xref: /linux/io_uring/io_uring.c (revision 7a92fc8b4d20680e4c20289a670d8fca2d1f2c1b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 #include "waitid.h"
96 #include "futex.h"
97 
98 #include "timeout.h"
99 #include "poll.h"
100 #include "rw.h"
101 #include "alloc_cache.h"
102 
103 #define IORING_MAX_ENTRIES	32768
104 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
105 
106 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
107 				 IORING_REGISTER_LAST + IORING_OP_LAST)
108 
109 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
110 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
111 
112 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
113 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
114 
115 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
116 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117 				REQ_F_ASYNC_DATA)
118 
119 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
120 				 IO_REQ_CLEAN_FLAGS)
121 
122 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
123 
124 #define IO_COMPL_BATCH			32
125 #define IO_REQ_ALLOC_BATCH		8
126 
127 enum {
128 	IO_CHECK_CQ_OVERFLOW_BIT,
129 	IO_CHECK_CQ_DROPPED_BIT,
130 };
131 
132 enum {
133 	IO_EVENTFD_OP_SIGNAL_BIT,
134 	IO_EVENTFD_OP_FREE_BIT,
135 };
136 
137 struct io_defer_entry {
138 	struct list_head	list;
139 	struct io_kiocb		*req;
140 	u32			seq;
141 };
142 
143 /* requests with any of those set should undergo io_disarm_next() */
144 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
145 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
146 
147 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
148 					 struct task_struct *task,
149 					 bool cancel_all);
150 
151 static void io_queue_sqe(struct io_kiocb *req);
152 
153 struct kmem_cache *req_cachep;
154 
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
157 
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
160 	{
161 		.procname	= "io_uring_disabled",
162 		.data		= &sysctl_io_uring_disabled,
163 		.maxlen		= sizeof(sysctl_io_uring_disabled),
164 		.mode		= 0644,
165 		.proc_handler	= proc_dointvec_minmax,
166 		.extra1		= SYSCTL_ZERO,
167 		.extra2		= SYSCTL_TWO,
168 	},
169 	{
170 		.procname	= "io_uring_group",
171 		.data		= &sysctl_io_uring_group,
172 		.maxlen		= sizeof(gid_t),
173 		.mode		= 0644,
174 		.proc_handler	= proc_dointvec,
175 	},
176 	{},
177 };
178 #endif
179 
180 struct sock *io_uring_get_socket(struct file *file)
181 {
182 #if defined(CONFIG_UNIX)
183 	if (io_is_uring_fops(file)) {
184 		struct io_ring_ctx *ctx = file->private_data;
185 
186 		return ctx->ring_sock->sk;
187 	}
188 #endif
189 	return NULL;
190 }
191 EXPORT_SYMBOL(io_uring_get_socket);
192 
193 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
194 {
195 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
196 	    ctx->submit_state.cqes_count)
197 		__io_submit_flush_completions(ctx);
198 }
199 
200 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
201 {
202 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
203 }
204 
205 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
206 {
207 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
208 }
209 
210 static bool io_match_linked(struct io_kiocb *head)
211 {
212 	struct io_kiocb *req;
213 
214 	io_for_each_link(req, head) {
215 		if (req->flags & REQ_F_INFLIGHT)
216 			return true;
217 	}
218 	return false;
219 }
220 
221 /*
222  * As io_match_task() but protected against racing with linked timeouts.
223  * User must not hold timeout_lock.
224  */
225 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
226 			bool cancel_all)
227 {
228 	bool matched;
229 
230 	if (task && head->task != task)
231 		return false;
232 	if (cancel_all)
233 		return true;
234 
235 	if (head->flags & REQ_F_LINK_TIMEOUT) {
236 		struct io_ring_ctx *ctx = head->ctx;
237 
238 		/* protect against races with linked timeouts */
239 		spin_lock_irq(&ctx->timeout_lock);
240 		matched = io_match_linked(head);
241 		spin_unlock_irq(&ctx->timeout_lock);
242 	} else {
243 		matched = io_match_linked(head);
244 	}
245 	return matched;
246 }
247 
248 static inline void req_fail_link_node(struct io_kiocb *req, int res)
249 {
250 	req_set_fail(req);
251 	io_req_set_res(req, res, 0);
252 }
253 
254 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
255 {
256 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
257 }
258 
259 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
260 {
261 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
262 
263 	complete(&ctx->ref_comp);
264 }
265 
266 static __cold void io_fallback_req_func(struct work_struct *work)
267 {
268 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
269 						fallback_work.work);
270 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
271 	struct io_kiocb *req, *tmp;
272 	struct io_tw_state ts = { .locked = true, };
273 
274 	mutex_lock(&ctx->uring_lock);
275 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
276 		req->io_task_work.func(req, &ts);
277 	if (WARN_ON_ONCE(!ts.locked))
278 		return;
279 	io_submit_flush_completions(ctx);
280 	mutex_unlock(&ctx->uring_lock);
281 }
282 
283 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
284 {
285 	unsigned hash_buckets = 1U << bits;
286 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
287 
288 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
289 	if (!table->hbs)
290 		return -ENOMEM;
291 
292 	table->hash_bits = bits;
293 	init_hash_table(table, hash_buckets);
294 	return 0;
295 }
296 
297 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
298 {
299 	struct io_ring_ctx *ctx;
300 	int hash_bits;
301 
302 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
303 	if (!ctx)
304 		return NULL;
305 
306 	xa_init(&ctx->io_bl_xa);
307 
308 	/*
309 	 * Use 5 bits less than the max cq entries, that should give us around
310 	 * 32 entries per hash list if totally full and uniformly spread, but
311 	 * don't keep too many buckets to not overconsume memory.
312 	 */
313 	hash_bits = ilog2(p->cq_entries) - 5;
314 	hash_bits = clamp(hash_bits, 1, 8);
315 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
316 		goto err;
317 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
318 		goto err;
319 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320 			    0, GFP_KERNEL))
321 		goto err;
322 
323 	ctx->flags = p->flags;
324 	init_waitqueue_head(&ctx->sqo_sq_wait);
325 	INIT_LIST_HEAD(&ctx->sqd_list);
326 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
327 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
328 	INIT_HLIST_HEAD(&ctx->io_buf_list);
329 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
330 			    sizeof(struct io_rsrc_node));
331 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
332 			    sizeof(struct async_poll));
333 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
334 			    sizeof(struct io_async_msghdr));
335 	io_futex_cache_init(ctx);
336 	init_completion(&ctx->ref_comp);
337 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
338 	mutex_init(&ctx->uring_lock);
339 	init_waitqueue_head(&ctx->cq_wait);
340 	init_waitqueue_head(&ctx->poll_wq);
341 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
342 	spin_lock_init(&ctx->completion_lock);
343 	spin_lock_init(&ctx->timeout_lock);
344 	INIT_WQ_LIST(&ctx->iopoll_list);
345 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
346 	INIT_LIST_HEAD(&ctx->defer_list);
347 	INIT_LIST_HEAD(&ctx->timeout_list);
348 	INIT_LIST_HEAD(&ctx->ltimeout_list);
349 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
350 	init_llist_head(&ctx->work_llist);
351 	INIT_LIST_HEAD(&ctx->tctx_list);
352 	ctx->submit_state.free_list.next = NULL;
353 	INIT_WQ_LIST(&ctx->locked_free_list);
354 	INIT_HLIST_HEAD(&ctx->waitid_list);
355 #ifdef CONFIG_FUTEX
356 	INIT_HLIST_HEAD(&ctx->futex_list);
357 #endif
358 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
359 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
360 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
361 	return ctx;
362 err:
363 	kfree(ctx->cancel_table.hbs);
364 	kfree(ctx->cancel_table_locked.hbs);
365 	kfree(ctx->io_bl);
366 	xa_destroy(&ctx->io_bl_xa);
367 	kfree(ctx);
368 	return NULL;
369 }
370 
371 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
372 {
373 	struct io_rings *r = ctx->rings;
374 
375 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
376 	ctx->cq_extra--;
377 }
378 
379 static bool req_need_defer(struct io_kiocb *req, u32 seq)
380 {
381 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
382 		struct io_ring_ctx *ctx = req->ctx;
383 
384 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
385 	}
386 
387 	return false;
388 }
389 
390 static void io_clean_op(struct io_kiocb *req)
391 {
392 	if (req->flags & REQ_F_BUFFER_SELECTED) {
393 		spin_lock(&req->ctx->completion_lock);
394 		io_put_kbuf_comp(req);
395 		spin_unlock(&req->ctx->completion_lock);
396 	}
397 
398 	if (req->flags & REQ_F_NEED_CLEANUP) {
399 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
400 
401 		if (def->cleanup)
402 			def->cleanup(req);
403 	}
404 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
405 		kfree(req->apoll->double_poll);
406 		kfree(req->apoll);
407 		req->apoll = NULL;
408 	}
409 	if (req->flags & REQ_F_INFLIGHT) {
410 		struct io_uring_task *tctx = req->task->io_uring;
411 
412 		atomic_dec(&tctx->inflight_tracked);
413 	}
414 	if (req->flags & REQ_F_CREDS)
415 		put_cred(req->creds);
416 	if (req->flags & REQ_F_ASYNC_DATA) {
417 		kfree(req->async_data);
418 		req->async_data = NULL;
419 	}
420 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
421 }
422 
423 static inline void io_req_track_inflight(struct io_kiocb *req)
424 {
425 	if (!(req->flags & REQ_F_INFLIGHT)) {
426 		req->flags |= REQ_F_INFLIGHT;
427 		atomic_inc(&req->task->io_uring->inflight_tracked);
428 	}
429 }
430 
431 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
432 {
433 	if (WARN_ON_ONCE(!req->link))
434 		return NULL;
435 
436 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
437 	req->flags |= REQ_F_LINK_TIMEOUT;
438 
439 	/* linked timeouts should have two refs once prep'ed */
440 	io_req_set_refcount(req);
441 	__io_req_set_refcount(req->link, 2);
442 	return req->link;
443 }
444 
445 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
446 {
447 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
448 		return NULL;
449 	return __io_prep_linked_timeout(req);
450 }
451 
452 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
453 {
454 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
455 }
456 
457 static inline void io_arm_ltimeout(struct io_kiocb *req)
458 {
459 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
460 		__io_arm_ltimeout(req);
461 }
462 
463 static void io_prep_async_work(struct io_kiocb *req)
464 {
465 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
466 	struct io_ring_ctx *ctx = req->ctx;
467 
468 	if (!(req->flags & REQ_F_CREDS)) {
469 		req->flags |= REQ_F_CREDS;
470 		req->creds = get_current_cred();
471 	}
472 
473 	req->work.list.next = NULL;
474 	req->work.flags = 0;
475 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
476 	if (req->flags & REQ_F_FORCE_ASYNC)
477 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
478 
479 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
480 		req->flags |= io_file_get_flags(req->file);
481 
482 	if (req->file && (req->flags & REQ_F_ISREG)) {
483 		bool should_hash = def->hash_reg_file;
484 
485 		/* don't serialize this request if the fs doesn't need it */
486 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
487 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
488 			should_hash = false;
489 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
490 			io_wq_hash_work(&req->work, file_inode(req->file));
491 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
492 		if (def->unbound_nonreg_file)
493 			req->work.flags |= IO_WQ_WORK_UNBOUND;
494 	}
495 }
496 
497 static void io_prep_async_link(struct io_kiocb *req)
498 {
499 	struct io_kiocb *cur;
500 
501 	if (req->flags & REQ_F_LINK_TIMEOUT) {
502 		struct io_ring_ctx *ctx = req->ctx;
503 
504 		spin_lock_irq(&ctx->timeout_lock);
505 		io_for_each_link(cur, req)
506 			io_prep_async_work(cur);
507 		spin_unlock_irq(&ctx->timeout_lock);
508 	} else {
509 		io_for_each_link(cur, req)
510 			io_prep_async_work(cur);
511 	}
512 }
513 
514 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
515 {
516 	struct io_kiocb *link = io_prep_linked_timeout(req);
517 	struct io_uring_task *tctx = req->task->io_uring;
518 
519 	BUG_ON(!tctx);
520 	BUG_ON(!tctx->io_wq);
521 
522 	/* init ->work of the whole link before punting */
523 	io_prep_async_link(req);
524 
525 	/*
526 	 * Not expected to happen, but if we do have a bug where this _can_
527 	 * happen, catch it here and ensure the request is marked as
528 	 * canceled. That will make io-wq go through the usual work cancel
529 	 * procedure rather than attempt to run this request (or create a new
530 	 * worker for it).
531 	 */
532 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
533 		req->work.flags |= IO_WQ_WORK_CANCEL;
534 
535 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
536 	io_wq_enqueue(tctx->io_wq, &req->work);
537 	if (link)
538 		io_queue_linked_timeout(link);
539 }
540 
541 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
542 {
543 	while (!list_empty(&ctx->defer_list)) {
544 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
545 						struct io_defer_entry, list);
546 
547 		if (req_need_defer(de->req, de->seq))
548 			break;
549 		list_del_init(&de->list);
550 		io_req_task_queue(de->req);
551 		kfree(de);
552 	}
553 }
554 
555 
556 static void io_eventfd_ops(struct rcu_head *rcu)
557 {
558 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
559 	int ops = atomic_xchg(&ev_fd->ops, 0);
560 
561 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
562 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
563 
564 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
565 	 * ordering in a race but if references are 0 we know we have to free
566 	 * it regardless.
567 	 */
568 	if (atomic_dec_and_test(&ev_fd->refs)) {
569 		eventfd_ctx_put(ev_fd->cq_ev_fd);
570 		kfree(ev_fd);
571 	}
572 }
573 
574 static void io_eventfd_signal(struct io_ring_ctx *ctx)
575 {
576 	struct io_ev_fd *ev_fd = NULL;
577 
578 	rcu_read_lock();
579 	/*
580 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
581 	 * and eventfd_signal
582 	 */
583 	ev_fd = rcu_dereference(ctx->io_ev_fd);
584 
585 	/*
586 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
587 	 * completed between the NULL check of ctx->io_ev_fd at the start of
588 	 * the function and rcu_read_lock.
589 	 */
590 	if (unlikely(!ev_fd))
591 		goto out;
592 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
593 		goto out;
594 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
595 		goto out;
596 
597 	if (likely(eventfd_signal_allowed())) {
598 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
599 	} else {
600 		atomic_inc(&ev_fd->refs);
601 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
602 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
603 		else
604 			atomic_dec(&ev_fd->refs);
605 	}
606 
607 out:
608 	rcu_read_unlock();
609 }
610 
611 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
612 {
613 	bool skip;
614 
615 	spin_lock(&ctx->completion_lock);
616 
617 	/*
618 	 * Eventfd should only get triggered when at least one event has been
619 	 * posted. Some applications rely on the eventfd notification count
620 	 * only changing IFF a new CQE has been added to the CQ ring. There's
621 	 * no depedency on 1:1 relationship between how many times this
622 	 * function is called (and hence the eventfd count) and number of CQEs
623 	 * posted to the CQ ring.
