1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "sqpoll.h" 89 #include "fdinfo.h" 90 #include "kbuf.h" 91 #include "rsrc.h" 92 #include "cancel.h" 93 #include "net.h" 94 #include "notif.h" 95 #include "waitid.h" 96 #include "futex.h" 97 98 #include "timeout.h" 99 #include "poll.h" 100 #include "rw.h" 101 #include "alloc_cache.h" 102 103 #define IORING_MAX_ENTRIES 32768 104 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 105 106 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 107 IORING_REGISTER_LAST + IORING_OP_LAST) 108 109 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 110 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 111 112 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 113 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 114 115 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 116 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 117 REQ_F_ASYNC_DATA) 118 119 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 120 IO_REQ_CLEAN_FLAGS) 121 122 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 123 124 #define IO_COMPL_BATCH 32 125 #define IO_REQ_ALLOC_BATCH 8 126 127 enum { 128 IO_CHECK_CQ_OVERFLOW_BIT, 129 IO_CHECK_CQ_DROPPED_BIT, 130 }; 131 132 enum { 133 IO_EVENTFD_OP_SIGNAL_BIT, 134 IO_EVENTFD_OP_FREE_BIT, 135 }; 136 137 struct io_defer_entry { 138 struct list_head list; 139 struct io_kiocb *req; 140 u32 seq; 141 }; 142 143 /* requests with any of those set should undergo io_disarm_next() */ 144 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 145 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 146 147 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 148 struct task_struct *task, 149 bool cancel_all); 150 151 static void io_queue_sqe(struct io_kiocb *req); 152 153 struct kmem_cache *req_cachep; 154 155 static int __read_mostly sysctl_io_uring_disabled; 156 static int __read_mostly sysctl_io_uring_group = -1; 157 158 #ifdef CONFIG_SYSCTL 159 static struct ctl_table kernel_io_uring_disabled_table[] = { 160 { 161 .procname = "io_uring_disabled", 162 .data = &sysctl_io_uring_disabled, 163 .maxlen = sizeof(sysctl_io_uring_disabled), 164 .mode = 0644, 165 .proc_handler = proc_dointvec_minmax, 166 .extra1 = SYSCTL_ZERO, 167 .extra2 = SYSCTL_TWO, 168 }, 169 { 170 .procname = "io_uring_group", 171 .data = &sysctl_io_uring_group, 172 .maxlen = sizeof(gid_t), 173 .mode = 0644, 174 .proc_handler = proc_dointvec, 175 }, 176 {}, 177 }; 178 #endif 179 180 struct sock *io_uring_get_socket(struct file *file) 181 { 182 #if defined(CONFIG_UNIX) 183 if (io_is_uring_fops(file)) { 184 struct io_ring_ctx *ctx = file->private_data; 185 186 return ctx->ring_sock->sk; 187 } 188 #endif 189 return NULL; 190 } 191 EXPORT_SYMBOL(io_uring_get_socket); 192 193 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 194 { 195 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 196 ctx->submit_state.cqes_count) 197 __io_submit_flush_completions(ctx); 198 } 199 200 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 201 { 202 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 203 } 204 205 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 206 { 207 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 208 } 209 210 static bool io_match_linked(struct io_kiocb *head) 211 { 212 struct io_kiocb *req; 213 214 io_for_each_link(req, head) { 215 if (req->flags & REQ_F_INFLIGHT) 216 return true; 217 } 218 return false; 219 } 220 221 /* 222 * As io_match_task() but protected against racing with linked timeouts. 223 * User must not hold timeout_lock. 224 */ 225 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 226 bool cancel_all) 227 { 228 bool matched; 229 230 if (task && head->task != task) 231 return false; 232 if (cancel_all) 233 return true; 234 235 if (head->flags & REQ_F_LINK_TIMEOUT) { 236 struct io_ring_ctx *ctx = head->ctx; 237 238 /* protect against races with linked timeouts */ 239 spin_lock_irq(&ctx->timeout_lock); 240 matched = io_match_linked(head); 241 spin_unlock_irq(&ctx->timeout_lock); 242 } else { 243 matched = io_match_linked(head); 244 } 245 return matched; 246 } 247 248 static inline void req_fail_link_node(struct io_kiocb *req, int res) 249 { 250 req_set_fail(req); 251 io_req_set_res(req, res, 0); 252 } 253 254 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 255 { 256 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 257 } 258 259 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 260 { 261 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 262 263 complete(&ctx->ref_comp); 264 } 265 266 static __cold void io_fallback_req_func(struct work_struct *work) 267 { 268 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 269 fallback_work.work); 270 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 271 struct io_kiocb *req, *tmp; 272 struct io_tw_state ts = { .locked = true, }; 273 274 mutex_lock(&ctx->uring_lock); 275 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 276 req->io_task_work.func(req, &ts); 277 if (WARN_ON_ONCE(!ts.locked)) 278 return; 279 io_submit_flush_completions(ctx); 280 mutex_unlock(&ctx->uring_lock); 281 } 282 283 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 284 { 285 unsigned hash_buckets = 1U << bits; 286 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 287 288 table->hbs = kmalloc(hash_size, GFP_KERNEL); 289 if (!table->hbs) 290 return -ENOMEM; 291 292 table->hash_bits = bits; 293 init_hash_table(table, hash_buckets); 294 return 0; 295 } 296 297 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 298 { 299 struct io_ring_ctx *ctx; 300 int hash_bits; 301 302 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 303 if (!ctx) 304 return NULL; 305 306 xa_init(&ctx->io_bl_xa); 307 308 /* 309 * Use 5 bits less than the max cq entries, that should give us around 310 * 32 entries per hash list if totally full and uniformly spread, but 311 * don't keep too many buckets to not overconsume memory. 312 */ 313 hash_bits = ilog2(p->cq_entries) - 5; 314 hash_bits = clamp(hash_bits, 1, 8); 315 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 316 goto err; 317 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 init_waitqueue_head(&ctx->sqo_sq_wait); 325 INIT_LIST_HEAD(&ctx->sqd_list); 326 INIT_LIST_HEAD(&ctx->cq_overflow_list); 327 INIT_LIST_HEAD(&ctx->io_buffers_cache); 328 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 329 sizeof(struct io_rsrc_node)); 330 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 331 sizeof(struct async_poll)); 332 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 333 sizeof(struct io_async_msghdr)); 334 io_futex_cache_init(ctx); 335 init_completion(&ctx->ref_comp); 336 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 337 mutex_init(&ctx->uring_lock); 338 init_waitqueue_head(&ctx->cq_wait); 339 init_waitqueue_head(&ctx->poll_wq); 340 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 341 spin_lock_init(&ctx->completion_lock); 342 spin_lock_init(&ctx->timeout_lock); 343 INIT_WQ_LIST(&ctx->iopoll_list); 344 INIT_LIST_HEAD(&ctx->io_buffers_comp); 345 INIT_LIST_HEAD(&ctx->defer_list); 346 INIT_LIST_HEAD(&ctx->timeout_list); 347 INIT_LIST_HEAD(&ctx->ltimeout_list); 348 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 349 init_llist_head(&ctx->work_llist); 350 INIT_LIST_HEAD(&ctx->tctx_list); 351 ctx->submit_state.free_list.next = NULL; 352 INIT_WQ_LIST(&ctx->locked_free_list); 353 INIT_HLIST_HEAD(&ctx->waitid_list); 354 #ifdef CONFIG_FUTEX 355 INIT_HLIST_HEAD(&ctx->futex_list); 356 #endif 357 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 358 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 359 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 360 return ctx; 361 err: 362 kfree(ctx->cancel_table.hbs); 363 kfree(ctx->cancel_table_locked.hbs); 364 kfree(ctx->io_bl); 365 xa_destroy(&ctx->io_bl_xa); 366 kfree(ctx); 367 return NULL; 368 } 369 370 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 371 { 372 struct io_rings *r = ctx->rings; 373 374 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 375 ctx->cq_extra--; 376 } 377 378 static bool req_need_defer(struct io_kiocb *req, u32 seq) 379 { 380 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 381 struct io_ring_ctx *ctx = req->ctx; 382 383 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 384 } 385 386 return false; 387 } 388 389 static void io_clean_op(struct io_kiocb *req) 390 { 391 if (req->flags & REQ_F_BUFFER_SELECTED) { 392 spin_lock(&req->ctx->completion_lock); 393 io_put_kbuf_comp(req); 394 spin_unlock(&req->ctx->completion_lock); 395 } 396 397 if (req->flags & REQ_F_NEED_CLEANUP) { 398 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 399 400 if (def->cleanup) 401 def->cleanup(req); 402 } 403 if ((req->flags & REQ_F_POLLED) && req->apoll) { 404 kfree(req->apoll->double_poll); 405 kfree(req->apoll); 406 req->apoll = NULL; 407 } 408 if (req->flags & REQ_F_INFLIGHT) { 409 struct io_uring_task *tctx = req->task->io_uring; 410 411 atomic_dec(&tctx->inflight_tracked); 412 } 413 if (req->flags & REQ_F_CREDS) 414 put_cred(req->creds); 415 if (req->flags & REQ_F_ASYNC_DATA) { 416 kfree(req->async_data); 417 req->async_data = NULL; 418 } 419 req->flags &= ~IO_REQ_CLEAN_FLAGS; 420 } 421 422 static inline void io_req_track_inflight(struct io_kiocb *req) 423 { 424 if (!(req->flags & REQ_F_INFLIGHT)) { 425 req->flags |= REQ_F_INFLIGHT; 426 atomic_inc(&req->task->io_uring->inflight_tracked); 427 } 428 } 429 430 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 431 { 432 if (WARN_ON_ONCE(!req->link)) 433 return NULL; 434 435 req->flags &= ~REQ_F_ARM_LTIMEOUT; 436 req->flags |= REQ_F_LINK_TIMEOUT; 437 438 /* linked timeouts should have two refs once prep'ed */ 439 io_req_set_refcount(req); 440 __io_req_set_refcount(req->link, 2); 441 return req->link; 442 } 443 444 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 445 { 446 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 447 return NULL; 448 return __io_prep_linked_timeout(req); 449 } 450 451 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 452 { 453 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 454 } 455 456 static inline void io_arm_ltimeout(struct io_kiocb *req) 457 { 458 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 459 __io_arm_ltimeout(req); 460 } 461 462 static void io_prep_async_work(struct io_kiocb *req) 463 { 464 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 465 struct io_ring_ctx *ctx = req->ctx; 466 467 if (!(req->flags & REQ_F_CREDS)) { 468 req->flags |= REQ_F_CREDS; 469 req->creds = get_current_cred(); 470 } 471 472 req->work.list.next = NULL; 473 req->work.flags = 0; 474 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 475 if (req->flags & REQ_F_FORCE_ASYNC) 476 req->work.flags |= IO_WQ_WORK_CONCURRENT; 477 478 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 479 req->flags |= io_file_get_flags(req->file); 480 481 if (req->file && (req->flags & REQ_F_ISREG)) { 482 bool should_hash = def->hash_reg_file; 483 484 /* don't serialize this request if the fs doesn't need it */ 485 if (should_hash && (req->file->f_flags & O_DIRECT) && 486 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 487 should_hash = false; 488 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 489 io_wq_hash_work(&req->work, file_inode(req->file)); 490 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 491 if (def->unbound_nonreg_file) 492 req->work.flags |= IO_WQ_WORK_UNBOUND; 493 } 494 } 495 496 static void io_prep_async_link(struct io_kiocb *req) 497 { 498 struct io_kiocb *cur; 499 500 if (req->flags & REQ_F_LINK_TIMEOUT) { 501 struct io_ring_ctx *ctx = req->ctx; 502 503 spin_lock_irq(&ctx->timeout_lock); 504 io_for_each_link(cur, req) 505 io_prep_async_work(cur); 506 spin_unlock_irq(&ctx->timeout_lock); 507 } else { 508 io_for_each_link(cur, req) 509 io_prep_async_work(cur); 510 } 511 } 512 513 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 514 { 515 struct io_kiocb *link = io_prep_linked_timeout(req); 516 struct io_uring_task *tctx = req->task->io_uring; 517 518 BUG_ON(!tctx); 519 BUG_ON(!tctx->io_wq); 520 521 /* init ->work of the whole link before punting */ 522 io_prep_async_link(req); 523 524 /* 525 * Not expected to happen, but if we do have a bug where this _can_ 526 * happen, catch it here and ensure the request is marked as 527 * canceled. That will make io-wq go through the usual work cancel 528 * procedure rather than attempt to run this request (or create a new 529 * worker for it). 530 */ 531 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 532 req->work.flags |= IO_WQ_WORK_CANCEL; 533 534 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 535 io_wq_enqueue(tctx->io_wq, &req->work); 536 if (link) 537 io_queue_linked_timeout(link); 538 } 539 540 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 541 { 542 while (!list_empty(&ctx->defer_list)) { 543 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 544 struct io_defer_entry, list); 545 546 if (req_need_defer(de->req, de->seq)) 547 break; 548 list_del_init(&de->list); 549 io_req_task_queue(de->req); 550 kfree(de); 551 } 552 } 553 554 555 static void io_eventfd_ops(struct rcu_head *rcu) 556 { 557 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 558 int ops = atomic_xchg(&ev_fd->ops, 0); 559 560 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 561 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 562 563 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 564 * ordering in a race but if references are 0 we know we have to free 565 * it regardless. 566 */ 567 if (atomic_dec_and_test(&ev_fd->refs)) { 568 eventfd_ctx_put(ev_fd->cq_ev_fd); 569 kfree(ev_fd); 570 } 571 } 572 573 static void io_eventfd_signal(struct io_ring_ctx *ctx) 574 { 575 struct io_ev_fd *ev_fd = NULL; 576 577 rcu_read_lock(); 578 /* 579 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 580 * and eventfd_signal 581 */ 582 ev_fd = rcu_dereference(ctx->io_ev_fd); 583 584 /* 585 * Check again if ev_fd exists incase an io_eventfd_unregister call 586 * completed between the NULL check of ctx->io_ev_fd at the start of 587 * the function and rcu_read_lock. 588 */ 589 if (unlikely(!ev_fd)) 590 goto out; 591 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 592 goto out; 593 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 594 goto out; 595 596 if (likely(eventfd_signal_allowed())) { 597 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 598 } else { 599 atomic_inc(&ev_fd->refs); 600 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 601 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 602 else 603 atomic_dec(&ev_fd->refs); 604 } 605 606 out: 607 rcu_read_unlock(); 608 } 609 610 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 611 { 612 bool skip; 613 614 spin_lock(&ctx->completion_lock); 615 616 /* 617 * Eventfd should only get triggered when at least one event has been 618 * posted. Some applications rely on the eventfd notification count 619 * only changing IFF a new CQE has been added to the CQ ring. There's 620 * no depedency on 1:1 relationship between how many times this 621 * function is called (and hence the eventfd count) and number of CQEs 622 * posted to the CQ ring. 623 */ 624 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 625 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 626 spin_unlock(&ctx->completion_lock); 627 if (skip) 628 return; 629 630 io_eventfd_signal(ctx); 631 } 632 633 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 634 { 635 if (ctx->poll_activated) 636 io_poll_wq_wake(ctx); 637 if (ctx->off_timeout_used) 638 io_flush_timeouts(ctx); 639 if (ctx->drain_active) { 640 spin_lock(&ctx->completion_lock); 641 io_queue_deferred(ctx); 642 spin_unlock(&ctx->completion_lock); 643 } 644 if (ctx->has_evfd) 645 io_eventfd_flush_signal(ctx); 646 } 647 648 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 649 { 650 if (!ctx->lockless_cq) 651 spin_lock(&ctx->completion_lock); 652 } 653 654 static inline void io_cq_lock(struct io_ring_ctx *ctx) 655 __acquires(ctx->completion_lock) 656 { 657 spin_lock(&ctx->completion_lock); 658 } 659 660 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 661 { 662 io_commit_cqring(ctx); 663 if (!ctx->task_complete) { 664 if (!ctx->lockless_cq) 665 spin_unlock(&ctx->completion_lock); 666 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 667 if (!ctx->syscall_iopoll) 668 io_cqring_wake(ctx); 669 } 670 io_commit_cqring_flush(ctx); 671 } 672 673 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 674 __releases(ctx->completion_lock) 675 { 676 io_commit_cqring(ctx); 677 spin_unlock(&ctx->completion_lock); 678 io_cqring_wake(ctx); 679 io_commit_cqring_flush(ctx); 680 } 681 682 /* Returns true if there are no backlogged entries after the flush */ 683 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 684 { 685 struct io_overflow_cqe *ocqe; 686 LIST_HEAD(list); 687 688 spin_lock(&ctx->completion_lock); 689 list_splice_init(&ctx->cq_overflow_list, &list); 690 