apoll->double_poll);
410 		kfree(req->apoll);
411 		req->apoll = NULL;
412 	}
413 	if (req->flags & REQ_F_INFLIGHT)
414 		atomic_dec(&req->tctx->inflight_tracked);
415 	if (req->flags & REQ_F_CREDS)
416 		put_cred(req->creds);
417 	if (req->flags & REQ_F_ASYNC_DATA) {
418 		kfree(req->async_data);
419 		req->async_data = NULL;
420 	}
421 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
422 }
423 
424 static inline void io_req_track_inflight(struct io_kiocb *req)
425 {
426 	if (!(req->flags & REQ_F_INFLIGHT)) {
427 		req->flags |= REQ_F_INFLIGHT;
428 		atomic_inc(&req->tctx->inflight_tracked);
429 	}
430 }
431 
432 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
433 {
434 	if (WARN_ON_ONCE(!req->link))
435 		return NULL;
436 
437 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
438 	req->flags |= REQ_F_LINK_TIMEOUT;
439 
440 	/* linked timeouts should have two refs once prep'ed */
441 	io_req_set_refcount(req);
442 	__io_req_set_refcount(req->link, 2);
443 	return req->link;
444 }
445 
446 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
447 {
448 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
449 		return NULL;
450 	return __io_prep_linked_timeout(req);
451 }
452 
453 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
454 {
455 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
456 }
457 
458 static inline void io_arm_ltimeout(struct io_kiocb *req)
459 {
460 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
461 		__io_arm_ltimeout(req);
462 }
463 
464 static void io_prep_async_work(struct io_kiocb *req)
465 {
466 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
467 	struct io_ring_ctx *ctx = req->ctx;
468 
469 	if (!(req->flags & REQ_F_CREDS)) {
470 		req->flags |= REQ_F_CREDS;
471 		req->creds = get_current_cred();
472 	}
473 
474 	req->work.list.next = NULL;
475 	atomic_set(&req->work.flags, 0);
476 	if (req->flags & REQ_F_FORCE_ASYNC)
477 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
478 
479 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
480 		req->flags |= io_file_get_flags(req->file);
481 
482 	if (req->file && (req->flags & REQ_F_ISREG)) {
483 		bool should_hash = def->hash_reg_file;
484 
485 		/* don't serialize this request if the fs doesn't need it */
486 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
487 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
488 			should_hash = false;
489 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
490 			io_wq_hash_work(&req->work, file_inode(req->file));
491 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
492 		if (def->unbound_nonreg_file)
493 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
494 	}
495 }
496 
497 static void io_prep_async_link(struct io_kiocb *req)
498 {
499 	struct io_kiocb *cur;
500 
501 	if (req->flags & REQ_F_LINK_TIMEOUT) {
502 		struct io_ring_ctx *ctx = req->ctx;
503 
504 		raw_spin_lock_irq(&ctx->timeout_lock);
505 		io_for_each_link(cur, req)
506 			io_prep_async_work(cur);
507 		raw_spin_unlock_irq(&ctx->timeout_lock);
508 	} else {
509 		io_for_each_link(cur, req)
510 			io_prep_async_work(cur);
511 	}
512 }
513 
514 static void io_queue_iowq(struct io_kiocb *req)
515 {
516 	struct io_kiocb *link = io_prep_linked_timeout(req);
517 	struct io_uring_task *tctx = req->tctx;
518 
519 	BUG_ON(!tctx);
520 
521 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
522 		io_req_task_queue_fail(req, -ECANCELED);
523 		return;
524 	}
525 
526 	/* init ->work of the whole link before punting */
527 	io_prep_async_link(req);
528 
529 	/*
530 	 * Not expected to happen, but if we do have a bug where this _can_
531 	 * happen, catch it here and ensure the request is marked as
532 	 * canceled. That will make io-wq go through the usual work cancel
533 	 * procedure rather than attempt to run this request (or create a new
534 	 * worker for it).
535 	 */
536 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
537 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
538 
539 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
540 	io_wq_enqueue(tctx->io_wq, &req->work);
541 	if (link)
542 		io_queue_linked_timeout(link);
543 }
544 
545 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
546 {
547 	io_queue_iowq(req);
548 }
549 
550 void io_req_queue_iowq(struct io_kiocb *req)
551 {
552 	req->io_task_work.func = io_req_queue_iowq_tw;
553 	io_req_task_work_add(req);
554 }
555 
556 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
557 {
558 	spin_lock(&ctx->completion_lock);
559 	while (!list_empty(&ctx->defer_list)) {
560 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
561 						struct io_defer_entry, list);
562 
563 		if (req_need_defer(de->req, de->seq))
564 			break;
565 		list_del_init(&de->list);
566 		io_req_task_queue(de->req);
567 		kfree(de);
568 	}
569 	spin_unlock(&ctx->completion_lock);
570 }
571 
572 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
573 {
574 	if (ctx->poll_activated)
575 		io_poll_wq_wake(ctx);
576 	if (ctx->off_timeout_used)
577 		io_flush_timeouts(ctx);
578 	if (ctx->drain_active)
579 		io_queue_deferred(ctx);
580 	if (ctx->has_evfd)
581 		io_eventfd_flush_signal(ctx);
582 }
583 
584 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
585 {
586 	if (!ctx->lockless_cq)
587 		spin_lock(&ctx->completion_lock);
588 }
589 
590 static inline void io_cq_lock(struct io_ring_ctx *ctx)
591 	__acquires(ctx->completion_lock)
592 {
593 	spin_lock(&ctx->completion_lock);
594 }
595 
596 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
597 {
598 	io_commit_cqring(ctx);
599 	if (!ctx->task_complete) {
600 		if (!ctx->lockless_cq)
601 			spin_unlock(&ctx->completion_lock);
602 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
603 		if (!ctx->syscall_iopoll)
604 			io_cqring_wake(ctx);
605 	}
606 	io_commit_cqring_flush(ctx);
607 }
608 
609 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
610 	__releases(ctx->completion_lock)
611 {
612 	io_commit_cqring(ctx);
613 	spin_unlock(&ctx->completion_lock);
614 	io_cqring_wake(ctx);
615 	io_commit_cqring_flush(ctx);
616 }
617 
618 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
619 {
620 	size_t cqe_size = sizeof(struct io_uring_cqe);
621 
622 	lockdep_assert_held(&ctx->uring_lock);
623 
624 	/* don't abort if we're dying, entries must get freed */
625 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
626 		return;
627 
628 	if (ctx->flags & IORING_SETUP_CQE32)
629 		cqe_size <<= 1;
630 
631 	io_cq_lock(ctx);
632 	while (!list_empty(&ctx->cq_overflow_list)) {
633 		struct io_uring_cqe *cqe;
634 		struct io_overflow_cqe *ocqe;
635 
636 		ocqe = list_first_entry(&ctx->cq_overflow_list,
637 					struct io_overflow_cqe, list);
638 
639 		if (!dying) {
640 			if (!io_get_cqe_overflow(ctx, &cqe, true))
641 				break;
642 			memcpy(cqe, &ocqe->cqe, cqe_size);
643 		}
644 		list_del(&ocqe->list);
645 		kfree(ocqe);
646 
647 		/*
648 		 * For silly syzbot cases that deliberately overflow by huge
649 		 * amounts, check if we need to resched and drop and
650 		 * reacquire the locks if so. Nothing real would ever hit this.
651 		 * Ideally we'd have a non-posting unlock for this, but hard
652 		 * to care for a non-real case.
653 		 */
654 		if (need_resched()) {
655 			io_cq_unlock_post(ctx);
656 			mutex_unlock(&ctx->uring_lock);
657 			cond_resched();
658 			mutex_lock(&ctx->uring_lock);
659 			io_cq_lock(ctx);
660 		}
661 	}
662 
663 	if (list_empty(&ctx->cq_overflow_list)) {
664 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
665 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
666 	}
667 	io_cq_unlock_post(ctx);
668 }
669 
670 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
671 {
672 	if (ctx->rings)
673 		__io_cqring_overflow_flush(ctx, true);
674 }
675 
676 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
677 {
678 	mutex_lock(&ctx->uring_lock);
679 	__io_cqring_overflow_flush(ctx, false);
680 	mutex_unlock(&ctx->uring_lock);
681 }
682 
683 /* must to be called somewhat shortly after putting a request */
684 static inline void io_put_task(struct io_kiocb *req)
685 {
686 	struct io_uring_task *tctx = req->tctx;
687 
688 	if (likely(tctx->task == current)) {
689 		tctx->cached_refs++;
690 	} else {
691 		percpu_counter_sub(&tctx->inflight, 1);
692 		if (unlikely(atomic_read(&tctx->in_cancel)))
693 			wake_up(&tctx->wait);
694 		put_task_struct(tctx->task);
695 	}
696 }
697 
698 void io_task_refs_refill(struct io_uring_task *tctx)
699 {
700 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
701 
702 	percpu_counter_add(&tctx->inflight, refill);
703 	refcount_add(refill, &current->usage);
704 	tctx->cached_refs += refill;
705 }
706 
707 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
708 {
709 	struct io_uring_task *tctx = task->io_uring;
710 	unsigned int refs = tctx->cached_refs;
711 
712 	if (refs) {
713 		tctx->cached_refs = 0;
714 		percpu_counter_sub(&tctx->inflight, refs);
715 		put_task_struct_many(task, refs);
716 	}
717 }
718 
719 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
720 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
721 {
722 	struct io_overflow_cqe *ocqe;
723 	size_t ocq_size = sizeof(struct io_overflow_cqe);
724 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
725 
726 	lockdep_assert_held(&ctx->completion_lock);
727 
728 	if (is_cqe32)
729 		ocq_size += sizeof(struct io_uring_cqe);
730 
731 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
732 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
733 	if (!ocqe) {
734 		/*
735 		 * If we're in ring overflow flush mode, or in task cancel mode,
736 		 * or cannot allocate an overflow entry, then we need to drop it
737 		 * on the floor.
738 		 */
739 		io_account_cq_overflow(ctx);
740 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
741 		return false;
742 	}
743 	if (list_empty(&ctx->cq_overflow_list)) {
744 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
745 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
746 
747 	}
748 	ocqe->cqe.user_data = user_data;
749 	ocqe->cqe.res = res;
750 	ocqe->cqe.flags = cflags;
751 	if (is_cqe32) {
752 		ocqe->cqe.big_cqe[0] = extra1;
753 		ocqe->cqe.big_cqe[1] = extra2;
754 	}
755 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
756 	return true;
757 }
758 
759 static void io_req_cqe_overflow(struct io_kiocb *req)
760 {
761 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
762 				req->cqe.res, req->cqe.flags,
763 				req->big_cqe.extra1, req->big_cqe.extra2);
764 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
765 }
766 
767 /*
768  * writes to the cq entry need to come after reading head; the
769  * control dependency is enough as we're using WRITE_ONCE to
770  * fill the cq entry
771  */
772 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
773 {
774 	struct io_rings *rings = ctx->rings;
775 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
776 	unsigned int free, queued, len;
777 
778 	/*
779 	 * Posting into the CQ when there are pending overflowed CQEs may break
780 	 * ordering guarantees, which will affect links, F_MORE users and more.
781 	 * Force overflow the completion.
782 	 */
783 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
784 		return false;
785 
786 	/* userspace may cheat modifying the tail, be safe and do min */
787 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
788 	free = ctx->cq_entries - queued;
789 	/* we need a contiguous range, limit based on the current array offset */
790 	len = min(free, ctx->cq_entries - off);
791 	if (!len)
792 		return false;
793 
794 	if (ctx->flags & IORING_SETUP_CQE32) {
795 		off <<= 1;
796 		len <<= 1;
797 	}
798 
799 	ctx->cqe_cached = &rings->cqes[off];
800 	ctx->cqe_sentinel = ctx->cqe_cached + len;
801 	return true;
802 }
803 
804 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
805 			      u32 cflags)
806 {
807 	struct io_uring_cqe *cqe;
808 
809 	ctx->cq_extra++;
810 
811 	/*
812 	 * If we can't get a cq entry, userspace overflowed the
813 	 * submission (by quite a lot). Increment the overflow count in
814 	 * the ring.
815 	 */
816 	if (likely(io_get_cqe(ctx, &cqe))) {
817 		WRITE_ONCE(cqe->user_data, user_data);
818 		WRITE_ONCE(cqe->res, res);
819 		WRITE_ONCE(cqe->flags, cflags);
820 
821 		if (ctx->flags & IORING_SETUP_CQE32) {
822 			WRITE_ONCE(cqe->big_cqe[0], 0);
823 			WRITE_ONCE(cqe->big_cqe[1], 0);
824 		}
825 
826 		trace_io_uring_complete(ctx, NULL, cqe);
827 		return true;
828 	}
829 	return false;
830 }
831 
832 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
833 			      u32 cflags)
834 {
835 	bool filled;
836 
837 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
838 	if (!filled)
839 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
840 
841 	return filled;
842 }
843 
844 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
845 {
846 	bool filled;
847 
848 	io_cq_lock(ctx);
849 	filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
850 	io_cq_unlock_post(ctx);
851 	return filled;
852 }
853 
854 /*
855  * Must be called from inline task_work so we now a flush will happen later,
856  * and obviously with ctx->uring_lock held (tw always has that).
