1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 #include "waitid.h" 96 #include "futex.h" 97 98 #include "timeout.h" 99 #include "poll.h" 100 #include "rw.h" 101 #include "alloc_cache.h" 102 103 #define IORING_MAX_ENTRIES 32768 104 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 105 106 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 107 IORING_REGISTER_LAST + IORING_OP_LAST) 108 109 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 110 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 111 112 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 113 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 114 115 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 116 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 117 REQ_F_ASYNC_DATA) 118 119 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 120 IO_REQ_CLEAN_FLAGS) 121 122 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 123 124 #define IO_COMPL_BATCH 32 125 #define IO_REQ_ALLOC_BATCH 8 126 127 enum { 128 IO_CHECK_CQ_OVERFLOW_BIT, 129 IO_CHECK_CQ_DROPPED_BIT, 130 }; 131 132 enum { 133 IO_EVENTFD_OP_SIGNAL_BIT, 134 IO_EVENTFD_OP_FREE_BIT, 135 }; 136 137 struct io_defer_entry { 138 struct list_head list; 139 struct io_kiocb *req; 140 u32 seq; 141 }; 142 143 /* requests with any of those set should undergo io_disarm_next() */ 144 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 145 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 146 147 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 148 struct task_struct *task, 149 bool cancel_all); 150 151 static void io_queue_sqe(struct io_kiocb *req); 152 153 struct kmem_cache *req_cachep; 154 155 static int __read_mostly sysctl_io_uring_disabled; 156 static int __read_mostly sysctl_io_uring_group = -1; 157 158 #ifdef CONFIG_SYSCTL 159 static struct ctl_table kernel_io_uring_disabled_table[] = { 160 { 161 .procname = "io_uring_disabled", 162 .data = &sysctl_io_uring_disabled, 163 .maxlen = sizeof(sysctl_io_uring_disabled), 164 .mode = 0644, 165 .proc_handler = proc_dointvec_minmax, 166 .extra1 = SYSCTL_ZERO, 167 .extra2 = SYSCTL_TWO, 168 }, 169 { 170 .procname = "io_uring_group", 171 .data = &sysctl_io_uring_group, 172 .maxlen = sizeof(gid_t), 173 .mode = 0644, 174 .proc_handler = proc_dointvec, 175 }, 176 {}, 177 }; 178 #endif 179 180 struct sock *io_uring_get_socket(struct file *file) 181 { 182 #if defined(CONFIG_UNIX) 183 if (io_is_uring_fops(file)) { 184 struct io_ring_ctx *ctx = file->private_data; 185 186 return ctx->ring_sock->sk; 187 } 188 #endif 189 return NULL; 190 } 191 EXPORT_SYMBOL(io_uring_get_socket); 192 193 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 194 { 195 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 196 ctx->submit_state.cqes_count) 197 __io_submit_flush_completions(ctx); 198 } 199 200 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 201 { 202 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 203 } 204 205 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 206 { 207 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 208 } 209 210 static bool io_match_linked(struct io_kiocb *head) 211 { 212 struct io_kiocb *req; 213 214 io_for_each_link(req, head) { 215 if (req->flags & REQ_F_INFLIGHT) 216 return true; 217 } 218 return false; 219 } 220 221 /* 222 * As io_match_task() but protected against racing with linked timeouts. 223 * User must not hold timeout_lock. 224 */ 225 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 226 bool cancel_all) 227 { 228 bool matched; 229 230 if (task && head->task != task) 231 return false; 232 if (cancel_all) 233 return true; 234 235 if (head->flags & REQ_F_LINK_TIMEOUT) { 236 struct io_ring_ctx *ctx = head->ctx; 237 238 /* protect against races with linked timeouts */ 239 spin_lock_irq(&ctx->timeout_lock); 240 matched = io_match_linked(head); 241 spin_unlock_irq(&ctx->timeout_lock); 242 } else { 243 matched = io_match_linked(head); 244 } 245 return matched; 246 } 247 248 static inline void req_fail_link_node(struct io_kiocb *req, int res) 249 { 250 req_set_fail(req); 251 io_req_set_res(req, res, 0); 252 } 253 254 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 255 { 256 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 257 } 258 259 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 260 { 261 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 262 263 complete(&ctx->ref_comp); 264 } 265 266 static __cold void io_fallback_req_func(struct work_struct *work) 267 { 268 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 269 fallback_work.work); 270 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 271 struct io_kiocb *req, *tmp; 272 struct io_tw_state ts = { .locked = true, }; 273 274 mutex_lock(&ctx->uring_lock); 275 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 276 req->io_task_work.func(req, &ts); 277 if (WARN_ON_ONCE(!ts.locked)) 278 return; 279 io_submit_flush_completions(ctx); 280 mutex_unlock(&ctx->uring_lock); 281 } 282 283 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 284 { 285 unsigned hash_buckets = 1U << bits; 286 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 287 288 table->hbs = kmalloc(hash_size, GFP_KERNEL); 289 if (!table->hbs) 290 return -ENOMEM; 291 292 table->hash_bits = bits; 293 init_hash_table(table, hash_buckets); 294 return 0; 295 } 296 297 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 298 { 299 struct io_ring_ctx *ctx; 300 int hash_bits; 301 302 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 303 if (!ctx) 304 return NULL; 305 306 xa_init(&ctx->io_bl_xa); 307 308 /* 309 * Use 5 bits less than the max cq entries, that should give us around 310 * 32 entries per hash list if totally full and uniformly spread, but 311 * don't keep too many buckets to not overconsume memory. 312 */ 313 hash_bits = ilog2(p->cq_entries) - 5; 314 hash_bits = clamp(hash_bits, 1, 8); 315 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 316 goto err; 317 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 init_waitqueue_head(&ctx->sqo_sq_wait); 325 INIT_LIST_HEAD(&ctx->sqd_list); 326 INIT_LIST_HEAD(&ctx->cq_overflow_list); 327 INIT_LIST_HEAD(&ctx->io_buffers_cache); 328 INIT_HLIST_HEAD(&ctx->io_buf_list); 329 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 330 sizeof(struct io_rsrc_node)); 331 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct async_poll)); 333 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 334 sizeof(struct io_async_msghdr)); 335 io_futex_cache_init(ctx); 336 init_completion(&ctx->ref_comp); 337 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 338 mutex_init(&ctx->uring_lock); 339 init_waitqueue_head(&ctx->cq_wait); 340 init_waitqueue_head(&ctx->poll_wq); 341 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 342 spin_lock_init(&ctx->completion_lock); 343 spin_lock_init(&ctx->timeout_lock); 344 INIT_WQ_LIST(&ctx->iopoll_list); 345 INIT_LIST_HEAD(&ctx->io_buffers_comp); 346 INIT_LIST_HEAD(&ctx->defer_list); 347 INIT_LIST_HEAD(&ctx->timeout_list); 348 INIT_LIST_HEAD(&ctx->ltimeout_list); 349 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 350 init_llist_head(&ctx->work_llist); 351 INIT_LIST_HEAD(&ctx->tctx_list); 352 ctx->submit_state.free_list.next = NULL; 353 INIT_WQ_LIST(&ctx->locked_free_list); 354 INIT_HLIST_HEAD(&ctx->waitid_list); 355 #ifdef CONFIG_FUTEX 356 INIT_HLIST_HEAD(&ctx->futex_list); 357 #endif 358 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 359 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 360 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 361 return ctx; 362 err: 363 kfree(ctx->cancel_table.hbs); 364 kfree(ctx->cancel_table_locked.hbs); 365 kfree(ctx->io_bl); 366 xa_destroy(&ctx->io_bl_xa); 367 kfree(ctx); 368 return NULL; 369 } 370 371 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 372 { 373 struct io_rings *r = ctx->rings; 374 375 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 376 ctx->cq_extra--; 377 } 378 379 static bool req_need_defer(struct io_kiocb *req, u32 seq) 380 { 381 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 382 struct io_ring_ctx *ctx = req->ctx; 383 384 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 385 } 386 387 return false; 388 } 389 390 static void io_clean_op(struct io_kiocb *req) 391 { 392 if (req->flags & REQ_F_BUFFER_SELECTED) { 393 spin_lock(&req->ctx->completion_lock); 394 io_put_kbuf_comp(req); 395 spin_unlock(&req->ctx->completion_lock); 396 } 397 398 if (req->flags & REQ_F_NEED_CLEANUP) { 399 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 400 401 if (def->cleanup) 402 def->cleanup(req); 403 } 404 if ((req->flags & REQ_F_POLLED) && req->apoll) { 405 kfree(req->apoll->double_poll); 406 kfree(req->apoll); 407 req->apoll = NULL; 408 } 409 if (req->flags & REQ_F_INFLIGHT) { 410 struct io_uring_task *tctx = req->task->io_uring; 411 412 atomic_dec(&tctx->inflight_tracked); 413 } 414 if (req->flags & REQ_F_CREDS) 415 put_cred(req->creds); 416 if (req->flags & REQ_F_ASYNC_DATA) { 417 kfree(req->async_data); 418 req->async_data = NULL; 419 } 420 req->flags &= ~IO_REQ_CLEAN_FLAGS; 421 } 422 423 static inline void io_req_track_inflight(struct io_kiocb *req) 424 { 425 if (!(req->flags & REQ_F_INFLIGHT)) { 426 req->flags |= REQ_F_INFLIGHT; 427 atomic_inc(&req->task->io_uring->inflight_tracked); 428 } 429 } 430 431 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 432 { 433 if (WARN_ON_ONCE(!req->link)) 434 return NULL; 435 436 req->flags &= ~REQ_F_ARM_LTIMEOUT; 437 req->flags |= REQ_F_LINK_TIMEOUT; 438 439 /* linked timeouts should have two refs once prep'ed */ 440 io_req_set_refcount(req); 441 __io_req_set_refcount(req->link, 2); 442 return req->link; 443 } 444 445 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 446 { 447 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 448 return NULL; 449 return __io_prep_linked_timeout(req); 450 } 451 452 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 453 { 454 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 455 } 456 457 static inline void io_arm_ltimeout(struct io_kiocb *req) 458 { 459 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 460 __io_arm_ltimeout(req); 461 } 462 463 static void io_prep_async_work(struct io_kiocb *req) 464 { 465 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 466 struct io_ring_ctx *ctx = req->ctx; 467 468 if (!(req->flags & REQ_F_CREDS)) { 469 req->flags |= REQ_F_CREDS; 470 req->creds = get_current_cred(); 471 } 472 473 req->work.list.next = NULL; 474 req->work.flags = 0; 475 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 476 if (req->flags & REQ_F_FORCE_ASYNC) 477 req->work.flags |= IO_WQ_WORK_CONCURRENT; 478 479 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 480 req->flags |= io_file_get_flags(req->file); 481 482 if (req->file && (req->flags & REQ_F_ISREG)) { 483 bool should_hash = def->hash_reg_file; 484 485 /* don't serialize this request if the fs doesn't need it */ 486 if (should_hash && (req->file->f_flags & O_DIRECT) && 487 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 488 should_hash = false; 489 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 490 io_wq_hash_work(&req->work, file_inode(req->file)); 491 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 492 if (def->unbound_nonreg_file) 493 req->work.flags |= IO_WQ_WORK_UNBOUND; 494 } 495 } 496 497 static void io_prep_async_link(struct io_kiocb *req) 498 { 499 struct io_kiocb *cur; 500 501 if (req->flags & REQ_F_LINK_TIMEOUT) { 502 struct io_ring_ctx *ctx = req->ctx; 503 504 spin_lock_irq(&ctx->timeout_lock); 505 io_for_each_link(cur, req) 506 io_prep_async_work(cur); 507 spin_unlock_irq(&ctx->timeout_lock); 508 } else { 509 io_for_each_link(cur, req) 510 io_prep_async_work(cur); 511 } 512 } 513 514 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 515 { 516 struct io_kiocb *link = io_prep_linked_timeout(req); 517 struct io_uring_task *tctx = req->task->io_uring; 518 519 BUG_ON(!tctx); 520 BUG_ON(!tctx->io_wq); 521 522 /* init ->work of the whole link before punting */ 523 io_prep_async_link(req); 524 525 /* 526 * Not expected to happen, but if we do have a bug where this _can_ 527 * happen, catch it here and ensure the request is marked as 528 * canceled. That will make io-wq go through the usual work cancel 529 * procedure rather than attempt to run this request (or create a new 530 * worker for it). 531 */ 532 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 533 req->work.flags |= IO_WQ_WORK_CANCEL; 534 535 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 536 io_wq_enqueue(tctx->io_wq, &req->work); 537 if (link) 538 io_queue_linked_timeout(link); 539 } 540 541 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 542 { 543 while (!list_empty(&ctx->defer_list)) { 544 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 545 struct io_defer_entry, list); 546 547 if (req_need_defer(de->req, de->seq)) 548 break; 549 list_del_init(&de->list); 550 io_req_task_queue(de->req); 551 kfree(de); 552 } 553 } 554 555 556 static void io_eventfd_ops(struct rcu_head *rcu) 557 { 558 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 559 int ops = atomic_xchg(&ev_fd->ops, 0); 560 561 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 562 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 563 564 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 565 * ordering in a race but if references are 0 we know we have to free 566 * it regardless. 567 */ 568 if (atomic_dec_and_test(&ev_fd->refs)) { 569 eventfd_ctx_put(ev_fd->cq_ev_fd); 570 kfree(ev_fd); 571 } 572 } 573 574 static void io_eventfd_signal(struct io_ring_ctx *ctx) 575 { 576 struct io_ev_fd *ev_fd = NULL; 577 578 rcu_read_lock(); 579 /* 580 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 581 * and eventfd_signal 582 */ 583 ev_fd = rcu_dereference(ctx->io_ev_fd); 584 585 /* 586 * Check again if ev_fd exists incase an io_eventfd_unregister call 587 * completed between the NULL check of ctx->io_ev_fd at the start of 588 * the function and rcu_read_lock. 589 */ 590 if (unlikely(!ev_fd)) 591 goto out; 592 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 593 goto out; 594 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 595 goto out; 596 597 if (likely(eventfd_signal_allowed())) { 598 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 599 } else { 600 atomic_inc(&ev_fd->refs); 601 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 602 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 603 else 604 atomic_dec(&ev_fd->refs); 605 } 606 607 out: 608 rcu_read_unlock(); 609 } 610 611 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 612 { 613 bool skip; 614 615 spin_lock(&ctx->completion_lock); 616 617 /* 618 * Eventfd should only get triggered when at least one event has been 619 * posted. Some applications rely on the eventfd notification count 620 * only changing IFF a new CQE has been added to the CQ ring. There's 621 * no depedency on 1:1 relationship between how many times this 622 * function is called (and hence the eventfd count) and number of CQEs 623 * posted to the CQ ring. 624 */ 625 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 626 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 627 spin_unlock(&ctx->completion_lock); 628 if (skip) 629 return; 630 631 io_eventfd_signal(ctx); 632 } 633 634 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 635 { 636 if (ctx->poll_activated) 637 io_poll_wq_wake(ctx); 638 if (ctx->off_timeout_used) 639 io_flush_timeouts(ctx); 640 if (ctx->drain_active) { 641 spin_lock(&ctx->completion_lock); 642 io_queue_deferred(ctx); 643 spin_unlock(&ctx->completion_lock); 644 } 645 if (ctx->has_evfd) 646 io_eventfd_flush_signal(ctx); 647 } 648 649 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 650 { 651 if (!ctx->lockless_cq) 652 spin_lock(&ctx->completion_lock); 653 } 654 655 static inline void io_cq_lock(struct io_ring_ctx *ctx) 656 __acquires(ctx->completion_lock) 657 { 658 spin_lock(&ctx->completion_lock); 659 } 660 661 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 662 { 663 io_commit_cqring(ctx); 664 if (!ctx->task_complete) { 665 if (!ctx->lockless_cq) 666 spin_unlock(&ctx->completion_lock); 667 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 668 if (!ctx->syscall_iopoll) 669 io_cqring_wake(ctx); 670 } 671 io_commit_cqring_flush(ctx); 672 } 673 674 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 675 __releases(ctx->completion_lock) 676 { 677 io_commit_cqring(ctx); 678 spin_unlock(&ctx->completion_lock); 679 io_cqring_wake(ctx); 680 io_commit_cqring_flush(ctx); 681 } 682 683 /* Returns true if there are no backlogged entries after the flush */ 684 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 685 { 686 struct io_overflow_cqe *ocqe; 687 LIST_HEAD(list); 688 689 spin_lock(&ctx->completion_lock); 690 list_splice_init(&ctx->cq_overflow_list, &list); 691 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 692 spin_unlock(&ctx->completion_lock); 693 694 while (!list_empty(&list)) { 