1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 101 #include "timeout.h" 102 #include "poll.h" 103 #include "rw.h" 104 #include "alloc_cache.h" 105 #include "eventfd.h" 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 #define IO_LOCAL_TW_DEFAULT_MAX 20 125 126 struct io_defer_entry { 127 struct list_head list; 128 struct io_kiocb *req; 129 u32 seq; 130 }; 131 132 /* requests with any of those set should undergo io_disarm_next() */ 133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 135 136 /* 137 * No waiters. It's larger than any valid value of the tw counter 138 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 139 */ 140 #define IO_CQ_WAKE_INIT (-1U) 141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct io_uring_task *tctx, 146 bool cancel_all, 147 bool is_sqpoll_thread); 148 149 static void io_queue_sqe(struct io_kiocb *req); 150 151 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 152 153 struct kmem_cache *req_cachep; 154 static struct workqueue_struct *iou_wq __ro_after_init; 155 156 static int __read_mostly sysctl_io_uring_disabled; 157 static int __read_mostly sysctl_io_uring_group = -1; 158 159 #ifdef CONFIG_SYSCTL 160 static const struct ctl_table kernel_io_uring_disabled_table[] = { 161 { 162 .procname = "io_uring_disabled", 163 .data = &sysctl_io_uring_disabled, 164 .maxlen = sizeof(sysctl_io_uring_disabled), 165 .mode = 0644, 166 .proc_handler = proc_dointvec_minmax, 167 .extra1 = SYSCTL_ZERO, 168 .extra2 = SYSCTL_TWO, 169 }, 170 { 171 .procname = "io_uring_group", 172 .data = &sysctl_io_uring_group, 173 .maxlen = sizeof(gid_t), 174 .mode = 0644, 175 .proc_handler = proc_dointvec, 176 }, 177 }; 178 #endif 179 180 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 181 { 182 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 183 } 184 185 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 186 { 187 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 188 } 189 190 static bool io_match_linked(struct io_kiocb *head) 191 { 192 struct io_kiocb *req; 193 194 io_for_each_link(req, head) { 195 if (req->flags & REQ_F_INFLIGHT) 196 return true; 197 } 198 return false; 199 } 200 201 /* 202 * As io_match_task() but protected against racing with linked timeouts. 203 * User must not hold timeout_lock. 204 */ 205 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 206 bool cancel_all) 207 { 208 bool matched; 209 210 if (tctx && head->tctx != tctx) 211 return false; 212 if (cancel_all) 213 return true; 214 215 if (head->flags & REQ_F_LINK_TIMEOUT) { 216 struct io_ring_ctx *ctx = head->ctx; 217 218 /* protect against races with linked timeouts */ 219 raw_spin_lock_irq(&ctx->timeout_lock); 220 matched = io_match_linked(head); 221 raw_spin_unlock_irq(&ctx->timeout_lock); 222 } else { 223 matched = io_match_linked(head); 224 } 225 return matched; 226 } 227 228 static inline void req_fail_link_node(struct io_kiocb *req, int res) 229 { 230 req_set_fail(req); 231 io_req_set_res(req, res, 0); 232 } 233 234 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 235 { 236 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 237 } 238 239 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 240 { 241 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 242 243 complete(&ctx->ref_comp); 244 } 245 246 static __cold void io_fallback_req_func(struct work_struct *work) 247 { 248 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 249 fallback_work.work); 250 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 251 struct io_kiocb *req, *tmp; 252 struct io_tw_state ts = {}; 253 254 percpu_ref_get(&ctx->refs); 255 mutex_lock(&ctx->uring_lock); 256 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 257 req->io_task_work.func(req, &ts); 258 io_submit_flush_completions(ctx); 259 mutex_unlock(&ctx->uring_lock); 260 percpu_ref_put(&ctx->refs); 261 } 262 263 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 264 { 265 unsigned int hash_buckets; 266 int i; 267 268 do { 269 hash_buckets = 1U << bits; 270 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 271 GFP_KERNEL_ACCOUNT); 272 if (table->hbs) 273 break; 274 if (bits == 1) 275 return -ENOMEM; 276 bits--; 277 } while (1); 278 279 table->hash_bits = bits; 280 for (i = 0; i < hash_buckets; i++) 281 INIT_HLIST_HEAD(&table->hbs[i].list); 282 return 0; 283 } 284 285 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 286 { 287 struct io_ring_ctx *ctx; 288 int hash_bits; 289 bool ret; 290 291 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 292 if (!ctx) 293 return NULL; 294 295 xa_init(&ctx->io_bl_xa); 296 297 /* 298 * Use 5 bits less than the max cq entries, that should give us around 299 * 32 entries per hash list if totally full and uniformly spread, but 300 * don't keep too many buckets to not overconsume memory. 301 */ 302 hash_bits = ilog2(p->cq_entries) - 5; 303 hash_bits = clamp(hash_bits, 1, 8); 304 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 305 goto err; 306 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 307 0, GFP_KERNEL)) 308 goto err; 309 310 ctx->flags = p->flags; 311 ctx->hybrid_poll_time = LLONG_MAX; 312 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 313 init_waitqueue_head(&ctx->sqo_sq_wait); 314 INIT_LIST_HEAD(&ctx->sqd_list); 315 INIT_LIST_HEAD(&ctx->cq_overflow_list); 316 INIT_LIST_HEAD(&ctx->io_buffers_cache); 317 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 318 sizeof(struct async_poll), 0); 319 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 320 sizeof(struct io_async_msghdr), 321 offsetof(struct io_async_msghdr, clear)); 322 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 323 sizeof(struct io_async_rw), 324 offsetof(struct io_async_rw, clear)); 325 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX, 326 sizeof(struct io_uring_cmd_data), 0); 327 spin_lock_init(&ctx->msg_lock); 328 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 329 sizeof(struct io_kiocb), 0); 330 ret |= io_futex_cache_init(ctx); 331 if (ret) 332 goto free_ref; 333 init_completion(&ctx->ref_comp); 334 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 335 mutex_init(&ctx->uring_lock); 336 init_waitqueue_head(&ctx->cq_wait); 337 init_waitqueue_head(&ctx->poll_wq); 338 spin_lock_init(&ctx->completion_lock); 339 raw_spin_lock_init(&ctx->timeout_lock); 340 INIT_WQ_LIST(&ctx->iopoll_list); 341 INIT_LIST_HEAD(&ctx->io_buffers_comp); 342 INIT_LIST_HEAD(&ctx->defer_list); 343 INIT_LIST_HEAD(&ctx->timeout_list); 344 INIT_LIST_HEAD(&ctx->ltimeout_list); 345 init_llist_head(&ctx->work_llist); 346 INIT_LIST_HEAD(&ctx->tctx_list); 347 ctx->submit_state.free_list.next = NULL; 348 INIT_HLIST_HEAD(&ctx->waitid_list); 349 #ifdef CONFIG_FUTEX 350 INIT_HLIST_HEAD(&ctx->futex_list); 351 #endif 352 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 353 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 354 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 355 io_napi_init(ctx); 356 mutex_init(&ctx->mmap_lock); 357 358 return ctx; 359 360 free_ref: 361 percpu_ref_exit(&ctx->refs); 362 err: 363 io_alloc_cache_free(&ctx->apoll_cache, kfree); 364 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 365 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 366 io_alloc_cache_free(&ctx->uring_cache, kfree); 367 io_alloc_cache_free(&ctx->msg_cache, kfree); 368 io_futex_cache_free(ctx); 369 kvfree(ctx->cancel_table.hbs); 370 xa_destroy(&ctx->io_bl_xa); 371 kfree(ctx); 372 return NULL; 373 } 374 375 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 376 { 377 struct io_rings *r = ctx->rings; 378 379 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 380 ctx->cq_extra--; 381 } 382 383 static bool req_need_defer(struct io_kiocb *req, u32 seq) 384 { 385 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 386 struct io_ring_ctx *ctx = req->ctx; 387 388 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 389 } 390 391 return false; 392 } 393 394 static void io_clean_op(struct io_kiocb *req) 395 { 396 if (req->flags & REQ_F_BUFFER_SELECTED) { 397 spin_lock(&req->ctx->completion_lock); 398 io_kbuf_drop(req); 399 spin_unlock(&req->ctx->completion_lock); 400 } 401 402 if (req->flags & REQ_F_NEED_CLEANUP) { 403 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 404 405 if (def->cleanup) 406 def->cleanup(req); 407 } 408 if ((req->flags & REQ_F_POLLED) && req->apoll) { 409 kfree(req->apoll->double_poll); 410 kfree(req->apoll); 411 req->apoll = NULL; 412 } 413 if (req->flags & REQ_F_INFLIGHT) 414 atomic_dec(&req->tctx->inflight_tracked); 415 if (req->flags & REQ_F_CREDS) 416 put_cred(req->creds); 417 if (req->flags & REQ_F_ASYNC_DATA) { 418 kfree(req->async_data); 419 req->async_data = NULL; 420 } 421 req->flags &= ~IO_REQ_CLEAN_FLAGS; 422 } 423 424 static inline void io_req_track_inflight(struct io_kiocb *req) 425 { 426 if (!(req->flags & REQ_F_INFLIGHT)) { 427 req->flags |= REQ_F_INFLIGHT; 428 atomic_inc(&req->tctx->inflight_tracked); 429 } 430 } 431 432 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 433 { 434 if (WARN_ON_ONCE(!req->link)) 435 return NULL; 436 437 req->flags &= ~REQ_F_ARM_LTIMEOUT; 438 req->flags |= REQ_F_LINK_TIMEOUT; 439 440 /* linked timeouts should have two refs once prep'ed */ 441 io_req_set_refcount(req); 442 __io_req_set_refcount(req->link, 2); 443 return req->link; 444 } 445 446 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 447 { 448 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 449 return NULL; 450 return __io_prep_linked_timeout(req); 451 } 452 453 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 454 { 455 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 456 } 457 458 static inline void io_arm_ltimeout(struct io_kiocb *req) 459 { 460 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 461 __io_arm_ltimeout(req); 462 } 463 464 static void io_prep_async_work(struct io_kiocb *req) 465 { 466 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 467 struct io_ring_ctx *ctx = req->ctx; 468 469 if (!(req->flags & REQ_F_CREDS)) { 470 req->flags |= REQ_F_CREDS; 471 req->creds = get_current_cred(); 472 } 473 474 req->work.list.next = NULL; 475 atomic_set(&req->work.flags, 0); 476 if (req->flags & REQ_F_FORCE_ASYNC) 477 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 478 479 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 480 req->flags |= io_file_get_flags(req->file); 481 482 if (req->file && (req->flags & REQ_F_ISREG)) { 483 bool should_hash = def->hash_reg_file; 484 485 /* don't serialize this request if the fs doesn't need it */ 486 if (should_hash && (req->file->f_flags & O_DIRECT) && 487 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 488 should_hash = false; 489 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 490 io_wq_hash_work(&req->work, file_inode(req->file)); 491 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 492 if (def->unbound_nonreg_file) 493 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 494 } 495 } 496 497 static void io_prep_async_link(struct io_kiocb *req) 498 { 499 struct io_kiocb *cur; 500 501 if (req->flags & REQ_F_LINK_TIMEOUT) { 502 struct io_ring_ctx *ctx = req->ctx; 503 504 raw_spin_lock_irq(&ctx->timeout_lock); 505 io_for_each_link(cur, req) 506 io_prep_async_work(cur); 507 raw_spin_unlock_irq(&ctx->timeout_lock); 508 } else { 509 io_for_each_link(cur, req) 510 io_prep_async_work(cur); 511 } 512 } 513 514 static void io_queue_iowq(struct io_kiocb *req) 515 { 516 struct io_kiocb *link = io_prep_linked_timeout(req); 517 struct io_uring_task *tctx = req->tctx; 518 519 BUG_ON(!tctx); 520 521 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 522 io_req_task_queue_fail(req, -ECANCELED); 523 return; 524 } 525 526 /* init ->work of the whole link before punting */ 527 io_prep_async_link(req); 528 529 /* 530 * Not expected to happen, but if we do have a bug where this _can_ 531 * happen, catch it here and ensure the request is marked as 532 * canceled. That will make io-wq go through the usual work cancel 533 * procedure rather than attempt to run this request (or create a new 534 * worker for it). 535 */ 536 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 537 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 538 539 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 540 io_wq_enqueue(tctx->io_wq, &req->work); 541 if (link) 542 io_queue_linked_timeout(link); 543 } 544 545 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts) 546 { 547 io_queue_iowq(req); 548 } 549 550 void io_req_queue_iowq(struct io_kiocb *req) 551 { 552 req->io_task_work.func = io_req_queue_iowq_tw; 553 io_req_task_work_add(req); 554 } 555 556 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) 557 { 558 spin_lock(&ctx->completion_lock); 559 while (!list_empty(&ctx->defer_list)) { 560 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 561 struct io_defer_entry, list); 562 563 if (req_need_defer(de->req, de->seq)) 564 break; 565 list_del_init(&de->list); 566 io_req_task_queue(de->req); 567 kfree(de); 568 } 569 spin_unlock(&ctx->completion_lock); 570 } 571 572 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 573 { 574 if (ctx->poll_activated) 575 io_poll_wq_wake(ctx); 576 if (ctx->off_timeout_used) 577 io_flush_timeouts(ctx); 578 if (ctx->drain_active) 579 io_queue_deferred(ctx); 580 if (ctx->has_evfd) 581 io_eventfd_flush_signal(ctx); 582 } 583 584 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 585 { 586 if (!ctx->lockless_cq) 587 spin_lock(&ctx->completion_lock); 588 } 589 590 static inline void io_cq_lock(struct io_ring_ctx *ctx) 591 __acquires(ctx->completion_lock) 592 { 593 spin_lock(&ctx->completion_lock); 594 } 595 596 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 597 { 598 io_commit_cqring(ctx); 599 if (!ctx->task_complete) { 600 if (!ctx->lockless_cq) 601 spin_unlock(&ctx->completion_lock); 602 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 603 if (!ctx->syscall_iopoll) 604 io_cqring_wake(ctx); 605 } 606 io_commit_cqring_flush(ctx); 607 } 608 609 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 610 __releases(ctx->completion_lock) 611 { 612 io_commit_cqring(ctx); 613 spin_unlock(&ctx->completion_lock); 614 io_cqring_wake(ctx); 615 io_commit_cqring_flush(ctx); 616 } 617 618 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 619 { 620 