857  */
858 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
859 {
860 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
861 		spin_lock(&ctx->completion_lock);
862 		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
863 		spin_unlock(&ctx->completion_lock);
864 	}
865 	ctx->submit_state.cq_flush = true;
866 }
867 
868 /*
869  * A helper for multishot requests posting additional CQEs.
870  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
871  */
872 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
873 {
874 	struct io_ring_ctx *ctx = req->ctx;
875 	bool posted;
876 
877 	lockdep_assert(!io_wq_current_is_worker());
878 	lockdep_assert_held(&ctx->uring_lock);
879 
880 	__io_cq_lock(ctx);
881 	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
882 	ctx->submit_state.cq_flush = true;
883 	__io_cq_unlock_post(ctx);
884 	return posted;
885 }
886 
887 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
888 {
889 	struct io_ring_ctx *ctx = req->ctx;
890 
891 	/*
892 	 * All execution paths but io-wq use the deferred completions by
893 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
894 	 */
895 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
896 		return;
897 
898 	/*
899 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
900 	 * the submitter task context, IOPOLL protects with uring_lock.
901 	 */
902 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
903 		req->io_task_work.func = io_req_task_complete;
904 		io_req_task_work_add(req);
905 		return;
906 	}
907 
908 	io_cq_lock(ctx);
909 	if (!(req->flags & REQ_F_CQE_SKIP)) {
910 		if (!io_fill_cqe_req(ctx, req))
911 			io_req_cqe_overflow(req);
912 	}
913 	io_cq_unlock_post(ctx);
914 
915 	/*
916 	 * We don't free the request here because we know it's called from
917 	 * io-wq only, which holds a reference, so it cannot be the last put.
918 	 */
919 	req_ref_put(req);
920 }
921 
922 void io_req_defer_failed(struct io_kiocb *req, s32 res)
923 	__must_hold(&ctx->uring_lock)
924 {
925 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
926 
927 	lockdep_assert_held(&req->ctx->uring_lock);
928 
929 	req_set_fail(req);
930 	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
931 	if (def->fail)
932 		def->fail(req);
933 	io_req_complete_defer(req);
934 }
935 
936 /*
937  * Don't initialise the fields below on every allocation, but do that in
938  * advance and keep them valid across allocations.
939  */
940 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
941 {
942 	req->ctx = ctx;
943 	req->buf_node = NULL;
944 	req->file_node = NULL;
945 	req->link = NULL;
946 	req->async_data = NULL;
947 	/* not necessary, but safer to zero */
948 	memset(&req->cqe, 0, sizeof(req->cqe));
949 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
950 }
951 
952 /*
953  * A request might get retired back into the request caches even before opcode
954  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
955  * Because of that, io_alloc_req() should be called only under ->uring_lock
956  * and with extra caution to not get a request that is still worked on.
957  */
958 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
959 	__must_hold(&ctx->uring_lock)
960 {
961 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
962 	void *reqs[IO_REQ_ALLOC_BATCH];
963 	int ret;
964 
965 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
966 
967 	/*
968 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
969 	 * retry single alloc to be on the safe side.
970 	 */
971 	if (unlikely(ret <= 0)) {
972 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
973 		if (!reqs[0])
974 			return false;
975 		ret = 1;
976 	}
977 
978 	percpu_ref_get_many(&ctx->refs, ret);
979 	while (ret--) {
980 		struct io_kiocb *req = reqs[ret];
981 
982 		io_preinit_req(req, ctx);
983 		io_req_add_to_cache(req, ctx);
984 	}
985 	return true;
986 }
987 
988 __cold void io_free_req(struct io_kiocb *req)
989 {
990 	/* refs were already put, restore them for io_req_task_complete() */
991 	req->flags &= ~REQ_F_REFCOUNT;
992 	/* we only want to free it, don't post CQEs */
993 	req->flags |= REQ_F_CQE_SKIP;
994 	req->io_task_work.func = io_req_task_complete;
995 	io_req_task_work_add(req);
996 }
997 
998 static void __io_req_find_next_prep(struct io_kiocb *req)
999 {
1000 	struct io_ring_ctx *ctx = req->ctx;
1001 
1002 	spin_lock(&ctx->completion_lock);
1003 	io_disarm_next(req);
1004 	spin_unlock(&ctx->completion_lock);
1005 }
1006 
1007 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1008 {
1009 	struct io_kiocb *nxt;
1010 
1011 	/*
1012 	 * If LINK is set, we have dependent requests in this chain. If we
1013 	 * didn't fail this request, queue the first one up, moving any other
1014 	 * dependencies to the next request. In case of failure, fail the rest
1015 	 * of the chain.
1016 	 */
1017 	if (unlikely(req->flags & IO_DISARM_MASK))
1018 		__io_req_find_next_prep(req);
1019 	nxt = req->link;
1020 	req->link = NULL;
1021 	return nxt;
1022 }
1023 
1024 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1025 {
1026 	if (!ctx)
1027 		return;
1028 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1029 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1030 
1031 	io_submit_flush_completions(ctx);
1032 	mutex_unlock(&ctx->uring_lock);
1033 	percpu_ref_put(&ctx->refs);
1034 }
1035 
1036 /*
1037  * Run queued task_work, returning the number of entries processed in *count.
1038  * If more entries than max_entries are available, stop processing once this
1039  * is reached and return the rest of the list.
1040  */
1041 struct llist_node *io_handle_tw_list(struct llist_node *node,
1042 				     unsigned int *count,
1043 				     unsigned int max_entries)
1044 {
1045 	struct io_ring_ctx *ctx = NULL;
1046 	struct io_tw_state ts = { };
1047 
1048 	do {
1049 		struct llist_node *next = node->next;
1050 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1051 						    io_task_work.node);
1052 
1053 		if (req->ctx != ctx) {
1054 			ctx_flush_and_put(ctx, &ts);
1055 			ctx = req->ctx;
1056 			mutex_lock(&ctx->uring_lock);
1057 			percpu_ref_get(&ctx->refs);
1058 		}
1059 		INDIRECT_CALL_2(req->io_task_work.func,
1060 				io_poll_task_func, io_req_rw_complete,
1061 				req, &ts);
1062 		node = next;
1063 		(*count)++;
1064 		if (unlikely(need_resched())) {
1065 			ctx_flush_and_put(ctx, &ts);
1066 			ctx = NULL;
1067 			cond_resched();
1068 		}
1069 	} while (node && *count < max_entries);
1070 
1071 	ctx_flush_and_put(ctx, &ts);
1072 	return node;
1073 }
1074 
1075 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1076 {
1077 	struct io_ring_ctx *last_ctx = NULL;
1078 	struct io_kiocb *req;
1079 
1080 	while (node) {
1081 		req = container_of(node, struct io_kiocb, io_task_work.node);
1082 		node = node->next;
1083 		if (sync && last_ctx != req->ctx) {
1084 			if (last_ctx) {
1085 				flush_delayed_work(&last_ctx->fallback_work);
1086 				percpu_ref_put(&last_ctx->refs);
1087 			}
1088 			last_ctx = req->ctx;
1089 			percpu_ref_get(&last_ctx->refs);
1090 		}
1091 		if (llist_add(&req->io_task_work.node,
1092 			      &req->ctx->fallback_llist))
1093 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1094 	}
1095 
1096 	if (last_ctx) {
1097 		flush_delayed_work(&last_ctx->fallback_work);
1098 		percpu_ref_put(&last_ctx->refs);
1099 	}
1100 }
1101 
1102 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1103 {
1104 	struct llist_node *node = llist_del_all(&tctx->task_list);
1105 
1106 	__io_fallback_tw(node, sync);
1107 }
1108 
1109 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1110 				      unsigned int max_entries,
1111 				      unsigned int *count)
1112 {
1113 	struct llist_node *node;
1114 
1115 	if (unlikely(current->flags & PF_EXITING)) {
1116 		io_fallback_tw(tctx, true);
1117 		return NULL;
1118 	}
1119 
1120 	node = llist_del_all(&tctx->task_list);
1121 	if (node) {
1122 		node = llist_reverse_order(node);
1123 		node = io_handle_tw_list(node, count, max_entries);
1124 	}
1125 
1126 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1127 	if (unlikely(atomic_read(&tctx->in_cancel)))
1128 		io_uring_drop_tctx_refs(current);
1129 
1130 	trace_io_uring_task_work_run(tctx, *count);
1131 	return node;
1132 }
1133 
1134 void tctx_task_work(struct callback_head *cb)
1135 {
1136 	struct io_uring_task *tctx;
1137 	struct llist_node *ret;
1138 	unsigned int count = 0;
1139 
1140 	tctx = container_of(cb, struct io_uring_task, task_work);
1141 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1142 	/* can't happen */
1143 	WARN_ON_ONCE(ret);
1144 }
1145 
1146 static inline void io_req_local_work_add(struct io_kiocb *req,
1147 					 struct io_ring_ctx *ctx,
1148 					 unsigned flags)
1149 {
1150 	unsigned nr_wait, nr_tw, nr_tw_prev;
1151 	struct llist_node *head;
1152 
1153 	/* See comment above IO_CQ_WAKE_INIT */
1154 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1155 
1156 	/*
1157 	 * We don't know how many reuqests is there in the link and whether
1158 	 * they can even be queued lazily, fall back to non-lazy.
1159 	 */
1160 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1161 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1162 
1163 	guard(rcu)();
1164 
1165 	head = READ_ONCE(ctx->work_llist.first);
1166 	do {
1167 		nr_tw_prev = 0;
1168 		if (head) {
1169 			struct io_kiocb *first_req = container_of(head,
1170 							struct io_kiocb,
1171 							io_task_work.node);
1172 			/*
1173 			 * Might be executed at any moment, rely on
1174 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1175 			 */
1176 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1177 		}
1178 
1179 		/*
1180 		 * Theoretically, it can overflow, but that's fine as one of
1181 		 * previous adds should've tried to wake the task.
1182 		 */
1183 		nr_tw = nr_tw_prev + 1;
1184 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1185 			nr_tw = IO_CQ_WAKE_FORCE;
1186 
1187 		req->nr_tw = nr_tw;
1188 		req->io_task_work.node.next = head;
1189 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1190 			      &req->io_task_work.node));
1191 
1192 	/*
1193 	 * cmpxchg implies a full barrier, which pairs with the barrier
1194 	 * in set_current_state() on the io_cqring_wait() side. It's used
1195 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1196 	 * going to sleep will observe the work added to the list, which
1197 	 * is similar to the wait/wawke task state sync.
1198 	 */
1199 
1200 	if (!head) {
1201 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1202 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1203 		if (ctx->has_evfd)
1204 			io_eventfd_signal(ctx);
1205 	}
1206 
1207 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1208 	/* not enough or no one is waiting */
1209 	if (nr_tw < nr_wait)
1210 		return;
1211 	/* the previous add has already woken it up */
1212 	if (nr_tw_prev >= nr_wait)
1213 		return;
1214 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1215 }
1216 
1217 static void io_req_normal_work_add(struct io_kiocb *req)
1218 {
1219 	struct io_uring_task *tctx = req->tctx;
1220 	struct io_ring_ctx *ctx = req->ctx;
1221 
1222 	/* task_work already pending, we're done */
1223 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1224 		return;
1225 
1226 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1227 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1228 
1229 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1230 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1231 		__set_notify_signal(tctx->task);
1232 		return;
1233 	}
1234 
1235 	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1236 		return;
1237 
1238 	io_fallback_tw(tctx, false);
1239 }
1240 
1241 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1242 {
1243 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1244 		io_req_local_work_add(req, req->ctx, flags);
1245 	else
1246 		io_req_normal_work_add(req);
1247 }
1248 
1249 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1250 				 unsigned flags)
1251 {
1252 	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1253 		return;
1254 	io_req_local_work_add(req, ctx, flags);
1255 }
1256 
1257 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1258 {
1259 	struct llist_node *node = llist_del_all(&ctx->work_llist);
1260 
1261 	__io_fallback_tw(node, false);
1262 	node = llist_del_all(&ctx->retry_llist);
1263 	__io_fallback_tw(node, false);
1264 }
1265 
1266 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1267 				       int min_events)
1268 {
1269 	if (!io_local_work_pending(ctx))
1270 		return false;
1271 	if (events < min_events)
1272 		return true;
1273 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1274 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1275 	return false;
1276 }
1277 
1278 static int __io_run_local_work_loop(struct llist_node **node,
1279 				    struct io_tw_state *ts,
1280 				    int events)
1281 {
1282 	int ret = 0;
1283 
1284 	while (*node) {
1285 		struct llist_node *next = (*node)->next;
1286 		struct io_kiocb *req = container_of(*node, struct io_kiocb,
1287 						    io_task_work.node);
1288 		INDIRECT_CALL_2(req->io_task_work.func,
1289 				io_poll_task_func, io_req_rw_complete,
1290 				req, ts);
1291 		*node = next;
1292 		if (++ret >= events)
1293 			break;
1294 	}
1295 
1296 	return ret;
1297 }
1298 
1299 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1300 			       int min_events, int max_events)
1301 {
1302 	struct llist_node *node;
1303 	unsigned int loops = 0;
1304 	int ret = 0;
1305 
1306 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1307 		return -EEXIST;
1308 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1309 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1310 again:
1311 	min_events -= ret;
1312 	ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events);
1313 	if (ctx->retry_llist.first)
1314 		goto retry_done;
1315 
1316 	/*
1317 	 * llists are in reverse order, flip it back the right way before
1318 	 * running the pending items.
