1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 #include "zcrx.h" 101 102 #include "timeout.h" 103 #include "poll.h" 104 #include "rw.h" 105 #include "alloc_cache.h" 106 #include "eventfd.h" 107 108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 109 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 110 111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 113 114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 118 REQ_F_ASYNC_DATA) 119 120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \ 121 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 #define IO_LOCAL_TW_DEFAULT_MAX 20 128 129 struct io_defer_entry { 130 struct list_head list; 131 struct io_kiocb *req; 132 u32 seq; 133 }; 134 135 /* requests with any of those set should undergo io_disarm_next() */ 136 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 137 138 /* 139 * No waiters. It's larger than any valid value of the tw counter 140 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 141 */ 142 #define IO_CQ_WAKE_INIT (-1U) 143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 145 146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 147 struct io_uring_task *tctx, 148 bool cancel_all, 149 bool is_sqpoll_thread); 150 151 static void io_queue_sqe(struct io_kiocb *req); 152 153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 154 155 struct kmem_cache *req_cachep; 156 static struct workqueue_struct *iou_wq __ro_after_init; 157 158 static int __read_mostly sysctl_io_uring_disabled; 159 static int __read_mostly sysctl_io_uring_group = -1; 160 161 #ifdef CONFIG_SYSCTL 162 static const struct ctl_table kernel_io_uring_disabled_table[] = { 163 { 164 .procname = "io_uring_disabled", 165 .data = &sysctl_io_uring_disabled, 166 .maxlen = sizeof(sysctl_io_uring_disabled), 167 .mode = 0644, 168 .proc_handler = proc_dointvec_minmax, 169 .extra1 = SYSCTL_ZERO, 170 .extra2 = SYSCTL_TWO, 171 }, 172 { 173 .procname = "io_uring_group", 174 .data = &sysctl_io_uring_group, 175 .maxlen = sizeof(gid_t), 176 .mode = 0644, 177 .proc_handler = proc_dointvec, 178 }, 179 }; 180 #endif 181 182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 183 { 184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 185 } 186 187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 188 { 189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 190 } 191 192 static bool io_match_linked(struct io_kiocb *head) 193 { 194 struct io_kiocb *req; 195 196 io_for_each_link(req, head) { 197 if (req->flags & REQ_F_INFLIGHT) 198 return true; 199 } 200 return false; 201 } 202 203 /* 204 * As io_match_task() but protected against racing with linked timeouts. 205 * User must not hold timeout_lock. 206 */ 207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 208 bool cancel_all) 209 { 210 bool matched; 211 212 if (tctx && head->tctx != tctx) 213 return false; 214 if (cancel_all) 215 return true; 216 217 if (head->flags & REQ_F_LINK_TIMEOUT) { 218 struct io_ring_ctx *ctx = head->ctx; 219 220 /* protect against races with linked timeouts */ 221 raw_spin_lock_irq(&ctx->timeout_lock); 222 matched = io_match_linked(head); 223 raw_spin_unlock_irq(&ctx->timeout_lock); 224 } else { 225 matched = io_match_linked(head); 226 } 227 return matched; 228 } 229 230 static inline void req_fail_link_node(struct io_kiocb *req, int res) 231 { 232 req_set_fail(req); 233 io_req_set_res(req, res, 0); 234 } 235 236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 237 { 238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 239 } 240 241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 242 { 243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 244 245 complete(&ctx->ref_comp); 246 } 247 248 static __cold void io_fallback_req_func(struct work_struct *work) 249 { 250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 251 fallback_work.work); 252 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 253 struct io_kiocb *req, *tmp; 254 struct io_tw_state ts = {}; 255 256 percpu_ref_get(&ctx->refs); 257 mutex_lock(&ctx->uring_lock); 258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 259 req->io_task_work.func(req, ts); 260 io_submit_flush_completions(ctx); 261 mutex_unlock(&ctx->uring_lock); 262 percpu_ref_put(&ctx->refs); 263 } 264 265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 266 { 267 unsigned int hash_buckets; 268 int i; 269 270 do { 271 hash_buckets = 1U << bits; 272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 273 GFP_KERNEL_ACCOUNT); 274 if (table->hbs) 275 break; 276 if (bits == 1) 277 return -ENOMEM; 278 bits--; 279 } while (1); 280 281 table->hash_bits = bits; 282 for (i = 0; i < hash_buckets; i++) 283 INIT_HLIST_HEAD(&table->hbs[i].list); 284 return 0; 285 } 286 287 static void io_free_alloc_caches(struct io_ring_ctx *ctx) 288 { 289 io_alloc_cache_free(&ctx->apoll_cache, kfree); 290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free); 293 io_alloc_cache_free(&ctx->msg_cache, kfree); 294 io_futex_cache_free(ctx); 295 io_rsrc_cache_free(ctx); 296 } 297 298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 299 { 300 struct io_ring_ctx *ctx; 301 int hash_bits; 302 bool ret; 303 304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 305 if (!ctx) 306 return NULL; 307 308 xa_init(&ctx->io_bl_xa); 309 310 /* 311 * Use 5 bits less than the max cq entries, that should give us around 312 * 32 entries per hash list if totally full and uniformly spread, but 313 * don't keep too many buckets to not overconsume memory. 314 */ 315 hash_bits = ilog2(p->cq_entries) - 5; 316 hash_bits = clamp(hash_bits, 1, 8); 317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 ctx->hybrid_poll_time = LLONG_MAX; 325 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 326 init_waitqueue_head(&ctx->sqo_sq_wait); 327 INIT_LIST_HEAD(&ctx->sqd_list); 328 INIT_LIST_HEAD(&ctx->cq_overflow_list); 329 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 330 sizeof(struct async_poll), 0); 331 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct io_async_msghdr), 333 offsetof(struct io_async_msghdr, clear)); 334 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 335 sizeof(struct io_async_rw), 336 offsetof(struct io_async_rw, clear)); 337 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX, 338 sizeof(struct io_async_cmd), 339 sizeof(struct io_async_cmd)); 340 spin_lock_init(&ctx->msg_lock); 341 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 342 sizeof(struct io_kiocb), 0); 343 ret |= io_futex_cache_init(ctx); 344 ret |= io_rsrc_cache_init(ctx); 345 if (ret) 346 goto free_ref; 347 init_completion(&ctx->ref_comp); 348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 349 mutex_init(&ctx->uring_lock); 350 init_waitqueue_head(&ctx->cq_wait); 351 init_waitqueue_head(&ctx->poll_wq); 352 spin_lock_init(&ctx->completion_lock); 353 raw_spin_lock_init(&ctx->timeout_lock); 354 INIT_WQ_LIST(&ctx->iopoll_list); 355 INIT_LIST_HEAD(&ctx->defer_list); 356 INIT_LIST_HEAD(&ctx->timeout_list); 357 INIT_LIST_HEAD(&ctx->ltimeout_list); 358 init_llist_head(&ctx->work_llist); 359 INIT_LIST_HEAD(&ctx->tctx_list); 360 ctx->submit_state.free_list.next = NULL; 361 INIT_HLIST_HEAD(&ctx->waitid_list); 362 #ifdef CONFIG_FUTEX 363 INIT_HLIST_HEAD(&ctx->futex_list); 364 #endif 365 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 366 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 367 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 368 io_napi_init(ctx); 369 mutex_init(&ctx->mmap_lock); 370 371 return ctx; 372 373 free_ref: 374 percpu_ref_exit(&ctx->refs); 375 err: 376 io_free_alloc_caches(ctx); 377 kvfree(ctx->cancel_table.hbs); 378 xa_destroy(&ctx->io_bl_xa); 379 kfree(ctx); 380 return NULL; 381 } 382 383 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 384 { 385 struct io_rings *r = ctx->rings; 386 387 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 388 ctx->cq_extra--; 389 } 390 391 static bool req_need_defer(struct io_kiocb *req, u32 seq) 392 { 393 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 394 struct io_ring_ctx *ctx = req->ctx; 395 396 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 397 } 398 399 return false; 400 } 401 402 static void io_clean_op(struct io_kiocb *req) 403 { 404 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED)) 405 io_kbuf_drop_legacy(req); 406 407 if (req->flags & REQ_F_NEED_CLEANUP) { 408 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 409 410 if (def->cleanup) 411 def->cleanup(req); 412 } 413 if ((req->flags & REQ_F_POLLED) && req->apoll) { 414 kfree(req->apoll->double_poll); 415 kfree(req->apoll); 416 req->apoll = NULL; 417 } 418 if (req->flags & REQ_F_INFLIGHT) 419 atomic_dec(&req->tctx->inflight_tracked); 420 if (req->flags & REQ_F_CREDS) 421 put_cred(req->creds); 422 if (req->flags & REQ_F_ASYNC_DATA) { 423 kfree(req->async_data); 424 req->async_data = NULL; 425 } 426 req->flags &= ~IO_REQ_CLEAN_FLAGS; 427 } 428 429 static inline void io_req_track_inflight(struct io_kiocb *req) 430 { 431 if (!(req->flags & REQ_F_INFLIGHT)) { 432 req->flags |= REQ_F_INFLIGHT; 433 atomic_inc(&req->tctx->inflight_tracked); 434 } 435 } 436 437 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 438 { 439 if (WARN_ON_ONCE(!req->link)) 440 return NULL; 441 442 req->flags &= ~REQ_F_ARM_LTIMEOUT; 443 req->flags |= REQ_F_LINK_TIMEOUT; 444 445 /* linked timeouts should have two refs once prep'ed */ 446 io_req_set_refcount(req); 447 __io_req_set_refcount(req->link, 2); 448 return req->link; 449 } 450 451 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 452 { 453 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 454 return NULL; 455 return __io_prep_linked_timeout(req); 456 } 457 458 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 459 { 460 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 461 } 462 463 static inline void io_arm_ltimeout(struct io_kiocb *req) 464 { 465 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 466 __io_arm_ltimeout(req); 467 } 468 469 static void io_prep_async_work(struct io_kiocb *req) 470 { 471 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 472 struct io_ring_ctx *ctx = req->ctx; 473 474 if (!(req->flags & REQ_F_CREDS)) { 475 req->flags |= REQ_F_CREDS; 476 req->creds = get_current_cred(); 477 } 478 479 req->work.list.next = NULL; 480 atomic_set(&req->work.flags, 0); 481 if (req->flags & REQ_F_FORCE_ASYNC) 482 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 483 484 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 485 req->flags |= io_file_get_flags(req->file); 486 487 if (req->file && (req->flags & REQ_F_ISREG)) { 488 bool should_hash = def->hash_reg_file; 489 490 /* don't serialize this request if the fs doesn't need it */ 491 if (should_hash && (req->file->f_flags & O_DIRECT) && 492 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 493 should_hash = false; 494 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 495 io_wq_hash_work(&req->work, file_inode(req->file)); 496 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 497 if (def->unbound_nonreg_file) 498 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 499 } 500 } 501 502 static void io_prep_async_link(struct io_kiocb *req) 503 { 504 struct io_kiocb *cur; 505 506 if (req->flags & REQ_F_LINK_TIMEOUT) { 507 struct io_ring_ctx *ctx = req->ctx; 508 509 raw_spin_lock_irq(&ctx->timeout_lock); 510 io_for_each_link(cur, req) 511 io_prep_async_work(cur); 512 raw_spin_unlock_irq(&ctx->timeout_lock); 513 } else { 514 io_for_each_link(cur, req) 515 io_prep_async_work(cur); 516 } 517 } 518 519 static void io_queue_iowq(struct io_kiocb *req) 520 { 521 struct io_kiocb *link = io_prep_linked_timeout(req); 522 struct io_uring_task *tctx = req->tctx; 523 524 BUG_ON(!tctx); 525 526 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 527 io_req_task_queue_fail(req, -ECANCELED); 528 return; 529 } 530 531 /* init ->work of the whole link before punting */ 532 io_prep_async_link(req); 533 534 /* 535 * Not expected to happen, but if we do have a bug where this _can_ 536 * happen, catch it here and ensure the request is marked as 537 * canceled. That will make io-wq go through the usual work cancel 538 * procedure rather than attempt to run this request (or create a new 539 * worker for it). 540 */ 541 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 542 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 543 544 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 545 io_wq_enqueue(tctx->io_wq, &req->work); 546 if (link) 547 io_queue_linked_timeout(link); 548 } 549 550 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw) 551 { 552 io_queue_iowq(req); 553 } 554 555 void io_req_queue_iowq(struct io_kiocb *req) 556 { 557 req->io_task_work.func = io_req_queue_iowq_tw; 558 io_req_task_work_add(req); 559 } 560 561 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) 562 { 563 spin_lock(&ctx->completion_lock); 564 while (!list_empty(&ctx->defer_list)) { 565 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 566 struct io_defer_entry, list); 567 568 if (req_need_defer(de->req, de->seq)) 569 break; 570 list_del_init(&de->list); 571 io_req_task_queue(de->req); 572 kfree(de); 573 } 574 spin_unlock(&ctx->completion_lock); 575 } 576 577 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 578 { 579 if (ctx->poll_activated) 580 io_poll_wq_wake(ctx); 581 if (ctx->off_timeout_used) 582 io_flush_timeouts(ctx); 583 if (ctx->drain_active) 584 io_queue_deferred(ctx); 585 if (ctx->has_evfd) 586 io_eventfd_flush_signal(ctx); 587 } 588 589 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 590 { 591 if (!ctx->lockless_cq) 592 spin_lock(&ctx->completion_lock); 593 } 594 595 static inline void io_cq_lock(struct io_ring_ctx *ctx) 596 __acquires(ctx->completion_lock) 597 { 598 spin_lock(&ctx->completion_lock); 599 } 600 601 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 602 { 603 io_commit_cqring(ctx); 604 if (!ctx->task_complete) { 605 if (!ctx->lockless_cq) 606 spin_unlock(&ctx->completion_lock); 607 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 608 if (!ctx->syscall_iopoll) 609 io_cqring_wake(ctx); 610 } 611 io_commit_cqring_flush(ctx); 612 } 613 614 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 615 __releases(ctx->completion_lock) 616 { 617 io_commit_cqring(ctx); 618 spin_unlock(&ctx->completion_lock); 619 io_cqring_wake(ctx); 620 io_commit_cqring_flush(ctx); 621 } 622 623 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 