624 	 */
625 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
626 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
627 	spin_unlock(&ctx->completion_lock);
628 	if (skip)
629 		return;
630 
631 	io_eventfd_signal(ctx);
632 }
633 
634 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
635 {
636 	if (ctx->poll_activated)
637 		io_poll_wq_wake(ctx);
638 	if (ctx->off_timeout_used)
639 		io_flush_timeouts(ctx);
640 	if (ctx->drain_active) {
641 		spin_lock(&ctx->completion_lock);
642 		io_queue_deferred(ctx);
643 		spin_unlock(&ctx->completion_lock);
644 	}
645 	if (ctx->has_evfd)
646 		io_eventfd_flush_signal(ctx);
647 }
648 
649 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
650 {
651 	if (!ctx->lockless_cq)
652 		spin_lock(&ctx->completion_lock);
653 }
654 
655 static inline void io_cq_lock(struct io_ring_ctx *ctx)
656 	__acquires(ctx->completion_lock)
657 {
658 	spin_lock(&ctx->completion_lock);
659 }
660 
661 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
662 {
663 	io_commit_cqring(ctx);
664 	if (!ctx->task_complete) {
665 		if (!ctx->lockless_cq)
666 			spin_unlock(&ctx->completion_lock);
667 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
668 		if (!ctx->syscall_iopoll)
669 			io_cqring_wake(ctx);
670 	}
671 	io_commit_cqring_flush(ctx);
672 }
673 
674 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
675 	__releases(ctx->completion_lock)
676 {
677 	io_commit_cqring(ctx);
678 	spin_unlock(&ctx->completion_lock);
679 	io_cqring_wake(ctx);
680 	io_commit_cqring_flush(ctx);
681 }
682 
683 /* Returns true if there are no backlogged entries after the flush */
684 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
685 {
686 	struct io_overflow_cqe *ocqe;
687 	LIST_HEAD(list);
688 
689 	spin_lock(&ctx->completion_lock);
690 	list_splice_init(&ctx->cq_overflow_list, &list);
691 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
692 	spin_unlock(&ctx->completion_lock);
693 
694 	while (!list_empty(&list)) {
695 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
696 		list_del(&ocqe->list);
697 		kfree(ocqe);
698 	}
699 }
700 
701 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
702 {
703 	size_t cqe_size = sizeof(struct io_uring_cqe);
704 
705 	if (__io_cqring_events(ctx) == ctx->cq_entries)
706 		return;
707 
708 	if (ctx->flags & IORING_SETUP_CQE32)
709 		cqe_size <<= 1;
710 
711 	io_cq_lock(ctx);
712 	while (!list_empty(&ctx->cq_overflow_list)) {
713 		struct io_uring_cqe *cqe;
714 		struct io_overflow_cqe *ocqe;
715 
716 		if (!io_get_cqe_overflow(ctx, &cqe, true))
717 			break;
718 		ocqe = list_first_entry(&ctx->cq_overflow_list,
719 					struct io_overflow_cqe, list);
720 		memcpy(cqe, &ocqe->cqe, cqe_size);
721 		list_del(&ocqe->list);
722 		kfree(ocqe);
723 	}
724 
725 	if (list_empty(&ctx->cq_overflow_list)) {
726 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
727 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
728 	}
729 	io_cq_unlock_post(ctx);
730 }
731 
732 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
733 {
734 	/* iopoll syncs against uring_lock, not completion_lock */
735 	if (ctx->flags & IORING_SETUP_IOPOLL)
736 		mutex_lock(&ctx->uring_lock);
737 	__io_cqring_overflow_flush(ctx);
738 	if (ctx->flags & IORING_SETUP_IOPOLL)
739 		mutex_unlock(&ctx->uring_lock);
740 }
741 
742 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
743 {
744 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
745 		io_cqring_do_overflow_flush(ctx);
746 }
747 
748 /* can be called by any task */
749 static void io_put_task_remote(struct task_struct *task)
750 {
751 	struct io_uring_task *tctx = task->io_uring;
752 
753 	percpu_counter_sub(&tctx->inflight, 1);
754 	if (unlikely(atomic_read(&tctx->in_cancel)))
755 		wake_up(&tctx->wait);
756 	put_task_struct(task);
757 }
758 
759 /* used by a task to put its own references */
760 static void io_put_task_local(struct task_struct *task)
761 {
762 	task->io_uring->cached_refs++;
763 }
764 
765 /* must to be called somewhat shortly after putting a request */
766 static inline void io_put_task(struct task_struct *task)
767 {
768 	if (likely(task == current))
769 		io_put_task_local(task);
770 	else
771 		io_put_task_remote(task);
772 }
773 
774 void io_task_refs_refill(struct io_uring_task *tctx)
775 {
776 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
777 
778 	percpu_counter_add(&tctx->inflight, refill);
779 	refcount_add(refill, &current->usage);
780 	tctx->cached_refs += refill;
781 }
782 
783 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
784 {
785 	struct io_uring_task *tctx = task->io_uring;
786 	unsigned int refs = tctx->cached_refs;
787 
788 	if (refs) {
789 		tctx->cached_refs = 0;
790 		percpu_counter_sub(&tctx->inflight, refs);
791 		put_task_struct_many(task, refs);
792 	}
793 }
794 
795 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
796 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
797 {
798 	struct io_overflow_cqe *ocqe;
799 	size_t ocq_size = sizeof(struct io_overflow_cqe);
800 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
801 
802 	lockdep_assert_held(&ctx->completion_lock);
803 
804 	if (is_cqe32)
805 		ocq_size += sizeof(struct io_uring_cqe);
806 
807 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
808 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
809 	if (!ocqe) {
810 		/*
811 		 * If we're in ring overflow flush mode, or in task cancel mode,
812 		 * or cannot allocate an overflow entry, then we need to drop it
813 		 * on the floor.
814 		 */
815 		io_account_cq_overflow(ctx);
816 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
817 		return false;
818 	}
819 	if (list_empty(&ctx->cq_overflow_list)) {
820 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
821 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
822 
823 	}
824 	ocqe->cqe.user_data = user_data;
825 	ocqe->cqe.res = res;
826 	ocqe->cqe.flags = cflags;
827 	if (is_cqe32) {
828 		ocqe->cqe.big_cqe[0] = extra1;
829 		ocqe->cqe.big_cqe[1] = extra2;
830 	}
831 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
832 	return true;
833 }
834 
835 void io_req_cqe_overflow(struct io_kiocb *req)
836 {
837 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
838 				req->cqe.res, req->cqe.flags,
839 				req->big_cqe.extra1, req->big_cqe.extra2);
840 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
841 }
842 
843 /*
844  * writes to the cq entry need to come after reading head; the
845  * control dependency is enough as we're using WRITE_ONCE to
846  * fill the cq entry
847  */
848 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
849 {
850 	struct io_rings *rings = ctx->rings;
851 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
852 	unsigned int free, queued, len;
853 
854 	/*
855 	 * Posting into the CQ when there are pending overflowed CQEs may break
856 	 * ordering guarantees, which will affect links, F_MORE users and more.
857 	 * Force overflow the completion.
858 	 */
859 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
860 		return false;
861 
862 	/* userspace may cheat modifying the tail, be safe and do min */
863 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
864 	free = ctx->cq_entries - queued;
865 	/* we need a contiguous range, limit based on the current array offset */
866 	len = min(free, ctx->cq_entries - off);
867 	if (!len)
868 		return false;
869 
870 	if (ctx->flags & IORING_SETUP_CQE32) {
871 		off <<= 1;
872 		len <<= 1;
873 	}
874 
875 	ctx->cqe_cached = &rings->cqes[off];
876 	ctx->cqe_sentinel = ctx->cqe_cached + len;
877 	return true;
878 }
879 
880 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
881 			      u32 cflags)
882 {
883 	struct io_uring_cqe *cqe;
884 
885 	ctx->cq_extra++;
886 
887 	/*
888 	 * If we can't get a cq entry, userspace overflowed the
889 	 * submission (by quite a lot). Increment the overflow count in
890 	 * the ring.
891 	 */
892 	if (likely(io_get_cqe(ctx, &cqe))) {
893 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
894 
895 		WRITE_ONCE(cqe->user_data, user_data);
896 		WRITE_ONCE(cqe->res, res);
897 		WRITE_ONCE(cqe->flags, cflags);
898 
899 		if (ctx->flags & IORING_SETUP_CQE32) {
900 			WRITE_ONCE(cqe->big_cqe[0], 0);
901 			WRITE_ONCE(cqe->big_cqe[1], 0);
902 		}
903 		return true;
904 	}
905 	return false;
906 }
907 
908 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
909 	__must_hold(&ctx->uring_lock)
910 {
911 	struct io_submit_state *state = &ctx->submit_state;
912 	unsigned int i;
913 
914 	lockdep_assert_held(&ctx->uring_lock);
915 	for (i = 0; i < state->cqes_count; i++) {
916 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
917 
918 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
919 			if (ctx->lockless_cq) {
920 				spin_lock(&ctx->completion_lock);
921 				io_cqring_event_overflow(ctx, cqe->user_data,
922 							cqe->res, cqe->flags, 0, 0);
923 				spin_unlock(&ctx->completion_lock);
924 			} else {
925 				io_cqring_event_overflow(ctx, cqe->user_data,
926 							cqe->res, cqe->flags, 0, 0);
927 			}
928 		}
929 	}
930 	state->cqes_count = 0;
931 }
932 
933 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
934 			      bool allow_overflow)
935 {
936 	bool filled;
937 
938 	io_cq_lock(ctx);
939 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
940 	if (!filled && allow_overflow)
941 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
942 
943 	io_cq_unlock_post(ctx);
944 	return filled;
945 }
946 
947 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
948 {
949 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
950 }
951 
952 /*
953  * A helper for multishot requests posting additional CQEs.
954  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
955  */
956 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
957 {
958 	struct io_ring_ctx *ctx = req->ctx;
959 	u64 user_data = req->cqe.user_data;
960 	struct io_uring_cqe *cqe;
961 
962 	if (!defer)
963 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
964 
965 	lockdep_assert_held(&ctx->uring_lock);
966 
967 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
968 		__io_cq_lock(ctx);
969 		__io_flush_post_cqes(ctx);
970 		/* no need to flush - flush is deferred */
971 		__io_cq_unlock_post(ctx);
972 	}
973 
974 	/* For defered completions this is not as strict as it is otherwise,
975 	 * however it's main job is to prevent unbounded posted completions,
976 	 * and in that it works just as well.
977 	 */
978 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
979 		return false;
980 
981 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
982 	cqe->user_data = user_data;
983 	cqe->res = res;
984 	cqe->flags = cflags;
985 	return true;
986 }
987 
988 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
989 {
990 	struct io_ring_ctx *ctx = req->ctx;
991 	struct io_rsrc_node *rsrc_node = NULL;
992 
993 	io_cq_lock(ctx);
994 	if (!(req->flags & REQ_F_CQE_SKIP)) {
995 		if (!io_fill_cqe_req(ctx, req))
996 			io_req_cqe_overflow(req);
997 	}
998 
999 	/*
1000 	 * If we're the last reference to this request, add to our locked
1001 	 * free_list cache.
1002 	 */
1003 	if (req_ref_put_and_test(req)) {
1004 		if (req->flags & IO_REQ_LINK_FLAGS) {
1005 			if (req->flags & IO_DISARM_MASK)
1006 				io_disarm_next(req);
1007 			if (req->link) {
1008 				io_req_task_queue(req->link);
1009 				req->link = NULL;
1010 			}
1011 		}
1012 		io_put_kbuf_comp(req);
1013 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1014 			io_clean_op(req);
1015 		io_put_file(req);
1016 
1017 		rsrc_node = req->rsrc_node;
1018 		/*
1019 		 * Selected buffer deallocation in io_clean_op() assumes that
1020 		 * we don't hold ->completion_lock. Clean them here to avoid
1021 		 * deadlocks.
1022 		 */
1023 		io_put_task_remote(req->task);
1024 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1025 		ctx->locked_free_nr++;
1026 	}
1027 	io_cq_unlock_post(ctx);
1028 
1029 	if (rsrc_node) {
1030 		io_ring_submit_lock(ctx, issue_flags);
1031 		io_put_rsrc_node(ctx, rsrc_node);
1032 		io_ring_submit_unlock(ctx, issue_flags);
1033 	}
1034 }
1035 
1036 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1037 {
1038 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1039 		req->io_task_work.func = io_req_task_complete;
1040 		io_req_task_work_add(req);
1041 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1042 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1043 		__io_req_complete_post(req, issue_flags);
1044 	} else {
1045 		struct io_ring_ctx *ctx = req->ctx;
1046 
1047 		mutex_lock(&ctx->uring_lock);
1048 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1049 		mutex_unlock(&ctx->uring_lock);
1050 	}
1051 }
1052 
1053 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1054 	__must_hold(&ctx->uring_lock)
1055 {
1056 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1057 
1058 	lockdep_assert_held(&req->ctx->uring_lock);
1059 
1060 	req_set_fail(req);
1061 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1062 	if (def->fail)
1063 		def->fail(req);
1064 	io_req_complete_defer(req);
1065 }
1066 
1067 /*
1068  * Don't initialise the fields below on every allocation, but do that in
1069  * advance and keep them valid across allocations.
1070  */
1071 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1072 {
1073 	req->ctx = ctx;
1074 	req->link = NULL;
1075 	req->async_data = NULL;
1076 	/* not necessary, but safer to zero */
1077 	memset(&req->cqe, 0, sizeof(req->cqe));
1078 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1079 }
1080 
1081 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1082 					struct io_submit_state *state)
1083 {
1084 	spin_lock(&ctx->completion_lock);
1085 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1086 	ctx->locked_free_nr = 0;
1087 	spin_unlock(&ctx->completion_lock);
1088 }
1089 
1090 /*
1091  * A request might get retired back into the request caches even before opcode
1092  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1093  * Because of that, io_alloc_req() should be called only under ->uring_lock
1094  * and with extra caution to not get a request that is still worked on.
1095  */
1096 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1097 	__must_hold(&ctx->uring_lock)
1098 {
1099 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1100 	void *reqs[IO_REQ_ALLOC_BATCH];
1101 	int ret, i;
1102 
1103 	/*
1104 	 * If we have more than a batch's worth of requests in our IRQ side
1105 	 * locked cache, grab the lock and move them over to our submission
1106 	 * side cache.
1107 	 */
1108 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1109 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1110 		if (!io_req_cache_empty(ctx))
1111 			return true;
1112 	}
1113 
1114 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1115 
1116 	/*
1117 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1118 	 * retry single alloc to be on the safe side.
1119 	 */
1120 	if (unlikely(ret <= 0)) {
1121 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1122 		if (!reqs[0])
1123 			return false;
1124 		ret = 1;
1125 	}
1126 
1127 	percpu_ref_get_many(&ctx->refs, ret);
1128 	for (i = 0; i < ret; i++) {
1129 		struct io_kiocb *req = reqs[i];
1130 
1131 		io_preinit_req(req, ctx);
1132 		io_req_add_to_cache(req, ctx);
1133 	}
1134 	return true;
1135 }
1136 
1137 __cold void io_free_req(struct io_kiocb *req)
1138 {
1139 	/* refs were already put, restore them for io_req_task_complete() */
1140 	req->flags &= ~REQ_F_REFCOUNT;
1141 	/* we only want to free it, don't post CQEs */
1142 	req->flags |= REQ_F_CQE_SKIP;
1143 	req->io_task_work.func = io_req_task_complete;
1144 	io_req_task_work_add(req);
1145 }
1146 
1147 static void __io_req_find_next_prep(struct io_kiocb *req)
1148 {
1149 	struct io_ring_ctx *ctx = req->ctx;
1150 
1151 	spin_lock(&ctx->completion_lock);
1152 	io_disarm_next(req);
1153 	spin_unlock(&ctx->completion_lock);
1154 }
1155 
1156 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1157 {
1158 	struct io_kiocb *nxt;
1159 
1160 	/*
1161 	 * If LINK is set, we have dependent requests in this chain. If we
1162 	 * didn't fail this request, queue the first one up, moving any other
1163 	 * dependencies to the next request. In case of failure, fail the rest
1164 	 * of the chain.
1165 	 */
1166 	if (unlikely(req->flags & IO_DISARM_MASK))
1167 		__io_req_find_next_prep(req);
1168 	nxt = req->link;
1169 	req->link = NULL;
1170 	return nxt;
1171 }
1172 
1173 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1174 {
1175 	if (!ctx)
1176 		return;
1177 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1178 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1179 	if (ts->locked) {
1180 		io_submit_flush_completions(ctx);
1181 		mutex_unlock(&ctx->uring_lock);
1182 		ts->locked = false;
1183 	}
1184 	percpu_ref_put(&ctx->refs);
1185 }
1186 
1187 static unsigned int handle_tw_list(struct llist_node *node,
1188 				   struct io_ring_ctx **ctx,
1189 				   struct io_tw_state *ts,
1190 				   struct llist_node *last)
1191 {
1192 	unsigned int count = 0;
1193 
1194 	while (node && node != last) {
1195 		struct llist_node *next = node->next;
1196 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1197 						    io_task_work.node);
1198 
1199 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1200 
1201 		if (req->ctx != *ctx) {
1202 			ctx_flush_and_put(*ctx, ts);
1203 			*ctx = req->ctx;
1204 			/* if not contended, grab and improve batching */
1205 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1206 			percpu_ref_get(&(*ctx)->refs);
1207 		}
1208 		INDIRECT_CALL_2(req->io_task_work.func,
1209 				io_poll_task_func, io_req_rw_complete,
1210 				req, ts);
1211 		node = next;
1212 		count++;
1213 		if (unlikely(need_resched())) {
1214 			ctx_flush_and_put(*ctx, ts);
1215 			*ctx = NULL;
1216 			cond_resched();
1217 		}
1218 	}
1219 
1220 	return count;
1221 }
1222 
1223 /**
1224  * io_llist_xchg - swap all entries in a lock-less list
1225  * @head:	the head of lock-less list to delete all entries
1226  * @new:	new entry as the head of the list
1227  *
1228  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1229  * The order of entries returned is from the newest to the oldest added one.
1230  */
1231 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1232 					       struct llist_node *new)
1233 {
1234 	return xchg(&head->first, new);
1235 }
1236 
1237 /**
1238  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1239  * @head:	the head of lock-less list to delete all entries
1240  * @old:	expected old value of the first entry of the list
1241  * @new:	new entry as the head of the list
1242  *
1243  * perform a cmpxchg on the first entry of the list.