695 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 696 list_del(&ocqe->list); 697 kfree(ocqe); 698 } 699 } 700 701 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 702 { 703 size_t cqe_size = sizeof(struct io_uring_cqe); 704 705 if (__io_cqring_events(ctx) == ctx->cq_entries) 706 return; 707 708 if (ctx->flags & IORING_SETUP_CQE32) 709 cqe_size <<= 1; 710 711 io_cq_lock(ctx); 712 while (!list_empty(&ctx->cq_overflow_list)) { 713 struct io_uring_cqe *cqe; 714 struct io_overflow_cqe *ocqe; 715 716 if (!io_get_cqe_overflow(ctx, &cqe, true)) 717 break; 718 ocqe = list_first_entry(&ctx->cq_overflow_list, 719 struct io_overflow_cqe, list); 720 memcpy(cqe, &ocqe->cqe, cqe_size); 721 list_del(&ocqe->list); 722 kfree(ocqe); 723 } 724 725 if (list_empty(&ctx->cq_overflow_list)) { 726 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 727 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 728 } 729 io_cq_unlock_post(ctx); 730 } 731 732 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 733 { 734 /* iopoll syncs against uring_lock, not completion_lock */ 735 if (ctx->flags & IORING_SETUP_IOPOLL) 736 mutex_lock(&ctx->uring_lock); 737 __io_cqring_overflow_flush(ctx); 738 if (ctx->flags & IORING_SETUP_IOPOLL) 739 mutex_unlock(&ctx->uring_lock); 740 } 741 742 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 743 { 744 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 745 io_cqring_do_overflow_flush(ctx); 746 } 747 748 /* can be called by any task */ 749 static void io_put_task_remote(struct task_struct *task) 750 { 751 struct io_uring_task *tctx = task->io_uring; 752 753 percpu_counter_sub(&tctx->inflight, 1); 754 if (unlikely(atomic_read(&tctx->in_cancel))) 755 wake_up(&tctx->wait); 756 put_task_struct(task); 757 } 758 759 /* used by a task to put its own references */ 760 static void io_put_task_local(struct task_struct *task) 761 { 762 task->io_uring->cached_refs++; 763 } 764 765 /* must to be called somewhat shortly after putting a request */ 766 static inline void io_put_task(struct task_struct *task) 767 { 768 if (likely(task == current)) 769 io_put_task_local(task); 770 else 771 io_put_task_remote(task); 772 } 773 774 void io_task_refs_refill(struct io_uring_task *tctx) 775 { 776 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 777 778 percpu_counter_add(&tctx->inflight, refill); 779 refcount_add(refill, ¤t->usage); 780 tctx->cached_refs += refill; 781 } 782 783 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 784 { 785 struct io_uring_task *tctx = task->io_uring; 786 unsigned int refs = tctx->cached_refs; 787 788 if (refs) { 789 tctx->cached_refs = 0; 790 percpu_counter_sub(&tctx->inflight, refs); 791 put_task_struct_many(task, refs); 792 } 793 } 794 795 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 796 s32 res, u32 cflags, u64 extra1, u64 extra2) 797 { 798 struct io_overflow_cqe *ocqe; 799 size_t ocq_size = sizeof(struct io_overflow_cqe); 800 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 801 802 lockdep_assert_held(&ctx->completion_lock); 803 804 if (is_cqe32) 805 ocq_size += sizeof(struct io_uring_cqe); 806 807 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 808 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 809 if (!ocqe) { 810 /* 811 * If we're in ring overflow flush mode, or in task cancel mode, 812 * or cannot allocate an overflow entry, then we need to drop it 813 * on the floor. 814 */ 815 io_account_cq_overflow(ctx); 816 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 817 return false; 818 } 819 if (list_empty(&ctx->cq_overflow_list)) { 820 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 821 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 822 823 } 824 ocqe->cqe.user_data = user_data; 825 ocqe->cqe.res = res; 826 ocqe->cqe.flags = cflags; 827 if (is_cqe32) { 828 ocqe->cqe.big_cqe[0] = extra1; 829 ocqe->cqe.big_cqe[1] = extra2; 830 } 831 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 832 return true; 833 } 834 835 void io_req_cqe_overflow(struct io_kiocb *req) 836 { 837 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 838 req->cqe.res, req->cqe.flags, 839 req->big_cqe.extra1, req->big_cqe.extra2); 840 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 841 } 842 843 /* 844 * writes to the cq entry need to come after reading head; the 845 * control dependency is enough as we're using WRITE_ONCE to 846 * fill the cq entry 847 */ 848 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 849 { 850 struct io_rings *rings = ctx->rings; 851 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 852 unsigned int free, queued, len; 853 854 /* 855 * Posting into the CQ when there are pending overflowed CQEs may break 856 * ordering guarantees, which will affect links, F_MORE users and more. 857 * Force overflow the completion. 858 */ 859 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 860 return false; 861 862 /* userspace may cheat modifying the tail, be safe and do min */ 863 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 864 free = ctx->cq_entries - queued; 865 /* we need a contiguous range, limit based on the current array offset */ 866 len = min(free, ctx->cq_entries - off); 867 if (!len) 868 return false; 869 870 if (ctx->flags & IORING_SETUP_CQE32) { 871 off <<= 1; 872 len <<= 1; 873 } 874 875 ctx->cqe_cached = &rings->cqes[off]; 876 ctx->cqe_sentinel = ctx->cqe_cached + len; 877 return true; 878 } 879 880 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 881 u32 cflags) 882 { 883 struct io_uring_cqe *cqe; 884 885 ctx->cq_extra++; 886 887 /* 888 * If we can't get a cq entry, userspace overflowed the 889 * submission (by quite a lot). Increment the overflow count in 890 * the ring. 891 */ 892 if (likely(io_get_cqe(ctx, &cqe))) { 893 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 894 895 WRITE_ONCE(cqe->user_data, user_data); 896 WRITE_ONCE(cqe->res, res); 897 WRITE_ONCE(cqe->flags, cflags); 898 899 if (ctx->flags & IORING_SETUP_CQE32) { 900 WRITE_ONCE(cqe->big_cqe[0], 0); 901 WRITE_ONCE(cqe->big_cqe[1], 0); 902 } 903 return true; 904 } 905 return false; 906 } 907 908 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 909 __must_hold(&ctx->uring_lock) 910 { 911 struct io_submit_state *state = &ctx->submit_state; 912 unsigned int i; 913 914 lockdep_assert_held(&ctx->uring_lock); 915 for (i = 0; i < state->cqes_count; i++) { 916 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 917 918 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 919 if (ctx->lockless_cq) { 920 spin_lock(&ctx->completion_lock); 921 io_cqring_event_overflow(ctx, cqe->user_data, 922 cqe->res, cqe->flags, 0, 0); 923 spin_unlock(&ctx->completion_lock); 924 } else { 925 io_cqring_event_overflow(ctx, cqe->user_data, 926 cqe->res, cqe->flags, 0, 0); 927 } 928 } 929 } 930 state->cqes_count = 0; 931 } 932 933 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 934 bool allow_overflow) 935 { 936 bool filled; 937 938 io_cq_lock(ctx); 939 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 940 if (!filled && allow_overflow) 941 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 942 943 io_cq_unlock_post(ctx); 944 return filled; 945 } 946 947 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 948 { 949 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 950 } 951 952 /* 953 * A helper for multishot requests posting additional CQEs. 954 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 955 */ 956 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 957 { 958 struct io_ring_ctx *ctx = req->ctx; 959 u64 user_data = req->cqe.user_data; 960 struct io_uring_cqe *cqe; 961 962 if (!defer) 963 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 964 965 lockdep_assert_held(&ctx->uring_lock); 966 967 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 968 __io_cq_lock(ctx); 969 __io_flush_post_cqes(ctx); 970 /* no need to flush - flush is deferred */ 971 __io_cq_unlock_post(ctx); 972 } 973 974 /* For defered completions this is not as strict as it is otherwise, 975 * however it's main job is to prevent unbounded posted completions, 976 * and in that it works just as well. 977 */ 978 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 979 return false; 980 981 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 982 cqe->user_data = user_data; 983 cqe->res = res; 984 cqe->flags = cflags; 985 return true; 986 } 987 988 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 989 { 990 struct io_ring_ctx *ctx = req->ctx; 991 struct io_rsrc_node *rsrc_node = NULL; 992 993 io_cq_lock(ctx); 994 if (!(req->flags & REQ_F_CQE_SKIP)) { 995 if (!io_fill_cqe_req(ctx, req)) 996 io_req_cqe_overflow(req); 997 } 998 999 /* 1000 * If we're the last reference to this request, add to our locked 1001 * free_list cache. 1002 */ 1003 if (req_ref_put_and_test(req)) { 1004 if (req->flags & IO_REQ_LINK_FLAGS) { 1005 if (req->flags & IO_DISARM_MASK) 1006 io_disarm_next(req); 1007 if (req->link) { 1008 io_req_task_queue(req->link); 1009 req->link = NULL; 1010 } 1011 } 1012 io_put_kbuf_comp(req); 1013 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1014 io_clean_op(req); 1015 io_put_file(req); 1016 1017 rsrc_node = req->rsrc_node; 1018 /* 1019 * Selected buffer deallocation in io_clean_op() assumes that 1020 * we don't hold ->completion_lock. Clean them here to avoid 1021 * deadlocks. 1022 */ 1023 io_put_task_remote(req->task); 1024 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1025 ctx->locked_free_nr++; 1026 } 1027 io_cq_unlock_post(ctx); 1028 1029 if (rsrc_node) { 1030 io_ring_submit_lock(ctx, issue_flags); 1031 io_put_rsrc_node(ctx, rsrc_node); 1032 io_ring_submit_unlock(ctx, issue_flags); 1033 } 1034 } 1035 1036 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1037 { 1038 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1039 req->io_task_work.func = io_req_task_complete; 1040 io_req_task_work_add(req); 1041 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1042 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1043 __io_req_complete_post(req, issue_flags); 1044 } else { 1045 struct io_ring_ctx *ctx = req->ctx; 1046 1047 mutex_lock(&ctx->uring_lock); 1048 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1049 mutex_unlock(&ctx->uring_lock); 1050 } 1051 } 1052 1053 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1054 __must_hold(&ctx->uring_lock) 1055 { 1056 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1057 1058 lockdep_assert_held(&req->ctx->uring_lock); 1059 1060 req_set_fail(req); 1061 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1062 if (def->fail) 1063 def->fail(req); 1064 io_req_complete_defer(req); 1065 } 1066 1067 /* 1068 * Don't initialise the fields below on every allocation, but do that in 1069 * advance and keep them valid across allocations. 1070 */ 1071 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1072 { 1073 req->ctx = ctx; 1074 req->link = NULL; 1075 req->async_data = NULL; 1076 /* not necessary, but safer to zero */ 1077 memset(&req->cqe, 0, sizeof(req->cqe)); 1078 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1079 } 1080 1081 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1082 struct io_submit_state *state) 1083 { 1084 spin_lock(&ctx->completion_lock); 1085 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1086 ctx->locked_free_nr = 0; 1087 spin_unlock(&ctx->completion_lock); 1088 } 1089 1090 /* 1091 * A request might get retired back into the request caches even before opcode 1092 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1093 * Because of that, io_alloc_req() should be called only under ->uring_lock 1094 * and with extra caution to not get a request that is still worked on. 1095 */ 1096 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1097 __must_hold(&ctx->uring_lock) 1098 { 1099 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1100 void *reqs[IO_REQ_ALLOC_BATCH]; 1101 int ret, i; 1102 1103 /* 1104 * If we have more than a batch's worth of requests in our IRQ side 1105 * locked cache, grab the lock and move them over to our submission 1106 * side cache. 1107 */ 1108 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1109 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1110 if (!io_req_cache_empty(ctx)) 1111 return true; 1112 } 1113 1114 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1115 1116 /* 1117 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1118 * retry single alloc to be on the safe side. 1119 */ 1120 if (unlikely(ret <= 0)) { 1121 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1122 if (!reqs[0]) 1123 return false; 1124 ret = 1; 1125 } 1126 1127 percpu_ref_get_many(&ctx->refs, ret); 1128 for (i = 0; i < ret; i++) { 1129 struct io_kiocb *req = reqs[i]; 1130 1131 io_preinit_req(req, ctx); 1132 io_req_add_to_cache(req, ctx); 1133 } 1134 return true; 1135 } 1136 1137 __cold void io_free_req(struct io_kiocb *req) 1138 { 1139 /* refs were already put, restore them for io_req_task_complete() */ 1140 req->flags &= ~REQ_F_REFCOUNT; 1141 /* we only want to free it, don't post CQEs */ 1142 req->flags |= REQ_F_CQE_SKIP; 1143 req->io_task_work.func = io_req_task_complete; 1144 io_req_task_work_add(req); 1145 } 1146 1147 static void __io_req_find_next_prep(struct io_kiocb *req) 1148 { 1149 struct io_ring_ctx *ctx = req->ctx; 1150 1151 spin_lock(&ctx->completion_lock); 1152 io_disarm_next(req); 1153 spin_unlock(&ctx->completion_lock); 1154 } 1155 1156 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1157 { 1158 struct io_kiocb *nxt; 1159 1160 /* 1161 * If LINK is set, we have dependent requests in this chain. If we 1162 * didn't fail this request, queue the first one up, moving any other 1163 * dependencies to the next request. In case of failure, fail the rest 1164 * of the chain. 1165 */ 1166 if (unlikely(req->flags & IO_DISARM_MASK)) 1167 __io_req_find_next_prep(req); 1168 nxt = req->link; 1169 req->link = NULL; 1170 return nxt; 1171 } 1172 1173 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1174 { 1175 if (!ctx) 1176 return; 1177 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1178 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1179 if (ts->locked) { 1180 io_submit_flush_completions(ctx); 1181 mutex_unlock(&ctx->uring_lock); 1182 ts->locked = false; 1183 } 1184 percpu_ref_put(&ctx->refs); 1185 } 1186 1187 static unsigned int handle_tw_list(struct llist_node *node, 1188 struct io_ring_ctx **ctx, 1189 struct io_tw_state *ts, 1190 struct llist_node *last) 1191 { 1192 unsigned int count = 0; 1193 1194 while (node && node != last) { 1195 struct llist_node *next = node->next; 1196 struct io_kiocb *req = container_of(node, struct io_kiocb, 1197 io_task_work.node); 1198 1199 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1200 1201 if (req->ctx != *ctx) { 1202 ctx_flush_and_put(*ctx, ts); 1203 *ctx = req->ctx; 1204 /* if not contended, grab and improve batching */ 1205 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1206 percpu_ref_get(&(*ctx)->refs); 1207 } 1208 INDIRECT_CALL_2(req->io_task_work.func, 1209 io_poll_task_func, io_req_rw_complete, 1210 req, ts); 1211 node = next; 1212 count++; 1213 if (unlikely(need_resched())) { 1214 ctx_flush_and_put(*ctx, ts); 1215 *ctx = NULL; 1216 cond_resched(); 1217 } 1218 } 1219 1220 return count; 1221 } 1222 1223 /** 1224 * io_llist_xchg - swap all entries in a lock-less list 1225 * @head: the head of lock-less list to delete all entries 1226 * @new: new entry as the head of the list 1227 * 1228 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1229 * The order of entries returned is from the newest to the oldest added one. 1230 */ 1231 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1232 struct llist_node *new) 1233 { 1234 return xchg(&head->first, new); 1235 } 1236 1237 /** 1238 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1239 * @head: the head of lock-less list to delete all entries 1240 * @old: expected old value of the first entry of the list 1241 * @new: new entry as the head of the list 1242 * 1243 * perform a cmpxchg on the first entry of the list. 1244 */ 1245 1246 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1247 struct llist_node *old, 1248 struct llist_node *new) 1249 { 1250 return cmpxchg(&head->first, old, new); 1251 } 1252 1253 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1254 { 1255 struct llist_node *node = llist_del_all(&tctx->task_list); 1256 struct io_ring_ctx *last_ctx = NULL; 1257 struct io_kiocb *req; 1258 1259 while (node) { 1260 req = container_of(node, struct io_kiocb, io_task_work.node); 1261 node = node->next; 1262 if (sync && last_ctx != req->ctx) { 1263 if (last_ctx) { 1264 flush_delayed_work(&last_ctx->fallback_work); 1265 percpu_ref_put(&last_ctx->refs); 1266 } 1267 last_ctx = req->ctx; 1268 percpu_ref_get(&last_ctx->refs); 1269 } 1270 if (llist_add(&req->io_task_work.node, 1271 &req->ctx->fallback_llist)) 1272 schedule_delayed_work(&req->ctx->fallback_work, 1); 1273 } 1274 1275 if (last_ctx) { 1276 