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 691 spin_unlock(&ctx->completion_lock); 692 693 while (!list_empty(&list)) { 694 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 695 list_del(&ocqe->list); 696 kfree(ocqe); 697 } 698 } 699 700 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 701 { 702 size_t cqe_size = sizeof(struct io_uring_cqe); 703 704 if (__io_cqring_events(ctx) == ctx->cq_entries) 705 return; 706 707 if (ctx->flags & IORING_SETUP_CQE32) 708 cqe_size <<= 1; 709 710 io_cq_lock(ctx); 711 while (!list_empty(&ctx->cq_overflow_list)) { 712 struct io_uring_cqe *cqe; 713 struct io_overflow_cqe *ocqe; 714 715 if (!io_get_cqe_overflow(ctx, &cqe, true)) 716 break; 717 ocqe = list_first_entry(&ctx->cq_overflow_list, 718 struct io_overflow_cqe, list); 719 memcpy(cqe, &ocqe->cqe, cqe_size); 720 list_del(&ocqe->list); 721 kfree(ocqe); 722 } 723 724 if (list_empty(&ctx->cq_overflow_list)) { 725 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 726 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 727 } 728 io_cq_unlock_post(ctx); 729 } 730 731 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 732 { 733 /* iopoll syncs against uring_lock, not completion_lock */ 734 if (ctx->flags & IORING_SETUP_IOPOLL) 735 mutex_lock(&ctx->uring_lock); 736 __io_cqring_overflow_flush(ctx); 737 if (ctx->flags & IORING_SETUP_IOPOLL) 738 mutex_unlock(&ctx->uring_lock); 739 } 740 741 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 742 { 743 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 744 io_cqring_do_overflow_flush(ctx); 745 } 746 747 /* can be called by any task */ 748 static void io_put_task_remote(struct task_struct *task) 749 { 750 struct io_uring_task *tctx = task->io_uring; 751 752 percpu_counter_sub(&tctx->inflight, 1); 753 if (unlikely(atomic_read(&tctx->in_cancel))) 754 wake_up(&tctx->wait); 755 put_task_struct(task); 756 } 757 758 /* used by a task to put its own references */ 759 static void io_put_task_local(struct task_struct *task) 760 { 761 task->io_uring->cached_refs++; 762 } 763 764 /* must to be called somewhat shortly after putting a request */ 765 static inline void io_put_task(struct task_struct *task) 766 { 767 if (likely(task == current)) 768 io_put_task_local(task); 769 else 770 io_put_task_remote(task); 771 } 772 773 void io_task_refs_refill(struct io_uring_task *tctx) 774 { 775 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 776 777 percpu_counter_add(&tctx->inflight, refill); 778 refcount_add(refill, ¤t->usage); 779 tctx->cached_refs += refill; 780 } 781 782 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 783 { 784 struct io_uring_task *tctx = task->io_uring; 785 unsigned int refs = tctx->cached_refs; 786 787 if (refs) { 788 tctx->cached_refs = 0; 789 percpu_counter_sub(&tctx->inflight, refs); 790 put_task_struct_many(task, refs); 791 } 792 } 793 794 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 795 s32 res, u32 cflags, u64 extra1, u64 extra2) 796 { 797 struct io_overflow_cqe *ocqe; 798 size_t ocq_size = sizeof(struct io_overflow_cqe); 799 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 800 801 lockdep_assert_held(&ctx->completion_lock); 802 803 if (is_cqe32) 804 ocq_size += sizeof(struct io_uring_cqe); 805 806 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 807 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 808 if (!ocqe) { 809 /* 810 * If we're in ring overflow flush mode, or in task cancel mode, 811 * or cannot allocate an overflow entry, then we need to drop it 812 * on the floor. 813 */ 814 io_account_cq_overflow(ctx); 815 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 816 return false; 817 } 818 if (list_empty(&ctx->cq_overflow_list)) { 819 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 820 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 821 822 } 823 ocqe->cqe.user_data = user_data; 824 ocqe->cqe.res = res; 825 ocqe->cqe.flags = cflags; 826 if (is_cqe32) { 827 ocqe->cqe.big_cqe[0] = extra1; 828 ocqe->cqe.big_cqe[1] = extra2; 829 } 830 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 831 return true; 832 } 833 834 void io_req_cqe_overflow(struct io_kiocb *req) 835 { 836 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 837 req->cqe.res, req->cqe.flags, 838 req->big_cqe.extra1, req->big_cqe.extra2); 839 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 840 } 841 842 /* 843 * writes to the cq entry need to come after reading head; the 844 * control dependency is enough as we're using WRITE_ONCE to 845 * fill the cq entry 846 */ 847 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 848 { 849 struct io_rings *rings = ctx->rings; 850 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 851 unsigned int free, queued, len; 852 853 /* 854 * Posting into the CQ when there are pending overflowed CQEs may break 855 * ordering guarantees, which will affect links, F_MORE users and more. 856 * Force overflow the completion. 857 */ 858 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 859 return false; 860 861 /* userspace may cheat modifying the tail, be safe and do min */ 862 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 863 free = ctx->cq_entries - queued; 864 /* we need a contiguous range, limit based on the current array offset */ 865 len = min(free, ctx->cq_entries - off); 866 if (!len) 867 return false; 868 869 if (ctx->flags & IORING_SETUP_CQE32) { 870 off <<= 1; 871 len <<= 1; 872 } 873 874 ctx->cqe_cached = &rings->cqes[off]; 875 ctx->cqe_sentinel = ctx->cqe_cached + len; 876 return true; 877 } 878 879 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 880 u32 cflags) 881 { 882 struct io_uring_cqe *cqe; 883 884 ctx->cq_extra++; 885 886 /* 887 * If we can't get a cq entry, userspace overflowed the 888 * submission (by quite a lot). Increment the overflow count in 889 * the ring. 890 */ 891 if (likely(io_get_cqe(ctx, &cqe))) { 892 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 893 894 WRITE_ONCE(cqe->user_data, user_data); 895 WRITE_ONCE(cqe->res, res); 896 WRITE_ONCE(cqe->flags, cflags); 897 898 if (ctx->flags & IORING_SETUP_CQE32) { 899 WRITE_ONCE(cqe->big_cqe[0], 0); 900 WRITE_ONCE(cqe->big_cqe[1], 0); 901 } 902 return true; 903 } 904 return false; 905 } 906 907 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 908 __must_hold(&ctx->uring_lock) 909 { 910 struct io_submit_state *state = &ctx->submit_state; 911 unsigned int i; 912 913 lockdep_assert_held(&ctx->uring_lock); 914 for (i = 0; i < state->cqes_count; i++) { 915 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 916 917 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 918 if (ctx->lockless_cq) { 919 spin_lock(&ctx->completion_lock); 920 io_cqring_event_overflow(ctx, cqe->user_data, 921 cqe->res, cqe->flags, 0, 0); 922 spin_unlock(&ctx->completion_lock); 923 } else { 924 io_cqring_event_overflow(ctx, cqe->user_data, 925 cqe->res, cqe->flags, 0, 0); 926 } 927 } 928 } 929 state->cqes_count = 0; 930 } 931 932 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 933 bool allow_overflow) 934 { 935 bool filled; 936 937 io_cq_lock(ctx); 938 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 939 if (!filled && allow_overflow) 940 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 941 942 io_cq_unlock_post(ctx); 943 return filled; 944 } 945 946 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 947 { 948 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 949 } 950 951 /* 952 * A helper for multishot requests posting additional CQEs. 953 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 954 */ 955 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 956 { 957 struct io_ring_ctx *ctx = req->ctx; 958 u64 user_data = req->cqe.user_data; 959 struct io_uring_cqe *cqe; 960 961 if (!defer) 962 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 963 964 lockdep_assert_held(&ctx->uring_lock); 965 966 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 967 __io_cq_lock(ctx); 968 __io_flush_post_cqes(ctx); 969 /* no need to flush - flush is deferred */ 970 __io_cq_unlock_post(ctx); 971 } 972 973 /* For defered completions this is not as strict as it is otherwise, 974 * however it's main job is to prevent unbounded posted completions, 975 * and in that it works just as well. 976 */ 977 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 978 return false; 979 980 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 981 cqe->user_data = user_data; 982 cqe->res = res; 983 cqe->flags = cflags; 984 return true; 985 } 986 987 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 988 { 989 struct io_ring_ctx *ctx = req->ctx; 990 struct io_rsrc_node *rsrc_node = NULL; 991 992 io_cq_lock(ctx); 993 if (!(req->flags & REQ_F_CQE_SKIP)) { 994 if (!io_fill_cqe_req(ctx, req)) 995 io_req_cqe_overflow(req); 996 } 997 998 /* 999 * If we're the last reference to this request, add to our locked 1000 * free_list cache. 1001 */ 1002 if (req_ref_put_and_test(req)) { 1003 if (req->flags & IO_REQ_LINK_FLAGS) { 1004 if (req->flags & IO_DISARM_MASK) 1005 io_disarm_next(req); 1006 if (req->link) { 1007 io_req_task_queue(req->link); 1008 req->link = NULL; 1009 } 1010 } 1011 io_put_kbuf_comp(req); 1012 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1013 io_clean_op(req); 1014 io_put_file(req); 1015 1016 rsrc_node = req->rsrc_node; 1017 /* 1018 * Selected buffer deallocation in io_clean_op() assumes that 1019 * we don't hold ->completion_lock. Clean them here to avoid 1020 * deadlocks. 1021 */ 1022 io_put_task_remote(req->task); 1023 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1024 ctx->locked_free_nr++; 1025 } 1026 io_cq_unlock_post(ctx); 1027 1028 if (rsrc_node) { 1029 io_ring_submit_lock(ctx, issue_flags); 1030 io_put_rsrc_node(ctx, rsrc_node); 1031 io_ring_submit_unlock(ctx, issue_flags); 1032 } 1033 } 1034 1035 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1036 { 1037 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1038 req->io_task_work.func = io_req_task_complete; 1039 io_req_task_work_add(req); 1040 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1041 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1042 __io_req_complete_post(req, issue_flags); 1043 } else { 1044 struct io_ring_ctx *ctx = req->ctx; 1045 1046 mutex_lock(&ctx->uring_lock); 1047 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1048 mutex_unlock(&ctx->uring_lock); 1049 } 1050 } 1051 1052 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1053 __must_hold(&ctx->uring_lock) 1054 { 1055 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1056 1057 lockdep_assert_held(&req->ctx->uring_lock); 1058 1059 req_set_fail(req); 1060 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1061 if (def->fail) 1062 def->fail(req); 1063 io_req_complete_defer(req); 1064 } 1065 1066 /* 1067 * Don't initialise the fields below on every allocation, but do that in 1068 * advance and keep them valid across allocations. 1069 */ 1070 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1071 { 1072 req->ctx = ctx; 1073 req->link = NULL; 1074 req->async_data = NULL; 1075 /* not necessary, but safer to zero */ 1076 memset(&req->cqe, 0, sizeof(req->cqe)); 1077 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1078 } 1079 1080 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1081 struct io_submit_state *state) 1082 { 1083 spin_lock(&ctx->completion_lock); 1084 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1085 ctx->locked_free_nr = 0; 1086 spin_unlock(&ctx->completion_lock); 1087 } 1088 1089 /* 1090 * A request might get retired back into the request caches even before opcode 1091 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1092 * Because of that, io_alloc_req() should be called only under ->uring_lock 1093 * and with extra caution to not get a request that is still worked on. 1094 */ 1095 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1096 __must_hold(&ctx->uring_lock) 1097 { 1098 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1099 void *reqs[IO_REQ_ALLOC_BATCH]; 1100 int ret, i; 1101 1102 /* 1103 * If we have more than a batch's worth of requests in our IRQ side 1104 * locked cache, grab the lock and move them over to our submission 1105 * side cache. 1106 */ 1107 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1108 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1109 if (!io_req_cache_empty(ctx)) 1110 return true; 1111 } 1112 1113 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1114 1115 /* 1116 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1117 * retry single alloc to be on the safe side. 1118 */ 1119 if (unlikely(ret <= 0)) { 1120 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1121 if (!reqs[0]) 1122 return false; 1123 ret = 1; 1124 } 1125 1126 percpu_ref_get_many(&ctx->refs, ret); 1127 for (i = 0; i < ret; i++) { 1128 struct io_kiocb *req = reqs[i]; 1129 1130 io_preinit_req(req, ctx); 1131 io_req_add_to_cache(req, ctx); 1132 } 1133 return true; 1134 } 1135 1136 __cold void io_free_req(struct io_kiocb *req) 1137 { 1138 /* refs were already put, restore them for io_req_task_complete() */ 1139 req->flags &= ~REQ_F_REFCOUNT; 1140 /* we only want to free it, don't post CQEs */ 1141 req->flags |= REQ_F_CQE_SKIP; 1142 req->io_task_work.func = io_req_task_complete; 1143 io_req_task_work_add(req); 1144 } 1145 1146 static void __io_req_find_next_prep(struct io_kiocb *req) 1147 { 1148 struct io_ring_ctx *ctx = req->ctx; 1149 1150 spin_lock(&ctx->completion_lock); 1151 io_disarm_next(req); 1152 spin_unlock(&ctx->completion_lock); 1153 } 1154 1155 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1156 { 1157 struct io_kiocb *nxt; 1158 1159 /* 1160 * If LINK is set, we have dependent requests in this chain. If we 1161 * didn't fail this request, queue the first one up, moving any other 1162 * dependencies to the next request. In case of failure, fail the rest 1163 * of the chain. 1164 */ 1165 if (unlikely(req->flags & IO_DISARM_MASK)) 1166 __io_req_find_next_prep(req); 1167 nxt = req->link; 1168 req->link = NULL; 1169 return nxt; 1170 } 1171 1172 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1173 { 1174 if (!ctx) 1175 return; 1176 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1177 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1178 if (ts->locked) { 1179 io_submit_flush_completions(ctx); 1180 mutex_unlock(&ctx->uring_lock); 1181 ts->locked = false; 1182 } 1183 percpu_ref_put(&ctx->refs); 1184 } 1185 1186 static unsigned int handle_tw_list(struct llist_node *node, 1187 struct io_ring_ctx **ctx, 1188 struct io_tw_state *ts, 1189 struct llist_node *last) 1190 { 1191 unsigned int count = 0; 1192 1193 while (node && node != last) { 1194 struct llist_node *next = node->next; 1195 struct io_kiocb *req = container_of(node, struct io_kiocb, 1196 io_task_work.node); 1197 1198 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1199 1200 if (req->ctx != *ctx) { 1201 ctx_flush_and_put(*ctx, ts); 1202 *ctx = req->ctx; 1203 /* if not contended, grab and improve batching */ 1204 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1205 percpu_ref_get(&(*ctx)->refs); 1206 } 1207 INDIRECT_CALL_2(req->io_task_work.func, 1208 io_poll_task_func, io_req_rw_complete, 1209 req, ts); 1210 node = next; 1211 count++; 1212 if (unlikely(need_resched())) { 1213 ctx_flush_and_put(*ctx, ts); 1214 *ctx = NULL; 1215 cond_resched(); 1216 } 1217 } 1218 1219 return count; 1220 } 1221 1222 /** 1223 * io_llist_xchg - swap all entries in a lock-less list 1224 * @head: the head of lock-less list to delete all entries 1225 * @new: new entry as the head of the list 1226 * 1227 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1228 * The order of entries returned is from the newest to the oldest added one. 1229 */ 1230 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1231 struct llist_node *new) 1232 { 1233 return xchg(&head->first, new); 1234 } 1235 1236 /** 1237 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1238 * @head: the head of lock-less list to delete all entries 1239 * @old: expected old value of the first entry of the list 1240 * @new: new entry as the head of the list 1241 * 1242 * perform a cmpxchg on the first entry of the list. 1243 */ 1244 1245 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1246 struct llist_node *old, 1247 struct llist_node *new) 1248 { 1249 return cmpxchg(&head->first, old, new); 1250 } 1251 1252 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1253 { 1254 struct llist_node *node = llist_del_all(&tctx->task_list); 1255 struct io_ring_ctx *last_ctx = NULL; 1256 struct io_kiocb *req; 1257 1258 while (node) { 1259 req = container_of(node, struct io_kiocb, io_task_work.node); 1260 node = node->next; 1261 if (sync && last_ctx != req->ctx) { 1262 if (last_ctx) { 1263 flush_delayed_work(&last_ctx->fallback_work); 1264 percpu_ref_put(&last_ctx->refs); 1265 } 1266 last_ctx = req->ctx; 1267 percpu_ref_get(&last_ctx->refs); 1268 } 1269 if (llist_add(&req->io_task_work.node, 1270 &req->ctx->fallback_llist)) 