1244  */
1245 
1246 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1247 						  struct llist_node *old,
1248 						  struct llist_node *new)
1249 {
1250 	return cmpxchg(&head->first, old, new);
1251 }
1252 
1253 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1254 {
1255 	struct llist_node *node = llist_del_all(&tctx->task_list);
1256 	struct io_ring_ctx *last_ctx = NULL;
1257 	struct io_kiocb *req;
1258 
1259 	while (node) {
1260 		req = container_of(node, struct io_kiocb, io_task_work.node);
1261 		node = node->next;
1262 		if (sync && last_ctx != req->ctx) {
1263 			if (last_ctx) {
1264 				flush_delayed_work(&last_ctx->fallback_work);
1265 				percpu_ref_put(&last_ctx->refs);
1266 			}
1267 			last_ctx = req->ctx;
1268 			percpu_ref_get(&last_ctx->refs);
1269 		}
1270 		if (llist_add(&req->io_task_work.node,
1271 			      &req->ctx->fallback_llist))
1272 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1273 	}
1274 
1275 	if (last_ctx) {
1276 		flush_delayed_work(&last_ctx->fallback_work);
1277 		percpu_ref_put(&last_ctx->refs);
1278 	}
1279 }
1280 
1281 void tctx_task_work(struct callback_head *cb)
1282 {
1283 	struct io_tw_state ts = {};
1284 	struct io_ring_ctx *ctx = NULL;
1285 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1286 						  task_work);
1287 	struct llist_node fake = {};
1288 	struct llist_node *node;
1289 	unsigned int loops = 0;
1290 	unsigned int count = 0;
1291 
1292 	if (unlikely(current->flags & PF_EXITING)) {
1293 		io_fallback_tw(tctx, true);
1294 		return;
1295 	}
1296 
1297 	do {
1298 		loops++;
1299 		node = io_llist_xchg(&tctx->task_list, &fake);
1300 		count += handle_tw_list(node, &ctx, &ts, &fake);
1301 
1302 		/* skip expensive cmpxchg if there are items in the list */
1303 		if (READ_ONCE(tctx->task_list.first) != &fake)
1304 			continue;
1305 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1306 			io_submit_flush_completions(ctx);
1307 			if (READ_ONCE(tctx->task_list.first) != &fake)
1308 				continue;
1309 		}
1310 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1311 	} while (node != &fake);
1312 
1313 	ctx_flush_and_put(ctx, &ts);
1314 
1315 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1316 	if (unlikely(atomic_read(&tctx->in_cancel)))
1317 		io_uring_drop_tctx_refs(current);
1318 
1319 	trace_io_uring_task_work_run(tctx, count, loops);
1320 }
1321 
1322 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1323 {
1324 	struct io_ring_ctx *ctx = req->ctx;
1325 	unsigned nr_wait, nr_tw, nr_tw_prev;
1326 	struct llist_node *first;
1327 
1328 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1329 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1330 
1331 	first = READ_ONCE(ctx->work_llist.first);
1332 	do {
1333 		nr_tw_prev = 0;
1334 		if (first) {
1335 			struct io_kiocb *first_req = container_of(first,
1336 							struct io_kiocb,
1337 							io_task_work.node);
1338 			/*
1339 			 * Might be executed at any moment, rely on
1340 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1341 			 */
1342 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1343 		}
1344 		nr_tw = nr_tw_prev + 1;
1345 		/* Large enough to fail the nr_wait comparison below */
1346 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1347 			nr_tw = -1U;
1348 
1349 		req->nr_tw = nr_tw;
1350 		req->io_task_work.node.next = first;
1351 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1352 			      &req->io_task_work.node));
1353 
1354 	if (!first) {
1355 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1356 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1357 		if (ctx->has_evfd)
1358 			io_eventfd_signal(ctx);
1359 	}
1360 
1361 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1362 	/* no one is waiting */
1363 	if (!nr_wait)
1364 		return;
1365 	/* either not enough or the previous add has already woken it up */
1366 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1367 		return;
1368 	/* pairs with set_current_state() in io_cqring_wait() */
1369 	smp_mb__after_atomic();
1370 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1371 }
1372 
1373 static void io_req_normal_work_add(struct io_kiocb *req)
1374 {
1375 	struct io_uring_task *tctx = req->task->io_uring;
1376 	struct io_ring_ctx *ctx = req->ctx;
1377 
1378 	/* task_work already pending, we're done */
1379 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1380 		return;
1381 
1382 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1383 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1384 
1385 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1386 		return;
1387 
1388 	io_fallback_tw(tctx, false);
1389 }
1390 
1391 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1392 {
1393 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1394 		rcu_read_lock();
1395 		io_req_local_work_add(req, flags);
1396 		rcu_read_unlock();
1397 	} else {
1398 		io_req_normal_work_add(req);
1399 	}
1400 }
1401 
1402 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1403 {
1404 	struct llist_node *node;
1405 
1406 	node = llist_del_all(&ctx->work_llist);
1407 	while (node) {
1408 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1409 						    io_task_work.node);
1410 
1411 		node = node->next;
1412 		io_req_normal_work_add(req);
1413 	}
1414 }
1415 
1416 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1417 {
1418 	struct llist_node *node;
1419 	unsigned int loops = 0;
1420 	int ret = 0;
1421 
1422 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1423 		return -EEXIST;
1424 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1425 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1426 again:
1427 	/*
1428 	 * llists are in reverse order, flip it back the right way before
1429 	 * running the pending items.
1430 	 */
1431 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1432 	while (node) {
1433 		struct llist_node *next = node->next;
1434 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1435 						    io_task_work.node);
1436 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1437 		INDIRECT_CALL_2(req->io_task_work.func,
1438 				io_poll_task_func, io_req_rw_complete,
1439 				req, ts);
1440 		ret++;
1441 		node = next;
1442 	}
1443 	loops++;
1444 
1445 	if (!llist_empty(&ctx->work_llist))
1446 		goto again;
1447 	if (ts->locked) {
1448 		io_submit_flush_completions(ctx);
1449 		if (!llist_empty(&ctx->work_llist))
1450 			goto again;
1451 	}
1452 	trace_io_uring_local_work_run(ctx, ret, loops);
1453 	return ret;
1454 }
1455 
1456 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1457 {
1458 	struct io_tw_state ts = { .locked = true, };
1459 	int ret;
1460 
1461 	if (llist_empty(&ctx->work_llist))
1462 		return 0;
1463 
1464 	ret = __io_run_local_work(ctx, &ts);
1465 	/* shouldn't happen! */
1466 	if (WARN_ON_ONCE(!ts.locked))
1467 		mutex_lock(&ctx->uring_lock);
1468 	return ret;
1469 }
1470 
1471 static int io_run_local_work(struct io_ring_ctx *ctx)
1472 {
1473 	struct io_tw_state ts = {};
1474 	int ret;
1475 
1476 	ts.locked = mutex_trylock(&ctx->uring_lock);
1477 	ret = __io_run_local_work(ctx, &ts);
1478 	if (ts.locked)
1479 		mutex_unlock(&ctx->uring_lock);
1480 
1481 	return ret;
1482 }
1483 
1484 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1485 {
1486 	io_tw_lock(req->ctx, ts);
1487 	io_req_defer_failed(req, req->cqe.res);
1488 }
1489 
1490 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1491 {
1492 	io_tw_lock(req->ctx, ts);
1493 	/* req->task == current here, checking PF_EXITING is safe */
1494 	if (unlikely(req->task->flags & PF_EXITING))
1495 		io_req_defer_failed(req, -EFAULT);
1496 	else if (req->flags & REQ_F_FORCE_ASYNC)
1497 		io_queue_iowq(req, ts);
1498 	else
1499 		io_queue_sqe(req);
1500 }
1501 
1502 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1503 {
1504 	io_req_set_res(req, ret, 0);
1505 	req->io_task_work.func = io_req_task_cancel;
1506 	io_req_task_work_add(req);
1507 }
1508 
1509 void io_req_task_queue(struct io_kiocb *req)
1510 {
1511 	req->io_task_work.func = io_req_task_submit;
1512 	io_req_task_work_add(req);
1513 }
1514 
1515 void io_queue_next(struct io_kiocb *req)
1516 {
1517 	struct io_kiocb *nxt = io_req_find_next(req);
1518 
1519 	if (nxt)
1520 		io_req_task_queue(nxt);
1521 }
1522 
1523 static void io_free_batch_list(struct io_ring_ctx *ctx,
1524 			       struct io_wq_work_node *node)
1525 	__must_hold(&ctx->uring_lock)
1526 {
1527 	do {
1528 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1529 						    comp_list);
1530 
1531 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1532 			if (req->flags & REQ_F_REFCOUNT) {
1533 				node = req->comp_list.next;
1534 				if (!req_ref_put_and_test(req))
1535 					continue;
1536 			}
1537 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1538 				struct async_poll *apoll = req->apoll;
1539 
1540 				if (apoll->double_poll)
1541 					kfree(apoll->double_poll);
1542 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1543 					kfree(apoll);
1544 				req->flags &= ~REQ_F_POLLED;
1545 			}
1546 			if (req->flags & IO_REQ_LINK_FLAGS)
1547 				io_queue_next(req);
1548 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1549 				io_clean_op(req);
1550 		}
1551 		io_put_file(req);
1552 
1553 		io_req_put_rsrc_locked(req, ctx);
1554 
1555 		io_put_task(req->task);
1556 		node = req->comp_list.next;
1557 		io_req_add_to_cache(req, ctx);
1558 	} while (node);
1559 }
1560 
1561 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1562 	__must_hold(&ctx->uring_lock)
1563 {
1564 	struct io_submit_state *state = &ctx->submit_state;
1565 	struct io_wq_work_node *node;
1566 
1567 	__io_cq_lock(ctx);
1568 	/* must come first to preserve CQE ordering in failure cases */
1569 	if (state->cqes_count)
1570 		__io_flush_post_cqes(ctx);
1571 	__wq_list_for_each(node, &state->compl_reqs) {
1572 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1573 					    comp_list);
1574 
1575 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1576 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1577 			if (ctx->lockless_cq) {
1578 				spin_lock(&ctx->completion_lock);
1579 				io_req_cqe_overflow(req);
1580 				spin_unlock(&ctx->completion_lock);
1581 			} else {
1582 				io_req_cqe_overflow(req);
1583 			}
1584 		}
1585 	}
1586 	__io_cq_unlock_post(ctx);
1587 
1588 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1589 		io_free_batch_list(ctx, state->compl_reqs.first);
1590 		INIT_WQ_LIST(&state->compl_reqs);
1591 	}
1592 }
1593 
1594 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1595 {
1596 	/* See comment at the top of this file */
1597 	smp_rmb();
1598 	return __io_cqring_events(ctx);
1599 }
1600 
1601 /*
1602  * We can't just wait for polled events to come to us, we have to actively
1603  * find and complete them.
1604  */
1605 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1606 {
1607 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1608 		return;
1609 
1610 	mutex_lock(&ctx->uring_lock);
1611 	while (!wq_list_empty(&ctx->iopoll_list)) {
1612 		/* let it sleep and repeat later if can't complete a request */
1613 		if (io_do_iopoll(ctx, true) == 0)
1614 			break;
1615 		/*
1616 		 * Ensure we allow local-to-the-cpu processing to take place,
1617 		 * in this case we need to ensure that we reap all events.
1618 		 * Also let task_work, etc. to progress by releasing the mutex
1619 		 */
1620 		if (need_resched()) {
1621 			mutex_unlock(&ctx->uring_lock);
1622 			cond_resched();
1623 			mutex_lock(&ctx->uring_lock);
1624 		}
1625 	}
1626 	mutex_unlock(&ctx->uring_lock);
1627 }
1628 
1629 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1630 {
1631 	unsigned int nr_events = 0;
1632 	unsigned long check_cq;
1633 
1634 	if (!io_allowed_run_tw(ctx))
1635 		return -EEXIST;
1636 
1637 	check_cq = READ_ONCE(ctx->check_cq);
1638 	if (unlikely(check_cq)) {
1639 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1640 			__io_cqring_overflow_flush(ctx);
1641 		/*
1642 		 * Similarly do not spin if we have not informed the user of any
1643 		 * dropped CQE.
1644 		 */
1645 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1646 			return -EBADR;
1647 	}
1648 	/*
1649 	 * Don't enter poll loop if we already have events pending.
1650 	 * If we do, we can potentially be spinning for commands that
1651 	 * already triggered a CQE (eg in error).
1652 	 */
1653 	if (io_cqring_events(ctx))
1654 		return 0;
1655 
1656 	do {
1657 		int ret = 0;
1658 
1659 		/*
1660 		 * If a submit got punted to a workqueue, we can have the
1661 		 * application entering polling for a command before it gets
1662 		 * issued. That app will hold the uring_lock for the duration
1663 		 * of the poll right here, so we need to take a breather every
1664 		 * now and then to ensure that the issue has a chance to add
1665 		 * the poll to the issued list. Otherwise we can spin here
1666 		 * forever, while the workqueue is stuck trying to acquire the
1667 		 * very same mutex.
1668 		 */
1669 		if (wq_list_empty(&ctx->iopoll_list) ||
1670 		    io_task_work_pending(ctx)) {
1671 			u32 tail = ctx->cached_cq_tail;
1672 
1673 			(void) io_run_local_work_locked(ctx);
1674 
1675 			if (task_work_pending(current) ||
1676 			    wq_list_empty(&ctx->iopoll_list)) {
1677 				mutex_unlock(&ctx->uring_lock);
1678 				io_run_task_work();
1679 				mutex_lock(&ctx->uring_lock);
1680 			}
1681 			/* some requests don't go through iopoll_list */
1682 			if (tail != ctx->cached_cq_tail ||
1683 			    wq_list_empty(&ctx->iopoll_list))
1684 				break;
1685 		}
1686 		ret = io_do_iopoll(ctx, !min);
1687 		if (unlikely(ret < 0))
1688 			return ret;
1689 
1690 		if (task_sigpending(current))
1691 			return -EINTR;
1692 		if (need_resched())
1693 			break;
1694 
1695 		nr_events += ret;
1696 	} while (nr_events < min);
1697 
1698 	return 0;
1699 }
1700 
1701 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1702 {
1703 	if (ts->locked)
1704 		io_req_complete_defer(req);
1705 	else
1706 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1707 }
1708 
1709 /*
1710  * After the iocb has been issued, it's safe to be found on the poll list.
1711  * Adding the kiocb to the list AFTER submission ensures that we don't
1712  * find it from a io_do_iopoll() thread before the issuer is done
1713  * accessing the kiocb cookie.
1714  */
1715 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1716 {
1717 	struct io_ring_ctx *ctx = req->ctx;
1718 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1719 
1720 	/* workqueue context doesn't hold uring_lock, grab it now */
1721 	if (unlikely(needs_lock))
1722 		mutex_lock(&ctx->uring_lock);
1723 
1724 	/*
1725 	 * Track whether we have multiple files in our lists. This will impact
1726 	 * how we do polling eventually, not spinning if we're on potentially
1727 	 * different devices.
1728 	 */
1729 	if (wq_list_empty(&ctx->iopoll_list)) {
1730 		ctx->poll_multi_queue = false;
1731 	} else if (!ctx->poll_multi_queue) {
1732 		struct io_kiocb *list_req;
1733 
1734 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1735 					comp_list);
1736 		if (list_req->file != req->file)
1737 			ctx->poll_multi_queue = true;
1738 	}
1739 
1740 	/*
1741 	 * For fast devices, IO may have already completed. If it has, add
1742 	 * it to the front so we find it first.
1743 	 */
1744 	if (READ_ONCE(req->iopoll_completed))
1745 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1746 	else
1747 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1748 
1749 	if (unlikely(needs_lock)) {
1750 		/*
1751 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1752 		 * in sq thread task context or in io worker task context. If
1753 		 * current task context is sq thread, we don't need to check
1754 		 * whether should wake up sq thread.