flush_delayed_work(&last_ctx->fallback_work); 1277 percpu_ref_put(&last_ctx->refs); 1278 } 1279 } 1280 1281 void tctx_task_work(struct callback_head *cb) 1282 { 1283 struct io_tw_state ts = {}; 1284 struct io_ring_ctx *ctx = NULL; 1285 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1286 task_work); 1287 struct llist_node fake = {}; 1288 struct llist_node *node; 1289 unsigned int loops = 0; 1290 unsigned int count = 0; 1291 1292 if (unlikely(current->flags & PF_EXITING)) { 1293 io_fallback_tw(tctx, true); 1294 return; 1295 } 1296 1297 do { 1298 loops++; 1299 node = io_llist_xchg(&tctx->task_list, &fake); 1300 count += handle_tw_list(node, &ctx, &ts, &fake); 1301 1302 /* skip expensive cmpxchg if there are items in the list */ 1303 if (READ_ONCE(tctx->task_list.first) != &fake) 1304 continue; 1305 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1306 io_submit_flush_completions(ctx); 1307 if (READ_ONCE(tctx->task_list.first) != &fake) 1308 continue; 1309 } 1310 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1311 } while (node != &fake); 1312 1313 ctx_flush_and_put(ctx, &ts); 1314 1315 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1316 if (unlikely(atomic_read(&tctx->in_cancel))) 1317 io_uring_drop_tctx_refs(current); 1318 1319 trace_io_uring_task_work_run(tctx, count, loops); 1320 } 1321 1322 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1323 { 1324 struct io_ring_ctx *ctx = req->ctx; 1325 unsigned nr_wait, nr_tw, nr_tw_prev; 1326 struct llist_node *first; 1327 1328 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1329 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1330 1331 first = READ_ONCE(ctx->work_llist.first); 1332 do { 1333 nr_tw_prev = 0; 1334 if (first) { 1335 struct io_kiocb *first_req = container_of(first, 1336 struct io_kiocb, 1337 io_task_work.node); 1338 /* 1339 * Might be executed at any moment, rely on 1340 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1341 */ 1342 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1343 } 1344 nr_tw = nr_tw_prev + 1; 1345 /* Large enough to fail the nr_wait comparison below */ 1346 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1347 nr_tw = -1U; 1348 1349 req->nr_tw = nr_tw; 1350 req->io_task_work.node.next = first; 1351 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1352 &req->io_task_work.node)); 1353 1354 if (!first) { 1355 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1356 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1357 if (ctx->has_evfd) 1358 io_eventfd_signal(ctx); 1359 } 1360 1361 nr_wait = atomic_read(&ctx->cq_wait_nr); 1362 /* no one is waiting */ 1363 if (!nr_wait) 1364 return; 1365 /* either not enough or the previous add has already woken it up */ 1366 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1367 return; 1368 /* pairs with set_current_state() in io_cqring_wait() */ 1369 smp_mb__after_atomic(); 1370 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1371 } 1372 1373 static void io_req_normal_work_add(struct io_kiocb *req) 1374 { 1375 struct io_uring_task *tctx = req->task->io_uring; 1376 struct io_ring_ctx *ctx = req->ctx; 1377 1378 /* task_work already pending, we're done */ 1379 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1380 return; 1381 1382 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1383 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1384 1385 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1386 return; 1387 1388 io_fallback_tw(tctx, false); 1389 } 1390 1391 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1392 { 1393 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1394 rcu_read_lock(); 1395 io_req_local_work_add(req, flags); 1396 rcu_read_unlock(); 1397 } else { 1398 io_req_normal_work_add(req); 1399 } 1400 } 1401 1402 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1403 { 1404 struct llist_node *node; 1405 1406 node = llist_del_all(&ctx->work_llist); 1407 while (node) { 1408 struct io_kiocb *req = container_of(node, struct io_kiocb, 1409 io_task_work.node); 1410 1411 node = node->next; 1412 io_req_normal_work_add(req); 1413 } 1414 } 1415 1416 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1417 { 1418 struct llist_node *node; 1419 unsigned int loops = 0; 1420 int ret = 0; 1421 1422 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1423 return -EEXIST; 1424 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1425 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1426 again: 1427 /* 1428 * llists are in reverse order, flip it back the right way before 1429 * running the pending items. 1430 */ 1431 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1432 while (node) { 1433 struct llist_node *next = node->next; 1434 struct io_kiocb *req = container_of(node, struct io_kiocb, 1435 io_task_work.node); 1436 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1437 INDIRECT_CALL_2(req->io_task_work.func, 1438 io_poll_task_func, io_req_rw_complete, 1439 req, ts); 1440 ret++; 1441 node = next; 1442 } 1443 loops++; 1444 1445 if (!llist_empty(&ctx->work_llist)) 1446 goto again; 1447 if (ts->locked) { 1448 io_submit_flush_completions(ctx); 1449 if (!llist_empty(&ctx->work_llist)) 1450 goto again; 1451 } 1452 trace_io_uring_local_work_run(ctx, ret, loops); 1453 return ret; 1454 } 1455 1456 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1457 { 1458 struct io_tw_state ts = { .locked = true, }; 1459 int ret; 1460 1461 if (llist_empty(&ctx->work_llist)) 1462 return 0; 1463 1464 ret = __io_run_local_work(ctx, &ts); 1465 /* shouldn't happen! */ 1466 if (WARN_ON_ONCE(!ts.locked)) 1467 mutex_lock(&ctx->uring_lock); 1468 return ret; 1469 } 1470 1471 static int io_run_local_work(struct io_ring_ctx *ctx) 1472 { 1473 struct io_tw_state ts = {}; 1474 int ret; 1475 1476 ts.locked = mutex_trylock(&ctx->uring_lock); 1477 ret = __io_run_local_work(ctx, &ts); 1478 if (ts.locked) 1479 mutex_unlock(&ctx->uring_lock); 1480 1481 return ret; 1482 } 1483 1484 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1485 { 1486 io_tw_lock(req->ctx, ts); 1487 io_req_defer_failed(req, req->cqe.res); 1488 } 1489 1490 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1491 { 1492 io_tw_lock(req->ctx, ts); 1493 /* req->task == current here, checking PF_EXITING is safe */ 1494 if (unlikely(req->task->flags & PF_EXITING)) 1495 io_req_defer_failed(req, -EFAULT); 1496 else if (req->flags & REQ_F_FORCE_ASYNC) 1497 io_queue_iowq(req, ts); 1498 else 1499 io_queue_sqe(req); 1500 } 1501 1502 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1503 { 1504 io_req_set_res(req, ret, 0); 1505 req->io_task_work.func = io_req_task_cancel; 1506 io_req_task_work_add(req); 1507 } 1508 1509 void io_req_task_queue(struct io_kiocb *req) 1510 { 1511 req->io_task_work.func = io_req_task_submit; 1512 io_req_task_work_add(req); 1513 } 1514 1515 void io_queue_next(struct io_kiocb *req) 1516 { 1517 struct io_kiocb *nxt = io_req_find_next(req); 1518 1519 if (nxt) 1520 io_req_task_queue(nxt); 1521 } 1522 1523 static void io_free_batch_list(struct io_ring_ctx *ctx, 1524 struct io_wq_work_node *node) 1525 __must_hold(&ctx->uring_lock) 1526 { 1527 do { 1528 struct io_kiocb *req = container_of(node, struct io_kiocb, 1529 comp_list); 1530 1531 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1532 if (req->flags & REQ_F_REFCOUNT) { 1533 node = req->comp_list.next; 1534 if (!req_ref_put_and_test(req)) 1535 continue; 1536 } 1537 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1538 struct async_poll *apoll = req->apoll; 1539 1540 if (apoll->double_poll) 1541 kfree(apoll->double_poll); 1542 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1543 kfree(apoll); 1544 req->flags &= ~REQ_F_POLLED; 1545 } 1546 if (req->flags & IO_REQ_LINK_FLAGS) 1547 io_queue_next(req); 1548 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1549 io_clean_op(req); 1550 } 1551 io_put_file(req); 1552 1553 io_req_put_rsrc_locked(req, ctx); 1554 1555 io_put_task(req->task); 1556 node = req->comp_list.next; 1557 io_req_add_to_cache(req, ctx); 1558 } while (node); 1559 } 1560 1561 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1562 __must_hold(&ctx->uring_lock) 1563 { 1564 struct io_submit_state *state = &ctx->submit_state; 1565 struct io_wq_work_node *node; 1566 1567 __io_cq_lock(ctx); 1568 /* must come first to preserve CQE ordering in failure cases */ 1569 if (state->cqes_count) 1570 __io_flush_post_cqes(ctx); 1571 __wq_list_for_each(node, &state->compl_reqs) { 1572 struct io_kiocb *req = container_of(node, struct io_kiocb, 1573 comp_list); 1574 1575 if (!(req->flags & REQ_F_CQE_SKIP) && 1576 unlikely(!io_fill_cqe_req(ctx, req))) { 1577 if (ctx->lockless_cq) { 1578 spin_lock(&ctx->completion_lock); 1579 io_req_cqe_overflow(req); 1580 spin_unlock(&ctx->completion_lock); 1581 } else { 1582 io_req_cqe_overflow(req); 1583 } 1584 } 1585 } 1586 __io_cq_unlock_post(ctx); 1587 1588 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1589 io_free_batch_list(ctx, state->compl_reqs.first); 1590 INIT_WQ_LIST(&state->compl_reqs); 1591 } 1592 } 1593 1594 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1595 { 1596 /* See comment at the top of this file */ 1597 smp_rmb(); 1598 return __io_cqring_events(ctx); 1599 } 1600 1601 /* 1602 * We can't just wait for polled events to come to us, we have to actively 1603 * find and complete them. 1604 */ 1605 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1606 { 1607 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1608 return; 1609 1610 mutex_lock(&ctx->uring_lock); 1611 while (!wq_list_empty(&ctx->iopoll_list)) { 1612 /* let it sleep and repeat later if can't complete a request */ 1613 if (io_do_iopoll(ctx, true) == 0) 1614 break; 1615 /* 1616 * Ensure we allow local-to-the-cpu processing to take place, 1617 * in this case we need to ensure that we reap all events. 1618 * Also let task_work, etc. to progress by releasing the mutex 1619 */ 1620 if (need_resched()) { 1621 mutex_unlock(&ctx->uring_lock); 1622 cond_resched(); 1623 mutex_lock(&ctx->uring_lock); 1624 } 1625 } 1626 mutex_unlock(&ctx->uring_lock); 1627 } 1628 1629 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1630 { 1631 unsigned int nr_events = 0; 1632 unsigned long check_cq; 1633 1634 if (!io_allowed_run_tw(ctx)) 1635 return -EEXIST; 1636 1637 check_cq = READ_ONCE(ctx->check_cq); 1638 if (unlikely(check_cq)) { 1639 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1640 __io_cqring_overflow_flush(ctx); 1641 /* 1642 * Similarly do not spin if we have not informed the user of any 1643 * dropped CQE. 1644 */ 1645 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1646 return -EBADR; 1647 } 1648 /* 1649 * Don't enter poll loop if we already have events pending. 1650 * If we do, we can potentially be spinning for commands that 1651 * already triggered a CQE (eg in error). 1652 */ 1653 if (io_cqring_events(ctx)) 1654 return 0; 1655 1656 do { 1657 int ret = 0; 1658 1659 /* 1660 * If a submit got punted to a workqueue, we can have the 1661 * application entering polling for a command before it gets 1662 * issued. That app will hold the uring_lock for the duration 1663 * of the poll right here, so we need to take a breather every 1664 * now and then to ensure that the issue has a chance to add 1665 * the poll to the issued list. Otherwise we can spin here 1666 * forever, while the workqueue is stuck trying to acquire the 1667 * very same mutex. 1668 */ 1669 if (wq_list_empty(&ctx->iopoll_list) || 1670 io_task_work_pending(ctx)) { 1671 u32 tail = ctx->cached_cq_tail; 1672 1673 (void) io_run_local_work_locked(ctx); 1674 1675 if (task_work_pending(current) || 1676 wq_list_empty(&ctx->iopoll_list)) { 1677 mutex_unlock(&ctx->uring_lock); 1678 io_run_task_work(); 1679 mutex_lock(&ctx->uring_lock); 1680 } 1681 /* some requests don't go through iopoll_list */ 1682 if (tail != ctx->cached_cq_tail || 1683 wq_list_empty(&ctx->iopoll_list)) 1684 break; 1685 } 1686 ret = io_do_iopoll(ctx, !min); 1687 if (unlikely(ret < 0)) 1688 return ret; 1689 1690 if (task_sigpending(current)) 1691 return -EINTR; 1692 if (need_resched()) 1693 break; 1694 1695 nr_events += ret; 1696 } while (nr_events < min); 1697 1698 return 0; 1699 } 1700 1701 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1702 { 1703 if (ts->locked) 1704 io_req_complete_defer(req); 1705 else 1706 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1707 } 1708 1709 /* 1710 * After the iocb has been issued, it's safe to be found on the poll list. 1711 * Adding the kiocb to the list AFTER submission ensures that we don't 1712 * find it from a io_do_iopoll() thread before the issuer is done 1713 * accessing the kiocb cookie. 1714 */ 1715 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1716 { 1717 struct io_ring_ctx *ctx = req->ctx; 1718 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1719 1720 /* workqueue context doesn't hold uring_lock, grab it now */ 1721 if (unlikely(needs_lock)) 1722 mutex_lock(&ctx->uring_lock); 1723 1724 /* 1725 * Track whether we have multiple files in our lists. This will impact 1726 * how we do polling eventually, not spinning if we're on potentially 1727 * different devices. 1728 */ 1729 if (wq_list_empty(&ctx->iopoll_list)) { 1730 ctx->poll_multi_queue = false; 1731 } else if (!ctx->poll_multi_queue) { 1732 struct io_kiocb *list_req; 1733 1734 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1735 comp_list); 1736 if (list_req->file != req->file) 1737 ctx->poll_multi_queue = true; 1738 } 1739 1740 /* 1741 * For fast devices, IO may have already completed. If it has, add 1742 * it to the front so we find it first. 1743 */ 1744 if (READ_ONCE(req->iopoll_completed)) 1745 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1746 else 1747 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1748 1749 if (unlikely(needs_lock)) { 1750 /* 1751 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1752 * in sq thread task context or in io worker task context. If 1753 * current task context is sq thread, we don't need to check 1754 * whether should wake up sq thread. 1755 */ 1756 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1757 wq_has_sleeper(&ctx->sq_data->wait)) 1758 wake_up(&ctx->sq_data->wait); 1759 1760 mutex_unlock(&ctx->uring_lock); 1761 } 1762 } 1763 1764 unsigned int io_file_get_flags(struct file *file) 1765 { 1766 unsigned int res = 0; 1767 1768 if (S_ISREG(file_inode(file)->i_mode)) 1769 res |= REQ_F_ISREG; 1770 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1771 res |= REQ_F_SUPPORT_NOWAIT; 1772 return res; 1773 } 1774 1775 bool io_alloc_async_data(struct io_kiocb *req) 1776 { 1777 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1778 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1779 if (req->async_data) { 1780 req->flags |= REQ_F_ASYNC_DATA; 1781 return false; 1782 } 1783 return true; 1784 } 1785 1786 int io_req_prep_async(struct io_kiocb *req) 1787 { 1788 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1789 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1790 1791 /* assign early for deferred execution for non-fixed file */ 1792 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1793 req->file = io_file_get_normal(req, req->cqe.fd); 1794 if (!cdef->prep_async) 1795 return 0; 1796 if (WARN_ON_ONCE(req_has_async_data(req))) 1797 return -EFAULT; 1798 if (!def->manual_alloc) { 1799 if (io_alloc_async_data(req)) 1800 return -EAGAIN; 1801 } 1802 return cdef->prep_async(req); 1803 } 1804 1805 static u32 io_get_sequence(struct io_kiocb *req) 1806 { 1807 u32 seq = req->ctx->cached_sq_head; 1808 struct io_kiocb *cur; 1809 1810 /* need original cached_sq_head, but it was increased for each req */ 1811 io_for_each_link(cur, req) 1812 seq--; 1813 return seq; 1814 } 1815 1816 static __cold void io_drain_req(struct io_kiocb *req) 1817 __must_hold(&ctx->uring_lock) 1818 { 1819 struct io_ring_ctx *ctx = req->ctx; 1820 struct io_defer_entry *de; 1821 int ret; 1822 u32 seq = io_get_sequence(req); 1823 1824 /* Still need defer if there is pending req in defer list. */ 1825 spin_lock(&ctx->completion_lock); 1826 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1827 spin_unlock(&ctx->completion_lock); 1828 queue: 1829 ctx->drain_active = false; 1830 io_req_task_queue(req); 1831 return; 1832 } 1833 spin_unlock(&ctx->completion_lock); 1834 1835 io_prep_async_link(req); 1836 de = kmalloc(sizeof(*de), GFP_KERNEL); 1837 if (!de) { 1838 ret = -ENOMEM; 1839 io_req_defer_failed(req, ret); 1840 return; 1841 } 1842 1843 spin_lock(&ctx->completion_lock); 1844 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1845 spin_unlock(&ctx->completion_lock); 1846 kfree(de); 1847 goto queue; 1848 } 1849 1850 trace_io_uring_defer(req); 1851 de->req = req; 1852 de->seq = seq; 1853 list_add_tail(&de->list, &ctx->defer_list); 1854 spin_unlock(&ctx->completion_lock); 1855 } 1856 1857 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1858 unsigned int issue_flags) 1859 { 1860 if (req->file || !def->needs_file) 1861 return true; 1862 1863 if (req->flags & REQ_F_FIXED_FILE) 1864 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1865 else 1866 req->file = io_file_get_normal(req, req->cqe.fd); 1867 1868 return !!req->file; 1869 } 1870 1871 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1872 { 1873 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1874 const struct cred *creds = NULL; 1875 int ret; 1876 1877 if (unlikely(!io_assign_file(req, def, issue_flags))) 1878 return -EBADF; 1879 1880 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1881 creds = override_creds(req->creds); 1882 1883 if (!def->audit_skip) 1884 audit_uring_entry(req->opcode); 1885 1886 ret = def->issue(req, issue_flags); 1887 1888 if (!def->audit_skip) 1889 audit_uring_exit(!ret, ret); 1890 1891 if (creds) 1892 revert_creds(creds); 1893 1894 if (ret == IOU_OK) { 1895 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1896 io_req_complete_defer(req); 1897 else 1898 io_req_complete_post(req, issue_flags); 1899 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1900 return ret; 1901 1902 /* If the op doesn't have a file, we're not polling for it */ 1903 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1904 io_iopoll_req_issued(req, issue_flags); 1905 1906 return 0; 1907 } 1908 1909 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1910 { 1911 io_tw_lock(req->ctx, ts); 1912 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1913 IO_URING_F_COMPLETE_DEFER); 1914 } 1915 1916 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1917 { 1918 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1919 struct io_kiocb *nxt = NULL; 1920 1921 if (req_ref_put_and_test(req)) { 1922 if (req->flags & IO_REQ_LINK_FLAGS) 1923 nxt = io_req_find_next(req); 1924 io_free_req(req); 1925 } 1926 return nxt ? &nxt->work : NULL; 1927 } 1928 1929 void io_wq_submit_work(struct io_wq_work *work) 1930 { 1931 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1932 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1933 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1934 bool needs_poll = false; 1935 int ret = 0, err = -ECANCELED; 1936 1937 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1938 if (!