xref: /linux/io_uring/io_uring.c (revision 79997eda0d31bc68203c95ecb978773ee6ce7a1f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79 
80 #include <uapi/linux/io_uring.h>
81 
82 #include "io-wq.h"
83 
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 #include "waitid.h"
96 #include "futex.h"
97 
98 #include "timeout.h"
99 #include "poll.h"
100 #include "rw.h"
101 #include "alloc_cache.h"
102 
103 #define IORING_MAX_ENTRIES	32768
104 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
105 
106 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
107 				 IORING_REGISTER_LAST + IORING_OP_LAST)
108 
109 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
110 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
111 
112 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
113 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
114 
115 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
116 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117 				REQ_F_ASYNC_DATA)
118 
119 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
120 				 IO_REQ_CLEAN_FLAGS)
121 
122 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
123 
124 #define IO_COMPL_BATCH			32
125 #define IO_REQ_ALLOC_BATCH		8
126 
127 enum {
128 	IO_CHECK_CQ_OVERFLOW_BIT,
129 	IO_CHECK_CQ_DROPPED_BIT,
130 };
131 
132 enum {
133 	IO_EVENTFD_OP_SIGNAL_BIT,
134 	IO_EVENTFD_OP_FREE_BIT,
135 };
136 
137 struct io_defer_entry {
138 	struct list_head	list;
139 	struct io_kiocb		*req;
140 	u32			seq;
141 };
142 
143 /* requests with any of those set should undergo io_disarm_next() */
144 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
145 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
146 
147 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
148 					 struct task_struct *task,
149 					 bool cancel_all);
150 
151 static void io_queue_sqe(struct io_kiocb *req);
152 
153 struct kmem_cache *req_cachep;
154 
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
157 
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
160 	{
161 		.procname	= "io_uring_disabled",
162 		.data		= &sysctl_io_uring_disabled,
163 		.maxlen		= sizeof(sysctl_io_uring_disabled),
164 		.mode		= 0644,
165 		.proc_handler	= proc_dointvec_minmax,
166 		.extra1		= SYSCTL_ZERO,
167 		.extra2		= SYSCTL_TWO,
168 	},
169 	{
170 		.procname	= "io_uring_group",
171 		.data		= &sysctl_io_uring_group,
172 		.maxlen		= sizeof(gid_t),
173 		.mode		= 0644,
174 		.proc_handler	= proc_dointvec,
175 	},
176 	{},
177 };
178 #endif
179 
180 struct sock *io_uring_get_socket(struct file *file)
181 {
182 #if defined(CONFIG_UNIX)
183 	if (io_is_uring_fops(file)) {
184 		struct io_ring_ctx *ctx = file->private_data;
185 
186 		return ctx->ring_sock->sk;
187 	}
188 #endif
189 	return NULL;
190 }
191 EXPORT_SYMBOL(io_uring_get_socket);
192 
193 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
194 {
195 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
196 	    ctx->submit_state.cqes_count)
197 		__io_submit_flush_completions(ctx);
198 }
199 
200 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
201 {
202 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
203 }
204 
205 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
206 {
207 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
208 }
209 
210 static bool io_match_linked(struct io_kiocb *head)
211 {
212 	struct io_kiocb *req;
213 
214 	io_for_each_link(req, head) {
215 		if (req->flags & REQ_F_INFLIGHT)
216 			return true;
217 	}
218 	return false;
219 }
220 
221 /*
222  * As io_match_task() but protected against racing with linked timeouts.
223  * User must not hold timeout_lock.
224  */
225 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
226 			bool cancel_all)
227 {
228 	bool matched;
229 
230 	if (task && head->task != task)
231 		return false;
232 	if (cancel_all)
233 		return true;
234 
235 	if (head->flags & REQ_F_LINK_TIMEOUT) {
236 		struct io_ring_ctx *ctx = head->ctx;
237 
238 		/* protect against races with linked timeouts */
239 		spin_lock_irq(&ctx->timeout_lock);
240 		matched = io_match_linked(head);
241 		spin_unlock_irq(&ctx->timeout_lock);
242 	} else {
243 		matched = io_match_linked(head);
244 	}
245 	return matched;
246 }
247 
248 static inline void req_fail_link_node(struct io_kiocb *req, int res)
249 {
250 	req_set_fail(req);
251 	io_req_set_res(req, res, 0);
252 }
253 
254 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
255 {
256 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
257 }
258 
259 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
260 {
261 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
262 
263 	complete(&ctx->ref_comp);
264 }
265 
266 static __cold void io_fallback_req_func(struct work_struct *work)
267 {
268 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
269 						fallback_work.work);
270 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
271 	struct io_kiocb *req, *tmp;
272 	struct io_tw_state ts = { .locked = true, };
273 
274 	mutex_lock(&ctx->uring_lock);
275 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
276 		req->io_task_work.func(req, &ts);
277 	if (WARN_ON_ONCE(!ts.locked))
278 		return;
279 	io_submit_flush_completions(ctx);
280 	mutex_unlock(&ctx->uring_lock);
281 }
282 
283 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
284 {
285 	unsigned hash_buckets = 1U << bits;
286 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
287 
288 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
289 	if (!table->hbs)
290 		return -ENOMEM;
291 
292 	table->hash_bits = bits;
293 	init_hash_table(table, hash_buckets);
294 	return 0;
295 }
296 
297 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
298 {
299 	struct io_ring_ctx *ctx;
300 	int hash_bits;
301 
302 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
303 	if (!ctx)
304 		return NULL;
305 
306 	xa_init(&ctx->io_bl_xa);
307 
308 	/*
309 	 * Use 5 bits less than the max cq entries, that should give us around
310 	 * 32 entries per hash list if totally full and uniformly spread, but
311 	 * don't keep too many buckets to not overconsume memory.
312 	 */
313 	hash_bits = ilog2(p->cq_entries) - 5;
314 	hash_bits = clamp(hash_bits, 1, 8);
315 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
316 		goto err;
317 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
318 		goto err;
319 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320 			    0, GFP_KERNEL))
321 		goto err;
322 
323 	ctx->flags = p->flags;
324 	init_waitqueue_head(&ctx->sqo_sq_wait);
325 	INIT_LIST_HEAD(&ctx->sqd_list);
326 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
327 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
328 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
329 			    sizeof(struct io_rsrc_node));
330 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
331 			    sizeof(struct async_poll));
332 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
333 			    sizeof(struct io_async_msghdr));
334 	io_futex_cache_init(ctx);
335 	init_completion(&ctx->ref_comp);
336 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
337 	mutex_init(&ctx->uring_lock);
338 	init_waitqueue_head(&ctx->cq_wait);
339 	init_waitqueue_head(&ctx->poll_wq);
340 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
341 	spin_lock_init(&ctx->completion_lock);
342 	spin_lock_init(&ctx->timeout_lock);
343 	INIT_WQ_LIST(&ctx->iopoll_list);
344 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
345 	INIT_LIST_HEAD(&ctx->defer_list);
346 	INIT_LIST_HEAD(&ctx->timeout_list);
347 	INIT_LIST_HEAD(&ctx->ltimeout_list);
348 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
349 	init_llist_head(&ctx->work_llist);
350 	INIT_LIST_HEAD(&ctx->tctx_list);
351 	ctx->submit_state.free_list.next = NULL;
352 	INIT_WQ_LIST(&ctx->locked_free_list);
353 	INIT_HLIST_HEAD(&ctx->waitid_list);
354 #ifdef CONFIG_FUTEX
355 	INIT_HLIST_HEAD(&ctx->futex_list);
356 #endif
357 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