size_t cqe_size = sizeof(struct io_uring_cqe); 621 622 lockdep_assert_held(&ctx->uring_lock); 623 624 /* don't abort if we're dying, entries must get freed */ 625 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 626 return; 627 628 if (ctx->flags & IORING_SETUP_CQE32) 629 cqe_size <<= 1; 630 631 io_cq_lock(ctx); 632 while (!list_empty(&ctx->cq_overflow_list)) { 633 struct io_uring_cqe *cqe; 634 struct io_overflow_cqe *ocqe; 635 636 ocqe = list_first_entry(&ctx->cq_overflow_list, 637 struct io_overflow_cqe, list); 638 639 if (!dying) { 640 if (!io_get_cqe_overflow(ctx, &cqe, true)) 641 break; 642 memcpy(cqe, &ocqe->cqe, cqe_size); 643 } 644 list_del(&ocqe->list); 645 kfree(ocqe); 646 647 /* 648 * For silly syzbot cases that deliberately overflow by huge 649 * amounts, check if we need to resched and drop and 650 * reacquire the locks if so. Nothing real would ever hit this. 651 * Ideally we'd have a non-posting unlock for this, but hard 652 * to care for a non-real case. 653 */ 654 if (need_resched()) { 655 io_cq_unlock_post(ctx); 656 mutex_unlock(&ctx->uring_lock); 657 cond_resched(); 658 mutex_lock(&ctx->uring_lock); 659 io_cq_lock(ctx); 660 } 661 } 662 663 if (list_empty(&ctx->cq_overflow_list)) { 664 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 665 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 666 } 667 io_cq_unlock_post(ctx); 668 } 669 670 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 671 { 672 if (ctx->rings) 673 __io_cqring_overflow_flush(ctx, true); 674 } 675 676 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 677 { 678 mutex_lock(&ctx->uring_lock); 679 __io_cqring_overflow_flush(ctx, false); 680 mutex_unlock(&ctx->uring_lock); 681 } 682 683 /* must to be called somewhat shortly after putting a request */ 684 static inline void io_put_task(struct io_kiocb *req) 685 { 686 struct io_uring_task *tctx = req->tctx; 687 688 if (likely(tctx->task == current)) { 689 tctx->cached_refs++; 690 } else { 691 percpu_counter_sub(&tctx->inflight, 1); 692 if (unlikely(atomic_read(&tctx->in_cancel))) 693 wake_up(&tctx->wait); 694 put_task_struct(tctx->task); 695 } 696 } 697 698 void io_task_refs_refill(struct io_uring_task *tctx) 699 { 700 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 701 702 percpu_counter_add(&tctx->inflight, refill); 703 refcount_add(refill, ¤t->usage); 704 tctx->cached_refs += refill; 705 } 706 707 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 708 { 709 struct io_uring_task *tctx = task->io_uring; 710 unsigned int refs = tctx->cached_refs; 711 712 if (refs) { 713 tctx->cached_refs = 0; 714 percpu_counter_sub(&tctx->inflight, refs); 715 put_task_struct_many(task, refs); 716 } 717 } 718 719 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 720 s32 res, u32 cflags, u64 extra1, u64 extra2) 721 { 722 struct io_overflow_cqe *ocqe; 723 size_t ocq_size = sizeof(struct io_overflow_cqe); 724 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 725 726 lockdep_assert_held(&ctx->completion_lock); 727 728 if (is_cqe32) 729 ocq_size += sizeof(struct io_uring_cqe); 730 731 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 732 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 733 if (!ocqe) { 734 /* 735 * If we're in ring overflow flush mode, or in task cancel mode, 736 * or cannot allocate an overflow entry, then we need to drop it 737 * on the floor. 738 */ 739 io_account_cq_overflow(ctx); 740 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 741 return false; 742 } 743 if (list_empty(&ctx->cq_overflow_list)) { 744 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 745 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 746 747 } 748 ocqe->cqe.user_data = user_data; 749 ocqe->cqe.res = res; 750 ocqe->cqe.flags = cflags; 751 if (is_cqe32) { 752 ocqe->cqe.big_cqe[0] = extra1; 753 ocqe->cqe.big_cqe[1] = extra2; 754 } 755 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 756 return true; 757 } 758 759 static void io_req_cqe_overflow(struct io_kiocb *req) 760 { 761 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 762 req->cqe.res, req->cqe.flags, 763 req->big_cqe.extra1, req->big_cqe.extra2); 764 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 765 } 766 767 /* 768 * writes to the cq entry need to come after reading head; the 769 * control dependency is enough as we're using WRITE_ONCE to 770 * fill the cq entry 771 */ 772 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 773 { 774 struct io_rings *rings = ctx->rings; 775 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 776 unsigned int free, queued, len; 777 778 /* 779 * Posting into the CQ when there are pending overflowed CQEs may break 780 * ordering guarantees, which will affect links, F_MORE users and more. 781 * Force overflow the completion. 782 */ 783 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 784 return false; 785 786 /* userspace may cheat modifying the tail, be safe and do min */ 787 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 788 free = ctx->cq_entries - queued; 789 /* we need a contiguous range, limit based on the current array offset */ 790 len = min(free, ctx->cq_entries - off); 791 if (!len) 792 return false; 793 794 if (ctx->flags & IORING_SETUP_CQE32) { 795 off <<= 1; 796 len <<= 1; 797 } 798 799 ctx->cqe_cached = &rings->cqes[off]; 800 ctx->cqe_sentinel = ctx->cqe_cached + len; 801 return true; 802 } 803 804 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 805 u32 cflags) 806 { 807 struct io_uring_cqe *cqe; 808 809 ctx->cq_extra++; 810 811 /* 812 * If we can't get a cq entry, userspace overflowed the 813 * submission (by quite a lot). Increment the overflow count in 814 * the ring. 815 */ 816 if (likely(io_get_cqe(ctx, &cqe))) { 817 WRITE_ONCE(cqe->user_data, user_data); 818 WRITE_ONCE(cqe->res, res); 819 WRITE_ONCE(cqe->flags, cflags); 820 821 if (ctx->flags & IORING_SETUP_CQE32) { 822 WRITE_ONCE(cqe->big_cqe[0], 0); 823 WRITE_ONCE(cqe->big_cqe[1], 0); 824 } 825 826 trace_io_uring_complete(ctx, NULL, cqe); 827 return true; 828 } 829 return false; 830 } 831 832 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, 833 u32 cflags) 834 { 835 bool filled; 836 837 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 838 if (!filled) 839 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 840 841 return filled; 842 } 843 844 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 845 { 846 bool filled; 847 848 io_cq_lock(ctx); 849 filled = __io_post_aux_cqe(ctx, user_data, res, cflags); 850 io_cq_unlock_post(ctx); 851 return filled; 852 } 853 854 /* 855 * Must be called from inline task_work so we now a flush will happen later, 856 * and obviously with ctx->uring_lock held (tw always has that). 857 */ 858 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 859 { 860 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 861 spin_lock(&ctx->completion_lock); 862 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 863 spin_unlock(&ctx->completion_lock); 864 } 865 ctx->submit_state.cq_flush = true; 866 } 867 868 /* 869 * A helper for multishot requests posting additional CQEs. 870 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 871 */ 872 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 873 { 874 struct io_ring_ctx *ctx = req->ctx; 875 bool posted; 876 877 lockdep_assert(!io_wq_current_is_worker()); 878 lockdep_assert_held(&ctx->uring_lock); 879 880 __io_cq_lock(ctx); 881 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 882 ctx->submit_state.cq_flush = true; 883 __io_cq_unlock_post(ctx); 884 return posted; 885 } 886 887 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 888 { 889 struct io_ring_ctx *ctx = req->ctx; 890 891 /* 892 * All execution paths but io-wq use the deferred completions by 893 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 894 */ 895 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 896 return; 897 898 /* 899 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 900 * the submitter task context, IOPOLL protects with uring_lock. 901 */ 902 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) { 903 req->io_task_work.func = io_req_task_complete; 904 io_req_task_work_add(req); 905 return; 906 } 907 908 io_cq_lock(ctx); 909 if (!(req->flags & REQ_F_CQE_SKIP)) { 910 if (!io_fill_cqe_req(ctx, req)) 911 io_req_cqe_overflow(req); 912 } 913 io_cq_unlock_post(ctx); 914 915 /* 916 * We don't free the request here because we know it's called from 917 * io-wq only, which holds a reference, so it cannot be the last put. 918 */ 919 req_ref_put(req); 920 } 921 922 void io_req_defer_failed(struct io_kiocb *req, s32 res) 923 __must_hold(&ctx->uring_lock) 924 { 925 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 926 927 lockdep_assert_held(&req->ctx->uring_lock); 928 929 req_set_fail(req); 930 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 931 if (def->fail) 932 def->fail(req); 933 io_req_complete_defer(req); 934 } 935 936 /* 937 * Don't initialise the fields below on every allocation, but do that in 938 * advance and keep them valid across allocations. 939 */ 940 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 941 { 942 req->ctx = ctx; 943 req->buf_node = NULL; 944 req->file_node = NULL; 945 req->link = NULL; 946 req->async_data = NULL; 947 /* not necessary, but safer to zero */ 948 memset(&req->cqe, 0, sizeof(req->cqe)); 949 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 950 } 951 952 /* 953 * A request might get retired back into the request caches even before opcode 954 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 955 * Because of that, io_alloc_req() should be called only under ->uring_lock 956 * and with extra caution to not get a request that is still worked on. 957 */ 958 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 959 __must_hold(&ctx->uring_lock) 960 { 961 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 962 void *reqs[IO_REQ_ALLOC_BATCH]; 963 int ret; 964 965 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 966 967 /* 968 * Bulk alloc is all-or-nothing. If we fail to get a batch, 969 * retry single alloc to be on the safe side. 970 */ 971 if (unlikely(ret <= 0)) { 972 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 973 if (!reqs[0]) 974 return false; 975 ret = 1; 976 } 977 978 percpu_ref_get_many(&ctx->refs, ret); 979 while (ret--) { 980 struct io_kiocb *req = reqs[ret]; 981 982 io_preinit_req(req, ctx); 983 io_req_add_to_cache(req, ctx); 984 } 985 return true; 986 } 987 988 __cold void io_free_req(struct io_kiocb *req) 989 { 990 /* refs were already put, restore them for io_req_task_complete() */ 991 req->flags &= ~REQ_F_REFCOUNT; 992 /* we only want to free it, don't post CQEs */ 993 req->flags |= REQ_F_CQE_SKIP; 994 req->io_task_work.func = io_req_task_complete; 995 io_req_task_work_add(req); 996 } 997 998 static void __io_req_find_next_prep(struct io_kiocb *req) 999 { 1000 struct io_ring_ctx *ctx = req->ctx; 1001 1002 spin_lock(&ctx->completion_lock); 1003 io_disarm_next(req); 1004 spin_unlock(&ctx->completion_lock); 1005 } 1006 1007 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1008 { 1009 struct io_kiocb *nxt; 1010 1011 /* 1012 * If LINK is set, we have dependent requests in this chain. If we 1013 * didn't fail this request, queue the first one up, moving any other 1014 * dependencies to the next request. In case of failure, fail the rest 1015 * of the chain. 1016 */ 1017 if (unlikely(req->flags & IO_DISARM_MASK)) 1018 __io_req_find_next_prep(req); 1019 nxt = req->link; 1020 req->link = NULL; 1021 return nxt; 1022 } 1023 1024 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1025 { 1026 if (!ctx) 1027 return; 1028 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1029 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1030 1031 io_submit_flush_completions(ctx); 1032 mutex_unlock(&ctx->uring_lock); 1033 percpu_ref_put(&ctx->refs); 1034 } 1035 1036 /* 1037 * Run queued task_work, returning the number of entries processed in *count. 1038 * If more entries than max_entries are available, stop processing once this 1039 * is reached and return the rest of the list. 1040 */ 1041 struct llist_node *io_handle_tw_list(struct llist_node *node, 1042 unsigned int *count, 1043 unsigned int max_entries) 1044 { 1045 struct io_ring_ctx *ctx = NULL; 1046 struct io_tw_state ts = { }; 1047 1048 do { 1049 struct llist_node *next = node->next; 1050 struct io_kiocb *req = container_of(node, struct io_kiocb, 1051 io_task_work.node); 1052 1053 if (req->ctx != ctx) { 1054 ctx_flush_and_put(ctx, &ts); 1055 ctx = req->ctx; 1056 mutex_lock(&ctx->uring_lock); 1057 percpu_ref_get(&ctx->refs); 1058 } 1059 INDIRECT_CALL_2(req->io_task_work.func, 1060 io_poll_task_func, io_req_rw_complete, 1061 req, &ts); 1062 node = next; 1063 (*count)++; 1064 if (unlikely(need_resched())) { 1065 ctx_flush_and_put(ctx, &ts); 1066 ctx = NULL; 1067 cond_resched(); 1068 } 1069 } while (node && *count < max_entries); 1070 1071 ctx_flush_and_put(ctx, &ts); 1072 return node; 1073 } 1074 1075 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1076 { 1077 struct io_ring_ctx *last_ctx = NULL; 1078 struct io_kiocb *req; 1079 1080 while (node) { 1081 req = container_of(node, struct io_kiocb, io_task_work.node); 1082 node = node->next; 1083 if (sync && last_ctx != req->ctx) { 1084 if (last_ctx) { 1085 flush_delayed_work(&last_ctx->fallback_work); 1086 percpu_ref_put(&last_ctx->refs); 1087 } 1088 last_ctx = req->ctx; 1089 percpu_ref_get(&last_ctx->refs); 1090 } 1091 if (llist_add(&req->io_task_work.node, 1092 &req->ctx->fallback_llist)) 1093 schedule_delayed_work(&req->ctx->fallback_work, 1); 1094 } 1095 1096 if (last_ctx) { 1097 flush_delayed_work(&last_ctx->fallback_work); 1098 percpu_ref_put(&last_ctx->refs); 1099 } 1100 } 1101 1102 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1103 { 1104 struct llist_node *node = llist_del_all(&tctx->task_list); 1105 1106 __io_fallback_tw(node, sync); 1107 } 1108 1109 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1110 unsigned int max_entries, 1111 unsigned int *count) 1112 { 1113 struct llist_node *node; 1114 1115 if (unlikely(current->flags & PF_EXITING)) { 1116 io_fallback_tw(tctx, true); 1117 return NULL; 1118 } 1119 1120 node = llist_del_all(&tctx->task_list); 1121 if (node) { 1122 node = llist_reverse_order(node); 1123 node = io_handle_tw_list(node, count, max_entries); 1124 } 1125 1126 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1127 if (unlikely(atomic_read(&tctx->in_cancel))) 1128 io_uring_drop_tctx_refs(current); 1129 1130 trace_io_uring_task_work_run(tctx, *count); 1131 return node; 1132 } 1133 1134 void tctx_task_work(struct callback_head *cb) 1135 { 1136 struct io_uring_task *tctx; 1137 struct llist_node *ret; 1138 unsigned int count = 0; 1139 1140 tctx = container_of(cb, struct io_uring_task, task_work); 1141 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1142 /* can't happen */ 1143 WARN_ON_ONCE(ret); 1144 } 1145 1146 static inline void io_req_local_work_add(struct io_kiocb *req, 1147 struct io_ring_ctx *ctx, 1148 unsigned flags) 1149 { 1150 unsigned nr_wait, nr_tw, nr_tw_prev; 1151 struct llist_node *head; 1152 1153 /* See comment above IO_CQ_WAKE_INIT */ 1154 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1155 1156 /* 1157 * We don't know how many reuqests is there in the link and whether 1158 * they can even be queued lazily, fall back to non-lazy. 1159 */ 1160 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1161 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1162 1163 guard(rcu)(); 1164 1165 head = READ_ONCE(ctx->work_llist.first); 1166 do { 1167 nr_tw_prev = 0; 1168 if (head) { 1169 struct io_kiocb *first_req = container_of(head, 1170 struct io_kiocb, 1171 io_task_work.node); 1172 /* 1173 * Might be executed at any moment, rely on 1174 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1175 */ 1176 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1177 } 1178 1179 /* 1180 * Theoretically, it can overflow, but that's fine as one of 1181 * previous adds should've tried to wake the task. 1182 */ 1183 nr_tw = nr_tw_prev + 1; 1184 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1185 nr_tw = IO_CQ_WAKE_FORCE; 1186 1187 req->nr_tw = nr_tw; 1188 req->io_task_work.node.next = head; 1189 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1190 &req->io_task_work.node)); 1191 1192 /* 1193 * cmpxchg implies a full barrier, which pairs with the barrier 1194 * in set_current_state() on the io_cqring_wait() side. It's used 1195 * to ensure that either we see updated ->cq_wait_nr, or waiters 1196 * going to sleep will observe the work added to the list, which 1197 * is similar to the wait/wawke task state sync. 1198 */ 1199 1200 if (!head) { 1201 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1202 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1203 if (ctx->has_evfd) 1204 io_eventfd_signal(ctx); 1205 } 1206 1207 nr_wait = atomic_read(&ctx->cq_wait_nr); 1208 /* not enough or no one is waiting */ 1209 if (nr_tw < nr_wait) 1210 return; 1211 /* the previous add has already woken it up */ 1212 if (nr_tw_prev >= nr_wait) 1213 return; 1214 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1215 } 1216 1217 static void io_req_normal_work_add(struct io_kiocb *req) 1218 { 1219 struct io_uring_task *tctx = req->tctx; 1220 struct io_ring_ctx *ctx = req->ctx; 1221 1222 /* task_work already pending, we're done */ 1223 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1224 return; 1225 1226 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1227 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1228 1229 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1230 if (ctx->flags & IORING_SETUP_SQPOLL) { 1231 __set_notify_signal(tctx->task); 1232 return; 1233 } 1234 1235 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1236 return; 1237 1238 io_fallback_tw(tctx, false); 1239 } 1240 1241 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1242 { 1243 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1244 io_req_local_work_add(req, req->ctx, flags); 1245 else 1246 io_req_normal_work_add(req); 1247 } 1248 1249 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 1250 unsigned flags) 1251 { 1252 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1253 return; 1254 io_req_local_work_add(req, ctx, flags); 1255 } 1256 1257 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1258 { 1259 struct llist_node *node = llist_del_all(&ctx->work_llist); 1260 1261 __io_fallback_tw(node, false); 1262 node = llist_del_all(&ctx->retry_llist); 1263 __io_fallback_tw(node, false); 1264 } 1265 1266 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1267 int min_events) 1268 { 1269 if (!io_local_work_pending(ctx)) 1270 return false; 1271 if (events < min_events) 1272 return true; 1273 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1274 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1275 return false; 1276 } 1277 1278 static int __io_run_local_work_loop(struct llist_node **node, 1279 struct io_tw_state *ts, 1280 int events) 1281 { 1282 int ret = 0; 1283 1284 while (*node) { 1285 struct llist_node *next = (*node)->next; 1286 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1287 io_task_work.node); 1288 INDIRECT_CALL_2(req->io_task_work.func, 1289 io_poll_task_func, io_req_rw_complete, 1290 req, ts); 1291 *node = next; 1292 if (++ret >= events) 1293 break; 1294 } 1295 1296 return ret; 1297 } 1298 1299 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1300 int min_events, int max_events) 1301 { 1302 struct llist_node *node; 1303 unsigned int loops = 0; 1304 int ret = 0; 1305 1306 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1307 return -EEXIST; 1308 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1309 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1310 again: 1311 min_events -= ret; 1312 ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events); 1313 if (ctx->retry_llist.first) 1314 goto retry_done; 1315 1316 /* 1317 * llists are in reverse order, flip it back the right way before 1318 * running the pending items. 1319 */ 1320 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1321 ret += __io_run_local_work_loop(&node, ts, max_events - ret); 1322 ctx->retry_llist.first = node; 1323 loops++; 1324 1325 if (io_run_local_work_continue(ctx, ret, min_events)) 1326 goto again; 1327 retry_done: 1328 io_submit_flush_completions(ctx); 1329 if (io_run_local_work_continue(ctx, ret, min_events)) 1330 goto again; 1331 1332 trace_io_uring_local_work_run(ctx, ret, loops); 1333 return ret; 1334 } 1335 1336 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1337 int min_events) 1338 { 1339 struct io_tw_state ts = {}; 1340 1341 if (!io_local_work_pending(ctx)) 1342 return 0; 1343 return __io_run_local_work(ctx, &ts, min_events, 1344 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1345 } 1346 1347 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1348 int max_events) 1349 { 1350 struct io_tw_state ts = {}; 1351 int ret; 1352 1353 mutex_lock(&ctx->uring_lock); 1354 ret = __io_run_local_work(ctx, &ts, min_events, max_events); 1355 mutex_unlock(&ctx->uring_lock); 1356 return ret; 1357 } 1358 1359 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1360 { 1361 io_tw_lock(req->ctx, ts); 1362 io_req_defer_failed(req, req->cqe.res); 1363 } 1364 1365 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1366 { 1367 io_tw_lock(req->ctx, ts); 1368 if (unlikely(io_should_terminate_tw())) 1369 io_req_defer_failed(req, -EFAULT); 1370 else if (req->flags & REQ_F_FORCE_ASYNC) 1371 io_queue_iowq(req); 1372 else 1373 io_queue_sqe(req); 1374 } 1375 1376 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1377 { 1378 io_req_set_res(req, ret, 0); 1379 req->io_task_work.func = io_req_task_cancel; 1380 io_req_task_work_add(req); 1381 } 1382 1383 void io_req_task_queue(struct io_kiocb *req) 1384 { 1385 req->io_task_work.func = io_req_task_submit; 1386 io_req_task_work_add(req); 1387 } 1388 1389 void io_queue_next(struct io_kiocb *req) 1390 { 1391 struct io_kiocb *nxt = io_req_find_next(req); 1392 1393 if (nxt) 1394 io_req_task_queue(nxt); 1395 } 1396 1397 static void io_free_batch_list(struct io_ring_ctx *ctx, 1398 struct io_wq_work_node *node) 1399 __must_hold(&ctx->uring_lock) 1400 { 1401 do { 1402 struct io_kiocb *req = container_of(node, struct io_kiocb, 1403 comp_list); 1404 1405 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1406 if (req->flags & REQ_F_REISSUE) { 1407 node = req->comp_list.next; 1408 req->flags &= ~REQ_F_REISSUE; 1409 io_queue_iowq(req); 1410 continue; 1411 } 1412 if (req->flags & REQ_F_REFCOUNT) { 1413 node = req->comp_list.next; 1414 if (!req_ref_put_and_test(req)) 1415 continue; 1416 } 1417 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1418 struct async_poll *apoll = req->apoll; 1419 1420 if (apoll->double_poll) 1421 kfree(apoll->double_poll); 1422 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll)) 1423 kfree(apoll); 1424 req->flags &= ~REQ_F_POLLED; 1425 } 1426 if (req->flags & IO_REQ_LINK_FLAGS) 1427 io_queue_next(req); 1428 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1429 io_clean_op(req); 1430 } 1431 io_put_file(req); 1432 io_req_put_rsrc_nodes(req); 1433 io_put_task(req); 1434 1435 node = req->comp_list.next; 1436 io_req_add_to_cache(req, ctx); 1437 } while (node); 1438 } 1439 1440 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1441 __must_hold(&ctx->uring_lock) 1442 { 1443 struct io_submit_state *state = &ctx->submit_state; 1444 struct io_wq_work_node *node; 1445 1446 __io_cq_lock(ctx); 1447 __wq_list_for_each(node, &state->compl_reqs) { 1448 struct io_kiocb *req = container_of(node, struct io_kiocb, 1449 comp_list); 1450 1451 /* 1452 * Requests marked with REQUEUE should not post a CQE, they 1453 * will go through the io-wq retry machinery and post one 1454 * later. 1455 */ 1456 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && 1457 unlikely(!io_fill_cqe_req(ctx, req))) { 1458 if (ctx->lockless_cq) { 1459 spin_lock(&ctx->completion_lock); 1460 io_req_cqe_overflow(req); 1461 spin_unlock(&ctx->completion_lock); 1462 } else { 1463 io_req_cqe_overflow(req); 1464 } 1465 } 1466 } 1467 __io_cq_unlock_post(ctx); 1468 1469 if (!wq_list_empty(&state->compl_reqs)) { 1470 io_free_batch_list(ctx, state->compl_reqs.first); 1471 INIT_WQ_LIST(&state->compl_reqs); 1472 } 1473 ctx->submit_state.cq_flush = false; 1474 } 1475 1476 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1477 { 1478 /* See comment at the top of this file */ 1479 smp_rmb(); 1480 return __io_cqring_events(ctx); 1481 } 1482 1483 /* 1484 * We can't just wait for polled events to come to us, we have to actively 1485 * find and complete them. 1486 */ 1487 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1488 { 1489 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1490 return; 1491 1492 mutex_lock(&ctx->uring_lock); 1493 while (!wq_list_empty(&ctx->iopoll_list)) { 1494 /* let it sleep and repeat later if can't complete a request */ 1495 if (io_do_iopoll(ctx, true) == 0) 1496 break; 1497 /* 1498 * Ensure we allow local-to-the-cpu processing to take place, 1499 * in this case we need to ensure that we reap all events. 1500 * Also let task_work, etc. to progress by releasing the mutex 1501 */ 1502 if (need_resched()) { 1503 mutex_unlock(&ctx->uring_lock); 1504 cond_resched(); 1505 mutex_lock(&ctx->uring_lock); 1506 } 1507 } 1508 mutex_unlock(&ctx->uring_lock); 1509 } 1510 1511 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1512 { 1513 unsigned int nr_events = 0; 1514 unsigned long check_cq; 1515 1516 lockdep_assert_held(&ctx->uring_lock); 1517 1518 if (!io_allowed_run_tw(ctx)) 1519 return -EEXIST; 1520 1521 check_cq = READ_ONCE(ctx->check_cq); 1522 if (unlikely(check_cq)) { 1523 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1524 __io_cqring_overflow_flush(ctx, false); 1525 /* 1526 * Similarly do not spin if we have not informed the user of any 1527 * dropped CQE. 1528 */ 1529 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1530 return -EBADR; 1531 } 1532 /* 1533 * Don't enter poll loop if we already have events pending. 1534 * If we do, we can potentially be spinning for commands that 1535 * already triggered a CQE (eg in error). 1536 */ 1537 if (io_cqring_events(ctx)) 1538 return 0; 1539 1540 do { 1541 int ret = 0; 1542 1543 /* 1544 * If a submit got punted to a workqueue, we can have the 1545 * application entering polling for a command before it gets 1546 * issued. That app will hold the uring_lock for the duration 1547 * of the poll right here, so we need to take a breather every 1548 * now and then to ensure that the issue has a chance to add 1549 * the poll to the issued list. Otherwise we can spin here 1550 * forever, while the workqueue is stuck trying to acquire the 1551 * very same mutex. 1552 */ 1553 if (wq_list_empty(&ctx->iopoll_list) || 1554 io_task_work_pending(ctx)) { 1555 u32 tail = ctx->cached_cq_tail; 1556 1557 (void) io_run_local_work_locked(ctx, min); 1558 1559 if (task_work_pending(current) || 1560 wq_list_empty(&ctx->iopoll_list)) { 1561 mutex_unlock(&ctx->uring_lock); 1562 io_run_task_work(); 1563 mutex_lock(&ctx->uring_lock); 1564 } 1565 /* some requests don't go through iopoll_list */ 1566 if (tail != ctx->cached_cq_tail || 1567 wq_list_empty(&ctx->iopoll_list)) 1568 break; 1569 } 1570 ret = io_do_iopoll(ctx, !min); 1571 if (unlikely(ret < 0)) 1572 return ret; 1573 1574 if (task_sigpending(current)) 1575 return -EINTR; 1576 if (need_resched()) 1577 break; 1578 1579 nr_events += ret; 1580 } while (nr_events < min); 1581 1582 return 0; 1583 } 1584 1585 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1586 { 1587 io_req_complete_defer(req); 1588 } 1589 1590 /* 1591 * After the iocb has been issued, it's safe to be found on the poll list. 1592 * Adding the kiocb to the list AFTER submission ensures that we don't 1593 * find it from a io_do_iopoll() thread before the issuer is done 1594 * accessing the kiocb cookie. 1595 */ 1596 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1597 { 1598 struct io_ring_ctx *ctx = req->ctx; 1599 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1600 1601 /* workqueue context doesn't hold uring_lock, grab it now */ 1602 if (unlikely(needs_lock)) 1603 mutex_lock(&ctx->uring_lock); 1604 1605 /* 1606 * Track whether we have multiple files in our lists. This will impact 1607 * how we do polling eventually, not spinning if we're on potentially 1608 * different devices. 