(req->flags & REQ_F_REFCOUNT)) 1939 __io_req_set_refcount(req, 2); 1940 else 1941 req_ref_get(req); 1942 1943 io_arm_ltimeout(req); 1944 1945 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1946 if (work->flags & IO_WQ_WORK_CANCEL) { 1947 fail: 1948 io_req_task_queue_fail(req, err); 1949 return; 1950 } 1951 if (!io_assign_file(req, def, issue_flags)) { 1952 err = -EBADF; 1953 work->flags |= IO_WQ_WORK_CANCEL; 1954 goto fail; 1955 } 1956 1957 if (req->flags & REQ_F_FORCE_ASYNC) { 1958 bool opcode_poll = def->pollin || def->pollout; 1959 1960 if (opcode_poll && file_can_poll(req->file)) { 1961 needs_poll = true; 1962 issue_flags |= IO_URING_F_NONBLOCK; 1963 } 1964 } 1965 1966 do { 1967 ret = io_issue_sqe(req, issue_flags); 1968 if (ret != -EAGAIN) 1969 break; 1970 1971 /* 1972 * If REQ_F_NOWAIT is set, then don't wait or retry with 1973 * poll. -EAGAIN is final for that case. 1974 */ 1975 if (req->flags & REQ_F_NOWAIT) 1976 break; 1977 1978 /* 1979 * We can get EAGAIN for iopolled IO even though we're 1980 * forcing a sync submission from here, since we can't 1981 * wait for request slots on the block side. 1982 */ 1983 if (!needs_poll) { 1984 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1985 break; 1986 if (io_wq_worker_stopped()) 1987 break; 1988 cond_resched(); 1989 continue; 1990 } 1991 1992 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1993 return; 1994 /* aborted or ready, in either case retry blocking */ 1995 needs_poll = false; 1996 issue_flags &= ~IO_URING_F_NONBLOCK; 1997 } while (1); 1998 1999 /* avoid locking problems by failing it from a clean context */ 2000 if (ret < 0) 2001 io_req_task_queue_fail(req, ret); 2002 } 2003 2004 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2005 unsigned int issue_flags) 2006 { 2007 struct io_ring_ctx *ctx = req->ctx; 2008 struct io_fixed_file *slot; 2009 struct file *file = NULL; 2010 2011 io_ring_submit_lock(ctx, issue_flags); 2012 2013 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2014 goto out; 2015 fd = array_index_nospec(fd, ctx->nr_user_files); 2016 slot = io_fixed_file_slot(&ctx->file_table, fd); 2017 file = io_slot_file(slot); 2018 req->flags |= io_slot_flags(slot); 2019 io_req_set_rsrc_node(req, ctx, 0); 2020 out: 2021 io_ring_submit_unlock(ctx, issue_flags); 2022 return file; 2023 } 2024 2025 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2026 { 2027 struct file *file = fget(fd); 2028 2029 trace_io_uring_file_get(req, fd); 2030 2031 /* we don't allow fixed io_uring files */ 2032 if (file && io_is_uring_fops(file)) 2033 io_req_track_inflight(req); 2034 return file; 2035 } 2036 2037 static void io_queue_async(struct io_kiocb *req, int ret) 2038 __must_hold(&req->ctx->uring_lock) 2039 { 2040 struct io_kiocb *linked_timeout; 2041 2042 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2043 io_req_defer_failed(req, ret); 2044 return; 2045 } 2046 2047 linked_timeout = io_prep_linked_timeout(req); 2048 2049 switch (io_arm_poll_handler(req, 0)) { 2050 case IO_APOLL_READY: 2051 io_kbuf_recycle(req, 0); 2052 io_req_task_queue(req); 2053 break; 2054 case IO_APOLL_ABORTED: 2055 io_kbuf_recycle(req, 0); 2056 io_queue_iowq(req, NULL); 2057 break; 2058 case IO_APOLL_OK: 2059 break; 2060 } 2061 2062 if (linked_timeout) 2063 io_queue_linked_timeout(linked_timeout); 2064 } 2065 2066 static inline void io_queue_sqe(struct io_kiocb *req) 2067 __must_hold(&req->ctx->uring_lock) 2068 { 2069 int ret; 2070 2071 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2072 2073 /* 2074 * We async punt it if the file wasn't marked NOWAIT, or if the file 2075 * doesn't support non-blocking read/write attempts 2076 */ 2077 if (likely(!ret)) 2078 io_arm_ltimeout(req); 2079 else 2080 io_queue_async(req, ret); 2081 } 2082 2083 static void io_queue_sqe_fallback(struct io_kiocb *req) 2084 __must_hold(&req->ctx->uring_lock) 2085 { 2086 if (unlikely(req->flags & REQ_F_FAIL)) { 2087 /* 2088 * We don't submit, fail them all, for that replace hardlinks 2089 * with normal links. Extra REQ_F_LINK is tolerated. 2090 */ 2091 req->flags &= ~REQ_F_HARDLINK; 2092 req->flags |= REQ_F_LINK; 2093 io_req_defer_failed(req, req->cqe.res); 2094 } else { 2095 int ret = io_req_prep_async(req); 2096 2097 if (unlikely(ret)) { 2098 io_req_defer_failed(req, ret); 2099 return; 2100 } 2101 2102 if (unlikely(req->ctx->drain_active)) 2103 io_drain_req(req); 2104 else 2105 io_queue_iowq(req, NULL); 2106 } 2107 } 2108 2109 /* 2110 * Check SQE restrictions (opcode and flags). 2111 * 2112 * Returns 'true' if SQE is allowed, 'false' otherwise. 2113 */ 2114 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2115 struct io_kiocb *req, 2116 unsigned int sqe_flags) 2117 { 2118 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2119 return false; 2120 2121 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2122 ctx->restrictions.sqe_flags_required) 2123 return false; 2124 2125 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2126 ctx->restrictions.sqe_flags_required)) 2127 return false; 2128 2129 return true; 2130 } 2131 2132 static void io_init_req_drain(struct io_kiocb *req) 2133 { 2134 struct io_ring_ctx *ctx = req->ctx; 2135 struct io_kiocb *head = ctx->submit_state.link.head; 2136 2137 ctx->drain_active = true; 2138 if (head) { 2139 /* 2140 * If we need to drain a request in the middle of a link, drain 2141 * the head request and the next request/link after the current 2142 * link. Considering sequential execution of links, 2143 * REQ_F_IO_DRAIN will be maintained for every request of our 2144 * link. 2145 */ 2146 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2147 ctx->drain_next = true; 2148 } 2149 } 2150 2151 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2152 const struct io_uring_sqe *sqe) 2153 __must_hold(&ctx->uring_lock) 2154 { 2155 const struct io_issue_def *def; 2156 unsigned int sqe_flags; 2157 int personality; 2158 u8 opcode; 2159 2160 /* req is partially pre-initialised, see io_preinit_req() */ 2161 req->opcode = opcode = READ_ONCE(sqe->opcode); 2162 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2163 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2164 req->cqe.user_data = READ_ONCE(sqe->user_data); 2165 req->file = NULL; 2166 req->rsrc_node = NULL; 2167 req->task = current; 2168 2169 if (unlikely(opcode >= IORING_OP_LAST)) { 2170 req->opcode = 0; 2171 return -EINVAL; 2172 } 2173 def = &io_issue_defs[opcode]; 2174 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2175 /* enforce forwards compatibility on users */ 2176 if (sqe_flags & ~SQE_VALID_FLAGS) 2177 return -EINVAL; 2178 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2179 if (!def->buffer_select) 2180 return -EOPNOTSUPP; 2181 req->buf_index = READ_ONCE(sqe->buf_group); 2182 } 2183 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2184 ctx->drain_disabled = true; 2185 if (sqe_flags & IOSQE_IO_DRAIN) { 2186 if (ctx->drain_disabled) 2187 return -EOPNOTSUPP; 2188 io_init_req_drain(req); 2189 } 2190 } 2191 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2192 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2193 return -EACCES; 2194 /* knock it to the slow queue path, will be drained there */ 2195 if (ctx->drain_active) 2196 req->flags |= REQ_F_FORCE_ASYNC; 2197 /* if there is no link, we're at "next" request and need to drain */ 2198 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2199 ctx->drain_next = false; 2200 ctx->drain_active = true; 2201 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2202 } 2203 } 2204 2205 if (!def->ioprio && sqe->ioprio) 2206 return -EINVAL; 2207 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2208 return -EINVAL; 2209 2210 if (def->needs_file) { 2211 struct io_submit_state *state = &ctx->submit_state; 2212 2213 req->cqe.fd = READ_ONCE(sqe->fd); 2214 2215 /* 2216 * Plug now if we have more than 2 IO left after this, and the 2217 * target is potentially a read/write to block based storage. 2218 */ 2219 if (state->need_plug && def->plug) { 2220 state->plug_started = true; 2221 state->need_plug = false; 2222 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2223 } 2224 } 2225 2226 personality = READ_ONCE(sqe->personality); 2227 if (personality) { 2228 int ret; 2229 2230 req->creds = xa_load(&ctx->personalities, personality); 2231 if (!req->creds) 2232 return -EINVAL; 2233 get_cred(req->creds); 2234 ret = security_uring_override_creds(req->creds); 2235 if (ret) { 2236 put_cred(req->creds); 2237 return ret; 2238 } 2239 req->flags |= REQ_F_CREDS; 2240 } 2241 2242 return def->prep(req, sqe); 2243 } 2244 2245 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2246 struct io_kiocb *req, int ret) 2247 { 2248 struct io_ring_ctx *ctx = req->ctx; 2249 struct io_submit_link *link = &ctx->submit_state.link; 2250 struct io_kiocb *head = link->head; 2251 2252 trace_io_uring_req_failed(sqe, req, ret); 2253 2254 /* 2255 * Avoid breaking links in the middle as it renders links with SQPOLL 2256 * unusable. Instead of failing eagerly, continue assembling the link if 2257 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2258 * should find the flag and handle the rest. 2259 */ 2260 req_fail_link_node(req, ret); 2261 if (head && !(head->flags & REQ_F_FAIL)) 2262 req_fail_link_node(head, -ECANCELED); 2263 2264 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2265 if (head) { 2266 link->last->link = req; 2267 link->head = NULL; 2268 req = head; 2269 } 2270 io_queue_sqe_fallback(req); 2271 return ret; 2272 } 2273 2274 if (head) 2275 link->last->link = req; 2276 else 2277 link->head = req; 2278 link->last = req; 2279 return 0; 2280 } 2281 2282 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2283 const struct io_uring_sqe *sqe) 2284 __must_hold(&ctx->uring_lock) 2285 { 2286 struct io_submit_link *link = &ctx->submit_state.link; 2287 int ret; 2288 2289 ret = io_init_req(ctx, req, sqe); 2290 if (unlikely(ret)) 2291 return io_submit_fail_init(sqe, req, ret); 2292 2293 trace_io_uring_submit_req(req); 2294 2295 /* 2296 * If we already have a head request, queue this one for async 2297 * submittal once the head completes. If we don't have a head but 2298 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2299 * submitted sync once the chain is complete. If none of those 2300 * conditions are true (normal request), then just queue it. 2301 */ 2302 if (unlikely(link->head)) { 2303 ret = io_req_prep_async(req); 2304 if (unlikely(ret)) 2305 return io_submit_fail_init(sqe, req, ret); 2306 2307 trace_io_uring_link(req, link->head); 2308 link->last->link = req; 2309 link->last = req; 2310 2311 if (req->flags & IO_REQ_LINK_FLAGS) 2312 return 0; 2313 /* last request of the link, flush it */ 2314 req = link->head; 2315 link->head = NULL; 2316 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2317 goto fallback; 2318 2319 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2320 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2321 if (req->flags & IO_REQ_LINK_FLAGS) { 2322 link->head = req; 2323 link->last = req; 2324 } else { 2325 fallback: 2326 io_queue_sqe_fallback(req); 2327 } 2328 return 0; 2329 } 2330 2331 io_queue_sqe(req); 2332 return 0; 2333 } 2334 2335 /* 2336 * Batched submission is done, ensure local IO is flushed out. 2337 */ 2338 static void io_submit_state_end(struct io_ring_ctx *ctx) 2339 { 2340 struct io_submit_state *state = &ctx->submit_state; 2341 2342 if (unlikely(state->link.head)) 2343 io_queue_sqe_fallback(state->link.head); 2344 /* flush only after queuing links as they can generate completions */ 2345 io_submit_flush_completions(ctx); 2346 if (state->plug_started) 2347 blk_finish_plug(&state->plug); 2348 } 2349 2350 /* 2351 * Start submission side cache. 2352 */ 2353 static void io_submit_state_start(struct io_submit_state *state, 2354 unsigned int max_ios) 2355 { 2356 state->plug_started = false; 2357 state->need_plug = max_ios > 2; 2358 state->submit_nr = max_ios; 2359 /* set only head, no need to init link_last in advance */ 2360 state->link.head = NULL; 2361 } 2362 2363 static void io_commit_sqring(struct io_ring_ctx *ctx) 2364 { 2365 struct io_rings *rings = ctx->rings; 2366 2367 /* 2368 * Ensure any loads from the SQEs are done at this point, 2369 * since once we write the new head, the application could 2370 * write new data to them. 2371 */ 2372 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2373 } 2374 2375 /* 2376 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2377 * that is mapped by userspace. This means that care needs to be taken to 2378 * ensure that reads are stable, as we cannot rely on userspace always 2379 * being a good citizen. If members of the sqe are validated and then later 2380 * used, it's important that those reads are done through READ_ONCE() to 2381 * prevent a re-load down the line. 2382 */ 2383 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2384 { 2385 unsigned mask = ctx->sq_entries - 1; 2386 unsigned head = ctx->cached_sq_head++ & mask; 2387 2388 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2389 head = READ_ONCE(ctx->sq_array[head]); 2390 if (unlikely(head >= ctx->sq_entries)) { 2391 /* drop invalid entries */ 2392 spin_lock(&ctx->completion_lock); 2393 ctx->cq_extra--; 2394 spin_unlock(&ctx->completion_lock); 2395 WRITE_ONCE(ctx->rings->sq_dropped, 2396 READ_ONCE(ctx->rings->sq_dropped) + 1); 2397 return false; 2398 } 2399 } 2400 2401 /* 2402 * The cached sq head (or cq tail) serves two purposes: 2403 * 2404 * 1) allows us to batch the cost of updating the user visible 2405 * head updates. 2406 * 2) allows the kernel side to track the head on its own, even 2407 * though the application is the one updating it. 2408 */ 2409 2410 /* double index for 128-byte SQEs, twice as long */ 2411 if (ctx->flags & IORING_SETUP_SQE128) 2412 head <<= 1; 2413 *sqe = &ctx->sq_sqes[head]; 2414 return true; 2415 } 2416 2417 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2418 __must_hold(&ctx->uring_lock) 2419 { 2420 unsigned int entries = io_sqring_entries(ctx); 2421 unsigned int left; 2422 int ret; 2423 2424 if (unlikely(!entries)) 2425 return 0; 2426 /* make sure SQ entry isn't read before tail */ 2427 ret = left = min(nr, entries); 2428 io_get_task_refs(left); 2429 io_submit_state_start(&ctx->submit_state, left); 2430 2431 do { 2432 const struct io_uring_sqe *sqe; 2433 struct io_kiocb *req; 2434 2435 if (unlikely(!io_alloc_req(ctx, &req))) 2436 break; 2437 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2438 io_req_add_to_cache(req, ctx); 2439 break; 2440 } 2441 2442 /* 2443 * Continue submitting even for sqe failure if the 2444 * ring was setup with IORING_SETUP_SUBMIT_ALL 2445 */ 2446 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2447 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2448 left--; 2449 break; 2450 } 2451 } while (--left); 2452 2453 if (unlikely(left)) { 2454 ret -= left; 2455 /* try again if it submitted nothing and can't allocate a req */ 2456 if (!ret && io_req_cache_empty(ctx)) 2457 ret = -EAGAIN; 2458 current->io_uring->cached_refs += left; 2459 } 2460 2461 io_submit_state_end(ctx); 2462 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2463 io_commit_sqring(ctx); 2464 return ret; 2465 } 2466 2467 struct io_wait_queue { 2468 struct wait_queue_entry wq; 2469 struct io_ring_ctx *ctx; 2470 unsigned cq_tail; 2471 unsigned nr_timeouts; 2472 ktime_t timeout; 2473 }; 2474 2475 static inline bool io_has_work(struct io_ring_ctx *ctx) 2476 { 2477 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2478 !llist_empty(&ctx->work_llist); 2479 } 2480 2481 static inline bool io_should_wake(struct io_wait_queue *iowq) 2482 { 2483 struct io_ring_ctx *ctx = iowq->ctx; 2484 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2485 2486 /* 2487 * Wake up if we have enough events, or if a timeout occurred since we 2488 * started waiting. For timeouts, we always want to return to userspace, 2489 * regardless of event count. 