1319 	 */
1320 	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1321 	ret += __io_run_local_work_loop(&node, ts, max_events - ret);
1322 	ctx->retry_llist.first = node;
1323 	loops++;
1324 
1325 	if (io_run_local_work_continue(ctx, ret, min_events))
1326 		goto again;
1327 retry_done:
1328 	io_submit_flush_completions(ctx);
1329 	if (io_run_local_work_continue(ctx, ret, min_events))
1330 		goto again;
1331 
1332 	trace_io_uring_local_work_run(ctx, ret, loops);
1333 	return ret;
1334 }
1335 
1336 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1337 					   int min_events)
1338 {
1339 	struct io_tw_state ts = {};
1340 
1341 	if (!io_local_work_pending(ctx))
1342 		return 0;
1343 	return __io_run_local_work(ctx, &ts, min_events,
1344 					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1345 }
1346 
1347 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1348 			     int max_events)
1349 {
1350 	struct io_tw_state ts = {};
1351 	int ret;
1352 
1353 	mutex_lock(&ctx->uring_lock);
1354 	ret = __io_run_local_work(ctx, &ts, min_events, max_events);
1355 	mutex_unlock(&ctx->uring_lock);
1356 	return ret;
1357 }
1358 
1359 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1360 {
1361 	io_tw_lock(req->ctx, ts);
1362 	io_req_defer_failed(req, req->cqe.res);
1363 }
1364 
1365 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1366 {
1367 	io_tw_lock(req->ctx, ts);
1368 	if (unlikely(io_should_terminate_tw()))
1369 		io_req_defer_failed(req, -EFAULT);
1370 	else if (req->flags & REQ_F_FORCE_ASYNC)
1371 		io_queue_iowq(req);
1372 	else
1373 		io_queue_sqe(req);
1374 }
1375 
1376 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1377 {
1378 	io_req_set_res(req, ret, 0);
1379 	req->io_task_work.func = io_req_task_cancel;
1380 	io_req_task_work_add(req);
1381 }
1382 
1383 void io_req_task_queue(struct io_kiocb *req)
1384 {
1385 	req->io_task_work.func = io_req_task_submit;
1386 	io_req_task_work_add(req);
1387 }
1388 
1389 void io_queue_next(struct io_kiocb *req)
1390 {
1391 	struct io_kiocb *nxt = io_req_find_next(req);
1392 
1393 	if (nxt)
1394 		io_req_task_queue(nxt);
1395 }
1396 
1397 static void io_free_batch_list(struct io_ring_ctx *ctx,
1398 			       struct io_wq_work_node *node)
1399 	__must_hold(&ctx->uring_lock)
1400 {
1401 	do {
1402 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1403 						    comp_list);
1404 
1405 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1406 			if (req->flags & REQ_F_REISSUE) {
1407 				node = req->comp_list.next;
1408 				req->flags &= ~REQ_F_REISSUE;
1409 				io_queue_iowq(req);
1410 				continue;
1411 			}
1412 			if (req->flags & REQ_F_REFCOUNT) {
1413 				node = req->comp_list.next;
1414 				if (!req_ref_put_and_test(req))
1415 					continue;
1416 			}
1417 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1418 				struct async_poll *apoll = req->apoll;
1419 
1420 				if (apoll->double_poll)
1421 					kfree(apoll->double_poll);
1422 				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1423 					kfree(apoll);
1424 				req->flags &= ~REQ_F_POLLED;
1425 			}
1426 			if (req->flags & IO_REQ_LINK_FLAGS)
1427 				io_queue_next(req);
1428 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1429 				io_clean_op(req);
1430 		}
1431 		io_put_file(req);
1432 		io_req_put_rsrc_nodes(req);
1433 		io_put_task(req);
1434 
1435 		node = req->comp_list.next;
1436 		io_req_add_to_cache(req, ctx);
1437 	} while (node);
1438 }
1439 
1440 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1441 	__must_hold(&ctx->uring_lock)
1442 {
1443 	struct io_submit_state *state = &ctx->submit_state;
1444 	struct io_wq_work_node *node;
1445 
1446 	__io_cq_lock(ctx);
1447 	__wq_list_for_each(node, &state->compl_reqs) {
1448 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1449 					    comp_list);
1450 
1451 		/*
1452 		 * Requests marked with REQUEUE should not post a CQE, they
1453 		 * will go through the io-wq retry machinery and post one
1454 		 * later.
1455 		 */
1456 		if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1457 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1458 			if (ctx->lockless_cq) {
1459 				spin_lock(&ctx->completion_lock);
1460 				io_req_cqe_overflow(req);
1461 				spin_unlock(&ctx->completion_lock);
1462 			} else {
1463 				io_req_cqe_overflow(req);
1464 			}
1465 		}
1466 	}
1467 	__io_cq_unlock_post(ctx);
1468 
1469 	if (!wq_list_empty(&state->compl_reqs)) {
1470 		io_free_batch_list(ctx, state->compl_reqs.first);
1471 		INIT_WQ_LIST(&state->compl_reqs);
1472 	}
1473 	ctx->submit_state.cq_flush = false;
1474 }
1475 
1476 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1477 {
1478 	/* See comment at the top of this file */
1479 	smp_rmb();
1480 	return __io_cqring_events(ctx);
1481 }
1482 
1483 /*
1484  * We can't just wait for polled events to come to us, we have to actively
1485  * find and complete them.
1486  */
1487 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1488 {
1489 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1490 		return;
1491 
1492 	mutex_lock(&ctx->uring_lock);
1493 	while (!wq_list_empty(&ctx->iopoll_list)) {
1494 		/* let it sleep and repeat later if can't complete a request */
1495 		if (io_do_iopoll(ctx, true) == 0)
1496 			break;
1497 		/*
1498 		 * Ensure we allow local-to-the-cpu processing to take place,
1499 		 * in this case we need to ensure that we reap all events.
1500 		 * Also let task_work, etc. to progress by releasing the mutex
1501 		 */
1502 		if (need_resched()) {
1503 			mutex_unlock(&ctx->uring_lock);
1504 			cond_resched();
1505 			mutex_lock(&ctx->uring_lock);
1506 		}
1507 	}
1508 	mutex_unlock(&ctx->uring_lock);
1509 }
1510 
1511 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1512 {
1513 	unsigned int nr_events = 0;
1514 	unsigned long check_cq;
1515 
1516 	lockdep_assert_held(&ctx->uring_lock);
1517 
1518 	if (!io_allowed_run_tw(ctx))
1519 		return -EEXIST;
1520 
1521 	check_cq = READ_ONCE(ctx->check_cq);
1522 	if (unlikely(check_cq)) {
1523 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1524 			__io_cqring_overflow_flush(ctx, false);
1525 		/*
1526 		 * Similarly do not spin if we have not informed the user of any
1527 		 * dropped CQE.
1528 		 */
1529 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1530 			return -EBADR;
1531 	}
1532 	/*
1533 	 * Don't enter poll loop if we already have events pending.
1534 	 * If we do, we can potentially be spinning for commands that
1535 	 * already triggered a CQE (eg in error).
1536 	 */
1537 	if (io_cqring_events(ctx))
1538 		return 0;
1539 
1540 	do {
1541 		int ret = 0;
1542 
1543 		/*
1544 		 * If a submit got punted to a workqueue, we can have the
1545 		 * application entering polling for a command before it gets
1546 		 * issued. That app will hold the uring_lock for the duration
1547 		 * of the poll right here, so we need to take a breather every
1548 		 * now and then to ensure that the issue has a chance to add
1549 		 * the poll to the issued list. Otherwise we can spin here
1550 		 * forever, while the workqueue is stuck trying to acquire the
1551 		 * very same mutex.
1552 		 */
1553 		if (wq_list_empty(&ctx->iopoll_list) ||
1554 		    io_task_work_pending(ctx)) {
1555 			u32 tail = ctx->cached_cq_tail;
1556 
1557 			(void) io_run_local_work_locked(ctx, min);
1558 
1559 			if (task_work_pending(current) ||
1560 			    wq_list_empty(&ctx->iopoll_list)) {
1561 				mutex_unlock(&ctx->uring_lock);
1562 				io_run_task_work();
1563 				mutex_lock(&ctx->uring_lock);
1564 			}
1565 			/* some requests don't go through iopoll_list */
1566 			if (tail != ctx->cached_cq_tail ||
1567 			    wq_list_empty(&ctx->iopoll_list))
1568 				break;
1569 		}
1570 		ret = io_do_iopoll(ctx, !min);
1571 		if (unlikely(ret < 0))
1572 			return ret;
1573 
1574 		if (task_sigpending(current))
1575 			return -EINTR;
1576 		if (need_resched())
1577 			break;
1578 
1579 		nr_events += ret;
1580 	} while (nr_events < min);
1581 
1582 	return 0;
1583 }
1584 
1585 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1586 {
1587 	io_req_complete_defer(req);
1588 }
1589 
1590 /*
1591  * After the iocb has been issued, it's safe to be found on the poll list.
1592  * Adding the kiocb to the list AFTER submission ensures that we don't
1593  * find it from a io_do_iopoll() thread before the issuer is done
1594  * accessing the kiocb cookie.
1595  */
1596 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1597 {
1598 	struct io_ring_ctx *ctx = req->ctx;
1599 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1600 
1601 	/* workqueue context doesn't hold uring_lock, grab it now */
1602 	if (unlikely(needs_lock))
1603 		mutex_lock(&ctx->uring_lock);
1604 
1605 	/*
1606 	 * Track whether we have multiple files in our lists. This will impact
1607 	 * how we do polling eventually, not spinning if we're on potentially
1608 	 * different devices.
1609 	 */
1610 	if (wq_list_empty(&ctx->iopoll_list)) {
1611 		ctx->poll_multi_queue = false;
1612 	} else if (!ctx->poll_multi_queue) {
1613 		struct io_kiocb *list_req;
1614 
1615 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1616 					comp_list);
1617 		if (list_req->file != req->file)
1618 			ctx->poll_multi_queue = true;
1619 	}
1620 
1621 	/*
1622 	 * For fast devices, IO may have already completed. If it has, add
1623 	 * it to the front so we find it first.
1624 	 */
1625 	if (READ_ONCE(req->iopoll_completed))
1626 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1627 	else
1628 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1629 
1630 	if (unlikely(needs_lock)) {
1631 		/*
1632 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1633 		 * in sq thread task context or in io worker task context. If
1634 		 * current task context is sq thread, we don't need to check
1635 		 * whether should wake up sq thread.
1636 		 */
1637 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1638 		    wq_has_sleeper(&ctx->sq_data->wait))
1639 			wake_up(&ctx->sq_data->wait);
1640 
1641 		mutex_unlock(&ctx->uring_lock);
1642 	}
1643 }
1644 
1645 io_req_flags_t io_file_get_flags(struct file *file)
1646 {
1647 	io_req_flags_t res = 0;
1648 
1649 	if (S_ISREG(file_inode(file)->i_mode))
1650 		res |= REQ_F_ISREG;
1651 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1652 		res |= REQ_F_SUPPORT_NOWAIT;
1653 	return res;
1654 }
1655 
1656 static u32 io_get_sequence(struct io_kiocb *req)
1657 {
1658 	u32 seq = req->ctx->cached_sq_head;
1659 	struct io_kiocb *cur;
1660 
1661 	/* need original cached_sq_head, but it was increased for each req */
1662 	io_for_each_link(cur, req)
1663 		seq--;
1664 	return seq;
1665 }
1666 
1667 static __cold void io_drain_req(struct io_kiocb *req)
1668 	__must_hold(&ctx->uring_lock)
1669 {
1670 	struct io_ring_ctx *ctx = req->ctx;
1671 	struct io_defer_entry *de;
1672 	int ret;
1673 	u32 seq = io_get_sequence(req);
1674 
1675 	/* Still need defer if there is pending req in defer list. */
1676 	spin_lock(&ctx->completion_lock);
1677 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1678 		spin_unlock(&ctx->completion_lock);
1679 queue:
1680 		ctx->drain_active = false;
1681 		io_req_task_queue(req);
1682 		return;
1683 	}
1684 	spin_unlock(&ctx->completion_lock);
1685 
1686 	io_prep_async_link(req);
1687 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1688 	if (!de) {
1689 		ret = -ENOMEM;
1690 		io_req_defer_failed(req, ret);
1691 		return;
1692 	}
1693 
1694 	spin_lock(&ctx->completion_lock);
1695 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1696 		spin_unlock(&ctx->completion_lock);
1697 		kfree(de);
1698 		goto queue;
1699 	}
1700 
1701 	trace_io_uring_defer(req);
1702 	de->req = req;
1703 	de->seq = seq;
1704 	list_add_tail(&de->list, &ctx->defer_list);
1705 	spin_unlock(&ctx->completion_lock);
1706 }
1707 
1708 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1709 			   unsigned int issue_flags)
1710 {
1711 	if (req->file || !def->needs_file)
1712 		return true;
1713 
1714 	if (req->flags & REQ_F_FIXED_FILE)
1715 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1716 	else
1717 		req->file = io_file_get_normal(req, req->cqe.fd);
1718 
1719 	return !!req->file;
1720 }
1721 
1722 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1723 {
1724 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1725 	const struct cred *creds = NULL;
1726 	int ret;
1727 
1728 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1729 		return -EBADF;
1730 
1731 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1732 		creds = override_creds(req->creds);
1733 
1734 	if (!def->audit_skip)
1735 		audit_uring_entry(req->opcode);
1736 
1737 	ret = def->issue(req, issue_flags);
1738 
1739 	if (!def->audit_skip)
1740 		audit_uring_exit(!ret, ret);
1741 
1742 	if (creds)
1743 		revert_creds(creds);
1744 
1745 	if (ret == IOU_OK) {
1746 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1747 			io_req_complete_defer(req);
1748 		else
1749 			io_req_complete_post(req, issue_flags);
1750 
1751 		return 0;
1752 	}
1753 
1754 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1755 		ret = 0;
1756 		io_arm_ltimeout(req);
1757 
1758 		/* If the op doesn't have a file, we're not polling for it */
1759 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1760 			io_iopoll_req_issued(req, issue_flags);
1761 	}
1762 	return ret;
1763 }
1764 
1765 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1766 {
1767 	io_tw_lock(req->ctx, ts);
1768 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1769 				 IO_URING_F_COMPLETE_DEFER);
1770 }
1771 
1772 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1773 {
1774 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1775 	struct io_kiocb *nxt = NULL;
1776 
1777 	if (req_ref_put_and_test(req)) {
1778 		if (req->flags & IO_REQ_LINK_FLAGS)
1779 			nxt = io_req_find_next(req);
1780 		io_free_req(req);
1781 	}
1782 	return nxt ? &nxt->work : NULL;
1783 }
1784 
1785 void io_wq_submit_work(struct io_wq_work *work)
1786 {
1787 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1788 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1789 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1790 	bool needs_poll = false;
1791 	int ret = 0, err = -ECANCELED;
1792 
1793 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1794 	if (!(req->flags & REQ_F_REFCOUNT))
1795 		__io_req_set_refcount(req, 2);
1796 	else
1797 		req_ref_get(req);
1798 
1799 	io_arm_ltimeout(req);
1800 
1801 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1802 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1803 fail:
1804 		io_req_task_queue_fail(req, err);
1805 		return;
1806 	}
1807 	if (!io_assign_file(req, def, issue_flags)) {
1808 		err = -EBADF;
1809 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1810 		goto fail;
1811 	}
1812 
1813 	/*
1814 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1815 	 * submitter task context. Final request completions are handed to the
1816 	 * right context, however this is not the case of auxiliary CQEs,
1817 	 * which is the main mean of operation for multishot requests.