1271 schedule_delayed_work(&req->ctx->fallback_work, 1); 1272 } 1273 1274 if (last_ctx) { 1275 flush_delayed_work(&last_ctx->fallback_work); 1276 percpu_ref_put(&last_ctx->refs); 1277 } 1278 } 1279 1280 void tctx_task_work(struct callback_head *cb) 1281 { 1282 struct io_tw_state ts = {}; 1283 struct io_ring_ctx *ctx = NULL; 1284 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1285 task_work); 1286 struct llist_node fake = {}; 1287 struct llist_node *node; 1288 unsigned int loops = 0; 1289 unsigned int count = 0; 1290 1291 if (unlikely(current->flags & PF_EXITING)) { 1292 io_fallback_tw(tctx, true); 1293 return; 1294 } 1295 1296 do { 1297 loops++; 1298 node = io_llist_xchg(&tctx->task_list, &fake); 1299 count += handle_tw_list(node, &ctx, &ts, &fake); 1300 1301 /* skip expensive cmpxchg if there are items in the list */ 1302 if (READ_ONCE(tctx->task_list.first) != &fake) 1303 continue; 1304 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1305 io_submit_flush_completions(ctx); 1306 if (READ_ONCE(tctx->task_list.first) != &fake) 1307 continue; 1308 } 1309 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1310 } while (node != &fake); 1311 1312 ctx_flush_and_put(ctx, &ts); 1313 1314 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1315 if (unlikely(atomic_read(&tctx->in_cancel))) 1316 io_uring_drop_tctx_refs(current); 1317 1318 trace_io_uring_task_work_run(tctx, count, loops); 1319 } 1320 1321 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1322 { 1323 struct io_ring_ctx *ctx = req->ctx; 1324 unsigned nr_wait, nr_tw, nr_tw_prev; 1325 struct llist_node *first; 1326 1327 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1328 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1329 1330 first = READ_ONCE(ctx->work_llist.first); 1331 do { 1332 nr_tw_prev = 0; 1333 if (first) { 1334 struct io_kiocb *first_req = container_of(first, 1335 struct io_kiocb, 1336 io_task_work.node); 1337 /* 1338 * Might be executed at any moment, rely on 1339 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1340 */ 1341 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1342 } 1343 nr_tw = nr_tw_prev + 1; 1344 /* Large enough to fail the nr_wait comparison below */ 1345 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1346 nr_tw = -1U; 1347 1348 req->nr_tw = nr_tw; 1349 req->io_task_work.node.next = first; 1350 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1351 &req->io_task_work.node)); 1352 1353 if (!first) { 1354 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1355 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1356 if (ctx->has_evfd) 1357 io_eventfd_signal(ctx); 1358 } 1359 1360 nr_wait = atomic_read(&ctx->cq_wait_nr); 1361 /* no one is waiting */ 1362 if (!nr_wait) 1363 return; 1364 /* either not enough or the previous add has already woken it up */ 1365 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1366 return; 1367 /* pairs with set_current_state() in io_cqring_wait() */ 1368 smp_mb__after_atomic(); 1369 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1370 } 1371 1372 static void io_req_normal_work_add(struct io_kiocb *req) 1373 { 1374 struct io_uring_task *tctx = req->task->io_uring; 1375 struct io_ring_ctx *ctx = req->ctx; 1376 1377 /* task_work already pending, we're done */ 1378 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1379 return; 1380 1381 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1382 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1383 1384 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1385 return; 1386 1387 io_fallback_tw(tctx, false); 1388 } 1389 1390 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1391 { 1392 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1393 rcu_read_lock(); 1394 io_req_local_work_add(req, flags); 1395 rcu_read_unlock(); 1396 } else { 1397 io_req_normal_work_add(req); 1398 } 1399 } 1400 1401 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1402 { 1403 struct llist_node *node; 1404 1405 node = llist_del_all(&ctx->work_llist); 1406 while (node) { 1407 struct io_kiocb *req = container_of(node, struct io_kiocb, 1408 io_task_work.node); 1409 1410 node = node->next; 1411 io_req_normal_work_add(req); 1412 } 1413 } 1414 1415 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1416 { 1417 struct llist_node *node; 1418 unsigned int loops = 0; 1419 int ret = 0; 1420 1421 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1422 return -EEXIST; 1423 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1424 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1425 again: 1426 /* 1427 * llists are in reverse order, flip it back the right way before 1428 * running the pending items. 1429 */ 1430 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1431 while (node) { 1432 struct llist_node *next = node->next; 1433 struct io_kiocb *req = container_of(node, struct io_kiocb, 1434 io_task_work.node); 1435 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1436 INDIRECT_CALL_2(req->io_task_work.func, 1437 io_poll_task_func, io_req_rw_complete, 1438 req, ts); 1439 ret++; 1440 node = next; 1441 } 1442 loops++; 1443 1444 if (!llist_empty(&ctx->work_llist)) 1445 goto again; 1446 if (ts->locked) { 1447 io_submit_flush_completions(ctx); 1448 if (!llist_empty(&ctx->work_llist)) 1449 goto again; 1450 } 1451 trace_io_uring_local_work_run(ctx, ret, loops); 1452 return ret; 1453 } 1454 1455 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1456 { 1457 struct io_tw_state ts = { .locked = true, }; 1458 int ret; 1459 1460 if (llist_empty(&ctx->work_llist)) 1461 return 0; 1462 1463 ret = __io_run_local_work(ctx, &ts); 1464 /* shouldn't happen! */ 1465 if (WARN_ON_ONCE(!ts.locked)) 1466 mutex_lock(&ctx->uring_lock); 1467 return ret; 1468 } 1469 1470 static int io_run_local_work(struct io_ring_ctx *ctx) 1471 { 1472 struct io_tw_state ts = {}; 1473 int ret; 1474 1475 ts.locked = mutex_trylock(&ctx->uring_lock); 1476 ret = __io_run_local_work(ctx, &ts); 1477 if (ts.locked) 1478 mutex_unlock(&ctx->uring_lock); 1479 1480 return ret; 1481 } 1482 1483 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1484 { 1485 io_tw_lock(req->ctx, ts); 1486 io_req_defer_failed(req, req->cqe.res); 1487 } 1488 1489 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1490 { 1491 io_tw_lock(req->ctx, ts); 1492 /* req->task == current here, checking PF_EXITING is safe */ 1493 if (unlikely(req->task->flags & PF_EXITING)) 1494 io_req_defer_failed(req, -EFAULT); 1495 else if (req->flags & REQ_F_FORCE_ASYNC) 1496 io_queue_iowq(req, ts); 1497 else 1498 io_queue_sqe(req); 1499 } 1500 1501 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1502 { 1503 io_req_set_res(req, ret, 0); 1504 req->io_task_work.func = io_req_task_cancel; 1505 io_req_task_work_add(req); 1506 } 1507 1508 void io_req_task_queue(struct io_kiocb *req) 1509 { 1510 req->io_task_work.func = io_req_task_submit; 1511 io_req_task_work_add(req); 1512 } 1513 1514 void io_queue_next(struct io_kiocb *req) 1515 { 1516 struct io_kiocb *nxt = io_req_find_next(req); 1517 1518 if (nxt) 1519 io_req_task_queue(nxt); 1520 } 1521 1522 static void io_free_batch_list(struct io_ring_ctx *ctx, 1523 struct io_wq_work_node *node) 1524 __must_hold(&ctx->uring_lock) 1525 { 1526 do { 1527 struct io_kiocb *req = container_of(node, struct io_kiocb, 1528 comp_list); 1529 1530 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1531 if (req->flags & REQ_F_REFCOUNT) { 1532 node = req->comp_list.next; 1533 if (!req_ref_put_and_test(req)) 1534 continue; 1535 } 1536 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1537 struct async_poll *apoll = req->apoll; 1538 1539 if (apoll->double_poll) 1540 kfree(apoll->double_poll); 1541 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1542 kfree(apoll); 1543 req->flags &= ~REQ_F_POLLED; 1544 } 1545 if (req->flags & IO_REQ_LINK_FLAGS) 1546 io_queue_next(req); 1547 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1548 io_clean_op(req); 1549 } 1550 io_put_file(req); 1551 1552 io_req_put_rsrc_locked(req, ctx); 1553 1554 io_put_task(req->task); 1555 node = req->comp_list.next; 1556 io_req_add_to_cache(req, ctx); 1557 } while (node); 1558 } 1559 1560 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1561 __must_hold(&ctx->uring_lock) 1562 { 1563 struct io_submit_state *state = &ctx->submit_state; 1564 struct io_wq_work_node *node; 1565 1566 __io_cq_lock(ctx); 1567 /* must come first to preserve CQE ordering in failure cases */ 1568 if (state->cqes_count) 1569 __io_flush_post_cqes(ctx); 1570 __wq_list_for_each(node, &state->compl_reqs) { 1571 struct io_kiocb *req = container_of(node, struct io_kiocb, 1572 comp_list); 1573 1574 if (!(req->flags & REQ_F_CQE_SKIP) && 1575 unlikely(!io_fill_cqe_req(ctx, req))) { 1576 if (ctx->lockless_cq) { 1577 spin_lock(&ctx->completion_lock); 1578 io_req_cqe_overflow(req); 1579 spin_unlock(&ctx->completion_lock); 1580 } else { 1581 io_req_cqe_overflow(req); 1582 } 1583 } 1584 } 1585 __io_cq_unlock_post(ctx); 1586 1587 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1588 io_free_batch_list(ctx, state->compl_reqs.first); 1589 INIT_WQ_LIST(&state->compl_reqs); 1590 } 1591 } 1592 1593 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1594 { 1595 /* See comment at the top of this file */ 1596 smp_rmb(); 1597 return __io_cqring_events(ctx); 1598 } 1599 1600 /* 1601 * We can't just wait for polled events to come to us, we have to actively 1602 * find and complete them. 1603 */ 1604 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1605 { 1606 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1607 return; 1608 1609 mutex_lock(&ctx->uring_lock); 1610 while (!wq_list_empty(&ctx->iopoll_list)) { 1611 /* let it sleep and repeat later if can't complete a request */ 1612 if (io_do_iopoll(ctx, true) == 0) 1613 break; 1614 /* 1615 * Ensure we allow local-to-the-cpu processing to take place, 1616 * in this case we need to ensure that we reap all events. 1617 * Also let task_work, etc. to progress by releasing the mutex 1618 */ 1619 if (need_resched()) { 1620 mutex_unlock(&ctx->uring_lock); 1621 cond_resched(); 1622 mutex_lock(&ctx->uring_lock); 1623 } 1624 } 1625 mutex_unlock(&ctx->uring_lock); 1626 } 1627 1628 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1629 { 1630 unsigned int nr_events = 0; 1631 unsigned long check_cq; 1632 1633 if (!io_allowed_run_tw(ctx)) 1634 return -EEXIST; 1635 1636 check_cq = READ_ONCE(ctx->check_cq); 1637 if (unlikely(check_cq)) { 1638 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1639 __io_cqring_overflow_flush(ctx); 1640 /* 1641 * Similarly do not spin if we have not informed the user of any 1642 * dropped CQE. 1643 */ 1644 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1645 return -EBADR; 1646 } 1647 /* 1648 * Don't enter poll loop if we already have events pending. 1649 * If we do, we can potentially be spinning for commands that 1650 * already triggered a CQE (eg in error). 1651 */ 1652 if (io_cqring_events(ctx)) 1653 return 0; 1654 1655 do { 1656 int ret = 0; 1657 1658 /* 1659 * If a submit got punted to a workqueue, we can have the 1660 * application entering polling for a command before it gets 1661 * issued. That app will hold the uring_lock for the duration 1662 * of the poll right here, so we need to take a breather every 1663 * now and then to ensure that the issue has a chance to add 1664 * the poll to the issued list. Otherwise we can spin here 1665 * forever, while the workqueue is stuck trying to acquire the 1666 * very same mutex. 1667 */ 1668 if (wq_list_empty(&ctx->iopoll_list) || 1669 io_task_work_pending(ctx)) { 1670 u32 tail = ctx->cached_cq_tail; 1671 1672 (void) io_run_local_work_locked(ctx); 1673 1674 if (task_work_pending(current) || 1675 wq_list_empty(&ctx->iopoll_list)) { 1676 mutex_unlock(&ctx->uring_lock); 1677 io_run_task_work(); 1678 mutex_lock(&ctx->uring_lock); 1679 } 1680 /* some requests don't go through iopoll_list */ 1681 if (tail != ctx->cached_cq_tail || 1682 wq_list_empty(&ctx->iopoll_list)) 1683 break; 1684 } 1685 ret = io_do_iopoll(ctx, !min); 1686 if (unlikely(ret < 0)) 1687 return ret; 1688 1689 if (task_sigpending(current)) 1690 return -EINTR; 1691 if (need_resched()) 1692 break; 1693 1694 nr_events += ret; 1695 } while (nr_events < min); 1696 1697 return 0; 1698 } 1699 1700 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1701 { 1702 if (ts->locked) 1703 io_req_complete_defer(req); 1704 else 1705 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1706 } 1707 1708 /* 1709 * After the iocb has been issued, it's safe to be found on the poll list. 1710 * Adding the kiocb to the list AFTER submission ensures that we don't 1711 * find it from a io_do_iopoll() thread before the issuer is done 1712 * accessing the kiocb cookie. 1713 */ 1714 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1715 { 1716 struct io_ring_ctx *ctx = req->ctx; 1717 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1718 1719 /* workqueue context doesn't hold uring_lock, grab it now */ 1720 if (unlikely(needs_lock)) 1721 mutex_lock(&ctx->uring_lock); 1722 1723 /* 1724 * Track whether we have multiple files in our lists. This will impact 1725 * how we do polling eventually, not spinning if we're on potentially 1726 * different devices. 1727 */ 1728 if (wq_list_empty(&ctx->iopoll_list)) { 1729 ctx->poll_multi_queue = false; 1730 } else if (!ctx->poll_multi_queue) { 1731 struct io_kiocb *list_req; 1732 1733 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1734 comp_list); 1735 if (list_req->file != req->file) 1736 ctx->poll_multi_queue = true; 1737 } 1738 1739 /* 1740 * For fast devices, IO may have already completed. If it has, add 1741 * it to the front so we find it first. 1742 */ 1743 if (READ_ONCE(req->iopoll_completed)) 1744 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1745 else 1746 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1747 1748 if (unlikely(needs_lock)) { 1749 /* 1750 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1751 * in sq thread task context or in io worker task context. If 1752 * current task context is sq thread, we don't need to check 1753 * whether should wake up sq thread. 1754 */ 1755 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1756 wq_has_sleeper(&ctx->sq_data->wait)) 1757 wake_up(&ctx->sq_data->wait); 1758 1759 mutex_unlock(&ctx->uring_lock); 1760 } 1761 } 1762 1763 unsigned int io_file_get_flags(struct file *file) 1764 { 1765 unsigned int res = 0; 1766 1767 if (S_ISREG(file_inode(file)->i_mode)) 1768 res |= REQ_F_ISREG; 1769 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1770 res |= REQ_F_SUPPORT_NOWAIT; 1771 return res; 1772 } 1773 1774 bool io_alloc_async_data(struct io_kiocb *req) 1775 { 1776 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1777 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1778 if (req->async_data) { 1779 req->flags |= REQ_F_ASYNC_DATA; 1780 return false; 1781 } 1782 return true; 1783 } 1784 1785 int io_req_prep_async(struct io_kiocb *req) 1786 { 1787 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1788 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1789 1790 /* assign early for deferred execution for non-fixed file */ 1791 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1792 req->file = io_file_get_normal(req, req->cqe.fd); 1793 if (!cdef->prep_async) 1794 return 0; 1795 if (WARN_ON_ONCE(req_has_async_data(req))) 1796 return -EFAULT; 1797 if (!def->manual_alloc) { 1798 if (io_alloc_async_data(req)) 1799 return -EAGAIN; 1800 } 1801 return cdef->prep_async(req); 1802 } 1803 1804 static u32 io_get_sequence(struct io_kiocb *req) 1805 { 1806 u32 seq = req->ctx->cached_sq_head; 1807 struct io_kiocb *cur; 1808 1809 /* need original cached_sq_head, but it was increased for each req */ 1810 io_for_each_link(cur, req) 1811 seq--; 1812 return seq; 1813 } 1814 1815 static __cold void io_drain_req(struct io_kiocb *req) 1816 __must_hold(&ctx->uring_lock) 1817 { 1818 struct io_ring_ctx *ctx = req->ctx; 1819 struct io_defer_entry *de; 1820 int ret; 1821 u32 seq = io_get_sequence(req); 1822 1823 /* Still need defer if there is pending req in defer list. */ 1824 spin_lock(&ctx->completion_lock); 1825 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1826 spin_unlock(&ctx->completion_lock); 1827 queue: 1828 ctx->drain_active = false; 1829 io_req_task_queue(req); 1830 return; 1831 } 1832 spin_unlock(&ctx->completion_lock); 1833 1834 io_prep_async_link(req); 1835 de = kmalloc(sizeof(*de), GFP_KERNEL); 1836 if (!de) { 1837 ret = -ENOMEM; 1838 io_req_defer_failed(req, ret); 1839 return; 1840 } 1841 1842 spin_lock(&ctx->completion_lock); 1843 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1844 spin_unlock(&ctx->completion_lock); 1845 kfree(de); 1846 goto queue; 1847 } 1848 1849 trace_io_uring_defer(req); 1850 de->req = req; 1851 de->seq = seq; 1852 list_add_tail(&de->list, &ctx->defer_list); 1853 spin_unlock(&ctx->completion_lock); 1854 } 1855 1856 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1857 unsigned int issue_flags) 1858 { 1859 if (req->file || !def->needs_file) 1860 return true; 1861 1862 if (req->flags & REQ_F_FIXED_FILE) 1863 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1864 else 1865 req->file = io_file_get_normal(req, req->cqe.fd); 1866 1867 return !!req->file; 1868 } 1869 1870 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1871 { 1872 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1873 const struct cred *creds = NULL; 1874 int ret; 1875 1876 if (unlikely(!io_assign_file(req, def, issue_flags))) 1877 return -EBADF; 1878 1879 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1880 creds = override_creds(req->creds); 1881 1882 if (!def->audit_skip) 1883 audit_uring_entry(req->opcode); 1884 1885 ret = def->issue(req, issue_flags); 1886 1887 if (!def->audit_skip) 1888 audit_uring_exit(!ret, ret); 1889 1890 if (creds) 1891 revert_creds(creds); 1892 1893 if (ret == IOU_OK) { 1894 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1895 io_req_complete_defer(req); 1896 else 1897 io_req_complete_post(req, issue_flags); 1898 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1899 return ret; 1900 1901 /* If the op doesn't have a file, we're not polling for it */ 1902 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1903 io_iopoll_req_issued(req, issue_flags); 1904 1905 return 0; 1906 } 1907 1908 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1909 { 1910 io_tw_lock(req->ctx, ts); 1911 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1912 IO_URING_F_COMPLETE_DEFER); 1913 } 1914 1915 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1916 { 1917 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1918 struct io_kiocb *nxt = NULL; 1919 1920 if (req_ref_put_and_test(req)) { 1921 if (req->flags & IO_REQ_LINK_FLAGS) 1922 nxt = io_req_find_next(req); 1923 io_free_req(req); 1924 } 1925 return nxt ? &nxt->work : NULL; 1926 } 1927 1928 void io_wq_submit_work(struct io_wq_work *work) 1929 { 1930 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1931 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1932 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1933 bool needs_poll = false; 1934 int ret = 0, err = -ECANCELED; 1935 1936 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1937 if (!