2490 */ 2491 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2492 } 2493 2494 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2495 int wake_flags, void *key) 2496 { 2497 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2498 2499 /* 2500 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2501 * the task, and the next invocation will do it. 2502 */ 2503 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2504 return autoremove_wake_function(curr, mode, wake_flags, key); 2505 return -1; 2506 } 2507 2508 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2509 { 2510 if (!llist_empty(&ctx->work_llist)) { 2511 __set_current_state(TASK_RUNNING); 2512 if (io_run_local_work(ctx) > 0) 2513 return 0; 2514 } 2515 if (io_run_task_work() > 0) 2516 return 0; 2517 if (task_sigpending(current)) 2518 return -EINTR; 2519 return 0; 2520 } 2521 2522 static bool current_pending_io(void) 2523 { 2524 struct io_uring_task *tctx = current->io_uring; 2525 2526 if (!tctx) 2527 return false; 2528 return percpu_counter_read_positive(&tctx->inflight); 2529 } 2530 2531 /* when returns >0, the caller should retry */ 2532 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2533 struct io_wait_queue *iowq) 2534 { 2535 int io_wait, ret; 2536 2537 if (unlikely(READ_ONCE(ctx->check_cq))) 2538 return 1; 2539 if (unlikely(!llist_empty(&ctx->work_llist))) 2540 return 1; 2541 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2542 return 1; 2543 if (unlikely(task_sigpending(current))) 2544 return -EINTR; 2545 if (unlikely(io_should_wake(iowq))) 2546 return 0; 2547 2548 /* 2549 * Mark us as being in io_wait if we have pending requests, so cpufreq 2550 * can take into account that the task is waiting for IO - turns out 2551 * to be important for low QD IO. 2552 */ 2553 io_wait = current->in_iowait; 2554 if (current_pending_io()) 2555 current->in_iowait = 1; 2556 ret = 0; 2557 if (iowq->timeout == KTIME_MAX) 2558 schedule(); 2559 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2560 ret = -ETIME; 2561 current->in_iowait = io_wait; 2562 return ret; 2563 } 2564 2565 /* 2566 * Wait until events become available, if we don't already have some. The 2567 * application must reap them itself, as they reside on the shared cq ring. 2568 */ 2569 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2570 const sigset_t __user *sig, size_t sigsz, 2571 struct __kernel_timespec __user *uts) 2572 { 2573 struct io_wait_queue iowq; 2574 struct io_rings *rings = ctx->rings; 2575 int ret; 2576 2577 if (!io_allowed_run_tw(ctx)) 2578 return -EEXIST; 2579 if (!llist_empty(&ctx->work_llist)) 2580 io_run_local_work(ctx); 2581 io_run_task_work(); 2582 io_cqring_overflow_flush(ctx); 2583 /* if user messes with these they will just get an early return */ 2584 if (__io_cqring_events_user(ctx) >= min_events) 2585 return 0; 2586 2587 if (sig) { 2588 #ifdef CONFIG_COMPAT 2589 if (in_compat_syscall()) 2590 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2591 sigsz); 2592 else 2593 #endif 2594 ret = set_user_sigmask(sig, sigsz); 2595 2596 if (ret) 2597 return ret; 2598 } 2599 2600 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2601 iowq.wq.private = current; 2602 INIT_LIST_HEAD(&iowq.wq.entry); 2603 iowq.ctx = ctx; 2604 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2605 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2606 iowq.timeout = KTIME_MAX; 2607 2608 if (uts) { 2609 struct timespec64 ts; 2610 2611 if (get_timespec64(&ts, uts)) 2612 return -EFAULT; 2613 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2614 } 2615 2616 trace_io_uring_cqring_wait(ctx, min_events); 2617 do { 2618 unsigned long check_cq; 2619 2620 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2621 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2622 2623 atomic_set(&ctx->cq_wait_nr, nr_wait); 2624 set_current_state(TASK_INTERRUPTIBLE); 2625 } else { 2626 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2627 TASK_INTERRUPTIBLE); 2628 } 2629 2630 ret = io_cqring_wait_schedule(ctx, &iowq); 2631 __set_current_state(TASK_RUNNING); 2632 atomic_set(&ctx->cq_wait_nr, 0); 2633 2634 if (ret < 0) 2635 break; 2636 /* 2637 * Run task_work after scheduling and before io_should_wake(). 2638 * If we got woken because of task_work being processed, run it 2639 * now rather than let the caller do another wait loop. 2640 */ 2641 io_run_task_work(); 2642 if (!llist_empty(&ctx->work_llist)) 2643 io_run_local_work(ctx); 2644 2645 check_cq = READ_ONCE(ctx->check_cq); 2646 if (unlikely(check_cq)) { 2647 /* let the caller flush overflows, retry */ 2648 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2649 io_cqring_do_overflow_flush(ctx); 2650 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2651 ret = -EBADR; 2652 break; 2653 } 2654 } 2655 2656 if (io_should_wake(&iowq)) { 2657 ret = 0; 2658 break; 2659 } 2660 cond_resched(); 2661 } while (1); 2662 2663 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2664 finish_wait(&ctx->cq_wait, &iowq.wq); 2665 restore_saved_sigmask_unless(ret == -EINTR); 2666 2667 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2668 } 2669 2670 void io_mem_free(void *ptr) 2671 { 2672 if (!ptr) 2673 return; 2674 2675 folio_put(virt_to_folio(ptr)); 2676 } 2677 2678 static void io_pages_free(struct page ***pages, int npages) 2679 { 2680 struct page **page_array; 2681 int i; 2682 2683 if (!pages) 2684 return; 2685 2686 page_array = *pages; 2687 if (!page_array) 2688 return; 2689 2690 for (i = 0; i < npages; i++) 2691 unpin_user_page(page_array[i]); 2692 kvfree(page_array); 2693 *pages = NULL; 2694 } 2695 2696 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2697 unsigned long uaddr, size_t size) 2698 { 2699 struct page **page_array; 2700 unsigned int nr_pages; 2701 void *page_addr; 2702 int ret, i; 2703 2704 *npages = 0; 2705 2706 if (uaddr & (PAGE_SIZE - 1) || !size) 2707 return ERR_PTR(-EINVAL); 2708 2709 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2710 if (nr_pages > USHRT_MAX) 2711 return ERR_PTR(-EINVAL); 2712 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2713 if (!page_array) 2714 return ERR_PTR(-ENOMEM); 2715 2716 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2717 page_array); 2718 if (ret != nr_pages) { 2719 err: 2720 io_pages_free(&page_array, ret > 0 ? ret : 0); 2721 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2722 } 2723 2724 page_addr = page_address(page_array[0]); 2725 for (i = 0; i < nr_pages; i++) { 2726 ret = -EINVAL; 2727 2728 /* 2729 * Can't support mapping user allocated ring memory on 32-bit 2730 * archs where it could potentially reside in highmem. Just 2731 * fail those with -EINVAL, just like we did on kernels that 2732 * didn't support this feature. 2733 */ 2734 if (PageHighMem(page_array[i])) 2735 goto err; 2736 2737 /* 2738 * No support for discontig pages for now, should either be a 2739 * single normal page, or a huge page. Later on we can add 2740 * support for remapping discontig pages, for now we will 2741 * just fail them with EINVAL. 2742 */ 2743 if (page_address(page_array[i]) != page_addr) 2744 goto err; 2745 page_addr += PAGE_SIZE; 2746 } 2747 2748 *pages = page_array; 2749 *npages = nr_pages; 2750 return page_to_virt(page_array[0]); 2751 } 2752 2753 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2754 size_t size) 2755 { 2756 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2757 size); 2758 } 2759 2760 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2761 size_t size) 2762 { 2763 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2764 size); 2765 } 2766 2767 static void io_rings_free(struct io_ring_ctx *ctx) 2768 { 2769 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2770 io_mem_free(ctx->rings); 2771 io_mem_free(ctx->sq_sqes); 2772 ctx->rings = NULL; 2773 ctx->sq_sqes = NULL; 2774 } else { 2775 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2776 ctx->n_ring_pages = 0; 2777 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2778 ctx->n_sqe_pages = 0; 2779 } 2780 } 2781 2782 void *io_mem_alloc(size_t size) 2783 { 2784 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2785 void *ret; 2786 2787 ret = (void *) __get_free_pages(gfp, get_order(size)); 2788 if (ret) 2789 return ret; 2790 return ERR_PTR(-ENOMEM); 2791 } 2792 2793 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2794 unsigned int cq_entries, size_t *sq_offset) 2795 { 2796 struct io_rings *rings; 2797 size_t off, sq_array_size; 2798 2799 off = struct_size(rings, cqes, cq_entries); 2800 if (off == SIZE_MAX) 2801 return SIZE_MAX; 2802 if (ctx->flags & IORING_SETUP_CQE32) { 2803 if (check_shl_overflow(off, 1, &off)) 2804 return SIZE_MAX; 2805 } 2806 2807 #ifdef CONFIG_SMP 2808 off = ALIGN(off, SMP_CACHE_BYTES); 2809 if (off == 0) 2810 return SIZE_MAX; 2811 #endif 2812 2813 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2814 if (sq_offset) 2815 *sq_offset = SIZE_MAX; 2816 return off; 2817 } 2818 2819 if (sq_offset) 2820 *sq_offset = off; 2821 2822 sq_array_size = array_size(sizeof(u32), sq_entries); 2823 if (sq_array_size == SIZE_MAX) 2824 return SIZE_MAX; 2825 2826 if (check_add_overflow(off, sq_array_size, &off)) 2827 return SIZE_MAX; 2828 2829 return off; 2830 } 2831 2832 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2833 unsigned int eventfd_async) 2834 { 2835 struct io_ev_fd *ev_fd; 2836 __s32 __user *fds = arg; 2837 int fd; 2838 2839 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2840 lockdep_is_held(&ctx->uring_lock)); 2841 if (ev_fd) 2842 return -EBUSY; 2843 2844 if (copy_from_user(&fd, fds, sizeof(*fds))) 2845 return -EFAULT; 2846 2847 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2848 if (!ev_fd) 2849 return -ENOMEM; 2850 2851 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2852 if (IS_ERR(ev_fd->cq_ev_fd)) { 2853 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2854 kfree(ev_fd); 2855 return ret; 2856 } 2857 2858 spin_lock(&ctx->completion_lock); 2859 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2860 spin_unlock(&ctx->completion_lock); 2861 2862 ev_fd->eventfd_async = eventfd_async; 2863 ctx->has_evfd = true; 2864 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2865 atomic_set(&ev_fd->refs, 1); 2866 atomic_set(&ev_fd->ops, 0); 2867 return 0; 2868 } 2869 2870 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2871 { 2872 struct io_ev_fd *ev_fd; 2873 2874 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2875 lockdep_is_held(&ctx->uring_lock)); 2876 if (ev_fd) { 2877 ctx->has_evfd = false; 2878 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2879 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2880 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2881 return 0; 2882 } 2883 2884 return -ENXIO; 2885 } 2886 2887 static void io_req_caches_free(struct io_ring_ctx *ctx) 2888 { 2889 struct io_kiocb *req; 2890 int nr = 0; 2891 2892 mutex_lock(&ctx->uring_lock); 2893 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2894 2895 while (!io_req_cache_empty(ctx)) { 2896 req = io_extract_req(ctx); 2897 kmem_cache_free(req_cachep, req); 2898 nr++; 2899 } 2900 if (nr) 2901 percpu_ref_put_many(&ctx->refs, nr); 2902 mutex_unlock(&ctx->uring_lock); 2903 } 2904 2905 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2906 { 2907 kfree(container_of(entry, struct io_rsrc_node, cache)); 2908 } 2909 2910 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2911 { 2912 io_sq_thread_finish(ctx); 2913 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2914 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2915 return; 2916 2917 mutex_lock(&ctx->uring_lock); 2918 if (ctx->buf_data) 2919 __io_sqe_buffers_unregister(ctx); 2920 if (ctx->file_data) 2921 __io_sqe_files_unregister(ctx); 2922 io_cqring_overflow_kill(ctx); 2923 io_eventfd_unregister(ctx); 2924 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2925 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2926 io_futex_cache_free(ctx); 2927 io_destroy_buffers(ctx); 2928 mutex_unlock(&ctx->uring_lock); 2929 if (ctx->sq_creds) 2930 put_cred(ctx->sq_creds); 2931 if (ctx->submitter_task) 2932 put_task_struct(ctx->submitter_task); 2933 2934 /* there are no registered resources left, nobody uses it */ 2935 if (ctx->rsrc_node) 2936 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2937 2938 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2939 2940 #if defined(CONFIG_UNIX) 2941 if (ctx->ring_sock) { 2942 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2943 sock_release(ctx->ring_sock); 2944 } 2945 #endif 2946 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2947 2948 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2949 if (ctx->mm_account) { 2950 mmdrop(ctx->mm_account); 2951 ctx->mm_account = NULL; 2952 } 2953 io_rings_free(ctx); 2954 io_kbuf_mmap_list_free(ctx); 2955 2956 percpu_ref_exit(&ctx->refs); 2957 free_uid(ctx->user); 2958 io_req_caches_free(ctx); 2959 if (ctx->hash_map) 2960 io_wq_put_hash(ctx->hash_map); 2961 kfree(ctx->cancel_table.hbs); 2962 kfree(ctx->cancel_table_locked.hbs); 2963 kfree(ctx->io_bl); 2964 xa_destroy(&ctx->io_bl_xa); 2965 kfree(ctx); 2966 } 2967 2968 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2969 { 2970 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2971 poll_wq_task_work); 2972 2973 mutex_lock(&ctx->uring_lock); 2974 ctx->poll_activated = true; 2975 mutex_unlock(&ctx->uring_lock); 2976 2977 /* 2978 * Wake ups for some events between start of polling and activation 2979 * might've been lost due to loose synchronisation. 2980 */ 2981 wake_up_all(&ctx->poll_wq); 2982 percpu_ref_put(&ctx->refs); 2983 } 2984 2985 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2986 { 2987 spin_lock(&ctx->completion_lock); 2988 /* already activated or in progress */ 2989 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2990 goto out; 2991 if (WARN_ON_ONCE(!ctx->task_complete)) 2992 goto out; 2993 if (!ctx->submitter_task) 2994 goto out; 2995 /* 2996 * with ->submitter_task only the submitter task completes requests, we 2997 * only need to sync with it, which is done by injecting a tw 2998 */ 2999 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 3000 percpu_ref_get(&ctx->refs); 3001 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 3002 percpu_ref_put(&ctx->refs); 3003 out: 3004 spin_unlock(&ctx->completion_lock); 3005 } 3006 3007 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 3008 { 3009 struct io_ring_ctx *ctx = file->private_data; 3010 __poll_t mask = 0; 3011 3012 if (unlikely(!ctx->poll_activated)) 3013 io_activate_pollwq(ctx); 3014 3015 poll_wait(file, &ctx->poll_wq, wait); 3016 /* 3017 * synchronizes with barrier from wq_has_sleeper call in 3018 * io_commit_cqring 3019 */ 3020 smp_rmb(); 3021 if (!io_sqring_full(ctx)) 3022 mask |= EPOLLOUT | EPOLLWRNORM; 3023 3024 /* 3025 * Don't flush cqring overflow list here, just do a simple check. 3026 * Otherwise there could possible be ABBA deadlock: 3027 * CPU0 CPU1 3028 * ---- ---- 3029 * lock(&ctx->uring_lock); 3030 * lock(&ep->mtx); 3031 * lock(&ctx->uring_lock); 3032 * lock(&ep->mtx); 3033 * 3034 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3035 * pushes them to do the flush. 