358 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
359 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
360 	return ctx;
361 err:
362 	kfree(ctx->cancel_table.hbs);
363 	kfree(ctx->cancel_table_locked.hbs);
364 	kfree(ctx->io_bl);
365 	xa_destroy(&ctx->io_bl_xa);
366 	kfree(ctx);
367 	return NULL;
368 }
369 
370 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
371 {
372 	struct io_rings *r = ctx->rings;
373 
374 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
375 	ctx->cq_extra--;
376 }
377 
378 static bool req_need_defer(struct io_kiocb *req, u32 seq)
379 {
380 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
381 		struct io_ring_ctx *ctx = req->ctx;
382 
383 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
384 	}
385 
386 	return false;
387 }
388 
389 static void io_clean_op(struct io_kiocb *req)
390 {
391 	if (req->flags & REQ_F_BUFFER_SELECTED) {
392 		spin_lock(&req->ctx->completion_lock);
393 		io_put_kbuf_comp(req);
394 		spin_unlock(&req->ctx->completion_lock);
395 	}
396 
397 	if (req->flags & REQ_F_NEED_CLEANUP) {
398 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
399 
400 		if (def->cleanup)
401 			def->cleanup(req);
402 	}
403 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
404 		kfree(req->apoll->double_poll);
405 		kfree(req->apoll);
406 		req->apoll = NULL;
407 	}
408 	if (req->flags & REQ_F_INFLIGHT) {
409 		struct io_uring_task *tctx = req->task->io_uring;
410 
411 		atomic_dec(&tctx->inflight_tracked);
412 	}
413 	if (req->flags & REQ_F_CREDS)
414 		put_cred(req->creds);
415 	if (req->flags & REQ_F_ASYNC_DATA) {
416 		kfree(req->async_data);
417 		req->async_data = NULL;
418 	}
419 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
420 }
421 
422 static inline void io_req_track_inflight(struct io_kiocb *req)
423 {
424 	if (!(req->flags & REQ_F_INFLIGHT)) {
425 		req->flags |= REQ_F_INFLIGHT;
426 		atomic_inc(&req->task->io_uring->inflight_tracked);
427 	}
428 }
429 
430 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
431 {
432 	if (WARN_ON_ONCE(!req->link))
433 		return NULL;
434 
435 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
436 	req->flags |= REQ_F_LINK_TIMEOUT;
437 
438 	/* linked timeouts should have two refs once prep'ed */
439 	io_req_set_refcount(req);
440 	__io_req_set_refcount(req->link, 2);
441 	return req->link;
442 }
443 
444 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
445 {
446 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
447 		return NULL;
448 	return __io_prep_linked_timeout(req);
449 }
450 
451 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
452 {
453 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
454 }
455 
456 static inline void io_arm_ltimeout(struct io_kiocb *req)
457 {
458 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
459 		__io_arm_ltimeout(req);
460 }
461 
462 static void io_prep_async_work(struct io_kiocb *req)
463 {
464 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
465 	struct io_ring_ctx *ctx = req->ctx;
466 
467 	if (!(req->flags & REQ_F_CREDS)) {
468 		req->flags |= REQ_F_CREDS;
469 		req->creds = get_current_cred();
470 	}
471 
472 	req->work.list.next = NULL;
473 	req->work.flags = 0;
474 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
475 	if (req->flags & REQ_F_FORCE_ASYNC)
476 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
477 
478 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
479 		req->flags |= io_file_get_flags(req->file);
480 
481 	if (req->file && (req->flags & REQ_F_ISREG)) {
482 		bool should_hash = def->hash_reg_file;
483 
484 		/* don't serialize this request if the fs doesn't need it */
485 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
486 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
487 			should_hash = false;
488 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
489 			io_wq_hash_work(&req->work, file_inode(req->file));
490 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
491 		if (def->unbound_nonreg_file)
492 			req->work.flags |= IO_WQ_WORK_UNBOUND;
493 	}
494 }
495 
496 static void io_prep_async_link(struct io_kiocb *req)
497 {
498 	struct io_kiocb *cur;
499 
500 	if (req->flags & REQ_F_LINK_TIMEOUT) {
501 		struct io_ring_ctx *ctx = req->ctx;
502 
503 		spin_lock_irq(&ctx->timeout_lock);
504 		io_for_each_link(cur, req)
505 			io_prep_async_work(cur);
506 		spin_unlock_irq(&ctx->timeout_lock);
507 	} else {
508 		io_for_each_link(cur, req)
509 			io_prep_async_work(cur);
510 	}
511 }
512 
513 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
514 {
515 	struct io_kiocb *link = io_prep_linked_timeout(req);
516 	struct io_uring_task *tctx = req->task->io_uring;
517 
518 	BUG_ON(!tctx);
519 	BUG_ON(!tctx->io_wq);
520 
521 	/* init ->work of the whole link before punting */
522 	io_prep_async_link(req);
523 
524 	/*
525 	 * Not expected to happen, but if we do have a bug where this _can_
526 	 * happen, catch it here and ensure the request is marked as
527 	 * canceled. That will make io-wq go through the usual work cancel
528 	 * procedure rather than attempt to run this request (or create a new
529 	 * worker for it).
530 	 */
531 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
532 		req->work.flags |= IO_WQ_WORK_CANCEL;
533 
534 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
535 	io_wq_enqueue(tctx->io_wq, &req->work);
536 	if (link)
537 		io_queue_linked_timeout(link);
538 }
539 
540 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
541 {
542 	while (!list_empty(&ctx->defer_list)) {
543 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
544 						struct io_defer_entry, list);
545 
546 		if (req_need_defer(de->req, de->seq))
547 			break;
548 		list_del_init(&de->list);
549 		io_req_task_queue(de->req);
550 		kfree(de);
551 	}
552 }
553 
554 
555 static void io_eventfd_ops(struct rcu_head *rcu)
556 {
557 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
558 	int ops = atomic_xchg(&ev_fd->ops, 0);
559 
560 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
561 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
562 
563 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
564 	 * ordering in a race but if references are 0 we know we have to free
565 	 * it regardless.
566 	 */
567 	if (atomic_dec_and_test(&ev_fd->refs)) {
568 		eventfd_ctx_put(ev_fd->cq_ev_fd);
569 		kfree(ev_fd);
570 	}
571 }
572 
573 static void io_eventfd_signal(struct io_ring_ctx *ctx)
574 {
575 	struct io_ev_fd *ev_fd = NULL;
576 
577 	rcu_read_lock();
578 	/*
579 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
580 	 * and eventfd_signal
581 	 */
582 	ev_fd = rcu_dereference(ctx->io_ev_fd);
583 
584 	/*
585 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
586 	 * completed between the NULL check of ctx->io_ev_fd at the start of
587 	 * the function and rcu_read_lock.
588 	 */
589 	if (unlikely(!ev_fd))
590 		goto out;
591 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
592 		goto out;
593 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
594 		goto out;
595 
596 	if (likely(eventfd_signal_allowed())) {
597 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
598 	} else {
599 		atomic_inc(&ev_fd->refs);
600 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
601 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
602 		else
603 			atomic_dec(&ev_fd->refs);
604 	}
605 
606 out:
607 	rcu_read_unlock();
608 }
609 
610 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
611 {
612 	bool skip;
613 
614 	spin_lock(&ctx->completion_lock);
615 
616 	/*
617 	 * Eventfd should only get triggered when at least one event has been
618 	 * posted. Some applications rely on the eventfd notification count
619 	 * only changing IFF a new CQE has been added to the CQ ring. There's
620 	 * no depedency on 1:1 relationship between how many times this
621 	 * function is called (and hence the eventfd count) and number of CQEs
622 	 * posted to the CQ ring.