(req->flags & REQ_F_REFCOUNT)) 1938 __io_req_set_refcount(req, 2); 1939 else 1940 req_ref_get(req); 1941 1942 io_arm_ltimeout(req); 1943 1944 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1945 if (work->flags & IO_WQ_WORK_CANCEL) { 1946 fail: 1947 io_req_task_queue_fail(req, err); 1948 return; 1949 } 1950 if (!io_assign_file(req, def, issue_flags)) { 1951 err = -EBADF; 1952 work->flags |= IO_WQ_WORK_CANCEL; 1953 goto fail; 1954 } 1955 1956 if (req->flags & REQ_F_FORCE_ASYNC) { 1957 bool opcode_poll = def->pollin || def->pollout; 1958 1959 if (opcode_poll && file_can_poll(req->file)) { 1960 needs_poll = true; 1961 issue_flags |= IO_URING_F_NONBLOCK; 1962 } 1963 } 1964 1965 do { 1966 ret = io_issue_sqe(req, issue_flags); 1967 if (ret != -EAGAIN) 1968 break; 1969 1970 /* 1971 * If REQ_F_NOWAIT is set, then don't wait or retry with 1972 * poll. -EAGAIN is final for that case. 1973 */ 1974 if (req->flags & REQ_F_NOWAIT) 1975 break; 1976 1977 /* 1978 * We can get EAGAIN for iopolled IO even though we're 1979 * forcing a sync submission from here, since we can't 1980 * wait for request slots on the block side. 1981 */ 1982 if (!needs_poll) { 1983 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1984 break; 1985 if (io_wq_worker_stopped()) 1986 break; 1987 cond_resched(); 1988 continue; 1989 } 1990 1991 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1992 return; 1993 /* aborted or ready, in either case retry blocking */ 1994 needs_poll = false; 1995 issue_flags &= ~IO_URING_F_NONBLOCK; 1996 } while (1); 1997 1998 /* avoid locking problems by failing it from a clean context */ 1999 if (ret < 0) 2000 io_req_task_queue_fail(req, ret); 2001 } 2002 2003 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2004 unsigned int issue_flags) 2005 { 2006 struct io_ring_ctx *ctx = req->ctx; 2007 struct io_fixed_file *slot; 2008 struct file *file = NULL; 2009 2010 io_ring_submit_lock(ctx, issue_flags); 2011 2012 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2013 goto out; 2014 fd = array_index_nospec(fd, ctx->nr_user_files); 2015 slot = io_fixed_file_slot(&ctx->file_table, fd); 2016 file = io_slot_file(slot); 2017 req->flags |= io_slot_flags(slot); 2018 io_req_set_rsrc_node(req, ctx, 0); 2019 out: 2020 io_ring_submit_unlock(ctx, issue_flags); 2021 return file; 2022 } 2023 2024 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2025 { 2026 struct file *file = fget(fd); 2027 2028 trace_io_uring_file_get(req, fd); 2029 2030 /* we don't allow fixed io_uring files */ 2031 if (file && io_is_uring_fops(file)) 2032 io_req_track_inflight(req); 2033 return file; 2034 } 2035 2036 static void io_queue_async(struct io_kiocb *req, int ret) 2037 __must_hold(&req->ctx->uring_lock) 2038 { 2039 struct io_kiocb *linked_timeout; 2040 2041 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2042 io_req_defer_failed(req, ret); 2043 return; 2044 } 2045 2046 linked_timeout = io_prep_linked_timeout(req); 2047 2048 switch (io_arm_poll_handler(req, 0)) { 2049 case IO_APOLL_READY: 2050 io_kbuf_recycle(req, 0); 2051 io_req_task_queue(req); 2052 break; 2053 case IO_APOLL_ABORTED: 2054 io_kbuf_recycle(req, 0); 2055 io_queue_iowq(req, NULL); 2056 break; 2057 case IO_APOLL_OK: 2058 break; 2059 } 2060 2061 if (linked_timeout) 2062 io_queue_linked_timeout(linked_timeout); 2063 } 2064 2065 static inline void io_queue_sqe(struct io_kiocb *req) 2066 __must_hold(&req->ctx->uring_lock) 2067 { 2068 int ret; 2069 2070 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2071 2072 /* 2073 * We async punt it if the file wasn't marked NOWAIT, or if the file 2074 * doesn't support non-blocking read/write attempts 2075 */ 2076 if (likely(!ret)) 2077 io_arm_ltimeout(req); 2078 else 2079 io_queue_async(req, ret); 2080 } 2081 2082 static void io_queue_sqe_fallback(struct io_kiocb *req) 2083 __must_hold(&req->ctx->uring_lock) 2084 { 2085 if (unlikely(req->flags & REQ_F_FAIL)) { 2086 /* 2087 * We don't submit, fail them all, for that replace hardlinks 2088 * with normal links. Extra REQ_F_LINK is tolerated. 2089 */ 2090 req->flags &= ~REQ_F_HARDLINK; 2091 req->flags |= REQ_F_LINK; 2092 io_req_defer_failed(req, req->cqe.res); 2093 } else { 2094 int ret = io_req_prep_async(req); 2095 2096 if (unlikely(ret)) { 2097 io_req_defer_failed(req, ret); 2098 return; 2099 } 2100 2101 if (unlikely(req->ctx->drain_active)) 2102 io_drain_req(req); 2103 else 2104 io_queue_iowq(req, NULL); 2105 } 2106 } 2107 2108 /* 2109 * Check SQE restrictions (opcode and flags). 2110 * 2111 * Returns 'true' if SQE is allowed, 'false' otherwise. 2112 */ 2113 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2114 struct io_kiocb *req, 2115 unsigned int sqe_flags) 2116 { 2117 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2118 return false; 2119 2120 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2121 ctx->restrictions.sqe_flags_required) 2122 return false; 2123 2124 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2125 ctx->restrictions.sqe_flags_required)) 2126 return false; 2127 2128 return true; 2129 } 2130 2131 static void io_init_req_drain(struct io_kiocb *req) 2132 { 2133 struct io_ring_ctx *ctx = req->ctx; 2134 struct io_kiocb *head = ctx->submit_state.link.head; 2135 2136 ctx->drain_active = true; 2137 if (head) { 2138 /* 2139 * If we need to drain a request in the middle of a link, drain 2140 * the head request and the next request/link after the current 2141 * link. Considering sequential execution of links, 2142 * REQ_F_IO_DRAIN will be maintained for every request of our 2143 * link. 2144 */ 2145 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2146 ctx->drain_next = true; 2147 } 2148 } 2149 2150 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2151 const struct io_uring_sqe *sqe) 2152 __must_hold(&ctx->uring_lock) 2153 { 2154 const struct io_issue_def *def; 2155 unsigned int sqe_flags; 2156 int personality; 2157 u8 opcode; 2158 2159 /* req is partially pre-initialised, see io_preinit_req() */ 2160 req->opcode = opcode = READ_ONCE(sqe->opcode); 2161 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2162 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2163 req->cqe.user_data = READ_ONCE(sqe->user_data); 2164 req->file = NULL; 2165 req->rsrc_node = NULL; 2166 req->task = current; 2167 2168 if (unlikely(opcode >= IORING_OP_LAST)) { 2169 req->opcode = 0; 2170 return -EINVAL; 2171 } 2172 def = &io_issue_defs[opcode]; 2173 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2174 /* enforce forwards compatibility on users */ 2175 if (sqe_flags & ~SQE_VALID_FLAGS) 2176 return -EINVAL; 2177 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2178 if (!def->buffer_select) 2179 return -EOPNOTSUPP; 2180 req->buf_index = READ_ONCE(sqe->buf_group); 2181 } 2182 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2183 ctx->drain_disabled = true; 2184 if (sqe_flags & IOSQE_IO_DRAIN) { 2185 if (ctx->drain_disabled) 2186 return -EOPNOTSUPP; 2187 io_init_req_drain(req); 2188 } 2189 } 2190 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2191 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2192 return -EACCES; 2193 /* knock it to the slow queue path, will be drained there */ 2194 if (ctx->drain_active) 2195 req->flags |= REQ_F_FORCE_ASYNC; 2196 /* if there is no link, we're at "next" request and need to drain */ 2197 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2198 ctx->drain_next = false; 2199 ctx->drain_active = true; 2200 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2201 } 2202 } 2203 2204 if (!def->ioprio && sqe->ioprio) 2205 return -EINVAL; 2206 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2207 return -EINVAL; 2208 2209 if (def->needs_file) { 2210 struct io_submit_state *state = &ctx->submit_state; 2211 2212 req->cqe.fd = READ_ONCE(sqe->fd); 2213 2214 /* 2215 * Plug now if we have more than 2 IO left after this, and the 2216 * target is potentially a read/write to block based storage. 2217 */ 2218 if (state->need_plug && def->plug) { 2219 state->plug_started = true; 2220 state->need_plug = false; 2221 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2222 } 2223 } 2224 2225 personality = READ_ONCE(sqe->personality); 2226 if (personality) { 2227 int ret; 2228 2229 req->creds = xa_load(&ctx->personalities, personality); 2230 if (!req->creds) 2231 return -EINVAL; 2232 get_cred(req->creds); 2233 ret = security_uring_override_creds(req->creds); 2234 if (ret) { 2235 put_cred(req->creds); 2236 return ret; 2237 } 2238 req->flags |= REQ_F_CREDS; 2239 } 2240 2241 return def->prep(req, sqe); 2242 } 2243 2244 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2245 struct io_kiocb *req, int ret) 2246 { 2247 struct io_ring_ctx *ctx = req->ctx; 2248 struct io_submit_link *link = &ctx->submit_state.link; 2249 struct io_kiocb *head = link->head; 2250 2251 trace_io_uring_req_failed(sqe, req, ret); 2252 2253 /* 2254 * Avoid breaking links in the middle as it renders links with SQPOLL 2255 * unusable. Instead of failing eagerly, continue assembling the link if 2256 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2257 * should find the flag and handle the rest. 2258 */ 2259 req_fail_link_node(req, ret); 2260 if (head && !(head->flags & REQ_F_FAIL)) 2261 req_fail_link_node(head, -ECANCELED); 2262 2263 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2264 if (head) { 2265 link->last->link = req; 2266 link->head = NULL; 2267 req = head; 2268 } 2269 io_queue_sqe_fallback(req); 2270 return ret; 2271 } 2272 2273 if (head) 2274 link->last->link = req; 2275 else 2276 link->head = req; 2277 link->last = req; 2278 return 0; 2279 } 2280 2281 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2282 const struct io_uring_sqe *sqe) 2283 __must_hold(&ctx->uring_lock) 2284 { 2285 struct io_submit_link *link = &ctx->submit_state.link; 2286 int ret; 2287 2288 ret = io_init_req(ctx, req, sqe); 2289 if (unlikely(ret)) 2290 return io_submit_fail_init(sqe, req, ret); 2291 2292 trace_io_uring_submit_req(req); 2293 2294 /* 2295 * If we already have a head request, queue this one for async 2296 * submittal once the head completes. If we don't have a head but 2297 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2298 * submitted sync once the chain is complete. If none of those 2299 * conditions are true (normal request), then just queue it. 2300 */ 2301 if (unlikely(link->head)) { 2302 ret = io_req_prep_async(req); 2303 if (unlikely(ret)) 2304 return io_submit_fail_init(sqe, req, ret); 2305 2306 trace_io_uring_link(req, link->head); 2307 link->last->link = req; 2308 link->last = req; 2309 2310 if (req->flags & IO_REQ_LINK_FLAGS) 2311 return 0; 2312 /* last request of the link, flush it */ 2313 req = link->head; 2314 link->head = NULL; 2315 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2316 goto fallback; 2317 2318 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2319 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2320 if (req->flags & IO_REQ_LINK_FLAGS) { 2321 link->head = req; 2322 link->last = req; 2323 } else { 2324 fallback: 2325 io_queue_sqe_fallback(req); 2326 } 2327 return 0; 2328 } 2329 2330 io_queue_sqe(req); 2331 return 0; 2332 } 2333 2334 /* 2335 * Batched submission is done, ensure local IO is flushed out. 2336 */ 2337 static void io_submit_state_end(struct io_ring_ctx *ctx) 2338 { 2339 struct io_submit_state *state = &ctx->submit_state; 2340 2341 if (unlikely(state->link.head)) 2342 io_queue_sqe_fallback(state->link.head); 2343 /* flush only after queuing links as they can generate completions */ 2344 io_submit_flush_completions(ctx); 2345 if (state->plug_started) 2346 blk_finish_plug(&state->plug); 2347 } 2348 2349 /* 2350 * Start submission side cache. 2351 */ 2352 static void io_submit_state_start(struct io_submit_state *state, 2353 unsigned int max_ios) 2354 { 2355 state->plug_started = false; 2356 state->need_plug = max_ios > 2; 2357 state->submit_nr = max_ios; 2358 /* set only head, no need to init link_last in advance */ 2359 state->link.head = NULL; 2360 } 2361 2362 static void io_commit_sqring(struct io_ring_ctx *ctx) 2363 { 2364 struct io_rings *rings = ctx->rings; 2365 2366 /* 2367 * Ensure any loads from the SQEs are done at this point, 2368 * since once we write the new head, the application could 2369 * write new data to them. 2370 */ 2371 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2372 } 2373 2374 /* 2375 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2376 * that is mapped by userspace. This means that care needs to be taken to 2377 * ensure that reads are stable, as we cannot rely on userspace always 2378 * being a good citizen. If members of the sqe are validated and then later 2379 * used, it's important that those reads are done through READ_ONCE() to 2380 * prevent a re-load down the line. 2381 */ 2382 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2383 { 2384 unsigned mask = ctx->sq_entries - 1; 2385 unsigned head = ctx->cached_sq_head++ & mask; 2386 2387 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2388 head = READ_ONCE(ctx->sq_array[head]); 2389 if (unlikely(head >= ctx->sq_entries)) { 2390 /* drop invalid entries */ 2391 spin_lock(&ctx->completion_lock); 2392 ctx->cq_extra--; 2393 spin_unlock(&ctx->completion_lock); 2394 WRITE_ONCE(ctx->rings->sq_dropped, 2395 READ_ONCE(ctx->rings->sq_dropped) + 1); 2396 return false; 2397 } 2398 } 2399 2400 /* 2401 * The cached sq head (or cq tail) serves two purposes: 2402 * 2403 * 1) allows us to batch the cost of updating the user visible 2404 * head updates. 