3036 */ 3037 3038 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3039 mask |= EPOLLIN | EPOLLRDNORM; 3040 3041 return mask; 3042 } 3043 3044 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3045 { 3046 const struct cred *creds; 3047 3048 creds = xa_erase(&ctx->personalities, id); 3049 if (creds) { 3050 put_cred(creds); 3051 return 0; 3052 } 3053 3054 return -EINVAL; 3055 } 3056 3057 struct io_tctx_exit { 3058 struct callback_head task_work; 3059 struct completion completion; 3060 struct io_ring_ctx *ctx; 3061 }; 3062 3063 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3064 { 3065 struct io_uring_task *tctx = current->io_uring; 3066 struct io_tctx_exit *work; 3067 3068 work = container_of(cb, struct io_tctx_exit, task_work); 3069 /* 3070 * When @in_cancel, we're in cancellation and it's racy to remove the 3071 * node. It'll be removed by the end of cancellation, just ignore it. 3072 * tctx can be NULL if the queueing of this task_work raced with 3073 * work cancelation off the exec path. 3074 */ 3075 if (tctx && !atomic_read(&tctx->in_cancel)) 3076 io_uring_del_tctx_node((unsigned long)work->ctx); 3077 complete(&work->completion); 3078 } 3079 3080 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3081 { 3082 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3083 3084 return req->ctx == data; 3085 } 3086 3087 static __cold void io_ring_exit_work(struct work_struct *work) 3088 { 3089 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3090 unsigned long timeout = jiffies + HZ * 60 * 5; 3091 unsigned long interval = HZ / 20; 3092 struct io_tctx_exit exit; 3093 struct io_tctx_node *node; 3094 int ret; 3095 3096 /* 3097 * If we're doing polled IO and end up having requests being 3098 * submitted async (out-of-line), then completions can come in while 3099 * we're waiting for refs to drop. We need to reap these manually, 3100 * as nobody else will be looking for them. 3101 */ 3102 do { 3103 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3104 mutex_lock(&ctx->uring_lock); 3105 io_cqring_overflow_kill(ctx); 3106 mutex_unlock(&ctx->uring_lock); 3107 } 3108 3109 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3110 io_move_task_work_from_local(ctx); 3111 3112 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3113 cond_resched(); 3114 3115 if (ctx->sq_data) { 3116 struct io_sq_data *sqd = ctx->sq_data; 3117 struct task_struct *tsk; 3118 3119 io_sq_thread_park(sqd); 3120 tsk = sqd->thread; 3121 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3122 io_wq_cancel_cb(tsk->io_uring->io_wq, 3123 io_cancel_ctx_cb, ctx, true); 3124 io_sq_thread_unpark(sqd); 3125 } 3126 3127 io_req_caches_free(ctx); 3128 3129 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3130 /* there is little hope left, don't run it too often */ 3131 interval = HZ * 60; 3132 } 3133 /* 3134 * This is really an uninterruptible wait, as it has to be 3135 * complete. But it's also run from a kworker, which doesn't 3136 * take signals, so it's fine to make it interruptible. This 3137 * avoids scenarios where we knowingly can wait much longer 3138 * on completions, for example if someone does a SIGSTOP on 3139 * a task that needs to finish task_work to make this loop 3140 * complete. That's a synthetic situation that should not 3141 * cause a stuck task backtrace, and hence a potential panic 3142 * on stuck tasks if that is enabled. 3143 */ 3144 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3145 3146 init_completion(&exit.completion); 3147 init_task_work(&exit.task_work, io_tctx_exit_cb); 3148 exit.ctx = ctx; 3149 /* 3150 * Some may use context even when all refs and requests have been put, 3151 * and they are free to do so while still holding uring_lock or 3152 * completion_lock, see io_req_task_submit(). Apart from other work, 3153 * this lock/unlock section also waits them to finish. 3154 */ 3155 mutex_lock(&ctx->uring_lock); 3156 while (!list_empty(&ctx->tctx_list)) { 3157 WARN_ON_ONCE(time_after(jiffies, timeout)); 3158 3159 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3160 ctx_node); 3161 /* don't spin on a single task if cancellation failed */ 3162 list_rotate_left(&ctx->tctx_list); 3163 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3164 if (WARN_ON_ONCE(ret)) 3165 continue; 3166 3167 mutex_unlock(&ctx->uring_lock); 3168 /* 3169 * See comment above for 3170 * wait_for_completion_interruptible_timeout() on why this 3171 * wait is marked as interruptible. 3172 */ 3173 wait_for_completion_interruptible(&exit.completion); 3174 mutex_lock(&ctx->uring_lock); 3175 } 3176 mutex_unlock(&ctx->uring_lock); 3177 spin_lock(&ctx->completion_lock); 3178 spin_unlock(&ctx->completion_lock); 3179 3180 /* pairs with RCU read section in io_req_local_work_add() */ 3181 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3182 synchronize_rcu(); 3183 3184 io_ring_ctx_free(ctx); 3185 } 3186 3187 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3188 { 3189 unsigned long index; 3190 struct creds *creds; 3191 3192 mutex_lock(&ctx->uring_lock); 3193 percpu_ref_kill(&ctx->refs); 3194 xa_for_each(&ctx->personalities, index, creds) 3195 io_unregister_personality(ctx, index); 3196 if (ctx->rings) 3197 io_poll_remove_all(ctx, NULL, true); 3198 mutex_unlock(&ctx->uring_lock); 3199 3200 /* 3201 * If we failed setting up the ctx, we might not have any rings 3202 * and therefore did not submit any requests 3203 */ 3204 if (ctx->rings) 3205 io_kill_timeouts(ctx, NULL, true); 3206 3207 flush_delayed_work(&ctx->fallback_work); 3208 3209 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3210 /* 3211 * Use system_unbound_wq to avoid spawning tons of event kworkers 3212 * if we're exiting a ton of rings at the same time. It just adds 3213 * noise and overhead, there's no discernable change in runtime 3214 * over using system_wq. 3215 */ 3216 queue_work(system_unbound_wq, &ctx->exit_work); 3217 } 3218 3219 static int io_uring_release(struct inode *inode, struct file *file) 3220 { 3221 struct io_ring_ctx *ctx = file->private_data; 3222 3223 file->private_data = NULL; 3224 io_ring_ctx_wait_and_kill(ctx); 3225 return 0; 3226 } 3227 3228 struct io_task_cancel { 3229 struct task_struct *task; 3230 bool all; 3231 }; 3232 3233 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3234 { 3235 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3236 struct io_task_cancel *cancel = data; 3237 3238 return io_match_task_safe(req, cancel->task, cancel->all); 3239 } 3240 3241 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3242 struct task_struct *task, 3243 bool cancel_all) 3244 { 3245 struct io_defer_entry *de; 3246 LIST_HEAD(list); 3247 3248 spin_lock(&ctx->completion_lock); 3249 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3250 if (io_match_task_safe(de->req, task, cancel_all)) { 3251 list_cut_position(&list, &ctx->defer_list, &de->list); 3252 break; 3253 } 3254 } 3255 spin_unlock(&ctx->completion_lock); 3256 if (list_empty(&list)) 3257 return false; 3258 3259 while (!list_empty(&list)) { 3260 de = list_first_entry(&list, struct io_defer_entry, list); 3261 list_del_init(&de->list); 3262 io_req_task_queue_fail(de->req, -ECANCELED); 3263 kfree(de); 3264 } 3265 return true; 3266 } 3267 3268 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3269 { 3270 struct io_tctx_node *node; 3271 enum io_wq_cancel cret; 3272 bool ret = false; 3273 3274 mutex_lock(&ctx->uring_lock); 3275 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3276 struct io_uring_task *tctx = node->task->io_uring; 3277 3278 /* 3279 * io_wq will stay alive while we hold uring_lock, because it's 3280 * killed after ctx nodes, which requires to take the lock. 3281 */ 3282 if (!tctx || !tctx->io_wq) 3283 continue; 3284 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3285 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3286 } 3287 mutex_unlock(&ctx->uring_lock); 3288 3289 return ret; 3290 } 3291 3292 static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx, 3293 struct task_struct *task, bool cancel_all) 3294 { 3295 struct hlist_node *tmp; 3296 struct io_kiocb *req; 3297 bool ret = false; 3298 3299 lockdep_assert_held(&ctx->uring_lock); 3300 3301 hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd, 3302 hash_node) { 3303 struct io_uring_cmd *cmd = io_kiocb_to_cmd(req, 3304 struct io_uring_cmd); 3305 struct file *file = req->file; 3306 3307 if (!cancel_all && req->task != task) 3308 continue; 3309 3310 if (cmd->flags & IORING_URING_CMD_CANCELABLE) { 3311 /* ->sqe isn't available if no async data */ 3312 if (!req_has_async_data(req)) 3313 cmd->sqe = NULL; 3314 file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL); 3315 ret = true; 3316 } 3317 } 3318 io_submit_flush_completions(ctx); 3319 3320 return ret; 3321 } 3322 3323 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3324 struct task_struct *task, 3325 bool cancel_all) 3326 { 3327 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3328 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3329 enum io_wq_cancel cret; 3330 bool ret = false; 3331 3332 /* set it so io_req_local_work_add() would wake us up */ 3333 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3334 atomic_set(&ctx->cq_wait_nr, 1); 3335 smp_mb(); 3336 } 3337 3338 /* failed during ring init, it couldn't have issued any requests */ 3339 if (!ctx->rings) 3340 return false; 3341 3342 if (!task) { 3343 ret |= io_uring_try_cancel_iowq(ctx); 3344 } else if (tctx && tctx->io_wq) { 3345 /* 3346 * Cancels requests of all rings, not only @ctx, but 3347 * it's fine as the task is in exit/exec. 3348 */ 3349 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3350 &cancel, true); 3351 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3352 } 3353 3354 /* SQPOLL thread does its own polling */ 3355 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3356 (ctx->sq_data && ctx->sq_data->thread == current)) { 3357 while (!wq_list_empty(&ctx->iopoll_list)) { 3358 io_iopoll_try_reap_events(ctx); 3359 ret = true; 3360 cond_resched(); 3361 } 3362 } 3363 3364 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3365 io_allowed_defer_tw_run(ctx)) 3366 ret |= io_run_local_work(ctx) > 0; 3367 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3368 mutex_lock(&ctx->uring_lock); 3369 ret |= io_poll_remove_all(ctx, task, cancel_all); 3370 ret |= io_waitid_remove_all(ctx, task, cancel_all); 3371 ret |= io_futex_remove_all(ctx, task, cancel_all); 3372 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); 3373 mutex_unlock(&ctx->uring_lock); 3374 ret |= io_kill_timeouts(ctx, task, cancel_all); 3375 if (task) 3376 ret |= io_run_task_work() > 0; 3377 return ret; 3378 } 3379 3380 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3381 { 3382 if (tracked) 3383 return atomic_read(&tctx->inflight_tracked); 3384 return percpu_counter_sum(&tctx->inflight); 3385 } 3386 3387 /* 3388 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3389 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3390 */ 3391 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3392 { 3393 struct io_uring_task *tctx = current->io_uring; 3394 struct io_ring_ctx *ctx; 3395 struct io_tctx_node *node; 3396 unsigned long index; 3397 s64 inflight; 3398 DEFINE_WAIT(wait); 3399 3400 WARN_ON_ONCE(sqd && sqd->thread != current); 3401 3402 if (!current->io_uring) 3403 return; 3404 if (tctx->io_wq) 3405 io_wq_exit_start(tctx->io_wq); 3406 3407 atomic_inc(&tctx->in_cancel); 3408 do { 3409 bool loop = false; 3410 3411 io_uring_drop_tctx_refs(current); 3412 /* read completions before cancelations */ 3413 inflight = tctx_inflight(tctx, !cancel_all); 3414 if (!inflight) 3415 break; 3416 3417 if (!sqd) { 3418 xa_for_each(&tctx->xa, index, node) { 3419 /* sqpoll task will cancel all its requests */ 3420 if (node->ctx->sq_data) 3421 continue; 3422 loop |= io_uring_try_cancel_requests(node->ctx, 3423 current, cancel_all); 3424 } 3425 } else { 3426 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3427 loop |= io_uring_try_cancel_requests(ctx, 3428 current, 3429 cancel_all); 3430 } 3431 3432 if (loop) { 3433 cond_resched(); 3434 continue; 3435 } 3436 3437 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3438 io_run_task_work(); 3439 io_uring_drop_tctx_refs(current); 3440 xa_for_each(&tctx->xa, index, node) { 3441 if (!llist_empty(&node->ctx->work_llist)) { 3442 WARN_ON_ONCE(node->ctx->submitter_task && 3443 node->ctx->submitter_task != current); 3444 goto end_wait; 3445 } 3446 } 3447 /* 3448 * If we've seen completions, retry without waiting. This 3449 * avoids a race where a completion comes in before we did 3450 * prepare_to_wait(). 3451 */ 3452 if (inflight == tctx_inflight(tctx, !cancel_all)) 3453 schedule(); 3454 end_wait: 3455 finish_wait(&tctx->wait, &wait); 3456 } while (1); 3457 3458 io_uring_clean_tctx(tctx); 3459 if (cancel_all) { 3460 /* 3461 * We shouldn't run task_works after cancel, so just leave 3462 * ->in_cancel set for normal exit. 3463 */ 3464 atomic_dec(&tctx->in_cancel); 3465 /* for exec all current's requests should be gone, kill tctx */ 3466 __io_uring_free(current); 3467 } 3468 } 3469 3470 void __io_uring_cancel(bool cancel_all) 3471 { 3472 io_uring_cancel_generic(cancel_all, NULL); 3473 } 3474 3475 static void *io_uring_validate_mmap_request(struct file *file, 3476 loff_t pgoff, size_t sz) 3477 { 3478 struct io_ring_ctx *ctx = file->private_data; 3479 loff_t offset = pgoff << PAGE_SHIFT; 3480 struct page *page; 3481 void *ptr; 3482 3483 switch (offset & IORING_OFF_MMAP_MASK) { 3484 case IORING_OFF_SQ_RING: 3485 case IORING_OFF_CQ_RING: 3486 /* Don't allow mmap if the ring was setup without it */ 3487 if (ctx->flags & IORING_SETUP_NO_MMAP) 3488 return ERR_PTR(-EINVAL); 3489 ptr = ctx->rings; 3490 break; 3491 case IORING_OFF_SQES: 3492 /* Don't allow mmap if the ring was setup without it */ 3493 if (ctx->flags & IORING_SETUP_NO_MMAP) 3494 return ERR_PTR(-EINVAL); 3495 ptr = ctx->sq_sqes; 3496 break; 3497 case IORING_OFF_PBUF_RING: { 3498 unsigned int bgid; 3499 3500 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3501 rcu_read_lock(); 3502 ptr = io_pbuf_get_address(ctx, bgid); 3503 rcu_read_unlock(); 3504 if (!ptr) 3505 return ERR_PTR(-EINVAL); 3506 break; 3507 } 3508 default: 3509 return ERR_PTR(-EINVAL); 3510 } 3511 3512 page = virt_to_head_page(ptr); 3513 if (sz > page_size(page)) 3514 return ERR_PTR(-EINVAL); 3515 3516 return ptr; 3517 } 3518 3519 #ifdef CONFIG_MMU 3520 3521 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3522 { 3523 size_t sz = vma->vm_end - vma->vm_start; 3524 unsigned long pfn; 3525 void *ptr; 3526 3527 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3528 if (IS_ERR(ptr)) 3529 return PTR_ERR(ptr); 3530 3531 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3532 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3533 } 3534 3535 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3536 unsigned long addr, unsigned long len, 3537 unsigned long pgoff, unsigned long flags) 3538 { 3539 void *ptr; 3540 3541 /* 3542 * Do not allow to map to user-provided address to avoid breaking the 3543 * aliasing rules. Userspace is not able to guess the offset address of 3544 * kernel kmalloc()ed memory area. 3545 */ 3546 if (addr) 3547 return -EINVAL; 3548 3549 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3550 if (IS_ERR(ptr)) 3551 return -ENOMEM; 3552 3553 /* 3554 * Some architectures have strong cache aliasing requirements. 3555 * For such architectures we need a coherent mapping which aliases 3556 * kernel memory *and* userspace memory. To achieve that: 3557 * - use a NULL file pointer to reference physical memory, and 3558 * - use the kernel virtual address of the shared io_uring context 3559 * (instead of the userspace-provided address, which has to be 0UL 3560 * anyway). 3561 * - use the same pgoff which the get_unmapped_area() uses to 3562 * calculate the page colouring. 3563 * For architectures without such aliasing requirements, the 3564 * architecture will return any suitable mapping because addr is 0. 3565 */ 3566 filp = NULL; 3567 flags |= MAP_SHARED; 3568 pgoff = 0; /* has been translated to ptr above */ 3569 #ifdef SHM_COLOUR 3570 addr = (uintptr_t) ptr; 3571 pgoff = addr >> PAGE_SHIFT; 3572 #else 3573 addr = 0UL; 3574 #endif 3575 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3576 } 3577 3578 #else /* !CONFIG_MMU */ 3579 3580 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3581 { 3582 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3583 } 3584 3585 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3586 { 3587 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3588 } 3589 3590 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3591 unsigned long addr, unsigned long len, 3592 unsigned long pgoff, unsigned long flags) 3593 { 3594 void *ptr; 3595 3596 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3597 if (IS_ERR(ptr)) 3598 return PTR_ERR(ptr); 3599 3600 return (unsigned long) ptr; 3601 } 3602 3603 #endif /* !CONFIG_MMU */ 3604 3605 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3606 { 3607 if (flags & IORING_ENTER_EXT_ARG) { 3608 struct io_uring_getevents_arg arg; 3609 3610 if (argsz != sizeof(arg)) 3611 return -EINVAL; 3612 if (copy_from_user(&arg, argp, sizeof(arg))) 3613 return -EFAULT; 3614 } 3615 return 0; 3616 } 3617 3618 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3619 struct __kernel_timespec __user **ts, 3620 const sigset_t __user **sig) 3621 { 3622 struct io_uring_getevents_arg arg; 3623 3624 /* 3625 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3626 * is just a pointer to the sigset_t. 3627 */ 3628 if (!