1609 */ 1610 if (wq_list_empty(&ctx->iopoll_list)) { 1611 ctx->poll_multi_queue = false; 1612 } else if (!ctx->poll_multi_queue) { 1613 struct io_kiocb *list_req; 1614 1615 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1616 comp_list); 1617 if (list_req->file != req->file) 1618 ctx->poll_multi_queue = true; 1619 } 1620 1621 /* 1622 * For fast devices, IO may have already completed. If it has, add 1623 * it to the front so we find it first. 1624 */ 1625 if (READ_ONCE(req->iopoll_completed)) 1626 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1627 else 1628 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1629 1630 if (unlikely(needs_lock)) { 1631 /* 1632 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1633 * in sq thread task context or in io worker task context. If 1634 * current task context is sq thread, we don't need to check 1635 * whether should wake up sq thread. 1636 */ 1637 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1638 wq_has_sleeper(&ctx->sq_data->wait)) 1639 wake_up(&ctx->sq_data->wait); 1640 1641 mutex_unlock(&ctx->uring_lock); 1642 } 1643 } 1644 1645 io_req_flags_t io_file_get_flags(struct file *file) 1646 { 1647 io_req_flags_t res = 0; 1648 1649 if (S_ISREG(file_inode(file)->i_mode)) 1650 res |= REQ_F_ISREG; 1651 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1652 res |= REQ_F_SUPPORT_NOWAIT; 1653 return res; 1654 } 1655 1656 static u32 io_get_sequence(struct io_kiocb *req) 1657 { 1658 u32 seq = req->ctx->cached_sq_head; 1659 struct io_kiocb *cur; 1660 1661 /* need original cached_sq_head, but it was increased for each req */ 1662 io_for_each_link(cur, req) 1663 seq--; 1664 return seq; 1665 } 1666 1667 static __cold void io_drain_req(struct io_kiocb *req) 1668 __must_hold(&ctx->uring_lock) 1669 { 1670 struct io_ring_ctx *ctx = req->ctx; 1671 struct io_defer_entry *de; 1672 int ret; 1673 u32 seq = io_get_sequence(req); 1674 1675 /* Still need defer if there is pending req in defer list. */ 1676 spin_lock(&ctx->completion_lock); 1677 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1678 spin_unlock(&ctx->completion_lock); 1679 queue: 1680 ctx->drain_active = false; 1681 io_req_task_queue(req); 1682 return; 1683 } 1684 spin_unlock(&ctx->completion_lock); 1685 1686 io_prep_async_link(req); 1687 de = kmalloc(sizeof(*de), GFP_KERNEL); 1688 if (!de) { 1689 ret = -ENOMEM; 1690 io_req_defer_failed(req, ret); 1691 return; 1692 } 1693 1694 spin_lock(&ctx->completion_lock); 1695 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1696 spin_unlock(&ctx->completion_lock); 1697 kfree(de); 1698 goto queue; 1699 } 1700 1701 trace_io_uring_defer(req); 1702 de->req = req; 1703 de->seq = seq; 1704 list_add_tail(&de->list, &ctx->defer_list); 1705 spin_unlock(&ctx->completion_lock); 1706 } 1707 1708 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1709 unsigned int issue_flags) 1710 { 1711 if (req->file || !def->needs_file) 1712 return true; 1713 1714 if (req->flags & REQ_F_FIXED_FILE) 1715 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1716 else 1717 req->file = io_file_get_normal(req, req->cqe.fd); 1718 1719 return !!req->file; 1720 } 1721 1722 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1723 { 1724 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1725 const struct cred *creds = NULL; 1726 int ret; 1727 1728 if (unlikely(!io_assign_file(req, def, issue_flags))) 1729 return -EBADF; 1730 1731 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1732 creds = override_creds(req->creds); 1733 1734 if (!def->audit_skip) 1735 audit_uring_entry(req->opcode); 1736 1737 ret = def->issue(req, issue_flags); 1738 1739 if (!def->audit_skip) 1740 audit_uring_exit(!ret, ret); 1741 1742 if (creds) 1743 revert_creds(creds); 1744 1745 if (ret == IOU_OK) { 1746 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1747 io_req_complete_defer(req); 1748 else 1749 io_req_complete_post(req, issue_flags); 1750 1751 return 0; 1752 } 1753 1754 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1755 ret = 0; 1756 io_arm_ltimeout(req); 1757 1758 /* If the op doesn't have a file, we're not polling for it */ 1759 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1760 io_iopoll_req_issued(req, issue_flags); 1761 } 1762 return ret; 1763 } 1764 1765 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1766 { 1767 io_tw_lock(req->ctx, ts); 1768 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1769 IO_URING_F_COMPLETE_DEFER); 1770 } 1771 1772 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1773 { 1774 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1775 struct io_kiocb *nxt = NULL; 1776 1777 if (req_ref_put_and_test(req)) { 1778 if (req->flags & IO_REQ_LINK_FLAGS) 1779 nxt = io_req_find_next(req); 1780 io_free_req(req); 1781 } 1782 return nxt ? &nxt->work : NULL; 1783 } 1784 1785 void io_wq_submit_work(struct io_wq_work *work) 1786 { 1787 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1788 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1789 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1790 bool needs_poll = false; 1791 int ret = 0, err = -ECANCELED; 1792 1793 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1794 if (!(req->flags & REQ_F_REFCOUNT)) 1795 __io_req_set_refcount(req, 2); 1796 else 1797 req_ref_get(req); 1798 1799 io_arm_ltimeout(req); 1800 1801 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1802 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1803 fail: 1804 io_req_task_queue_fail(req, err); 1805 return; 1806 } 1807 if (!io_assign_file(req, def, issue_flags)) { 1808 err = -EBADF; 1809 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1810 goto fail; 1811 } 1812 1813 /* 1814 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1815 * submitter task context. Final request completions are handed to the 1816 * right context, however this is not the case of auxiliary CQEs, 1817 * which is the main mean of operation for multishot requests. 1818 * Don't allow any multishot execution from io-wq. It's more restrictive 1819 * than necessary and also cleaner. 1820 */ 1821 if (req->flags & REQ_F_APOLL_MULTISHOT) { 1822 err = -EBADFD; 1823 if (!io_file_can_poll(req)) 1824 goto fail; 1825 if (req->file->f_flags & O_NONBLOCK || 1826 req->file->f_mode & FMODE_NOWAIT) { 1827 err = -ECANCELED; 1828 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1829 goto fail; 1830 return; 1831 } else { 1832 req->flags &= ~REQ_F_APOLL_MULTISHOT; 1833 } 1834 } 1835 1836 if (req->flags & REQ_F_FORCE_ASYNC) { 1837 bool opcode_poll = def->pollin || def->pollout; 1838 1839 if (opcode_poll && io_file_can_poll(req)) { 1840 needs_poll = true; 1841 issue_flags |= IO_URING_F_NONBLOCK; 1842 } 1843 } 1844 1845 do { 1846 ret = io_issue_sqe(req, issue_flags); 1847 if (ret != -EAGAIN) 1848 break; 1849 1850 /* 1851 * If REQ_F_NOWAIT is set, then don't wait or retry with 1852 * poll. -EAGAIN is final for that case. 1853 */ 1854 if (req->flags & REQ_F_NOWAIT) 1855 break; 1856 1857 /* 1858 * We can get EAGAIN for iopolled IO even though we're 1859 * forcing a sync submission from here, since we can't 1860 * wait for request slots on the block side. 1861 */ 1862 if (!needs_poll) { 1863 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1864 break; 1865 if (io_wq_worker_stopped()) 1866 break; 1867 cond_resched(); 1868 continue; 1869 } 1870 1871 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1872 return; 1873 /* aborted or ready, in either case retry blocking */ 1874 needs_poll = false; 1875 issue_flags &= ~IO_URING_F_NONBLOCK; 1876 } while (1); 1877 1878 /* avoid locking problems by failing it from a clean context */ 1879 if (ret) 1880 io_req_task_queue_fail(req, ret); 1881 } 1882 1883 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1884 unsigned int issue_flags) 1885 { 1886 struct io_ring_ctx *ctx = req->ctx; 1887 struct io_rsrc_node *node; 1888 struct file *file = NULL; 1889 1890 io_ring_submit_lock(ctx, issue_flags); 1891 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1892 if (node) { 1893 io_req_assign_rsrc_node(&req->file_node, node); 1894 req->flags |= io_slot_flags(node); 1895 file = io_slot_file(node); 1896 } 1897 io_ring_submit_unlock(ctx, issue_flags); 1898 return file; 1899 } 1900 1901 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1902 { 1903 struct file *file = fget(fd); 1904 1905 trace_io_uring_file_get(req, fd); 1906 1907 /* we don't allow fixed io_uring files */ 1908 if (file && io_is_uring_fops(file)) 1909 io_req_track_inflight(req); 1910 return file; 1911 } 1912 1913 static void io_queue_async(struct io_kiocb *req, int ret) 1914 __must_hold(&req->ctx->uring_lock) 1915 { 1916 struct io_kiocb *linked_timeout; 1917 1918 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1919 io_req_defer_failed(req, ret); 1920 return; 1921 } 1922 1923 linked_timeout = io_prep_linked_timeout(req); 1924 1925 switch (io_arm_poll_handler(req, 0)) { 1926 case IO_APOLL_READY: 1927 io_kbuf_recycle(req, 0); 1928 io_req_task_queue(req); 1929 break; 1930 case IO_APOLL_ABORTED: 1931 io_kbuf_recycle(req, 0); 1932 io_queue_iowq(req); 1933 break; 1934 case IO_APOLL_OK: 1935 break; 1936 } 1937 1938 if (linked_timeout) 1939 io_queue_linked_timeout(linked_timeout); 1940 } 1941 1942 static inline void io_queue_sqe(struct io_kiocb *req) 1943 __must_hold(&req->ctx->uring_lock) 1944 { 1945 int ret; 1946 1947 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1948 1949 /* 1950 * We async punt it if the file wasn't marked NOWAIT, or if the file 1951 * doesn't support non-blocking read/write attempts 1952 */ 1953 if (unlikely(ret)) 1954 io_queue_async(req, ret); 1955 } 1956 1957 static void io_queue_sqe_fallback(struct io_kiocb *req) 1958 __must_hold(&req->ctx->uring_lock) 1959 { 1960 if (unlikely(req->flags & REQ_F_FAIL)) { 1961 /* 1962 * We don't submit, fail them all, for that replace hardlinks 1963 * with normal links. Extra REQ_F_LINK is tolerated. 1964 */ 1965 req->flags &= ~REQ_F_HARDLINK; 1966 req->flags |= REQ_F_LINK; 1967 io_req_defer_failed(req, req->cqe.res); 1968 } else { 1969 if (unlikely(req->ctx->drain_active)) 1970 io_drain_req(req); 1971 else 1972 io_queue_iowq(req); 1973 } 1974 } 1975 1976 /* 1977 * Check SQE restrictions (opcode and flags). 1978 * 1979 * Returns 'true' if SQE is allowed, 'false' otherwise. 1980 */ 1981 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1982 struct io_kiocb *req, 1983 unsigned int sqe_flags) 1984 { 1985 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1986 return false; 1987 1988 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1989 ctx->restrictions.sqe_flags_required) 1990 return false; 1991 1992 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1993 ctx->restrictions.sqe_flags_required)) 1994 return false; 1995 1996 return true; 1997 } 1998 1999 static void io_init_req_drain(struct io_kiocb *req) 2000 { 2001 struct io_ring_ctx *ctx = req->ctx; 2002 struct io_kiocb *head = ctx->submit_state.link.head; 2003 2004 ctx->drain_active = true; 2005 if (head) { 2006 /* 2007 * If we need to drain a request in the middle of a link, drain 2008 * the head request and the next request/link after the current 2009 * link. Considering sequential execution of links, 2010 * REQ_F_IO_DRAIN will be maintained for every request of our 2011 * link. 2012 */ 2013 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2014 ctx->drain_next = true; 2015 } 2016 } 2017 2018 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2019 { 2020 /* ensure per-opcode data is cleared if we fail before prep */ 2021 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2022 return err; 2023 } 2024 2025 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2026 const struct io_uring_sqe *sqe) 2027 __must_hold(&ctx->uring_lock) 2028 { 2029 const struct io_issue_def *def; 2030 unsigned int sqe_flags; 2031 int personality; 2032 u8 opcode; 2033 2034 /* req is partially pre-initialised, see io_preinit_req() */ 2035 req->opcode = opcode = READ_ONCE(sqe->opcode); 2036 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2037 sqe_flags = READ_ONCE(sqe->flags); 2038 req->flags = (__force io_req_flags_t) sqe_flags; 2039 req->cqe.user_data = READ_ONCE(sqe->user_data); 2040 req->file = NULL; 2041 req->tctx = current->io_uring; 2042 req->cancel_seq_set = false; 2043 2044 if (unlikely(opcode >= IORING_OP_LAST)) { 2045 req->opcode = 0; 2046 return io_init_fail_req(req, -EINVAL); 2047 } 2048 def = &io_issue_defs[opcode]; 2049 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2050 /* enforce forwards compatibility on users */ 2051 if (sqe_flags & ~SQE_VALID_FLAGS) 2052 return io_init_fail_req(req, -EINVAL); 2053 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2054 if (!def->buffer_select) 2055 return io_init_fail_req(req, -EOPNOTSUPP); 2056 req->buf_index = READ_ONCE(sqe->buf_group); 2057 } 2058 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2059 ctx->drain_disabled = true; 2060 if (sqe_flags & IOSQE_IO_DRAIN) { 2061 if (ctx->drain_disabled) 2062 return io_init_fail_req(req, -EOPNOTSUPP); 2063 io_init_req_drain(req); 2064 } 2065 } 2066 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2067 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2068 return io_init_fail_req(req, -EACCES); 2069 /* knock it to the slow queue path, will be drained there */ 2070 if (ctx->drain_active) 2071 req->flags |= REQ_F_FORCE_ASYNC; 2072 /* if there is no link, we're at "next" request and need to drain */ 2073 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2074 ctx->drain_next = false; 2075 ctx->drain_active = true; 2076 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2077 } 2078 } 2079 2080 if (!def->ioprio && sqe->ioprio) 2081 return io_init_fail_req(req, -EINVAL); 2082 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2083 return io_init_fail_req(req, -EINVAL); 2084 2085 if (def->needs_file) { 2086 struct io_submit_state *state = &ctx->submit_state; 2087 2088 req->cqe.fd = READ_ONCE(sqe->fd); 2089 2090 /* 2091 * Plug now if we have more than 2 IO left after this, and the 2092 * target is potentially a read/write to block based storage. 