623 	 */
624 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
625 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
626 	spin_unlock(&ctx->completion_lock);
627 	if (skip)
628 		return;
629 
630 	io_eventfd_signal(ctx);
631 }
632 
633 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
634 {
635 	if (ctx->poll_activated)
636 		io_poll_wq_wake(ctx);
637 	if (ctx->off_timeout_used)
638 		io_flush_timeouts(ctx);
639 	if (ctx->drain_active) {
640 		spin_lock(&ctx->completion_lock);
641 		io_queue_deferred(ctx);
642 		spin_unlock(&ctx->completion_lock);
643 	}
644 	if (ctx->has_evfd)
645 		io_eventfd_flush_signal(ctx);
646 }
647 
648 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
649 {
650 	if (!ctx->lockless_cq)
651 		spin_lock(&ctx->completion_lock);
652 }
653 
654 static inline void io_cq_lock(struct io_ring_ctx *ctx)
655 	__acquires(ctx->completion_lock)
656 {
657 	spin_lock(&ctx->completion_lock);
658 }
659 
660 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
661 {
662 	io_commit_cqring(ctx);
663 	if (!ctx->task_complete) {
664 		if (!ctx->lockless_cq)
665 			spin_unlock(&ctx->completion_lock);
666 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
667 		if (!ctx->syscall_iopoll)
668 			io_cqring_wake(ctx);
669 	}
670 	io_commit_cqring_flush(ctx);
671 }
672 
673 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
674 	__releases(ctx->completion_lock)
675 {
676 	io_commit_cqring(ctx);
677 	spin_unlock(&ctx->completion_lock);
678 	io_cqring_wake(ctx);
679 	io_commit_cqring_flush(ctx);
680 }
681 
682 /* Returns true if there are no backlogged entries after the flush */
683 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
684 {
685 	struct io_overflow_cqe *ocqe;
686 	LIST_HEAD(list);
687 
688 	spin_lock(&ctx->completion_lock);
689 	list_splice_init(&ctx->cq_overflow_list, &list);
690 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
691 	spin_unlock(&ctx->completion_lock);
692 
693 	while (!list_empty(&list)) {
694 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
695 		list_del(&ocqe->list);
696 		kfree(ocqe);
697 	}
698 }
699 
700 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
701 {
702 	size_t cqe_size = sizeof(struct io_uring_cqe);
703 
704 	if (__io_cqring_events(ctx) == ctx->cq_entries)
705 		return;
706 
707 	if (ctx->flags & IORING_SETUP_CQE32)
708 		cqe_size <<= 1;
709 
710 	io_cq_lock(ctx);
711 	while (!list_empty(&ctx->cq_overflow_list)) {
712 		struct io_uring_cqe *cqe;
713 		struct io_overflow_cqe *ocqe;
714 
715 		if (!io_get_cqe_overflow(ctx, &cqe, true))
716 			break;
717 		ocqe = list_first_entry(&ctx->cq_overflow_list,
718 					struct io_overflow_cqe, list);
719 		memcpy(cqe, &ocqe->cqe, cqe_size);
720 		list_del(&ocqe->list);
721 		kfree(ocqe);
722 	}
723 
724 	if (list_empty(&ctx->cq_overflow_list)) {
725 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
726 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
727 	}
728 	io_cq_unlock_post(ctx);
729 }
730 
731 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
732 {
733 	/* iopoll syncs against uring_lock, not completion_lock */
734 	if (ctx->flags & IORING_SETUP_IOPOLL)
735 		mutex_lock(&ctx->uring_lock);
736 	__io_cqring_overflow_flush(ctx);
737 	if (ctx->flags & IORING_SETUP_IOPOLL)
738 		mutex_unlock(&ctx->uring_lock);
739 }
740 
741 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
742 {
743 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
744 		io_cqring_do_overflow_flush(ctx);
745 }
746 
747 /* can be called by any task */
748 static void io_put_task_remote(struct task_struct *task)
749 {
750 	struct io_uring_task *tctx = task->io_uring;
751 
752 	percpu_counter_sub(&tctx->inflight, 1);
753 	if (unlikely(atomic_read(&tctx->in_cancel)))
754 		wake_up(&tctx->wait);
755 	put_task_struct(task);
756 }
757 
758 /* used by a task to put its own references */
759 static void io_put_task_local(struct task_struct *task)
760 {
761 	task->io_uring->cached_refs++;
762 }
763 
764 /* must to be called somewhat shortly after putting a request */
765 static inline void io_put_task(struct task_struct *task)
766 {
767 	if (likely(task == current))
768 		io_put_task_local(task);
769 	else
770 		io_put_task_remote(task);
771 }
772 
773 void io_task_refs_refill(struct io_uring_task *tctx)
774 {
775 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
776 
777 	percpu_counter_add(&tctx->inflight, refill);
778 	refcount_add(refill, &current->usage);
779 	tctx->cached_refs += refill;
780 }
781 
782 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
783 {
784 	struct io_uring_task *tctx = task->io_uring;
785 	unsigned int refs = tctx->cached_refs;
786 
787 	if (refs) {
788 		tctx->cached_refs = 0;
789 		percpu_counter_sub(&tctx->inflight, refs);
790 		put_task_struct_many(task, refs);
791 	}
792 }
793 
794 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
795 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
796 {
797 	struct io_overflow_cqe *ocqe;
798 	size_t ocq_size = sizeof(struct io_overflow_cqe);
799 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
800 
801 	lockdep_assert_held(&ctx->completion_lock);
802 
803 	if (is_cqe32)
804 		ocq_size += sizeof(struct io_uring_cqe);
805 
806 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
807 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
808 	if (!ocqe) {
809 		/*
810 		 * If we're in ring overflow flush mode, or in task cancel mode,
811 		 * or cannot allocate an overflow entry, then we need to drop it
812 		 * on the floor.
813 		 */
814 		io_account_cq_overflow(ctx);
815 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
816 		return false;
817 	}
818 	if (list_empty(&ctx->cq_overflow_list)) {
819 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
820 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
821 
822 	}
823 	ocqe->cqe.user_data = user_data;
824 	ocqe->cqe.res = res;
825 	ocqe->cqe.flags = cflags;
826 	if (is_cqe32) {
827 		ocqe->cqe.big_cqe[0] = extra1;
828 		ocqe->cqe.big_cqe[1] = extra2;
829 	}
830 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
831 	return true;
832 }
833 
834 void io_req_cqe_overflow(struct io_kiocb *req)
835 {
836 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
837 				req->cqe.res, req->cqe.flags,
838 				req->big_cqe.extra1, req->big_cqe.extra2);
839 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
840 }
841 
842 /*
843  * writes to the cq entry need to come after reading head; the
844  * control dependency is enough as we're using WRITE_ONCE to
845  * fill the cq entry
846  */
847 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
848 {
849 	struct io_rings *rings = ctx->rings;
850 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
851 	unsigned int free, queued, len;
852 
853 	/*
854 	 * Posting into the CQ when there are pending overflowed CQEs may break
855 	 * ordering guarantees, which will affect links, F_MORE users and more.
856 	 * Force overflow the completion.
857 	 */
858 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
859 		return false;
860 
861 	/* userspace may cheat modifying the tail, be safe and do min */
862 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
863 	free = ctx->cq_entries - queued;
864 	/* we need a contiguous range, limit based on the current array offset */
865 	len = min(free, ctx->cq_entries - off);
866 	if (!len)
867 		return false;
868 
869 	if (ctx->flags & IORING_SETUP_CQE32) {
870 		off <<= 1;
871 		len <<= 1;
872 	}
873 
874 	ctx->cqe_cached = &rings->cqes[off];
875 	ctx->cqe_sentinel = ctx->cqe_cached + len;
876 	return true;
877 }
878 
879 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
880 			      u32 cflags)
881 {
882 	struct io_uring_cqe *cqe;
883 
884 	ctx->cq_extra++;
885 
886 	/*
887 	 * If we can't get a cq entry, userspace overflowed the
888 	 * submission (by quite a lot). Increment the overflow count in
889 	 * the ring.
890 	 */
891 	if (likely(io_get_cqe(ctx, &cqe))) {
892 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
893 
894 		WRITE_ONCE(cqe->user_data, user_data);
895 		WRITE_ONCE(cqe->res, res);
896 		WRITE_ONCE(cqe->flags, cflags);
897 
898 		if (ctx->flags & IORING_SETUP_CQE32) {
899 			WRITE_ONCE(cqe->big_cqe[0], 0);
900 			WRITE_ONCE(cqe->big_cqe[1], 0);
901 		}
902 		return true;
903 	}
904 	return false;
905 }
906 
907 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
908 	__must_hold(&ctx->uring_lock)
909 {
910 	struct io_submit_state *state = &ctx->submit_state;
911 	unsigned int i;
912 
913 	lockdep_assert_held(&ctx->uring_lock);
914 	for (i = 0; i < state->cqes_count; i++) {
915 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
916 
917 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
918 			if (ctx->lockless_cq) {
919 				spin_lock(&ctx->completion_lock);
920 				io_cqring_event_overflow(ctx, cqe->user_data,
921 							cqe->res, cqe->flags, 0, 0);
922 				spin_unlock(&ctx->completion_lock);
923 			} else {
924 				io_cqring_event_overflow(ctx, cqe->user_data,
925 							cqe->res, cqe->flags, 0, 0);
926 			}
927 		}
928 	}
929 	state->cqes_count = 0;
930 }
931 
932 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
933 			      bool allow_overflow)
934 {
935 	bool filled;
936 
937 	io_cq_lock(ctx);
938 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
939 	if (!filled && allow_overflow)
940 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
941 
942 	io_cq_unlock_post(ctx);
943 	return filled;
944 }
945 
946 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
947 {
948 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
949 }
950 
951 /*
952  * A helper for multishot requests posting additional CQEs.
953  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
954  */
955 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
956 {
957 	struct io_ring_ctx *ctx = req->ctx;
958 	u64 user_data = req->cqe.user_data;
959 	struct io_uring_cqe *cqe;
960 
961 	if (!defer)
962 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
963 
964 	lockdep_assert_held(&ctx->uring_lock);
965 
966 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
967 		__io_cq_lock(ctx);
968 		__io_flush_post_cqes(ctx);
969 		/* no need to flush - flush is deferred */
970 		__io_cq_unlock_post(ctx);
971 	}
972 
973 	/* For defered completions this is not as strict as it is otherwise,
974 	 * however it's main job is to prevent unbounded posted completions,
975 	 * and in that it works just as well.
976 	 */
977 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
978 		return false;
979 
980 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
981 	cqe->user_data = user_data;
982 	cqe->res = res;
983 	cqe->flags = cflags;
984 	return true;
985 }
986 
987 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
988 {
989 	struct io_ring_ctx *ctx = req->ctx;
990 	struct io_rsrc_node *rsrc_node = NULL;
991 
992 	io_cq_lock(ctx);
993 	if (!(req->flags & REQ_F_CQE_SKIP)) {
994 		if (!io_fill_cqe_req(ctx, req))
995 			io_req_cqe_overflow(req);
996 	}
997 
998 	/*
999 	 * If we're the last reference to this request, add to our locked
1000 	 * free_list cache.