624 { 625 size_t cqe_size = sizeof(struct io_uring_cqe); 626 627 lockdep_assert_held(&ctx->uring_lock); 628 629 /* don't abort if we're dying, entries must get freed */ 630 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 631 return; 632 633 if (ctx->flags & IORING_SETUP_CQE32) 634 cqe_size <<= 1; 635 636 io_cq_lock(ctx); 637 while (!list_empty(&ctx->cq_overflow_list)) { 638 struct io_uring_cqe *cqe; 639 struct io_overflow_cqe *ocqe; 640 641 ocqe = list_first_entry(&ctx->cq_overflow_list, 642 struct io_overflow_cqe, list); 643 644 if (!dying) { 645 if (!io_get_cqe_overflow(ctx, &cqe, true)) 646 break; 647 memcpy(cqe, &ocqe->cqe, cqe_size); 648 } 649 list_del(&ocqe->list); 650 kfree(ocqe); 651 652 /* 653 * For silly syzbot cases that deliberately overflow by huge 654 * amounts, check if we need to resched and drop and 655 * reacquire the locks if so. Nothing real would ever hit this. 656 * Ideally we'd have a non-posting unlock for this, but hard 657 * to care for a non-real case. 658 */ 659 if (need_resched()) { 660 io_cq_unlock_post(ctx); 661 mutex_unlock(&ctx->uring_lock); 662 cond_resched(); 663 mutex_lock(&ctx->uring_lock); 664 io_cq_lock(ctx); 665 } 666 } 667 668 if (list_empty(&ctx->cq_overflow_list)) { 669 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 670 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 671 } 672 io_cq_unlock_post(ctx); 673 } 674 675 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 676 { 677 if (ctx->rings) 678 __io_cqring_overflow_flush(ctx, true); 679 } 680 681 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 682 { 683 mutex_lock(&ctx->uring_lock); 684 __io_cqring_overflow_flush(ctx, false); 685 mutex_unlock(&ctx->uring_lock); 686 } 687 688 /* must to be called somewhat shortly after putting a request */ 689 static inline void io_put_task(struct io_kiocb *req) 690 { 691 struct io_uring_task *tctx = req->tctx; 692 693 if (likely(tctx->task == current)) { 694 tctx->cached_refs++; 695 } else { 696 percpu_counter_sub(&tctx->inflight, 1); 697 if (unlikely(atomic_read(&tctx->in_cancel))) 698 wake_up(&tctx->wait); 699 put_task_struct(tctx->task); 700 } 701 } 702 703 void io_task_refs_refill(struct io_uring_task *tctx) 704 { 705 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 706 707 percpu_counter_add(&tctx->inflight, refill); 708 refcount_add(refill, ¤t->usage); 709 tctx->cached_refs += refill; 710 } 711 712 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 713 { 714 struct io_uring_task *tctx = task->io_uring; 715 unsigned int refs = tctx->cached_refs; 716 717 if (refs) { 718 tctx->cached_refs = 0; 719 percpu_counter_sub(&tctx->inflight, refs); 720 put_task_struct_many(task, refs); 721 } 722 } 723 724 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 725 s32 res, u32 cflags, u64 extra1, u64 extra2) 726 { 727 struct io_overflow_cqe *ocqe; 728 size_t ocq_size = sizeof(struct io_overflow_cqe); 729 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 730 731 lockdep_assert_held(&ctx->completion_lock); 732 733 if (is_cqe32) 734 ocq_size += sizeof(struct io_uring_cqe); 735 736 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 737 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 738 if (!ocqe) { 739 /* 740 * If we're in ring overflow flush mode, or in task cancel mode, 741 * or cannot allocate an overflow entry, then we need to drop it 742 * on the floor. 743 */ 744 io_account_cq_overflow(ctx); 745 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 746 return false; 747 } 748 if (list_empty(&ctx->cq_overflow_list)) { 749 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 750 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 751 752 } 753 ocqe->cqe.user_data = user_data; 754 ocqe->cqe.res = res; 755 ocqe->cqe.flags = cflags; 756 if (is_cqe32) { 757 ocqe->cqe.big_cqe[0] = extra1; 758 ocqe->cqe.big_cqe[1] = extra2; 759 } 760 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 761 return true; 762 } 763 764 static void io_req_cqe_overflow(struct io_kiocb *req) 765 { 766 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 767 req->cqe.res, req->cqe.flags, 768 req->big_cqe.extra1, req->big_cqe.extra2); 769 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 770 } 771 772 /* 773 * writes to the cq entry need to come after reading head; the 774 * control dependency is enough as we're using WRITE_ONCE to 775 * fill the cq entry 776 */ 777 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 778 { 779 struct io_rings *rings = ctx->rings; 780 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 781 unsigned int free, queued, len; 782 783 /* 784 * Posting into the CQ when there are pending overflowed CQEs may break 785 * ordering guarantees, which will affect links, F_MORE users and more. 786 * Force overflow the completion. 787 */ 788 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 789 return false; 790 791 /* userspace may cheat modifying the tail, be safe and do min */ 792 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 793 free = ctx->cq_entries - queued; 794 /* we need a contiguous range, limit based on the current array offset */ 795 len = min(free, ctx->cq_entries - off); 796 if (!len) 797 return false; 798 799 if (ctx->flags & IORING_SETUP_CQE32) { 800 off <<= 1; 801 len <<= 1; 802 } 803 804 ctx->cqe_cached = &rings->cqes[off]; 805 ctx->cqe_sentinel = ctx->cqe_cached + len; 806 return true; 807 } 808 809 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 810 u32 cflags) 811 { 812 struct io_uring_cqe *cqe; 813 814 ctx->cq_extra++; 815 816 /* 817 * If we can't get a cq entry, userspace overflowed the 818 * submission (by quite a lot). Increment the overflow count in 819 * the ring. 820 */ 821 if (likely(io_get_cqe(ctx, &cqe))) { 822 WRITE_ONCE(cqe->user_data, user_data); 823 WRITE_ONCE(cqe->res, res); 824 WRITE_ONCE(cqe->flags, cflags); 825 826 if (ctx->flags & IORING_SETUP_CQE32) { 827 WRITE_ONCE(cqe->big_cqe[0], 0); 828 WRITE_ONCE(cqe->big_cqe[1], 0); 829 } 830 831 trace_io_uring_complete(ctx, NULL, cqe); 832 return true; 833 } 834 return false; 835 } 836 837 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 838 { 839 bool filled; 840 841 io_cq_lock(ctx); 842 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 843 if (!filled) 844 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 845 io_cq_unlock_post(ctx); 846 return filled; 847 } 848 849 /* 850 * Must be called from inline task_work so we now a flush will happen later, 851 * and obviously with ctx->uring_lock held (tw always has that). 852 */ 853 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 854 { 855 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 856 spin_lock(&ctx->completion_lock); 857 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 858 spin_unlock(&ctx->completion_lock); 859 } 860 ctx->submit_state.cq_flush = true; 861 } 862 863 /* 864 * A helper for multishot requests posting additional CQEs. 865 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 866 */ 867 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 868 { 869 struct io_ring_ctx *ctx = req->ctx; 870 bool posted; 871 872 lockdep_assert(!io_wq_current_is_worker()); 873 lockdep_assert_held(&ctx->uring_lock); 874 875 if (!ctx->lockless_cq) { 876 spin_lock(&ctx->completion_lock); 877 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 878 spin_unlock(&ctx->completion_lock); 879 } else { 880 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 881 } 882 883 ctx->submit_state.cq_flush = true; 884 return posted; 885 } 886 887 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 888 { 889 struct io_ring_ctx *ctx = req->ctx; 890 bool completed = true; 891 892 /* 893 * All execution paths but io-wq use the deferred completions by 894 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 895 */ 896 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 897 return; 898 899 /* 900 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 901 * the submitter task context, IOPOLL protects with uring_lock. 902 */ 903 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) { 904 defer_complete: 905 req->io_task_work.func = io_req_task_complete; 906 io_req_task_work_add(req); 907 return; 908 } 909 910 io_cq_lock(ctx); 911 if (!(req->flags & REQ_F_CQE_SKIP)) 912 completed = io_fill_cqe_req(ctx, req); 913 io_cq_unlock_post(ctx); 914 915 if (!completed) 916 goto defer_complete; 917 918 /* 919 * We don't free the request here because we know it's called from 920 * io-wq only, which holds a reference, so it cannot be the last put. 921 */ 922 req_ref_put(req); 923 } 924 925 void io_req_defer_failed(struct io_kiocb *req, s32 res) 926 __must_hold(&ctx->uring_lock) 927 { 928 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 929 930 lockdep_assert_held(&req->ctx->uring_lock); 931 932 req_set_fail(req); 933 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 934 if (def->fail) 935 def->fail(req); 936 io_req_complete_defer(req); 937 } 938 939 /* 940 * Don't initialise the fields below on every allocation, but do that in 941 * advance and keep them valid across allocations. 942 */ 943 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 944 { 945 req->ctx = ctx; 946 req->buf_node = NULL; 947 req->file_node = NULL; 948 req->link = NULL; 949 req->async_data = NULL; 950 /* not necessary, but safer to zero */ 951 memset(&req->cqe, 0, sizeof(req->cqe)); 952 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 953 } 954 955 /* 956 * A request might get retired back into the request caches even before opcode 957 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 958 * Because of that, io_alloc_req() should be called only under ->uring_lock 959 * and with extra caution to not get a request that is still worked on. 960 */ 961 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 962 __must_hold(&ctx->uring_lock) 963 { 964 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 965 void *reqs[IO_REQ_ALLOC_BATCH]; 966 int ret; 967 968 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 969 970 /* 971 * Bulk alloc is all-or-nothing. If we fail to get a batch, 972 * retry single alloc to be on the safe side. 973 */ 974 if (unlikely(ret <= 0)) { 975 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 976 if (!reqs[0]) 977 return false; 978 ret = 1; 979 } 980 981 percpu_ref_get_many(&ctx->refs, ret); 982 while (ret--) { 983 struct io_kiocb *req = reqs[ret]; 984 985 io_preinit_req(req, ctx); 986 io_req_add_to_cache(req, ctx); 987 } 988 return true; 989 } 990 991 __cold void io_free_req(struct io_kiocb *req) 992 { 993 /* refs were already put, restore them for io_req_task_complete() */ 994 req->flags &= ~REQ_F_REFCOUNT; 995 /* we only want to free it, don't post CQEs */ 996 req->flags |= REQ_F_CQE_SKIP; 997 req->io_task_work.func = io_req_task_complete; 998 io_req_task_work_add(req); 999 } 1000 1001 static void __io_req_find_next_prep(struct io_kiocb *req) 1002 { 1003 struct io_ring_ctx *ctx = req->ctx; 1004 1005 spin_lock(&ctx->completion_lock); 1006 io_disarm_next(req); 1007 spin_unlock(&ctx->completion_lock); 1008 } 1009 1010 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1011 { 1012 struct io_kiocb *nxt; 1013 1014 /* 1015 * If LINK is set, we have dependent requests in this chain. If we 1016 * didn't fail this request, queue the first one up, moving any other 1017 * dependencies to the next request. In case of failure, fail the rest 1018 * of the chain. 1019 */ 1020 if (unlikely(req->flags & IO_DISARM_MASK)) 1021 __io_req_find_next_prep(req); 1022 nxt = req->link; 1023 req->link = NULL; 1024 return nxt; 1025 } 1026 1027 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw) 1028 { 1029 if (!ctx) 1030 return; 1031 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1032 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1033 1034 io_submit_flush_completions(ctx); 1035 mutex_unlock(&ctx->uring_lock); 1036 percpu_ref_put(&ctx->refs); 1037 } 1038 1039 /* 1040 * Run queued task_work, returning the number of entries processed in *count. 1041 * If more entries than max_entries are available, stop processing once this 1042 * is reached and return the rest of the list. 1043 */ 1044 struct llist_node *io_handle_tw_list(struct llist_node *node, 1045 unsigned int *count, 1046 unsigned int max_entries) 1047 { 1048 struct io_ring_ctx *ctx = NULL; 1049 struct io_tw_state ts = { }; 1050 1051 do { 1052 struct llist_node *next = node->next; 1053 struct io_kiocb *req = container_of(node, struct io_kiocb, 1054 io_task_work.node); 1055 1056 if (req->ctx != ctx) { 1057 ctx_flush_and_put(ctx, ts); 1058 ctx = req->ctx; 1059 mutex_lock(&ctx->uring_lock); 1060 percpu_ref_get(&ctx->refs); 1061 } 1062 INDIRECT_CALL_2(req->io_task_work.func, 1063 io_poll_task_func, io_req_rw_complete, 1064 req, ts); 1065 node = next; 1066 (*count)++; 1067 if (unlikely(need_resched())) { 1068 ctx_flush_and_put(ctx, ts); 1069 ctx = NULL; 1070 cond_resched(); 1071 } 1072 } while (node && *count < max_entries); 1073 1074 ctx_flush_and_put(ctx, ts); 1075 return node; 1076 } 1077 1078 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1079 { 1080 struct io_ring_ctx *last_ctx = NULL; 1081 struct io_kiocb *req; 1082 1083 while (node) { 1084 req = container_of(node, struct io_kiocb, io_task_work.node); 1085 node = node->next; 1086 if (last_ctx != req->ctx) { 1087 if (last_ctx) { 1088 if (sync) 1089 flush_delayed_work(&last_ctx->fallback_work); 1090 percpu_ref_put(&last_ctx->refs); 1091 } 1092 last_ctx = req->ctx; 1093 percpu_ref_get(&last_ctx->refs); 1094 } 1095 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist)) 1096 schedule_delayed_work(&last_ctx->fallback_work, 1); 1097 } 1098 1099 if (last_ctx) { 1100 if (sync) 1101 flush_delayed_work(&last_ctx->fallback_work); 1102 percpu_ref_put(&last_ctx->refs); 1103 } 1104 } 1105 1106 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1107 { 1108 struct llist_node *node = llist_del_all(&tctx->task_list); 1109 1110 __io_fallback_tw(node, sync); 1111 } 1112 1113 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1114 unsigned int max_entries, 1115 unsigned int *count) 1116 { 1117 struct llist_node *node; 1118 1119 if (unlikely(current->flags & PF_EXITING)) { 1120 io_fallback_tw(tctx, true); 1121 return NULL; 1122 } 1123 1124 node = llist_del_all(&tctx->task_list); 1125 if (node) { 1126 node = llist_reverse_order(node); 1127 node = io_handle_tw_list(node, count, max_entries); 1128 } 1129 1130 