2093 */ 2094 if (state->need_plug && def->plug) { 2095 state->plug_started = true; 2096 state->need_plug = false; 2097 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2098 } 2099 } 2100 2101 personality = READ_ONCE(sqe->personality); 2102 if (personality) { 2103 int ret; 2104 2105 req->creds = xa_load(&ctx->personalities, personality); 2106 if (!req->creds) 2107 return io_init_fail_req(req, -EINVAL); 2108 get_cred(req->creds); 2109 ret = security_uring_override_creds(req->creds); 2110 if (ret) { 2111 put_cred(req->creds); 2112 return io_init_fail_req(req, ret); 2113 } 2114 req->flags |= REQ_F_CREDS; 2115 } 2116 2117 return def->prep(req, sqe); 2118 } 2119 2120 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2121 struct io_kiocb *req, int ret) 2122 { 2123 struct io_ring_ctx *ctx = req->ctx; 2124 struct io_submit_link *link = &ctx->submit_state.link; 2125 struct io_kiocb *head = link->head; 2126 2127 trace_io_uring_req_failed(sqe, req, ret); 2128 2129 /* 2130 * Avoid breaking links in the middle as it renders links with SQPOLL 2131 * unusable. Instead of failing eagerly, continue assembling the link if 2132 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2133 * should find the flag and handle the rest. 2134 */ 2135 req_fail_link_node(req, ret); 2136 if (head && !(head->flags & REQ_F_FAIL)) 2137 req_fail_link_node(head, -ECANCELED); 2138 2139 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2140 if (head) { 2141 link->last->link = req; 2142 link->head = NULL; 2143 req = head; 2144 } 2145 io_queue_sqe_fallback(req); 2146 return ret; 2147 } 2148 2149 if (head) 2150 link->last->link = req; 2151 else 2152 link->head = req; 2153 link->last = req; 2154 return 0; 2155 } 2156 2157 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2158 const struct io_uring_sqe *sqe) 2159 __must_hold(&ctx->uring_lock) 2160 { 2161 struct io_submit_link *link = &ctx->submit_state.link; 2162 int ret; 2163 2164 ret = io_init_req(ctx, req, sqe); 2165 if (unlikely(ret)) 2166 return io_submit_fail_init(sqe, req, ret); 2167 2168 trace_io_uring_submit_req(req); 2169 2170 /* 2171 * If we already have a head request, queue this one for async 2172 * submittal once the head completes. If we don't have a head but 2173 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2174 * submitted sync once the chain is complete. If none of those 2175 * conditions are true (normal request), then just queue it. 2176 */ 2177 if (unlikely(link->head)) { 2178 trace_io_uring_link(req, link->last); 2179 link->last->link = req; 2180 link->last = req; 2181 2182 if (req->flags & IO_REQ_LINK_FLAGS) 2183 return 0; 2184 /* last request of the link, flush it */ 2185 req = link->head; 2186 link->head = NULL; 2187 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2188 goto fallback; 2189 2190 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2191 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2192 if (req->flags & IO_REQ_LINK_FLAGS) { 2193 link->head = req; 2194 link->last = req; 2195 } else { 2196 fallback: 2197 io_queue_sqe_fallback(req); 2198 } 2199 return 0; 2200 } 2201 2202 io_queue_sqe(req); 2203 return 0; 2204 } 2205 2206 /* 2207 * Batched submission is done, ensure local IO is flushed out. 2208 */ 2209 static void io_submit_state_end(struct io_ring_ctx *ctx) 2210 { 2211 struct io_submit_state *state = &ctx->submit_state; 2212 2213 if (unlikely(state->link.head)) 2214 io_queue_sqe_fallback(state->link.head); 2215 /* flush only after queuing links as they can generate completions */ 2216 io_submit_flush_completions(ctx); 2217 if (state->plug_started) 2218 blk_finish_plug(&state->plug); 2219 } 2220 2221 /* 2222 * Start submission side cache. 2223 */ 2224 static void io_submit_state_start(struct io_submit_state *state, 2225 unsigned int max_ios) 2226 { 2227 state->plug_started = false; 2228 state->need_plug = max_ios > 2; 2229 state->submit_nr = max_ios; 2230 /* set only head, no need to init link_last in advance */ 2231 state->link.head = NULL; 2232 } 2233 2234 static void io_commit_sqring(struct io_ring_ctx *ctx) 2235 { 2236 struct io_rings *rings = ctx->rings; 2237 2238 /* 2239 * Ensure any loads from the SQEs are done at this point, 2240 * since once we write the new head, the application could 2241 * write new data to them. 2242 */ 2243 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2244 } 2245 2246 /* 2247 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2248 * that is mapped by userspace. This means that care needs to be taken to 2249 * ensure that reads are stable, as we cannot rely on userspace always 2250 * being a good citizen. If members of the sqe are validated and then later 2251 * used, it's important that those reads are done through READ_ONCE() to 2252 * prevent a re-load down the line. 2253 */ 2254 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2255 { 2256 unsigned mask = ctx->sq_entries - 1; 2257 unsigned head = ctx->cached_sq_head++ & mask; 2258 2259 if (static_branch_unlikely(&io_key_has_sqarray) && 2260 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2261 head = READ_ONCE(ctx->sq_array[head]); 2262 if (unlikely(head >= ctx->sq_entries)) { 2263 /* drop invalid entries */ 2264 spin_lock(&ctx->completion_lock); 2265 ctx->cq_extra--; 2266 spin_unlock(&ctx->completion_lock); 2267 WRITE_ONCE(ctx->rings->sq_dropped, 2268 READ_ONCE(ctx->rings->sq_dropped) + 1); 2269 return false; 2270 } 2271 head = array_index_nospec(head, ctx->sq_entries); 2272 } 2273 2274 /* 2275 * The cached sq head (or cq tail) serves two purposes: 2276 * 2277 * 1) allows us to batch the cost of updating the user visible 2278 * head updates. 2279 * 2) allows the kernel side to track the head on its own, even 2280 * though the application is the one updating it. 2281 */ 2282 2283 /* double index for 128-byte SQEs, twice as long */ 2284 if (ctx->flags & IORING_SETUP_SQE128) 2285 head <<= 1; 2286 *sqe = &ctx->sq_sqes[head]; 2287 return true; 2288 } 2289 2290 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2291 __must_hold(&ctx->uring_lock) 2292 { 2293 unsigned int entries = io_sqring_entries(ctx); 2294 unsigned int left; 2295 int ret; 2296 2297 if (unlikely(!entries)) 2298 return 0; 2299 /* make sure SQ entry isn't read before tail */ 2300 ret = left = min(nr, entries); 2301 io_get_task_refs(left); 2302 io_submit_state_start(&ctx->submit_state, left); 2303 2304 do { 2305 const struct io_uring_sqe *sqe; 2306 struct io_kiocb *req; 2307 2308 if (unlikely(!io_alloc_req(ctx, &req))) 2309 break; 2310 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2311 io_req_add_to_cache(req, ctx); 2312 break; 2313 } 2314 2315 /* 2316 * Continue submitting even for sqe failure if the 2317 * ring was setup with IORING_SETUP_SUBMIT_ALL 2318 */ 2319 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2320 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2321 left--; 2322 break; 2323 } 2324 } while (--left); 2325 2326 if (unlikely(left)) { 2327 ret -= left; 2328 /* try again if it submitted nothing and can't allocate a req */ 2329 if (!ret && io_req_cache_empty(ctx)) 2330 ret = -EAGAIN; 2331 current->io_uring->cached_refs += left; 2332 } 2333 2334 io_submit_state_end(ctx); 2335 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2336 io_commit_sqring(ctx); 2337 return ret; 2338 } 2339 2340 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2341 int wake_flags, void *key) 2342 { 2343 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2344 2345 /* 2346 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2347 * the task, and the next invocation will do it. 2348 */ 2349 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2350 return autoremove_wake_function(curr, mode, wake_flags, key); 2351 return -1; 2352 } 2353 2354 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2355 { 2356 if (io_local_work_pending(ctx)) { 2357 __set_current_state(TASK_RUNNING); 2358 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2359 return 0; 2360 } 2361 if (io_run_task_work() > 0) 2362 return 0; 2363 if (task_sigpending(current)) 2364 return -EINTR; 2365 return 0; 2366 } 2367 2368 static bool current_pending_io(void) 2369 { 2370 struct io_uring_task *tctx = current->io_uring; 2371 2372 if (!tctx) 2373 return false; 2374 return percpu_counter_read_positive(&tctx->inflight); 2375 } 2376 2377 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2378 { 2379 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2380 2381 WRITE_ONCE(iowq->hit_timeout, 1); 2382 iowq->min_timeout = 0; 2383 wake_up_process(iowq->wq.private); 2384 return HRTIMER_NORESTART; 2385 } 2386 2387 /* 2388 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2389 * wake up. If not, and we have a normal timeout, switch to that and keep 2390 * sleeping. 2391 */ 2392 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2393 { 2394 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2395 struct io_ring_ctx *ctx = iowq->ctx; 2396 2397 /* no general timeout, or shorter (or equal), we are done */ 2398 if (iowq->timeout == KTIME_MAX || 2399 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2400 goto out_wake; 2401 /* work we may need to run, wake function will see if we need to wake */ 2402 if (io_has_work(ctx)) 2403 goto out_wake; 2404 /* got events since we started waiting, min timeout is done */ 2405 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2406 goto out_wake; 2407 /* if we have any events and min timeout expired, we're done */ 2408 if (io_cqring_events(ctx)) 2409 goto out_wake; 2410 2411 /* 2412 * If using deferred task_work running and application is waiting on 2413 * more than one request, ensure we reset it now where we are switching 2414 * to normal sleeps. Any request completion post min_wait should wake 2415 * the task and return. 2416 */ 2417 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2418 atomic_set(&ctx->cq_wait_nr, 1); 2419 smp_mb(); 2420 if (!llist_empty(&ctx->work_llist)) 2421 goto out_wake; 2422 } 2423 2424 iowq->t.function = io_cqring_timer_wakeup; 2425 hrtimer_set_expires(timer, iowq->timeout); 2426 return HRTIMER_RESTART; 2427 out_wake: 2428 return io_cqring_timer_wakeup(timer); 2429 } 2430 2431 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2432 clockid_t clock_id, ktime_t start_time) 2433 { 2434 ktime_t timeout; 2435 2436 if (iowq->min_timeout) { 2437 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2438 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2439 HRTIMER_MODE_ABS); 2440 } else { 2441 timeout = iowq->timeout; 2442 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2443 HRTIMER_MODE_ABS); 2444 } 2445 2446 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2447 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2448 2449 if (!READ_ONCE(iowq->hit_timeout)) 2450 schedule(); 2451 2452 hrtimer_cancel(&iowq->t); 2453 destroy_hrtimer_on_stack(&iowq->t); 2454 __set_current_state(TASK_RUNNING); 2455 2456 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2457 } 2458 2459 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2460 struct io_wait_queue *iowq, 2461 ktime_t start_time) 2462 { 2463 int ret = 0; 2464 2465 /* 2466 * Mark us as being in io_wait if we have pending requests, so cpufreq 2467 * can take into account that the task is waiting for IO - turns out 2468 * to be important for low QD IO. 2469 */ 2470 if (current_pending_io()) 2471 current->in_iowait = 1; 2472 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2473 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2474 else 2475 schedule(); 2476 current->in_iowait = 0; 2477 return ret; 2478 } 2479 2480 /* If this returns > 0, the caller should retry */ 2481 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2482 struct io_wait_queue *iowq, 2483 ktime_t start_time) 2484 { 2485 if (unlikely(READ_ONCE(ctx->check_cq))) 2486 return 1; 2487 if (unlikely(io_local_work_pending(ctx))) 2488 return 1; 2489 if (unlikely(task_work_pending(current))) 2490 return 1; 2491 if (unlikely(task_sigpending(current))) 2492 return -EINTR; 2493 if (unlikely(io_should_wake(iowq))) 2494 return 0; 2495 2496 return __io_cqring_wait_schedule(ctx, iowq, start_time); 2497 } 2498 2499 struct ext_arg { 2500 size_t argsz; 2501 struct timespec64 ts; 2502 const sigset_t __user *sig; 2503 ktime_t min_time; 2504 bool ts_set; 2505 }; 2506 2507 /* 2508 * Wait until events become available, if we don't already have some. The 2509 * application must reap them itself, as they reside on the shared cq ring. 2510 */ 2511 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2512 struct ext_arg *ext_arg) 2513 { 2514 struct io_wait_queue iowq; 2515 struct io_rings *rings = ctx->rings; 2516 ktime_t start_time; 2517 int ret; 2518 2519 if (!io_allowed_run_tw(ctx)) 2520 return -EEXIST; 2521 if (io_local_work_pending(ctx)) 2522 io_run_local_work(ctx, min_events, 2523 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2524 io_run_task_work(); 2525 2526 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2527 io_cqring_do_overflow_flush(ctx); 2528 if (__io_cqring_events_user(ctx) >= min_events) 2529 return 0; 2530 2531 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2532 iowq.wq.private = current; 2533 INIT_LIST_HEAD(&iowq.wq.entry); 2534 iowq.ctx = ctx; 2535 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2536 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2537 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2538 iowq.hit_timeout = 0; 2539 iowq.min_timeout = ext_arg->min_time; 2540 iowq.timeout = KTIME_MAX; 2541 start_time = io_get_time(ctx); 2542 2543 if (ext_arg->ts_set) { 2544 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2545 if (!(flags & IORING_ENTER_ABS_TIMER)) 2546 iowq.timeout = ktime_add(iowq.timeout, start_time); 2547 } 2548 2549 if (ext_arg->sig) { 2550 #ifdef CONFIG_COMPAT 2551 if (in_compat_syscall()) 2552 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2553 ext_arg->argsz); 2554 else 2555 #endif 2556 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2557 2558 if (ret) 2559 return ret; 2560 } 2561 2562 io_napi_busy_loop(ctx, &iowq); 2563 2564 trace_io_uring_cqring_wait(ctx, min_events); 2565 do { 2566 unsigned long check_cq; 2567 int nr_wait; 2568 2569 /* if min timeout has been hit, don't reset wait count */ 2570 if (!iowq.hit_timeout) 2571 nr_wait = (int) iowq.cq_tail - 2572 READ_ONCE(ctx->rings->cq.tail); 2573 else 2574 nr_wait = 1; 2575 2576 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2577 atomic_set(&ctx->cq_wait_nr, nr_wait); 2578 set_current_state(TASK_INTERRUPTIBLE); 2579 } else { 2580 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2581 TASK_INTERRUPTIBLE); 2582 } 2583 2584 ret = io_cqring_wait_schedule(ctx, &iowq, start_time); 2585 __set_current_state(TASK_RUNNING); 2586 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2587 2588 /* 2589 * Run task_work after scheduling and before io_should_wake(). 