1001 	 */
1002 	if (req_ref_put_and_test(req)) {
1003 		if (req->flags & IO_REQ_LINK_FLAGS) {
1004 			if (req->flags & IO_DISARM_MASK)
1005 				io_disarm_next(req);
1006 			if (req->link) {
1007 				io_req_task_queue(req->link);
1008 				req->link = NULL;
1009 			}
1010 		}
1011 		io_put_kbuf_comp(req);
1012 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1013 			io_clean_op(req);
1014 		io_put_file(req);
1015 
1016 		rsrc_node = req->rsrc_node;
1017 		/*
1018 		 * Selected buffer deallocation in io_clean_op() assumes that
1019 		 * we don't hold ->completion_lock. Clean them here to avoid
1020 		 * deadlocks.
1021 		 */
1022 		io_put_task_remote(req->task);
1023 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1024 		ctx->locked_free_nr++;
1025 	}
1026 	io_cq_unlock_post(ctx);
1027 
1028 	if (rsrc_node) {
1029 		io_ring_submit_lock(ctx, issue_flags);
1030 		io_put_rsrc_node(ctx, rsrc_node);
1031 		io_ring_submit_unlock(ctx, issue_flags);
1032 	}
1033 }
1034 
1035 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1036 {
1037 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1038 		req->io_task_work.func = io_req_task_complete;
1039 		io_req_task_work_add(req);
1040 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1041 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1042 		__io_req_complete_post(req, issue_flags);
1043 	} else {
1044 		struct io_ring_ctx *ctx = req->ctx;
1045 
1046 		mutex_lock(&ctx->uring_lock);
1047 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1048 		mutex_unlock(&ctx->uring_lock);
1049 	}
1050 }
1051 
1052 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1053 	__must_hold(&ctx->uring_lock)
1054 {
1055 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1056 
1057 	lockdep_assert_held(&req->ctx->uring_lock);
1058 
1059 	req_set_fail(req);
1060 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1061 	if (def->fail)
1062 		def->fail(req);
1063 	io_req_complete_defer(req);
1064 }
1065 
1066 /*
1067  * Don't initialise the fields below on every allocation, but do that in
1068  * advance and keep them valid across allocations.
1069  */
1070 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1071 {
1072 	req->ctx = ctx;
1073 	req->link = NULL;
1074 	req->async_data = NULL;
1075 	/* not necessary, but safer to zero */
1076 	memset(&req->cqe, 0, sizeof(req->cqe));
1077 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1078 }
1079 
1080 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1081 					struct io_submit_state *state)
1082 {
1083 	spin_lock(&ctx->completion_lock);
1084 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1085 	ctx->locked_free_nr = 0;
1086 	spin_unlock(&ctx->completion_lock);
1087 }
1088 
1089 /*
1090  * A request might get retired back into the request caches even before opcode
1091  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1092  * Because of that, io_alloc_req() should be called only under ->uring_lock
1093  * and with extra caution to not get a request that is still worked on.
1094  */
1095 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1096 	__must_hold(&ctx->uring_lock)
1097 {
1098 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1099 	void *reqs[IO_REQ_ALLOC_BATCH];
1100 	int ret, i;
1101 
1102 	/*
1103 	 * If we have more than a batch's worth of requests in our IRQ side
1104 	 * locked cache, grab the lock and move them over to our submission
1105 	 * side cache.
1106 	 */
1107 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1108 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1109 		if (!io_req_cache_empty(ctx))
1110 			return true;
1111 	}
1112 
1113 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1114 
1115 	/*
1116 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1117 	 * retry single alloc to be on the safe side.
1118 	 */
1119 	if (unlikely(ret <= 0)) {
1120 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1121 		if (!reqs[0])
1122 			return false;
1123 		ret = 1;
1124 	}
1125 
1126 	percpu_ref_get_many(&ctx->refs, ret);
1127 	for (i = 0; i < ret; i++) {
1128 		struct io_kiocb *req = reqs[i];
1129 
1130 		io_preinit_req(req, ctx);
1131 		io_req_add_to_cache(req, ctx);
1132 	}
1133 	return true;
1134 }
1135 
1136 __cold void io_free_req(struct io_kiocb *req)
1137 {
1138 	/* refs were already put, restore them for io_req_task_complete() */
1139 	req->flags &= ~REQ_F_REFCOUNT;
1140 	/* we only want to free it, don't post CQEs */
1141 	req->flags |= REQ_F_CQE_SKIP;
1142 	req->io_task_work.func = io_req_task_complete;
1143 	io_req_task_work_add(req);
1144 }
1145 
1146 static void __io_req_find_next_prep(struct io_kiocb *req)
1147 {
1148 	struct io_ring_ctx *ctx = req->ctx;
1149 
1150 	spin_lock(&ctx->completion_lock);
1151 	io_disarm_next(req);
1152 	spin_unlock(&ctx->completion_lock);
1153 }
1154 
1155 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1156 {
1157 	struct io_kiocb *nxt;
1158 
1159 	/*
1160 	 * If LINK is set, we have dependent requests in this chain. If we
1161 	 * didn't fail this request, queue the first one up, moving any other
1162 	 * dependencies to the next request. In case of failure, fail the rest
1163 	 * of the chain.
1164 	 */
1165 	if (unlikely(req->flags & IO_DISARM_MASK))
1166 		__io_req_find_next_prep(req);
1167 	nxt = req->link;
1168 	req->link = NULL;
1169 	return nxt;
1170 }
1171 
1172 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1173 {
1174 	if (!ctx)
1175 		return;
1176 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1177 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1178 	if (ts->locked) {
1179 		io_submit_flush_completions(ctx);
1180 		mutex_unlock(&ctx->uring_lock);
1181 		ts->locked = false;
1182 	}
1183 	percpu_ref_put(&ctx->refs);
1184 }
1185 
1186 static unsigned int handle_tw_list(struct llist_node *node,
1187 				   struct io_ring_ctx **ctx,
1188 				   struct io_tw_state *ts,
1189 				   struct llist_node *last)
1190 {
1191 	unsigned int count = 0;
1192 
1193 	while (node && node != last) {
1194 		struct llist_node *next = node->next;
1195 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1196 						    io_task_work.node);
1197 
1198 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1199 
1200 		if (req->ctx != *ctx) {
1201 			ctx_flush_and_put(*ctx, ts);
1202 			*ctx = req->ctx;
1203 			/* if not contended, grab and improve batching */
1204 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1205 			percpu_ref_get(&(*ctx)->refs);
1206 		}
1207 		INDIRECT_CALL_2(req->io_task_work.func,
1208 				io_poll_task_func, io_req_rw_complete,
1209 				req, ts);
1210 		node = next;
1211 		count++;
1212 		if (unlikely(need_resched())) {
1213 			ctx_flush_and_put(*ctx, ts);
1214 			*ctx = NULL;
1215 			cond_resched();
1216 		}
1217 	}
1218 
1219 	return count;
1220 }
1221 
1222 /**
1223  * io_llist_xchg - swap all entries in a lock-less list
1224  * @head:	the head of lock-less list to delete all entries
1225  * @new:	new entry as the head of the list
1226  *
1227  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1228  * The order of entries returned is from the newest to the oldest added one.
1229  */
1230 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1231 					       struct llist_node *new)
1232 {
1233 	return xchg(&head->first, new);
1234 }
1235 
1236 /**
1237  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1238  * @head:	the head of lock-less list to delete all entries
1239  * @old:	expected old value of the first entry of the list
1240  * @new:	new entry as the head of the list
1241  *
1242  * perform a cmpxchg on the first entry of the list.