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1131 if (unlikely(atomic_read(&tctx->in_cancel))) 1132 io_uring_drop_tctx_refs(current); 1133 1134 trace_io_uring_task_work_run(tctx, *count); 1135 return node; 1136 } 1137 1138 void tctx_task_work(struct callback_head *cb) 1139 { 1140 struct io_uring_task *tctx; 1141 struct llist_node *ret; 1142 unsigned int count = 0; 1143 1144 tctx = container_of(cb, struct io_uring_task, task_work); 1145 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1146 /* can't happen */ 1147 WARN_ON_ONCE(ret); 1148 } 1149 1150 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1151 { 1152 struct io_ring_ctx *ctx = req->ctx; 1153 unsigned nr_wait, nr_tw, nr_tw_prev; 1154 struct llist_node *head; 1155 1156 /* See comment above IO_CQ_WAKE_INIT */ 1157 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1158 1159 /* 1160 * We don't know how many reuqests is there in the link and whether 1161 * they can even be queued lazily, fall back to non-lazy. 1162 */ 1163 if (req->flags & IO_REQ_LINK_FLAGS) 1164 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1165 1166 guard(rcu)(); 1167 1168 head = READ_ONCE(ctx->work_llist.first); 1169 do { 1170 nr_tw_prev = 0; 1171 if (head) { 1172 struct io_kiocb *first_req = container_of(head, 1173 struct io_kiocb, 1174 io_task_work.node); 1175 /* 1176 * Might be executed at any moment, rely on 1177 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1178 */ 1179 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1180 } 1181 1182 /* 1183 * Theoretically, it can overflow, but that's fine as one of 1184 * previous adds should've tried to wake the task. 1185 */ 1186 nr_tw = nr_tw_prev + 1; 1187 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1188 nr_tw = IO_CQ_WAKE_FORCE; 1189 1190 req->nr_tw = nr_tw; 1191 req->io_task_work.node.next = head; 1192 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1193 &req->io_task_work.node)); 1194 1195 /* 1196 * cmpxchg implies a full barrier, which pairs with the barrier 1197 * in set_current_state() on the io_cqring_wait() side. It's used 1198 * to ensure that either we see updated ->cq_wait_nr, or waiters 1199 * going to sleep will observe the work added to the list, which 1200 * is similar to the wait/wawke task state sync. 1201 */ 1202 1203 if (!head) { 1204 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1205 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1206 if (ctx->has_evfd) 1207 io_eventfd_signal(ctx); 1208 } 1209 1210 nr_wait = atomic_read(&ctx->cq_wait_nr); 1211 /* not enough or no one is waiting */ 1212 if (nr_tw < nr_wait) 1213 return; 1214 /* the previous add has already woken it up */ 1215 if (nr_tw_prev >= nr_wait) 1216 return; 1217 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1218 } 1219 1220 static void io_req_normal_work_add(struct io_kiocb *req) 1221 { 1222 struct io_uring_task *tctx = req->tctx; 1223 struct io_ring_ctx *ctx = req->ctx; 1224 1225 /* task_work already pending, we're done */ 1226 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1227 return; 1228 1229 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1230 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1231 1232 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1233 if (ctx->flags & IORING_SETUP_SQPOLL) { 1234 __set_notify_signal(tctx->task); 1235 return; 1236 } 1237 1238 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1239 return; 1240 1241 io_fallback_tw(tctx, false); 1242 } 1243 1244 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1245 { 1246 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1247 io_req_local_work_add(req, flags); 1248 else 1249 io_req_normal_work_add(req); 1250 } 1251 1252 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags) 1253 { 1254 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1255 return; 1256 __io_req_task_work_add(req, flags); 1257 } 1258 1259 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1260 { 1261 struct llist_node *node = llist_del_all(&ctx->work_llist); 1262 1263 __io_fallback_tw(node, false); 1264 node = llist_del_all(&ctx->retry_llist); 1265 __io_fallback_tw(node, false); 1266 } 1267 1268 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1269 int min_events) 1270 { 1271 if (!io_local_work_pending(ctx)) 1272 return false; 1273 if (events < min_events) 1274 return true; 1275 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1276 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1277 return false; 1278 } 1279 1280 static int __io_run_local_work_loop(struct llist_node **node, 1281 io_tw_token_t tw, 1282 int events) 1283 { 1284 int ret = 0; 1285 1286 while (*node) { 1287 struct llist_node *next = (*node)->next; 1288 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1289 io_task_work.node); 1290 INDIRECT_CALL_2(req->io_task_work.func, 1291 io_poll_task_func, io_req_rw_complete, 1292 req, tw); 1293 *node = next; 1294 if (++ret >= events) 1295 break; 1296 } 1297 1298 return ret; 1299 } 1300 1301 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw, 1302 int min_events, int max_events) 1303 { 1304 struct llist_node *node; 1305 unsigned int loops = 0; 1306 int ret = 0; 1307 1308 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1309 return -EEXIST; 1310 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1311 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1312 again: 1313 min_events -= ret; 1314 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events); 1315 if (ctx->retry_llist.first) 1316 goto retry_done; 1317 1318 /* 1319 * llists are in reverse order, flip it back the right way before 1320 * running the pending items. 1321 */ 1322 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1323 ret += __io_run_local_work_loop(&node, tw, max_events - ret); 1324 ctx->retry_llist.first = node; 1325 loops++; 1326 1327 if (io_run_local_work_continue(ctx, ret, min_events)) 1328 goto again; 1329 retry_done: 1330 io_submit_flush_completions(ctx); 1331 if (io_run_local_work_continue(ctx, ret, min_events)) 1332 goto again; 1333 1334 trace_io_uring_local_work_run(ctx, ret, loops); 1335 return ret; 1336 } 1337 1338 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1339 int min_events) 1340 { 1341 struct io_tw_state ts = {}; 1342 1343 if (!io_local_work_pending(ctx)) 1344 return 0; 1345 return __io_run_local_work(ctx, ts, min_events, 1346 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1347 } 1348 1349 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1350 int max_events) 1351 { 1352 struct io_tw_state ts = {}; 1353 int ret; 1354 1355 mutex_lock(&ctx->uring_lock); 1356 ret = __io_run_local_work(ctx, ts, min_events, max_events); 1357 mutex_unlock(&ctx->uring_lock); 1358 return ret; 1359 } 1360 1361 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw) 1362 { 1363 io_tw_lock(req->ctx, tw); 1364 io_req_defer_failed(req, req->cqe.res); 1365 } 1366 1367 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw) 1368 { 1369 io_tw_lock(req->ctx, tw); 1370 if (unlikely(io_should_terminate_tw())) 1371 io_req_defer_failed(req, -EFAULT); 1372 else if (req->flags & REQ_F_FORCE_ASYNC) 1373 io_queue_iowq(req); 1374 else 1375 io_queue_sqe(req); 1376 } 1377 1378 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1379 { 1380 io_req_set_res(req, ret, 0); 1381 req->io_task_work.func = io_req_task_cancel; 1382 io_req_task_work_add(req); 1383 } 1384 1385 void io_req_task_queue(struct io_kiocb *req) 1386 { 1387 req->io_task_work.func = io_req_task_submit; 1388 io_req_task_work_add(req); 1389 } 1390 1391 void io_queue_next(struct io_kiocb *req) 1392 { 1393 struct io_kiocb *nxt = io_req_find_next(req); 1394 1395 if (nxt) 1396 io_req_task_queue(nxt); 1397 } 1398 1399 static void io_free_batch_list(struct io_ring_ctx *ctx, 1400 struct io_wq_work_node *node) 1401 __must_hold(&ctx->uring_lock) 1402 { 1403 do { 1404 struct io_kiocb *req = container_of(node, struct io_kiocb, 1405 comp_list); 1406 1407 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1408 if (req->flags & REQ_F_REISSUE) { 1409 node = req->comp_list.next; 1410 req->flags &= ~REQ_F_REISSUE; 1411 io_queue_iowq(req); 1412 continue; 1413 } 1414 if (req->flags & REQ_F_REFCOUNT) { 1415 node = req->comp_list.next; 1416 if (!req_ref_put_and_test(req)) 1417 continue; 1418 } 1419 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1420 struct async_poll *apoll = req->apoll; 1421 1422 if (apoll->double_poll) 1423 kfree(apoll->double_poll); 1424 io_cache_free(&ctx->apoll_cache, apoll); 1425 req->flags &= ~REQ_F_POLLED; 1426 } 1427 if (req->flags & IO_REQ_LINK_FLAGS) 1428 io_queue_next(req); 1429 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1430 io_clean_op(req); 1431 } 1432 io_put_file(req); 1433 io_req_put_rsrc_nodes(req); 1434 io_put_task(req); 1435 1436 node = req->comp_list.next; 1437 io_req_add_to_cache(req, ctx); 1438 } while (node); 1439 } 1440 1441 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1442 __must_hold(&ctx->uring_lock) 1443 { 1444 struct io_submit_state *state = &ctx->submit_state; 1445 struct io_wq_work_node *node; 1446 1447 __io_cq_lock(ctx); 1448 __wq_list_for_each(node, &state->compl_reqs) { 1449 struct io_kiocb *req = container_of(node, struct io_kiocb, 1450 comp_list); 1451 1452 /* 1453 * Requests marked with REQUEUE should not post a CQE, they 1454 * will go through the io-wq retry machinery and post one 1455 * later. 1456 */ 1457 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && 1458 unlikely(!io_fill_cqe_req(ctx, req))) { 1459 if (ctx->lockless_cq) { 1460 spin_lock(&ctx->completion_lock); 1461 io_req_cqe_overflow(req); 1462 spin_unlock(&ctx->completion_lock); 1463 } else { 1464 io_req_cqe_overflow(req); 1465 } 1466 } 1467 } 1468 __io_cq_unlock_post(ctx); 1469 1470 if (!wq_list_empty(&state->compl_reqs)) { 1471 io_free_batch_list(ctx, state->compl_reqs.first); 1472 INIT_WQ_LIST(&state->compl_reqs); 1473 } 1474 ctx->submit_state.cq_flush = false; 1475 } 1476 1477 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1478 { 1479 /* See comment at the top of this file */ 1480 smp_rmb(); 1481 return __io_cqring_events(ctx); 1482 } 1483 1484 /* 1485 * We can't just wait for polled events to come to us, we have to actively 1486 * find and complete them. 1487 */ 1488 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1489 { 1490 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1491 return; 1492 1493 mutex_lock(&ctx->uring_lock); 1494 while (!wq_list_empty(&ctx->iopoll_list)) { 1495 /* let it sleep and repeat later if can't complete a request */ 1496 if (io_do_iopoll(ctx, true) == 0) 1497 break; 1498 /* 1499 * Ensure we allow local-to-the-cpu processing to take place, 1500 * in this case we need to ensure that we reap all events. 1501 * Also let task_work, etc. to progress by releasing the mutex 1502 */ 1503 if (need_resched()) { 1504 mutex_unlock(&ctx->uring_lock); 1505 cond_resched(); 1506 mutex_lock(&ctx->uring_lock); 1507 } 1508 } 1509 mutex_unlock(&ctx->uring_lock); 1510 } 1511 1512 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events) 1513 { 1514 unsigned int nr_events = 0; 1515 unsigned long check_cq; 1516 1517 min_events = min(min_events, ctx->cq_entries); 1518 1519 lockdep_assert_held(&ctx->uring_lock); 1520 1521 if (!io_allowed_run_tw(ctx)) 1522 return -EEXIST; 1523 1524 check_cq = READ_ONCE(ctx->check_cq); 1525 if (unlikely(check_cq)) { 1526 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1527 __io_cqring_overflow_flush(ctx, false); 1528 /* 1529 * Similarly do not spin if we have not informed the user of any 1530 * dropped CQE. 1531 */ 1532 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1533 return -EBADR; 1534 } 1535 /* 1536 * Don't enter poll loop if we already have events pending. 1537 * If we do, we can potentially be spinning for commands that 1538 * already triggered a CQE (eg in error). 1539 */ 1540 if (io_cqring_events(ctx)) 1541 return 0; 1542 1543 do { 1544 int ret = 0; 1545 1546 /* 1547 * If a submit got punted to a workqueue, we can have the 1548 * application entering polling for a command before it gets 1549 * issued. That app will hold the uring_lock for the duration 1550 * of the poll right here, so we need to take a breather every 1551 * now and then to ensure that the issue has a chance to add 1552 * the poll to the issued list. Otherwise we can spin here 1553 * forever, while the workqueue is stuck trying to acquire the 1554 * very same mutex. 1555 */ 1556 if (wq_list_empty(&ctx->iopoll_list) || 1557 io_task_work_pending(ctx)) { 1558 u32 tail = ctx->cached_cq_tail; 1559 1560 (void) io_run_local_work_locked(ctx, min_events); 1561 1562 if (task_work_pending(current) || 1563 wq_list_empty(&ctx->iopoll_list)) { 1564 mutex_unlock(&ctx->uring_lock); 1565 io_run_task_work(); 1566 mutex_lock(&ctx->uring_lock); 1567 } 1568 /* some requests don't go through iopoll_list */ 1569 if (tail != ctx->cached_cq_tail || 1570 wq_list_empty(&ctx->iopoll_list)) 1571 break; 1572 } 1573 ret = io_do_iopoll(ctx, !min_events); 1574 if (unlikely(ret < 0)) 1575 return ret; 1576 1577 if (task_sigpending(current)) 1578 return -EINTR; 1579 if (need_resched()) 1580 break; 1581 1582 nr_events += ret; 1583 } while (nr_events < min_events); 1584 1585 return 0; 1586 } 1587 1588 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw) 1589 { 1590 io_req_complete_defer(req); 1591 } 1592 1593 /* 1594 * After the iocb has been issued, it's safe to be found on the poll list. 1595 * Adding the kiocb to the list AFTER submission ensures that we don't 1596 * find it from a io_do_iopoll() thread before the issuer is done 1597 * accessing the kiocb cookie. 1598 */ 1599 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1600 { 1601 struct io_ring_ctx *ctx = req->ctx; 1602 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1603 1604 /* workqueue context doesn't hold uring_lock, grab it now */ 1605 if (unlikely(needs_lock)) 1606 mutex_lock(&ctx->uring_lock); 1607 1608 /* 1609 * Track whether we have multiple files in our lists. This will impact 1610 * how we do polling eventually, not spinning if we're on potentially 1611 * different devices. 1612 */ 1613 if (wq_list_empty(&ctx->iopoll_list)) { 1614 ctx->poll_multi_queue = false; 1615 } else if (!ctx->poll_multi_queue) { 1616 struct io_kiocb *list_req; 1617 1618 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1619 comp_list); 1620 if (list_req->file != req->file) 1621 ctx->poll_multi_queue = true; 1622 } 1623 1624 /* 1625 * For fast devices, IO may have already completed. If it has, add 1626 * it to the front so we find it first. 