1755 		 */
1756 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1757 		    wq_has_sleeper(&ctx->sq_data->wait))
1758 			wake_up(&ctx->sq_data->wait);
1759 
1760 		mutex_unlock(&ctx->uring_lock);
1761 	}
1762 }
1763 
1764 unsigned int io_file_get_flags(struct file *file)
1765 {
1766 	unsigned int res = 0;
1767 
1768 	if (S_ISREG(file_inode(file)->i_mode))
1769 		res |= REQ_F_ISREG;
1770 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1771 		res |= REQ_F_SUPPORT_NOWAIT;
1772 	return res;
1773 }
1774 
1775 bool io_alloc_async_data(struct io_kiocb *req)
1776 {
1777 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1778 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1779 	if (req->async_data) {
1780 		req->flags |= REQ_F_ASYNC_DATA;
1781 		return false;
1782 	}
1783 	return true;
1784 }
1785 
1786 int io_req_prep_async(struct io_kiocb *req)
1787 {
1788 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1789 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1790 
1791 	/* assign early for deferred execution for non-fixed file */
1792 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1793 		req->file = io_file_get_normal(req, req->cqe.fd);
1794 	if (!cdef->prep_async)
1795 		return 0;
1796 	if (WARN_ON_ONCE(req_has_async_data(req)))
1797 		return -EFAULT;
1798 	if (!def->manual_alloc) {
1799 		if (io_alloc_async_data(req))
1800 			return -EAGAIN;
1801 	}
1802 	return cdef->prep_async(req);
1803 }
1804 
1805 static u32 io_get_sequence(struct io_kiocb *req)
1806 {
1807 	u32 seq = req->ctx->cached_sq_head;
1808 	struct io_kiocb *cur;
1809 
1810 	/* need original cached_sq_head, but it was increased for each req */
1811 	io_for_each_link(cur, req)
1812 		seq--;
1813 	return seq;
1814 }
1815 
1816 static __cold void io_drain_req(struct io_kiocb *req)
1817 	__must_hold(&ctx->uring_lock)
1818 {
1819 	struct io_ring_ctx *ctx = req->ctx;
1820 	struct io_defer_entry *de;
1821 	int ret;
1822 	u32 seq = io_get_sequence(req);
1823 
1824 	/* Still need defer if there is pending req in defer list. */
1825 	spin_lock(&ctx->completion_lock);
1826 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1827 		spin_unlock(&ctx->completion_lock);
1828 queue:
1829 		ctx->drain_active = false;
1830 		io_req_task_queue(req);
1831 		return;
1832 	}
1833 	spin_unlock(&ctx->completion_lock);
1834 
1835 	io_prep_async_link(req);
1836 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1837 	if (!de) {
1838 		ret = -ENOMEM;
1839 		io_req_defer_failed(req, ret);
1840 		return;
1841 	}
1842 
1843 	spin_lock(&ctx->completion_lock);
1844 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1845 		spin_unlock(&ctx->completion_lock);
1846 		kfree(de);
1847 		goto queue;
1848 	}
1849 
1850 	trace_io_uring_defer(req);
1851 	de->req = req;
1852 	de->seq = seq;
1853 	list_add_tail(&de->list, &ctx->defer_list);
1854 	spin_unlock(&ctx->completion_lock);
1855 }
1856 
1857 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1858 			   unsigned int issue_flags)
1859 {
1860 	if (req->file || !def->needs_file)
1861 		return true;
1862 
1863 	if (req->flags & REQ_F_FIXED_FILE)
1864 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1865 	else
1866 		req->file = io_file_get_normal(req, req->cqe.fd);
1867 
1868 	return !!req->file;
1869 }
1870 
1871 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1872 {
1873 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1874 	const struct cred *creds = NULL;
1875 	int ret;
1876 
1877 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1878 		return -EBADF;
1879 
1880 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1881 		creds = override_creds(req->creds);
1882 
1883 	if (!def->audit_skip)
1884 		audit_uring_entry(req->opcode);
1885 
1886 	ret = def->issue(req, issue_flags);
1887 
1888 	if (!def->audit_skip)
1889 		audit_uring_exit(!ret, ret);
1890 
1891 	if (creds)
1892 		revert_creds(creds);
1893 
1894 	if (ret == IOU_OK) {
1895 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1896 			io_req_complete_defer(req);
1897 		else
1898 			io_req_complete_post(req, issue_flags);
1899 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1900 		return ret;
1901 
1902 	/* If the op doesn't have a file, we're not polling for it */
1903 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1904 		io_iopoll_req_issued(req, issue_flags);
1905 
1906 	return 0;
1907 }
1908 
1909 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1910 {
1911 	io_tw_lock(req->ctx, ts);
1912 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1913 				 IO_URING_F_COMPLETE_DEFER);
1914 }
1915 
1916 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1917 {
1918 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1919 	struct io_kiocb *nxt = NULL;
1920 
1921 	if (req_ref_put_and_test(req)) {
1922 		if (req->flags & IO_REQ_LINK_FLAGS)
1923 			nxt = io_req_find_next(req);
1924 		io_free_req(req);
1925 	}
1926 	return nxt ? &nxt->work : NULL;
1927 }
1928 
1929 void io_wq_submit_work(struct io_wq_work *work)
1930 {
1931 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1932 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1933 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1934 	bool needs_poll = false;
1935 	int ret = 0, err = -ECANCELED;
1936 
1937 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1938 	if (!(req->flags & REQ_F_REFCOUNT))
1939 		__io_req_set_refcount(req, 2);
1940 	else
1941 		req_ref_get(req);
1942 
1943 	io_arm_ltimeout(req);
1944 
1945 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1946 	if (work->flags & IO_WQ_WORK_CANCEL) {
1947 fail:
1948 		io_req_task_queue_fail(req, err);
1949 		return;
1950 	}
1951 	if (!io_assign_file(req, def, issue_flags)) {
1952 		err = -EBADF;
1953 		work->flags |= IO_WQ_WORK_CANCEL;
1954 		goto fail;
1955 	}
1956 
1957 	if (req->flags & REQ_F_FORCE_ASYNC) {
1958 		bool opcode_poll = def->pollin || def->pollout;
1959 
1960 		if (opcode_poll && file_can_poll(req->file)) {
1961 			needs_poll = true;
1962 			issue_flags |= IO_URING_F_NONBLOCK;
1963 		}
1964 	}
1965 
1966 	do {
1967 		ret = io_issue_sqe(req, issue_flags);
1968 		if (ret != -EAGAIN)
1969 			break;
1970 
1971 		/*
1972 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1973 		 * poll. -EAGAIN is final for that case.
1974 		 */
1975 		if (req->flags & REQ_F_NOWAIT)
1976 			break;
1977 
1978 		/*
1979 		 * We can get EAGAIN for iopolled IO even though we're
1980 		 * forcing a sync submission from here, since we can't
1981 		 * wait for request slots on the block side.
1982 		 */
1983 		if (!needs_poll) {
1984 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1985 				break;
1986 			if (io_wq_worker_stopped())
1987 				break;
1988 			cond_resched();
1989 			continue;
1990 		}
1991 
1992 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1993 			return;
1994 		/* aborted or ready, in either case retry blocking */
1995 		needs_poll = false;
1996 		issue_flags &= ~IO_URING_F_NONBLOCK;
1997 	} while (1);
1998 
1999 	/* avoid locking problems by failing it from a clean context */
2000 	if (ret < 0)
2001 		io_req_task_queue_fail(req, ret);
2002 }
2003 
2004 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2005 				      unsigned int issue_flags)
2006 {
2007 	struct io_ring_ctx *ctx = req->ctx;
2008 	struct io_fixed_file *slot;
2009 	struct file *file = NULL;
2010 
2011 	io_ring_submit_lock(ctx, issue_flags);
2012 
2013 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2014 		goto out;
2015 	fd = array_index_nospec(fd, ctx->nr_user_files);
2016 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2017 	file = io_slot_file(slot);
2018 	req->flags |= io_slot_flags(slot);
2019 	io_req_set_rsrc_node(req, ctx, 0);
2020 out:
2021 	io_ring_submit_unlock(ctx, issue_flags);
2022 	return file;
2023 }
2024 
2025 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2026 {
2027 	struct file *file = fget(fd);
2028 
2029 	trace_io_uring_file_get(req, fd);
2030 
2031 	/* we don't allow fixed io_uring files */
2032 	if (file && io_is_uring_fops(file))
2033 		io_req_track_inflight(req);
2034 	return file;
2035 }
2036 
2037 static void io_queue_async(struct io_kiocb *req, int ret)
2038 	__must_hold(&req->ctx->uring_lock)
2039 {
2040 	struct io_kiocb *linked_timeout;
2041 
2042 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2043 		io_req_defer_failed(req, ret);
2044 		return;
2045 	}
2046 
2047 	linked_timeout = io_prep_linked_timeout(req);
2048 
2049 	switch (io_arm_poll_handler(req, 0)) {
2050 	case IO_APOLL_READY:
2051 		io_kbuf_recycle(req, 0);
2052 		io_req_task_queue(req);
2053 		break;
2054 	case IO_APOLL_ABORTED:
2055 		io_kbuf_recycle(req, 0);
2056 		io_queue_iowq(req, NULL);
2057 		break;
2058 	case IO_APOLL_OK:
2059 		break;
2060 	}
2061 
2062 	if (linked_timeout)
2063 		io_queue_linked_timeout(linked_timeout);
2064 }
2065 
2066 static inline void io_queue_sqe(struct io_kiocb *req)
2067 	__must_hold(&req->ctx->uring_lock)
2068 {
2069 	int ret;
2070 
2071 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2072 
2073 	/*
2074 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2075 	 * doesn't support non-blocking read/write attempts
2076 	 */
2077 	if (likely(!ret))
2078 		io_arm_ltimeout(req);
2079 	else
2080 		io_queue_async(req, ret);
2081 }
2082 
2083 static void io_queue_sqe_fallback(struct io_kiocb *req)
2084 	__must_hold(&req->ctx->uring_lock)
2085 {
2086 	if (unlikely(req->flags & REQ_F_FAIL)) {
2087 		/*
2088 		 * We don't submit, fail them all, for that replace hardlinks
2089 		 * with normal links. Extra REQ_F_LINK is tolerated.
2090 		 */
2091 		req->flags &= ~REQ_F_HARDLINK;
2092 		req->flags |= REQ_F_LINK;
2093 		io_req_defer_failed(req, req->cqe.res);
2094 	} else {
2095 		int ret = io_req_prep_async(req);
2096 
2097 		if (unlikely(ret)) {
2098 			io_req_defer_failed(req, ret);
2099 			return;
2100 		}
2101 
2102 		if (unlikely(req->ctx->drain_active))
2103 			io_drain_req(req);
2104 		else
2105 			io_queue_iowq(req, NULL);
2106 	}
2107 }
2108 
2109 /*
2110  * Check SQE restrictions (opcode and flags).
2111  *
2112  * Returns 'true' if SQE is allowed, 'false' otherwise.
2113  */
2114 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2115 					struct io_kiocb *req,
2116 					unsigned int sqe_flags)
2117 {
2118 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2119 		return false;
2120 
2121 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2122 	    ctx->restrictions.sqe_flags_required)
2123 		return false;
2124 
2125 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2126 			  ctx->restrictions.sqe_flags_required))
2127 		return false;
2128 
2129 	return true;
2130 }
2131 
2132 static void io_init_req_drain(struct io_kiocb *req)
2133 {
2134 	struct io_ring_ctx *ctx = req->ctx;
2135 	struct io_kiocb *head = ctx->submit_state.link.head;
2136 
2137 	ctx->drain_active = true;
2138 	if (head) {
2139 		/*
2140 		 * If we need to drain a request in the middle of a link, drain
2141 		 * the head request and the next request/link after the current
2142 		 * link. Considering sequential execution of links,
2143 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2144 		 * link.
2145 		 */
2146 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2147 		ctx->drain_next = true;
2148 	}
2149 }
2150 
2151 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2152 		       const struct io_uring_sqe *sqe)
2153 	__must_hold(&ctx->uring_lock)
2154 {
2155 	const struct io_issue_def *def;
2156 	unsigned int sqe_flags;
2157 	int personality;
2158 	u8 opcode;
2159 
2160 	/* req is partially pre-initialised, see io_preinit_req() */
2161 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2162 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2163 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2164 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2165 	req->file = NULL;
2166 	req->rsrc_node = NULL;
2167 	req->task = current;
2168 
2169 	if (unlikely(opcode >= IORING_OP_LAST)) {
2170 		req->opcode = 0;
2171 		return -EINVAL;
2172 	}
2173 	def = &io_issue_defs[opcode];
2174 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2175 		/* enforce forwards compatibility on users */
2176 		if (sqe_flags & ~SQE_VALID_FLAGS)
2177 			return -EINVAL;
2178 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2179 			if (!def->buffer_select)
2180 				return -EOPNOTSUPP;
2181 			req->buf_index = READ_ONCE(sqe->buf_group);
2182 		}
2183 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2184 			ctx->drain_disabled = true;
2185 		if (sqe_flags & IOSQE_IO_DRAIN) {
2186 			if (ctx->drain_disabled)
2187 				return -EOPNOTSUPP;
2188 			io_init_req_drain(req);
2189 		}
2190 	}
2191 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2192 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2193 			return -EACCES;
2194 		/* knock it to the slow queue path, will be drained there */
2195 		if (ctx->drain_active)
2196 			req->flags |= REQ_F_FORCE_ASYNC;
2197 		/* if there is no link, we're at "next" request and need to drain */
2198 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2199 			ctx->drain_next = false;
2200 			ctx->drain_active = true;
2201 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2202 		}
2203 	}
2204 
2205 	if (!def->ioprio && sqe->ioprio)
2206 		return -EINVAL;
2207 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2208 		return -EINVAL;
2209 
2210 	if (def->needs_file) {
2211 		struct io_submit_state *state = &ctx->submit_state;
2212 
2213 		req->cqe.fd = READ_ONCE(sqe->fd);
2214 
2215 		/*
2216 		 * Plug now if we have more than 2 IO left after this, and the
2217 		 * target is potentially a read/write to block based storage.
2218 		 */
2219 		if (state->need_plug && def->plug) {
2220 			state->plug_started = true;
2221 			state->need_plug = false;
2222 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2223 		}
2224 	}
2225 
2226 	personality = READ_ONCE(sqe->personality);
2227 	if (personality) {
2228 		int ret;
2229 
2230 		req->creds = xa_load(&ctx->personalities, personality);
2231 		if (!req->creds)
2232 			return -EINVAL;
2233 		get_cred(req->creds);
2234 		ret = security_uring_override_creds(req->creds);
2235 		if (ret) {
2236 			put_cred(req->creds);
2237 			return ret;
2238 		}
2239 		req->flags |= REQ_F_CREDS;
2240 	}
2241 
2242 	return def->prep(req, sqe);
2243 }
2244 
2245 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2246 				      struct io_kiocb *req, int ret)
2247 {
2248 	struct io_ring_ctx *ctx = req->ctx;
2249 	struct io_submit_link *link = &ctx->submit_state.link;
2250 	struct io_kiocb *head = link->head;
2251 
2252 	trace_io_uring_req_failed(sqe, req, ret);
2253 
2254 	/*
2255 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2256 	 * unusable. Instead of failing eagerly, continue assembling the link if
2257 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2258 	 * should find the flag and handle the rest.
2259 	 */
2260 	req_fail_link_node(req, ret);
2261 	if (head && !(head->flags & REQ_F_FAIL))
2262 		req_fail_link_node(head, -ECANCELED);
2263 
2264 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2265 		if (head) {
2266 			link->last->link = req;
2267 			link->head = NULL;
2268 			req = head;
2269 		}
2270 		io_queue_sqe_fallback(req);
2271 		return ret;
2272 	}
2273 
2274 	if (head)
2275 		link->last->link = req;
2276 	else
2277 		link->head = req;
2278 	link->last = req;
2279 	return 0;
2280 }
2281 
2282 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2283 			 const struct io_uring_sqe *sqe)
2284 	__must_hold(&ctx->uring_lock)
2285 {
2286 	struct io_submit_link *link = &ctx->submit_state.link;
2287 	int ret;
2288 
2289 	ret = io_init_req(ctx, req, sqe);
2290 	if (unlikely(ret))
2291 		return io_submit_fail_init(sqe, req, ret);
2292 
2293 	trace_io_uring_submit_req(req);
2294 
2295 	/*
2296 	 * If we already have a head request, queue this one for async
2297 	 * submittal once the head completes. If we don't have a head but
2298 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2299 	 * submitted sync once the chain is complete. If none of those
2300 	 * conditions are true (normal request), then just queue it.
2301 	 */
2302 	if (unlikely(link->head)) {
2303 		ret = io_req_prep_async(req);
2304 		if (unlikely(ret))
2305 			return io_submit_fail_init(sqe, req, ret);
2306 
2307 		trace_io_uring_link(req, link->head);
2308 		link->last->link = req;
2309 		link->last = req;
2310 
2311 		if (req->flags & IO_REQ_LINK_FLAGS)
2312 			return 0;
2313 		/* last request of the link, flush it */
2314 		req = link->head;
2315 		link->head = NULL;
2316 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2317 			goto fallback;
2318 
2319 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2320 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2321 		if (req->flags & IO_REQ_LINK_FLAGS) {
2322 			link->head = req;
2323 			link->last = req;
2324 		} else {
2325 fallback:
2326 			io_queue_sqe_fallback(req);
2327 		}
2328 		return 0;
2329 	}
2330 
2331 	io_queue_sqe(req);
2332 	return 0;
2333 }
2334 
2335 /*
2336  * Batched submission is done, ensure local IO is flushed out.
2337  */
2338 static void io_submit_state_end(struct io_ring_ctx *ctx)
2339 {
2340 	struct io_submit_state *state = &ctx->submit_state;
2341 
2342 	if (unlikely(state->link.head))
2343 		io_queue_sqe_fallback(state->link.head);
2344 	/* flush only after queuing links as they can generate completions */
2345 	io_submit_flush_completions(ctx);
2346 	if (state->plug_started)
2347 		blk_finish_plug(&state->plug);
2348 }
2349 
2350 /*
2351  * Start submission side cache.
2352  */
2353 static void io_submit_state_start(struct io_submit_state *state,
2354 				  unsigned int max_ios)
2355 {
2356 	state->plug_started = false;
2357 	state->need_plug = max_ios > 2;
2358 	state->submit_nr = max_ios;
2359 	/* set only head, no need to init link_last in advance */
2360 	state->link.head = NULL;
2361 }
2362 
2363 static void io_commit_sqring(struct io_ring_ctx *ctx)
2364 {
2365 	struct io_rings *rings = ctx->rings;
2366 
2367 	/*
2368 	 * Ensure any loads from the SQEs are done at this point,
2369 	 * since once we write the new head, the application could
2370 	 * write new data to them.
2371 	 */
2372 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2373 }
2374 
2375 /*
2376  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2377  * that is mapped by userspace. This means that care needs to be taken to
2378  * ensure that reads are stable, as we cannot rely on userspace always
2379  * being a good citizen. If members of the sqe are validated and then later
2380  * used, it's important that those reads are done through READ_ONCE() to
2381  * prevent a re-load down the line.
2382  */
2383 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2384 {
2385 	unsigned mask = ctx->sq_entries - 1;
2386 	unsigned head = ctx->cached_sq_head++ & mask;
2387 
2388 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2389 		head = READ_ONCE(ctx->sq_array[head]);
2390 		if (unlikely(head >= ctx->sq_entries)) {
2391 			/* drop invalid entries */
2392 			spin_lock(&ctx->completion_lock);
2393 			ctx->cq_extra--;
2394 			spin_unlock(&ctx->completion_lock);
2395 			WRITE_ONCE(ctx->rings->sq_dropped,
2396 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2397 			return false;
2398 		}
2399 	}
2400 
2401 	/*
2402 	 * The cached sq head (or cq tail) serves two purposes:
2403 	 *
2404 	 * 1) allows us to batch the cost of updating the user visible
2405 	 *    head updates.
2406 	 * 2) allows the kernel side to track the head on its own, even
2407 	 *    though the application is the one updating it.