1243  */
1244 
1245 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1246 						  struct llist_node *old,
1247 						  struct llist_node *new)
1248 {
1249 	return cmpxchg(&head->first, old, new);
1250 }
1251 
1252 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1253 {
1254 	struct llist_node *node = llist_del_all(&tctx->task_list);
1255 	struct io_ring_ctx *last_ctx = NULL;
1256 	struct io_kiocb *req;
1257 
1258 	while (node) {
1259 		req = container_of(node, struct io_kiocb, io_task_work.node);
1260 		node = node->next;
1261 		if (sync && last_ctx != req->ctx) {
1262 			if (last_ctx) {
1263 				flush_delayed_work(&last_ctx->fallback_work);
1264 				percpu_ref_put(&last_ctx->refs);
1265 			}
1266 			last_ctx = req->ctx;
1267 			percpu_ref_get(&last_ctx->refs);
1268 		}
1269 		if (llist_add(&req->io_task_work.node,
1270 			      &req->ctx->fallback_llist))
1271 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1272 	}
1273 
1274 	if (last_ctx) {
1275 		flush_delayed_work(&last_ctx->fallback_work);
1276 		percpu_ref_put(&last_ctx->refs);
1277 	}
1278 }
1279 
1280 void tctx_task_work(struct callback_head *cb)
1281 {
1282 	struct io_tw_state ts = {};
1283 	struct io_ring_ctx *ctx = NULL;
1284 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1285 						  task_work);
1286 	struct llist_node fake = {};
1287 	struct llist_node *node;
1288 	unsigned int loops = 0;
1289 	unsigned int count = 0;
1290 
1291 	if (unlikely(current->flags & PF_EXITING)) {
1292 		io_fallback_tw(tctx, true);
1293 		return;
1294 	}
1295 
1296 	do {
1297 		loops++;
1298 		node = io_llist_xchg(&tctx->task_list, &fake);
1299 		count += handle_tw_list(node, &ctx, &ts, &fake);
1300 
1301 		/* skip expensive cmpxchg if there are items in the list */
1302 		if (READ_ONCE(tctx->task_list.first) != &fake)
1303 			continue;
1304 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1305 			io_submit_flush_completions(ctx);
1306 			if (READ_ONCE(tctx->task_list.first) != &fake)
1307 				continue;
1308 		}
1309 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1310 	} while (node != &fake);
1311 
1312 	ctx_flush_and_put(ctx, &ts);
1313 
1314 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1315 	if (unlikely(atomic_read(&tctx->in_cancel)))
1316 		io_uring_drop_tctx_refs(current);
1317 
1318 	trace_io_uring_task_work_run(tctx, count, loops);
1319 }
1320 
1321 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1322 {
1323 	struct io_ring_ctx *ctx = req->ctx;
1324 	unsigned nr_wait, nr_tw, nr_tw_prev;
1325 	struct llist_node *first;
1326 
1327 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1328 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1329 
1330 	first = READ_ONCE(ctx->work_llist.first);
1331 	do {
1332 		nr_tw_prev = 0;
1333 		if (first) {
1334 			struct io_kiocb *first_req = container_of(first,
1335 							struct io_kiocb,
1336 							io_task_work.node);
1337 			/*
1338 			 * Might be executed at any moment, rely on
1339 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1340 			 */
1341 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1342 		}
1343 		nr_tw = nr_tw_prev + 1;
1344 		/* Large enough to fail the nr_wait comparison below */
1345 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1346 			nr_tw = -1U;
1347 
1348 		req->nr_tw = nr_tw;
1349 		req->io_task_work.node.next = first;
1350 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1351 			      &req->io_task_work.node));
1352 
1353 	if (!first) {
1354 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1355 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1356 		if (ctx->has_evfd)
1357 			io_eventfd_signal(ctx);
1358 	}
1359 
1360 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1361 	/* no one is waiting */
1362 	if (!nr_wait)
1363 		return;
1364 	/* either not enough or the previous add has already woken it up */
1365 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1366 		return;
1367 	/* pairs with set_current_state() in io_cqring_wait() */
1368 	smp_mb__after_atomic();
1369 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1370 }
1371 
1372 static void io_req_normal_work_add(struct io_kiocb *req)
1373 {
1374 	struct io_uring_task *tctx = req->task->io_uring;
1375 	struct io_ring_ctx *ctx = req->ctx;
1376 
1377 	/* task_work already pending, we're done */
1378 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1379 		return;
1380 
1381 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1382 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1383 
1384 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1385 		return;
1386 
1387 	io_fallback_tw(tctx, false);
1388 }
1389 
1390 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1391 {
1392 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1393 		rcu_read_lock();
1394 		io_req_local_work_add(req, flags);
1395 		rcu_read_unlock();
1396 	} else {
1397 		io_req_normal_work_add(req);
1398 	}
1399 }
1400 
1401 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1402 {
1403 	struct llist_node *node;
1404 
1405 	node = llist_del_all(&ctx->work_llist);
1406 	while (node) {
1407 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1408 						    io_task_work.node);
1409 
1410 		node = node->next;
1411 		io_req_normal_work_add(req);
1412 	}
1413 }
1414 
1415 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1416 {
1417 	struct llist_node *node;
1418 	unsigned int loops = 0;
1419 	int ret = 0;
1420 
1421 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1422 		return -EEXIST;
1423 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1424 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1425 again:
1426 	/*
1427 	 * llists are in reverse order, flip it back the right way before
1428 	 * running the pending items.
1429 	 */
1430 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1431 	while (node) {
1432 		struct llist_node *next = node->next;
1433 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1434 						    io_task_work.node);
1435 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1436 		INDIRECT_CALL_2(req->io_task_work.func,
1437 				io_poll_task_func, io_req_rw_complete,
1438 				req, ts);
1439 		ret++;
1440 		node = next;
1441 	}
1442 	loops++;
1443 
1444 	if (!llist_empty(&ctx->work_llist))
1445 		goto again;
1446 	if (ts->locked) {
1447 		io_submit_flush_completions(ctx);
1448 		if (!llist_empty(&ctx->work_llist))
1449 			goto again;
1450 	}
1451 	trace_io_uring_local_work_run(ctx, ret, loops);
1452 	return ret;
1453 }
1454 
1455 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1456 {
1457 	struct io_tw_state ts = { .locked = true, };
1458 	int ret;
1459 
1460 	if (llist_empty(&ctx->work_llist))
1461 		return 0;
1462 
1463 	ret = __io_run_local_work(ctx, &ts);
1464 	/* shouldn't happen! */
1465 	if (WARN_ON_ONCE(!ts.locked))
1466 		mutex_lock(&ctx->uring_lock);
1467 	return ret;
1468 }
1469 
1470 static int io_run_local_work(struct io_ring_ctx *ctx)
1471 {
1472 	struct io_tw_state ts = {};
1473 	int ret;
1474 
1475 	ts.locked = mutex_trylock(&ctx->uring_lock);
1476 	ret = __io_run_local_work(ctx, &ts);
1477 	if (ts.locked)
1478 		mutex_unlock(&ctx->uring_lock);
1479 
1480 	return ret;
1481 }
1482 
1483 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1484 {
1485 	io_tw_lock(req->ctx, ts);
1486 	io_req_defer_failed(req, req->cqe.res);
1487 }
1488 
1489 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1490 {
1491 	io_tw_lock(req->ctx, ts);
1492 	/* req->task == current here, checking PF_EXITING is safe */
1493 	if (unlikely(req->task->flags & PF_EXITING))
1494 		io_req_defer_failed(req, -EFAULT);
1495 	else if (req->flags & REQ_F_FORCE_ASYNC)
1496 		io_queue_iowq(req, ts);
1497 	else
1498 		io_queue_sqe(req);
1499 }
1500 
1501 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1502 {
1503 	io_req_set_res(req, ret, 0);
1504 	req->io_task_work.func = io_req_task_cancel;
1505 	io_req_task_work_add(req);
1506 }
1507 
1508 void io_req_task_queue(struct io_kiocb *req)
1509 {
1510 	req->io_task_work.func = io_req_task_submit;
1511 	io_req_task_work_add(req);
1512 }
1513 
1514 void io_queue_next(struct io_kiocb *req)
1515 {
1516 	struct io_kiocb *nxt = io_req_find_next(req);
1517 
1518 	if (nxt)
1519 		io_req_task_queue(nxt);
1520 }
1521 
1522 static void io_free_batch_list(struct io_ring_ctx *ctx,
1523 			       struct io_wq_work_node *node)
1524 	__must_hold(&ctx->uring_lock)
1525 {
1526 	do {
1527 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1528 						    comp_list);
1529 
1530 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1531 			if (req->flags & REQ_F_REFCOUNT) {
1532 				node = req->comp_list.next;
1533 				if (!req_ref_put_and_test(req))
1534 					continue;
1535 			}
1536 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1537 				struct async_poll *apoll = req->apoll;
1538 
1539 				if (apoll->double_poll)
1540 					kfree(apoll->double_poll);
1541 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1542 					kfree(apoll);
1543 				req->flags &= ~REQ_F_POLLED;
1544 			}
1545 			if (req->flags & IO_REQ_LINK_FLAGS)
1546 				io_queue_next(req);
1547 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1548 				io_clean_op(req);
1549 		}
1550 		io_put_file(req);
1551 
1552 		io_req_put_rsrc_locked(req, ctx);
1553 
1554 		io_put_task(req->task);
1555 		node = req->comp_list.next;
1556 		io_req_add_to_cache(req, ctx);
1557 	} while (node);
1558 }
1559 
1560 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1561 	__must_hold(&ctx->uring_lock)
1562 {
1563 	struct io_submit_state *state = &ctx->submit_state;
1564 	struct io_wq_work_node *node;
1565 
1566 	__io_cq_lock(ctx);
1567 	/* must come first to preserve CQE ordering in failure cases */
1568 	if (state->cqes_count)
1569 		__io_flush_post_cqes(ctx);
1570 	__wq_list_for_each(node, &state->compl_reqs) {
1571 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1572 					    comp_list);
1573 
1574 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1575 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1576 			if (ctx->lockless_cq) {
1577 				spin_lock(&ctx->completion_lock);
1578 				io_req_cqe_overflow(req);
1579 				spin_unlock(&ctx->completion_lock);
1580 			} else {
1581 				io_req_cqe_overflow(req);
1582 			}
1583 		}
1584 	}
1585 	__io_cq_unlock_post(ctx);
1586 
1587 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1588 		io_free_batch_list(ctx, state->compl_reqs.first);
1589 		INIT_WQ_LIST(&state->compl_reqs);
1590 	}
1591 }
1592 
1593 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1594 {
1595 	/* See comment at the top of this file */
1596 	smp_rmb();
1597 	return __io_cqring_events(ctx);
1598 }
1599 
1600 /*
1601  * We can't just wait for polled events to come to us, we have to actively
1602  * find and complete them.