1627 */ 1628 if (READ_ONCE(req->iopoll_completed)) 1629 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1630 else 1631 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1632 1633 if (unlikely(needs_lock)) { 1634 /* 1635 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1636 * in sq thread task context or in io worker task context. If 1637 * current task context is sq thread, we don't need to check 1638 * whether should wake up sq thread. 1639 */ 1640 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1641 wq_has_sleeper(&ctx->sq_data->wait)) 1642 wake_up(&ctx->sq_data->wait); 1643 1644 mutex_unlock(&ctx->uring_lock); 1645 } 1646 } 1647 1648 io_req_flags_t io_file_get_flags(struct file *file) 1649 { 1650 io_req_flags_t res = 0; 1651 1652 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1); 1653 1654 if (S_ISREG(file_inode(file)->i_mode)) 1655 res |= REQ_F_ISREG; 1656 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1657 res |= REQ_F_SUPPORT_NOWAIT; 1658 return res; 1659 } 1660 1661 static u32 io_get_sequence(struct io_kiocb *req) 1662 { 1663 u32 seq = req->ctx->cached_sq_head; 1664 struct io_kiocb *cur; 1665 1666 /* need original cached_sq_head, but it was increased for each req */ 1667 io_for_each_link(cur, req) 1668 seq--; 1669 return seq; 1670 } 1671 1672 static __cold void io_drain_req(struct io_kiocb *req) 1673 __must_hold(&ctx->uring_lock) 1674 { 1675 struct io_ring_ctx *ctx = req->ctx; 1676 struct io_defer_entry *de; 1677 int ret; 1678 u32 seq = io_get_sequence(req); 1679 1680 /* Still need defer if there is pending req in defer list. */ 1681 spin_lock(&ctx->completion_lock); 1682 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1683 spin_unlock(&ctx->completion_lock); 1684 queue: 1685 ctx->drain_active = false; 1686 io_req_task_queue(req); 1687 return; 1688 } 1689 spin_unlock(&ctx->completion_lock); 1690 1691 io_prep_async_link(req); 1692 de = kmalloc(sizeof(*de), GFP_KERNEL); 1693 if (!de) { 1694 ret = -ENOMEM; 1695 io_req_defer_failed(req, ret); 1696 return; 1697 } 1698 1699 spin_lock(&ctx->completion_lock); 1700 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1701 spin_unlock(&ctx->completion_lock); 1702 kfree(de); 1703 goto queue; 1704 } 1705 1706 trace_io_uring_defer(req); 1707 de->req = req; 1708 de->seq = seq; 1709 list_add_tail(&de->list, &ctx->defer_list); 1710 spin_unlock(&ctx->completion_lock); 1711 } 1712 1713 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1714 unsigned int issue_flags) 1715 { 1716 if (req->file || !def->needs_file) 1717 return true; 1718 1719 if (req->flags & REQ_F_FIXED_FILE) 1720 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1721 else 1722 req->file = io_file_get_normal(req, req->cqe.fd); 1723 1724 return !!req->file; 1725 } 1726 1727 static inline int __io_issue_sqe(struct io_kiocb *req, 1728 unsigned int issue_flags, 1729 const struct io_issue_def *def) 1730 { 1731 const struct cred *creds = NULL; 1732 int ret; 1733 1734 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1735 creds = override_creds(req->creds); 1736 1737 if (!def->audit_skip) 1738 audit_uring_entry(req->opcode); 1739 1740 ret = def->issue(req, issue_flags); 1741 1742 if (!def->audit_skip) 1743 audit_uring_exit(!ret, ret); 1744 1745 if (creds) 1746 revert_creds(creds); 1747 1748 return ret; 1749 } 1750 1751 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1752 { 1753 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1754 int ret; 1755 1756 if (unlikely(!io_assign_file(req, def, issue_flags))) 1757 return -EBADF; 1758 1759 ret = __io_issue_sqe(req, issue_flags, def); 1760 1761 if (ret == IOU_OK) { 1762 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1763 io_req_complete_defer(req); 1764 else 1765 io_req_complete_post(req, issue_flags); 1766 1767 return 0; 1768 } 1769 1770 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1771 ret = 0; 1772 io_arm_ltimeout(req); 1773 1774 /* If the op doesn't have a file, we're not polling for it */ 1775 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1776 io_iopoll_req_issued(req, issue_flags); 1777 } 1778 return ret; 1779 } 1780 1781 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw) 1782 { 1783 const unsigned int issue_flags = IO_URING_F_NONBLOCK | 1784 IO_URING_F_MULTISHOT | 1785 IO_URING_F_COMPLETE_DEFER; 1786 int ret; 1787 1788 io_tw_lock(req->ctx, tw); 1789 1790 WARN_ON_ONCE(!req->file); 1791 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL)) 1792 return -EFAULT; 1793 1794 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]); 1795 1796 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE); 1797 return ret; 1798 } 1799 1800 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1801 { 1802 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1803 struct io_kiocb *nxt = NULL; 1804 1805 if (req_ref_put_and_test_atomic(req)) { 1806 if (req->flags & IO_REQ_LINK_FLAGS) 1807 nxt = io_req_find_next(req); 1808 io_free_req(req); 1809 } 1810 return nxt ? &nxt->work : NULL; 1811 } 1812 1813 void io_wq_submit_work(struct io_wq_work *work) 1814 { 1815 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1816 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1817 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1818 bool needs_poll = false; 1819 int ret = 0, err = -ECANCELED; 1820 1821 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1822 if (!(req->flags & REQ_F_REFCOUNT)) 1823 __io_req_set_refcount(req, 2); 1824 else 1825 req_ref_get(req); 1826 1827 io_arm_ltimeout(req); 1828 1829 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1830 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1831 fail: 1832 io_req_task_queue_fail(req, err); 1833 return; 1834 } 1835 if (!io_assign_file(req, def, issue_flags)) { 1836 err = -EBADF; 1837 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1838 goto fail; 1839 } 1840 1841 /* 1842 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1843 * submitter task context. Final request completions are handed to the 1844 * right context, however this is not the case of auxiliary CQEs, 1845 * which is the main mean of operation for multishot requests. 1846 * Don't allow any multishot execution from io-wq. It's more restrictive 1847 * than necessary and also cleaner. 1848 */ 1849 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) { 1850 err = -EBADFD; 1851 if (!io_file_can_poll(req)) 1852 goto fail; 1853 if (req->file->f_flags & O_NONBLOCK || 1854 req->file->f_mode & FMODE_NOWAIT) { 1855 err = -ECANCELED; 1856 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1857 goto fail; 1858 return; 1859 } else { 1860 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT); 1861 } 1862 } 1863 1864 if (req->flags & REQ_F_FORCE_ASYNC) { 1865 bool opcode_poll = def->pollin || def->pollout; 1866 1867 if (opcode_poll && io_file_can_poll(req)) { 1868 needs_poll = true; 1869 issue_flags |= IO_URING_F_NONBLOCK; 1870 } 1871 } 1872 1873 do { 1874 ret = io_issue_sqe(req, issue_flags); 1875 if (ret != -EAGAIN) 1876 break; 1877 1878 /* 1879 * If REQ_F_NOWAIT is set, then don't wait or retry with 1880 * poll. -EAGAIN is final for that case. 1881 */ 1882 if (req->flags & REQ_F_NOWAIT) 1883 break; 1884 1885 /* 1886 * We can get EAGAIN for iopolled IO even though we're 1887 * forcing a sync submission from here, since we can't 1888 * wait for request slots on the block side. 1889 */ 1890 if (!needs_poll) { 1891 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1892 break; 1893 if (io_wq_worker_stopped()) 1894 break; 1895 cond_resched(); 1896 continue; 1897 } 1898 1899 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1900 return; 1901 /* aborted or ready, in either case retry blocking */ 1902 needs_poll = false; 1903 issue_flags &= ~IO_URING_F_NONBLOCK; 1904 } while (1); 1905 1906 /* avoid locking problems by failing it from a clean context */ 1907 if (ret) 1908 io_req_task_queue_fail(req, ret); 1909 } 1910 1911 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1912 unsigned int issue_flags) 1913 { 1914 struct io_ring_ctx *ctx = req->ctx; 1915 struct io_rsrc_node *node; 1916 struct file *file = NULL; 1917 1918 io_ring_submit_lock(ctx, issue_flags); 1919 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1920 if (node) { 1921 io_req_assign_rsrc_node(&req->file_node, node); 1922 req->flags |= io_slot_flags(node); 1923 file = io_slot_file(node); 1924 } 1925 io_ring_submit_unlock(ctx, issue_flags); 1926 return file; 1927 } 1928 1929 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1930 { 1931 struct file *file = fget(fd); 1932 1933 trace_io_uring_file_get(req, fd); 1934 1935 /* we don't allow fixed io_uring files */ 1936 if (file && io_is_uring_fops(file)) 1937 io_req_track_inflight(req); 1938 return file; 1939 } 1940 1941 static void io_queue_async(struct io_kiocb *req, int ret) 1942 __must_hold(&req->ctx->uring_lock) 1943 { 1944 struct io_kiocb *linked_timeout; 1945 1946 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1947 io_req_defer_failed(req, ret); 1948 return; 1949 } 1950 1951 linked_timeout = io_prep_linked_timeout(req); 1952 1953 switch (io_arm_poll_handler(req, 0)) { 1954 case IO_APOLL_READY: 1955 io_kbuf_recycle(req, 0); 1956 io_req_task_queue(req); 1957 break; 1958 case IO_APOLL_ABORTED: 1959 io_kbuf_recycle(req, 0); 1960 io_queue_iowq(req); 1961 break; 1962 case IO_APOLL_OK: 1963 break; 1964 } 1965 1966 if (linked_timeout) 1967 io_queue_linked_timeout(linked_timeout); 1968 } 1969 1970 static inline void io_queue_sqe(struct io_kiocb *req) 1971 __must_hold(&req->ctx->uring_lock) 1972 { 1973 int ret; 1974 1975 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1976 1977 /* 1978 * We async punt it if the file wasn't marked NOWAIT, or if the file 1979 * doesn't support non-blocking read/write attempts 1980 */ 1981 if (unlikely(ret)) 1982 io_queue_async(req, ret); 1983 } 1984 1985 static void io_queue_sqe_fallback(struct io_kiocb *req) 1986 __must_hold(&req->ctx->uring_lock) 1987 { 1988 if (unlikely(req->flags & REQ_F_FAIL)) { 1989 /* 1990 * We don't submit, fail them all, for that replace hardlinks 1991 * with normal links. Extra REQ_F_LINK is tolerated. 1992 */ 1993 req->flags &= ~REQ_F_HARDLINK; 1994 req->flags |= REQ_F_LINK; 1995 io_req_defer_failed(req, req->cqe.res); 1996 } else { 1997 if (unlikely(req->ctx->drain_active)) 1998 io_drain_req(req); 1999 else 2000 io_queue_iowq(req); 2001 } 2002 } 2003 2004 /* 2005 * Check SQE restrictions (opcode and flags). 2006 * 2007 * Returns 'true' if SQE is allowed, 'false' otherwise. 2008 */ 2009 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2010 struct io_kiocb *req, 2011 unsigned int sqe_flags) 2012 { 2013 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2014 return false; 2015 2016 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2017 ctx->restrictions.sqe_flags_required) 2018 return false; 2019 2020 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2021 ctx->restrictions.sqe_flags_required)) 2022 return false; 2023 2024 return true; 2025 } 2026 2027 static void io_init_drain(struct io_ring_ctx *ctx) 2028 { 2029 struct io_kiocb *head = ctx->submit_state.link.head; 2030 2031 ctx->drain_active = true; 2032 if (head) { 2033 /* 2034 * If we need to drain a request in the middle of a link, drain 2035 * the head request and the next request/link after the current 2036 * link. Considering sequential execution of links, 2037 * REQ_F_IO_DRAIN will be maintained for every request of our 2038 * link. 2039 */ 2040 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2041 ctx->drain_next = true; 2042 } 2043 } 2044 2045 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2046 { 2047 /* ensure per-opcode data is cleared if we fail before prep */ 2048 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2049 return err; 2050 } 2051 2052 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2053 const struct io_uring_sqe *sqe) 2054 __must_hold(&ctx->uring_lock) 2055 { 2056 const struct io_issue_def *def; 2057 unsigned int sqe_flags; 2058 int personality; 2059 u8 opcode; 2060 2061 /* req is partially pre-initialised, see io_preinit_req() */ 2062 req->opcode = opcode = READ_ONCE(sqe->opcode); 2063 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2064 sqe_flags = READ_ONCE(sqe->flags); 2065 req->flags = (__force io_req_flags_t) sqe_flags; 2066 req->cqe.user_data = READ_ONCE(sqe->user_data); 2067 req->file = NULL; 2068 req->tctx = current->io_uring; 2069 req->cancel_seq_set = false; 2070 2071 if (unlikely(opcode >= IORING_OP_LAST)) { 2072 req->opcode = 0; 2073 return io_init_fail_req(req, -EINVAL); 2074 } 2075 opcode = array_index_nospec(opcode, IORING_OP_LAST); 2076 2077 def = &io_issue_defs[opcode]; 2078 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2079 /* enforce forwards compatibility on users */ 2080 if (sqe_flags & ~SQE_VALID_FLAGS) 2081 return io_init_fail_req(req, -EINVAL); 2082 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2083 if (!def->buffer_select) 2084 return io_init_fail_req(req, -EOPNOTSUPP); 2085 req->buf_index = READ_ONCE(sqe->buf_group); 2086 } 2087 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2088 ctx->drain_disabled = true; 2089 if (sqe_flags & IOSQE_IO_DRAIN) { 2090 if (ctx->drain_disabled) 2091 return io_init_fail_req(req, -EOPNOTSUPP); 2092 io_init_drain(ctx); 2093 } 2094 } 2095 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2096 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2097 return io_init_fail_req(req, -EACCES); 2098 /* knock it to the slow queue path, will be drained there */ 2099 if (ctx->drain_active) 2100 req->flags |= REQ_F_FORCE_ASYNC; 2101 /* if there is no link, we're at "next" request and need to drain */ 2102 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2103 ctx->drain_next = false; 2104 ctx->drain_active = true; 2105 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2106 } 2107 } 2108 2109 if (!def->ioprio && sqe->ioprio) 2110 return io_init_fail_req(req, -EINVAL); 2111 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2112 return io_init_fail_req(req, -EINVAL); 2113 2114 if (def->needs_file) { 2115 struct io_submit_state *state = &ctx->submit_state; 2116 2117 req->cqe.fd = READ_ONCE(sqe->fd); 2118 2119 /* 2120 * Plug now if we have more than 2 IO left after this, and the 2121 * target is potentially a read/write to block based storage. 