2408 	 */
2409 
2410 	/* double index for 128-byte SQEs, twice as long */
2411 	if (ctx->flags & IORING_SETUP_SQE128)
2412 		head <<= 1;
2413 	*sqe = &ctx->sq_sqes[head];
2414 	return true;
2415 }
2416 
2417 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2418 	__must_hold(&ctx->uring_lock)
2419 {
2420 	unsigned int entries = io_sqring_entries(ctx);
2421 	unsigned int left;
2422 	int ret;
2423 
2424 	if (unlikely(!entries))
2425 		return 0;
2426 	/* make sure SQ entry isn't read before tail */
2427 	ret = left = min(nr, entries);
2428 	io_get_task_refs(left);
2429 	io_submit_state_start(&ctx->submit_state, left);
2430 
2431 	do {
2432 		const struct io_uring_sqe *sqe;
2433 		struct io_kiocb *req;
2434 
2435 		if (unlikely(!io_alloc_req(ctx, &req)))
2436 			break;
2437 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2438 			io_req_add_to_cache(req, ctx);
2439 			break;
2440 		}
2441 
2442 		/*
2443 		 * Continue submitting even for sqe failure if the
2444 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2445 		 */
2446 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2447 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2448 			left--;
2449 			break;
2450 		}
2451 	} while (--left);
2452 
2453 	if (unlikely(left)) {
2454 		ret -= left;
2455 		/* try again if it submitted nothing and can't allocate a req */
2456 		if (!ret && io_req_cache_empty(ctx))
2457 			ret = -EAGAIN;
2458 		current->io_uring->cached_refs += left;
2459 	}
2460 
2461 	io_submit_state_end(ctx);
2462 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2463 	io_commit_sqring(ctx);
2464 	return ret;
2465 }
2466 
2467 struct io_wait_queue {
2468 	struct wait_queue_entry wq;
2469 	struct io_ring_ctx *ctx;
2470 	unsigned cq_tail;
2471 	unsigned nr_timeouts;
2472 	ktime_t timeout;
2473 };
2474 
2475 static inline bool io_has_work(struct io_ring_ctx *ctx)
2476 {
2477 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2478 	       !llist_empty(&ctx->work_llist);
2479 }
2480 
2481 static inline bool io_should_wake(struct io_wait_queue *iowq)
2482 {
2483 	struct io_ring_ctx *ctx = iowq->ctx;
2484 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2485 
2486 	/*
2487 	 * Wake up if we have enough events, or if a timeout occurred since we
2488 	 * started waiting. For timeouts, we always want to return to userspace,
2489 	 * regardless of event count.
2490 	 */
2491 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2492 }
2493 
2494 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2495 			    int wake_flags, void *key)
2496 {
2497 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2498 
2499 	/*
2500 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2501 	 * the task, and the next invocation will do it.
2502 	 */
2503 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2504 		return autoremove_wake_function(curr, mode, wake_flags, key);
2505 	return -1;
2506 }
2507 
2508 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2509 {
2510 	if (!llist_empty(&ctx->work_llist)) {
2511 		__set_current_state(TASK_RUNNING);
2512 		if (io_run_local_work(ctx) > 0)
2513 			return 0;
2514 	}
2515 	if (io_run_task_work() > 0)
2516 		return 0;
2517 	if (task_sigpending(current))
2518 		return -EINTR;
2519 	return 0;
2520 }
2521 
2522 static bool current_pending_io(void)
2523 {
2524 	struct io_uring_task *tctx = current->io_uring;
2525 
2526 	if (!tctx)
2527 		return false;
2528 	return percpu_counter_read_positive(&tctx->inflight);
2529 }
2530 
2531 /* when returns >0, the caller should retry */
2532 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2533 					  struct io_wait_queue *iowq)
2534 {
2535 	int io_wait, ret;
2536 
2537 	if (unlikely(READ_ONCE(ctx->check_cq)))
2538 		return 1;
2539 	if (unlikely(!llist_empty(&ctx->work_llist)))
2540 		return 1;
2541 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2542 		return 1;
2543 	if (unlikely(task_sigpending(current)))
2544 		return -EINTR;
2545 	if (unlikely(io_should_wake(iowq)))
2546 		return 0;
2547 
2548 	/*
2549 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2550 	 * can take into account that the task is waiting for IO - turns out
2551 	 * to be important for low QD IO.
2552 	 */
2553 	io_wait = current->in_iowait;
2554 	if (current_pending_io())
2555 		current->in_iowait = 1;
2556 	ret = 0;
2557 	if (iowq->timeout == KTIME_MAX)
2558 		schedule();
2559 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2560 		ret = -ETIME;
2561 	current->in_iowait = io_wait;
2562 	return ret;
2563 }
2564 
2565 /*
2566  * Wait until events become available, if we don't already have some. The
2567  * application must reap them itself, as they reside on the shared cq ring.
2568  */
2569 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2570 			  const sigset_t __user *sig, size_t sigsz,
2571 			  struct __kernel_timespec __user *uts)
2572 {
2573 	struct io_wait_queue iowq;
2574 	struct io_rings *rings = ctx->rings;
2575 	int ret;
2576 
2577 	if (!io_allowed_run_tw(ctx))
2578 		return -EEXIST;
2579 	if (!llist_empty(&ctx->work_llist))
2580 		io_run_local_work(ctx);
2581 	io_run_task_work();
2582 	io_cqring_overflow_flush(ctx);
2583 	/* if user messes with these they will just get an early return */
2584 	if (__io_cqring_events_user(ctx) >= min_events)
2585 		return 0;
2586 
2587 	if (sig) {
2588 #ifdef CONFIG_COMPAT
2589 		if (in_compat_syscall())
2590 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2591 						      sigsz);
2592 		else
2593 #endif
2594 			ret = set_user_sigmask(sig, sigsz);
2595 
2596 		if (ret)
2597 			return ret;
2598 	}
2599 
2600 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2601 	iowq.wq.private = current;
2602 	INIT_LIST_HEAD(&iowq.wq.entry);
2603 	iowq.ctx = ctx;
2604 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2605 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2606 	iowq.timeout = KTIME_MAX;
2607 
2608 	if (uts) {
2609 		struct timespec64 ts;
2610 
2611 		if (get_timespec64(&ts, uts))
2612 			return -EFAULT;
2613 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2614 	}
2615 
2616 	trace_io_uring_cqring_wait(ctx, min_events);
2617 	do {
2618 		unsigned long check_cq;
2619 
2620 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2621 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2622 
2623 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2624 			set_current_state(TASK_INTERRUPTIBLE);
2625 		} else {
2626 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2627 							TASK_INTERRUPTIBLE);
2628 		}
2629 
2630 		ret = io_cqring_wait_schedule(ctx, &iowq);
2631 		__set_current_state(TASK_RUNNING);
2632 		atomic_set(&ctx->cq_wait_nr, 0);
2633 
2634 		if (ret < 0)
2635 			break;
2636 		/*
2637 		 * Run task_work after scheduling and before io_should_wake().
2638 		 * If we got woken because of task_work being processed, run it
2639 		 * now rather than let the caller do another wait loop.
2640 		 */
2641 		io_run_task_work();
2642 		if (!llist_empty(&ctx->work_llist))
2643 			io_run_local_work(ctx);
2644 
2645 		check_cq = READ_ONCE(ctx->check_cq);
2646 		if (unlikely(check_cq)) {
2647 			/* let the caller flush overflows, retry */
2648 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2649 				io_cqring_do_overflow_flush(ctx);
2650 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2651 				ret = -EBADR;
2652 				break;
2653 			}
2654 		}
2655 
2656 		if (io_should_wake(&iowq)) {
2657 			ret = 0;
2658 			break;
2659 		}
2660 		cond_resched();
2661 	} while (1);
2662 
2663 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2664 		finish_wait(&ctx->cq_wait, &iowq.wq);
2665 	restore_saved_sigmask_unless(ret == -EINTR);
2666 
2667 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2668 }
2669 
2670 void io_mem_free(void *ptr)
2671 {
2672 	if (!ptr)
2673 		return;
2674 
2675 	folio_put(virt_to_folio(ptr));
2676 }
2677 
2678 static void io_pages_free(struct page ***pages, int npages)
2679 {
2680 	struct page **page_array;
2681 	int i;
2682 
2683 	if (!pages)
2684 		return;
2685 
2686 	page_array = *pages;
2687 	if (!page_array)
2688 		return;
2689 
2690 	for (i = 0; i < npages; i++)
2691 		unpin_user_page(page_array[i]);
2692 	kvfree(page_array);
2693 	*pages = NULL;
2694 }
2695 
2696 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2697 			    unsigned long uaddr, size_t size)
2698 {
2699 	struct page **page_array;
2700 	unsigned int nr_pages;
2701 	void *page_addr;
2702 	int ret, i;
2703 
2704 	*npages = 0;
2705 
2706 	if (uaddr & (PAGE_SIZE - 1) || !size)
2707 		return ERR_PTR(-EINVAL);
2708 
2709 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2710 	if (nr_pages > USHRT_MAX)
2711 		return ERR_PTR(-EINVAL);
2712 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2713 	if (!page_array)
2714 		return ERR_PTR(-ENOMEM);
2715 
2716 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2717 					page_array);
2718 	if (ret != nr_pages) {
2719 err:
2720 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2721 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2722 	}
2723 
2724 	page_addr = page_address(page_array[0]);
2725 	for (i = 0; i < nr_pages; i++) {
2726 		ret = -EINVAL;
2727 
2728 		/*
2729 		 * Can't support mapping user allocated ring memory on 32-bit
2730 		 * archs where it could potentially reside in highmem. Just
2731 		 * fail those with -EINVAL, just like we did on kernels that
2732 		 * didn't support this feature.
2733 		 */
2734 		if (PageHighMem(page_array[i]))
2735 			goto err;
2736 
2737 		/*
2738 		 * No support for discontig pages for now, should either be a
2739 		 * single normal page, or a huge page. Later on we can add
2740 		 * support for remapping discontig pages, for now we will
2741 		 * just fail them with EINVAL.
2742 		 */
2743 		if (page_address(page_array[i]) != page_addr)
2744 			goto err;
2745 		page_addr += PAGE_SIZE;
2746 	}
2747 
2748 	*pages = page_array;
2749 	*npages = nr_pages;
2750 	return page_to_virt(page_array[0]);
2751 }
2752 
2753 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2754 			  size_t size)
2755 {
2756 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2757 				size);
2758 }
2759 
2760 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2761 			 size_t size)
2762 {
2763 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2764 				size);
2765 }
2766 
2767 static void io_rings_free(struct io_ring_ctx *ctx)
2768 {
2769 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2770 		io_mem_free(ctx->rings);
2771 		io_mem_free(ctx->sq_sqes);
2772 		ctx->rings = NULL;
2773 		ctx->sq_sqes = NULL;
2774 	} else {
2775 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2776 		ctx->n_ring_pages = 0;
2777 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2778 		ctx->n_sqe_pages = 0;
2779 	}
2780 }
2781 
2782 void *io_mem_alloc(size_t size)
2783 {
2784 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2785 	void *ret;
2786 
2787 	ret = (void *) __get_free_pages(gfp, get_order(size));
2788 	if (ret)
2789 		return ret;
2790 	return ERR_PTR(-ENOMEM);
2791 }
2792 
2793 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2794 				unsigned int cq_entries, size_t *sq_offset)
2795 {
2796 	struct io_rings *rings;
2797 	size_t off, sq_array_size;
2798 
2799 	off = struct_size(rings, cqes, cq_entries);
2800 	if (off == SIZE_MAX)
2801 		return SIZE_MAX;
2802 	if (ctx->flags & IORING_SETUP_CQE32) {
2803 		if (check_shl_overflow(off, 1, &off))
2804 			return SIZE_MAX;
2805 	}
2806 
2807 #ifdef CONFIG_SMP
2808 	off = ALIGN(off, SMP_CACHE_BYTES);
2809 	if (off == 0)
2810 		return SIZE_MAX;
2811 #endif
2812 
2813 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2814 		if (sq_offset)
2815 			*sq_offset = SIZE_MAX;
2816 		return off;
2817 	}
2818 
2819 	if (sq_offset)
2820 		*sq_offset = off;
2821 
2822 	sq_array_size = array_size(sizeof(u32), sq_entries);
2823 	if (sq_array_size == SIZE_MAX)
2824 		return SIZE_MAX;
2825 
2826 	if (check_add_overflow(off, sq_array_size, &off))
2827 		return SIZE_MAX;
2828 
2829 	return off;
2830 }
2831 
2832 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2833 			       unsigned int eventfd_async)
2834 {
2835 	struct io_ev_fd *ev_fd;
2836 	__s32 __user *fds = arg;
2837 	int fd;
2838 
2839 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2840 					lockdep_is_held(&ctx->uring_lock));
2841 	if (ev_fd)
2842 		return -EBUSY;
2843 
2844 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2845 		return -EFAULT;
2846 
2847 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2848 	if (!ev_fd)
2849 		return -ENOMEM;
2850 
2851 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2852 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2853 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2854 		kfree(ev_fd);
2855 		return ret;
2856 	}
2857 
2858 	spin_lock(&ctx->completion_lock);
2859 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2860 	spin_unlock(&ctx->completion_lock);
2861 
2862 	ev_fd->eventfd_async = eventfd_async;
2863 	ctx->has_evfd = true;
2864 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2865 	atomic_set(&ev_fd->refs, 1);
2866 	atomic_set(&ev_fd->ops, 0);
2867 	return 0;
2868 }
2869 
2870 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2871 {
2872 	struct io_ev_fd *ev_fd;
2873 
2874 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2875 					lockdep_is_held(&ctx->uring_lock));
2876 	if (ev_fd) {
2877 		ctx->has_evfd = false;
2878 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2879 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2880 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2881 		return 0;
2882 	}
2883 
2884 	return -ENXIO;
2885 }
2886 
2887 static void io_req_caches_free(struct io_ring_ctx *ctx)
2888 {
2889 	struct io_kiocb *req;
2890 	int nr = 0;
2891 
2892 	mutex_lock(&ctx->uring_lock);
2893 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2894 
2895 	while (!io_req_cache_empty(ctx)) {
2896 		req = io_extract_req(ctx);
2897 		kmem_cache_free(req_cachep, req);
2898 		nr++;
2899 	}
2900 	if (nr)
2901 		percpu_ref_put_many(&ctx->refs, nr);
2902 	mutex_unlock(&ctx->uring_lock);
2903 }
2904 
2905 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2906 {
2907 	kfree(container_of(entry, struct io_rsrc_node, cache));
2908 }
2909 
2910 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2911 {
2912 	io_sq_thread_finish(ctx);
2913 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2914 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2915 		return;
2916 
2917 	mutex_lock(&ctx->uring_lock);
2918 	if (ctx->buf_data)
2919 		__io_sqe_buffers_unregister(ctx);
2920 	if (ctx->file_data)
2921 		__io_sqe_files_unregister(ctx);
2922 	io_cqring_overflow_kill(ctx);
2923 	io_eventfd_unregister(ctx);
2924 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2925 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2926 	io_futex_cache_free(ctx);
2927 	io_destroy_buffers(ctx);
2928 	mutex_unlock(&ctx->uring_lock);
2929 	if (ctx->sq_creds)
2930 		put_cred(ctx->sq_creds);
2931 	if (ctx->submitter_task)
2932 		put_task_struct(ctx->submitter_task);
2933 
2934 	/* there are no registered resources left, nobody uses it */
2935 	if (ctx->rsrc_node)
2936 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2937 
2938 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2939 
2940 #if defined(CONFIG_UNIX)
2941 	if (ctx->ring_sock) {
2942 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2943 		sock_release(ctx->ring_sock);
2944 	}
2945 #endif
2946 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2947 
2948 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2949 	if (ctx->mm_account) {
2950 		mmdrop(ctx->mm_account);
2951 		ctx->mm_account = NULL;
2952 	}
2953 	io_rings_free(ctx);
2954 	io_kbuf_mmap_list_free(ctx);
2955 
2956 	percpu_ref_exit(&ctx->refs);
2957 	free_uid(ctx->user);
2958 	io_req_caches_free(ctx);
2959 	if (ctx->hash_map)
2960 		io_wq_put_hash(ctx->hash_map);
2961 	kfree(ctx->cancel_table.hbs);
2962 	kfree(ctx->cancel_table_locked.hbs);
2963 	kfree(ctx->io_bl);
2964 	xa_destroy(&ctx->io_bl_xa);
2965 	kfree(ctx);
2966 }
2967 
2968 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2969 {
2970 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2971 					       poll_wq_task_work);
2972 
2973 	mutex_lock(&ctx->uring_lock);
2974 	ctx->poll_activated = true;
2975 	mutex_unlock(&ctx->uring_lock);
2976 
2977 	/*
2978 	 * Wake ups for some events between start of polling and activation
2979 	 * might've been lost due to loose synchronisation.