1818 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1819 	 * than necessary and also cleaner.
1820 	 */
1821 	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1822 		err = -EBADFD;
1823 		if (!io_file_can_poll(req))
1824 			goto fail;
1825 		if (req->file->f_flags & O_NONBLOCK ||
1826 		    req->file->f_mode & FMODE_NOWAIT) {
1827 			err = -ECANCELED;
1828 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1829 				goto fail;
1830 			return;
1831 		} else {
1832 			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1833 		}
1834 	}
1835 
1836 	if (req->flags & REQ_F_FORCE_ASYNC) {
1837 		bool opcode_poll = def->pollin || def->pollout;
1838 
1839 		if (opcode_poll && io_file_can_poll(req)) {
1840 			needs_poll = true;
1841 			issue_flags |= IO_URING_F_NONBLOCK;
1842 		}
1843 	}
1844 
1845 	do {
1846 		ret = io_issue_sqe(req, issue_flags);
1847 		if (ret != -EAGAIN)
1848 			break;
1849 
1850 		/*
1851 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1852 		 * poll. -EAGAIN is final for that case.
1853 		 */
1854 		if (req->flags & REQ_F_NOWAIT)
1855 			break;
1856 
1857 		/*
1858 		 * We can get EAGAIN for iopolled IO even though we're
1859 		 * forcing a sync submission from here, since we can't
1860 		 * wait for request slots on the block side.
1861 		 */
1862 		if (!needs_poll) {
1863 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1864 				break;
1865 			if (io_wq_worker_stopped())
1866 				break;
1867 			cond_resched();
1868 			continue;
1869 		}
1870 
1871 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1872 			return;
1873 		/* aborted or ready, in either case retry blocking */
1874 		needs_poll = false;
1875 		issue_flags &= ~IO_URING_F_NONBLOCK;
1876 	} while (1);
1877 
1878 	/* avoid locking problems by failing it from a clean context */
1879 	if (ret)
1880 		io_req_task_queue_fail(req, ret);
1881 }
1882 
1883 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1884 				      unsigned int issue_flags)
1885 {
1886 	struct io_ring_ctx *ctx = req->ctx;
1887 	struct io_rsrc_node *node;
1888 	struct file *file = NULL;
1889 
1890 	io_ring_submit_lock(ctx, issue_flags);
1891 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1892 	if (node) {
1893 		io_req_assign_rsrc_node(&req->file_node, node);
1894 		req->flags |= io_slot_flags(node);
1895 		file = io_slot_file(node);
1896 	}
1897 	io_ring_submit_unlock(ctx, issue_flags);
1898 	return file;
1899 }
1900 
1901 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1902 {
1903 	struct file *file = fget(fd);
1904 
1905 	trace_io_uring_file_get(req, fd);
1906 
1907 	/* we don't allow fixed io_uring files */
1908 	if (file && io_is_uring_fops(file))
1909 		io_req_track_inflight(req);
1910 	return file;
1911 }
1912 
1913 static void io_queue_async(struct io_kiocb *req, int ret)
1914 	__must_hold(&req->ctx->uring_lock)
1915 {
1916 	struct io_kiocb *linked_timeout;
1917 
1918 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1919 		io_req_defer_failed(req, ret);
1920 		return;
1921 	}
1922 
1923 	linked_timeout = io_prep_linked_timeout(req);
1924 
1925 	switch (io_arm_poll_handler(req, 0)) {
1926 	case IO_APOLL_READY:
1927 		io_kbuf_recycle(req, 0);
1928 		io_req_task_queue(req);
1929 		break;
1930 	case IO_APOLL_ABORTED:
1931 		io_kbuf_recycle(req, 0);
1932 		io_queue_iowq(req);
1933 		break;
1934 	case IO_APOLL_OK:
1935 		break;
1936 	}
1937 
1938 	if (linked_timeout)
1939 		io_queue_linked_timeout(linked_timeout);
1940 }
1941 
1942 static inline void io_queue_sqe(struct io_kiocb *req)
1943 	__must_hold(&req->ctx->uring_lock)
1944 {
1945 	int ret;
1946 
1947 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1948 
1949 	/*
1950 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1951 	 * doesn't support non-blocking read/write attempts
1952 	 */
1953 	if (unlikely(ret))
1954 		io_queue_async(req, ret);
1955 }
1956 
1957 static void io_queue_sqe_fallback(struct io_kiocb *req)
1958 	__must_hold(&req->ctx->uring_lock)
1959 {
1960 	if (unlikely(req->flags & REQ_F_FAIL)) {
1961 		/*
1962 		 * We don't submit, fail them all, for that replace hardlinks
1963 		 * with normal links. Extra REQ_F_LINK is tolerated.
1964 		 */
1965 		req->flags &= ~REQ_F_HARDLINK;
1966 		req->flags |= REQ_F_LINK;
1967 		io_req_defer_failed(req, req->cqe.res);
1968 	} else {
1969 		if (unlikely(req->ctx->drain_active))
1970 			io_drain_req(req);
1971 		else
1972 			io_queue_iowq(req);
1973 	}
1974 }
1975 
1976 /*
1977  * Check SQE restrictions (opcode and flags).
1978  *
1979  * Returns 'true' if SQE is allowed, 'false' otherwise.
1980  */
1981 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1982 					struct io_kiocb *req,
1983 					unsigned int sqe_flags)
1984 {
1985 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1986 		return false;
1987 
1988 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1989 	    ctx->restrictions.sqe_flags_required)
1990 		return false;
1991 
1992 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1993 			  ctx->restrictions.sqe_flags_required))
1994 		return false;
1995 
1996 	return true;
1997 }
1998 
1999 static void io_init_req_drain(struct io_kiocb *req)
2000 {
2001 	struct io_ring_ctx *ctx = req->ctx;
2002 	struct io_kiocb *head = ctx->submit_state.link.head;
2003 
2004 	ctx->drain_active = true;
2005 	if (head) {
2006 		/*
2007 		 * If we need to drain a request in the middle of a link, drain
2008 		 * the head request and the next request/link after the current
2009 		 * link. Considering sequential execution of links,
2010 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2011 		 * link.
2012 		 */
2013 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2014 		ctx->drain_next = true;
2015 	}
2016 }
2017 
2018 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2019 {
2020 	/* ensure per-opcode data is cleared if we fail before prep */
2021 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2022 	return err;
2023 }
2024 
2025 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2026 		       const struct io_uring_sqe *sqe)
2027 	__must_hold(&ctx->uring_lock)
2028 {
2029 	const struct io_issue_def *def;
2030 	unsigned int sqe_flags;
2031 	int personality;
2032 	u8 opcode;
2033 
2034 	/* req is partially pre-initialised, see io_preinit_req() */
2035 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2036 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2037 	sqe_flags = READ_ONCE(sqe->flags);
2038 	req->flags = (__force io_req_flags_t) sqe_flags;
2039 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2040 	req->file = NULL;
2041 	req->tctx = current->io_uring;
2042 	req->cancel_seq_set = false;
2043 
2044 	if (unlikely(opcode >= IORING_OP_LAST)) {
2045 		req->opcode = 0;
2046 		return io_init_fail_req(req, -EINVAL);
2047 	}
2048 	def = &io_issue_defs[opcode];
2049 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2050 		/* enforce forwards compatibility on users */
2051 		if (sqe_flags & ~SQE_VALID_FLAGS)
2052 			return io_init_fail_req(req, -EINVAL);
2053 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2054 			if (!def->buffer_select)
2055 				return io_init_fail_req(req, -EOPNOTSUPP);
2056 			req->buf_index = READ_ONCE(sqe->buf_group);
2057 		}
2058 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2059 			ctx->drain_disabled = true;
2060 		if (sqe_flags & IOSQE_IO_DRAIN) {
2061 			if (ctx->drain_disabled)
2062 				return io_init_fail_req(req, -EOPNOTSUPP);
2063 			io_init_req_drain(req);
2064 		}
2065 	}
2066 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2067 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2068 			return io_init_fail_req(req, -EACCES);
2069 		/* knock it to the slow queue path, will be drained there */
2070 		if (ctx->drain_active)
2071 			req->flags |= REQ_F_FORCE_ASYNC;
2072 		/* if there is no link, we're at "next" request and need to drain */
2073 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2074 			ctx->drain_next = false;
2075 			ctx->drain_active = true;
2076 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2077 		}
2078 	}
2079 
2080 	if (!def->ioprio && sqe->ioprio)
2081 		return io_init_fail_req(req, -EINVAL);
2082 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2083 		return io_init_fail_req(req, -EINVAL);
2084 
2085 	if (def->needs_file) {
2086 		struct io_submit_state *state = &ctx->submit_state;
2087 
2088 		req->cqe.fd = READ_ONCE(sqe->fd);
2089 
2090 		/*
2091 		 * Plug now if we have more than 2 IO left after this, and the
2092 		 * target is potentially a read/write to block based storage.
2093 		 */
2094 		if (state->need_plug && def->plug) {
2095 			state->plug_started = true;
2096 			state->need_plug = false;
2097 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2098 		}
2099 	}
2100 
2101 	personality = READ_ONCE(sqe->personality);
2102 	if (personality) {
2103 		int ret;
2104 
2105 		req->creds = xa_load(&ctx->personalities, personality);
2106 		if (!req->creds)
2107 			return io_init_fail_req(req, -EINVAL);
2108 		get_cred(req->creds);
2109 		ret = security_uring_override_creds(req->creds);
2110 		if (ret) {
2111 			put_cred(req->creds);
2112 			return io_init_fail_req(req, ret);
2113 		}
2114 		req->flags |= REQ_F_CREDS;
2115 	}
2116 
2117 	return def->prep(req, sqe);
2118 }
2119 
2120 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2121 				      struct io_kiocb *req, int ret)
2122 {
2123 	struct io_ring_ctx *ctx = req->ctx;
2124 	struct io_submit_link *link = &ctx->submit_state.link;
2125 	struct io_kiocb *head = link->head;
2126 
2127 	trace_io_uring_req_failed(sqe, req, ret);
2128 
2129 	/*
2130 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2131 	 * unusable. Instead of failing eagerly, continue assembling the link if
2132 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2133 	 * should find the flag and handle the rest.
2134 	 */
2135 	req_fail_link_node(req, ret);
2136 	if (head && !(head->flags & REQ_F_FAIL))
2137 		req_fail_link_node(head, -ECANCELED);
2138 
2139 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2140 		if (head) {
2141 			link->last->link = req;
2142 			link->head = NULL;
2143 			req = head;
2144 		}
2145 		io_queue_sqe_fallback(req);
2146 		return ret;
2147 	}
2148 
2149 	if (head)
2150 		link->last->link = req;
2151 	else
2152 		link->head = req;
2153 	link->last = req;
2154 	return 0;
2155 }
2156 
2157 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2158 			 const struct io_uring_sqe *sqe)
2159 	__must_hold(&ctx->uring_lock)
2160 {
2161 	struct io_submit_link *link = &ctx->submit_state.link;
2162 	int ret;
2163 
2164 	ret = io_init_req(ctx, req, sqe);
2165 	if (unlikely(ret))
2166 		return io_submit_fail_init(sqe, req, ret);
2167 
2168 	trace_io_uring_submit_req(req);
2169 
2170 	/*
2171 	 * If we already have a head request, queue this one for async
2172 	 * submittal once the head completes. If we don't have a head but
2173 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2174 	 * submitted sync once the chain is complete. If none of those
2175 	 * conditions are true (normal request), then just queue it.