2122 */ 2123 if (state->need_plug && def->plug) { 2124 state->plug_started = true; 2125 state->need_plug = false; 2126 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2127 } 2128 } 2129 2130 personality = READ_ONCE(sqe->personality); 2131 if (personality) { 2132 int ret; 2133 2134 req->creds = xa_load(&ctx->personalities, personality); 2135 if (!req->creds) 2136 return io_init_fail_req(req, -EINVAL); 2137 get_cred(req->creds); 2138 ret = security_uring_override_creds(req->creds); 2139 if (ret) { 2140 put_cred(req->creds); 2141 return io_init_fail_req(req, ret); 2142 } 2143 req->flags |= REQ_F_CREDS; 2144 } 2145 2146 return def->prep(req, sqe); 2147 } 2148 2149 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2150 struct io_kiocb *req, int ret) 2151 { 2152 struct io_ring_ctx *ctx = req->ctx; 2153 struct io_submit_link *link = &ctx->submit_state.link; 2154 struct io_kiocb *head = link->head; 2155 2156 trace_io_uring_req_failed(sqe, req, ret); 2157 2158 /* 2159 * Avoid breaking links in the middle as it renders links with SQPOLL 2160 * unusable. Instead of failing eagerly, continue assembling the link if 2161 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2162 * should find the flag and handle the rest. 2163 */ 2164 req_fail_link_node(req, ret); 2165 if (head && !(head->flags & REQ_F_FAIL)) 2166 req_fail_link_node(head, -ECANCELED); 2167 2168 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2169 if (head) { 2170 link->last->link = req; 2171 link->head = NULL; 2172 req = head; 2173 } 2174 io_queue_sqe_fallback(req); 2175 return ret; 2176 } 2177 2178 if (head) 2179 link->last->link = req; 2180 else 2181 link->head = req; 2182 link->last = req; 2183 return 0; 2184 } 2185 2186 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2187 const struct io_uring_sqe *sqe) 2188 __must_hold(&ctx->uring_lock) 2189 { 2190 struct io_submit_link *link = &ctx->submit_state.link; 2191 int ret; 2192 2193 ret = io_init_req(ctx, req, sqe); 2194 if (unlikely(ret)) 2195 return io_submit_fail_init(sqe, req, ret); 2196 2197 trace_io_uring_submit_req(req); 2198 2199 /* 2200 * If we already have a head request, queue this one for async 2201 * submittal once the head completes. If we don't have a head but 2202 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2203 * submitted sync once the chain is complete. If none of those 2204 * conditions are true (normal request), then just queue it. 2205 */ 2206 if (unlikely(link->head)) { 2207 trace_io_uring_link(req, link->last); 2208 link->last->link = req; 2209 link->last = req; 2210 2211 if (req->flags & IO_REQ_LINK_FLAGS) 2212 return 0; 2213 /* last request of the link, flush it */ 2214 req = link->head; 2215 link->head = NULL; 2216 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2217 goto fallback; 2218 2219 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2220 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2221 if (req->flags & IO_REQ_LINK_FLAGS) { 2222 link->head = req; 2223 link->last = req; 2224 } else { 2225 fallback: 2226 io_queue_sqe_fallback(req); 2227 } 2228 return 0; 2229 } 2230 2231 io_queue_sqe(req); 2232 return 0; 2233 } 2234 2235 /* 2236 * Batched submission is done, ensure local IO is flushed out. 2237 */ 2238 static void io_submit_state_end(struct io_ring_ctx *ctx) 2239 { 2240 struct io_submit_state *state = &ctx->submit_state; 2241 2242 if (unlikely(state->link.head)) 2243 io_queue_sqe_fallback(state->link.head); 2244 /* flush only after queuing links as they can generate completions */ 2245 io_submit_flush_completions(ctx); 2246 if (state->plug_started) 2247 blk_finish_plug(&state->plug); 2248 } 2249 2250 /* 2251 * Start submission side cache. 2252 */ 2253 static void io_submit_state_start(struct io_submit_state *state, 2254 unsigned int max_ios) 2255 { 2256 state->plug_started = false; 2257 state->need_plug = max_ios > 2; 2258 state->submit_nr = max_ios; 2259 /* set only head, no need to init link_last in advance */ 2260 state->link.head = NULL; 2261 } 2262 2263 static void io_commit_sqring(struct io_ring_ctx *ctx) 2264 { 2265 struct io_rings *rings = ctx->rings; 2266 2267 /* 2268 * Ensure any loads from the SQEs are done at this point, 2269 * since once we write the new head, the application could 2270 * write new data to them. 2271 */ 2272 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2273 } 2274 2275 /* 2276 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2277 * that is mapped by userspace. This means that care needs to be taken to 2278 * ensure that reads are stable, as we cannot rely on userspace always 2279 * being a good citizen. If members of the sqe are validated and then later 2280 * used, it's important that those reads are done through READ_ONCE() to 2281 * prevent a re-load down the line. 2282 */ 2283 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2284 { 2285 unsigned mask = ctx->sq_entries - 1; 2286 unsigned head = ctx->cached_sq_head++ & mask; 2287 2288 if (static_branch_unlikely(&io_key_has_sqarray) && 2289 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2290 head = READ_ONCE(ctx->sq_array[head]); 2291 if (unlikely(head >= ctx->sq_entries)) { 2292 /* drop invalid entries */ 2293 spin_lock(&ctx->completion_lock); 2294 ctx->cq_extra--; 2295 spin_unlock(&ctx->completion_lock); 2296 WRITE_ONCE(ctx->rings->sq_dropped, 2297 READ_ONCE(ctx->rings->sq_dropped) + 1); 2298 return false; 2299 } 2300 head = array_index_nospec(head, ctx->sq_entries); 2301 } 2302 2303 /* 2304 * The cached sq head (or cq tail) serves two purposes: 2305 * 2306 * 1) allows us to batch the cost of updating the user visible 2307 * head updates. 2308 * 2) allows the kernel side to track the head on its own, even 2309 * though the application is the one updating it. 2310 */ 2311 2312 /* double index for 128-byte SQEs, twice as long */ 2313 if (ctx->flags & IORING_SETUP_SQE128) 2314 head <<= 1; 2315 *sqe = &ctx->sq_sqes[head]; 2316 return true; 2317 } 2318 2319 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2320 __must_hold(&ctx->uring_lock) 2321 { 2322 unsigned int entries = io_sqring_entries(ctx); 2323 unsigned int left; 2324 int ret; 2325 2326 if (unlikely(!entries)) 2327 return 0; 2328 /* make sure SQ entry isn't read before tail */ 2329 ret = left = min(nr, entries); 2330 io_get_task_refs(left); 2331 io_submit_state_start(&ctx->submit_state, left); 2332 2333 do { 2334 const struct io_uring_sqe *sqe; 2335 struct io_kiocb *req; 2336 2337 if (unlikely(!io_alloc_req(ctx, &req))) 2338 break; 2339 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2340 io_req_add_to_cache(req, ctx); 2341 break; 2342 } 2343 2344 /* 2345 * Continue submitting even for sqe failure if the 2346 * ring was setup with IORING_SETUP_SUBMIT_ALL 2347 */ 2348 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2349 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2350 left--; 2351 break; 2352 } 2353 } while (--left); 2354 2355 if (unlikely(left)) { 2356 ret -= left; 2357 /* try again if it submitted nothing and can't allocate a req */ 2358 if (!ret && io_req_cache_empty(ctx)) 2359 ret = -EAGAIN; 2360 current->io_uring->cached_refs += left; 2361 } 2362 2363 io_submit_state_end(ctx); 2364 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2365 io_commit_sqring(ctx); 2366 return ret; 2367 } 2368 2369 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2370 int wake_flags, void *key) 2371 { 2372 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2373 2374 /* 2375 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2376 * the task, and the next invocation will do it. 2377 */ 2378 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2379 return autoremove_wake_function(curr, mode, wake_flags, key); 2380 return -1; 2381 } 2382 2383 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2384 { 2385 if (io_local_work_pending(ctx)) { 2386 __set_current_state(TASK_RUNNING); 2387 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2388 return 0; 2389 } 2390 if (io_run_task_work() > 0) 2391 return 0; 2392 if (task_sigpending(current)) 2393 return -EINTR; 2394 return 0; 2395 } 2396 2397 static bool current_pending_io(void) 2398 { 2399 struct io_uring_task *tctx = current->io_uring; 2400 2401 if (!tctx) 2402 return false; 2403 return percpu_counter_read_positive(&tctx->inflight); 2404 } 2405 2406 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2407 { 2408 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2409 2410 WRITE_ONCE(iowq->hit_timeout, 1); 2411 iowq->min_timeout = 0; 2412 wake_up_process(iowq->wq.private); 2413 return HRTIMER_NORESTART; 2414 } 2415 2416 /* 2417 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2418 * wake up. If not, and we have a normal timeout, switch to that and keep 2419 * sleeping. 2420 */ 2421 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2422 { 2423 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2424 struct io_ring_ctx *ctx = iowq->ctx; 2425 2426 /* no general timeout, or shorter (or equal), we are done */ 2427 if (iowq->timeout == KTIME_MAX || 2428 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2429 goto out_wake; 2430 /* work we may need to run, wake function will see if we need to wake */ 2431 if (io_has_work(ctx)) 2432 goto out_wake; 2433 /* got events since we started waiting, min timeout is done */ 2434 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2435 goto out_wake; 2436 /* if we have any events and min timeout expired, we're done */ 2437 if (io_cqring_events(ctx)) 2438 goto out_wake; 2439 2440 /* 2441 * If using deferred task_work running and application is waiting on 2442 * more than one request, ensure we reset it now where we are switching 2443 * to normal sleeps. Any request completion post min_wait should wake 2444 * the task and return. 2445 */ 2446 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2447 atomic_set(&ctx->cq_wait_nr, 1); 2448 smp_mb(); 2449 if (!llist_empty(&ctx->work_llist)) 2450 goto out_wake; 2451 } 2452 2453 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup); 2454 hrtimer_set_expires(timer, iowq->timeout); 2455 return HRTIMER_RESTART; 2456 out_wake: 2457 return io_cqring_timer_wakeup(timer); 2458 } 2459 2460 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2461 clockid_t clock_id, ktime_t start_time) 2462 { 2463 ktime_t timeout; 2464 2465 if (iowq->min_timeout) { 2466 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2467 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2468 HRTIMER_MODE_ABS); 2469 } else { 2470 timeout = iowq->timeout; 2471 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2472 HRTIMER_MODE_ABS); 2473 } 2474 2475 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2476 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2477 2478 if (!READ_ONCE(iowq->hit_timeout)) 2479 schedule(); 2480 2481 hrtimer_cancel(&iowq->t); 2482 destroy_hrtimer_on_stack(&iowq->t); 2483 __set_current_state(TASK_RUNNING); 2484 2485 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2486 } 2487 2488 struct ext_arg { 2489 size_t argsz; 2490 struct timespec64 ts; 2491 const sigset_t __user *sig; 2492 ktime_t min_time; 2493 bool ts_set; 2494 bool iowait; 2495 }; 2496 2497 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2498 struct io_wait_queue *iowq, 2499 struct ext_arg *ext_arg, 2500 ktime_t start_time) 2501 { 2502 int ret = 0; 2503 2504 /* 2505 * Mark us as being in io_wait if we have pending requests, so cpufreq 2506 * can take into account that the task is waiting for IO - turns out 2507 * to be important for low QD IO. 2508 */ 2509 if (ext_arg->iowait && current_pending_io()) 2510 current->in_iowait = 1; 2511 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2512 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2513 else 2514 schedule(); 2515 current->in_iowait = 0; 2516 return ret; 2517 } 2518 2519 /* If this returns > 0, the caller should retry */ 2520 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2521 struct io_wait_queue *iowq, 2522 struct ext_arg *ext_arg, 2523 ktime_t start_time) 2524 { 2525 if (unlikely(READ_ONCE(ctx->check_cq))) 2526 return 1; 2527 if (unlikely(io_local_work_pending(ctx))) 2528 return 1; 2529 if (unlikely(task_work_pending(current))) 2530 return 1; 2531 if (unlikely(task_sigpending(current))) 2532 return -EINTR; 2533 if (unlikely(io_should_wake(iowq))) 2534 return 0; 2535 2536 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time); 2537 } 2538 2539 /* 2540 * Wait until events become available, if we don't already have some. The 2541 * application must reap them itself, as they reside on the shared cq ring. 2542 */ 2543 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2544 struct ext_arg *ext_arg) 2545 { 2546 struct io_wait_queue iowq; 2547 struct io_rings *rings = ctx->rings; 2548 ktime_t start_time; 2549 int ret; 2550 2551 min_events = min_t(int, min_events, ctx->cq_entries); 2552 2553 if (!io_allowed_run_tw(ctx)) 2554 return -EEXIST; 2555 if (io_local_work_pending(ctx)) 2556 io_run_local_work(ctx, min_events, 2557 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2558 io_run_task_work(); 2559 2560 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2561 io_cqring_do_overflow_flush(ctx); 2562 if (__io_cqring_events_user(ctx) >= min_events) 2563 return 0; 2564 2565 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2566 iowq.wq.private = current; 2567 INIT_LIST_HEAD(&iowq.wq.entry); 2568 iowq.ctx = ctx; 2569 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2570 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2571 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2572 iowq.hit_timeout = 0; 2573 iowq.min_timeout = ext_arg->min_time; 2574 iowq.timeout = KTIME_MAX; 2575 start_time = io_get_time(ctx); 2576 2577 if (ext_arg->ts_set) { 2578 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2579 if (!