2980 	 */
2981 	wake_up_all(&ctx->poll_wq);
2982 	percpu_ref_put(&ctx->refs);
2983 }
2984 
2985 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2986 {
2987 	spin_lock(&ctx->completion_lock);
2988 	/* already activated or in progress */
2989 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2990 		goto out;
2991 	if (WARN_ON_ONCE(!ctx->task_complete))
2992 		goto out;
2993 	if (!ctx->submitter_task)
2994 		goto out;
2995 	/*
2996 	 * with ->submitter_task only the submitter task completes requests, we
2997 	 * only need to sync with it, which is done by injecting a tw
2998 	 */
2999 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
3000 	percpu_ref_get(&ctx->refs);
3001 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3002 		percpu_ref_put(&ctx->refs);
3003 out:
3004 	spin_unlock(&ctx->completion_lock);
3005 }
3006 
3007 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3008 {
3009 	struct io_ring_ctx *ctx = file->private_data;
3010 	__poll_t mask = 0;
3011 
3012 	if (unlikely(!ctx->poll_activated))
3013 		io_activate_pollwq(ctx);
3014 
3015 	poll_wait(file, &ctx->poll_wq, wait);
3016 	/*
3017 	 * synchronizes with barrier from wq_has_sleeper call in
3018 	 * io_commit_cqring
3019 	 */
3020 	smp_rmb();
3021 	if (!io_sqring_full(ctx))
3022 		mask |= EPOLLOUT | EPOLLWRNORM;
3023 
3024 	/*
3025 	 * Don't flush cqring overflow list here, just do a simple check.
3026 	 * Otherwise there could possible be ABBA deadlock:
3027 	 *      CPU0                    CPU1
3028 	 *      ----                    ----
3029 	 * lock(&ctx->uring_lock);
3030 	 *                              lock(&ep->mtx);
3031 	 *                              lock(&ctx->uring_lock);
3032 	 * lock(&ep->mtx);
3033 	 *
3034 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3035 	 * pushes them to do the flush.
3036 	 */
3037 
3038 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3039 		mask |= EPOLLIN | EPOLLRDNORM;
3040 
3041 	return mask;
3042 }
3043 
3044 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3045 {
3046 	const struct cred *creds;
3047 
3048 	creds = xa_erase(&ctx->personalities, id);
3049 	if (creds) {
3050 		put_cred(creds);
3051 		return 0;
3052 	}
3053 
3054 	return -EINVAL;
3055 }
3056 
3057 struct io_tctx_exit {
3058 	struct callback_head		task_work;
3059 	struct completion		completion;
3060 	struct io_ring_ctx		*ctx;
3061 };
3062 
3063 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3064 {
3065 	struct io_uring_task *tctx = current->io_uring;
3066 	struct io_tctx_exit *work;
3067 
3068 	work = container_of(cb, struct io_tctx_exit, task_work);
3069 	/*
3070 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3071 	 * node. It'll be removed by the end of cancellation, just ignore it.
3072 	 * tctx can be NULL if the queueing of this task_work raced with
3073 	 * work cancelation off the exec path.
3074 	 */
3075 	if (tctx && !atomic_read(&tctx->in_cancel))
3076 		io_uring_del_tctx_node((unsigned long)work->ctx);
3077 	complete(&work->completion);
3078 }
3079 
3080 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3081 {
3082 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3083 
3084 	return req->ctx == data;
3085 }
3086 
3087 static __cold void io_ring_exit_work(struct work_struct *work)
3088 {
3089 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3090 	unsigned long timeout = jiffies + HZ * 60 * 5;
3091 	unsigned long interval = HZ / 20;
3092 	struct io_tctx_exit exit;
3093 	struct io_tctx_node *node;
3094 	int ret;
3095 
3096 	/*
3097 	 * If we're doing polled IO and end up having requests being
3098 	 * submitted async (out-of-line), then completions can come in while
3099 	 * we're waiting for refs to drop. We need to reap these manually,
3100 	 * as nobody else will be looking for them.
3101 	 */
3102 	do {
3103 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3104 			mutex_lock(&ctx->uring_lock);
3105 			io_cqring_overflow_kill(ctx);
3106 			mutex_unlock(&ctx->uring_lock);
3107 		}
3108 
3109 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3110 			io_move_task_work_from_local(ctx);
3111 
3112 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3113 			cond_resched();
3114 
3115 		if (ctx->sq_data) {
3116 			struct io_sq_data *sqd = ctx->sq_data;
3117 			struct task_struct *tsk;
3118 
3119 			io_sq_thread_park(sqd);
3120 			tsk = sqd->thread;
3121 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3122 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3123 						io_cancel_ctx_cb, ctx, true);
3124 			io_sq_thread_unpark(sqd);
3125 		}
3126 
3127 		io_req_caches_free(ctx);
3128 
3129 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3130 			/* there is little hope left, don't run it too often */
3131 			interval = HZ * 60;
3132 		}
3133 		/*
3134 		 * This is really an uninterruptible wait, as it has to be
3135 		 * complete. But it's also run from a kworker, which doesn't
3136 		 * take signals, so it's fine to make it interruptible. This
3137 		 * avoids scenarios where we knowingly can wait much longer
3138 		 * on completions, for example if someone does a SIGSTOP on
3139 		 * a task that needs to finish task_work to make this loop
3140 		 * complete. That's a synthetic situation that should not
3141 		 * cause a stuck task backtrace, and hence a potential panic
3142 		 * on stuck tasks if that is enabled.
3143 		 */
3144 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3145 
3146 	init_completion(&exit.completion);
3147 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3148 	exit.ctx = ctx;
3149 	/*
3150 	 * Some may use context even when all refs and requests have been put,
3151 	 * and they are free to do so while still holding uring_lock or
3152 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3153 	 * this lock/unlock section also waits them to finish.
3154 	 */
3155 	mutex_lock(&ctx->uring_lock);
3156 	while (!list_empty(&ctx->tctx_list)) {
3157 		WARN_ON_ONCE(time_after(jiffies, timeout));
3158 
3159 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3160 					ctx_node);
3161 		/* don't spin on a single task if cancellation failed */
3162 		list_rotate_left(&ctx->tctx_list);
3163 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3164 		if (WARN_ON_ONCE(ret))
3165 			continue;
3166 
3167 		mutex_unlock(&ctx->uring_lock);
3168 		/*
3169 		 * See comment above for
3170 		 * wait_for_completion_interruptible_timeout() on why this
3171 		 * wait is marked as interruptible.
3172 		 */
3173 		wait_for_completion_interruptible(&exit.completion);
3174 		mutex_lock(&ctx->uring_lock);
3175 	}
3176 	mutex_unlock(&ctx->uring_lock);
3177 	spin_lock(&ctx->completion_lock);
3178 	spin_unlock(&ctx->completion_lock);
3179 
3180 	/* pairs with RCU read section in io_req_local_work_add() */
3181 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3182 		synchronize_rcu();
3183 
3184 	io_ring_ctx_free(ctx);
3185 }
3186 
3187 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3188 {
3189 	unsigned long index;
3190 	struct creds *creds;
3191 
3192 	mutex_lock(&ctx->uring_lock);
3193 	percpu_ref_kill(&ctx->refs);
3194 	xa_for_each(&ctx->personalities, index, creds)
3195 		io_unregister_personality(ctx, index);
3196 	if (ctx->rings)
3197 		io_poll_remove_all(ctx, NULL, true);
3198 	mutex_unlock(&ctx->uring_lock);
3199 
3200 	/*
3201 	 * If we failed setting up the ctx, we might not have any rings
3202 	 * and therefore did not submit any requests
3203 	 */
3204 	if (ctx->rings)
3205 		io_kill_timeouts(ctx, NULL, true);
3206 
3207 	flush_delayed_work(&ctx->fallback_work);
3208 
3209 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3210 	/*
3211 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3212 	 * if we're exiting a ton of rings at the same time. It just adds
3213 	 * noise and overhead, there's no discernable change in runtime
3214 	 * over using system_wq.
3215 	 */
3216 	queue_work(system_unbound_wq, &ctx->exit_work);
3217 }
3218 
3219 static int io_uring_release(struct inode *inode, struct file *file)
3220 {
3221 	struct io_ring_ctx *ctx = file->private_data;
3222 
3223 	file->private_data = NULL;
3224 	io_ring_ctx_wait_and_kill(ctx);
3225 	return 0;
3226 }
3227 
3228 struct io_task_cancel {
3229 	struct task_struct *task;
3230 	bool all;
3231 };
3232 
3233 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3234 {
3235 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3236 	struct io_task_cancel *cancel = data;
3237 
3238 	return io_match_task_safe(req, cancel->task, cancel->all);
3239 }
3240 
3241 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3242 					 struct task_struct *task,
3243 					 bool cancel_all)
3244 {
3245 	struct io_defer_entry *de;
3246 	LIST_HEAD(list);
3247 
3248 	spin_lock(&ctx->completion_lock);
3249 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3250 		if (io_match_task_safe(de->req, task, cancel_all)) {
3251 			list_cut_position(&list, &ctx->defer_list, &de->list);
3252 			break;
3253 		}
3254 	}
3255 	spin_unlock(&ctx->completion_lock);
3256 	if (list_empty(&list))
3257 		return false;
3258 
3259 	while (!list_empty(&list)) {
3260 		de = list_first_entry(&list, struct io_defer_entry, list);
3261 		list_del_init(&de->list);
3262 		io_req_task_queue_fail(de->req, -ECANCELED);
3263 		kfree(de);
3264 	}
3265 	return true;
3266 }
3267 
3268 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3269 {
3270 	struct io_tctx_node *node;
3271 	enum io_wq_cancel cret;
3272 	bool ret = false;
3273 
3274 	mutex_lock(&ctx->uring_lock);
3275 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3276 		struct io_uring_task *tctx = node->task->io_uring;
3277 
3278 		/*
3279 		 * io_wq will stay alive while we hold uring_lock, because it's
3280 		 * killed after ctx nodes, which requires to take the lock.
3281 		 */
3282 		if (!tctx || !tctx->io_wq)
3283 			continue;
3284 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3285 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3286 	}
3287 	mutex_unlock(&ctx->uring_lock);
3288 
3289 	return ret;
3290 }
3291 
3292 static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx,
3293 		struct task_struct *task, bool cancel_all)
3294 {
3295 	struct hlist_node *tmp;
3296 	struct io_kiocb *req;
3297 	bool ret = false;
3298 
3299 	lockdep_assert_held(&ctx->uring_lock);
3300 
3301 	hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd,
3302 			hash_node) {
3303 		struct io_uring_cmd *cmd = io_kiocb_to_cmd(req,
3304 				struct io_uring_cmd);
3305 		struct file *file = req->file;
3306 
3307 		if (!cancel_all && req->task != task)
3308 			continue;
3309 
3310 		if (cmd->flags & IORING_URING_CMD_CANCELABLE) {
3311 			/* ->sqe isn't available if no async data */
3312 			if (!req_has_async_data(req))
3313 				cmd->sqe = NULL;
3314 			file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL);
3315 			ret = true;
3316 		}
3317 	}
3318 	io_submit_flush_completions(ctx);
3319 
3320 	return ret;
3321 }
3322 
3323 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3324 						struct task_struct *task,
3325 						bool cancel_all)
3326 {
3327 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3328 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3329 	enum io_wq_cancel cret;
3330 	bool ret = false;
3331 
3332 	/* set it so io_req_local_work_add() would wake us up */
3333 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3334 		atomic_set(&ctx->cq_wait_nr, 1);
3335 		smp_mb();
3336 	}
3337 
3338 	/* failed during ring init, it couldn't have issued any requests */
3339 	if (!ctx->rings)
3340 		return false;
3341 
3342 	if (!task) {
3343 		ret |= io_uring_try_cancel_iowq(ctx);
3344 	} else if (tctx && tctx->io_wq) {
3345 		/*
3346 		 * Cancels requests of all rings, not only @ctx, but
3347 		 * it's fine as the task is in exit/exec.
3348 		 */
3349 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3350 				       &cancel, true);
3351 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3352 	}
3353 
3354 	/* SQPOLL thread does its own polling */
3355 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3356 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3357 		while (!wq_list_empty(&ctx->iopoll_list)) {
3358 			io_iopoll_try_reap_events(ctx);
3359 			ret = true;
3360 			cond_resched();
3361 		}
3362 	}
3363 
3364 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3365 	    io_allowed_defer_tw_run(ctx))
3366 		ret |= io_run_local_work(ctx) > 0;
3367 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3368 	mutex_lock(&ctx->uring_lock);
3369 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3370 	ret |= io_waitid_remove_all(ctx, task, cancel_all);
3371 	ret |= io_futex_remove_all(ctx, task, cancel_all);
3372 	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3373 	mutex_unlock(&ctx->uring_lock);
3374 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3375 	if (task)
3376 		ret |= io_run_task_work() > 0;
3377 	return ret;
3378 }
3379 
3380 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3381 {
3382 	if (tracked)
3383 		return atomic_read(&tctx->inflight_tracked);
3384 	return percpu_counter_sum(&tctx->inflight);
3385 }
3386 
3387 /*
3388  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3389  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3390  */
3391 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3392 {
3393 	struct io_uring_task *tctx = current->io_uring;
3394 	struct io_ring_ctx *ctx;
3395 	struct io_tctx_node *node;
3396 	unsigned long index;
3397 	s64 inflight;
3398 	DEFINE_WAIT(wait);
3399 
3400 	WARN_ON_ONCE(sqd && sqd->thread != current);
3401 
3402 	if (!current->io_uring)
3403 		return;
3404 	if (tctx->io_wq)
3405 		io_wq_exit_start(tctx->io_wq);
3406 
3407 	atomic_inc(&tctx->in_cancel);
3408 	do {
3409 		bool loop = false;
3410 
3411 		io_uring_drop_tctx_refs(current);
3412 		/* read completions before cancelations */
3413 		inflight = tctx_inflight(tctx, !cancel_all);
3414 		if (!inflight)
3415 			break;
3416 
3417 		if (!sqd) {
3418 			xa_for_each(&tctx->xa, index, node) {
3419 				/* sqpoll task will cancel all its requests */
3420 				if (node->ctx->sq_data)
3421 					continue;
3422 				loop |= io_uring_try_cancel_requests(node->ctx,
3423 							current, cancel_all);
3424 			}
3425 		} else {
3426 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3427 				loop |= io_uring_try_cancel_requests(ctx,
3428 								     current,
3429 								     cancel_all);
3430 		}
3431 
3432 		if (loop) {
3433 			cond_resched();
3434 			continue;
3435 		}
3436 
3437 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3438 		io_run_task_work();
3439 		io_uring_drop_tctx_refs(current);
3440 		xa_for_each(&tctx->xa, index, node) {
3441 			if (!llist_empty(&node->ctx->work_llist)) {
3442 				WARN_ON_ONCE(node->ctx->submitter_task &&
3443 					     node->ctx->submitter_task != current);
3444 				goto end_wait;
3445 			}
3446 		}
3447 		/*
3448 		 * If we've seen completions, retry without waiting. This
3449 		 * avoids a race where a completion comes in before we did
3450 		 * prepare_to_wait().
3451 		 */
3452 		if (inflight == tctx_inflight(tctx, !cancel_all))
3453 			schedule();
3454 end_wait:
3455 		finish_wait(&tctx->wait, &wait);
3456 	} while (1);
3457 
3458 	io_uring_clean_tctx(tctx);
3459 	if (cancel_all) {
3460 		/*
3461 		 * We shouldn't run task_works after cancel, so just leave
3462 		 * ->in_cancel set for normal exit.
3463 		 */
3464 		atomic_dec(&tctx->in_cancel);
3465 		/* for exec all current's requests should be gone, kill tctx */
3466 		__io_uring_free(current);
3467 	}
3468 }
3469 
3470 void __io_uring_cancel(bool cancel_all)
3471 {
3472 	io_uring_cancel_generic(cancel_all, NULL);
3473 }
3474 
3475 static void *io_uring_validate_mmap_request(struct file *file,
3476 					    loff_t pgoff, size_t sz)
3477 {
3478 	struct io_ring_ctx *ctx = file->private_data;
3479 	loff_t offset = pgoff << PAGE_SHIFT;
3480 	struct page *page;
3481 	void *ptr;
3482 
3483 	switch (offset & IORING_OFF_MMAP_MASK) {
3484 	case IORING_OFF_SQ_RING:
3485 	case IORING_OFF_CQ_RING:
3486 		/* Don't allow mmap if the ring was setup without it */
3487 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3488 			return ERR_PTR(-EINVAL);
3489 		ptr = ctx->rings;
3490 		break;
3491 	case IORING_OFF_SQES:
3492 		/* Don't allow mmap if the ring was setup without it */
3493 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3494 			return ERR_PTR(-EINVAL);
3495 		ptr = ctx->sq_sqes;
3496 		break;
3497 	case IORING_OFF_PBUF_RING: {
3498 		unsigned int bgid;
3499 
3500 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3501 		rcu_read_lock();
3502 		ptr = io_pbuf_get_address(ctx, bgid);
3503 		rcu_read_unlock();
3504 		if (!ptr)
3505 			return ERR_PTR(-EINVAL);
3506 		break;
3507 		}
3508 	default:
3509 		return ERR_PTR(-EINVAL);
3510 	}
3511 
3512 	page = virt_to_head_page(ptr);
3513 	if (sz > page_size(page))
3514 		return ERR_PTR(-EINVAL);
3515 
3516 	return ptr;
3517 }
3518 
3519 #ifdef CONFIG_MMU
3520 
3521 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3522 {
3523 	size_t sz = vma->vm_end - vma->vm_start;
3524 	unsigned long pfn;
3525 	void *ptr;
3526 
3527 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3528 	if (IS_ERR(ptr))
3529 		return PTR_ERR(ptr);
3530 
3531 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3532 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3533 }
3534 
3535 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3536 			unsigned long addr, unsigned long len,
3537 			unsigned long pgoff, unsigned long flags)
3538 {
3539 	void *ptr;
3540 
3541 	/*
3542 	 * Do not allow to map to user-provided address to avoid breaking the
3543 	 * aliasing rules. Userspace is not able to guess the offset address of
3544 	 * kernel kmalloc()ed memory area.