2176 	 */
2177 	if (unlikely(link->head)) {
2178 		trace_io_uring_link(req, link->last);
2179 		link->last->link = req;
2180 		link->last = req;
2181 
2182 		if (req->flags & IO_REQ_LINK_FLAGS)
2183 			return 0;
2184 		/* last request of the link, flush it */
2185 		req = link->head;
2186 		link->head = NULL;
2187 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2188 			goto fallback;
2189 
2190 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2191 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2192 		if (req->flags & IO_REQ_LINK_FLAGS) {
2193 			link->head = req;
2194 			link->last = req;
2195 		} else {
2196 fallback:
2197 			io_queue_sqe_fallback(req);
2198 		}
2199 		return 0;
2200 	}
2201 
2202 	io_queue_sqe(req);
2203 	return 0;
2204 }
2205 
2206 /*
2207  * Batched submission is done, ensure local IO is flushed out.
2208  */
2209 static void io_submit_state_end(struct io_ring_ctx *ctx)
2210 {
2211 	struct io_submit_state *state = &ctx->submit_state;
2212 
2213 	if (unlikely(state->link.head))
2214 		io_queue_sqe_fallback(state->link.head);
2215 	/* flush only after queuing links as they can generate completions */
2216 	io_submit_flush_completions(ctx);
2217 	if (state->plug_started)
2218 		blk_finish_plug(&state->plug);
2219 }
2220 
2221 /*
2222  * Start submission side cache.
2223  */
2224 static void io_submit_state_start(struct io_submit_state *state,
2225 				  unsigned int max_ios)
2226 {
2227 	state->plug_started = false;
2228 	state->need_plug = max_ios > 2;
2229 	state->submit_nr = max_ios;
2230 	/* set only head, no need to init link_last in advance */
2231 	state->link.head = NULL;
2232 }
2233 
2234 static void io_commit_sqring(struct io_ring_ctx *ctx)
2235 {
2236 	struct io_rings *rings = ctx->rings;
2237 
2238 	/*
2239 	 * Ensure any loads from the SQEs are done at this point,
2240 	 * since once we write the new head, the application could
2241 	 * write new data to them.
2242 	 */
2243 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2244 }
2245 
2246 /*
2247  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2248  * that is mapped by userspace. This means that care needs to be taken to
2249  * ensure that reads are stable, as we cannot rely on userspace always
2250  * being a good citizen. If members of the sqe are validated and then later
2251  * used, it's important that those reads are done through READ_ONCE() to
2252  * prevent a re-load down the line.
2253  */
2254 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2255 {
2256 	unsigned mask = ctx->sq_entries - 1;
2257 	unsigned head = ctx->cached_sq_head++ & mask;
2258 
2259 	if (static_branch_unlikely(&io_key_has_sqarray) &&
2260 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2261 		head = READ_ONCE(ctx->sq_array[head]);
2262 		if (unlikely(head >= ctx->sq_entries)) {
2263 			/* drop invalid entries */
2264 			spin_lock(&ctx->completion_lock);
2265 			ctx->cq_extra--;
2266 			spin_unlock(&ctx->completion_lock);
2267 			WRITE_ONCE(ctx->rings->sq_dropped,
2268 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2269 			return false;
2270 		}
2271 		head = array_index_nospec(head, ctx->sq_entries);
2272 	}
2273 
2274 	/*
2275 	 * The cached sq head (or cq tail) serves two purposes:
2276 	 *
2277 	 * 1) allows us to batch the cost of updating the user visible
2278 	 *    head updates.
2279 	 * 2) allows the kernel side to track the head on its own, even
2280 	 *    though the application is the one updating it.
2281 	 */
2282 
2283 	/* double index for 128-byte SQEs, twice as long */
2284 	if (ctx->flags & IORING_SETUP_SQE128)
2285 		head <<= 1;
2286 	*sqe = &ctx->sq_sqes[head];
2287 	return true;
2288 }
2289 
2290 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2291 	__must_hold(&ctx->uring_lock)
2292 {
2293 	unsigned int entries = io_sqring_entries(ctx);
2294 	unsigned int left;
2295 	int ret;
2296 
2297 	if (unlikely(!entries))
2298 		return 0;
2299 	/* make sure SQ entry isn't read before tail */
2300 	ret = left = min(nr, entries);
2301 	io_get_task_refs(left);
2302 	io_submit_state_start(&ctx->submit_state, left);
2303 
2304 	do {
2305 		const struct io_uring_sqe *sqe;
2306 		struct io_kiocb *req;
2307 
2308 		if (unlikely(!io_alloc_req(ctx, &req)))
2309 			break;
2310 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2311 			io_req_add_to_cache(req, ctx);
2312 			break;
2313 		}
2314 
2315 		/*
2316 		 * Continue submitting even for sqe failure if the
2317 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2318 		 */
2319 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2320 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2321 			left--;
2322 			break;
2323 		}
2324 	} while (--left);
2325 
2326 	if (unlikely(left)) {
2327 		ret -= left;
2328 		/* try again if it submitted nothing and can't allocate a req */
2329 		if (!ret && io_req_cache_empty(ctx))
2330 			ret = -EAGAIN;
2331 		current->io_uring->cached_refs += left;
2332 	}
2333 
2334 	io_submit_state_end(ctx);
2335 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2336 	io_commit_sqring(ctx);
2337 	return ret;
2338 }
2339 
2340 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2341 			    int wake_flags, void *key)
2342 {
2343 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2344 
2345 	/*
2346 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2347 	 * the task, and the next invocation will do it.
2348 	 */
2349 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2350 		return autoremove_wake_function(curr, mode, wake_flags, key);
2351 	return -1;
2352 }
2353 
2354 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2355 {
2356 	if (io_local_work_pending(ctx)) {
2357 		__set_current_state(TASK_RUNNING);
2358 		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2359 			return 0;
2360 	}
2361 	if (io_run_task_work() > 0)
2362 		return 0;
2363 	if (task_sigpending(current))
2364 		return -EINTR;
2365 	return 0;
2366 }
2367 
2368 static bool current_pending_io(void)
2369 {
2370 	struct io_uring_task *tctx = current->io_uring;
2371 
2372 	if (!tctx)
2373 		return false;
2374 	return percpu_counter_read_positive(&tctx->inflight);
2375 }
2376 
2377 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2378 {
2379 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2380 
2381 	WRITE_ONCE(iowq->hit_timeout, 1);
2382 	iowq->min_timeout = 0;
2383 	wake_up_process(iowq->wq.private);
2384 	return HRTIMER_NORESTART;
2385 }
2386 
2387 /*
2388  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2389  * wake up. If not, and we have a normal timeout, switch to that and keep
2390  * sleeping.
2391  */
2392 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2393 {
2394 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2395 	struct io_ring_ctx *ctx = iowq->ctx;
2396 
2397 	/* no general timeout, or shorter (or equal), we are done */
2398 	if (iowq->timeout == KTIME_MAX ||
2399 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2400 		goto out_wake;
2401 	/* work we may need to run, wake function will see if we need to wake */
2402 	if (io_has_work(ctx))
2403 		goto out_wake;
2404 	/* got events since we started waiting, min timeout is done */
2405 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2406 		goto out_wake;
2407 	/* if we have any events and min timeout expired, we're done */
2408 	if (io_cqring_events(ctx))
2409 		goto out_wake;
2410 
2411 	/*
2412 	 * If using deferred task_work running and application is waiting on
2413 	 * more than one request, ensure we reset it now where we are switching
2414 	 * to normal sleeps. Any request completion post min_wait should wake
2415 	 * the task and return.
2416 	 */
2417 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2418 		atomic_set(&ctx->cq_wait_nr, 1);
2419 		smp_mb();
2420 		if (!llist_empty(&ctx->work_llist))
2421 			goto out_wake;
2422 	}
2423 
2424 	iowq->t.function = io_cqring_timer_wakeup;
2425 	hrtimer_set_expires(timer, iowq->timeout);
2426 	return HRTIMER_RESTART;
2427 out_wake:
2428 	return io_cqring_timer_wakeup(timer);
2429 }
2430 
2431 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2432 				      clockid_t clock_id, ktime_t start_time)
2433 {
2434 	ktime_t timeout;
2435 
2436 	if (iowq->min_timeout) {
2437 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2438 		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2439 				       HRTIMER_MODE_ABS);
2440 	} else {
2441 		timeout = iowq->timeout;
2442 		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2443 				       HRTIMER_MODE_ABS);
2444 	}
2445 
2446 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2447 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2448 
2449 	if (!READ_ONCE(iowq->hit_timeout))
2450 		schedule();
2451 
2452 	hrtimer_cancel(&iowq->t);
2453 	destroy_hrtimer_on_stack(&iowq->t);
2454 	__set_current_state(TASK_RUNNING);
2455 
2456 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2457 }
2458 
2459 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2460 				     struct io_wait_queue *iowq,
2461 				     ktime_t start_time)
2462 {
2463 	int ret = 0;
2464 
2465 	/*
2466 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2467 	 * can take into account that the task is waiting for IO - turns out
2468 	 * to be important for low QD IO.
2469 	 */
2470 	if (current_pending_io())
2471 		current->in_iowait = 1;
2472 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2473 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2474 	else
2475 		schedule();
2476 	current->in_iowait = 0;
2477 	return ret;
2478 }
2479 
2480 /* If this returns > 0, the caller should retry */
2481 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2482 					  struct io_wait_queue *iowq,
2483 					  ktime_t start_time)
2484 {
2485 	if (unlikely(READ_ONCE(ctx->check_cq)))
2486 		return 1;
2487 	if (unlikely(io_local_work_pending(ctx)))
2488 		return 1;
2489 	if (unlikely(task_work_pending(current)))
2490 		return 1;
2491 	if (unlikely(task_sigpending(current)))
2492 		return -EINTR;
2493 	if (unlikely(io_should_wake(iowq)))
2494 		return 0;
2495 
2496 	return __io_cqring_wait_schedule(ctx, iowq, start_time);
2497 }
2498 
2499 struct ext_arg {
2500 	size_t argsz;
2501 	struct timespec64 ts;
2502 	const sigset_t __user *sig;
2503 	ktime_t min_time;
2504 	bool ts_set;
2505 };
2506 
2507 /*
2508  * Wait until events become available, if we don't already have some. The
2509  * application must reap them itself, as they reside on the shared cq ring.
2510  */
2511 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2512 			  struct ext_arg *ext_arg)
2513 {
2514 	struct io_wait_queue iowq;
2515 	struct io_rings *rings = ctx->rings;
2516 	ktime_t start_time;
2517 	int ret;
2518 
2519 	if (!io_allowed_run_tw(ctx))
2520 		return -EEXIST;
2521 	if (io_local_work_pending(ctx))
2522 		io_run_local_work(ctx, min_events,
2523 				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2524 	io_run_task_work();
2525 
2526 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2527 		io_cqring_do_overflow_flush(ctx);
2528 	if (__io_cqring_events_user(ctx) >= min_events)
2529 		return 0;
2530 
2531 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2532 	iowq.wq.private = current;
2533 	INIT_LIST_HEAD(&iowq.wq.entry);
2534 	iowq.ctx = ctx;
2535 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2536 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2537 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2538 	iowq.hit_timeout = 0;
2539 	iowq.min_timeout = ext_arg->min_time;
2540 	iowq.timeout = KTIME_MAX;
2541 	start_time = io_get_time(ctx);
2542 
2543 	if (ext_arg->ts_set) {
2544 		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2545 		if (!(flags & IORING_ENTER_ABS_TIMER))
2546 			iowq.timeout = ktime_add(iowq.timeout, start_time);
2547 	}
2548 
2549 	if (ext_arg->sig) {
2550 #ifdef CONFIG_COMPAT
2551 		if (in_compat_syscall())
2552 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2553 						      ext_arg->argsz);
2554 		else
2555 #endif
2556 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2557 
2558 		if (ret)
2559 			return ret;
2560 	}
2561 
2562 	io_napi_busy_loop(ctx, &iowq);
2563 
2564 	trace_io_uring_cqring_wait(ctx, min_events);
2565 	do {
2566 		unsigned long check_cq;
2567 		int nr_wait;
2568 
2569 		/* if min timeout has been hit, don't reset wait count */
2570 		if (!iowq.hit_timeout)
2571 			nr_wait = (int) iowq.cq_tail -
2572 					READ_ONCE(ctx->rings->cq.tail);
2573 		else
2574 			nr_wait = 1;
2575 
2576 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2577 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2578 			set_current_state(TASK_INTERRUPTIBLE);
2579 		} else {
2580 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2581 							TASK_INTERRUPTIBLE);
2582 		}
2583 
2584 		ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2585 		__set_current_state(TASK_RUNNING);
2586 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2587 
2588 		/*
2589 		 * Run task_work after scheduling and before io_should_wake().
2590 		 * If we got woken because of task_work being processed, run it
2591 		 * now rather than let the caller do another wait loop.