(flags & IORING_ENTER_ABS_TIMER)) 2580 iowq.timeout = ktime_add(iowq.timeout, start_time); 2581 } 2582 2583 if (ext_arg->sig) { 2584 #ifdef CONFIG_COMPAT 2585 if (in_compat_syscall()) 2586 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2587 ext_arg->argsz); 2588 else 2589 #endif 2590 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2591 2592 if (ret) 2593 return ret; 2594 } 2595 2596 io_napi_busy_loop(ctx, &iowq); 2597 2598 trace_io_uring_cqring_wait(ctx, min_events); 2599 do { 2600 unsigned long check_cq; 2601 int nr_wait; 2602 2603 /* if min timeout has been hit, don't reset wait count */ 2604 if (!iowq.hit_timeout) 2605 nr_wait = (int) iowq.cq_tail - 2606 READ_ONCE(ctx->rings->cq.tail); 2607 else 2608 nr_wait = 1; 2609 2610 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2611 atomic_set(&ctx->cq_wait_nr, nr_wait); 2612 set_current_state(TASK_INTERRUPTIBLE); 2613 } else { 2614 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2615 TASK_INTERRUPTIBLE); 2616 } 2617 2618 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time); 2619 __set_current_state(TASK_RUNNING); 2620 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2621 2622 /* 2623 * Run task_work after scheduling and before io_should_wake(). 2624 * If we got woken because of task_work being processed, run it 2625 * now rather than let the caller do another wait loop. 2626 */ 2627 if (io_local_work_pending(ctx)) 2628 io_run_local_work(ctx, nr_wait, nr_wait); 2629 io_run_task_work(); 2630 2631 /* 2632 * Non-local task_work will be run on exit to userspace, but 2633 * if we're using DEFER_TASKRUN, then we could have waited 2634 * with a timeout for a number of requests. If the timeout 2635 * hits, we could have some requests ready to process. Ensure 2636 * this break is _after_ we have run task_work, to avoid 2637 * deferring running potentially pending requests until the 2638 * next time we wait for events. 2639 */ 2640 if (ret < 0) 2641 break; 2642 2643 check_cq = READ_ONCE(ctx->check_cq); 2644 if (unlikely(check_cq)) { 2645 /* let the caller flush overflows, retry */ 2646 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2647 io_cqring_do_overflow_flush(ctx); 2648 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2649 ret = -EBADR; 2650 break; 2651 } 2652 } 2653 2654 if (io_should_wake(&iowq)) { 2655 ret = 0; 2656 break; 2657 } 2658 cond_resched(); 2659 } while (1); 2660 2661 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2662 finish_wait(&ctx->cq_wait, &iowq.wq); 2663 restore_saved_sigmask_unless(ret == -EINTR); 2664 2665 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2666 } 2667 2668 static void io_rings_free(struct io_ring_ctx *ctx) 2669 { 2670 io_free_region(ctx, &ctx->sq_region); 2671 io_free_region(ctx, &ctx->ring_region); 2672 ctx->rings = NULL; 2673 ctx->sq_sqes = NULL; 2674 } 2675 2676 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2677 unsigned int cq_entries, size_t *sq_offset) 2678 { 2679 struct io_rings *rings; 2680 size_t off, sq_array_size; 2681 2682 off = struct_size(rings, cqes, cq_entries); 2683 if (off == SIZE_MAX) 2684 return SIZE_MAX; 2685 if (flags & IORING_SETUP_CQE32) { 2686 if (check_shl_overflow(off, 1, &off)) 2687 return SIZE_MAX; 2688 } 2689 2690 #ifdef CONFIG_SMP 2691 off = ALIGN(off, SMP_CACHE_BYTES); 2692 if (off == 0) 2693 return SIZE_MAX; 2694 #endif 2695 2696 if (flags & IORING_SETUP_NO_SQARRAY) { 2697 *sq_offset = SIZE_MAX; 2698 return off; 2699 } 2700 2701 *sq_offset = off; 2702 2703 sq_array_size = array_size(sizeof(u32), sq_entries); 2704 if (sq_array_size == SIZE_MAX) 2705 return SIZE_MAX; 2706 2707 if (check_add_overflow(off, sq_array_size, &off)) 2708 return SIZE_MAX; 2709 2710 return off; 2711 } 2712 2713 static void io_req_caches_free(struct io_ring_ctx *ctx) 2714 { 2715 struct io_kiocb *req; 2716 int nr = 0; 2717 2718 mutex_lock(&ctx->uring_lock); 2719 2720 while (!io_req_cache_empty(ctx)) { 2721 req = io_extract_req(ctx); 2722 kmem_cache_free(req_cachep, req); 2723 nr++; 2724 } 2725 if (nr) 2726 percpu_ref_put_many(&ctx->refs, nr); 2727 mutex_unlock(&ctx->uring_lock); 2728 } 2729 2730 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2731 { 2732 io_sq_thread_finish(ctx); 2733 2734 mutex_lock(&ctx->uring_lock); 2735 io_sqe_buffers_unregister(ctx); 2736 io_sqe_files_unregister(ctx); 2737 io_unregister_zcrx_ifqs(ctx); 2738 io_cqring_overflow_kill(ctx); 2739 io_eventfd_unregister(ctx); 2740 io_free_alloc_caches(ctx); 2741 io_destroy_buffers(ctx); 2742 io_free_region(ctx, &ctx->param_region); 2743 mutex_unlock(&ctx->uring_lock); 2744 if (ctx->sq_creds) 2745 put_cred(ctx->sq_creds); 2746 if (ctx->submitter_task) 2747 put_task_struct(ctx->submitter_task); 2748 2749 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2750 2751 if (ctx->mm_account) { 2752 mmdrop(ctx->mm_account); 2753 ctx->mm_account = NULL; 2754 } 2755 io_rings_free(ctx); 2756 2757 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2758 static_branch_dec(&io_key_has_sqarray); 2759 2760 percpu_ref_exit(&ctx->refs); 2761 free_uid(ctx->user); 2762 io_req_caches_free(ctx); 2763 if (ctx->hash_map) 2764 io_wq_put_hash(ctx->hash_map); 2765 io_napi_free(ctx); 2766 kvfree(ctx->cancel_table.hbs); 2767 xa_destroy(&ctx->io_bl_xa); 2768 kfree(ctx); 2769 } 2770 2771 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2772 { 2773 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2774 poll_wq_task_work); 2775 2776 mutex_lock(&ctx->uring_lock); 2777 ctx->poll_activated = true; 2778 mutex_unlock(&ctx->uring_lock); 2779 2780 /* 2781 * Wake ups for some events between start of polling and activation 2782 * might've been lost due to loose synchronisation. 2783 */ 2784 wake_up_all(&ctx->poll_wq); 2785 percpu_ref_put(&ctx->refs); 2786 } 2787 2788 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2789 { 2790 spin_lock(&ctx->completion_lock); 2791 /* already activated or in progress */ 2792 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2793 goto out; 2794 if (WARN_ON_ONCE(!ctx->task_complete)) 2795 goto out; 2796 if (!ctx->submitter_task) 2797 goto out; 2798 /* 2799 * with ->submitter_task only the submitter task completes requests, we 2800 * only need to sync with it, which is done by injecting a tw 2801 */ 2802 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2803 percpu_ref_get(&ctx->refs); 2804 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2805 percpu_ref_put(&ctx->refs); 2806 out: 2807 spin_unlock(&ctx->completion_lock); 2808 } 2809 2810 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2811 { 2812 struct io_ring_ctx *ctx = file->private_data; 2813 __poll_t mask = 0; 2814 2815 if (unlikely(!ctx->poll_activated)) 2816 io_activate_pollwq(ctx); 2817 /* 2818 * provides mb() which pairs with barrier from wq_has_sleeper 2819 * call in io_commit_cqring 2820 */ 2821 poll_wait(file, &ctx->poll_wq, wait); 2822 2823 if (!io_sqring_full(ctx)) 2824 mask |= EPOLLOUT | EPOLLWRNORM; 2825 2826 /* 2827 * Don't flush cqring overflow list here, just do a simple check. 2828 * Otherwise there could possible be ABBA deadlock: 2829 * CPU0 CPU1 2830 * ---- ---- 2831 * lock(&ctx->uring_lock); 2832 * lock(&ep->mtx); 2833 * lock(&ctx->uring_lock); 2834 * lock(&ep->mtx); 2835 * 2836 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2837 * pushes them to do the flush. 2838 */ 2839 2840 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2841 mask |= EPOLLIN | EPOLLRDNORM; 2842 2843 return mask; 2844 } 2845 2846 struct io_tctx_exit { 2847 struct callback_head task_work; 2848 struct completion completion; 2849 struct io_ring_ctx *ctx; 2850 }; 2851 2852 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2853 { 2854 struct io_uring_task *tctx = current->io_uring; 2855 struct io_tctx_exit *work; 2856 2857 work = container_of(cb, struct io_tctx_exit, task_work); 2858 /* 2859 * When @in_cancel, we're in cancellation and it's racy to remove the 2860 * node. It'll be removed by the end of cancellation, just ignore it. 2861 * tctx can be NULL if the queueing of this task_work raced with 2862 * work cancelation off the exec path. 2863 */ 2864 if (tctx && !atomic_read(&tctx->in_cancel)) 2865 io_uring_del_tctx_node((unsigned long)work->ctx); 2866 complete(&work->completion); 2867 } 2868 2869 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2870 { 2871 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2872 2873 return req->ctx == data; 2874 } 2875 2876 static __cold void io_ring_exit_work(struct work_struct *work) 2877 { 2878 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2879 unsigned long timeout = jiffies + HZ * 60 * 5; 2880 unsigned long interval = HZ / 20; 2881 struct io_tctx_exit exit; 2882 struct io_tctx_node *node; 2883 int ret; 2884 2885 /* 2886 * If we're doing polled IO and end up having requests being 2887 * submitted async (out-of-line), then completions can come in while 2888 * we're waiting for refs to drop. We need to reap these manually, 2889 * as nobody else will be looking for them. 2890 */ 2891 do { 2892 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2893 mutex_lock(&ctx->uring_lock); 2894 io_cqring_overflow_kill(ctx); 2895 mutex_unlock(&ctx->uring_lock); 2896 } 2897 if (ctx->ifq) { 2898 mutex_lock(&ctx->uring_lock); 2899 io_shutdown_zcrx_ifqs(ctx); 2900 mutex_unlock(&ctx->uring_lock); 2901 } 2902 2903 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2904 io_move_task_work_from_local(ctx); 2905 2906 /* The SQPOLL thread never reaches this path */ 2907 while (io_uring_try_cancel_requests(ctx, NULL, true, false)) 2908 cond_resched(); 2909 2910 if (ctx->sq_data) { 2911 struct io_sq_data *sqd = ctx->sq_data; 2912 struct task_struct *tsk; 2913 2914 io_sq_thread_park(sqd); 2915 tsk = sqd->thread; 2916 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2917 io_wq_cancel_cb(tsk->io_uring->io_wq, 2918 io_cancel_ctx_cb, ctx, true); 2919 io_sq_thread_unpark(sqd); 2920 } 2921 2922 io_req_caches_free(ctx); 2923 2924 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2925 /* there is little hope left, don't run it too often */ 2926 interval = HZ * 60; 2927 } 2928 /* 2929 * This is really an uninterruptible wait, as it has to be 2930 * complete. But it's also run from a kworker, which doesn't 2931 * take signals, so it's fine to make it interruptible. This 2932 * avoids scenarios where we knowingly can wait much longer 2933 * on completions, for example if someone does a SIGSTOP on 2934 * a task that needs to finish task_work to make this loop 2935 * complete. That's a synthetic situation that should not 2936 * cause a stuck task backtrace, and hence a potential panic 2937 * on stuck tasks if that is enabled. 2938 */ 2939 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2940 2941 init_completion(&exit.completion); 2942 init_task_work(&exit.task_work, io_tctx_exit_cb); 2943 exit.ctx = ctx; 2944 2945 mutex_lock(&ctx->uring_lock); 2946 while (!list_empty(&ctx->tctx_list)) { 2947 WARN_ON_ONCE(time_after(jiffies, timeout)); 2948 2949 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2950 ctx_node); 2951 /* don't spin on a single task if cancellation failed */ 2952 list_rotate_left(&ctx->tctx_list); 2953 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2954 if (WARN_ON_ONCE(ret)) 2955 continue; 2956 2957 mutex_unlock(&ctx->uring_lock); 2958 /* 2959 * See comment above for 2960 * wait_for_completion_interruptible_timeout() on why this 2961 * wait is marked as interruptible. 2962 */ 2963 wait_for_completion_interruptible(&exit.completion); 2964 mutex_lock(&ctx->uring_lock); 2965 } 2966 mutex_unlock(&ctx->uring_lock); 2967 spin_lock(&ctx->completion_lock); 2968 spin_unlock(&ctx->completion_lock); 2969 2970 /* pairs with RCU read section in io_req_local_work_add() */ 2971 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2972 synchronize_rcu(); 2973 2974 io_ring_ctx_free(ctx); 2975 } 2976 2977 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2978 { 2979 unsigned long index; 2980 struct creds *creds; 2981 2982 mutex_lock(&ctx->uring_lock); 2983 percpu_ref_kill(&ctx->refs); 2984 xa_for_each(&ctx->personalities, index, creds) 2985 io_unregister_personality(ctx, index); 2986 mutex_unlock(&ctx->uring_lock); 2987 2988 flush_delayed_work(&ctx->fallback_work); 2989 2990 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2991 /* 2992 * Use system_unbound_wq to avoid spawning tons of event kworkers 2993 * if we're exiting a ton of rings at the same time. It just adds 2994 * noise and overhead, there's no discernable change in runtime 2995 * over using system_wq. 2996 */ 2997 queue_work(iou_wq, &ctx->exit_work); 2998 } 2999 3000 static int io_uring_release(struct inode *inode, struct file *file) 3001 { 3002 struct io_ring_ctx *ctx = file->private_data; 3003 3004 file->private_data = NULL; 3005 io_ring_ctx_wait_and_kill(ctx); 3006 return 0; 3007 } 3008 3009 struct io_task_cancel { 3010 struct io_uring_task *tctx; 3011 bool all; 3012 }; 3013 3014 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3015 { 3016 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3017 struct io_task_cancel *cancel = data; 3018 3019 return io_match_task_safe(req, cancel->tctx, cancel->all); 3020 } 3021 3022 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3023 struct io_uring_task *tctx, 3024 bool cancel_all) 3025 { 3026 struct io_defer_entry *de; 3027 LIST_HEAD(list); 3028 3029 spin_lock(&ctx->completion_lock); 3030 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3031 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3032 list_cut_position(&list, &ctx->defer_list, &de->list); 3033 break; 3034 } 3035 } 3036 spin_unlock(&ctx->completion_lock); 3037 if (list_empty(&list)) 3038 return false; 3039 3040 while (!list_empty(&list)) { 3041 de = list_first_entry(&list, struct io_defer_entry, list); 3042 list_del_init(&de->list); 3043 io_req_task_queue_fail(de->req, -ECANCELED); 3044 kfree(de); 3045 } 3046 return true; 3047 } 3048 3049 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3050 { 3051 struct io_tctx_node *node; 3052 enum io_wq_cancel cret; 3053 bool ret = false; 3054 3055 mutex_lock(&ctx->uring_lock); 3056 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3057 struct io_uring_task *tctx = node->task->io_uring; 3058 3059 /* 3060 * io_wq will stay alive while we hold uring_lock, because it's 3061 * killed after ctx nodes, which requires to take the lock. 3062 */ 3063 if (!tctx || !tctx->io_wq) 3064 continue; 3065 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3066 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3067 } 3068 mutex_unlock(&ctx->uring_lock); 3069 3070 return ret; 3071 } 3072 3073 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3074 struct io_uring_task *tctx, 3075 bool cancel_all, 3076 bool is_sqpoll_thread) 3077 { 3078 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3079 enum io_wq_cancel cret; 3080 bool ret = false; 3081 3082 /* set it so io_req_local_work_add() would wake us up */ 3083 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3084 atomic_set(&ctx->cq_wait_nr, 1); 3085 smp_mb(); 3086 } 3087 