2590 * If we got woken because of task_work being processed, run it 2591 * now rather than let the caller do another wait loop. 2592 */ 2593 if (io_local_work_pending(ctx)) 2594 io_run_local_work(ctx, nr_wait, nr_wait); 2595 io_run_task_work(); 2596 2597 /* 2598 * Non-local task_work will be run on exit to userspace, but 2599 * if we're using DEFER_TASKRUN, then we could have waited 2600 * with a timeout for a number of requests. If the timeout 2601 * hits, we could have some requests ready to process. Ensure 2602 * this break is _after_ we have run task_work, to avoid 2603 * deferring running potentially pending requests until the 2604 * next time we wait for events. 2605 */ 2606 if (ret < 0) 2607 break; 2608 2609 check_cq = READ_ONCE(ctx->check_cq); 2610 if (unlikely(check_cq)) { 2611 /* let the caller flush overflows, retry */ 2612 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2613 io_cqring_do_overflow_flush(ctx); 2614 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2615 ret = -EBADR; 2616 break; 2617 } 2618 } 2619 2620 if (io_should_wake(&iowq)) { 2621 ret = 0; 2622 break; 2623 } 2624 cond_resched(); 2625 } while (1); 2626 2627 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2628 finish_wait(&ctx->cq_wait, &iowq.wq); 2629 restore_saved_sigmask_unless(ret == -EINTR); 2630 2631 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2632 } 2633 2634 static void io_rings_free(struct io_ring_ctx *ctx) 2635 { 2636 io_free_region(ctx, &ctx->sq_region); 2637 io_free_region(ctx, &ctx->ring_region); 2638 ctx->rings = NULL; 2639 ctx->sq_sqes = NULL; 2640 } 2641 2642 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2643 unsigned int cq_entries, size_t *sq_offset) 2644 { 2645 struct io_rings *rings; 2646 size_t off, sq_array_size; 2647 2648 off = struct_size(rings, cqes, cq_entries); 2649 if (off == SIZE_MAX) 2650 return SIZE_MAX; 2651 if (flags & IORING_SETUP_CQE32) { 2652 if (check_shl_overflow(off, 1, &off)) 2653 return SIZE_MAX; 2654 } 2655 2656 #ifdef CONFIG_SMP 2657 off = ALIGN(off, SMP_CACHE_BYTES); 2658 if (off == 0) 2659 return SIZE_MAX; 2660 #endif 2661 2662 if (flags & IORING_SETUP_NO_SQARRAY) { 2663 *sq_offset = SIZE_MAX; 2664 return off; 2665 } 2666 2667 *sq_offset = off; 2668 2669 sq_array_size = array_size(sizeof(u32), sq_entries); 2670 if (sq_array_size == SIZE_MAX) 2671 return SIZE_MAX; 2672 2673 if (check_add_overflow(off, sq_array_size, &off)) 2674 return SIZE_MAX; 2675 2676 return off; 2677 } 2678 2679 static void io_req_caches_free(struct io_ring_ctx *ctx) 2680 { 2681 struct io_kiocb *req; 2682 int nr = 0; 2683 2684 mutex_lock(&ctx->uring_lock); 2685 2686 while (!io_req_cache_empty(ctx)) { 2687 req = io_extract_req(ctx); 2688 kmem_cache_free(req_cachep, req); 2689 nr++; 2690 } 2691 if (nr) 2692 percpu_ref_put_many(&ctx->refs, nr); 2693 mutex_unlock(&ctx->uring_lock); 2694 } 2695 2696 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2697 { 2698 io_sq_thread_finish(ctx); 2699 2700 mutex_lock(&ctx->uring_lock); 2701 io_sqe_buffers_unregister(ctx); 2702 io_sqe_files_unregister(ctx); 2703 io_cqring_overflow_kill(ctx); 2704 io_eventfd_unregister(ctx); 2705 io_alloc_cache_free(&ctx->apoll_cache, kfree); 2706 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2707 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 2708 io_alloc_cache_free(&ctx->uring_cache, kfree); 2709 io_alloc_cache_free(&ctx->msg_cache, kfree); 2710 io_futex_cache_free(ctx); 2711 io_destroy_buffers(ctx); 2712 io_free_region(ctx, &ctx->param_region); 2713 mutex_unlock(&ctx->uring_lock); 2714 if (ctx->sq_creds) 2715 put_cred(ctx->sq_creds); 2716 if (ctx->submitter_task) 2717 put_task_struct(ctx->submitter_task); 2718 2719 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2720 2721 if (ctx->mm_account) { 2722 mmdrop(ctx->mm_account); 2723 ctx->mm_account = NULL; 2724 } 2725 io_rings_free(ctx); 2726 2727 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2728 static_branch_dec(&io_key_has_sqarray); 2729 2730 percpu_ref_exit(&ctx->refs); 2731 free_uid(ctx->user); 2732 io_req_caches_free(ctx); 2733 if (ctx->hash_map) 2734 io_wq_put_hash(ctx->hash_map); 2735 io_napi_free(ctx); 2736 kvfree(ctx->cancel_table.hbs); 2737 xa_destroy(&ctx->io_bl_xa); 2738 kfree(ctx); 2739 } 2740 2741 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2742 { 2743 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2744 poll_wq_task_work); 2745 2746 mutex_lock(&ctx->uring_lock); 2747 ctx->poll_activated = true; 2748 mutex_unlock(&ctx->uring_lock); 2749 2750 /* 2751 * Wake ups for some events between start of polling and activation 2752 * might've been lost due to loose synchronisation. 2753 */ 2754 wake_up_all(&ctx->poll_wq); 2755 percpu_ref_put(&ctx->refs); 2756 } 2757 2758 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2759 { 2760 spin_lock(&ctx->completion_lock); 2761 /* already activated or in progress */ 2762 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2763 goto out; 2764 if (WARN_ON_ONCE(!ctx->task_complete)) 2765 goto out; 2766 if (!ctx->submitter_task) 2767 goto out; 2768 /* 2769 * with ->submitter_task only the submitter task completes requests, we 2770 * only need to sync with it, which is done by injecting a tw 2771 */ 2772 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2773 percpu_ref_get(&ctx->refs); 2774 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2775 percpu_ref_put(&ctx->refs); 2776 out: 2777 spin_unlock(&ctx->completion_lock); 2778 } 2779 2780 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2781 { 2782 struct io_ring_ctx *ctx = file->private_data; 2783 __poll_t mask = 0; 2784 2785 if (unlikely(!ctx->poll_activated)) 2786 io_activate_pollwq(ctx); 2787 /* 2788 * provides mb() which pairs with barrier from wq_has_sleeper 2789 * call in io_commit_cqring 2790 */ 2791 poll_wait(file, &ctx->poll_wq, wait); 2792 2793 if (!io_sqring_full(ctx)) 2794 mask |= EPOLLOUT | EPOLLWRNORM; 2795 2796 /* 2797 * Don't flush cqring overflow list here, just do a simple check. 2798 * Otherwise there could possible be ABBA deadlock: 2799 * CPU0 CPU1 2800 * ---- ---- 2801 * lock(&ctx->uring_lock); 2802 * lock(&ep->mtx); 2803 * lock(&ctx->uring_lock); 2804 * lock(&ep->mtx); 2805 * 2806 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2807 * pushes them to do the flush. 2808 */ 2809 2810 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2811 mask |= EPOLLIN | EPOLLRDNORM; 2812 2813 return mask; 2814 } 2815 2816 struct io_tctx_exit { 2817 struct callback_head task_work; 2818 struct completion completion; 2819 struct io_ring_ctx *ctx; 2820 }; 2821 2822 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2823 { 2824 struct io_uring_task *tctx = current->io_uring; 2825 struct io_tctx_exit *work; 2826 2827 work = container_of(cb, struct io_tctx_exit, task_work); 2828 /* 2829 * When @in_cancel, we're in cancellation and it's racy to remove the 2830 * node. It'll be removed by the end of cancellation, just ignore it. 2831 * tctx can be NULL if the queueing of this task_work raced with 2832 * work cancelation off the exec path. 2833 */ 2834 if (tctx && !atomic_read(&tctx->in_cancel)) 2835 io_uring_del_tctx_node((unsigned long)work->ctx); 2836 complete(&work->completion); 2837 } 2838 2839 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2840 { 2841 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2842 2843 return req->ctx == data; 2844 } 2845 2846 static __cold void io_ring_exit_work(struct work_struct *work) 2847 { 2848 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2849 unsigned long timeout = jiffies + HZ * 60 * 5; 2850 unsigned long interval = HZ / 20; 2851 struct io_tctx_exit exit; 2852 struct io_tctx_node *node; 2853 int ret; 2854 2855 /* 2856 * If we're doing polled IO and end up having requests being 2857 * submitted async (out-of-line), then completions can come in while 2858 * we're waiting for refs to drop. We need to reap these manually, 2859 * as nobody else will be looking for them. 2860 */ 2861 do { 2862 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2863 mutex_lock(&ctx->uring_lock); 2864 io_cqring_overflow_kill(ctx); 2865 mutex_unlock(&ctx->uring_lock); 2866 } 2867 2868 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2869 io_move_task_work_from_local(ctx); 2870 2871 /* The SQPOLL thread never reaches this path */ 2872 while (io_uring_try_cancel_requests(ctx, NULL, true, false)) 2873 cond_resched(); 2874 2875 if (ctx->sq_data) { 2876 struct io_sq_data *sqd = ctx->sq_data; 2877 struct task_struct *tsk; 2878 2879 io_sq_thread_park(sqd); 2880 tsk = sqd->thread; 2881 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2882 io_wq_cancel_cb(tsk->io_uring->io_wq, 2883 io_cancel_ctx_cb, ctx, true); 2884 io_sq_thread_unpark(sqd); 2885 } 2886 2887 io_req_caches_free(ctx); 2888 2889 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2890 /* there is little hope left, don't run it too often */ 2891 interval = HZ * 60; 2892 } 2893 /* 2894 * This is really an uninterruptible wait, as it has to be 2895 * complete. But it's also run from a kworker, which doesn't 2896 * take signals, so it's fine to make it interruptible. This 2897 * avoids scenarios where we knowingly can wait much longer 2898 * on completions, for example if someone does a SIGSTOP on 2899 * a task that needs to finish task_work to make this loop 2900 * complete. That's a synthetic situation that should not 2901 * cause a stuck task backtrace, and hence a potential panic 2902 * on stuck tasks if that is enabled. 2903 */ 2904 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2905 2906 init_completion(&exit.completion); 2907 init_task_work(&exit.task_work, io_tctx_exit_cb); 2908 exit.ctx = ctx; 2909 2910 mutex_lock(&ctx->uring_lock); 2911 while (!list_empty(&ctx->tctx_list)) { 2912 WARN_ON_ONCE(time_after(jiffies, timeout)); 2913 2914 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2915 ctx_node); 2916 /* don't spin on a single task if cancellation failed */ 2917 list_rotate_left(&ctx->tctx_list); 2918 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2919 if (WARN_ON_ONCE(ret)) 2920 continue; 2921 2922 mutex_unlock(&ctx->uring_lock); 2923 /* 2924 * See comment above for 2925 * wait_for_completion_interruptible_timeout() on why this 2926 * wait is marked as interruptible. 2927 */ 2928 wait_for_completion_interruptible(&exit.completion); 2929 mutex_lock(&ctx->uring_lock); 2930 } 2931 mutex_unlock(&ctx->uring_lock); 2932 spin_lock(&ctx->completion_lock); 2933 spin_unlock(&ctx->completion_lock); 2934 2935 /* pairs with RCU read section in io_req_local_work_add() */ 2936 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2937 synchronize_rcu(); 2938 2939 io_ring_ctx_free(ctx); 2940 } 2941 2942 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2943 { 2944 unsigned long index; 2945 struct creds *creds; 2946 2947 mutex_lock(&ctx->uring_lock); 2948 percpu_ref_kill(&ctx->refs); 2949 xa_for_each(&ctx->personalities, index, creds) 2950 io_unregister_personality(ctx, index); 2951 mutex_unlock(&ctx->uring_lock); 2952 2953 flush_delayed_work(&ctx->fallback_work); 2954 2955 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2956 /* 2957 * Use system_unbound_wq to avoid spawning tons of event kworkers 2958 * if we're exiting a ton of rings at the same time. It just adds 2959 * noise and overhead, there's no discernable change in runtime 2960 * over using system_wq. 2961 */ 2962 queue_work(iou_wq, &ctx->exit_work); 2963 } 2964 2965 static int io_uring_release(struct inode *inode, struct file *file) 2966 { 2967 struct io_ring_ctx *ctx = file->private_data; 2968 2969 file->private_data = NULL; 2970 io_ring_ctx_wait_and_kill(ctx); 2971 return 0; 2972 } 2973 2974 struct io_task_cancel { 2975 struct io_uring_task *tctx; 2976 bool all; 2977 }; 2978 2979 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2980 { 2981 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2982 struct io_task_cancel *cancel = data; 2983 2984 return io_match_task_safe(req, cancel->tctx, cancel->all); 2985 } 2986 2987 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2988 struct io_uring_task *tctx, 2989 bool cancel_all) 2990 { 2991 struct io_defer_entry *de; 2992 LIST_HEAD(list); 2993 2994 spin_lock(&ctx->completion_lock); 2995 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2996 if (io_match_task_safe(de->req, tctx, cancel_all)) { 2997 list_cut_position(&list, &ctx->defer_list, &de->list); 2998 break; 2999 } 3000 } 3001 spin_unlock(&ctx->completion_lock); 3002 if (list_empty(&list)) 3003 return false; 3004 3005 while (!list_empty(&list)) { 3006 de = list_first_entry(&list, struct io_defer_entry, list); 3007 list_del_init(&de->list); 3008 io_req_task_queue_fail(de->req, -ECANCELED); 3009 kfree(de); 3010 } 3011 return true; 3012 } 3013 3014 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3015 { 3016 struct io_tctx_node *node; 3017 enum io_wq_cancel cret; 3018 bool ret = false; 3019 3020 mutex_lock(&ctx->uring_lock); 3021 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3022 struct io_uring_task *tctx = node->task->io_uring; 3023 3024 /* 3025 * io_wq will stay alive while we hold uring_lock, because it's 3026 * killed after ctx nodes, which requires to take the lock. 3027 */ 3028 if (!tctx || !tctx->io_wq) 3029 continue; 3030 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3031 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3032 } 3033 mutex_unlock(&ctx->uring_lock); 3034 3035 return ret; 3036 } 3037 3038 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3039 struct io_uring_task *tctx, 3040 bool cancel_all, 3041 bool is_sqpoll_thread) 3042 { 3043 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3044 enum io_wq_cancel cret; 3045 bool ret = false; 3046 3047 /* set it so io_req_local_work_add() would wake us up */ 3048 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3049 atomic_set(&ctx->cq_wait_nr, 1); 3050 smp_mb(); 3051 } 3052 3053 /* failed during ring init, it