1603  */
1604 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1605 {
1606 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1607 		return;
1608 
1609 	mutex_lock(&ctx->uring_lock);
1610 	while (!wq_list_empty(&ctx->iopoll_list)) {
1611 		/* let it sleep and repeat later if can't complete a request */
1612 		if (io_do_iopoll(ctx, true) == 0)
1613 			break;
1614 		/*
1615 		 * Ensure we allow local-to-the-cpu processing to take place,
1616 		 * in this case we need to ensure that we reap all events.
1617 		 * Also let task_work, etc. to progress by releasing the mutex
1618 		 */
1619 		if (need_resched()) {
1620 			mutex_unlock(&ctx->uring_lock);
1621 			cond_resched();
1622 			mutex_lock(&ctx->uring_lock);
1623 		}
1624 	}
1625 	mutex_unlock(&ctx->uring_lock);
1626 }
1627 
1628 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1629 {
1630 	unsigned int nr_events = 0;
1631 	unsigned long check_cq;
1632 
1633 	if (!io_allowed_run_tw(ctx))
1634 		return -EEXIST;
1635 
1636 	check_cq = READ_ONCE(ctx->check_cq);
1637 	if (unlikely(check_cq)) {
1638 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1639 			__io_cqring_overflow_flush(ctx);
1640 		/*
1641 		 * Similarly do not spin if we have not informed the user of any
1642 		 * dropped CQE.
1643 		 */
1644 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1645 			return -EBADR;
1646 	}
1647 	/*
1648 	 * Don't enter poll loop if we already have events pending.
1649 	 * If we do, we can potentially be spinning for commands that
1650 	 * already triggered a CQE (eg in error).
1651 	 */
1652 	if (io_cqring_events(ctx))
1653 		return 0;
1654 
1655 	do {
1656 		int ret = 0;
1657 
1658 		/*
1659 		 * If a submit got punted to a workqueue, we can have the
1660 		 * application entering polling for a command before it gets
1661 		 * issued. That app will hold the uring_lock for the duration
1662 		 * of the poll right here, so we need to take a breather every
1663 		 * now and then to ensure that the issue has a chance to add
1664 		 * the poll to the issued list. Otherwise we can spin here
1665 		 * forever, while the workqueue is stuck trying to acquire the
1666 		 * very same mutex.
1667 		 */
1668 		if (wq_list_empty(&ctx->iopoll_list) ||
1669 		    io_task_work_pending(ctx)) {
1670 			u32 tail = ctx->cached_cq_tail;
1671 
1672 			(void) io_run_local_work_locked(ctx);
1673 
1674 			if (task_work_pending(current) ||
1675 			    wq_list_empty(&ctx->iopoll_list)) {
1676 				mutex_unlock(&ctx->uring_lock);
1677 				io_run_task_work();
1678 				mutex_lock(&ctx->uring_lock);
1679 			}
1680 			/* some requests don't go through iopoll_list */
1681 			if (tail != ctx->cached_cq_tail ||
1682 			    wq_list_empty(&ctx->iopoll_list))
1683 				break;
1684 		}
1685 		ret = io_do_iopoll(ctx, !min);
1686 		if (unlikely(ret < 0))
1687 			return ret;
1688 
1689 		if (task_sigpending(current))
1690 			return -EINTR;
1691 		if (need_resched())
1692 			break;
1693 
1694 		nr_events += ret;
1695 	} while (nr_events < min);
1696 
1697 	return 0;
1698 }
1699 
1700 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1701 {
1702 	if (ts->locked)
1703 		io_req_complete_defer(req);
1704 	else
1705 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1706 }
1707 
1708 /*
1709  * After the iocb has been issued, it's safe to be found on the poll list.
1710  * Adding the kiocb to the list AFTER submission ensures that we don't
1711  * find it from a io_do_iopoll() thread before the issuer is done
1712  * accessing the kiocb cookie.
1713  */
1714 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1715 {
1716 	struct io_ring_ctx *ctx = req->ctx;
1717 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1718 
1719 	/* workqueue context doesn't hold uring_lock, grab it now */
1720 	if (unlikely(needs_lock))
1721 		mutex_lock(&ctx->uring_lock);
1722 
1723 	/*
1724 	 * Track whether we have multiple files in our lists. This will impact
1725 	 * how we do polling eventually, not spinning if we're on potentially
1726 	 * different devices.
1727 	 */
1728 	if (wq_list_empty(&ctx->iopoll_list)) {
1729 		ctx->poll_multi_queue = false;
1730 	} else if (!ctx->poll_multi_queue) {
1731 		struct io_kiocb *list_req;
1732 
1733 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1734 					comp_list);
1735 		if (list_req->file != req->file)
1736 			ctx->poll_multi_queue = true;
1737 	}
1738 
1739 	/*
1740 	 * For fast devices, IO may have already completed. If it has, add
1741 	 * it to the front so we find it first.
1742 	 */
1743 	if (READ_ONCE(req->iopoll_completed))
1744 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1745 	else
1746 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1747 
1748 	if (unlikely(needs_lock)) {
1749 		/*
1750 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1751 		 * in sq thread task context or in io worker task context. If
1752 		 * current task context is sq thread, we don't need to check
1753 		 * whether should wake up sq thread.