2592 		 */
2593 		if (io_local_work_pending(ctx))
2594 			io_run_local_work(ctx, nr_wait, nr_wait);
2595 		io_run_task_work();
2596 
2597 		/*
2598 		 * Non-local task_work will be run on exit to userspace, but
2599 		 * if we're using DEFER_TASKRUN, then we could have waited
2600 		 * with a timeout for a number of requests. If the timeout
2601 		 * hits, we could have some requests ready to process. Ensure
2602 		 * this break is _after_ we have run task_work, to avoid
2603 		 * deferring running potentially pending requests until the
2604 		 * next time we wait for events.
2605 		 */
2606 		if (ret < 0)
2607 			break;
2608 
2609 		check_cq = READ_ONCE(ctx->check_cq);
2610 		if (unlikely(check_cq)) {
2611 			/* let the caller flush overflows, retry */
2612 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2613 				io_cqring_do_overflow_flush(ctx);
2614 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2615 				ret = -EBADR;
2616 				break;
2617 			}
2618 		}
2619 
2620 		if (io_should_wake(&iowq)) {
2621 			ret = 0;
2622 			break;
2623 		}
2624 		cond_resched();
2625 	} while (1);
2626 
2627 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2628 		finish_wait(&ctx->cq_wait, &iowq.wq);
2629 	restore_saved_sigmask_unless(ret == -EINTR);
2630 
2631 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2632 }
2633 
2634 static void io_rings_free(struct io_ring_ctx *ctx)
2635 {
2636 	io_free_region(ctx, &ctx->sq_region);
2637 	io_free_region(ctx, &ctx->ring_region);
2638 	ctx->rings = NULL;
2639 	ctx->sq_sqes = NULL;
2640 }
2641 
2642 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2643 			 unsigned int cq_entries, size_t *sq_offset)
2644 {
2645 	struct io_rings *rings;
2646 	size_t off, sq_array_size;
2647 
2648 	off = struct_size(rings, cqes, cq_entries);
2649 	if (off == SIZE_MAX)
2650 		return SIZE_MAX;
2651 	if (flags & IORING_SETUP_CQE32) {
2652 		if (check_shl_overflow(off, 1, &off))
2653 			return SIZE_MAX;
2654 	}
2655 
2656 #ifdef CONFIG_SMP
2657 	off = ALIGN(off, SMP_CACHE_BYTES);
2658 	if (off == 0)
2659 		return SIZE_MAX;
2660 #endif
2661 
2662 	if (flags & IORING_SETUP_NO_SQARRAY) {
2663 		*sq_offset = SIZE_MAX;
2664 		return off;
2665 	}
2666 
2667 	*sq_offset = off;
2668 
2669 	sq_array_size = array_size(sizeof(u32), sq_entries);
2670 	if (sq_array_size == SIZE_MAX)
2671 		return SIZE_MAX;
2672 
2673 	if (check_add_overflow(off, sq_array_size, &off))
2674 		return SIZE_MAX;
2675 
2676 	return off;
2677 }
2678 
2679 static void io_req_caches_free(struct io_ring_ctx *ctx)
2680 {
2681 	struct io_kiocb *req;
2682 	int nr = 0;
2683 
2684 	mutex_lock(&ctx->uring_lock);
2685 
2686 	while (!io_req_cache_empty(ctx)) {
2687 		req = io_extract_req(ctx);
2688 		kmem_cache_free(req_cachep, req);
2689 		nr++;
2690 	}
2691 	if (nr)
2692 		percpu_ref_put_many(&ctx->refs, nr);
2693 	mutex_unlock(&ctx->uring_lock);
2694 }
2695 
2696 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2697 {
2698 	io_sq_thread_finish(ctx);
2699 
2700 	mutex_lock(&ctx->uring_lock);
2701 	io_sqe_buffers_unregister(ctx);
2702 	io_sqe_files_unregister(ctx);
2703 	io_cqring_overflow_kill(ctx);
2704 	io_eventfd_unregister(ctx);
2705 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2706 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2707 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2708 	io_alloc_cache_free(&ctx->uring_cache, kfree);
2709 	io_alloc_cache_free(&ctx->msg_cache, kfree);
2710 	io_futex_cache_free(ctx);
2711 	io_destroy_buffers(ctx);
2712 	io_free_region(ctx, &ctx->param_region);
2713 	mutex_unlock(&ctx->uring_lock);
2714 	if (ctx->sq_creds)
2715 		put_cred(ctx->sq_creds);
2716 	if (ctx->submitter_task)
2717 		put_task_struct(ctx->submitter_task);
2718 
2719 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2720 
2721 	if (ctx->mm_account) {
2722 		mmdrop(ctx->mm_account);
2723 		ctx->mm_account = NULL;
2724 	}
2725 	io_rings_free(ctx);
2726 
2727 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2728 		static_branch_dec(&io_key_has_sqarray);
2729 
2730 	percpu_ref_exit(&ctx->refs);
2731 	free_uid(ctx->user);
2732 	io_req_caches_free(ctx);
2733 	if (ctx->hash_map)
2734 		io_wq_put_hash(ctx->hash_map);
2735 	io_napi_free(ctx);
2736 	kvfree(ctx->cancel_table.hbs);
2737 	xa_destroy(&ctx->io_bl_xa);
2738 	kfree(ctx);
2739 }
2740 
2741 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2742 {
2743 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2744 					       poll_wq_task_work);
2745 
2746 	mutex_lock(&ctx->uring_lock);
2747 	ctx->poll_activated = true;
2748 	mutex_unlock(&ctx->uring_lock);
2749 
2750 	/*
2751 	 * Wake ups for some events between start of polling and activation
2752 	 * might've been lost due to loose synchronisation.
2753 	 */
2754 	wake_up_all(&ctx->poll_wq);
2755 	percpu_ref_put(&ctx->refs);
2756 }
2757 
2758 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2759 {
2760 	spin_lock(&ctx->completion_lock);
2761 	/* already activated or in progress */
2762 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2763 		goto out;
2764 	if (WARN_ON_ONCE(!ctx->task_complete))
2765 		goto out;
2766 	if (!ctx->submitter_task)
2767 		goto out;
2768 	/*
2769 	 * with ->submitter_task only the submitter task completes requests, we
2770 	 * only need to sync with it, which is done by injecting a tw
2771 	 */
2772 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2773 	percpu_ref_get(&ctx->refs);
2774 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2775 		percpu_ref_put(&ctx->refs);
2776 out:
2777 	spin_unlock(&ctx->completion_lock);
2778 }
2779 
2780 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2781 {
2782 	struct io_ring_ctx *ctx = file->private_data;
2783 	__poll_t mask = 0;
2784 
2785 	if (unlikely(!ctx->poll_activated))
2786 		io_activate_pollwq(ctx);
2787 	/*
2788 	 * provides mb() which pairs with barrier from wq_has_sleeper
2789 	 * call in io_commit_cqring
2790 	 */
2791 	poll_wait(file, &ctx->poll_wq, wait);
2792 
2793 	if (!io_sqring_full(ctx))
2794 		mask |= EPOLLOUT | EPOLLWRNORM;
2795 
2796 	/*
2797 	 * Don't flush cqring overflow list here, just do a simple check.
2798 	 * Otherwise there could possible be ABBA deadlock:
2799 	 *      CPU0                    CPU1
2800 	 *      ----                    ----
2801 	 * lock(&ctx->uring_lock);
2802 	 *                              lock(&ep->mtx);
2803 	 *                              lock(&ctx->uring_lock);
2804 	 * lock(&ep->mtx);
2805 	 *
2806 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2807 	 * pushes them to do the flush.
2808 	 */
2809 
2810 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2811 		mask |= EPOLLIN | EPOLLRDNORM;
2812 
2813 	return mask;
2814 }
2815 
2816 struct io_tctx_exit {
2817 	struct callback_head		task_work;
2818 	struct completion		completion;
2819 	struct io_ring_ctx		*ctx;
2820 };
2821 
2822 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2823 {
2824 	struct io_uring_task *tctx = current->io_uring;
2825 	struct io_tctx_exit *work;
2826 
2827 	work = container_of(cb, struct io_tctx_exit, task_work);
2828 	/*
2829 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2830 	 * node. It'll be removed by the end of cancellation, just ignore it.
2831 	 * tctx can be NULL if the queueing of this task_work raced with
2832 	 * work cancelation off the exec path.
2833 	 */
2834 	if (tctx && !atomic_read(&tctx->in_cancel))
2835 		io_uring_del_tctx_node((unsigned long)work->ctx);
2836 	complete(&work->completion);
2837 }
2838 
2839 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2840 {
2841 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2842 
2843 	return req->ctx == data;
2844 }
2845 
2846 static __cold void io_ring_exit_work(struct work_struct *work)
2847 {
2848 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2849 	unsigned long timeout = jiffies + HZ * 60 * 5;
2850 	unsigned long interval = HZ / 20;
2851 	struct io_tctx_exit exit;
2852 	struct io_tctx_node *node;
2853 	int ret;
2854 
2855 	/*
2856 	 * If we're doing polled IO and end up having requests being
2857 	 * submitted async (out-of-line), then completions can come in while
2858 	 * we're waiting for refs to drop. We need to reap these manually,
2859 	 * as nobody else will be looking for them.
2860 	 */
2861 	do {
2862 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2863 			mutex_lock(&ctx->uring_lock);
2864 			io_cqring_overflow_kill(ctx);
2865 			mutex_unlock(&ctx->uring_lock);
2866 		}
2867 
2868 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2869 			io_move_task_work_from_local(ctx);
2870 
2871 		/* The SQPOLL thread never reaches this path */
2872 		while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2873 			cond_resched();
2874 
2875 		if (ctx->sq_data) {
2876 			struct io_sq_data *sqd = ctx->sq_data;
2877 			struct task_struct *tsk;
2878 
2879 			io_sq_thread_park(sqd);
2880 			tsk = sqd->thread;
2881 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2882 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2883 						io_cancel_ctx_cb, ctx, true);
2884 			io_sq_thread_unpark(sqd);
2885 		}
2886 
2887 		io_req_caches_free(ctx);
2888 
2889 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2890 			/* there is little hope left, don't run it too often */
2891 			interval = HZ * 60;
2892 		}
2893 		/*
2894 		 * This is really an uninterruptible wait, as it has to be
2895 		 * complete. But it's also run from a kworker, which doesn't
2896 		 * take signals, so it's fine to make it interruptible. This
2897 		 * avoids scenarios where we knowingly can wait much longer
2898 		 * on completions, for example if someone does a SIGSTOP on
2899 		 * a task that needs to finish task_work to make this loop
2900 		 * complete. That's a synthetic situation that should not
2901 		 * cause a stuck task backtrace, and hence a potential panic
2902 		 * on stuck tasks if that is enabled.
2903 		 */
2904 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2905 
2906 	init_completion(&exit.completion);
2907 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2908 	exit.ctx = ctx;
2909 
2910 	mutex_lock(&ctx->uring_lock);
2911 	while (!list_empty(&ctx->tctx_list)) {
2912 		WARN_ON_ONCE(time_after(jiffies, timeout));
2913 
2914 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2915 					ctx_node);
2916 		/* don't spin on a single task if cancellation failed */
2917 		list_rotate_left(&ctx->tctx_list);
2918 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2919 		if (WARN_ON_ONCE(ret))
2920 			continue;
2921 
2922 		mutex_unlock(&ctx->uring_lock);
2923 		/*
2924 		 * See comment above for
2925 		 * wait_for_completion_interruptible_timeout() on why this
2926 		 * wait is marked as interruptible.
2927 		 */
2928 		wait_for_completion_interruptible(&exit.completion);
2929 		mutex_lock(&ctx->uring_lock);
2930 	}
2931 	mutex_unlock(&ctx->uring_lock);
2932 	spin_lock(&ctx->completion_lock);
2933 	spin_unlock(&ctx->completion_lock);
2934 
2935 	/* pairs with RCU read section in io_req_local_work_add() */
2936 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2937 		synchronize_rcu();
2938 
2939 	io_ring_ctx_free(ctx);
2940 }
2941 
2942 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2943 {
2944 	unsigned long index;
2945 	struct creds *creds;
2946 
2947 	mutex_lock(&ctx->uring_lock);
2948 	percpu_ref_kill(&ctx->refs);
2949 	xa_for_each(&ctx->personalities, index, creds)
2950 		io_unregister_personality(ctx, index);
2951 	mutex_unlock(&ctx->uring_lock);
2952 
2953 	flush_delayed_work(&ctx->fallback_work);
2954 
2955 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2956 	/*
2957 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2958 	 * if we're exiting a ton of rings at the same time. It just adds
2959 	 * noise and overhead, there's no discernable change in runtime
2960 	 * over using system_wq.