3088 /* failed during ring init, it couldn't have issued any requests */ 3089 if (!ctx->rings) 3090 return false; 3091 3092 if (!tctx) { 3093 ret |= io_uring_try_cancel_iowq(ctx); 3094 } else if (tctx->io_wq) { 3095 /* 3096 * Cancels requests of all rings, not only @ctx, but 3097 * it's fine as the task is in exit/exec. 3098 */ 3099 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3100 &cancel, true); 3101 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3102 } 3103 3104 /* SQPOLL thread does its own polling */ 3105 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3106 is_sqpoll_thread) { 3107 while (!wq_list_empty(&ctx->iopoll_list)) { 3108 io_iopoll_try_reap_events(ctx); 3109 ret = true; 3110 cond_resched(); 3111 } 3112 } 3113 3114 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3115 io_allowed_defer_tw_run(ctx)) 3116 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3117 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3118 mutex_lock(&ctx->uring_lock); 3119 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3120 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3121 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3122 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3123 mutex_unlock(&ctx->uring_lock); 3124 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3125 if (tctx) 3126 ret |= io_run_task_work() > 0; 3127 else 3128 ret |= flush_delayed_work(&ctx->fallback_work); 3129 return ret; 3130 } 3131 3132 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3133 { 3134 if (tracked) 3135 return atomic_read(&tctx->inflight_tracked); 3136 return percpu_counter_sum(&tctx->inflight); 3137 } 3138 3139 /* 3140 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3141 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3142 */ 3143 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3144 { 3145 struct io_uring_task *tctx = current->io_uring; 3146 struct io_ring_ctx *ctx; 3147 struct io_tctx_node *node; 3148 unsigned long index; 3149 s64 inflight; 3150 DEFINE_WAIT(wait); 3151 3152 WARN_ON_ONCE(sqd && sqd->thread != current); 3153 3154 if (!current->io_uring) 3155 return; 3156 if (tctx->io_wq) 3157 io_wq_exit_start(tctx->io_wq); 3158 3159 atomic_inc(&tctx->in_cancel); 3160 do { 3161 bool loop = false; 3162 3163 io_uring_drop_tctx_refs(current); 3164 if (!tctx_inflight(tctx, !cancel_all)) 3165 break; 3166 3167 /* read completions before cancelations */ 3168 inflight = tctx_inflight(tctx, false); 3169 if (!inflight) 3170 break; 3171 3172 if (!sqd) { 3173 xa_for_each(&tctx->xa, index, node) { 3174 /* sqpoll task will cancel all its requests */ 3175 if (node->ctx->sq_data) 3176 continue; 3177 loop |= io_uring_try_cancel_requests(node->ctx, 3178 current->io_uring, 3179 cancel_all, 3180 false); 3181 } 3182 } else { 3183 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3184 loop |= io_uring_try_cancel_requests(ctx, 3185 current->io_uring, 3186 cancel_all, 3187 true); 3188 } 3189 3190 if (loop) { 3191 cond_resched(); 3192 continue; 3193 } 3194 3195 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3196 io_run_task_work(); 3197 io_uring_drop_tctx_refs(current); 3198 xa_for_each(&tctx->xa, index, node) { 3199 if (io_local_work_pending(node->ctx)) { 3200 WARN_ON_ONCE(node->ctx->submitter_task && 3201 node->ctx->submitter_task != current); 3202 goto end_wait; 3203 } 3204 } 3205 /* 3206 * If we've seen completions, retry without waiting. This 3207 * avoids a race where a completion comes in before we did 3208 * prepare_to_wait(). 3209 */ 3210 if (inflight == tctx_inflight(tctx, !cancel_all)) 3211 schedule(); 3212 end_wait: 3213 finish_wait(&tctx->wait, &wait); 3214 } while (1); 3215 3216 io_uring_clean_tctx(tctx); 3217 if (cancel_all) { 3218 /* 3219 * We shouldn't run task_works after cancel, so just leave 3220 * ->in_cancel set for normal exit. 3221 */ 3222 atomic_dec(&tctx->in_cancel); 3223 /* for exec all current's requests should be gone, kill tctx */ 3224 __io_uring_free(current); 3225 } 3226 } 3227 3228 void __io_uring_cancel(bool cancel_all) 3229 { 3230 io_uring_unreg_ringfd(); 3231 io_uring_cancel_generic(cancel_all, NULL); 3232 } 3233 3234 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3235 const struct io_uring_getevents_arg __user *uarg) 3236 { 3237 unsigned long size = sizeof(struct io_uring_reg_wait); 3238 unsigned long offset = (uintptr_t)uarg; 3239 unsigned long end; 3240 3241 if (unlikely(offset % sizeof(long))) 3242 return ERR_PTR(-EFAULT); 3243 3244 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3245 if (unlikely(check_add_overflow(offset, size, &end) || 3246 end > ctx->cq_wait_size)) 3247 return ERR_PTR(-EFAULT); 3248 3249 offset = array_index_nospec(offset, ctx->cq_wait_size - size); 3250 return ctx->cq_wait_arg + offset; 3251 } 3252 3253 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3254 const void __user *argp, size_t argsz) 3255 { 3256 struct io_uring_getevents_arg arg; 3257 3258 if (!(flags & IORING_ENTER_EXT_ARG)) 3259 return 0; 3260 if (flags & IORING_ENTER_EXT_ARG_REG) 3261 return -EINVAL; 3262 if (argsz != sizeof(arg)) 3263 return -EINVAL; 3264 if (copy_from_user(&arg, argp, sizeof(arg))) 3265 return -EFAULT; 3266 return 0; 3267 } 3268 3269 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3270 const void __user *argp, struct ext_arg *ext_arg) 3271 { 3272 const struct io_uring_getevents_arg __user *uarg = argp; 3273 struct io_uring_getevents_arg arg; 3274 3275 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT); 3276 3277 /* 3278 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3279 * is just a pointer to the sigset_t. 3280 */ 3281 if (!(flags & IORING_ENTER_EXT_ARG)) { 3282 ext_arg->sig = (const sigset_t __user *) argp; 3283 return 0; 3284 } 3285 3286 if (flags & IORING_ENTER_EXT_ARG_REG) { 3287 struct io_uring_reg_wait *w; 3288 3289 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3290 return -EINVAL; 3291 w = io_get_ext_arg_reg(ctx, argp); 3292 if (IS_ERR(w)) 3293 return PTR_ERR(w); 3294 3295 if (w->flags & ~IORING_REG_WAIT_TS) 3296 return -EINVAL; 3297 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3298 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3299 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3300 if (w->flags & IORING_REG_WAIT_TS) { 3301 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3302 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3303 ext_arg->ts_set = true; 3304 } 3305 return 0; 3306 } 3307 3308 /* 3309 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3310 * timespec and sigset_t pointers if good. 3311 */ 3312 if (ext_arg->argsz != sizeof(arg)) 3313 return -EINVAL; 3314 #ifdef CONFIG_64BIT 3315 if (!user_access_begin(uarg, sizeof(*uarg))) 3316 return -EFAULT; 3317 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3318 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3319 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3320 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3321 user_access_end(); 3322 #else 3323 if (copy_from_user(&arg, uarg, sizeof(arg))) 3324 return -EFAULT; 3325 #endif 3326 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3327 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3328 ext_arg->argsz = arg.sigmask_sz; 3329 if (arg.ts) { 3330 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3331 return -EFAULT; 3332 ext_arg->ts_set = true; 3333 } 3334 return 0; 3335 #ifdef CONFIG_64BIT 3336 uaccess_end: 3337 user_access_end(); 3338 return -EFAULT; 3339 #endif 3340 } 3341 3342 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3343 u32, min_complete, u32, flags, const void __user *, argp, 3344 size_t, argsz) 3345 { 3346 struct io_ring_ctx *ctx; 3347 struct file *file; 3348 long ret; 3349 3350 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3351 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3352 IORING_ENTER_REGISTERED_RING | 3353 IORING_ENTER_ABS_TIMER | 3354 IORING_ENTER_EXT_ARG_REG | 3355 IORING_ENTER_NO_IOWAIT))) 3356 return -EINVAL; 3357 3358 /* 3359 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3360 * need only dereference our task private array to find it. 3361 */ 3362 if (flags & IORING_ENTER_REGISTERED_RING) { 3363 struct io_uring_task *tctx = current->io_uring; 3364 3365 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3366 return -EINVAL; 3367 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3368 file = tctx->registered_rings[fd]; 3369 if (unlikely(!file)) 3370 return -EBADF; 3371 } else { 3372 file = fget(fd); 3373 if (unlikely(!file)) 3374 return -EBADF; 3375 ret = -EOPNOTSUPP; 3376 if (unlikely(!io_is_uring_fops(file))) 3377 goto out; 3378 } 3379 3380 ctx = file->private_data; 3381 ret = -EBADFD; 3382 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3383 goto out; 3384 3385 /* 3386 * For SQ polling, the thread will do all submissions and completions. 3387 * Just return the requested submit count, and wake the thread if 3388 * we were asked to. 3389 */ 3390 ret = 0; 3391 if (ctx->flags & IORING_SETUP_SQPOLL) { 3392 if (unlikely(ctx->sq_data->thread == NULL)) { 3393 ret = -EOWNERDEAD; 3394 goto out; 3395 } 3396 if (flags & IORING_ENTER_SQ_WAKEUP) 3397 wake_up(&ctx->sq_data->wait); 3398 if (flags & IORING_ENTER_SQ_WAIT) 3399 io_sqpoll_wait_sq(ctx); 3400 3401 ret = to_submit; 3402 } else if (to_submit) { 3403 ret = io_uring_add_tctx_node(ctx); 3404 if (unlikely(ret)) 3405 goto out; 3406 3407 mutex_lock(&ctx->uring_lock); 3408 ret = io_submit_sqes(ctx, to_submit); 3409 if (ret != to_submit) { 3410 mutex_unlock(&ctx->uring_lock); 3411 goto out; 3412 } 3413 if (flags & IORING_ENTER_GETEVENTS) { 3414 if (ctx->syscall_iopoll) 3415 goto iopoll_locked; 3416 /* 3417 * Ignore errors, we'll soon call io_cqring_wait() and 3418 * it should handle ownership problems if any. 3419 */ 3420 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3421 (void)io_run_local_work_locked(ctx, min_complete); 3422 } 3423 mutex_unlock(&ctx->uring_lock); 3424 } 3425 3426 if (flags & IORING_ENTER_GETEVENTS) { 3427 int ret2; 3428 3429 if (ctx->syscall_iopoll) { 3430 /* 3431 * We disallow the app entering submit/complete with 3432 * polling, but we still need to lock the ring to 3433 * prevent racing with polled issue that got punted to 3434 * a workqueue. 3435 */ 3436 mutex_lock(&ctx->uring_lock); 3437 iopoll_locked: 3438 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3439 if (likely(!ret2)) 3440 ret2 = io_iopoll_check(ctx, min_complete); 3441 mutex_unlock(&ctx->uring_lock); 3442 } else { 3443 struct ext_arg ext_arg = { .argsz = argsz }; 3444 3445 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3446 if (likely(!ret2)) 3447 ret2 = io_cqring_wait(ctx, min_complete, flags, 3448 &ext_arg); 3449 } 3450 3451 if (!ret) { 3452 ret = ret2; 3453 3454 /* 3455 * EBADR indicates that one or more CQE were dropped. 3456 * Once the user has been informed we can clear the bit 3457 * as they are obviously ok with those drops. 3458 */ 3459 if (unlikely(ret2 == -EBADR)) 3460 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3461 &ctx->check_cq); 3462 } 3463 } 3464 out: 3465 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3466 fput(file); 3467 return ret; 3468 } 3469 3470 static const struct file_operations io_uring_fops = { 3471 .release = io_uring_release, 3472 .mmap = io_uring_mmap, 3473 .get_unmapped_area = io_uring_get_unmapped_area, 3474 #ifndef CONFIG_MMU 3475 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3476 #endif 3477 .poll = io_uring_poll, 3478 #ifdef CONFIG_PROC_FS 3479 .show_fdinfo = io_uring_show_fdinfo, 3480 #endif 3481 }; 3482 3483 bool io_is_uring_fops(struct file *file) 3484 { 3485 return file->f_op == &io_uring_fops; 3486 } 3487 3488 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3489 struct io_uring_params *p) 3490 { 3491 struct io_uring_region_desc rd; 3492 struct io_rings *rings; 3493 size_t size, sq_array_offset; 3494 int ret; 3495 3496 /* make sure these are sane, as we already accounted them */ 3497 ctx->sq_entries = p->sq_entries; 3498 ctx->cq_entries = p->cq_entries; 3499 3500 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3501 &sq_array_offset); 3502 if (size == SIZE_MAX) 3503 return -EOVERFLOW; 3504 3505 memset(&rd, 0, sizeof(rd)); 3506 rd.size = PAGE_ALIGN(size); 3507 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3508 rd.user_addr = p->cq_off.user_addr; 3509 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3510 } 3511 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); 3512 if (ret) 3513 return ret; 3514 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); 3515 3516 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3517 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3518 rings->sq_ring_mask = p->sq_entries - 1; 3519 rings->cq_ring_mask = p->cq_entries - 1; 3520 rings->sq_ring_entries = p->sq_entries; 3521 rings->cq_ring_entries = p->cq_entries; 3522 3523 if (p->flags & IORING_SETUP_SQE128) 3524 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3525 else 3526 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3527 if (size == SIZE_MAX) { 3528 io_rings_free(ctx); 3529 return -EOVERFLOW; 3530 } 3531 3532 memset(&rd, 0, sizeof(rd)); 3533 rd.size = PAGE_ALIGN(size); 3534 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3535 rd.user_addr = p->sq_off.user_addr; 3536 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3537 } 3538 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); 3539 if (ret) { 3540 io_rings_free(ctx); 3541 return ret; 3542 } 3543 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); 3544 return 0; 3545 } 3546 3547 static int io_uring_install_fd(struct file *file) 3548 { 3549 int fd; 3550 3551 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3552 if (fd < 0) 3553 return fd; 3554 fd_install(fd, file); 3555 return fd; 3556 } 3557 3558 /* 3559 * Allocate an anonymous fd, this is what constitutes the application 3560 * visible backing of an io_uring instance. The application mmaps this 3561 * fd to gain access to the SQ/CQ ring details. 3562 */ 3563 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3564 { 3565 /* Create a new inode so that the LSM can block the creation. */ 3566 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3567 O_RDWR | O_CLOEXEC, NULL); 3568 } 3569 3570 static int io_uring_sanitise_params(struct io_uring_params *p) 3571 { 3572 unsigned flags = p->flags; 3573 3574 /* There is no way to mmap rings without a real fd */ 3575 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) && 3576 !