3545 	 */
3546 	if (addr)
3547 		return -EINVAL;
3548 
3549 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3550 	if (IS_ERR(ptr))
3551 		return -ENOMEM;
3552 
3553 	/*
3554 	 * Some architectures have strong cache aliasing requirements.
3555 	 * For such architectures we need a coherent mapping which aliases
3556 	 * kernel memory *and* userspace memory. To achieve that:
3557 	 * - use a NULL file pointer to reference physical memory, and
3558 	 * - use the kernel virtual address of the shared io_uring context
3559 	 *   (instead of the userspace-provided address, which has to be 0UL
3560 	 *   anyway).
3561 	 * - use the same pgoff which the get_unmapped_area() uses to
3562 	 *   calculate the page colouring.
3563 	 * For architectures without such aliasing requirements, the
3564 	 * architecture will return any suitable mapping because addr is 0.
3565 	 */
3566 	filp = NULL;
3567 	flags |= MAP_SHARED;
3568 	pgoff = 0;	/* has been translated to ptr above */
3569 #ifdef SHM_COLOUR
3570 	addr = (uintptr_t) ptr;
3571 	pgoff = addr >> PAGE_SHIFT;
3572 #else
3573 	addr = 0UL;
3574 #endif
3575 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3576 }
3577 
3578 #else /* !CONFIG_MMU */
3579 
3580 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3581 {
3582 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3583 }
3584 
3585 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3586 {
3587 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3588 }
3589 
3590 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3591 	unsigned long addr, unsigned long len,
3592 	unsigned long pgoff, unsigned long flags)
3593 {
3594 	void *ptr;
3595 
3596 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3597 	if (IS_ERR(ptr))
3598 		return PTR_ERR(ptr);
3599 
3600 	return (unsigned long) ptr;
3601 }
3602 
3603 #endif /* !CONFIG_MMU */
3604 
3605 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3606 {
3607 	if (flags & IORING_ENTER_EXT_ARG) {
3608 		struct io_uring_getevents_arg arg;
3609 
3610 		if (argsz != sizeof(arg))
3611 			return -EINVAL;
3612 		if (copy_from_user(&arg, argp, sizeof(arg)))
3613 			return -EFAULT;
3614 	}
3615 	return 0;
3616 }
3617 
3618 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3619 			  struct __kernel_timespec __user **ts,
3620 			  const sigset_t __user **sig)
3621 {
3622 	struct io_uring_getevents_arg arg;
3623 
3624 	/*
3625 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3626 	 * is just a pointer to the sigset_t.
3627 	 */
3628 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3629 		*sig = (const sigset_t __user *) argp;
3630 		*ts = NULL;
3631 		return 0;
3632 	}
3633 
3634 	/*
3635 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3636 	 * timespec and sigset_t pointers if good.
3637 	 */
3638 	if (*argsz != sizeof(arg))
3639 		return -EINVAL;
3640 	if (copy_from_user(&arg, argp, sizeof(arg)))
3641 		return -EFAULT;
3642 	if (arg.pad)
3643 		return -EINVAL;
3644 	*sig = u64_to_user_ptr(arg.sigmask);
3645 	*argsz = arg.sigmask_sz;
3646 	*ts = u64_to_user_ptr(arg.ts);
3647 	return 0;
3648 }
3649 
3650 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3651 		u32, min_complete, u32, flags, const void __user *, argp,
3652 		size_t, argsz)
3653 {
3654 	struct io_ring_ctx *ctx;
3655 	struct file *file;
3656 	long ret;
3657 
3658 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3659 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3660 			       IORING_ENTER_REGISTERED_RING)))
3661 		return -EINVAL;
3662 
3663 	/*
3664 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3665 	 * need only dereference our task private array to find it.
3666 	 */
3667 	if (flags & IORING_ENTER_REGISTERED_RING) {
3668 		struct io_uring_task *tctx = current->io_uring;
3669 
3670 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3671 			return -EINVAL;
3672 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3673 		file = tctx->registered_rings[fd];
3674 		if (unlikely(!file))
3675 			return -EBADF;
3676 	} else {
3677 		file = fget(fd);
3678 		if (unlikely(!file))
3679 			return -EBADF;
3680 		ret = -EOPNOTSUPP;
3681 		if (unlikely(!io_is_uring_fops(file)))
3682 			goto out;
3683 	}
3684 
3685 	ctx = file->private_data;
3686 	ret = -EBADFD;
3687 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3688 		goto out;
3689 
3690 	/*
3691 	 * For SQ polling, the thread will do all submissions and completions.
3692 	 * Just return the requested submit count, and wake the thread if
3693 	 * we were asked to.
3694 	 */
3695 	ret = 0;
3696 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3697 		io_cqring_overflow_flush(ctx);
3698 
3699 		if (unlikely(ctx->sq_data->thread == NULL)) {
3700 			ret = -EOWNERDEAD;
3701 			goto out;
3702 		}
3703 		if (flags & IORING_ENTER_SQ_WAKEUP)
3704 			wake_up(&ctx->sq_data->wait);
3705 		if (flags & IORING_ENTER_SQ_WAIT)
3706 			io_sqpoll_wait_sq(ctx);
3707 
3708 		ret = to_submit;
3709 	} else if (to_submit) {
3710 		ret = io_uring_add_tctx_node(ctx);
3711 		if (unlikely(ret))
3712 			goto out;
3713 
3714 		mutex_lock(&ctx->uring_lock);
3715 		ret = io_submit_sqes(ctx, to_submit);
3716 		if (ret != to_submit) {
3717 			mutex_unlock(&ctx->uring_lock);
3718 			goto out;
3719 		}
3720 		if (flags & IORING_ENTER_GETEVENTS) {
3721 			if (ctx->syscall_iopoll)
3722 				goto iopoll_locked;
3723 			/*
3724 			 * Ignore errors, we'll soon call io_cqring_wait() and
3725 			 * it should handle ownership problems if any.
3726 			 */
3727 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3728 				(void)io_run_local_work_locked(ctx);
3729 		}
3730 		mutex_unlock(&ctx->uring_lock);
3731 	}
3732 
3733 	if (flags & IORING_ENTER_GETEVENTS) {
3734 		int ret2;
3735 
3736 		if (ctx->syscall_iopoll) {
3737 			/*
3738 			 * We disallow the app entering submit/complete with
3739 			 * polling, but we still need to lock the ring to
3740 			 * prevent racing with polled issue that got punted to
3741 			 * a workqueue.
3742 			 */
3743 			mutex_lock(&ctx->uring_lock);
3744 iopoll_locked:
3745 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3746 			if (likely(!ret2)) {
3747 				min_complete = min(min_complete,
3748 						   ctx->cq_entries);
3749 				ret2 = io_iopoll_check(ctx, min_complete);
3750 			}
3751 			mutex_unlock(&ctx->uring_lock);
3752 		} else {
3753 			const sigset_t __user *sig;
3754 			struct __kernel_timespec __user *ts;
3755 
3756 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3757 			if (likely(!ret2)) {
3758 				min_complete = min(min_complete,
3759 						   ctx->cq_entries);
3760 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3761 						      argsz, ts);
3762 			}
3763 		}
3764 
3765 		if (!ret) {
3766 			ret = ret2;
3767 
3768 			/*
3769 			 * EBADR indicates that one or more CQE were dropped.
3770 			 * Once the user has been informed we can clear the bit
3771 			 * as they are obviously ok with those drops.
3772 			 */
3773 			if (unlikely(ret2 == -EBADR))
3774 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3775 					  &ctx->check_cq);
3776 		}
3777 	}
3778 out:
3779 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3780 		fput(file);
3781 	return ret;
3782 }
3783 
3784 static const struct file_operations io_uring_fops = {
3785 	.release	= io_uring_release,
3786 	.mmap		= io_uring_mmap,
3787 #ifndef CONFIG_MMU
3788 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3789 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3790 #else
3791 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3792 #endif
3793 	.poll		= io_uring_poll,
3794 #ifdef CONFIG_PROC_FS
3795 	.show_fdinfo	= io_uring_show_fdinfo,
3796 #endif
3797 };
3798 
3799 bool io_is_uring_fops(struct file *file)
3800 {
3801 	return file->f_op == &io_uring_fops;
3802 }
3803 
3804 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3805 					 struct io_uring_params *p)
3806 {
3807 	struct io_rings *rings;
3808 	size_t size, sq_array_offset;
3809 	void *ptr;
3810 
3811 	/* make sure these are sane, as we already accounted them */
3812 	ctx->sq_entries = p->sq_entries;
3813 	ctx->cq_entries = p->cq_entries;
3814 
3815 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3816 	if (size == SIZE_MAX)
3817 		return -EOVERFLOW;
3818 
3819 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3820 		rings = io_mem_alloc(size);
3821 	else
3822 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3823 
3824 	if (IS_ERR(rings))
3825 		return PTR_ERR(rings);
3826 
3827 	ctx->rings = rings;
3828 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3829 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3830 	rings->sq_ring_mask = p->sq_entries - 1;
3831 	rings->cq_ring_mask = p->cq_entries - 1;
3832 	rings->sq_ring_entries = p->sq_entries;
3833 	rings->cq_ring_entries = p->cq_entries;
3834 
3835 	if (p->flags & IORING_SETUP_SQE128)
3836 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3837 	else
3838 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3839 	if (size == SIZE_MAX) {
3840 		io_rings_free(ctx);
3841 		return -EOVERFLOW;
3842 	}
3843 
3844 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3845 		ptr = io_mem_alloc(size);
3846 	else
3847 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3848 
3849 	if (IS_ERR(ptr)) {
3850 		io_rings_free(ctx);
3851 		return PTR_ERR(ptr);
3852 	}
3853 
3854 	ctx->sq_sqes = ptr;
3855 	return 0;
3856 }
3857 
3858 static int io_uring_install_fd(struct file *file)
3859 {
3860 	int fd;
3861 
3862 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3863 	if (fd < 0)
3864 		return fd;
3865 	fd_install(fd, file);
3866 	return fd;
3867 }
3868 
3869 /*
3870  * Allocate an anonymous fd, this is what constitutes the application
3871  * visible backing of an io_uring instance. The application mmaps this
3872  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3873  * we have to tie this fd to a socket for file garbage collection purposes.
3874  */
3875 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3876 {
3877 	struct file *file;
3878 #if defined(CONFIG_UNIX)
3879 	int ret;
3880 
3881 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3882 				&ctx->ring_sock);
3883 	if (ret)
3884 		return ERR_PTR(ret);
3885 #endif
3886 
3887 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3888 					 O_RDWR | O_CLOEXEC, NULL);
3889 #if defined(CONFIG_UNIX)
3890 	if (IS_ERR(file)) {
3891 		sock_release(ctx->ring_sock);
3892 		ctx->ring_sock = NULL;
3893 	} else {
3894 		ctx->ring_sock->file = file;
3895 	}
3896 #endif
3897 	return file;
3898 }
3899 
3900 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3901 				  struct io_uring_params __user *params)
3902 {
3903 	struct io_ring_ctx *ctx;
3904 	struct io_uring_task *tctx;
3905 	struct file *file;
3906 	int ret;
3907 
3908 	if (!entries)
3909 		return -EINVAL;
3910 	if (entries > IORING_MAX_ENTRIES) {
3911 		if (!(p->flags & IORING_SETUP_CLAMP))
3912 			return -EINVAL;
3913 		entries = IORING_MAX_ENTRIES;
3914 	}
3915 
3916 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3917 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3918 		return -EINVAL;
3919 
3920 	/*
3921 	 * Use twice as many entries for the CQ ring. It's possible for the
3922 	 * application to drive a higher depth than the size of the SQ ring,
3923 	 * since the sqes are only used at submission time. This allows for
3924 	 * some flexibility in overcommitting a bit. If the application has
3925 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3926 	 * of CQ ring entries manually.
3927 	 */
3928 	p->sq_entries = roundup_pow_of_two(entries);
3929 	if (p->flags & IORING_SETUP_CQSIZE) {
3930 		/*
3931 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3932 		 * to a power-of-two, if it isn't already. We do NOT impose
3933 		 * any cq vs sq ring sizing.
3934 		 */
3935 		if (!p->cq_entries)
3936 			return -EINVAL;
3937 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3938 			if (!(p->flags & IORING_SETUP_CLAMP))
3939 				return -EINVAL;
3940 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3941 		}
3942 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3943 		if (p->cq_entries < p->sq_entries)
3944 			return -EINVAL;
3945 	} else {
3946 		p->cq_entries = 2 * p->sq_entries;
3947 	}
3948 
3949 	ctx = io_ring_ctx_alloc(p);
3950 	if (!ctx)
3951 		return -ENOMEM;
3952 
3953 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3954 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3955 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3956 		ctx->task_complete = true;
3957 
3958 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3959 		ctx->lockless_cq = true;
3960 
3961 	/*
3962 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3963 	 * purposes, see io_activate_pollwq()
3964 	 */
3965 	if (!ctx->task_complete)
3966 		ctx->poll_activated = true;
3967 
3968 	/*
3969 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3970 	 * space applications don't need to do io completion events
3971 	 * polling again, they can rely on io_sq_thread to do polling
3972 	 * work, which can reduce cpu usage and uring_lock contention.
3973 	 */
3974 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3975 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3976 		ctx->syscall_iopoll = 1;
3977 
3978 	ctx->compat = in_compat_syscall();
3979 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3980 		ctx->user = get_uid(current_user());
3981 
3982 	/*
3983 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3984 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3985 	 */
3986 	ret = -EINVAL;
3987 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3988 		/* IPI related flags don't make sense with SQPOLL */
3989 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3990 				  IORING_SETUP_TASKRUN_FLAG |
3991 				  IORING_SETUP_DEFER_TASKRUN))
3992 			goto err;
3993 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3994 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3995 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3996 	} else {
3997 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3998 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3999 			goto err;
4000 		ctx->notify_method = TWA_SIGNAL;
4001 	}
4002 
4003 	/*
4004 	 * For DEFER_TASKRUN we require the completion task to be the same as the
4005 	 * submission task. This implies that there is only one submitter, so enforce
4006 	 * that.
4007 	 */
4008 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
4009 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
4010 		goto err;
4011 	}
4012 
4013 	/*
4014 	 * This is just grabbed for accounting purposes. When a process exits,
4015 	 * the mm is exited and dropped before the files, hence we need to hang
4016 	 * on to this mm purely for the purposes of being able to unaccount
4017 	 * memory (locked/pinned vm). It's not used for anything else.
4018 	 */
4019 	mmgrab(current->mm);
4020 	ctx->mm_account = current->mm;
4021 
4022 	ret = io_allocate_scq_urings(ctx, p);
4023 	if (ret)
4024 		goto err;
4025 
4026 	ret = io_sq_offload_create(ctx, p);
4027 	if (ret)
4028 		goto err;
4029 
4030 	ret = io_rsrc_init(ctx);
4031 	if (ret)
4032 		goto err;
4033 
4034 	p->sq_off.head = offsetof(struct io_rings, sq.head);
4035 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
4036 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
4037 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
4038 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
4039 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
4040 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
4041 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4042 	p->sq_off.resv1 = 0;
4043 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4044 		p->sq_off.user_addr = 0;
4045 
4046 	p->cq_off.head = offsetof(struct io_rings, cq.head);
4047 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4048 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4049 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4050 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4051 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
4052 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4053 	p->cq_off.resv1 = 0;
4054 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4055 		p->cq_off.user_addr = 0;
4056 
4057 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4058 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4059 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4060 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4061 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4062 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4063 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4064 
4065 	if (copy_to_user(params, p, sizeof(*p))) {
4066 		ret = -EFAULT;
4067 		goto err;
4068 	}
4069 
4070 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4071 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4072 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4073 
4074 	file = io_uring_get_file(ctx);
4075 	if (IS_ERR(file)) {
4076 		ret = PTR_ERR(file);
4077 		goto err;
4078 	}
4079 
4080 	ret = __io_uring_add_tctx_node(ctx);
4081 	if (ret)
4082 		goto err_fput;
4083 	tctx = current->io_uring;
4084 
4085 	/*
4086 	 * Install ring fd as the very last thing, so we don't risk someone
4087 	 * having closed it before we finish setup
4088 	 */
4089 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4090 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4091 	else
4092 		ret = io_uring_install_fd(file);
4093 	if (ret < 0)
4094 		goto err_fput;
4095 
4096 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4097 	return ret;
4098 err:
4099 	io_ring_ctx_wait_and_kill(ctx);
4100 	return ret;
4101 err_fput:
4102 	fput(file);
4103 	return ret;
4104 }
4105 
4106 /*
4107  * Sets up an aio uring context, and returns the fd. Applications asks for a
4108  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4109  * params structure passed in.