2961 	 */
2962 	queue_work(iou_wq, &ctx->exit_work);
2963 }
2964 
2965 static int io_uring_release(struct inode *inode, struct file *file)
2966 {
2967 	struct io_ring_ctx *ctx = file->private_data;
2968 
2969 	file->private_data = NULL;
2970 	io_ring_ctx_wait_and_kill(ctx);
2971 	return 0;
2972 }
2973 
2974 struct io_task_cancel {
2975 	struct io_uring_task *tctx;
2976 	bool all;
2977 };
2978 
2979 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2980 {
2981 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2982 	struct io_task_cancel *cancel = data;
2983 
2984 	return io_match_task_safe(req, cancel->tctx, cancel->all);
2985 }
2986 
2987 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2988 					 struct io_uring_task *tctx,
2989 					 bool cancel_all)
2990 {
2991 	struct io_defer_entry *de;
2992 	LIST_HEAD(list);
2993 
2994 	spin_lock(&ctx->completion_lock);
2995 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2996 		if (io_match_task_safe(de->req, tctx, cancel_all)) {
2997 			list_cut_position(&list, &ctx->defer_list, &de->list);
2998 			break;
2999 		}
3000 	}
3001 	spin_unlock(&ctx->completion_lock);
3002 	if (list_empty(&list))
3003 		return false;
3004 
3005 	while (!list_empty(&list)) {
3006 		de = list_first_entry(&list, struct io_defer_entry, list);
3007 		list_del_init(&de->list);
3008 		io_req_task_queue_fail(de->req, -ECANCELED);
3009 		kfree(de);
3010 	}
3011 	return true;
3012 }
3013 
3014 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3015 {
3016 	struct io_tctx_node *node;
3017 	enum io_wq_cancel cret;
3018 	bool ret = false;
3019 
3020 	mutex_lock(&ctx->uring_lock);
3021 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3022 		struct io_uring_task *tctx = node->task->io_uring;
3023 
3024 		/*
3025 		 * io_wq will stay alive while we hold uring_lock, because it's
3026 		 * killed after ctx nodes, which requires to take the lock.
3027 		 */
3028 		if (!tctx || !tctx->io_wq)
3029 			continue;
3030 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3031 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3032 	}
3033 	mutex_unlock(&ctx->uring_lock);
3034 
3035 	return ret;
3036 }
3037 
3038 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3039 						struct io_uring_task *tctx,
3040 						bool cancel_all,
3041 						bool is_sqpoll_thread)
3042 {
3043 	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3044 	enum io_wq_cancel cret;
3045 	bool ret = false;
3046 
3047 	/* set it so io_req_local_work_add() would wake us up */
3048 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3049 		atomic_set(&ctx->cq_wait_nr, 1);
3050 		smp_mb();
3051 	}
3052 
3053 	/* failed during ring init, it couldn't have issued any requests */
3054 	if (!ctx->rings)
3055 		return false;
3056 
3057 	if (!tctx) {
3058 		ret |= io_uring_try_cancel_iowq(ctx);
3059 	} else if (tctx->io_wq) {
3060 		/*
3061 		 * Cancels requests of all rings, not only @ctx, but
3062 		 * it's fine as the task is in exit/exec.
3063 		 */
3064 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3065 				       &cancel, true);
3066 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3067 	}
3068 
3069 	/* SQPOLL thread does its own polling */
3070 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3071 	    is_sqpoll_thread) {
3072 		while (!wq_list_empty(&ctx->iopoll_list)) {
3073 			io_iopoll_try_reap_events(ctx);
3074 			ret = true;
3075 			cond_resched();
3076 		}
3077 	}
3078 
3079 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3080 	    io_allowed_defer_tw_run(ctx))
3081 		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3082 	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3083 	mutex_lock(&ctx->uring_lock);
3084 	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3085 	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3086 	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3087 	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3088 	mutex_unlock(&ctx->uring_lock);
3089 	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3090 	if (tctx)
3091 		ret |= io_run_task_work() > 0;
3092 	else
3093 		ret |= flush_delayed_work(&ctx->fallback_work);
3094 	return ret;
3095 }
3096 
3097 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3098 {
3099 	if (tracked)
3100 		return atomic_read(&tctx->inflight_tracked);
3101 	return percpu_counter_sum(&tctx->inflight);
3102 }
3103 
3104 /*
3105  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3106  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3107  */
3108 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3109 {
3110 	struct io_uring_task *tctx = current->io_uring;
3111 	struct io_ring_ctx *ctx;
3112 	struct io_tctx_node *node;
3113 	unsigned long index;
3114 	s64 inflight;
3115 	DEFINE_WAIT(wait);
3116 
3117 	WARN_ON_ONCE(sqd && sqd->thread != current);
3118 
3119 	if (!current->io_uring)
3120 		return;
3121 	if (tctx->io_wq)
3122 		io_wq_exit_start(tctx->io_wq);
3123 
3124 	atomic_inc(&tctx->in_cancel);
3125 	do {
3126 		bool loop = false;
3127 
3128 		io_uring_drop_tctx_refs(current);
3129 		if (!tctx_inflight(tctx, !cancel_all))
3130 			break;
3131 
3132 		/* read completions before cancelations */
3133 		inflight = tctx_inflight(tctx, false);
3134 		if (!inflight)
3135 			break;
3136 
3137 		if (!sqd) {
3138 			xa_for_each(&tctx->xa, index, node) {
3139 				/* sqpoll task will cancel all its requests */
3140 				if (node->ctx->sq_data)
3141 					continue;
3142 				loop |= io_uring_try_cancel_requests(node->ctx,
3143 							current->io_uring,
3144 							cancel_all,
3145 							false);
3146 			}
3147 		} else {
3148 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3149 				loop |= io_uring_try_cancel_requests(ctx,
3150 								     current->io_uring,
3151 								     cancel_all,
3152 								     true);
3153 		}
3154 
3155 		if (loop) {
3156 			cond_resched();
3157 			continue;
3158 		}
3159 
3160 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3161 		io_run_task_work();
3162 		io_uring_drop_tctx_refs(current);
3163 		xa_for_each(&tctx->xa, index, node) {
3164 			if (io_local_work_pending(node->ctx)) {
3165 				WARN_ON_ONCE(node->ctx->submitter_task &&
3166 					     node->ctx->submitter_task != current);
3167 				goto end_wait;
3168 			}
3169 		}
3170 		/*
3171 		 * If we've seen completions, retry without waiting. This
3172 		 * avoids a race where a completion comes in before we did
3173 		 * prepare_to_wait().
3174 		 */
3175 		if (inflight == tctx_inflight(tctx, !cancel_all))
3176 			schedule();
3177 end_wait:
3178 		finish_wait(&tctx->wait, &wait);
3179 	} while (1);
3180 
3181 	io_uring_clean_tctx(tctx);
3182 	if (cancel_all) {
3183 		/*
3184 		 * We shouldn't run task_works after cancel, so just leave
3185 		 * ->in_cancel set for normal exit.
3186 		 */
3187 		atomic_dec(&tctx->in_cancel);
3188 		/* for exec all current's requests should be gone, kill tctx */
3189 		__io_uring_free(current);
3190 	}
3191 }
3192 
3193 void __io_uring_cancel(bool cancel_all)
3194 {
3195 	io_uring_unreg_ringfd();
3196 	io_uring_cancel_generic(cancel_all, NULL);
3197 }
3198 
3199 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3200 			const struct io_uring_getevents_arg __user *uarg)
3201 {
3202 	unsigned long size = sizeof(struct io_uring_reg_wait);
3203 	unsigned long offset = (uintptr_t)uarg;
3204 	unsigned long end;
3205 
3206 	if (unlikely(offset % sizeof(long)))
3207 		return ERR_PTR(-EFAULT);
3208 
3209 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3210 	if (unlikely(check_add_overflow(offset, size, &end) ||
3211 		     end > ctx->cq_wait_size))
3212 		return ERR_PTR(-EFAULT);
3213 
3214 	offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3215 	return ctx->cq_wait_arg + offset;
3216 }
3217 
3218 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3219 			       const void __user *argp, size_t argsz)
3220 {
3221 	struct io_uring_getevents_arg arg;
3222 
3223 	if (!(flags & IORING_ENTER_EXT_ARG))
3224 		return 0;
3225 	if (flags & IORING_ENTER_EXT_ARG_REG)
3226 		return -EINVAL;
3227 	if (argsz != sizeof(arg))
3228 		return -EINVAL;
3229 	if (copy_from_user(&arg, argp, sizeof(arg)))
3230 		return -EFAULT;
3231 	return 0;
3232 }
3233 
3234 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3235 			  const void __user *argp, struct ext_arg *ext_arg)
3236 {
3237 	const struct io_uring_getevents_arg __user *uarg = argp;
3238 	struct io_uring_getevents_arg arg;
3239 
3240 	/*
3241 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3242 	 * is just a pointer to the sigset_t.
3243 	 */
3244 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3245 		ext_arg->sig = (const sigset_t __user *) argp;
3246 		return 0;
3247 	}
3248 
3249 	if (flags & IORING_ENTER_EXT_ARG_REG) {
3250 		struct io_uring_reg_wait *w;
3251 
3252 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3253 			return -EINVAL;
3254 		w = io_get_ext_arg_reg(ctx, argp);
3255 		if (IS_ERR(w))
3256 			return PTR_ERR(w);
3257 
3258 		if (w->flags & ~IORING_REG_WAIT_TS)
3259 			return -EINVAL;
3260 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3261 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3262 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3263 		if (w->flags & IORING_REG_WAIT_TS) {
3264 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3265 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3266 			ext_arg->ts_set = true;
3267 		}
3268 		return 0;
3269 	}
3270 
3271 	/*
3272 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3273 	 * timespec and sigset_t pointers if good.
3274 	 */
3275 	if (ext_arg->argsz != sizeof(arg))
3276 		return -EINVAL;
3277 #ifdef CONFIG_64BIT
3278 	if (!user_access_begin(uarg, sizeof(*uarg)))
3279 		return -EFAULT;
3280 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3281 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3282 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3283 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3284 	user_access_end();
3285 #else
3286 	if (copy_from_user(&arg, uarg, sizeof(arg)))
3287 		return -EFAULT;
3288 #endif
3289 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3290 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3291 	ext_arg->argsz = arg.sigmask_sz;
3292 	if (arg.ts) {
3293 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3294 			return -EFAULT;
3295 		ext_arg->ts_set = true;
3296 	}
3297 	return 0;
3298 #ifdef CONFIG_64BIT
3299 uaccess_end:
3300 	user_access_end();
3301 	return -EFAULT;
3302 #endif
3303 }
3304 
3305 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3306 		u32, min_complete, u32, flags, const void __user *, argp,
3307 		size_t, argsz)
3308 {
3309 	struct io_ring_ctx *ctx;
3310 	struct file *file;
3311 	long ret;
3312 
3313 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3314 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3315 			       IORING_ENTER_REGISTERED_RING |
3316 			       IORING_ENTER_ABS_TIMER |
3317 			       IORING_ENTER_EXT_ARG_REG)))
3318 		return -EINVAL;
3319 
3320 	/*
3321 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3322 	 * need only dereference our task private array to find it.
3323 	 */
3324 	if (flags & IORING_ENTER_REGISTERED_RING) {
3325 		struct io_uring_task *tctx = current->io_uring;
3326 
3327 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3328 			return -EINVAL;
3329 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3330 		file = tctx->registered_rings[fd];
3331 		if (unlikely(!file))
3332 			return -EBADF;
3333 	} else {
3334 		file = fget(fd);
3335 		if (unlikely(!file))
3336 			return -EBADF;
3337 		ret = -EOPNOTSUPP;
3338 		if (unlikely(!io_is_uring_fops(file)))
3339 			goto out;
3340 	}
3341 
3342 	ctx = file->private_data;
3343 	ret = -EBADFD;
3344 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3345 		goto out;
3346 
3347 	/*
3348 	 * For SQ polling, the thread will do all submissions and completions.
3349 	 * Just return the requested submit count, and wake the thread if
3350 	 * we were asked to.
3351 	 */
3352 	ret = 0;
3353 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3354 		if (unlikely(ctx->sq_data->thread == NULL)) {
3355 			ret = -EOWNERDEAD;
3356 			goto out;
3357 		}
3358 		if (flags & IORING_ENTER_SQ_WAKEUP)
3359 			wake_up(&ctx->sq_data->wait);
3360 		if (flags & IORING_ENTER_SQ_WAIT)
3361 			io_sqpoll_wait_sq(ctx);
3362 
3363 		ret = to_submit;
3364 	} else if (to_submit) {
3365 		ret = io_uring_add_tctx_node(ctx);
3366 		if (unlikely(ret))
3367 			goto out;
3368 
3369 		mutex_lock(&ctx->uring_lock);
3370 		ret = io_submit_sqes(ctx, to_submit);
3371 		if (ret != to_submit) {
3372 			mutex_unlock(&ctx->uring_lock);
3373 			goto out;
3374 		}
3375 		if (flags & IORING_ENTER_GETEVENTS) {
3376 			if (ctx->syscall_iopoll)
3377 				goto iopoll_locked;
3378 			/*
3379 			 * Ignore errors, we'll soon call io_cqring_wait() and
3380 			 * it should handle ownership problems if any.
3381 			 */
3382 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3383 				(void)io_run_local_work_locked(ctx, min_complete);
3384 		}
3385 		mutex_unlock(&ctx->uring_lock);
3386 	}
3387 
3388 	if (flags & IORING_ENTER_GETEVENTS) {
3389 		int ret2;
3390 
3391 		if (ctx->syscall_iopoll) {
3392 			/*
3393 			 * We disallow the app entering submit/complete with
3394 			 * polling, but we still need to lock the ring to
3395 			 * prevent racing with polled issue that got punted to
3396 			 * a workqueue.