2405 * 2) allows the kernel side to track the head on its own, even 2406 * though the application is the one updating it. 2407 */ 2408 2409 /* double index for 128-byte SQEs, twice as long */ 2410 if (ctx->flags & IORING_SETUP_SQE128) 2411 head <<= 1; 2412 *sqe = &ctx->sq_sqes[head]; 2413 return true; 2414 } 2415 2416 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2417 __must_hold(&ctx->uring_lock) 2418 { 2419 unsigned int entries = io_sqring_entries(ctx); 2420 unsigned int left; 2421 int ret; 2422 2423 if (unlikely(!entries)) 2424 return 0; 2425 /* make sure SQ entry isn't read before tail */ 2426 ret = left = min(nr, entries); 2427 io_get_task_refs(left); 2428 io_submit_state_start(&ctx->submit_state, left); 2429 2430 do { 2431 const struct io_uring_sqe *sqe; 2432 struct io_kiocb *req; 2433 2434 if (unlikely(!io_alloc_req(ctx, &req))) 2435 break; 2436 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2437 io_req_add_to_cache(req, ctx); 2438 break; 2439 } 2440 2441 /* 2442 * Continue submitting even for sqe failure if the 2443 * ring was setup with IORING_SETUP_SUBMIT_ALL 2444 */ 2445 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2446 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2447 left--; 2448 break; 2449 } 2450 } while (--left); 2451 2452 if (unlikely(left)) { 2453 ret -= left; 2454 /* try again if it submitted nothing and can't allocate a req */ 2455 if (!ret && io_req_cache_empty(ctx)) 2456 ret = -EAGAIN; 2457 current->io_uring->cached_refs += left; 2458 } 2459 2460 io_submit_state_end(ctx); 2461 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2462 io_commit_sqring(ctx); 2463 return ret; 2464 } 2465 2466 struct io_wait_queue { 2467 struct wait_queue_entry wq; 2468 struct io_ring_ctx *ctx; 2469 unsigned cq_tail; 2470 unsigned nr_timeouts; 2471 ktime_t timeout; 2472 }; 2473 2474 static inline bool io_has_work(struct io_ring_ctx *ctx) 2475 { 2476 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2477 !llist_empty(&ctx->work_llist); 2478 } 2479 2480 static inline bool io_should_wake(struct io_wait_queue *iowq) 2481 { 2482 struct io_ring_ctx *ctx = iowq->ctx; 2483 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2484 2485 /* 2486 * Wake up if we have enough events, or if a timeout occurred since we 2487 * started waiting. For timeouts, we always want to return to userspace, 2488 * regardless of event count. 2489 */ 2490 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2491 } 2492 2493 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2494 int wake_flags, void *key) 2495 { 2496 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2497 2498 /* 2499 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2500 * the task, and the next invocation will do it. 2501 */ 2502 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2503 return autoremove_wake_function(curr, mode, wake_flags, key); 2504 return -1; 2505 } 2506 2507 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2508 { 2509 if (!llist_empty(&ctx->work_llist)) { 2510 __set_current_state(TASK_RUNNING); 2511 if (io_run_local_work(ctx) > 0) 2512 return 0; 2513 } 2514 if (io_run_task_work() > 0) 2515 return 0; 2516 if (task_sigpending(current)) 2517 return -EINTR; 2518 return 0; 2519 } 2520 2521 static bool current_pending_io(void) 2522 { 2523 struct io_uring_task *tctx = current->io_uring; 2524 2525 if (!tctx) 2526 return false; 2527 return percpu_counter_read_positive(&tctx->inflight); 2528 } 2529 2530 /* when returns >0, the caller should retry */ 2531 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2532 struct io_wait_queue *iowq) 2533 { 2534 int io_wait, ret; 2535 2536 if (unlikely(READ_ONCE(ctx->check_cq))) 2537 return 1; 2538 if (unlikely(!llist_empty(&ctx->work_llist))) 2539 return 1; 2540 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2541 return 1; 2542 if (unlikely(task_sigpending(current))) 2543 return -EINTR; 2544 if (unlikely(io_should_wake(iowq))) 2545 return 0; 2546 2547 /* 2548 * Mark us as being in io_wait if we have pending requests, so cpufreq 2549 * can take into account that the task is waiting for IO - turns out 2550 * to be important for low QD IO. 2551 */ 2552 io_wait = current->in_iowait; 2553 if (current_pending_io()) 2554 current->in_iowait = 1; 2555 ret = 0; 2556 if (iowq->timeout == KTIME_MAX) 2557 schedule(); 2558 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2559 ret = -ETIME; 2560 current->in_iowait = io_wait; 2561 return ret; 2562 } 2563 2564 /* 2565 * Wait until events become available, if we don't already have some. The 2566 * application must reap them itself, as they reside on the shared cq ring. 2567 */ 2568 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2569 const sigset_t __user *sig, size_t sigsz, 2570 struct __kernel_timespec __user *uts) 2571 { 2572 struct io_wait_queue iowq; 2573 struct io_rings *rings = ctx->rings; 2574 int ret; 2575 2576 if (!io_allowed_run_tw(ctx)) 2577 return -EEXIST; 2578 if (!llist_empty(&ctx->work_llist)) 2579 io_run_local_work(ctx); 2580 io_run_task_work(); 2581 io_cqring_overflow_flush(ctx); 2582 /* if user messes with these they will just get an early return */ 2583 if (__io_cqring_events_user(ctx) >= min_events) 2584 return 0; 2585 2586 if (sig) { 2587 #ifdef CONFIG_COMPAT 2588 if (in_compat_syscall()) 2589 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2590 sigsz); 2591 else 2592 #endif 2593 ret = set_user_sigmask(sig, sigsz); 2594 2595 if (ret) 2596 return ret; 2597 } 2598 2599 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2600 iowq.wq.private = current; 2601 INIT_LIST_HEAD(&iowq.wq.entry); 2602 iowq.ctx = ctx; 2603 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2604 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2605 iowq.timeout = KTIME_MAX; 2606 2607 if (uts) { 2608 struct timespec64 ts; 2609 2610 if (get_timespec64(&ts, uts)) 2611 return -EFAULT; 2612 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2613 } 2614 2615 trace_io_uring_cqring_wait(ctx, min_events); 2616 do { 2617 unsigned long check_cq; 2618 2619 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2620 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2621 2622 atomic_set(&ctx->cq_wait_nr, nr_wait); 2623 set_current_state(TASK_INTERRUPTIBLE); 2624 } else { 2625 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2626 TASK_INTERRUPTIBLE); 2627 } 2628 2629 ret = io_cqring_wait_schedule(ctx, &iowq); 2630 __set_current_state(TASK_RUNNING); 2631 atomic_set(&ctx->cq_wait_nr, 0); 2632 2633 if (ret < 0) 2634 break; 2635 /* 2636 * Run task_work after scheduling and before io_should_wake(). 2637 * If we got woken because of task_work being processed, run it 2638 * now rather than let the caller do another wait loop. 2639 */ 2640 io_run_task_work(); 2641 if (!llist_empty(&ctx->work_llist)) 2642 io_run_local_work(ctx); 2643 2644 check_cq = READ_ONCE(ctx->check_cq); 2645 if (unlikely(check_cq)) { 2646 /* let the caller flush overflows, retry */ 2647 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2648 io_cqring_do_overflow_flush(ctx); 2649 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2650 ret = -EBADR; 2651 break; 2652 } 2653 } 2654 2655 if (io_should_wake(&iowq)) { 2656 ret = 0; 2657 break; 2658 } 2659 cond_resched(); 2660 } while (1); 2661 2662 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2663 finish_wait(&ctx->cq_wait, &iowq.wq); 2664 restore_saved_sigmask_unless(ret == -EINTR); 2665 2666 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2667 } 2668 2669 static void io_mem_free(void *ptr) 2670 { 2671 if (!ptr) 2672 return; 2673 2674 folio_put(virt_to_folio(ptr)); 2675 } 2676 2677 static void io_pages_free(struct page ***pages, int npages) 2678 { 2679 struct page **page_array; 2680 int i; 2681 2682 if (!pages) 2683 return; 2684 2685 page_array = *pages; 2686 if (!page_array) 2687 return; 2688 2689 for (i = 0; i < npages; i++) 2690 unpin_user_page(page_array[i]); 2691 kvfree(page_array); 2692 *pages = NULL; 2693 } 2694 2695 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2696 unsigned long uaddr, size_t size) 2697 { 2698 struct page **page_array; 2699 unsigned int nr_pages; 2700 int ret, i; 2701 2702 *npages = 0; 2703 2704 if (uaddr & (PAGE_SIZE - 1) || !size) 2705 return ERR_PTR(-EINVAL); 2706 2707 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2708 if (nr_pages > USHRT_MAX) 2709 return ERR_PTR(-EINVAL); 2710 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2711 if (!page_array) 2712 return ERR_PTR(-ENOMEM); 2713 2714 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2715 page_array); 2716 if (ret != nr_pages) { 2717 err: 2718 io_pages_free(&page_array, ret > 0 ? ret : 0); 2719 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2720 } 2721 /* 2722 * Should be a single page. If the ring is small enough that we can 2723 * use a normal page, that is fine. If we need multiple pages, then 2724 * userspace should use a huge page. That's the only way to guarantee 2725 * that we get contigious memory, outside of just being lucky or 2726 * (currently) having low memory fragmentation. 2727 */ 2728 if (page_array[0] != page_array[ret - 1]) 2729 goto err; 2730 2731 /* 2732 * Can't support mapping user allocated ring memory on 32-bit archs 2733 * where it could potentially reside in highmem. Just fail those with 2734 * -EINVAL, just like we did on kernels that didn't support this 2735 * feature. 2736 */ 2737 for (i = 0; i < nr_pages; i++) { 2738 if (PageHighMem(page_array[i])) { 2739 ret = -EINVAL; 2740 goto err; 2741 } 2742 } 2743 2744 *pages = page_array; 2745 *npages = nr_pages; 2746 return page_to_virt(page_array[0]); 2747 } 2748 2749 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2750 size_t size) 2751 { 2752 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2753 size); 2754 } 2755 2756 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2757 size_t size) 2758 { 2759 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2760 size); 2761 } 2762 2763 static void io_rings_free(struct io_ring_ctx *ctx) 2764 { 2765 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2766 io_mem_free(ctx->rings); 2767 io_mem_free(ctx->sq_sqes); 2768 ctx->rings = NULL; 2769 ctx->sq_sqes = NULL; 2770 } else { 2771 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2772 ctx->n_ring_pages = 0; 2773 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2774 ctx->n_sqe_pages = 0; 2775 } 2776 } 2777 2778 static void *io_mem_alloc(size_t size) 2779 { 2780 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2781 void *ret; 2782 2783 ret = (void *) __get_free_pages(gfp, get_order(size)); 2784 if (ret) 2785 return ret; 2786 return ERR_PTR(-ENOMEM); 2787 } 2788 2789 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2790 unsigned int cq_entries, size_t *sq_offset) 2791 { 2792 struct io_rings *rings; 2793 size_t off, sq_array_size; 2794 2795 off = struct_size(rings, cqes, cq_entries); 2796 if (off == SIZE_MAX) 2797 return SIZE_MAX; 2798 if (ctx->flags & IORING_SETUP_CQE32) { 2799 if (check_shl_overflow(off, 1, &off)) 2800 return SIZE_MAX; 2801 } 2802 2803 #ifdef CONFIG_SMP 2804 off = ALIGN(off, SMP_CACHE_BYTES); 2805 if (off == 0) 2806 return SIZE_MAX; 2807 #endif 2808 2809 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2810 if (sq_offset) 2811 *sq_offset = SIZE_MAX; 2812 return off; 2813 } 2814 2815 if (sq_offset) 2816 *sq_offset = off; 2817 2818 sq_array_size = array_size(sizeof(u32), sq_entries); 2819 if (sq_array_size == SIZE_MAX) 2820 return SIZE_MAX; 2821 2822 if (check_add_overflow(off, sq_array_size, &off)) 2823 return SIZE_MAX; 2824 2825 return off; 2826 } 2827 2828 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2829 unsigned int eventfd_async) 2830 { 2831 struct io_ev_fd *ev_fd; 2832 __s32 __user *fds = arg; 2833 int fd; 2834 2835 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2836 lockdep_is_held(&ctx->uring_lock)); 2837 if (ev_fd) 2838 return -EBUSY; 2839 2840 if (copy_from_user(&fd, fds, sizeof(*fds))) 2841 return -EFAULT; 2842 2843 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2844 if (!ev_fd) 2845 return -ENOMEM; 2846 2847 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2848 if (IS_ERR(ev_fd->cq_ev_fd)) { 2849 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2850 kfree(ev_fd); 2851 return ret; 2852 } 2853 2854 spin_lock(&ctx->completion_lock); 2855 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2856 spin_unlock(&ctx->completion_lock); 2857 2858 ev_fd->eventfd_async = eventfd_async; 2859 ctx->has_evfd = true; 2860 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2861 atomic_set(&ev_fd->refs, 1); 2862 atomic_set(&ev_fd->ops, 0); 2863 return 0; 2864 } 2865 2866 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2867 { 2868 struct io_ev_fd *ev_fd; 2869 2870 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2871 lockdep_is_held(&ctx->uring_lock)); 2872 if (ev_fd) { 2873 ctx->has_evfd = false; 2874 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2875 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2876 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2877 return 0; 2878 } 2879 2880 return -ENXIO; 2881 } 2882 2883 static void io_req_caches_free(struct io_ring_ctx *ctx) 2884 { 2885 struct io_kiocb *req; 2886 int nr = 0; 2887 2888 mutex_lock(&ctx->uring_lock); 2889 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2890 2891 while (!io_req_cache_empty(ctx)) { 2892 req = io_extract_req(ctx); 2893 kmem_cache_free(req_cachep, req); 2894 nr++; 2895 } 2896 if (nr) 2897 percpu_ref_put_many(&ctx->refs, nr); 2898 mutex_unlock(&ctx->uring_lock); 2899 } 2900 2901 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2902 { 2903 kfree(container_of(entry, struct io_rsrc_node, cache)); 2904 } 2905 2906 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2907 { 2908 io_sq_thread_finish(ctx); 2909 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2910 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2911 return; 2912 2913 mutex_lock(&ctx->uring_lock); 2914 if (ctx->buf_data) 2915 __io_sqe_buffers_unregister(ctx); 2916 if (ctx->file_data) 2917 __io_sqe_files_unregister(ctx); 2918 io_cqring_overflow_kill(ctx); 2919 io_eventfd_unregister(ctx); 2920 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2921 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2922 io_futex_cache_free(ctx); 2923 io_destroy_buffers(ctx); 2924 mutex_unlock(&ctx->uring_lock); 2925 if (ctx->sq_creds) 2926 put_cred(ctx->sq_creds); 2927 if (ctx->submitter_task) 2928 put_task_struct(ctx->submitter_task); 2929 2930 /* there are no registered resources left, nobody uses it */ 2931 if (ctx->rsrc_node) 2932 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2933 2934 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2935 2936 #if defined(CONFIG_UNIX) 2937 if (ctx->ring_sock) { 2938 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2939 sock_release(ctx->ring_sock); 2940 } 2941 #endif 2942 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2943 2944 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2945 if (ctx->mm_account) { 2946 mmdrop(ctx->mm_account); 2947 ctx->mm_account = NULL; 2948 } 2949 io_rings_free(ctx); 2950 2951 percpu_ref_exit(&ctx->refs); 2952 free_uid(ctx->user); 2953 io_req_caches_free(ctx); 2954 if (ctx->hash_map) 2955 io_wq_put_hash(ctx->hash_map); 2956 kfree(ctx->cancel_table.hbs); 2957 kfree(ctx->cancel_table_locked.hbs); 2958 kfree(ctx->io_bl); 2959 xa_destroy(&ctx->io_bl_xa); 2960 kfree(ctx); 2961 } 2962 2963 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2964 { 2965 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2966 poll_wq_task_work); 2967 2968 mutex_lock(&ctx->uring_lock); 2969 ctx->poll_activated = true; 2970 mutex_unlock(&ctx->uring_lock); 2971 2972 /* 2973 * Wake ups for some events between start of polling and activation 2974 * might've been lost due to loose synchronisation. 2975 */ 2976 wake_up_all(&ctx->poll_wq); 2977 percpu_ref_put(&ctx->refs); 2978 } 2979 2980 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2981 { 2982 spin_lock(&ctx->completion_lock); 2983 /* already activated or in progress */ 2984 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2985 goto out; 2986 if (WARN_ON_ONCE(!ctx->task_complete)) 2987 goto out; 2988 if (!ctx->submitter_task) 2989 goto out; 2990 /* 2991 * with ->submitter_task only the submitter task completes requests, we 2992 * only need to sync with it, which is done by injecting a tw 2993 */ 2994 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2995 percpu_ref_get(&ctx->refs); 2996 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2997 percpu_ref_put(&ctx->refs); 2998 out: 2999 spin_unlock(&ctx->completion_lock); 3000 } 3001 3002 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 3003 { 3004 struct io_ring_ctx *ctx = file->private_data; 3005 __poll_t mask = 0; 3006 3007 if (unlikely(!ctx->poll_activated)) 3008 io_activate_pollwq(ctx); 3009 3010 poll_wait(file, &ctx->poll_wq, wait); 3011 /* 3012 * synchronizes with barrier from wq_has_sleeper call in 3013 * io_commit_cqring 3014 */ 3015 smp_rmb(); 3016 if (!io_sqring_full(ctx)) 3017 mask |= EPOLLOUT | EPOLLWRNORM; 3018 3019 /* 3020 * Don't flush cqring overflow list here, just do a simple check. 3021 * Otherwise there could possible be ABBA deadlock: 3022 * CPU0 CPU1 3023 * ---- ---- 3024 * lock(&ctx->uring_lock); 3025 * lock(&ep->mtx); 3026 * lock(&ctx->uring_lock); 3027 * lock(&ep->mtx); 3028 * 3029 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 3030 * pushes them to do the flush. 