couldn't have issued any requests */ 3054 if (!ctx->rings) 3055 return false; 3056 3057 if (!tctx) { 3058 ret |= io_uring_try_cancel_iowq(ctx); 3059 } else if (tctx->io_wq) { 3060 /* 3061 * Cancels requests of all rings, not only @ctx, but 3062 * it's fine as the task is in exit/exec. 3063 */ 3064 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3065 &cancel, true); 3066 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3067 } 3068 3069 /* SQPOLL thread does its own polling */ 3070 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3071 is_sqpoll_thread) { 3072 while (!wq_list_empty(&ctx->iopoll_list)) { 3073 io_iopoll_try_reap_events(ctx); 3074 ret = true; 3075 cond_resched(); 3076 } 3077 } 3078 3079 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3080 io_allowed_defer_tw_run(ctx)) 3081 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3082 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3083 mutex_lock(&ctx->uring_lock); 3084 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3085 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3086 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3087 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3088 mutex_unlock(&ctx->uring_lock); 3089 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3090 if (tctx) 3091 ret |= io_run_task_work() > 0; 3092 else 3093 ret |= flush_delayed_work(&ctx->fallback_work); 3094 return ret; 3095 } 3096 3097 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3098 { 3099 if (tracked) 3100 return atomic_read(&tctx->inflight_tracked); 3101 return percpu_counter_sum(&tctx->inflight); 3102 } 3103 3104 /* 3105 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3106 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3107 */ 3108 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3109 { 3110 struct io_uring_task *tctx = current->io_uring; 3111 struct io_ring_ctx *ctx; 3112 struct io_tctx_node *node; 3113 unsigned long index; 3114 s64 inflight; 3115 DEFINE_WAIT(wait); 3116 3117 WARN_ON_ONCE(sqd && sqd->thread != current); 3118 3119 if (!current->io_uring) 3120 return; 3121 if (tctx->io_wq) 3122 io_wq_exit_start(tctx->io_wq); 3123 3124 atomic_inc(&tctx->in_cancel); 3125 do { 3126 bool loop = false; 3127 3128 io_uring_drop_tctx_refs(current); 3129 if (!tctx_inflight(tctx, !cancel_all)) 3130 break; 3131 3132 /* read completions before cancelations */ 3133 inflight = tctx_inflight(tctx, false); 3134 if (!inflight) 3135 break; 3136 3137 if (!sqd) { 3138 xa_for_each(&tctx->xa, index, node) { 3139 /* sqpoll task will cancel all its requests */ 3140 if (node->ctx->sq_data) 3141 continue; 3142 loop |= io_uring_try_cancel_requests(node->ctx, 3143 current->io_uring, 3144 cancel_all, 3145 false); 3146 } 3147 } else { 3148 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3149 loop |= io_uring_try_cancel_requests(ctx, 3150 current->io_uring, 3151 cancel_all, 3152 true); 3153 } 3154 3155 if (loop) { 3156 cond_resched(); 3157 continue; 3158 } 3159 3160 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3161 io_run_task_work(); 3162 io_uring_drop_tctx_refs(current); 3163 xa_for_each(&tctx->xa, index, node) { 3164 if (io_local_work_pending(node->ctx)) { 3165 WARN_ON_ONCE(node->ctx->submitter_task && 3166 node->ctx->submitter_task != current); 3167 goto end_wait; 3168 } 3169 } 3170 /* 3171 * If we've seen completions, retry without waiting. This 3172 * avoids a race where a completion comes in before we did 3173 * prepare_to_wait(). 3174 */ 3175 if (inflight == tctx_inflight(tctx, !cancel_all)) 3176 schedule(); 3177 end_wait: 3178 finish_wait(&tctx->wait, &wait); 3179 } while (1); 3180 3181 io_uring_clean_tctx(tctx); 3182 if (cancel_all) { 3183 /* 3184 * We shouldn't run task_works after cancel, so just leave 3185 * ->in_cancel set for normal exit. 3186 */ 3187 atomic_dec(&tctx->in_cancel); 3188 /* for exec all current's requests should be gone, kill tctx */ 3189 __io_uring_free(current); 3190 } 3191 } 3192 3193 void __io_uring_cancel(bool cancel_all) 3194 { 3195 io_uring_unreg_ringfd(); 3196 io_uring_cancel_generic(cancel_all, NULL); 3197 } 3198 3199 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3200 const struct io_uring_getevents_arg __user *uarg) 3201 { 3202 unsigned long size = sizeof(struct io_uring_reg_wait); 3203 unsigned long offset = (uintptr_t)uarg; 3204 unsigned long end; 3205 3206 if (unlikely(offset % sizeof(long))) 3207 return ERR_PTR(-EFAULT); 3208 3209 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3210 if (unlikely(check_add_overflow(offset, size, &end) || 3211 end > ctx->cq_wait_size)) 3212 return ERR_PTR(-EFAULT); 3213 3214 offset = array_index_nospec(offset, ctx->cq_wait_size - size); 3215 return ctx->cq_wait_arg + offset; 3216 } 3217 3218 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3219 const void __user *argp, size_t argsz) 3220 { 3221 struct io_uring_getevents_arg arg; 3222 3223 if (!(flags & IORING_ENTER_EXT_ARG)) 3224 return 0; 3225 if (flags & IORING_ENTER_EXT_ARG_REG) 3226 return -EINVAL; 3227 if (argsz != sizeof(arg)) 3228 return -EINVAL; 3229 if (copy_from_user(&arg, argp, sizeof(arg))) 3230 return -EFAULT; 3231 return 0; 3232 } 3233 3234 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3235 const void __user *argp, struct ext_arg *ext_arg) 3236 { 3237 const struct io_uring_getevents_arg __user *uarg = argp; 3238 struct io_uring_getevents_arg arg; 3239 3240 /* 3241 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3242 * is just a pointer to the sigset_t. 3243 */ 3244 if (!(flags & IORING_ENTER_EXT_ARG)) { 3245 ext_arg->sig = (const sigset_t __user *) argp; 3246 return 0; 3247 } 3248 3249 if (flags & IORING_ENTER_EXT_ARG_REG) { 3250 struct io_uring_reg_wait *w; 3251 3252 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3253 return -EINVAL; 3254 w = io_get_ext_arg_reg(ctx, argp); 3255 if (IS_ERR(w)) 3256 return PTR_ERR(w); 3257 3258 if (w->flags & ~IORING_REG_WAIT_TS) 3259 return -EINVAL; 3260 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3261 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3262 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3263 if (w->flags & IORING_REG_WAIT_TS) { 3264 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3265 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3266 ext_arg->ts_set = true; 3267 } 3268 return 0; 3269 } 3270 3271 /* 3272 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3273 * timespec and sigset_t pointers if good. 3274 */ 3275 if (ext_arg->argsz != sizeof(arg)) 3276 return -EINVAL; 3277 #ifdef CONFIG_64BIT 3278 if (!user_access_begin(uarg, sizeof(*uarg))) 3279 return -EFAULT; 3280 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3281 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3282 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3283 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3284 user_access_end(); 3285 #else 3286 if (copy_from_user(&arg, uarg, sizeof(arg))) 3287 return -EFAULT; 3288 #endif 3289 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3290 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3291 ext_arg->argsz = arg.sigmask_sz; 3292 if (arg.ts) { 3293 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3294 return -EFAULT; 3295 ext_arg->ts_set = true; 3296 } 3297 return 0; 3298 #ifdef CONFIG_64BIT 3299 uaccess_end: 3300 user_access_end(); 3301 return -EFAULT; 3302 #endif 3303 } 3304 3305 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3306 u32, min_complete, u32, flags, const void __user *, argp, 3307 size_t, argsz) 3308 { 3309 struct io_ring_ctx *ctx; 3310 struct file *file; 3311 long ret; 3312 3313 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3314 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3315 IORING_ENTER_REGISTERED_RING | 3316 IORING_ENTER_ABS_TIMER | 3317 IORING_ENTER_EXT_ARG_REG))) 3318 return -EINVAL; 3319 3320 /* 3321 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3322 * need only dereference our task private array to find it. 3323 */ 3324 if (flags & IORING_ENTER_REGISTERED_RING) { 3325 struct io_uring_task *tctx = current->io_uring; 3326 3327 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3328 return -EINVAL; 3329 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3330 file = tctx->registered_rings[fd]; 3331 if (unlikely(!file)) 3332 return -EBADF; 3333 } else { 3334 file = fget(fd); 3335 if (unlikely(!file)) 3336 return -EBADF; 3337 ret = -EOPNOTSUPP; 3338 if (unlikely(!io_is_uring_fops(file))) 3339 goto out; 3340 } 3341 3342 ctx = file->private_data; 3343 ret = -EBADFD; 3344 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3345 goto out; 3346 3347 /* 3348 * For SQ polling, the thread will do all submissions and completions. 3349 * Just return the requested submit count, and wake the thread if 3350 * we were asked to. 3351 */ 3352 ret = 0; 3353 if (ctx->flags & IORING_SETUP_SQPOLL) { 3354 if (unlikely(ctx->sq_data->thread == NULL)) { 3355 ret = -EOWNERDEAD; 3356 goto out; 3357 } 3358 if (flags & IORING_ENTER_SQ_WAKEUP) 3359 wake_up(&ctx->sq_data->wait); 3360 if (flags & IORING_ENTER_SQ_WAIT) 3361 io_sqpoll_wait_sq(ctx); 3362 3363 ret = to_submit; 3364 } else if (to_submit) { 3365 ret = io_uring_add_tctx_node(ctx); 3366 if (unlikely(ret)) 3367 goto out; 3368 3369 mutex_lock(&ctx->uring_lock); 3370 ret = io_submit_sqes(ctx, to_submit); 3371 if (ret != to_submit) { 3372 mutex_unlock(&ctx->uring_lock); 3373 goto out; 3374 } 3375 if (flags & IORING_ENTER_GETEVENTS) { 3376 if (ctx->syscall_iopoll) 3377 goto iopoll_locked; 3378 /* 3379 * Ignore errors, we'll soon call io_cqring_wait() and 3380 * it should handle ownership problems if any. 3381 */ 3382 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3383 (void)io_run_local_work_locked(ctx, min_complete); 3384 } 3385 mutex_unlock(&ctx->uring_lock); 3386 } 3387 3388 if (flags & IORING_ENTER_GETEVENTS) { 3389 int ret2; 3390 3391 if (ctx->syscall_iopoll) { 3392 /* 3393 * We disallow the app entering submit/complete with 3394 * polling, but we still need to lock the ring to 3395 * prevent racing with polled issue that got punted to 3396 * a workqueue. 3397 */ 3398 mutex_lock(&ctx->uring_lock); 3399 iopoll_locked: 3400 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3401 if (likely(!ret2)) { 3402 min_complete = min(min_complete, 3403 ctx->cq_entries); 3404 ret2 = io_iopoll_check(ctx, min_complete); 3405 } 3406 mutex_unlock(&ctx->uring_lock); 3407 } else { 3408 struct ext_arg ext_arg = { .argsz = argsz }; 3409 3410 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3411 if (likely(!ret2)) { 3412 min_complete = min(min_complete, 3413 ctx->cq_entries); 3414 ret2 = io_cqring_wait(ctx, min_complete, flags, 3415 &ext_arg); 3416 } 3417 } 3418 3419 if (!ret) { 3420 ret = ret2; 3421 3422 /* 3423 * EBADR indicates that one or more CQE were dropped. 3424 * Once the user has been informed we can clear the bit 3425 * as they are obviously ok with those drops. 3426 */ 3427 if (unlikely(ret2 == -EBADR)) 3428 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3429 &ctx->check_cq); 3430 } 3431 } 3432 out: 3433 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3434 fput(file); 3435 return ret; 3436 } 3437 3438 static const struct file_operations io_uring_fops = { 3439 .release = io_uring_release, 3440 .mmap = io_uring_mmap, 3441 .get_unmapped_area = io_uring_get_unmapped_area, 3442 #ifndef CONFIG_MMU 3443 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3444 #endif 3445 .poll = io_uring_poll, 3446 #ifdef CONFIG_PROC_FS 3447 .show_fdinfo = io_uring_show_fdinfo, 3448 #endif 3449 }; 3450 3451 bool io_is_uring_fops(struct file *file) 3452 { 3453 return file->f_op == &io_uring_fops; 3454 } 3455 3456 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3457 struct io_uring_params *p) 3458 { 3459 struct io_uring_region_desc rd; 3460 struct io_rings *rings; 3461 size_t size, sq_array_offset; 3462 int ret; 3463 3464 /* make sure these are sane, as we already accounted them */ 3465 ctx->sq_entries = p->sq_entries; 3466 ctx->cq_entries = p->cq_entries; 3467 3468 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3469 &sq_array_offset); 3470 if (size == SIZE_MAX) 3471 return -EOVERFLOW; 3472 3473 memset(&rd, 0, sizeof(rd)); 3474 rd.size = PAGE_ALIGN(size); 3475 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3476 rd.user_addr = p->cq_off.user_addr; 3477 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3478 } 3479 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); 3480 if (ret) 3481 return ret; 3482 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); 3483 3484 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3485 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3486 rings->sq_ring_mask = p->sq_entries - 1; 3487 rings->cq_ring_mask = p->cq_entries - 1; 3488 rings->sq_ring_entries = p->sq_entries; 3489 rings->cq_ring_entries = p->cq_entries; 3490 3491 if (p->flags & IORING_SETUP_SQE128) 3492 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3493 else 3494 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3495 if (size == SIZE_MAX) { 3496 io_rings_free(ctx); 3497 return -EOVERFLOW; 3498 } 3499 3500 memset(&rd, 0, sizeof(rd)); 3501 rd.size = PAGE_ALIGN(size); 3502 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3503 rd.user_addr = p->sq_off.user_addr; 3504 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3505 } 3506 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); 3507 if (ret) { 3508 io_rings_free(ctx); 3509 return ret; 3510 } 3511 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); 3512 return 0; 3513 } 3514 3515 static int io_uring_install_fd(struct file *file) 3516 { 3517 int fd; 3518 3519 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3520 if (fd < 0) 3521 return fd; 3522 fd_install(fd, file); 3523 return fd; 3524 } 3525 3526 /* 3527 * Allocate an anonymous fd, this is what constitutes the application 3528 * visible backing of an io_uring instance. The application mmaps this 3529 * fd to gain access to the SQ/CQ ring details. 3530 */ 3531 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3532 { 3533 /* Create a new inode so that the LSM can block the creation. */ 3534 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3535 O_RDWR | O_CLOEXEC, NULL); 3536 } 3537 3538 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3539 { 3540 if (!entries) 3541 return -EINVAL; 3542 if (entries > IORING_MAX_ENTRIES) { 3543 if (!