1754 		 */
1755 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1756 		    wq_has_sleeper(&ctx->sq_data->wait))
1757 			wake_up(&ctx->sq_data->wait);
1758 
1759 		mutex_unlock(&ctx->uring_lock);
1760 	}
1761 }
1762 
1763 unsigned int io_file_get_flags(struct file *file)
1764 {
1765 	unsigned int res = 0;
1766 
1767 	if (S_ISREG(file_inode(file)->i_mode))
1768 		res |= REQ_F_ISREG;
1769 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1770 		res |= REQ_F_SUPPORT_NOWAIT;
1771 	return res;
1772 }
1773 
1774 bool io_alloc_async_data(struct io_kiocb *req)
1775 {
1776 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1777 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1778 	if (req->async_data) {
1779 		req->flags |= REQ_F_ASYNC_DATA;
1780 		return false;
1781 	}
1782 	return true;
1783 }
1784 
1785 int io_req_prep_async(struct io_kiocb *req)
1786 {
1787 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1788 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1789 
1790 	/* assign early for deferred execution for non-fixed file */
1791 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1792 		req->file = io_file_get_normal(req, req->cqe.fd);
1793 	if (!cdef->prep_async)
1794 		return 0;
1795 	if (WARN_ON_ONCE(req_has_async_data(req)))
1796 		return -EFAULT;
1797 	if (!def->manual_alloc) {
1798 		if (io_alloc_async_data(req))
1799 			return -EAGAIN;
1800 	}
1801 	return cdef->prep_async(req);
1802 }
1803 
1804 static u32 io_get_sequence(struct io_kiocb *req)
1805 {
1806 	u32 seq = req->ctx->cached_sq_head;
1807 	struct io_kiocb *cur;
1808 
1809 	/* need original cached_sq_head, but it was increased for each req */
1810 	io_for_each_link(cur, req)
1811 		seq--;
1812 	return seq;
1813 }
1814 
1815 static __cold void io_drain_req(struct io_kiocb *req)
1816 	__must_hold(&ctx->uring_lock)
1817 {
1818 	struct io_ring_ctx *ctx = req->ctx;
1819 	struct io_defer_entry *de;
1820 	int ret;
1821 	u32 seq = io_get_sequence(req);
1822 
1823 	/* Still need defer if there is pending req in defer list. */
1824 	spin_lock(&ctx->completion_lock);
1825 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1826 		spin_unlock(&ctx->completion_lock);
1827 queue:
1828 		ctx->drain_active = false;
1829 		io_req_task_queue(req);
1830 		return;
1831 	}
1832 	spin_unlock(&ctx->completion_lock);
1833 
1834 	io_prep_async_link(req);
1835 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1836 	if (!de) {
1837 		ret = -ENOMEM;
1838 		io_req_defer_failed(req, ret);
1839 		return;
1840 	}
1841 
1842 	spin_lock(&ctx->completion_lock);
1843 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1844 		spin_unlock(&ctx->completion_lock);
1845 		kfree(de);
1846 		goto queue;
1847 	}
1848 
1849 	trace_io_uring_defer(req);
1850 	de->req = req;
1851 	de->seq = seq;
1852 	list_add_tail(&de->list, &ctx->defer_list);
1853 	spin_unlock(&ctx->completion_lock);
1854 }
1855 
1856 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1857 			   unsigned int issue_flags)
1858 {
1859 	if (req->file || !def->needs_file)
1860 		return true;
1861 
1862 	if (req->flags & REQ_F_FIXED_FILE)
1863 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1864 	else
1865 		req->file = io_file_get_normal(req, req->cqe.fd);
1866 
1867 	return !!req->file;
1868 }
1869 
1870 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1871 {
1872 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1873 	const struct cred *creds = NULL;
1874 	int ret;
1875 
1876 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1877 		return -EBADF;
1878 
1879 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1880 		creds = override_creds(req->creds);
1881 
1882 	if (!def->audit_skip)
1883 		audit_uring_entry(req->opcode);
1884 
1885 	ret = def->issue(req, issue_flags);
1886 
1887 	if (!def->audit_skip)
1888 		audit_uring_exit(!ret, ret);
1889 
1890 	if (creds)
1891 		revert_creds(creds);
1892 
1893 	if (ret == IOU_OK) {
1894 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1895 			io_req_complete_defer(req);
1896 		else
1897 			io_req_complete_post(req, issue_flags);
1898 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1899 		return ret;
1900 
1901 	/* If the op doesn't have a file, we're not polling for it */
1902 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1903 		io_iopoll_req_issued(req, issue_flags);
1904 
1905 	return 0;
1906 }
1907 
1908 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1909 {
1910 	io_tw_lock(req->ctx, ts);
1911 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1912 				 IO_URING_F_COMPLETE_DEFER);
1913 }
1914 
1915 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1916 {
1917 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1918 	struct io_kiocb *nxt = NULL;
1919 
1920 	if (req_ref_put_and_test(req)) {
1921 		if (req->flags & IO_REQ_LINK_FLAGS)
1922 			nxt = io_req_find_next(req);
1923 		io_free_req(req);
1924 	}
1925 	return nxt ? &nxt->work : NULL;
1926 }
1927 
1928 void io_wq_submit_work(struct io_wq_work *work)
1929 {
1930 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1931 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1932 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1933 	bool needs_poll = false;
1934 	int ret = 0, err = -ECANCELED;
1935 
1936 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1937 	if (!(req->flags & REQ_F_REFCOUNT))
1938 		__io_req_set_refcount(req, 2);
1939 	else
1940 		req_ref_get(req);
1941 
1942 	io_arm_ltimeout(req);
1943 
1944 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1945 	if (work->flags & IO_WQ_WORK_CANCEL) {
1946 fail:
1947 		io_req_task_queue_fail(req, err);
1948 		return;
1949 	}
1950 	if (!io_assign_file(req, def, issue_flags)) {
1951 		err = -EBADF;
1952 		work->flags |= IO_WQ_WORK_CANCEL;
1953 		goto fail;
1954 	}
1955 
1956 	if (req->flags & REQ_F_FORCE_ASYNC) {
1957 		bool opcode_poll = def->pollin || def->pollout;
1958 
1959 		if (opcode_poll && file_can_poll(req->file)) {
1960 			needs_poll = true;
1961 			issue_flags |= IO_URING_F_NONBLOCK;
1962 		}
1963 	}
1964 
1965 	do {
1966 		ret = io_issue_sqe(req, issue_flags);
1967 		if (ret != -EAGAIN)
1968 			break;
1969 
1970 		/*
1971 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1972 		 * poll. -EAGAIN is final for that case.
1973 		 */
1974 		if (req->flags & REQ_F_NOWAIT)
1975 			break;
1976 
1977 		/*
1978 		 * We can get EAGAIN for iopolled IO even though we're
1979 		 * forcing a sync submission from here, since we can't
1980 		 * wait for request slots on the block side.
1981 		 */
1982 		if (!needs_poll) {
1983 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1984 				break;
1985 			if (io_wq_worker_stopped())
1986 				break;
1987 			cond_resched();
1988 			continue;
1989 		}
1990 
1991 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1992 			return;
1993 		/* aborted or ready, in either case retry blocking */
1994 		needs_poll = false;
1995 		issue_flags &= ~IO_URING_F_NONBLOCK;
1996 	} while (1);
1997 
1998 	/* avoid locking problems by failing it from a clean context */
1999 	if (ret < 0)
2000 		io_req_task_queue_fail(req, ret);
2001 }
2002 
2003 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2004 				      unsigned int issue_flags)
2005 {
2006 	struct io_ring_ctx *ctx = req->ctx;
2007 	struct io_fixed_file *slot;
2008 	struct file *file = NULL;
2009 
2010 	io_ring_submit_lock(ctx, issue_flags);
2011 
2012 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2013 		goto out;
2014 	fd = array_index_nospec(fd, ctx->nr_user_files);
2015 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2016 	file = io_slot_file(slot);
2017 	req->flags |= io_slot_flags(slot);
2018 	io_req_set_rsrc_node(req, ctx, 0);
2019 out:
2020 	io_ring_submit_unlock(ctx, issue_flags);
2021 	return file;
2022 }
2023 
2024 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2025 {
2026 	struct file *file = fget(fd);
2027 
2028 	trace_io_uring_file_get(req, fd);
2029 
2030 	/* we don't allow fixed io_uring files */
2031 	if (file && io_is_uring_fops(file))
2032 		io_req_track_inflight(req);
2033 	return file;
2034 }
2035 
2036 static void io_queue_async(struct io_kiocb *req, int ret)
2037 	__must_hold(&req->ctx->uring_lock)
2038 {
2039 	struct io_kiocb *linked_timeout;
2040 
2041 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2042 		io_req_defer_failed(req, ret);
2043 		return;
2044 	}
2045 
2046 	linked_timeout = io_prep_linked_timeout(req);
2047 
2048 	switch (io_arm_poll_handler(req, 0)) {
2049 	case IO_APOLL_READY:
2050 		io_kbuf_recycle(req, 0);
2051 		io_req_task_queue(req);
2052 		break;
2053 	case IO_APOLL_ABORTED:
2054 		io_kbuf_recycle(req, 0);
2055 		io_queue_iowq(req, NULL);
2056 		break;
2057 	case IO_APOLL_OK:
2058 		break;
2059 	}
2060 
2061 	if (linked_timeout)
2062 		io_queue_linked_timeout(linked_timeout);
2063 }
2064 
2065 static inline void io_queue_sqe(struct io_kiocb *req)
2066 	__must_hold(&req->ctx->uring_lock)
2067 {
2068 	int ret;
2069 
2070 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2071 
2072 	/*
2073 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2074 	 * doesn't support non-blocking read/write attempts
2075 	 */
2076 	if (likely(!ret))
2077 		io_arm_ltimeout(req);
2078 	else
2079 		io_queue_async(req, ret);
2080 }
2081 
2082 static void io_queue_sqe_fallback(struct io_kiocb *req)
2083 	__must_hold(&req->ctx->uring_lock)
2084 {
2085 	if (unlikely(req->flags & REQ_F_FAIL)) {
2086 		/*
2087 		 * We don't submit, fail them all, for that replace hardlinks
2088 		 * with normal links. Extra REQ_F_LINK is tolerated.
2089 		 */
2090 		req->flags &= ~REQ_F_HARDLINK;
2091 		req->flags |= REQ_F_LINK;
2092 		io_req_defer_failed(req, req->cqe.res);
2093 	} else {
2094 		int ret = io_req_prep_async(req);
2095 
2096 		if (unlikely(ret)) {
2097 			io_req_defer_failed(req, ret);
2098 			return;
2099 		}
2100 
2101 		if (unlikely(req->ctx->drain_active))
2102 			io_drain_req(req);
2103 		else
2104 			io_queue_iowq(req, NULL);
2105 	}
2106 }
2107 
2108 /*
2109  * Check SQE restrictions (opcode and flags).
2110  *
2111  * Returns 'true' if SQE is allowed, 'false' otherwise.