3031 */ 3032 3033 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 3034 mask |= EPOLLIN | EPOLLRDNORM; 3035 3036 return mask; 3037 } 3038 3039 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 3040 { 3041 const struct cred *creds; 3042 3043 creds = xa_erase(&ctx->personalities, id); 3044 if (creds) { 3045 put_cred(creds); 3046 return 0; 3047 } 3048 3049 return -EINVAL; 3050 } 3051 3052 struct io_tctx_exit { 3053 struct callback_head task_work; 3054 struct completion completion; 3055 struct io_ring_ctx *ctx; 3056 }; 3057 3058 static __cold void io_tctx_exit_cb(struct callback_head *cb) 3059 { 3060 struct io_uring_task *tctx = current->io_uring; 3061 struct io_tctx_exit *work; 3062 3063 work = container_of(cb, struct io_tctx_exit, task_work); 3064 /* 3065 * When @in_cancel, we're in cancellation and it's racy to remove the 3066 * node. It'll be removed by the end of cancellation, just ignore it. 3067 * tctx can be NULL if the queueing of this task_work raced with 3068 * work cancelation off the exec path. 3069 */ 3070 if (tctx && !atomic_read(&tctx->in_cancel)) 3071 io_uring_del_tctx_node((unsigned long)work->ctx); 3072 complete(&work->completion); 3073 } 3074 3075 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3076 { 3077 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3078 3079 return req->ctx == data; 3080 } 3081 3082 static __cold void io_ring_exit_work(struct work_struct *work) 3083 { 3084 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3085 unsigned long timeout = jiffies + HZ * 60 * 5; 3086 unsigned long interval = HZ / 20; 3087 struct io_tctx_exit exit; 3088 struct io_tctx_node *node; 3089 int ret; 3090 3091 /* 3092 * If we're doing polled IO and end up having requests being 3093 * submitted async (out-of-line), then completions can come in while 3094 * we're waiting for refs to drop. We need to reap these manually, 3095 * as nobody else will be looking for them. 3096 */ 3097 do { 3098 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3099 mutex_lock(&ctx->uring_lock); 3100 io_cqring_overflow_kill(ctx); 3101 mutex_unlock(&ctx->uring_lock); 3102 } 3103 3104 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3105 io_move_task_work_from_local(ctx); 3106 3107 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3108 cond_resched(); 3109 3110 if (ctx->sq_data) { 3111 struct io_sq_data *sqd = ctx->sq_data; 3112 struct task_struct *tsk; 3113 3114 io_sq_thread_park(sqd); 3115 tsk = sqd->thread; 3116 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3117 io_wq_cancel_cb(tsk->io_uring->io_wq, 3118 io_cancel_ctx_cb, ctx, true); 3119 io_sq_thread_unpark(sqd); 3120 } 3121 3122 io_req_caches_free(ctx); 3123 3124 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3125 /* there is little hope left, don't run it too often */ 3126 interval = HZ * 60; 3127 } 3128 /* 3129 * This is really an uninterruptible wait, as it has to be 3130 * complete. But it's also run from a kworker, which doesn't 3131 * take signals, so it's fine to make it interruptible. This 3132 * avoids scenarios where we knowingly can wait much longer 3133 * on completions, for example if someone does a SIGSTOP on 3134 * a task that needs to finish task_work to make this loop 3135 * complete. That's a synthetic situation that should not 3136 * cause a stuck task backtrace, and hence a potential panic 3137 * on stuck tasks if that is enabled. 3138 */ 3139 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3140 3141 init_completion(&exit.completion); 3142 init_task_work(&exit.task_work, io_tctx_exit_cb); 3143 exit.ctx = ctx; 3144 /* 3145 * Some may use context even when all refs and requests have been put, 3146 * and they are free to do so while still holding uring_lock or 3147 * completion_lock, see io_req_task_submit(). Apart from other work, 3148 * this lock/unlock section also waits them to finish. 3149 */ 3150 mutex_lock(&ctx->uring_lock); 3151 while (!list_empty(&ctx->tctx_list)) { 3152 WARN_ON_ONCE(time_after(jiffies, timeout)); 3153 3154 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3155 ctx_node); 3156 /* don't spin on a single task if cancellation failed */ 3157 list_rotate_left(&ctx->tctx_list); 3158 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3159 if (WARN_ON_ONCE(ret)) 3160 continue; 3161 3162 mutex_unlock(&ctx->uring_lock); 3163 /* 3164 * See comment above for 3165 * wait_for_completion_interruptible_timeout() on why this 3166 * wait is marked as interruptible. 3167 */ 3168 wait_for_completion_interruptible(&exit.completion); 3169 mutex_lock(&ctx->uring_lock); 3170 } 3171 mutex_unlock(&ctx->uring_lock); 3172 spin_lock(&ctx->completion_lock); 3173 spin_unlock(&ctx->completion_lock); 3174 3175 /* pairs with RCU read section in io_req_local_work_add() */ 3176 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3177 synchronize_rcu(); 3178 3179 io_ring_ctx_free(ctx); 3180 } 3181 3182 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3183 { 3184 unsigned long index; 3185 struct creds *creds; 3186 3187 mutex_lock(&ctx->uring_lock); 3188 percpu_ref_kill(&ctx->refs); 3189 xa_for_each(&ctx->personalities, index, creds) 3190 io_unregister_personality(ctx, index); 3191 if (ctx->rings) 3192 io_poll_remove_all(ctx, NULL, true); 3193 mutex_unlock(&ctx->uring_lock); 3194 3195 /* 3196 * If we failed setting up the ctx, we might not have any rings 3197 * and therefore did not submit any requests 3198 */ 3199 if (ctx->rings) 3200 io_kill_timeouts(ctx, NULL, true); 3201 3202 flush_delayed_work(&ctx->fallback_work); 3203 3204 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3205 /* 3206 * Use system_unbound_wq to avoid spawning tons of event kworkers 3207 * if we're exiting a ton of rings at the same time. It just adds 3208 * noise and overhead, there's no discernable change in runtime 3209 * over using system_wq. 3210 */ 3211 queue_work(system_unbound_wq, &ctx->exit_work); 3212 } 3213 3214 static int io_uring_release(struct inode *inode, struct file *file) 3215 { 3216 struct io_ring_ctx *ctx = file->private_data; 3217 3218 file->private_data = NULL; 3219 io_ring_ctx_wait_and_kill(ctx); 3220 return 0; 3221 } 3222 3223 struct io_task_cancel { 3224 struct task_struct *task; 3225 bool all; 3226 }; 3227 3228 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3229 { 3230 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3231 struct io_task_cancel *cancel = data; 3232 3233 return io_match_task_safe(req, cancel->task, cancel->all); 3234 } 3235 3236 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3237 struct task_struct *task, 3238 bool cancel_all) 3239 { 3240 struct io_defer_entry *de; 3241 LIST_HEAD(list); 3242 3243 spin_lock(&ctx->completion_lock); 3244 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3245 if (io_match_task_safe(de->req, task, cancel_all)) { 3246 list_cut_position(&list, &ctx->defer_list, &de->list); 3247 break; 3248 } 3249 } 3250 spin_unlock(&ctx->completion_lock); 3251 if (list_empty(&list)) 3252 return false; 3253 3254 while (!list_empty(&list)) { 3255 de = list_first_entry(&list, struct io_defer_entry, list); 3256 list_del_init(&de->list); 3257 io_req_task_queue_fail(de->req, -ECANCELED); 3258 kfree(de); 3259 } 3260 return true; 3261 } 3262 3263 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3264 { 3265 struct io_tctx_node *node; 3266 enum io_wq_cancel cret; 3267 bool ret = false; 3268 3269 mutex_lock(&ctx->uring_lock); 3270 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3271 struct io_uring_task *tctx = node->task->io_uring; 3272 3273 /* 3274 * io_wq will stay alive while we hold uring_lock, because it's 3275 * killed after ctx nodes, which requires to take the lock. 3276 */ 3277 if (!tctx || !tctx->io_wq) 3278 continue; 3279 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3280 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3281 } 3282 mutex_unlock(&ctx->uring_lock); 3283 3284 return ret; 3285 } 3286 3287 static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx, 3288 struct task_struct *task, bool cancel_all) 3289 { 3290 struct hlist_node *tmp; 3291 struct io_kiocb *req; 3292 bool ret = false; 3293 3294 lockdep_assert_held(&ctx->uring_lock); 3295 3296 hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd, 3297 hash_node) { 3298 struct io_uring_cmd *cmd = io_kiocb_to_cmd(req, 3299 struct io_uring_cmd); 3300 struct file *file = req->file; 3301 3302 if (!cancel_all && req->task != task) 3303 continue; 3304 3305 if (cmd->flags & IORING_URING_CMD_CANCELABLE) { 3306 /* ->sqe isn't available if no async data */ 3307 if (!req_has_async_data(req)) 3308 cmd->sqe = NULL; 3309 file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL); 3310 ret = true; 3311 } 3312 } 3313 io_submit_flush_completions(ctx); 3314 3315 return ret; 3316 } 3317 3318 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3319 struct task_struct *task, 3320 bool cancel_all) 3321 { 3322 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3323 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3324 enum io_wq_cancel cret; 3325 bool ret = false; 3326 3327 /* set it so io_req_local_work_add() would wake us up */ 3328 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3329 atomic_set(&ctx->cq_wait_nr, 1); 3330 smp_mb(); 3331 } 3332 3333 /* failed during ring init, it couldn't have issued any requests */ 3334 if (!ctx->rings) 3335 return false; 3336 3337 if (!task) { 3338 ret |= io_uring_try_cancel_iowq(ctx); 3339 } else if (tctx && tctx->io_wq) { 3340 /* 3341 * Cancels requests of all rings, not only @ctx, but 3342 * it's fine as the task is in exit/exec. 3343 */ 3344 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3345 &cancel, true); 3346 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3347 } 3348 3349 /* SQPOLL thread does its own polling */ 3350 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3351 (ctx->sq_data && ctx->sq_data->thread == current)) { 3352 while (!wq_list_empty(&ctx->iopoll_list)) { 3353 io_iopoll_try_reap_events(ctx); 3354 ret = true; 3355 cond_resched(); 3356 } 3357 } 3358 3359 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3360 io_allowed_defer_tw_run(ctx)) 3361 ret |= io_run_local_work(ctx) > 0; 3362 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3363 mutex_lock(&ctx->uring_lock); 3364 ret |= io_poll_remove_all(ctx, task, cancel_all); 3365 ret |= io_waitid_remove_all(ctx, task, cancel_all); 3366 ret |= io_futex_remove_all(ctx, task, cancel_all); 3367 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); 3368 mutex_unlock(&ctx->uring_lock); 3369 ret |= io_kill_timeouts(ctx, task, cancel_all); 3370 if (task) 3371 ret |= io_run_task_work() > 0; 3372 return ret; 3373 } 3374 3375 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3376 { 3377 if (tracked) 3378 return atomic_read(&tctx->inflight_tracked); 3379 return percpu_counter_sum(&tctx->inflight); 3380 } 3381 3382 /* 3383 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3384 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3385 */ 3386 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3387 { 3388 struct io_uring_task *tctx = current->io_uring; 3389 struct io_ring_ctx *ctx; 3390 struct io_tctx_node *node; 3391 unsigned long index; 3392 s64 inflight; 3393 DEFINE_WAIT(wait); 3394 3395 WARN_ON_ONCE(sqd && sqd->thread != current); 3396 3397 if (!current->io_uring) 3398 return; 3399 if (tctx->io_wq) 3400 io_wq_exit_start(tctx->io_wq); 3401 3402 atomic_inc(&tctx->in_cancel); 3403 do { 3404 bool loop = false; 3405 3406 io_uring_drop_tctx_refs(current); 3407 /* read completions before cancelations */ 3408 inflight = tctx_inflight(tctx, !cancel_all); 3409 if (!inflight) 3410 break; 3411 3412 if (!sqd) { 3413 xa_for_each(&tctx->xa, index, node) { 3414 /* sqpoll task will cancel all its requests */ 3415 if (node->ctx->sq_data) 3416 continue; 3417 loop |= io_uring_try_cancel_requests(node->ctx, 3418 current, cancel_all); 3419 } 3420 } else { 3421 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3422 loop |= io_uring_try_cancel_requests(ctx, 3423 current, 3424 cancel_all); 3425 } 3426 3427 if (loop) { 3428 cond_resched(); 3429 continue; 3430 } 3431 3432 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3433 io_run_task_work(); 3434 io_uring_drop_tctx_refs(current); 3435 xa_for_each(&tctx->xa, index, node) { 3436 if (!llist_empty(&node->ctx->work_llist)) { 3437 WARN_ON_ONCE(node->ctx->submitter_task && 3438 node->ctx->submitter_task != current); 3439 goto end_wait; 3440 } 3441 } 3442 /* 3443 * If we've seen completions, retry without waiting. This 3444 * avoids a race where a completion comes in before we did 3445 * prepare_to_wait(). 3446 */ 3447 if (inflight == tctx_inflight(tctx, !cancel_all)) 3448 schedule(); 3449 end_wait: 3450 finish_wait(&tctx->wait, &wait); 3451 } while (1); 3452 3453 io_uring_clean_tctx(tctx); 3454 if (cancel_all) { 3455 /* 3456 * We shouldn't run task_works after cancel, so just leave 3457 * ->in_cancel set for normal exit. 3458 */ 3459 atomic_dec(&tctx->in_cancel); 3460 /* for exec all current's requests should be gone, kill tctx */ 3461 __io_uring_free(current); 3462 } 3463 } 3464 3465 void __io_uring_cancel(bool cancel_all) 3466 { 3467 io_uring_cancel_generic(cancel_all, NULL); 3468 } 3469 3470 static void *io_uring_validate_mmap_request(struct file *file, 3471 loff_t pgoff, size_t sz) 3472 { 3473 struct io_ring_ctx *ctx = file->private_data; 3474 loff_t offset = pgoff << PAGE_SHIFT; 3475 struct page *page; 3476 void *ptr; 3477 3478 /* Don't allow mmap if the ring was setup without it */ 3479 if (ctx->flags & IORING_SETUP_NO_MMAP) 3480 return ERR_PTR(-EINVAL); 3481 3482 switch (offset & IORING_OFF_MMAP_MASK) { 3483 case IORING_OFF_SQ_RING: 3484 case IORING_OFF_CQ_RING: 3485 ptr = ctx->rings; 3486 break; 3487 case IORING_OFF_SQES: 3488 ptr = ctx->sq_sqes; 3489 break; 3490 case IORING_OFF_PBUF_RING: { 3491 unsigned int bgid; 3492 3493 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3494 mutex_lock(&ctx->uring_lock); 3495 ptr = io_pbuf_get_address(ctx, bgid); 3496 mutex_unlock(&ctx->uring_lock); 3497 if (!ptr) 3498 return ERR_PTR(-EINVAL); 3499 break; 3500 } 3501 default: 3502 return ERR_PTR(-EINVAL); 3503 } 3504 3505 page = virt_to_head_page(ptr); 3506 if (sz > page_size(page)) 3507 return ERR_PTR(-EINVAL); 3508 3509 return ptr; 3510 } 3511 3512 #ifdef CONFIG_MMU 3513 3514 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3515 { 3516 size_t sz = vma->vm_end - vma->vm_start; 3517 unsigned long pfn; 3518 void *ptr; 3519 3520 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3521 if (IS_ERR(ptr)) 3522 return PTR_ERR(ptr); 3523 3524 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3525 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3526 } 3527 3528 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3529 unsigned long addr, unsigned long len, 3530 unsigned long pgoff, unsigned long flags) 3531 { 3532 void *ptr; 3533 3534 /* 3535 * Do not allow to map to user-provided address to avoid breaking the 3536 * aliasing rules. Userspace is not able to guess the offset address of 3537 * kernel kmalloc()ed memory area. 3538 */ 3539 if (addr) 3540 return -EINVAL; 3541 3542 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3543 if (IS_ERR(ptr)) 3544 return -ENOMEM; 3545 3546 /* 3547 * Some architectures have strong cache aliasing requirements. 3548 * For such architectures we need a coherent mapping which aliases 3549 * kernel memory *and* userspace memory. To achieve that: 3550 * - use a NULL file pointer to reference physical memory, and 3551 * - use the kernel virtual address of the shared io_uring context 3552 * (instead of the userspace-provided address, which has to be 0UL 3553 * anyway). 3554 * - use the same pgoff which the get_unmapped_area() uses to 3555 * calculate the page colouring. 3556 * For architectures without such aliasing requirements, the 3557 * architecture will return any suitable mapping because addr is 0. 3558 */ 3559 filp = NULL; 3560 flags |= MAP_SHARED; 3561 pgoff = 0; /* has been translated to ptr above */ 3562 #ifdef SHM_COLOUR 3563 addr = (uintptr_t) ptr; 3564 pgoff = addr >> PAGE_SHIFT; 3565 #else 3566 addr = 0UL; 3567 #endif 3568 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3569 } 3570 3571 #else /* !CONFIG_MMU */ 3572 3573 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3574 { 3575 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3576 } 3577 3578 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3579 { 3580 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3581 } 3582 3583 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3584 unsigned long addr, unsigned long len, 3585 unsigned long pgoff, unsigned long flags) 3586 { 3587 void *ptr; 3588 3589 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3590 if (IS_ERR(ptr)) 3591 return PTR_ERR(ptr); 3592 3593 return (unsigned long) ptr; 3594 } 3595 3596 #endif /* !CONFIG_MMU */ 3597 3598 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3599 { 3600 if (flags & IORING_ENTER_EXT_ARG) { 3601 struct io_uring_getevents_arg arg; 3602 3603 if (argsz != sizeof(arg)) 3604 return -EINVAL; 3605 if (copy_from_user(&arg, argp, sizeof(arg))) 3606 return -EFAULT; 3607 } 3608 return 0; 3609 } 3610 3611 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3612 struct __kernel_timespec __user **ts, 3613 const sigset_t __user **sig) 3614 { 3615 struct io_uring_getevents_arg arg; 3616 3617 /* 3618 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3619 * is just a pointer to the sigset_t. 3620 */ 3621 if (!