(flags & IORING_ENTER_EXT_ARG)) { 3629 *sig = (const sigset_t __user *) argp; 3630 *ts = NULL; 3631 return 0; 3632 } 3633 3634 /* 3635 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3636 * timespec and sigset_t pointers if good. 3637 */ 3638 if (*argsz != sizeof(arg)) 3639 return -EINVAL; 3640 if (copy_from_user(&arg, argp, sizeof(arg))) 3641 return -EFAULT; 3642 if (arg.pad) 3643 return -EINVAL; 3644 *sig = u64_to_user_ptr(arg.sigmask); 3645 *argsz = arg.sigmask_sz; 3646 *ts = u64_to_user_ptr(arg.ts); 3647 return 0; 3648 } 3649 3650 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3651 u32, min_complete, u32, flags, const void __user *, argp, 3652 size_t, argsz) 3653 { 3654 struct io_ring_ctx *ctx; 3655 struct file *file; 3656 long ret; 3657 3658 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3659 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3660 IORING_ENTER_REGISTERED_RING))) 3661 return -EINVAL; 3662 3663 /* 3664 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3665 * need only dereference our task private array to find it. 3666 */ 3667 if (flags & IORING_ENTER_REGISTERED_RING) { 3668 struct io_uring_task *tctx = current->io_uring; 3669 3670 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3671 return -EINVAL; 3672 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3673 file = tctx->registered_rings[fd]; 3674 if (unlikely(!file)) 3675 return -EBADF; 3676 } else { 3677 file = fget(fd); 3678 if (unlikely(!file)) 3679 return -EBADF; 3680 ret = -EOPNOTSUPP; 3681 if (unlikely(!io_is_uring_fops(file))) 3682 goto out; 3683 } 3684 3685 ctx = file->private_data; 3686 ret = -EBADFD; 3687 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3688 goto out; 3689 3690 /* 3691 * For SQ polling, the thread will do all submissions and completions. 3692 * Just return the requested submit count, and wake the thread if 3693 * we were asked to. 3694 */ 3695 ret = 0; 3696 if (ctx->flags & IORING_SETUP_SQPOLL) { 3697 io_cqring_overflow_flush(ctx); 3698 3699 if (unlikely(ctx->sq_data->thread == NULL)) { 3700 ret = -EOWNERDEAD; 3701 goto out; 3702 } 3703 if (flags & IORING_ENTER_SQ_WAKEUP) 3704 wake_up(&ctx->sq_data->wait); 3705 if (flags & IORING_ENTER_SQ_WAIT) 3706 io_sqpoll_wait_sq(ctx); 3707 3708 ret = to_submit; 3709 } else if (to_submit) { 3710 ret = io_uring_add_tctx_node(ctx); 3711 if (unlikely(ret)) 3712 goto out; 3713 3714 mutex_lock(&ctx->uring_lock); 3715 ret = io_submit_sqes(ctx, to_submit); 3716 if (ret != to_submit) { 3717 mutex_unlock(&ctx->uring_lock); 3718 goto out; 3719 } 3720 if (flags & IORING_ENTER_GETEVENTS) { 3721 if (ctx->syscall_iopoll) 3722 goto iopoll_locked; 3723 /* 3724 * Ignore errors, we'll soon call io_cqring_wait() and 3725 * it should handle ownership problems if any. 3726 */ 3727 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3728 (void)io_run_local_work_locked(ctx); 3729 } 3730 mutex_unlock(&ctx->uring_lock); 3731 } 3732 3733 if (flags & IORING_ENTER_GETEVENTS) { 3734 int ret2; 3735 3736 if (ctx->syscall_iopoll) { 3737 /* 3738 * We disallow the app entering submit/complete with 3739 * polling, but we still need to lock the ring to 3740 * prevent racing with polled issue that got punted to 3741 * a workqueue. 3742 */ 3743 mutex_lock(&ctx->uring_lock); 3744 iopoll_locked: 3745 ret2 = io_validate_ext_arg(flags, argp, argsz); 3746 if (likely(!ret2)) { 3747 min_complete = min(min_complete, 3748 ctx->cq_entries); 3749 ret2 = io_iopoll_check(ctx, min_complete); 3750 } 3751 mutex_unlock(&ctx->uring_lock); 3752 } else { 3753 const sigset_t __user *sig; 3754 struct __kernel_timespec __user *ts; 3755 3756 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3757 if (likely(!ret2)) { 3758 min_complete = min(min_complete, 3759 ctx->cq_entries); 3760 ret2 = io_cqring_wait(ctx, min_complete, sig, 3761 argsz, ts); 3762 } 3763 } 3764 3765 if (!ret) { 3766 ret = ret2; 3767 3768 /* 3769 * EBADR indicates that one or more CQE were dropped. 3770 * Once the user has been informed we can clear the bit 3771 * as they are obviously ok with those drops. 3772 */ 3773 if (unlikely(ret2 == -EBADR)) 3774 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3775 &ctx->check_cq); 3776 } 3777 } 3778 out: 3779 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3780 fput(file); 3781 return ret; 3782 } 3783 3784 static const struct file_operations io_uring_fops = { 3785 .release = io_uring_release, 3786 .mmap = io_uring_mmap, 3787 #ifndef CONFIG_MMU 3788 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3789 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3790 #else 3791 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3792 #endif 3793 .poll = io_uring_poll, 3794 #ifdef CONFIG_PROC_FS 3795 .show_fdinfo = io_uring_show_fdinfo, 3796 #endif 3797 }; 3798 3799 bool io_is_uring_fops(struct file *file) 3800 { 3801 return file->f_op == &io_uring_fops; 3802 } 3803 3804 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3805 struct io_uring_params *p) 3806 { 3807 struct io_rings *rings; 3808 size_t size, sq_array_offset; 3809 void *ptr; 3810 3811 /* make sure these are sane, as we already accounted them */ 3812 ctx->sq_entries = p->sq_entries; 3813 ctx->cq_entries = p->cq_entries; 3814 3815 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3816 if (size == SIZE_MAX) 3817 return -EOVERFLOW; 3818 3819 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3820 rings = io_mem_alloc(size); 3821 else 3822 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3823 3824 if (IS_ERR(rings)) 3825 return PTR_ERR(rings); 3826 3827 ctx->rings = rings; 3828 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3829 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3830 rings->sq_ring_mask = p->sq_entries - 1; 3831 rings->cq_ring_mask = p->cq_entries - 1; 3832 rings->sq_ring_entries = p->sq_entries; 3833 rings->cq_ring_entries = p->cq_entries; 3834 3835 if (p->flags & IORING_SETUP_SQE128) 3836 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3837 else 3838 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3839 if (size == SIZE_MAX) { 3840 io_rings_free(ctx); 3841 return -EOVERFLOW; 3842 } 3843 3844 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3845 ptr = io_mem_alloc(size); 3846 else 3847 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3848 3849 if (IS_ERR(ptr)) { 3850 io_rings_free(ctx); 3851 return PTR_ERR(ptr); 3852 } 3853 3854 ctx->sq_sqes = ptr; 3855 return 0; 3856 } 3857 3858 static int io_uring_install_fd(struct file *file) 3859 { 3860 int fd; 3861 3862 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3863 if (fd < 0) 3864 return fd; 3865 fd_install(fd, file); 3866 return fd; 3867 } 3868 3869 /* 3870 * Allocate an anonymous fd, this is what constitutes the application 3871 * visible backing of an io_uring instance. The application mmaps this 3872 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3873 * we have to tie this fd to a socket for file garbage collection purposes. 3874 */ 3875 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3876 { 3877 struct file *file; 3878 #if defined(CONFIG_UNIX) 3879 int ret; 3880 3881 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3882 &ctx->ring_sock); 3883 if (ret) 3884 return ERR_PTR(ret); 3885 #endif 3886 3887 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3888 O_RDWR | O_CLOEXEC, NULL); 3889 #if defined(CONFIG_UNIX) 3890 if (IS_ERR(file)) { 3891 sock_release(ctx->ring_sock); 3892 ctx->ring_sock = NULL; 3893 } else { 3894 ctx->ring_sock->file = file; 3895 } 3896 #endif 3897 return file; 3898 } 3899 3900 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3901 struct io_uring_params __user *params) 3902 { 3903 struct io_ring_ctx *ctx; 3904 struct io_uring_task *tctx; 3905 struct file *file; 3906 int ret; 3907 3908 if (!entries) 3909 return -EINVAL; 3910 if (entries > IORING_MAX_ENTRIES) { 3911 if (!(p->flags & IORING_SETUP_CLAMP)) 3912 return -EINVAL; 3913 entries = IORING_MAX_ENTRIES; 3914 } 3915 3916 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3917 && !(p->flags & IORING_SETUP_NO_MMAP)) 3918 return -EINVAL; 3919 3920 /* 3921 * Use twice as many entries for the CQ ring. It's possible for the 3922 * application to drive a higher depth than the size of the SQ ring, 3923 * since the sqes are only used at submission time. This allows for 3924 * some flexibility in overcommitting a bit. If the application has 3925 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3926 * of CQ ring entries manually. 3927 */ 3928 p->sq_entries = roundup_pow_of_two(entries); 3929 if (p->flags & IORING_SETUP_CQSIZE) { 3930 /* 3931 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3932 * to a power-of-two, if it isn't already. We do NOT impose 3933 * any cq vs sq ring sizing. 3934 */ 3935 if (!p->cq_entries) 3936 return -EINVAL; 3937 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3938 if (!(p->flags & IORING_SETUP_CLAMP)) 3939 return -EINVAL; 3940 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3941 } 3942 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3943 if (p->cq_entries < p->sq_entries) 3944 return -EINVAL; 3945 } else { 3946 p->cq_entries = 2 * p->sq_entries; 3947 } 3948 3949 ctx = io_ring_ctx_alloc(p); 3950 if (!ctx) 3951 return -ENOMEM; 3952 3953 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3954 !(ctx->flags & IORING_SETUP_IOPOLL) && 3955 !(ctx->flags & IORING_SETUP_SQPOLL)) 3956 ctx->task_complete = true; 3957 3958 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3959 ctx->lockless_cq = true; 3960 3961 /* 3962 * lazy poll_wq activation relies on ->task_complete for synchronisation 3963 * purposes, see io_activate_pollwq() 3964 */ 3965 if (!ctx->task_complete) 3966 ctx->poll_activated = true; 3967 3968 /* 3969 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3970 * space applications don't need to do io completion events 3971 * polling again, they can rely on io_sq_thread to do polling 3972 * work, which can reduce cpu usage and uring_lock contention. 3973 */ 3974 if (ctx->flags & IORING_SETUP_IOPOLL && 3975 !(ctx->flags & IORING_SETUP_SQPOLL)) 3976 ctx->syscall_iopoll = 1; 3977 3978 ctx->compat = in_compat_syscall(); 3979 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3980 ctx->user = get_uid(current_user()); 3981 3982 /* 3983 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3984 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3985 */ 3986 ret = -EINVAL; 3987 if (ctx->flags & IORING_SETUP_SQPOLL) { 3988 /* IPI related flags don't make sense with SQPOLL */ 3989 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3990 IORING_SETUP_TASKRUN_FLAG | 3991 IORING_SETUP_DEFER_TASKRUN)) 3992 goto err; 3993 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3994 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3995 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3996 } else { 3997 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3998 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3999 goto err; 4000 ctx->notify_method = TWA_SIGNAL; 4001 } 4002 4003 /* 4004 * For DEFER_TASKRUN we require the completion task to be the same as the 4005 * submission task. This implies that there is only one submitter, so enforce 4006 * that. 4007 */ 4008 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 4009 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 4010 goto err; 4011 } 4012 4013 /* 4014 * This is just grabbed for accounting purposes. When a process exits, 4015 * the mm is exited and dropped before the files, hence we need to hang 4016 * on to this mm purely for the purposes of being able to unaccount 4017 * memory (locked/pinned vm). It's not used for anything else. 4018 */ 4019 mmgrab(current->mm); 4020 ctx->mm_account = current->mm; 4021 4022 ret = io_allocate_scq_urings(ctx, p); 4023 if (ret) 4024 goto err; 4025 4026 ret = io_sq_offload_create(ctx, p); 4027 if (ret) 4028 goto err; 4029 4030 ret = io_rsrc_init(ctx); 4031 if (ret) 4032 goto err; 4033 4034 p->sq_off.head = offsetof(struct io_rings, sq.head); 4035 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 4036 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 4037 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 4038 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 4039 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 4040 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 4041 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 4042 p->sq_off.resv1 = 0; 4043 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4044 p->sq_off.user_addr = 0; 4045 4046 p->cq_off.head = offsetof(struct io_rings, cq.head); 4047 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 4048 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 4049 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 4050 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 4051 p->cq_off.cqes = offsetof(struct io_rings, cqes); 4052 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 4053 p->cq_off.resv1 = 0; 4054 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4055 p->cq_off.user_addr = 0; 4056 4057 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 4058 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 4059 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4060 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4061 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4062 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4063 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4064 4065 if (copy_to_user(params, p, sizeof(*p))) { 4066 ret = -EFAULT; 4067 goto err; 4068 } 4069 4070 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4071 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4072 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4073 4074 file = io_uring_get_file(ctx); 4075 if (IS_ERR(file)) { 4076 ret = PTR_ERR(file); 4077 goto err; 4078 } 4079 4080 ret = __io_uring_add_tctx_node(ctx); 4081 if (ret) 4082 goto err_fput; 4083 tctx = current->io_uring; 4084 4085 /* 4086 * Install ring fd as the very last thing, so we don't risk someone 4087 * having closed it before we finish setup 4088 */ 4089 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4090 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4091 else 4092 ret = io_uring_install_fd(file); 4093 if (ret < 0) 4094 goto err_fput; 4095 4096 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4097 return ret; 4098 err: 4099 io_ring_ctx_wait_and_kill(ctx); 4100 return ret; 4101 err_fput: 4102 fput(file); 4103 return ret; 4104 } 4105 4106 /* 4107 * Sets up an aio uring context, and returns the fd. Applications asks for a 4108 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4109 * params structure passed in. 4110 */ 4111 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4112 { 4113 struct io_uring_params p; 4114 int i; 4115 4116 if (copy_from_user(&p, params, sizeof(p))) 4117 return -EFAULT; 4118 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4119 if (p.resv[i]) 4120 return -EINVAL; 4121 } 4122 4123 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4124 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4125 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4126 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4127 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4128 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4129 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4130 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4131 IORING_SETUP_NO_SQARRAY)) 4132 return -EINVAL; 4133 4134 return io_uring_create(entries, &p, params); 4135 } 4136 4137 static inline bool io_uring_allowed(void) 4138 { 4139 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4140 kgid_t io_uring_group; 4141 4142 if (disabled == 2) 4143 return false; 4144 4145 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4146 return true; 4147 4148 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4149 if (!gid_valid(io_uring_group)) 4150 return false; 4151 4152 return in_group_p(io_uring_group); 4153 } 4154 4155 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4156 struct io_uring_params __user *, params) 4157 { 4158 if (!io_uring_allowed()) 4159 return -EPERM; 4160 4161 return io_uring_setup(entries, params); 4162 } 4163 4164 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4165 unsigned nr_args) 4166 { 4167 struct io_uring_probe *p; 4168 size_t size; 4169 int i, ret; 4170 4171 size = struct_size(p, ops, nr_args); 4172 if (size == SIZE_MAX) 4173 return -EOVERFLOW; 4174 p = kzalloc(size, GFP_KERNEL); 4175 if (!p) 4176 return -ENOMEM; 4177 4178 ret = -EFAULT; 4179 if (copy_from_user(p, arg, size)) 4180 goto out; 4181 ret = -EINVAL; 4182 if (memchr_inv(p, 0, size)) 4183 goto out; 4184 4185 p->last_op = IORING_OP_LAST - 1; 4186 if (nr_args > IORING_OP_LAST) 4187 nr_args = IORING_OP_LAST; 4188 4189 for (i = 0; i < nr_args; i++) { 4190 p->ops[i].op = i; 4191 if (!io_issue_defs[i].not_supported) 4192 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4193 } 4194 p->ops_len = i; 4195 4196 ret = 0; 4197 if (copy_to_user(arg, p, size)) 4198 ret = -EFAULT; 4199 out: 4200 kfree(p); 4201 return ret; 4202 } 4203 4204 static int