3397 			 */
3398 			mutex_lock(&ctx->uring_lock);
3399 iopoll_locked:
3400 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3401 			if (likely(!ret2)) {
3402 				min_complete = min(min_complete,
3403 						   ctx->cq_entries);
3404 				ret2 = io_iopoll_check(ctx, min_complete);
3405 			}
3406 			mutex_unlock(&ctx->uring_lock);
3407 		} else {
3408 			struct ext_arg ext_arg = { .argsz = argsz };
3409 
3410 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3411 			if (likely(!ret2)) {
3412 				min_complete = min(min_complete,
3413 						   ctx->cq_entries);
3414 				ret2 = io_cqring_wait(ctx, min_complete, flags,
3415 						      &ext_arg);
3416 			}
3417 		}
3418 
3419 		if (!ret) {
3420 			ret = ret2;
3421 
3422 			/*
3423 			 * EBADR indicates that one or more CQE were dropped.
3424 			 * Once the user has been informed we can clear the bit
3425 			 * as they are obviously ok with those drops.
3426 			 */
3427 			if (unlikely(ret2 == -EBADR))
3428 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3429 					  &ctx->check_cq);
3430 		}
3431 	}
3432 out:
3433 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3434 		fput(file);
3435 	return ret;
3436 }
3437 
3438 static const struct file_operations io_uring_fops = {
3439 	.release	= io_uring_release,
3440 	.mmap		= io_uring_mmap,
3441 	.get_unmapped_area = io_uring_get_unmapped_area,
3442 #ifndef CONFIG_MMU
3443 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3444 #endif
3445 	.poll		= io_uring_poll,
3446 #ifdef CONFIG_PROC_FS
3447 	.show_fdinfo	= io_uring_show_fdinfo,
3448 #endif
3449 };
3450 
3451 bool io_is_uring_fops(struct file *file)
3452 {
3453 	return file->f_op == &io_uring_fops;
3454 }
3455 
3456 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3457 					 struct io_uring_params *p)
3458 {
3459 	struct io_uring_region_desc rd;
3460 	struct io_rings *rings;
3461 	size_t size, sq_array_offset;
3462 	int ret;
3463 
3464 	/* make sure these are sane, as we already accounted them */
3465 	ctx->sq_entries = p->sq_entries;
3466 	ctx->cq_entries = p->cq_entries;
3467 
3468 	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3469 			  &sq_array_offset);
3470 	if (size == SIZE_MAX)
3471 		return -EOVERFLOW;
3472 
3473 	memset(&rd, 0, sizeof(rd));
3474 	rd.size = PAGE_ALIGN(size);
3475 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3476 		rd.user_addr = p->cq_off.user_addr;
3477 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3478 	}
3479 	ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3480 	if (ret)
3481 		return ret;
3482 	ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3483 
3484 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3485 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3486 	rings->sq_ring_mask = p->sq_entries - 1;
3487 	rings->cq_ring_mask = p->cq_entries - 1;
3488 	rings->sq_ring_entries = p->sq_entries;
3489 	rings->cq_ring_entries = p->cq_entries;
3490 
3491 	if (p->flags & IORING_SETUP_SQE128)
3492 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3493 	else
3494 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3495 	if (size == SIZE_MAX) {
3496 		io_rings_free(ctx);
3497 		return -EOVERFLOW;
3498 	}
3499 
3500 	memset(&rd, 0, sizeof(rd));
3501 	rd.size = PAGE_ALIGN(size);
3502 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3503 		rd.user_addr = p->sq_off.user_addr;
3504 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3505 	}
3506 	ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3507 	if (ret) {
3508 		io_rings_free(ctx);
3509 		return ret;
3510 	}
3511 	ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3512 	return 0;
3513 }
3514 
3515 static int io_uring_install_fd(struct file *file)
3516 {
3517 	int fd;
3518 
3519 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3520 	if (fd < 0)
3521 		return fd;
3522 	fd_install(fd, file);
3523 	return fd;
3524 }
3525 
3526 /*
3527  * Allocate an anonymous fd, this is what constitutes the application
3528  * visible backing of an io_uring instance. The application mmaps this
3529  * fd to gain access to the SQ/CQ ring details.
3530  */
3531 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3532 {
3533 	/* Create a new inode so that the LSM can block the creation.  */
3534 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3535 					 O_RDWR | O_CLOEXEC, NULL);
3536 }
3537 
3538 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3539 {
3540 	if (!entries)
3541 		return -EINVAL;
3542 	if (entries > IORING_MAX_ENTRIES) {
3543 		if (!(p->flags & IORING_SETUP_CLAMP))
3544 			return -EINVAL;
3545 		entries = IORING_MAX_ENTRIES;
3546 	}
3547 
3548 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3549 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3550 		return -EINVAL;
3551 
3552 	/*
3553 	 * Use twice as many entries for the CQ ring. It's possible for the
3554 	 * application to drive a higher depth than the size of the SQ ring,
3555 	 * since the sqes are only used at submission time. This allows for
3556 	 * some flexibility in overcommitting a bit. If the application has
3557 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3558 	 * of CQ ring entries manually.
3559 	 */
3560 	p->sq_entries = roundup_pow_of_two(entries);
3561 	if (p->flags & IORING_SETUP_CQSIZE) {
3562 		/*
3563 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3564 		 * to a power-of-two, if it isn't already. We do NOT impose
3565 		 * any cq vs sq ring sizing.
3566 		 */
3567 		if (!p->cq_entries)
3568 			return -EINVAL;
3569 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3570 			if (!(p->flags & IORING_SETUP_CLAMP))
3571 				return -EINVAL;
3572 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3573 		}
3574 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3575 		if (p->cq_entries < p->sq_entries)
3576 			return -EINVAL;
3577 	} else {
3578 		p->cq_entries = 2 * p->sq_entries;
3579 	}
3580 
3581 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3582 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3583 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3584 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3585 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3586 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3587 	p->sq_off.resv1 = 0;
3588 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3589 		p->sq_off.user_addr = 0;
3590 
3591 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3592 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3593 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3594 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3595 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3596 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3597 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3598 	p->cq_off.resv1 = 0;
3599 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3600 		p->cq_off.user_addr = 0;
3601 
3602 	return 0;
3603 }
3604 
3605 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3606 				  struct io_uring_params __user *params)
3607 {
3608 	struct io_ring_ctx *ctx;
3609 	struct io_uring_task *tctx;
3610 	struct file *file;
3611 	int ret;
3612 
3613 	ret = io_uring_fill_params(entries, p);
3614 	if (unlikely(ret))
3615 		return ret;
3616 
3617 	ctx = io_ring_ctx_alloc(p);
3618 	if (!ctx)
3619 		return -ENOMEM;
3620 
3621 	ctx->clockid = CLOCK_MONOTONIC;
3622 	ctx->clock_offset = 0;
3623 
3624 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3625 		static_branch_inc(&io_key_has_sqarray);
3626 
3627 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3628 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3629 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3630 		ctx->task_complete = true;
3631 
3632 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3633 		ctx->lockless_cq = true;
3634 
3635 	/*
3636 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3637 	 * purposes, see io_activate_pollwq()
3638 	 */
3639 	if (!ctx->task_complete)
3640 		ctx->poll_activated = true;
3641 
3642 	/*
3643 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3644 	 * space applications don't need to do io completion events
3645 	 * polling again, they can rely on io_sq_thread to do polling
3646 	 * work, which can reduce cpu usage and uring_lock contention.
3647 	 */
3648 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3649 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3650 		ctx->syscall_iopoll = 1;
3651 
3652 	ctx->compat = in_compat_syscall();
3653 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3654 		ctx->user = get_uid(current_user());
3655 
3656 	/*
3657 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3658 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3659 	 */
3660 	ret = -EINVAL;
3661 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3662 		/* IPI related flags don't make sense with SQPOLL */
3663 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3664 				  IORING_SETUP_TASKRUN_FLAG |
3665 				  IORING_SETUP_DEFER_TASKRUN))
3666 			goto err;
3667 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3668 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3669 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3670 	} else {
3671 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3672 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3673 			goto err;
3674 		ctx->notify_method = TWA_SIGNAL;
3675 	}
3676 
3677 	/* HYBRID_IOPOLL only valid with IOPOLL */
3678 	if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3679 			IORING_SETUP_HYBRID_IOPOLL)
3680 		goto err;
3681 
3682 	/*
3683 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3684 	 * submission task. This implies that there is only one submitter, so enforce
3685 	 * that.
3686 	 */
3687 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3688 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3689 		goto err;
3690 	}
3691 
3692 	/*
3693 	 * This is just grabbed for accounting purposes. When a process exits,
3694 	 * the mm is exited and dropped before the files, hence we need to hang
3695 	 * on to this mm purely for the purposes of being able to unaccount
3696 	 * memory (locked/pinned vm). It's not used for anything else.
3697 	 */
3698 	mmgrab(current->mm);
3699 	ctx->mm_account = current->mm;
3700 
3701 	ret = io_allocate_scq_urings(ctx, p);
3702 	if (ret)
3703 		goto err;
3704 
3705 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3706 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3707 
3708 	ret = io_sq_offload_create(ctx, p);
3709 	if (ret)
3710 		goto err;
3711 
3712 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3713 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3714 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3715 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3716 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3717 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3718 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3719 			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3720 			IORING_FEAT_RW_ATTR;
3721 
3722 	if (copy_to_user(params, p, sizeof(*p))) {
3723 		ret = -EFAULT;
3724 		goto err;
3725 	}
3726 
3727 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3728 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3729 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3730 
3731 	file = io_uring_get_file(ctx);
3732 	if (IS_ERR(file)) {
3733 		ret = PTR_ERR(file);
3734 		goto err;
3735 	}
3736 
3737 	ret = __io_uring_add_tctx_node(ctx);
3738 	if (ret)
3739 		goto err_fput;
3740 	tctx = current->io_uring;
3741 
3742 	/*
3743 	 * Install ring fd as the very last thing, so we don't risk someone
3744 	 * having closed it before we finish setup
3745 	 */
3746 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3747 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3748 	else
3749 		ret = io_uring_install_fd(file);
3750 	if (ret < 0)
3751 		goto err_fput;
3752 
3753 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3754 	return ret;
3755 err:
3756 	io_ring_ctx_wait_and_kill(ctx);
3757 	return ret;
3758 err_fput:
3759 	fput(file);
3760 	return ret;
3761 }
3762 
3763 /*
3764  * Sets up an aio uring context, and returns the fd. Applications asks for a
3765  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3766  * params structure passed in.
3767  */
3768 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3769 {
3770 	struct io_uring_params p;
3771 	int i;
3772 
3773 	if (copy_from_user(&p, params, sizeof(p)))
3774 		return -EFAULT;
3775 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3776 		if (p.resv[i])
3777 			return -EINVAL;
3778 	}
3779 
3780 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3781 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3782 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3783 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3784 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3785 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3786 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3787 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3788 			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3789 		return -EINVAL;
3790 
3791 	return io_uring_create(entries, &p, params);
3792 }
3793 
3794 static inline bool io_uring_allowed(void)
3795 {
3796 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3797 	kgid_t io_uring_group;
3798 
3799 	if (disabled == 2)
3800 		return false;
3801 
3802 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3803 		return true;
3804 
3805 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3806 	if (!gid_valid(io_uring_group))
3807 		return false;
3808 
3809 	return in_group_p(io_uring_group);
3810 }
3811 
3812 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3813 		struct io_uring_params __user *, params)
3814 {
3815 	if (!io_uring_allowed())
3816 		return -EPERM;
3817 
3818 	return io_uring_setup(entries, params);
3819 }
3820 
3821 static int __init io_uring_init(void)
3822 {
3823 	struct kmem_cache_args kmem_args = {
3824 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3825 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3826 		.freeptr_offset = offsetof(struct io_kiocb, work),
3827 		.use_freeptr_offset = true,
3828 	};
3829 
3830 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3831 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3832 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3833 } while (0)
3834 
3835 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3836 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3837 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3838 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3839 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3840 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3841 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3842 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3843 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3844 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3845 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3846 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3847 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3848 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3849 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3850 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3851 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3852 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3853 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3854 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3855 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3856 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3857 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3858 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3859 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3860 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3861 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3862 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3863 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3864 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3865 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3866 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3867 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3868 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3869 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3870 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3871 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3872 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3873 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3874 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3875 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3876 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3877 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3878 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3879 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3880 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3881 	BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3882 	BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3883 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3884 
3885 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3886 		     sizeof(struct io_uring_rsrc_update));
3887 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3888 		     sizeof(struct io_uring_rsrc_update2));
3889 
3890 	/* ->buf_index is u16 */
3891 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3892 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3893 		     offsetof(struct io_uring_buf_ring, tail));
3894 
3895 	/* should fit into one byte */
3896 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3897 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3898 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3899 
3900 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3901 
3902 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3903 
3904 	/* top 8bits are for internal use */
3905 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3906 
3907 	io_uring_optable_init();
3908 
3909 	/*
3910 	 * Allow user copy in the per-command field, which starts after the
3911 	 * file in io_kiocb and until the opcode field. The openat2 handling
3912 	 * requires copying in user memory into the io_kiocb object in that
3913 	 * range, and HARDENED_USERCOPY will complain if we haven't
3914 	 * correctly annotated this range.
3915 	 */
3916 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3917 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3918 				SLAB_TYPESAFE_BY_RCU);
3919 	io_buf_cachep = KMEM_CACHE(io_buffer,
3920 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3921 
3922 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3923 
3924 #ifdef CONFIG_SYSCTL
3925 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3926 #endif
3927 
3928 	return 0;
3929 };
3930 __initcall(io_uring_init);
3931