(flags & IORING_ENTER_EXT_ARG)) { 3622 *sig = (const sigset_t __user *) argp; 3623 *ts = NULL; 3624 return 0; 3625 } 3626 3627 /* 3628 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3629 * timespec and sigset_t pointers if good. 3630 */ 3631 if (*argsz != sizeof(arg)) 3632 return -EINVAL; 3633 if (copy_from_user(&arg, argp, sizeof(arg))) 3634 return -EFAULT; 3635 if (arg.pad) 3636 return -EINVAL; 3637 *sig = u64_to_user_ptr(arg.sigmask); 3638 *argsz = arg.sigmask_sz; 3639 *ts = u64_to_user_ptr(arg.ts); 3640 return 0; 3641 } 3642 3643 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3644 u32, min_complete, u32, flags, const void __user *, argp, 3645 size_t, argsz) 3646 { 3647 struct io_ring_ctx *ctx; 3648 struct fd f; 3649 long ret; 3650 3651 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3652 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3653 IORING_ENTER_REGISTERED_RING))) 3654 return -EINVAL; 3655 3656 /* 3657 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3658 * need only dereference our task private array to find it. 3659 */ 3660 if (flags & IORING_ENTER_REGISTERED_RING) { 3661 struct io_uring_task *tctx = current->io_uring; 3662 3663 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3664 return -EINVAL; 3665 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3666 f.file = tctx->registered_rings[fd]; 3667 f.flags = 0; 3668 if (unlikely(!f.file)) 3669 return -EBADF; 3670 } else { 3671 f = fdget(fd); 3672 if (unlikely(!f.file)) 3673 return -EBADF; 3674 ret = -EOPNOTSUPP; 3675 if (unlikely(!io_is_uring_fops(f.file))) 3676 goto out; 3677 } 3678 3679 ctx = f.file->private_data; 3680 ret = -EBADFD; 3681 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3682 goto out; 3683 3684 /* 3685 * For SQ polling, the thread will do all submissions and completions. 3686 * Just return the requested submit count, and wake the thread if 3687 * we were asked to. 3688 */ 3689 ret = 0; 3690 if (ctx->flags & IORING_SETUP_SQPOLL) { 3691 io_cqring_overflow_flush(ctx); 3692 3693 if (unlikely(ctx->sq_data->thread == NULL)) { 3694 ret = -EOWNERDEAD; 3695 goto out; 3696 } 3697 if (flags & IORING_ENTER_SQ_WAKEUP) 3698 wake_up(&ctx->sq_data->wait); 3699 if (flags & IORING_ENTER_SQ_WAIT) 3700 io_sqpoll_wait_sq(ctx); 3701 3702 ret = to_submit; 3703 } else if (to_submit) { 3704 ret = io_uring_add_tctx_node(ctx); 3705 if (unlikely(ret)) 3706 goto out; 3707 3708 mutex_lock(&ctx->uring_lock); 3709 ret = io_submit_sqes(ctx, to_submit); 3710 if (ret != to_submit) { 3711 mutex_unlock(&ctx->uring_lock); 3712 goto out; 3713 } 3714 if (flags & IORING_ENTER_GETEVENTS) { 3715 if (ctx->syscall_iopoll) 3716 goto iopoll_locked; 3717 /* 3718 * Ignore errors, we'll soon call io_cqring_wait() and 3719 * it should handle ownership problems if any. 3720 */ 3721 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3722 (void)io_run_local_work_locked(ctx); 3723 } 3724 mutex_unlock(&ctx->uring_lock); 3725 } 3726 3727 if (flags & IORING_ENTER_GETEVENTS) { 3728 int ret2; 3729 3730 if (ctx->syscall_iopoll) { 3731 /* 3732 * We disallow the app entering submit/complete with 3733 * polling, but we still need to lock the ring to 3734 * prevent racing with polled issue that got punted to 3735 * a workqueue. 3736 */ 3737 mutex_lock(&ctx->uring_lock); 3738 iopoll_locked: 3739 ret2 = io_validate_ext_arg(flags, argp, argsz); 3740 if (likely(!ret2)) { 3741 min_complete = min(min_complete, 3742 ctx->cq_entries); 3743 ret2 = io_iopoll_check(ctx, min_complete); 3744 } 3745 mutex_unlock(&ctx->uring_lock); 3746 } else { 3747 const sigset_t __user *sig; 3748 struct __kernel_timespec __user *ts; 3749 3750 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3751 if (likely(!ret2)) { 3752 min_complete = min(min_complete, 3753 ctx->cq_entries); 3754 ret2 = io_cqring_wait(ctx, min_complete, sig, 3755 argsz, ts); 3756 } 3757 } 3758 3759 if (!ret) { 3760 ret = ret2; 3761 3762 /* 3763 * EBADR indicates that one or more CQE were dropped. 3764 * Once the user has been informed we can clear the bit 3765 * as they are obviously ok with those drops. 3766 */ 3767 if (unlikely(ret2 == -EBADR)) 3768 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3769 &ctx->check_cq); 3770 } 3771 } 3772 out: 3773 fdput(f); 3774 return ret; 3775 } 3776 3777 static const struct file_operations io_uring_fops = { 3778 .release = io_uring_release, 3779 .mmap = io_uring_mmap, 3780 #ifndef CONFIG_MMU 3781 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3782 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3783 #else 3784 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3785 #endif 3786 .poll = io_uring_poll, 3787 #ifdef CONFIG_PROC_FS 3788 .show_fdinfo = io_uring_show_fdinfo, 3789 #endif 3790 }; 3791 3792 bool io_is_uring_fops(struct file *file) 3793 { 3794 return file->f_op == &io_uring_fops; 3795 } 3796 3797 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3798 struct io_uring_params *p) 3799 { 3800 struct io_rings *rings; 3801 size_t size, sq_array_offset; 3802 void *ptr; 3803 3804 /* make sure these are sane, as we already accounted them */ 3805 ctx->sq_entries = p->sq_entries; 3806 ctx->cq_entries = p->cq_entries; 3807 3808 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3809 if (size == SIZE_MAX) 3810 return -EOVERFLOW; 3811 3812 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3813 rings = io_mem_alloc(size); 3814 else 3815 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3816 3817 if (IS_ERR(rings)) 3818 return PTR_ERR(rings); 3819 3820 ctx->rings = rings; 3821 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3822 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3823 rings->sq_ring_mask = p->sq_entries - 1; 3824 rings->cq_ring_mask = p->cq_entries - 1; 3825 rings->sq_ring_entries = p->sq_entries; 3826 rings->cq_ring_entries = p->cq_entries; 3827 3828 if (p->flags & IORING_SETUP_SQE128) 3829 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3830 else 3831 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3832 if (size == SIZE_MAX) { 3833 io_rings_free(ctx); 3834 return -EOVERFLOW; 3835 } 3836 3837 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3838 ptr = io_mem_alloc(size); 3839 else 3840 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3841 3842 if (IS_ERR(ptr)) { 3843 io_rings_free(ctx); 3844 return PTR_ERR(ptr); 3845 } 3846 3847 ctx->sq_sqes = ptr; 3848 return 0; 3849 } 3850 3851 static int io_uring_install_fd(struct file *file) 3852 { 3853 int fd; 3854 3855 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3856 if (fd < 0) 3857 return fd; 3858 fd_install(fd, file); 3859 return fd; 3860 } 3861 3862 /* 3863 * Allocate an anonymous fd, this is what constitutes the application 3864 * visible backing of an io_uring instance. The application mmaps this 3865 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3866 * we have to tie this fd to a socket for file garbage collection purposes. 3867 */ 3868 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3869 { 3870 struct file *file; 3871 #if defined(CONFIG_UNIX) 3872 int ret; 3873 3874 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3875 &ctx->ring_sock); 3876 if (ret) 3877 return ERR_PTR(ret); 3878 #endif 3879 3880 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3881 O_RDWR | O_CLOEXEC, NULL); 3882 #if defined(CONFIG_UNIX) 3883 if (IS_ERR(file)) { 3884 sock_release(ctx->ring_sock); 3885 ctx->ring_sock = NULL; 3886 } else { 3887 ctx->ring_sock->file = file; 3888 } 3889 #endif 3890 return file; 3891 } 3892 3893 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3894 struct io_uring_params __user *params) 3895 { 3896 struct io_ring_ctx *ctx; 3897 struct io_uring_task *tctx; 3898 struct file *file; 3899 int ret; 3900 3901 if (!entries) 3902 return -EINVAL; 3903 if (entries > IORING_MAX_ENTRIES) { 3904 if (!(p->flags & IORING_SETUP_CLAMP)) 3905 return -EINVAL; 3906 entries = IORING_MAX_ENTRIES; 3907 } 3908 3909 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3910 && !(p->flags & IORING_SETUP_NO_MMAP)) 3911 return -EINVAL; 3912 3913 /* 3914 * Use twice as many entries for the CQ ring. It's possible for the 3915 * application to drive a higher depth than the size of the SQ ring, 3916 * since the sqes are only used at submission time. This allows for 3917 * some flexibility in overcommitting a bit. If the application has 3918 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3919 * of CQ ring entries manually. 3920 */ 3921 p->sq_entries = roundup_pow_of_two(entries); 3922 if (p->flags & IORING_SETUP_CQSIZE) { 3923 /* 3924 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3925 * to a power-of-two, if it isn't already. We do NOT impose 3926 * any cq vs sq ring sizing. 3927 */ 3928 if (!p->cq_entries) 3929 return -EINVAL; 3930 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3931 if (!(p->flags & IORING_SETUP_CLAMP)) 3932 return -EINVAL; 3933 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3934 } 3935 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3936 if (p->cq_entries < p->sq_entries) 3937 return -EINVAL; 3938 } else { 3939 p->cq_entries = 2 * p->sq_entries; 3940 } 3941 3942 ctx = io_ring_ctx_alloc(p); 3943 if (!ctx) 3944 return -ENOMEM; 3945 3946 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3947 !(ctx->flags & IORING_SETUP_IOPOLL) && 3948 !(ctx->flags & IORING_SETUP_SQPOLL)) 3949 ctx->task_complete = true; 3950 3951 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3952 ctx->lockless_cq = true; 3953 3954 /* 3955 * lazy poll_wq activation relies on ->task_complete for synchronisation 3956 * purposes, see io_activate_pollwq() 3957 */ 3958 if (!ctx->task_complete) 3959 ctx->poll_activated = true; 3960 3961 /* 3962 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3963 * space applications don't need to do io completion events 3964 * polling again, they can rely on io_sq_thread to do polling 3965 * work, which can reduce cpu usage and uring_lock contention. 3966 */ 3967 if (ctx->flags & IORING_SETUP_IOPOLL && 3968 !(ctx->flags & IORING_SETUP_SQPOLL)) 3969 ctx->syscall_iopoll = 1; 3970 3971 ctx->compat = in_compat_syscall(); 3972 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3973 ctx->user = get_uid(current_user()); 3974 3975 /* 3976 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3977 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3978 */ 3979 ret = -EINVAL; 3980 if (ctx->flags & IORING_SETUP_SQPOLL) { 3981 /* IPI related flags don't make sense with SQPOLL */ 3982 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3983 IORING_SETUP_TASKRUN_FLAG | 3984 IORING_SETUP_DEFER_TASKRUN)) 3985 goto err; 3986 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3987 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3988 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3989 } else { 3990 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3991 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3992 goto err; 3993 ctx->notify_method = TWA_SIGNAL; 3994 } 3995 3996 /* 3997 * For DEFER_TASKRUN we require the completion task to be the same as the 3998 * submission task. This implies that there is only one submitter, so enforce 3999 * that. 4000 */ 4001 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 4002 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 4003 goto err; 4004 } 4005 4006 /* 4007 * This is just grabbed for accounting purposes. When a process exits, 4008 * the mm is exited and dropped before the files, hence we need to hang 4009 * on to this mm purely for the purposes of being able to unaccount 4010 * memory (locked/pinned vm). It's not used for anything else. 4011 */ 4012 mmgrab(current->mm); 4013 ctx->mm_account = current->mm; 4014 4015 ret = io_allocate_scq_urings(ctx, p); 4016 if (ret) 4017 goto err; 4018 4019 ret = io_sq_offload_create(ctx, p); 4020 if (ret) 4021 goto err; 4022 4023 ret = io_rsrc_init(ctx); 4024 if (ret) 4025 goto err; 4026 4027 p->sq_off.head = offsetof(struct io_rings, sq.head); 4028 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 4029 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 4030 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 4031 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 4032 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 4033 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 4034 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 4035 p->sq_off.resv1 = 0; 4036 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4037 p->sq_off.user_addr = 0; 4038 4039 p->cq_off.head = offsetof(struct io_rings, cq.head); 4040 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 4041 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 4042 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 4043 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 4044 p->cq_off.cqes = offsetof(struct io_rings, cqes); 4045 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 4046 p->cq_off.resv1 = 0; 4047 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 4048 p->cq_off.user_addr = 0; 4049 4050 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 4051 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 4052 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 4053 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 4054 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 4055 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 4056 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 4057 4058 if (copy_to_user(params, p, sizeof(*p))) { 4059 ret = -EFAULT; 4060 goto err; 4061 } 4062 4063 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 4064 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 4065 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4066 4067 file = io_uring_get_file(ctx); 4068 if (IS_ERR(file)) { 4069 ret = PTR_ERR(file); 4070 goto err; 4071 } 4072 4073 ret = __io_uring_add_tctx_node(ctx); 4074 if (ret) 4075 goto err_fput; 4076 tctx = current->io_uring; 4077 4078 /* 4079 * Install ring fd as the very last thing, so we don't risk someone 4080 * having closed it before we finish setup 4081 */ 4082 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 4083 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 4084 else 4085 ret = io_uring_install_fd(file); 4086 if (ret < 0) 4087 goto err_fput; 4088 4089 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 4090 return ret; 4091 err: 4092 io_ring_ctx_wait_and_kill(ctx); 4093 return ret; 4094 err_fput: 4095 fput(file); 4096 return ret; 4097 } 4098 4099 /* 4100 * Sets up an aio uring context, and returns the fd. Applications asks for a 4101 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4102 * params structure passed in. 4103 */ 4104 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4105 { 4106 struct io_uring_params p; 4107 int i; 4108 4109 if (copy_from_user(&p, params, sizeof(p))) 4110 return -EFAULT; 4111 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4112 if (p.resv[i]) 4113 return -EINVAL; 4114 } 4115 4116 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4117 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4118 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4119 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4120 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4121 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4122 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4123 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4124 IORING_SETUP_NO_SQARRAY)) 4125 return -EINVAL; 4126 4127 return io_uring_create(entries, &p, params); 4128 } 4129 4130 static inline bool io_uring_allowed(void) 4131 { 4132 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4133 kgid_t io_uring_group; 4134 4135 if (disabled == 2) 4136 return false; 4137 4138 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4139 return true; 4140 4141 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4142 if (!gid_valid(io_uring_group)) 4143 return false; 4144 4145 return in_group_p(io_uring_group); 4146 } 4147 4148 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4149 struct io_uring_params __user *, params) 4150 { 4151 if (!io_uring_allowed()) 4152 return -EPERM; 4153 4154 return io_uring_setup(entries, params); 4155 } 4156 4157 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 4158 unsigned nr_args) 4159 { 4160 struct io_uring_probe *p; 4161 size_t size; 4162 int i, ret; 4163 4164 size = struct_size(p, ops, nr_args); 4165 if (size == SIZE_MAX) 4166 return -EOVERFLOW; 4167 p = kzalloc(size, GFP_KERNEL); 4168 if (!p) 4169 return -ENOMEM; 4170 4171 ret = -EFAULT; 4172 if (copy_from_user(p, arg, size)) 4173 goto out; 4174 ret = -EINVAL; 4175 if (memchr_inv(p, 0, size)) 4176 goto out; 4177 4178 p->last_op = IORING_OP_LAST - 1; 4179 if (nr_args > IORING_OP_LAST) 4180 nr_args = IORING_OP_LAST; 4181 4182 for (i = 0; i < nr_args; i++) { 4183 p->ops[i].op = i; 4184 if (!io_issue_defs[i].not_supported) 4185 p->ops[i].flags = IO_URING_OP_SUPPORTED; 4186 } 4187 p->ops_len = i; 4188 4189 ret = 0; 4190 if (copy_to_user(arg, p, size)) 4191 ret = -EFAULT; 4192 out: 4193 kfree(p); 4194 return ret; 4195 } 4196 4197 static int