io_register_personality(struct io_ring_ctx *ctx) 4205 { 4206 const struct cred *creds; 4207 u32 id; 4208 int ret; 4209 4210 creds = get_current_cred(); 4211 4212 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4213 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4214 if (ret < 0) { 4215 put_cred(creds); 4216 return ret; 4217 } 4218 return id; 4219 } 4220 4221 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4222 void __user *arg, unsigned int nr_args) 4223 { 4224 struct io_uring_restriction *res; 4225 size_t size; 4226 int i, ret; 4227 4228 /* Restrictions allowed only if rings started disabled */ 4229 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4230 return -EBADFD; 4231 4232 /* We allow only a single restrictions registration */ 4233 if (ctx->restrictions.registered) 4234 return -EBUSY; 4235 4236 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4237 return -EINVAL; 4238 4239 size = array_size(nr_args, sizeof(*res)); 4240 if (size == SIZE_MAX) 4241 return -EOVERFLOW; 4242 4243 res = memdup_user(arg, size); 4244 if (IS_ERR(res)) 4245 return PTR_ERR(res); 4246 4247 ret = 0; 4248 4249 for (i = 0; i < nr_args; i++) { 4250 switch (res[i].opcode) { 4251 case IORING_RESTRICTION_REGISTER_OP: 4252 if (res[i].register_op >= IORING_REGISTER_LAST) { 4253 ret = -EINVAL; 4254 goto out; 4255 } 4256 4257 __set_bit(res[i].register_op, 4258 ctx->restrictions.register_op); 4259 break; 4260 case IORING_RESTRICTION_SQE_OP: 4261 if (res[i].sqe_op >= IORING_OP_LAST) { 4262 ret = -EINVAL; 4263 goto out; 4264 } 4265 4266 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4267 break; 4268 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4269 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4270 break; 4271 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4272 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4273 break; 4274 default: 4275 ret = -EINVAL; 4276 goto out; 4277 } 4278 } 4279 4280 out: 4281 /* Reset all restrictions if an error happened */ 4282 if (ret != 0) 4283 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4284 else 4285 ctx->restrictions.registered = true; 4286 4287 kfree(res); 4288 return ret; 4289 } 4290 4291 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4292 { 4293 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4294 return -EBADFD; 4295 4296 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4297 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4298 /* 4299 * Lazy activation attempts would fail if it was polled before 4300 * submitter_task is set. 4301 */ 4302 if (wq_has_sleeper(&ctx->poll_wq)) 4303 io_activate_pollwq(ctx); 4304 } 4305 4306 if (ctx->restrictions.registered) 4307 ctx->restricted = 1; 4308 4309 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4310 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4311 wake_up(&ctx->sq_data->wait); 4312 return 0; 4313 } 4314 4315 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4316 cpumask_var_t new_mask) 4317 { 4318 int ret; 4319 4320 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4321 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4322 } else { 4323 mutex_unlock(&ctx->uring_lock); 4324 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4325 mutex_lock(&ctx->uring_lock); 4326 } 4327 4328 return ret; 4329 } 4330 4331 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4332 void __user *arg, unsigned len) 4333 { 4334 cpumask_var_t new_mask; 4335 int ret; 4336 4337 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4338 return -ENOMEM; 4339 4340 cpumask_clear(new_mask); 4341 if (len > cpumask_size()) 4342 len = cpumask_size(); 4343 4344 if (in_compat_syscall()) { 4345 ret = compat_get_bitmap(cpumask_bits(new_mask), 4346 (const compat_ulong_t __user *)arg, 4347 len * 8 /* CHAR_BIT */); 4348 } else { 4349 ret = copy_from_user(new_mask, arg, len); 4350 } 4351 4352 if (ret) { 4353 free_cpumask_var(new_mask); 4354 return -EFAULT; 4355 } 4356 4357 ret = __io_register_iowq_aff(ctx, new_mask); 4358 free_cpumask_var(new_mask); 4359 return ret; 4360 } 4361 4362 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4363 { 4364 return __io_register_iowq_aff(ctx, NULL); 4365 } 4366 4367 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4368 void __user *arg) 4369 __must_hold(&ctx->uring_lock) 4370 { 4371 struct io_tctx_node *node; 4372 struct io_uring_task *tctx = NULL; 4373 struct io_sq_data *sqd = NULL; 4374 __u32 new_count[2]; 4375 int i, ret; 4376 4377 if (copy_from_user(new_count, arg, sizeof(new_count))) 4378 return -EFAULT; 4379 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4380 if (new_count[i] > INT_MAX) 4381 return -EINVAL; 4382 4383 if (ctx->flags & IORING_SETUP_SQPOLL) { 4384 sqd = ctx->sq_data; 4385 if (sqd) { 4386 /* 4387 * Observe the correct sqd->lock -> ctx->uring_lock 4388 * ordering. Fine to drop uring_lock here, we hold 4389 * a ref to the ctx. 4390 */ 4391 refcount_inc(&sqd->refs); 4392 mutex_unlock(&ctx->uring_lock); 4393 mutex_lock(&sqd->lock); 4394 mutex_lock(&ctx->uring_lock); 4395 if (sqd->thread) 4396 tctx = sqd->thread->io_uring; 4397 } 4398 } else { 4399 tctx = current->io_uring; 4400 } 4401 4402 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4403 4404 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4405 if (new_count[i]) 4406 ctx->iowq_limits[i] = new_count[i]; 4407 ctx->iowq_limits_set = true; 4408 4409 if (tctx && tctx->io_wq) { 4410 ret = io_wq_max_workers(tctx->io_wq, new_count); 4411 if (ret) 4412 goto err; 4413 } else { 4414 memset(new_count, 0, sizeof(new_count)); 4415 } 4416 4417 if (sqd) { 4418 mutex_unlock(&sqd->lock); 4419 io_put_sq_data(sqd); 4420 } 4421 4422 if (copy_to_user(arg, new_count, sizeof(new_count))) 4423 return -EFAULT; 4424 4425 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4426 if (sqd) 4427 return 0; 4428 4429 /* now propagate the restriction to all registered users */ 4430 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4431 struct io_uring_task *tctx = node->task->io_uring; 4432 4433 if (WARN_ON_ONCE(!tctx->io_wq)) 4434 continue; 4435 4436 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4437 new_count[i] = ctx->iowq_limits[i]; 4438 /* ignore errors, it always returns zero anyway */ 4439 (void)io_wq_max_workers(tctx->io_wq, new_count); 4440 } 4441 return 0; 4442 err: 4443 if (sqd) { 4444 mutex_unlock(&sqd->lock); 4445 io_put_sq_data(sqd); 4446 } 4447 return ret; 4448 } 4449 4450 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4451 void __user *arg, unsigned nr_args) 4452 __releases(ctx->uring_lock) 4453 __acquires(ctx->uring_lock) 4454 { 4455 int ret; 4456 4457 /* 4458 * We don't quiesce the refs for register anymore and so it can't be 4459 * dying as we're holding a file ref here. 4460 */ 4461 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4462 return -ENXIO; 4463 4464 if (ctx->submitter_task && ctx->submitter_task != current) 4465 return -EEXIST; 4466 4467 if (ctx->restricted) { 4468 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4469 if (!test_bit(opcode, ctx->restrictions.register_op)) 4470 return -EACCES; 4471 } 4472 4473 switch (opcode) { 4474 case IORING_REGISTER_BUFFERS: 4475 ret = -EFAULT; 4476 if (!arg) 4477 break; 4478 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4479 break; 4480 case IORING_UNREGISTER_BUFFERS: 4481 ret = -EINVAL; 4482 if (arg || nr_args) 4483 break; 4484 ret = io_sqe_buffers_unregister(ctx); 4485 break; 4486 case IORING_REGISTER_FILES: 4487 ret = -EFAULT; 4488 if (!arg) 4489 break; 4490 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4491 break; 4492 case IORING_UNREGISTER_FILES: 4493 ret = -EINVAL; 4494 if (arg || nr_args) 4495 break; 4496 ret = io_sqe_files_unregister(ctx); 4497 break; 4498 case IORING_REGISTER_FILES_UPDATE: 4499 ret = io_register_files_update(ctx, arg, nr_args); 4500 break; 4501 case IORING_REGISTER_EVENTFD: 4502 ret = -EINVAL; 4503 if (nr_args != 1) 4504 break; 4505 ret = io_eventfd_register(ctx, arg, 0); 4506 break; 4507 case IORING_REGISTER_EVENTFD_ASYNC: 4508 ret = -EINVAL; 4509 if (nr_args != 1) 4510 break; 4511 ret = io_eventfd_register(ctx, arg, 1); 4512 break; 4513 case IORING_UNREGISTER_EVENTFD: 4514 ret = -EINVAL; 4515 if (arg || nr_args) 4516 break; 4517 ret = io_eventfd_unregister(ctx); 4518 break; 4519 case IORING_REGISTER_PROBE: 4520 ret = -EINVAL; 4521 if (!arg || nr_args > 256) 4522 break; 4523 ret = io_probe(ctx, arg, nr_args); 4524 break; 4525 case IORING_REGISTER_PERSONALITY: 4526 ret = -EINVAL; 4527 if (arg || nr_args) 4528 break; 4529 ret = io_register_personality(ctx); 4530 break; 4531 case IORING_UNREGISTER_PERSONALITY: 4532 ret = -EINVAL; 4533 if (arg) 4534 break; 4535 ret = io_unregister_personality(ctx, nr_args); 4536 break; 4537 case IORING_REGISTER_ENABLE_RINGS: 4538 ret = -EINVAL; 4539 if (arg || nr_args) 4540 break; 4541 ret = io_register_enable_rings(ctx); 4542 break; 4543 case IORING_REGISTER_RESTRICTIONS: 4544 ret = io_register_restrictions(ctx, arg, nr_args); 4545 break; 4546 case IORING_REGISTER_FILES2: 4547 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4548 break; 4549 case IORING_REGISTER_FILES_UPDATE2: 4550 ret = io_register_rsrc_update(ctx, arg, nr_args, 4551 IORING_RSRC_FILE); 4552 break; 4553 case IORING_REGISTER_BUFFERS2: 4554 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4555 break; 4556 case IORING_REGISTER_BUFFERS_UPDATE: 4557 ret = io_register_rsrc_update(ctx, arg, nr_args, 4558 IORING_RSRC_BUFFER); 4559 break; 4560 case IORING_REGISTER_IOWQ_AFF: 4561 ret = -EINVAL; 4562 if (!arg || !nr_args) 4563 break; 4564 ret = io_register_iowq_aff(ctx, arg, nr_args); 4565 break; 4566 case IORING_UNREGISTER_IOWQ_AFF: 4567 ret = -EINVAL; 4568 if (arg || nr_args) 4569 break; 4570 ret = io_unregister_iowq_aff(ctx); 4571 break; 4572 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4573 ret = -EINVAL; 4574 if (!arg || nr_args != 2) 4575 break; 4576 ret = io_register_iowq_max_workers(ctx, arg); 4577 break; 4578 case IORING_REGISTER_RING_FDS: 4579 ret = io_ringfd_register(ctx, arg, nr_args); 4580 break; 4581 case IORING_UNREGISTER_RING_FDS: 4582 ret = io_ringfd_unregister(ctx, arg, nr_args); 4583 break; 4584 case IORING_REGISTER_PBUF_RING: 4585 ret = -EINVAL; 4586 if (!arg || nr_args != 1) 4587 break; 4588 ret = io_register_pbuf_ring(ctx, arg); 4589 break; 4590 case IORING_UNREGISTER_PBUF_RING: 4591 ret = -EINVAL; 4592 if (!arg || nr_args != 1) 4593 break; 4594 ret = io_unregister_pbuf_ring(ctx, arg); 4595 break; 4596 case IORING_REGISTER_SYNC_CANCEL: 4597 ret = -EINVAL; 4598 if (!arg || nr_args != 1) 4599 break; 4600 ret = io_sync_cancel(ctx, arg); 4601 break; 4602 case IORING_REGISTER_FILE_ALLOC_RANGE: 4603 ret = -EINVAL; 4604 if (!arg || nr_args) 4605 break; 4606 ret = io_register_file_alloc_range(ctx, arg); 4607 break; 4608 default: 4609 ret = -EINVAL; 4610 break; 4611 } 4612 4613 return ret; 4614 } 4615 4616 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4617 void __user *, arg, unsigned int, nr_args) 4618 { 4619 struct io_ring_ctx *ctx; 4620 long ret = -EBADF; 4621 struct file *file; 4622 bool use_registered_ring; 4623 4624 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4625 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4626 4627 if (opcode >= IORING_REGISTER_LAST) 4628 return -EINVAL; 4629 4630 if (use_registered_ring) { 4631 /* 4632 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4633 * need only dereference our task private array to find it. 4634 */ 4635 struct io_uring_task *tctx = current->io_uring; 4636 4637 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4638 return -EINVAL; 4639 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4640 file = tctx->registered_rings[fd]; 4641 if (unlikely(!file)) 4642 return -EBADF; 4643 } else { 4644 file = fget(fd); 4645 if (unlikely(!file)) 4646 return -EBADF; 4647 ret = -EOPNOTSUPP; 4648 if (!io_is_uring_fops(file)) 4649 goto out_fput; 4650 } 4651 4652 ctx = file->private_data; 4653 4654 mutex_lock(&ctx->uring_lock); 4655 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4656 mutex_unlock(&ctx->uring_lock); 4657 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4658 out_fput: 4659 if (!use_registered_ring) 4660 fput(file); 4661 return ret; 4662 } 4663 4664 static int __init io_uring_init(void) 4665 { 4666 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4667 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4668 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4669 } while (0) 4670 4671 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4672 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4673 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4674 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4675 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4676 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4677 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4678 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4679 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4680 BUILD_BUG_SQE_ELEM(8, __u64, off); 4681 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4682 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4683 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4684 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4685 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4686 BUILD_BUG_SQE_ELEM(24, __u32, len); 4687 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4688 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4689 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4690 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4691 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4692 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4693 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4694 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4695 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4696 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4697 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4698 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4699 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4700 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4701 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4702 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4703 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4704 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4705 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4706 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4707 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4708 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4709 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4710 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4711 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4712 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4713 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4714 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4715 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4716 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4717 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4718 4719 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4720 sizeof(struct io_uring_rsrc_update)); 4721 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4722 sizeof(struct io_uring_rsrc_update2)); 4723 4724 /* ->buf_index is u16 */ 4725 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4726 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4727 offsetof(struct io_uring_buf_ring, tail)); 4728 4729 /* should fit into one byte */ 4730 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4731 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4732 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4733 4734 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4735 4736 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4737 4738 /* top 8bits are for internal use */ 4739 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 4740 4741 io_uring_optable_init(); 4742 4743 /* 4744 * Allow user copy in the per-command field, which starts after the 4745 * file in io_kiocb and until the opcode field. The openat2 handling 4746 * requires copying in user memory into the io_kiocb object in that 4747 * range, and HARDENED_USERCOPY will complain if we haven't 4748 * correctly annotated this range. 4749 */ 4750 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4751 sizeof(struct io_kiocb), 0, 4752 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4753 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4754 offsetof(struct io_kiocb, cmd.data), 4755 sizeof_field(struct io_kiocb, cmd.data), NULL); 4756 io_buf_cachep = kmem_cache_create("io_buffer", sizeof(struct io_buffer), 0, 4757 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 4758 NULL); 4759 4760 #ifdef CONFIG_SYSCTL 4761 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4762 #endif 4763 4764 return 0; 4765 }; 4766 __initcall(io_uring_init); 4767