(flags & IORING_SETUP_NO_MMAP)) 3577 return -EINVAL; 3578 3579 if (flags & IORING_SETUP_SQPOLL) { 3580 /* IPI related flags don't make sense with SQPOLL */ 3581 if (flags & (IORING_SETUP_COOP_TASKRUN | 3582 IORING_SETUP_TASKRUN_FLAG | 3583 IORING_SETUP_DEFER_TASKRUN)) 3584 return -EINVAL; 3585 } 3586 3587 if (flags & IORING_SETUP_TASKRUN_FLAG) { 3588 if (!(flags & (IORING_SETUP_COOP_TASKRUN | 3589 IORING_SETUP_DEFER_TASKRUN))) 3590 return -EINVAL; 3591 } 3592 3593 /* HYBRID_IOPOLL only valid with IOPOLL */ 3594 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL)) 3595 return -EINVAL; 3596 3597 /* 3598 * For DEFER_TASKRUN we require the completion task to be the same as 3599 * the submission task. This implies that there is only one submitter. 3600 */ 3601 if ((flags & IORING_SETUP_DEFER_TASKRUN) && 3602 !(flags & IORING_SETUP_SINGLE_ISSUER)) 3603 return -EINVAL; 3604 3605 return 0; 3606 } 3607 3608 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3609 { 3610 if (!entries) 3611 return -EINVAL; 3612 if (entries > IORING_MAX_ENTRIES) { 3613 if (!(p->flags & IORING_SETUP_CLAMP)) 3614 return -EINVAL; 3615 entries = IORING_MAX_ENTRIES; 3616 } 3617 3618 /* 3619 * Use twice as many entries for the CQ ring. It's possible for the 3620 * application to drive a higher depth than the size of the SQ ring, 3621 * since the sqes are only used at submission time. This allows for 3622 * some flexibility in overcommitting a bit. If the application has 3623 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3624 * of CQ ring entries manually. 3625 */ 3626 p->sq_entries = roundup_pow_of_two(entries); 3627 if (p->flags & IORING_SETUP_CQSIZE) { 3628 /* 3629 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3630 * to a power-of-two, if it isn't already. We do NOT impose 3631 * any cq vs sq ring sizing. 3632 */ 3633 if (!p->cq_entries) 3634 return -EINVAL; 3635 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3636 if (!(p->flags & IORING_SETUP_CLAMP)) 3637 return -EINVAL; 3638 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3639 } 3640 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3641 if (p->cq_entries < p->sq_entries) 3642 return -EINVAL; 3643 } else { 3644 p->cq_entries = 2 * p->sq_entries; 3645 } 3646 3647 p->sq_off.head = offsetof(struct io_rings, sq.head); 3648 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3649 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3650 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3651 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3652 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3653 p->sq_off.resv1 = 0; 3654 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3655 p->sq_off.user_addr = 0; 3656 3657 p->cq_off.head = offsetof(struct io_rings, cq.head); 3658 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3659 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3660 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3661 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3662 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3663 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3664 p->cq_off.resv1 = 0; 3665 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3666 p->cq_off.user_addr = 0; 3667 3668 return 0; 3669 } 3670 3671 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3672 struct io_uring_params __user *params) 3673 { 3674 struct io_ring_ctx *ctx; 3675 struct io_uring_task *tctx; 3676 struct file *file; 3677 int ret; 3678 3679 ret = io_uring_sanitise_params(p); 3680 if (ret) 3681 return ret; 3682 3683 ret = io_uring_fill_params(entries, p); 3684 if (unlikely(ret)) 3685 return ret; 3686 3687 ctx = io_ring_ctx_alloc(p); 3688 if (!ctx) 3689 return -ENOMEM; 3690 3691 ctx->clockid = CLOCK_MONOTONIC; 3692 ctx->clock_offset = 0; 3693 3694 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3695 static_branch_inc(&io_key_has_sqarray); 3696 3697 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3698 !(ctx->flags & IORING_SETUP_IOPOLL) && 3699 !(ctx->flags & IORING_SETUP_SQPOLL)) 3700 ctx->task_complete = true; 3701 3702 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3703 ctx->lockless_cq = true; 3704 3705 /* 3706 * lazy poll_wq activation relies on ->task_complete for synchronisation 3707 * purposes, see io_activate_pollwq() 3708 */ 3709 if (!ctx->task_complete) 3710 ctx->poll_activated = true; 3711 3712 /* 3713 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3714 * space applications don't need to do io completion events 3715 * polling again, they can rely on io_sq_thread to do polling 3716 * work, which can reduce cpu usage and uring_lock contention. 3717 */ 3718 if (ctx->flags & IORING_SETUP_IOPOLL && 3719 !(ctx->flags & IORING_SETUP_SQPOLL)) 3720 ctx->syscall_iopoll = 1; 3721 3722 ctx->compat = in_compat_syscall(); 3723 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3724 ctx->user = get_uid(current_user()); 3725 3726 /* 3727 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3728 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3729 */ 3730 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN)) 3731 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3732 else 3733 ctx->notify_method = TWA_SIGNAL; 3734 3735 /* 3736 * This is just grabbed for accounting purposes. When a process exits, 3737 * the mm is exited and dropped before the files, hence we need to hang 3738 * on to this mm purely for the purposes of being able to unaccount 3739 * memory (locked/pinned vm). It's not used for anything else. 3740 */ 3741 mmgrab(current->mm); 3742 ctx->mm_account = current->mm; 3743 3744 ret = io_allocate_scq_urings(ctx, p); 3745 if (ret) 3746 goto err; 3747 3748 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3749 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3750 3751 ret = io_sq_offload_create(ctx, p); 3752 if (ret) 3753 goto err; 3754 3755 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3756 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3757 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3758 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3759 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3760 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3761 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3762 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT | 3763 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT; 3764 3765 if (copy_to_user(params, p, sizeof(*p))) { 3766 ret = -EFAULT; 3767 goto err; 3768 } 3769 3770 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3771 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3772 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3773 3774 file = io_uring_get_file(ctx); 3775 if (IS_ERR(file)) { 3776 ret = PTR_ERR(file); 3777 goto err; 3778 } 3779 3780 ret = __io_uring_add_tctx_node(ctx); 3781 if (ret) 3782 goto err_fput; 3783 tctx = current->io_uring; 3784 3785 /* 3786 * Install ring fd as the very last thing, so we don't risk someone 3787 * having closed it before we finish setup 3788 */ 3789 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3790 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3791 else 3792 ret = io_uring_install_fd(file); 3793 if (ret < 0) 3794 goto err_fput; 3795 3796 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3797 return ret; 3798 err: 3799 io_ring_ctx_wait_and_kill(ctx); 3800 return ret; 3801 err_fput: 3802 fput(file); 3803 return ret; 3804 } 3805 3806 /* 3807 * Sets up an aio uring context, and returns the fd. Applications asks for a 3808 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3809 * params structure passed in. 3810 */ 3811 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3812 { 3813 struct io_uring_params p; 3814 int i; 3815 3816 if (copy_from_user(&p, params, sizeof(p))) 3817 return -EFAULT; 3818 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3819 if (p.resv[i]) 3820 return -EINVAL; 3821 } 3822 3823 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3824 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3825 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3826 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3827 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3828 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3829 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3830 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3831 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3832 return -EINVAL; 3833 3834 return io_uring_create(entries, &p, params); 3835 } 3836 3837 static inline int io_uring_allowed(void) 3838 { 3839 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3840 kgid_t io_uring_group; 3841 3842 if (disabled == 2) 3843 return -EPERM; 3844 3845 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3846 goto allowed_lsm; 3847 3848 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3849 if (!gid_valid(io_uring_group)) 3850 return -EPERM; 3851 3852 if (!in_group_p(io_uring_group)) 3853 return -EPERM; 3854 3855 allowed_lsm: 3856 return security_uring_allowed(); 3857 } 3858 3859 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3860 struct io_uring_params __user *, params) 3861 { 3862 int ret; 3863 3864 ret = io_uring_allowed(); 3865 if (ret) 3866 return ret; 3867 3868 return io_uring_setup(entries, params); 3869 } 3870 3871 static int __init io_uring_init(void) 3872 { 3873 struct kmem_cache_args kmem_args = { 3874 .useroffset = offsetof(struct io_kiocb, cmd.data), 3875 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3876 .freeptr_offset = offsetof(struct io_kiocb, work), 3877 .use_freeptr_offset = true, 3878 }; 3879 3880 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3881 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3882 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3883 } while (0) 3884 3885 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3886 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3887 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3888 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3889 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3890 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3891 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3892 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3893 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3894 BUILD_BUG_SQE_ELEM(8, __u64, off); 3895 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3896 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3897 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3898 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3899 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3900 BUILD_BUG_SQE_ELEM(24, __u32, len); 3901 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3902 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3903 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3904 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3905 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3906 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3907 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3908 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3909 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3910 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3911 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3912 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3913 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3914 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3915 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3916 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3917 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3918 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3919 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3920 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3921 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3922 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3923 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3924 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3925 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3926 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3927 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3928 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3929 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3930 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3931 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); 3932 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); 3933 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3934 3935 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3936 sizeof(struct io_uring_rsrc_update)); 3937 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3938 sizeof(struct io_uring_rsrc_update2)); 3939 3940 /* ->buf_index is u16 */ 3941 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3942 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3943 offsetof(struct io_uring_buf_ring, tail)); 3944 3945 /* should fit into one byte */ 3946 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3947 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3948 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3949 3950 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3951 3952 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3953 3954 /* top 8bits are for internal use */ 3955 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3956 3957 io_uring_optable_init(); 3958 3959 /* imu->dir is u8 */ 3960 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX); 3961 3962 /* 3963 * Allow user copy in the per-command field, which starts after the 3964 * file in io_kiocb and until the opcode field. The openat2 handling 3965 * requires copying in user memory into the io_kiocb object in that 3966 * range, and HARDENED_USERCOPY will complain if we haven't 3967 * correctly annotated this range. 3968 */ 3969 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3970 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3971 SLAB_TYPESAFE_BY_RCU); 3972 3973 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3974 BUG_ON(!iou_wq); 3975 3976 #ifdef CONFIG_SYSCTL 3977 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3978 #endif 3979 3980 return 0; 3981 }; 3982 __initcall(io_uring_init); 3983