io_register_personality(struct io_ring_ctx *ctx) 4198 { 4199 const struct cred *creds; 4200 u32 id; 4201 int ret; 4202 4203 creds = get_current_cred(); 4204 4205 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 4206 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 4207 if (ret < 0) { 4208 put_cred(creds); 4209 return ret; 4210 } 4211 return id; 4212 } 4213 4214 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 4215 void __user *arg, unsigned int nr_args) 4216 { 4217 struct io_uring_restriction *res; 4218 size_t size; 4219 int i, ret; 4220 4221 /* Restrictions allowed only if rings started disabled */ 4222 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4223 return -EBADFD; 4224 4225 /* We allow only a single restrictions registration */ 4226 if (ctx->restrictions.registered) 4227 return -EBUSY; 4228 4229 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 4230 return -EINVAL; 4231 4232 size = array_size(nr_args, sizeof(*res)); 4233 if (size == SIZE_MAX) 4234 return -EOVERFLOW; 4235 4236 res = memdup_user(arg, size); 4237 if (IS_ERR(res)) 4238 return PTR_ERR(res); 4239 4240 ret = 0; 4241 4242 for (i = 0; i < nr_args; i++) { 4243 switch (res[i].opcode) { 4244 case IORING_RESTRICTION_REGISTER_OP: 4245 if (res[i].register_op >= IORING_REGISTER_LAST) { 4246 ret = -EINVAL; 4247 goto out; 4248 } 4249 4250 __set_bit(res[i].register_op, 4251 ctx->restrictions.register_op); 4252 break; 4253 case IORING_RESTRICTION_SQE_OP: 4254 if (res[i].sqe_op >= IORING_OP_LAST) { 4255 ret = -EINVAL; 4256 goto out; 4257 } 4258 4259 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 4260 break; 4261 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 4262 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 4263 break; 4264 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 4265 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 4266 break; 4267 default: 4268 ret = -EINVAL; 4269 goto out; 4270 } 4271 } 4272 4273 out: 4274 /* Reset all restrictions if an error happened */ 4275 if (ret != 0) 4276 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 4277 else 4278 ctx->restrictions.registered = true; 4279 4280 kfree(res); 4281 return ret; 4282 } 4283 4284 static int io_register_enable_rings(struct io_ring_ctx *ctx) 4285 { 4286 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 4287 return -EBADFD; 4288 4289 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 4290 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 4291 /* 4292 * Lazy activation attempts would fail if it was polled before 4293 * submitter_task is set. 4294 */ 4295 if (wq_has_sleeper(&ctx->poll_wq)) 4296 io_activate_pollwq(ctx); 4297 } 4298 4299 if (ctx->restrictions.registered) 4300 ctx->restricted = 1; 4301 4302 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4303 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4304 wake_up(&ctx->sq_data->wait); 4305 return 0; 4306 } 4307 4308 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, 4309 cpumask_var_t new_mask) 4310 { 4311 int ret; 4312 4313 if (!(ctx->flags & IORING_SETUP_SQPOLL)) { 4314 ret = io_wq_cpu_affinity(current->io_uring, new_mask); 4315 } else { 4316 mutex_unlock(&ctx->uring_lock); 4317 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); 4318 mutex_lock(&ctx->uring_lock); 4319 } 4320 4321 return ret; 4322 } 4323 4324 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4325 void __user *arg, unsigned len) 4326 { 4327 cpumask_var_t new_mask; 4328 int ret; 4329 4330 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4331 return -ENOMEM; 4332 4333 cpumask_clear(new_mask); 4334 if (len > cpumask_size()) 4335 len = cpumask_size(); 4336 4337 if (in_compat_syscall()) { 4338 ret = compat_get_bitmap(cpumask_bits(new_mask), 4339 (const compat_ulong_t __user *)arg, 4340 len * 8 /* CHAR_BIT */); 4341 } else { 4342 ret = copy_from_user(new_mask, arg, len); 4343 } 4344 4345 if (ret) { 4346 free_cpumask_var(new_mask); 4347 return -EFAULT; 4348 } 4349 4350 ret = __io_register_iowq_aff(ctx, new_mask); 4351 free_cpumask_var(new_mask); 4352 return ret; 4353 } 4354 4355 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4356 { 4357 return __io_register_iowq_aff(ctx, NULL); 4358 } 4359 4360 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4361 void __user *arg) 4362 __must_hold(&ctx->uring_lock) 4363 { 4364 struct io_tctx_node *node; 4365 struct io_uring_task *tctx = NULL; 4366 struct io_sq_data *sqd = NULL; 4367 __u32 new_count[2]; 4368 int i, ret; 4369 4370 if (copy_from_user(new_count, arg, sizeof(new_count))) 4371 return -EFAULT; 4372 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4373 if (new_count[i] > INT_MAX) 4374 return -EINVAL; 4375 4376 if (ctx->flags & IORING_SETUP_SQPOLL) { 4377 sqd = ctx->sq_data; 4378 if (sqd) { 4379 /* 4380 * Observe the correct sqd->lock -> ctx->uring_lock 4381 * ordering. Fine to drop uring_lock here, we hold 4382 * a ref to the ctx. 4383 */ 4384 refcount_inc(&sqd->refs); 4385 mutex_unlock(&ctx->uring_lock); 4386 mutex_lock(&sqd->lock); 4387 mutex_lock(&ctx->uring_lock); 4388 if (sqd->thread) 4389 tctx = sqd->thread->io_uring; 4390 } 4391 } else { 4392 tctx = current->io_uring; 4393 } 4394 4395 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4396 4397 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4398 if (new_count[i]) 4399 ctx->iowq_limits[i] = new_count[i]; 4400 ctx->iowq_limits_set = true; 4401 4402 if (tctx && tctx->io_wq) { 4403 ret = io_wq_max_workers(tctx->io_wq, new_count); 4404 if (ret) 4405 goto err; 4406 } else { 4407 memset(new_count, 0, sizeof(new_count)); 4408 } 4409 4410 if (sqd) { 4411 mutex_unlock(&sqd->lock); 4412 io_put_sq_data(sqd); 4413 } 4414 4415 if (copy_to_user(arg, new_count, sizeof(new_count))) 4416 return -EFAULT; 4417 4418 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4419 if (sqd) 4420 return 0; 4421 4422 /* now propagate the restriction to all registered users */ 4423 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4424 struct io_uring_task *tctx = node->task->io_uring; 4425 4426 if (WARN_ON_ONCE(!tctx->io_wq)) 4427 continue; 4428 4429 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4430 new_count[i] = ctx->iowq_limits[i]; 4431 /* ignore errors, it always returns zero anyway */ 4432 (void)io_wq_max_workers(tctx->io_wq, new_count); 4433 } 4434 return 0; 4435 err: 4436 if (sqd) { 4437 mutex_unlock(&sqd->lock); 4438 io_put_sq_data(sqd); 4439 } 4440 return ret; 4441 } 4442 4443 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4444 void __user *arg, unsigned nr_args) 4445 __releases(ctx->uring_lock) 4446 __acquires(ctx->uring_lock) 4447 { 4448 int ret; 4449 4450 /* 4451 * We don't quiesce the refs for register anymore and so it can't be 4452 * dying as we're holding a file ref here. 4453 */ 4454 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4455 return -ENXIO; 4456 4457 if (ctx->submitter_task && ctx->submitter_task != current) 4458 return -EEXIST; 4459 4460 if (ctx->restricted) { 4461 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4462 if (!test_bit(opcode, ctx->restrictions.register_op)) 4463 return -EACCES; 4464 } 4465 4466 switch (opcode) { 4467 case IORING_REGISTER_BUFFERS: 4468 ret = -EFAULT; 4469 if (!arg) 4470 break; 4471 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4472 break; 4473 case IORING_UNREGISTER_BUFFERS: 4474 ret = -EINVAL; 4475 if (arg || nr_args) 4476 break; 4477 ret = io_sqe_buffers_unregister(ctx); 4478 break; 4479 case IORING_REGISTER_FILES: 4480 ret = -EFAULT; 4481 if (!arg) 4482 break; 4483 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4484 break; 4485 case IORING_UNREGISTER_FILES: 4486 ret = -EINVAL; 4487 if (arg || nr_args) 4488 break; 4489 ret = io_sqe_files_unregister(ctx); 4490 break; 4491 case IORING_REGISTER_FILES_UPDATE: 4492 ret = io_register_files_update(ctx, arg, nr_args); 4493 break; 4494 case IORING_REGISTER_EVENTFD: 4495 ret = -EINVAL; 4496 if (nr_args != 1) 4497 break; 4498 ret = io_eventfd_register(ctx, arg, 0); 4499 break; 4500 case IORING_REGISTER_EVENTFD_ASYNC: 4501 ret = -EINVAL; 4502 if (nr_args != 1) 4503 break; 4504 ret = io_eventfd_register(ctx, arg, 1); 4505 break; 4506 case IORING_UNREGISTER_EVENTFD: 4507 ret = -EINVAL; 4508 if (arg || nr_args) 4509 break; 4510 ret = io_eventfd_unregister(ctx); 4511 break; 4512 case IORING_REGISTER_PROBE: 4513 ret = -EINVAL; 4514 if (!arg || nr_args > 256) 4515 break; 4516 ret = io_probe(ctx, arg, nr_args); 4517 break; 4518 case IORING_REGISTER_PERSONALITY: 4519 ret = -EINVAL; 4520 if (arg || nr_args) 4521 break; 4522 ret = io_register_personality(ctx); 4523 break; 4524 case IORING_UNREGISTER_PERSONALITY: 4525 ret = -EINVAL; 4526 if (arg) 4527 break; 4528 ret = io_unregister_personality(ctx, nr_args); 4529 break; 4530 case IORING_REGISTER_ENABLE_RINGS: 4531 ret = -EINVAL; 4532 if (arg || nr_args) 4533 break; 4534 ret = io_register_enable_rings(ctx); 4535 break; 4536 case IORING_REGISTER_RESTRICTIONS: 4537 ret = io_register_restrictions(ctx, arg, nr_args); 4538 break; 4539 case IORING_REGISTER_FILES2: 4540 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4541 break; 4542 case IORING_REGISTER_FILES_UPDATE2: 4543 ret = io_register_rsrc_update(ctx, arg, nr_args, 4544 IORING_RSRC_FILE); 4545 break; 4546 case IORING_REGISTER_BUFFERS2: 4547 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4548 break; 4549 case IORING_REGISTER_BUFFERS_UPDATE: 4550 ret = io_register_rsrc_update(ctx, arg, nr_args, 4551 IORING_RSRC_BUFFER); 4552 break; 4553 case IORING_REGISTER_IOWQ_AFF: 4554 ret = -EINVAL; 4555 if (!arg || !nr_args) 4556 break; 4557 ret = io_register_iowq_aff(ctx, arg, nr_args); 4558 break; 4559 case IORING_UNREGISTER_IOWQ_AFF: 4560 ret = -EINVAL; 4561 if (arg || nr_args) 4562 break; 4563 ret = io_unregister_iowq_aff(ctx); 4564 break; 4565 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4566 ret = -EINVAL; 4567 if (!arg || nr_args != 2) 4568 break; 4569 ret = io_register_iowq_max_workers(ctx, arg); 4570 break; 4571 case IORING_REGISTER_RING_FDS: 4572 ret = io_ringfd_register(ctx, arg, nr_args); 4573 break; 4574 case IORING_UNREGISTER_RING_FDS: 4575 ret = io_ringfd_unregister(ctx, arg, nr_args); 4576 break; 4577 case IORING_REGISTER_PBUF_RING: 4578 ret = -EINVAL; 4579 if (!arg || nr_args != 1) 4580 break; 4581 ret = io_register_pbuf_ring(ctx, arg); 4582 break; 4583 case IORING_UNREGISTER_PBUF_RING: 4584 ret = -EINVAL; 4585 if (!arg || nr_args != 1) 4586 break; 4587 ret = io_unregister_pbuf_ring(ctx, arg); 4588 break; 4589 case IORING_REGISTER_SYNC_CANCEL: 4590 ret = -EINVAL; 4591 if (!arg || nr_args != 1) 4592 break; 4593 ret = io_sync_cancel(ctx, arg); 4594 break; 4595 case IORING_REGISTER_FILE_ALLOC_RANGE: 4596 ret = -EINVAL; 4597 if (!arg || nr_args) 4598 break; 4599 ret = io_register_file_alloc_range(ctx, arg); 4600 break; 4601 default: 4602 ret = -EINVAL; 4603 break; 4604 } 4605 4606 return ret; 4607 } 4608 4609 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4610 void __user *, arg, unsigned int, nr_args) 4611 { 4612 struct io_ring_ctx *ctx; 4613 long ret = -EBADF; 4614 struct fd f; 4615 bool use_registered_ring; 4616 4617 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4618 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4619 4620 if (opcode >= IORING_REGISTER_LAST) 4621 return -EINVAL; 4622 4623 if (use_registered_ring) { 4624 /* 4625 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4626 * need only dereference our task private array to find it. 4627 */ 4628 struct io_uring_task *tctx = current->io_uring; 4629 4630 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4631 return -EINVAL; 4632 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4633 f.file = tctx->registered_rings[fd]; 4634 f.flags = 0; 4635 if (unlikely(!f.file)) 4636 return -EBADF; 4637 } else { 4638 f = fdget(fd); 4639 if (unlikely(!f.file)) 4640 return -EBADF; 4641 ret = -EOPNOTSUPP; 4642 if (!io_is_uring_fops(f.file)) 4643 goto out_fput; 4644 } 4645 4646 ctx = f.file->private_data; 4647 4648 mutex_lock(&ctx->uring_lock); 4649 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4650 mutex_unlock(&ctx->uring_lock); 4651 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4652 out_fput: 4653 fdput(f); 4654 return ret; 4655 } 4656 4657 static int __init io_uring_init(void) 4658 { 4659 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4660 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4661 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4662 } while (0) 4663 4664 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4665 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4666 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4667 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4668 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4669 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4670 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4671 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4672 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4673 BUILD_BUG_SQE_ELEM(8, __u64, off); 4674 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4675 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4676 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4677 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4678 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4679 BUILD_BUG_SQE_ELEM(24, __u32, len); 4680 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4681 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4682 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4683 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4684 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4685 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4686 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4687 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4688 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4689 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4690 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4691 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4692 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4693 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4694 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4695 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4696 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4697 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4698 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4699 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4700 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4701 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4702 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4703 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4704 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4705 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4706 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4707 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4708 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4709 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4710 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4711 4712 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4713 sizeof(struct io_uring_rsrc_update)); 4714 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4715 sizeof(struct io_uring_rsrc_update2)); 4716 4717 /* ->buf_index is u16 */ 4718 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4719 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4720 offsetof(struct io_uring_buf_ring, tail)); 4721 4722 /* should fit into one byte */ 4723 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4724 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4725 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4726 4727 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4728 4729 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4730 4731 /* top 8bits are for internal use */ 4732 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 4733 4734 io_uring_optable_init(); 4735 4736 /* 4737 * Allow user copy in the per-command field, which starts after the 4738 * file in io_kiocb and until the opcode field. The openat2 handling 4739 * requires copying in user memory into the io_kiocb object in that 4740 * range, and HARDENED_USERCOPY will complain if we haven't 4741 * correctly annotated this range. 4742 */ 4743 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4744 sizeof(struct io_kiocb), 0, 4745 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4746 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4747 offsetof(struct io_kiocb, cmd.data), 4748 sizeof_field(struct io_kiocb, cmd.data), NULL); 4749 io_buf_cachep = kmem_cache_create("io_buffer", sizeof(struct io_buffer), 0, 4750 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 4751 NULL); 4752 4753 #ifdef CONFIG_SYSCTL 4754 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4755 #endif 4756 4757 return 0; 4758 }; 4759 __initcall(io_uring_init); 4760