(p->flags & IORING_SETUP_CLAMP)) 3544 return -EINVAL; 3545 entries = IORING_MAX_ENTRIES; 3546 } 3547 3548 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3549 && !(p->flags & IORING_SETUP_NO_MMAP)) 3550 return -EINVAL; 3551 3552 /* 3553 * Use twice as many entries for the CQ ring. It's possible for the 3554 * application to drive a higher depth than the size of the SQ ring, 3555 * since the sqes are only used at submission time. This allows for 3556 * some flexibility in overcommitting a bit. If the application has 3557 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3558 * of CQ ring entries manually. 3559 */ 3560 p->sq_entries = roundup_pow_of_two(entries); 3561 if (p->flags & IORING_SETUP_CQSIZE) { 3562 /* 3563 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3564 * to a power-of-two, if it isn't already. We do NOT impose 3565 * any cq vs sq ring sizing. 3566 */ 3567 if (!p->cq_entries) 3568 return -EINVAL; 3569 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3570 if (!(p->flags & IORING_SETUP_CLAMP)) 3571 return -EINVAL; 3572 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3573 } 3574 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3575 if (p->cq_entries < p->sq_entries) 3576 return -EINVAL; 3577 } else { 3578 p->cq_entries = 2 * p->sq_entries; 3579 } 3580 3581 p->sq_off.head = offsetof(struct io_rings, sq.head); 3582 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3583 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3584 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3585 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3586 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3587 p->sq_off.resv1 = 0; 3588 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3589 p->sq_off.user_addr = 0; 3590 3591 p->cq_off.head = offsetof(struct io_rings, cq.head); 3592 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3593 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3594 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3595 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3596 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3597 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3598 p->cq_off.resv1 = 0; 3599 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3600 p->cq_off.user_addr = 0; 3601 3602 return 0; 3603 } 3604 3605 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3606 struct io_uring_params __user *params) 3607 { 3608 struct io_ring_ctx *ctx; 3609 struct io_uring_task *tctx; 3610 struct file *file; 3611 int ret; 3612 3613 ret = io_uring_fill_params(entries, p); 3614 if (unlikely(ret)) 3615 return ret; 3616 3617 ctx = io_ring_ctx_alloc(p); 3618 if (!ctx) 3619 return -ENOMEM; 3620 3621 ctx->clockid = CLOCK_MONOTONIC; 3622 ctx->clock_offset = 0; 3623 3624 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3625 static_branch_inc(&io_key_has_sqarray); 3626 3627 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3628 !(ctx->flags & IORING_SETUP_IOPOLL) && 3629 !(ctx->flags & IORING_SETUP_SQPOLL)) 3630 ctx->task_complete = true; 3631 3632 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3633 ctx->lockless_cq = true; 3634 3635 /* 3636 * lazy poll_wq activation relies on ->task_complete for synchronisation 3637 * purposes, see io_activate_pollwq() 3638 */ 3639 if (!ctx->task_complete) 3640 ctx->poll_activated = true; 3641 3642 /* 3643 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3644 * space applications don't need to do io completion events 3645 * polling again, they can rely on io_sq_thread to do polling 3646 * work, which can reduce cpu usage and uring_lock contention. 3647 */ 3648 if (ctx->flags & IORING_SETUP_IOPOLL && 3649 !(ctx->flags & IORING_SETUP_SQPOLL)) 3650 ctx->syscall_iopoll = 1; 3651 3652 ctx->compat = in_compat_syscall(); 3653 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3654 ctx->user = get_uid(current_user()); 3655 3656 /* 3657 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3658 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3659 */ 3660 ret = -EINVAL; 3661 if (ctx->flags & IORING_SETUP_SQPOLL) { 3662 /* IPI related flags don't make sense with SQPOLL */ 3663 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3664 IORING_SETUP_TASKRUN_FLAG | 3665 IORING_SETUP_DEFER_TASKRUN)) 3666 goto err; 3667 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3668 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3669 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3670 } else { 3671 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3672 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3673 goto err; 3674 ctx->notify_method = TWA_SIGNAL; 3675 } 3676 3677 /* HYBRID_IOPOLL only valid with IOPOLL */ 3678 if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) == 3679 IORING_SETUP_HYBRID_IOPOLL) 3680 goto err; 3681 3682 /* 3683 * For DEFER_TASKRUN we require the completion task to be the same as the 3684 * submission task. This implies that there is only one submitter, so enforce 3685 * that. 3686 */ 3687 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3688 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3689 goto err; 3690 } 3691 3692 /* 3693 * This is just grabbed for accounting purposes. When a process exits, 3694 * the mm is exited and dropped before the files, hence we need to hang 3695 * on to this mm purely for the purposes of being able to unaccount 3696 * memory (locked/pinned vm). It's not used for anything else. 3697 */ 3698 mmgrab(current->mm); 3699 ctx->mm_account = current->mm; 3700 3701 ret = io_allocate_scq_urings(ctx, p); 3702 if (ret) 3703 goto err; 3704 3705 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3706 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3707 3708 ret = io_sq_offload_create(ctx, p); 3709 if (ret) 3710 goto err; 3711 3712 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3713 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3714 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3715 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3716 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3717 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3718 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3719 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT | 3720 IORING_FEAT_RW_ATTR; 3721 3722 if (copy_to_user(params, p, sizeof(*p))) { 3723 ret = -EFAULT; 3724 goto err; 3725 } 3726 3727 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3728 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3729 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3730 3731 file = io_uring_get_file(ctx); 3732 if (IS_ERR(file)) { 3733 ret = PTR_ERR(file); 3734 goto err; 3735 } 3736 3737 ret = __io_uring_add_tctx_node(ctx); 3738 if (ret) 3739 goto err_fput; 3740 tctx = current->io_uring; 3741 3742 /* 3743 * Install ring fd as the very last thing, so we don't risk someone 3744 * having closed it before we finish setup 3745 */ 3746 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3747 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3748 else 3749 ret = io_uring_install_fd(file); 3750 if (ret < 0) 3751 goto err_fput; 3752 3753 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3754 return ret; 3755 err: 3756 io_ring_ctx_wait_and_kill(ctx); 3757 return ret; 3758 err_fput: 3759 fput(file); 3760 return ret; 3761 } 3762 3763 /* 3764 * Sets up an aio uring context, and returns the fd. Applications asks for a 3765 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3766 * params structure passed in. 3767 */ 3768 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3769 { 3770 struct io_uring_params p; 3771 int i; 3772 3773 if (copy_from_user(&p, params, sizeof(p))) 3774 return -EFAULT; 3775 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3776 if (p.resv[i]) 3777 return -EINVAL; 3778 } 3779 3780 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3781 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3782 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3783 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3784 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3785 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3786 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3787 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3788 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3789 return -EINVAL; 3790 3791 return io_uring_create(entries, &p, params); 3792 } 3793 3794 static inline bool io_uring_allowed(void) 3795 { 3796 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3797 kgid_t io_uring_group; 3798 3799 if (disabled == 2) 3800 return false; 3801 3802 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3803 return true; 3804 3805 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3806 if (!gid_valid(io_uring_group)) 3807 return false; 3808 3809 return in_group_p(io_uring_group); 3810 } 3811 3812 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3813 struct io_uring_params __user *, params) 3814 { 3815 if (!io_uring_allowed()) 3816 return -EPERM; 3817 3818 return io_uring_setup(entries, params); 3819 } 3820 3821 static int __init io_uring_init(void) 3822 { 3823 struct kmem_cache_args kmem_args = { 3824 .useroffset = offsetof(struct io_kiocb, cmd.data), 3825 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3826 .freeptr_offset = offsetof(struct io_kiocb, work), 3827 .use_freeptr_offset = true, 3828 }; 3829 3830 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3831 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3832 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3833 } while (0) 3834 3835 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3836 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3837 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3838 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3839 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3840 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3841 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3842 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3843 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3844 BUILD_BUG_SQE_ELEM(8, __u64, off); 3845 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3846 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3847 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3848 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3849 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3850 BUILD_BUG_SQE_ELEM(24, __u32, len); 3851 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3852 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3853 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3854 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3855 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3856 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3857 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3858 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3859 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3860 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3861 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3862 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3863 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3864 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3865 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3866 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3867 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3868 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3869 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3870 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3871 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3872 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3873 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3874 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3875 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3876 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3877 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3878 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3879 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3880 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3881 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); 3882 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); 3883 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3884 3885 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3886 sizeof(struct io_uring_rsrc_update)); 3887 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3888 sizeof(struct io_uring_rsrc_update2)); 3889 3890 /* ->buf_index is u16 */ 3891 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3892 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3893 offsetof(struct io_uring_buf_ring, tail)); 3894 3895 /* should fit into one byte */ 3896 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3897 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3898 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3899 3900 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3901 3902 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3903 3904 /* top 8bits are for internal use */ 3905 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3906 3907 io_uring_optable_init(); 3908 3909 /* 3910 * Allow user copy in the per-command field, which starts after the 3911 * file in io_kiocb and until the opcode field. The openat2 handling 3912 * requires copying in user memory into the io_kiocb object in that 3913 * range, and HARDENED_USERCOPY will complain if we haven't 3914 * correctly annotated this range. 3915 */ 3916 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3917 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3918 SLAB_TYPESAFE_BY_RCU); 3919 io_buf_cachep = KMEM_CACHE(io_buffer, 3920 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 3921 3922 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3923 3924 #ifdef CONFIG_SYSCTL 3925 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3926 #endif 3927 3928 return 0; 3929 }; 3930 __initcall(io_uring_init); 3931