4110  */
4111 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4112 {
4113 	struct io_uring_params p;
4114 	int i;
4115 
4116 	if (copy_from_user(&p, params, sizeof(p)))
4117 		return -EFAULT;
4118 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4119 		if (p.resv[i])
4120 			return -EINVAL;
4121 	}
4122 
4123 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4124 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4125 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4126 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4127 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4128 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4129 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4130 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4131 			IORING_SETUP_NO_SQARRAY))
4132 		return -EINVAL;
4133 
4134 	return io_uring_create(entries, &p, params);
4135 }
4136 
4137 static inline bool io_uring_allowed(void)
4138 {
4139 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4140 	kgid_t io_uring_group;
4141 
4142 	if (disabled == 2)
4143 		return false;
4144 
4145 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4146 		return true;
4147 
4148 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4149 	if (!gid_valid(io_uring_group))
4150 		return false;
4151 
4152 	return in_group_p(io_uring_group);
4153 }
4154 
4155 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4156 		struct io_uring_params __user *, params)
4157 {
4158 	if (!io_uring_allowed())
4159 		return -EPERM;
4160 
4161 	return io_uring_setup(entries, params);
4162 }
4163 
4164 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4165 			   unsigned nr_args)
4166 {
4167 	struct io_uring_probe *p;
4168 	size_t size;
4169 	int i, ret;
4170 
4171 	size = struct_size(p, ops, nr_args);
4172 	if (size == SIZE_MAX)
4173 		return -EOVERFLOW;
4174 	p = kzalloc(size, GFP_KERNEL);
4175 	if (!p)
4176 		return -ENOMEM;
4177 
4178 	ret = -EFAULT;
4179 	if (copy_from_user(p, arg, size))
4180 		goto out;
4181 	ret = -EINVAL;
4182 	if (memchr_inv(p, 0, size))
4183 		goto out;
4184 
4185 	p->last_op = IORING_OP_LAST - 1;
4186 	if (nr_args > IORING_OP_LAST)
4187 		nr_args = IORING_OP_LAST;
4188 
4189 	for (i = 0; i < nr_args; i++) {
4190 		p->ops[i].op = i;
4191 		if (!io_issue_defs[i].not_supported)
4192 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4193 	}
4194 	p->ops_len = i;
4195 
4196 	ret = 0;
4197 	if (copy_to_user(arg, p, size))
4198 		ret = -EFAULT;
4199 out:
4200 	kfree(p);
4201 	return ret;
4202 }
4203 
4204 static int io_register_personality(struct io_ring_ctx *ctx)
4205 {
4206 	const struct cred *creds;
4207 	u32 id;
4208 	int ret;
4209 
4210 	creds = get_current_cred();
4211 
4212 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4213 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4214 	if (ret < 0) {
4215 		put_cred(creds);
4216 		return ret;
4217 	}
4218 	return id;
4219 }
4220 
4221 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4222 					   void __user *arg, unsigned int nr_args)
4223 {
4224 	struct io_uring_restriction *res;
4225 	size_t size;
4226 	int i, ret;
4227 
4228 	/* Restrictions allowed only if rings started disabled */
4229 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4230 		return -EBADFD;
4231 
4232 	/* We allow only a single restrictions registration */
4233 	if (ctx->restrictions.registered)
4234 		return -EBUSY;
4235 
4236 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4237 		return -EINVAL;
4238 
4239 	size = array_size(nr_args, sizeof(*res));
4240 	if (size == SIZE_MAX)
4241 		return -EOVERFLOW;
4242 
4243 	res = memdup_user(arg, size);
4244 	if (IS_ERR(res))
4245 		return PTR_ERR(res);
4246 
4247 	ret = 0;
4248 
4249 	for (i = 0; i < nr_args; i++) {
4250 		switch (res[i].opcode) {
4251 		case IORING_RESTRICTION_REGISTER_OP:
4252 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4253 				ret = -EINVAL;
4254 				goto out;
4255 			}
4256 
4257 			__set_bit(res[i].register_op,
4258 				  ctx->restrictions.register_op);
4259 			break;
4260 		case IORING_RESTRICTION_SQE_OP:
4261 			if (res[i].sqe_op >= IORING_OP_LAST) {
4262 				ret = -EINVAL;
4263 				goto out;
4264 			}
4265 
4266 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4267 			break;
4268 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4269 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4270 			break;
4271 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4272 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4273 			break;
4274 		default:
4275 			ret = -EINVAL;
4276 			goto out;
4277 		}
4278 	}
4279 
4280 out:
4281 	/* Reset all restrictions if an error happened */
4282 	if (ret != 0)
4283 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4284 	else
4285 		ctx->restrictions.registered = true;
4286 
4287 	kfree(res);
4288 	return ret;
4289 }
4290 
4291 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4292 {
4293 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4294 		return -EBADFD;
4295 
4296 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4297 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4298 		/*
4299 		 * Lazy activation attempts would fail if it was polled before
4300 		 * submitter_task is set.
4301 		 */
4302 		if (wq_has_sleeper(&ctx->poll_wq))
4303 			io_activate_pollwq(ctx);
4304 	}
4305 
4306 	if (ctx->restrictions.registered)
4307 		ctx->restricted = 1;
4308 
4309 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4310 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4311 		wake_up(&ctx->sq_data->wait);
4312 	return 0;
4313 }
4314 
4315 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4316 					 cpumask_var_t new_mask)
4317 {
4318 	int ret;
4319 
4320 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4321 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4322 	} else {
4323 		mutex_unlock(&ctx->uring_lock);
4324 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4325 		mutex_lock(&ctx->uring_lock);
4326 	}
4327 
4328 	return ret;
4329 }
4330 
4331 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4332 				       void __user *arg, unsigned len)
4333 {
4334 	cpumask_var_t new_mask;
4335 	int ret;
4336 
4337 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4338 		return -ENOMEM;
4339 
4340 	cpumask_clear(new_mask);
4341 	if (len > cpumask_size())
4342 		len = cpumask_size();
4343 
4344 	if (in_compat_syscall()) {
4345 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4346 					(const compat_ulong_t __user *)arg,
4347 					len * 8 /* CHAR_BIT */);
4348 	} else {
4349 		ret = copy_from_user(new_mask, arg, len);
4350 	}
4351 
4352 	if (ret) {
4353 		free_cpumask_var(new_mask);
4354 		return -EFAULT;
4355 	}
4356 
4357 	ret = __io_register_iowq_aff(ctx, new_mask);
4358 	free_cpumask_var(new_mask);
4359 	return ret;
4360 }
4361 
4362 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4363 {
4364 	return __io_register_iowq_aff(ctx, NULL);
4365 }
4366 
4367 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4368 					       void __user *arg)
4369 	__must_hold(&ctx->uring_lock)
4370 {
4371 	struct io_tctx_node *node;
4372 	struct io_uring_task *tctx = NULL;
4373 	struct io_sq_data *sqd = NULL;
4374 	__u32 new_count[2];
4375 	int i, ret;
4376 
4377 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4378 		return -EFAULT;
4379 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4380 		if (new_count[i] > INT_MAX)
4381 			return -EINVAL;
4382 
4383 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4384 		sqd = ctx->sq_data;
4385 		if (sqd) {
4386 			/*
4387 			 * Observe the correct sqd->lock -> ctx->uring_lock
4388 			 * ordering. Fine to drop uring_lock here, we hold
4389 			 * a ref to the ctx.
4390 			 */
4391 			refcount_inc(&sqd->refs);
4392 			mutex_unlock(&ctx->uring_lock);
4393 			mutex_lock(&sqd->lock);
4394 			mutex_lock(&ctx->uring_lock);
4395 			if (sqd->thread)
4396 				tctx = sqd->thread->io_uring;
4397 		}
4398 	} else {
4399 		tctx = current->io_uring;
4400 	}
4401 
4402 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4403 
4404 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4405 		if (new_count[i])
4406 			ctx->iowq_limits[i] = new_count[i];
4407 	ctx->iowq_limits_set = true;
4408 
4409 	if (tctx && tctx->io_wq) {
4410 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4411 		if (ret)
4412 			goto err;
4413 	} else {
4414 		memset(new_count, 0, sizeof(new_count));
4415 	}
4416 
4417 	if (sqd) {
4418 		mutex_unlock(&sqd->lock);
4419 		io_put_sq_data(sqd);
4420 	}
4421 
4422 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4423 		return -EFAULT;
4424 
4425 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4426 	if (sqd)
4427 		return 0;
4428 
4429 	/* now propagate the restriction to all registered users */
4430 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4431 		struct io_uring_task *tctx = node->task->io_uring;
4432 
4433 		if (WARN_ON_ONCE(!tctx->io_wq))
4434 			continue;
4435 
4436 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4437 			new_count[i] = ctx->iowq_limits[i];
4438 		/* ignore errors, it always returns zero anyway */
4439 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4440 	}
4441 	return 0;
4442 err:
4443 	if (sqd) {
4444 		mutex_unlock(&sqd->lock);
4445 		io_put_sq_data(sqd);
4446 	}
4447 	return ret;
4448 }
4449 
4450 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4451 			       void __user *arg, unsigned nr_args)
4452 	__releases(ctx->uring_lock)
4453 	__acquires(ctx->uring_lock)
4454 {
4455 	int ret;
4456 
4457 	/*
4458 	 * We don't quiesce the refs for register anymore and so it can't be
4459 	 * dying as we're holding a file ref here.
4460 	 */
4461 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4462 		return -ENXIO;
4463 
4464 	if (ctx->submitter_task && ctx->submitter_task != current)
4465 		return -EEXIST;
4466 
4467 	if (ctx->restricted) {
4468 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4469 		if (!test_bit(opcode, ctx->restrictions.register_op))
4470 			return -EACCES;
4471 	}
4472 
4473 	switch (opcode) {
4474 	case IORING_REGISTER_BUFFERS:
4475 		ret = -EFAULT;
4476 		if (!arg)
4477 			break;
4478 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4479 		break;
4480 	case IORING_UNREGISTER_BUFFERS:
4481 		ret = -EINVAL;
4482 		if (arg || nr_args)
4483 			break;
4484 		ret = io_sqe_buffers_unregister(ctx);
4485 		break;
4486 	case IORING_REGISTER_FILES:
4487 		ret = -EFAULT;
4488 		if (!arg)
4489 			break;
4490 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4491 		break;
4492 	case IORING_UNREGISTER_FILES:
4493 		ret = -EINVAL;
4494 		if (arg || nr_args)
4495 			break;
4496 		ret = io_sqe_files_unregister(ctx);
4497 		break;
4498 	case IORING_REGISTER_FILES_UPDATE:
4499 		ret = io_register_files_update(ctx, arg, nr_args);
4500 		break;
4501 	case IORING_REGISTER_EVENTFD:
4502 		ret = -EINVAL;
4503 		if (nr_args != 1)
4504 			break;
4505 		ret = io_eventfd_register(ctx, arg, 0);
4506 		break;
4507 	case IORING_REGISTER_EVENTFD_ASYNC:
4508 		ret = -EINVAL;
4509 		if (nr_args != 1)
4510 			break;
4511 		ret = io_eventfd_register(ctx, arg, 1);
4512 		break;
4513 	case IORING_UNREGISTER_EVENTFD:
4514 		ret = -EINVAL;
4515 		if (arg || nr_args)
4516 			break;
4517 		ret = io_eventfd_unregister(ctx);
4518 		break;
4519 	case IORING_REGISTER_PROBE:
4520 		ret = -EINVAL;
4521 		if (!arg || nr_args > 256)
4522 			break;
4523 		ret = io_probe(ctx, arg, nr_args);
4524 		break;
4525 	case IORING_REGISTER_PERSONALITY:
4526 		ret = -EINVAL;
4527 		if (arg || nr_args)
4528 			break;
4529 		ret = io_register_personality(ctx);
4530 		break;
4531 	case IORING_UNREGISTER_PERSONALITY:
4532 		ret = -EINVAL;
4533 		if (arg)
4534 			break;
4535 		ret = io_unregister_personality(ctx, nr_args);
4536 		break;
4537 	case IORING_REGISTER_ENABLE_RINGS:
4538 		ret = -EINVAL;
4539 		if (arg || nr_args)
4540 			break;
4541 		ret = io_register_enable_rings(ctx);
4542 		break;
4543 	case IORING_REGISTER_RESTRICTIONS:
4544 		ret = io_register_restrictions(ctx, arg, nr_args);
4545 		break;
4546 	case IORING_REGISTER_FILES2:
4547 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4548 		break;
4549 	case IORING_REGISTER_FILES_UPDATE2:
4550 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4551 					      IORING_RSRC_FILE);
4552 		break;
4553 	case IORING_REGISTER_BUFFERS2:
4554 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4555 		break;
4556 	case IORING_REGISTER_BUFFERS_UPDATE:
4557 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4558 					      IORING_RSRC_BUFFER);
4559 		break;
4560 	case IORING_REGISTER_IOWQ_AFF:
4561 		ret = -EINVAL;
4562 		if (!arg || !nr_args)
4563 			break;
4564 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4565 		break;
4566 	case IORING_UNREGISTER_IOWQ_AFF:
4567 		ret = -EINVAL;
4568 		if (arg || nr_args)
4569 			break;
4570 		ret = io_unregister_iowq_aff(ctx);
4571 		break;
4572 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4573 		ret = -EINVAL;
4574 		if (!arg || nr_args != 2)
4575 			break;
4576 		ret = io_register_iowq_max_workers(ctx, arg);
4577 		break;
4578 	case IORING_REGISTER_RING_FDS:
4579 		ret = io_ringfd_register(ctx, arg, nr_args);
4580 		break;
4581 	case IORING_UNREGISTER_RING_FDS:
4582 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4583 		break;
4584 	case IORING_REGISTER_PBUF_RING:
4585 		ret = -EINVAL;
4586 		if (!arg || nr_args != 1)
4587 			break;
4588 		ret = io_register_pbuf_ring(ctx, arg);
4589 		break;
4590 	case IORING_UNREGISTER_PBUF_RING:
4591 		ret = -EINVAL;
4592 		if (!arg || nr_args != 1)
4593 			break;
4594 		ret = io_unregister_pbuf_ring(ctx, arg);
4595 		break;
4596 	case IORING_REGISTER_SYNC_CANCEL:
4597 		ret = -EINVAL;
4598 		if (!arg || nr_args != 1)
4599 			break;
4600 		ret = io_sync_cancel(ctx, arg);
4601 		break;
4602 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4603 		ret = -EINVAL;
4604 		if (!arg || nr_args)
4605 			break;
4606 		ret = io_register_file_alloc_range(ctx, arg);
4607 		break;
4608 	default:
4609 		ret = -EINVAL;
4610 		break;
4611 	}
4612 
4613 	return ret;
4614 }
4615 
4616 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4617 		void __user *, arg, unsigned int, nr_args)
4618 {
4619 	struct io_ring_ctx *ctx;
4620 	long ret = -EBADF;
4621 	struct file *file;
4622 	bool use_registered_ring;
4623 
4624 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4625 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4626 
4627 	if (opcode >= IORING_REGISTER_LAST)
4628 		return -EINVAL;
4629 
4630 	if (use_registered_ring) {
4631 		/*
4632 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4633 		 * need only dereference our task private array to find it.
4634 		 */
4635 		struct io_uring_task *tctx = current->io_uring;
4636 
4637 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4638 			return -EINVAL;
4639 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4640 		file = tctx->registered_rings[fd];
4641 		if (unlikely(!file))
4642 			return -EBADF;
4643 	} else {
4644 		file = fget(fd);
4645 		if (unlikely(!file))
4646 			return -EBADF;
4647 		ret = -EOPNOTSUPP;
4648 		if (!io_is_uring_fops(file))
4649 			goto out_fput;
4650 	}
4651 
4652 	ctx = file->private_data;
4653 
4654 	mutex_lock(&ctx->uring_lock);
4655 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4656 	mutex_unlock(&ctx->uring_lock);
4657 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4658 out_fput:
4659 	if (!use_registered_ring)
4660 		fput(file);
4661 	return ret;
4662 }
4663 
4664 static int __init io_uring_init(void)
4665 {
4666 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4667 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4668 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4669 } while (0)
4670 
4671 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4672 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4673 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4674 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4675 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4676 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4677 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4678 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4679 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4680 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4681 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4682 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4683 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4684 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4685 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4686 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4687 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4688 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4689 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4690 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4691 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4692 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4693 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4694 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4695 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4696 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4697 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4698 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4699 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4700 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4701 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4702 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4703 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4704 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4705 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4706 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4707 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4708 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4709 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4710 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4711 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4712 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4713 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4714 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4715 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4716 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4717 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4718 
4719 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4720 		     sizeof(struct io_uring_rsrc_update));
4721 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4722 		     sizeof(struct io_uring_rsrc_update2));
4723 
4724 	/* ->buf_index is u16 */
4725 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4726 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4727 		     offsetof(struct io_uring_buf_ring, tail));
4728 
4729 	/* should fit into one byte */
4730 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4731 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4732 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4733 
4734 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4735 
4736 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4737 
4738 	/* top 8bits are for internal use */
4739 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4740 
4741 	io_uring_optable_init();
4742 
4743 	/*
4744 	 * Allow user copy in the per-command field, which starts after the
4745 	 * file in io_kiocb and until the opcode field. The openat2 handling
4746 	 * requires copying in user memory into the io_kiocb object in that
4747 	 * range, and HARDENED_USERCOPY will complain if we haven't
4748 	 * correctly annotated this range.
4749 	 */
4750 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4751 				sizeof(struct io_kiocb), 0,
4752 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4753 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4754 				offsetof(struct io_kiocb, cmd.data),
4755 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4756 	io_buf_cachep = kmem_cache_create("io_buffer", sizeof(struct io_buffer), 0,
4757 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
4758 					  NULL);
4759 
4760 #ifdef CONFIG_SYSCTL
4761 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4762 #endif
4763 
4764 	return 0;
4765 };
4766 __initcall(io_uring_init);
4767