2112  */
2113 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2114 					struct io_kiocb *req,
2115 					unsigned int sqe_flags)
2116 {
2117 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2118 		return false;
2119 
2120 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2121 	    ctx->restrictions.sqe_flags_required)
2122 		return false;
2123 
2124 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2125 			  ctx->restrictions.sqe_flags_required))
2126 		return false;
2127 
2128 	return true;
2129 }
2130 
2131 static void io_init_req_drain(struct io_kiocb *req)
2132 {
2133 	struct io_ring_ctx *ctx = req->ctx;
2134 	struct io_kiocb *head = ctx->submit_state.link.head;
2135 
2136 	ctx->drain_active = true;
2137 	if (head) {
2138 		/*
2139 		 * If we need to drain a request in the middle of a link, drain
2140 		 * the head request and the next request/link after the current
2141 		 * link. Considering sequential execution of links,
2142 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2143 		 * link.
2144 		 */
2145 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2146 		ctx->drain_next = true;
2147 	}
2148 }
2149 
2150 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2151 		       const struct io_uring_sqe *sqe)
2152 	__must_hold(&ctx->uring_lock)
2153 {
2154 	const struct io_issue_def *def;
2155 	unsigned int sqe_flags;
2156 	int personality;
2157 	u8 opcode;
2158 
2159 	/* req is partially pre-initialised, see io_preinit_req() */
2160 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2161 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2162 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2163 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2164 	req->file = NULL;
2165 	req->rsrc_node = NULL;
2166 	req->task = current;
2167 
2168 	if (unlikely(opcode >= IORING_OP_LAST)) {
2169 		req->opcode = 0;
2170 		return -EINVAL;
2171 	}
2172 	def = &io_issue_defs[opcode];
2173 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2174 		/* enforce forwards compatibility on users */
2175 		if (sqe_flags & ~SQE_VALID_FLAGS)
2176 			return -EINVAL;
2177 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2178 			if (!def->buffer_select)
2179 				return -EOPNOTSUPP;
2180 			req->buf_index = READ_ONCE(sqe->buf_group);
2181 		}
2182 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2183 			ctx->drain_disabled = true;
2184 		if (sqe_flags & IOSQE_IO_DRAIN) {
2185 			if (ctx->drain_disabled)
2186 				return -EOPNOTSUPP;
2187 			io_init_req_drain(req);
2188 		}
2189 	}
2190 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2191 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2192 			return -EACCES;
2193 		/* knock it to the slow queue path, will be drained there */
2194 		if (ctx->drain_active)
2195 			req->flags |= REQ_F_FORCE_ASYNC;
2196 		/* if there is no link, we're at "next" request and need to drain */
2197 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2198 			ctx->drain_next = false;
2199 			ctx->drain_active = true;
2200 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2201 		}
2202 	}
2203 
2204 	if (!def->ioprio && sqe->ioprio)
2205 		return -EINVAL;
2206 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2207 		return -EINVAL;
2208 
2209 	if (def->needs_file) {
2210 		struct io_submit_state *state = &ctx->submit_state;
2211 
2212 		req->cqe.fd = READ_ONCE(sqe->fd);
2213 
2214 		/*
2215 		 * Plug now if we have more than 2 IO left after this, and the
2216 		 * target is potentially a read/write to block based storage.
2217 		 */
2218 		if (state->need_plug && def->plug) {
2219 			state->plug_started = true;
2220 			state->need_plug = false;
2221 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2222 		}
2223 	}
2224 
2225 	personality = READ_ONCE(sqe->personality);
2226 	if (personality) {
2227 		int ret;
2228 
2229 		req->creds = xa_load(&ctx->personalities, personality);
2230 		if (!req->creds)
2231 			return -EINVAL;
2232 		get_cred(req->creds);
2233 		ret = security_uring_override_creds(req->creds);
2234 		if (ret) {
2235 			put_cred(req->creds);
2236 			return ret;
2237 		}
2238 		req->flags |= REQ_F_CREDS;
2239 	}
2240 
2241 	return def->prep(req, sqe);
2242 }
2243 
2244 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2245 				      struct io_kiocb *req, int ret)
2246 {
2247 	struct io_ring_ctx *ctx = req->ctx;
2248 	struct io_submit_link *link = &ctx->submit_state.link;
2249 	struct io_kiocb *head = link->head;
2250 
2251 	trace_io_uring_req_failed(sqe, req, ret);
2252 
2253 	/*
2254 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2255 	 * unusable. Instead of failing eagerly, continue assembling the link if
2256 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2257 	 * should find the flag and handle the rest.
2258 	 */
2259 	req_fail_link_node(req, ret);
2260 	if (head && !(head->flags & REQ_F_FAIL))
2261 		req_fail_link_node(head, -ECANCELED);
2262 
2263 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2264 		if (head) {
2265 			link->last->link = req;
2266 			link->head = NULL;
2267 			req = head;
2268 		}
2269 		io_queue_sqe_fallback(req);
2270 		return ret;
2271 	}
2272 
2273 	if (head)
2274 		link->last->link = req;
2275 	else
2276 		link->head = req;
2277 	link->last = req;
2278 	return 0;
2279 }
2280 
2281 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2282 			 const struct io_uring_sqe *sqe)
2283 	__must_hold(&ctx->uring_lock)
2284 {
2285 	struct io_submit_link *link = &ctx->submit_state.link;
2286 	int ret;
2287 
2288 	ret = io_init_req(ctx, req, sqe);
2289 	if (unlikely(ret))
2290 		return io_submit_fail_init(sqe, req, ret);
2291 
2292 	trace_io_uring_submit_req(req);
2293 
2294 	/*
2295 	 * If we already have a head request, queue this one for async
2296 	 * submittal once the head completes. If we don't have a head but
2297 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2298 	 * submitted sync once the chain is complete. If none of those
2299 	 * conditions are true (normal request), then just queue it.
2300 	 */
2301 	if (unlikely(link->head)) {
2302 		ret = io_req_prep_async(req);
2303 		if (unlikely(ret))
2304 			return io_submit_fail_init(sqe, req, ret);
2305 
2306 		trace_io_uring_link(req, link->head);
2307 		link->last->link = req;
2308 		link->last = req;
2309 
2310 		if (req->flags & IO_REQ_LINK_FLAGS)
2311 			return 0;
2312 		/* last request of the link, flush it */
2313 		req = link->head;
2314 		link->head = NULL;
2315 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2316 			goto fallback;
2317 
2318 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2319 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2320 		if (req->flags & IO_REQ_LINK_FLAGS) {
2321 			link->head = req;
2322 			link->last = req;
2323 		} else {
2324 fallback:
2325 			io_queue_sqe_fallback(req);
2326 		}
2327 		return 0;
2328 	}
2329 
2330 	io_queue_sqe(req);
2331 	return 0;
2332 }
2333 
2334 /*
2335  * Batched submission is done, ensure local IO is flushed out.
2336  */
2337 static void io_submit_state_end(struct io_ring_ctx *ctx)
2338 {
2339 	struct io_submit_state *state = &ctx->submit_state;
2340 
2341 	if (unlikely(state->link.head))
2342 		io_queue_sqe_fallback(state->link.head);
2343 	/* flush only after queuing links as they can generate completions */
2344 	io_submit_flush_completions(ctx);
2345 	if (state->plug_started)
2346 		blk_finish_plug(&state->plug);
2347 }
2348 
2349 /*
2350  * Start submission side cache.
2351  */
2352 static void io_submit_state_start(struct io_submit_state *state,
2353 				  unsigned int max_ios)
2354 {
2355 	state->plug_started = false;
2356 	state->need_plug = max_ios > 2;
2357 	state->submit_nr = max_ios;
2358 	/* set only head, no need to init link_last in advance */
2359 	state->link.head = NULL;
2360 }
2361 
2362 static void io_commit_sqring(struct io_ring_ctx *ctx)
2363 {
2364 	struct io_rings *rings = ctx->rings;
2365 
2366 	/*
2367 	 * Ensure any loads from the SQEs are done at this point,
2368 	 * since once we write the new head, the application could
2369 	 * write new data to them.
2370 	 */
2371 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2372 }
2373 
2374 /*
2375  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2376  * that is mapped by userspace. This means that care needs to be taken to
2377  * ensure that reads are stable, as we cannot rely on userspace always
2378  * being a good citizen. If members of the sqe are validated and then later
2379  * used, it's important that those reads are done through READ_ONCE() to
2380  * prevent a re-load down the line.
2381  */
2382 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2383 {
2384 	unsigned mask = ctx->sq_entries - 1;
2385 	unsigned head = ctx->cached_sq_head++ & mask;
2386 
2387 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2388 		head = READ_ONCE(ctx->sq_array[head]);
2389 		if (unlikely(head >= ctx->sq_entries)) {
2390 			/* drop invalid entries */
2391 			spin_lock(&ctx->completion_lock);
2392 			ctx->cq_extra--;
2393 			spin_unlock(&ctx->completion_lock);
2394 			WRITE_ONCE(ctx->rings->sq_dropped,
2395 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2396 			return false;
2397 		}
2398 	}
2399 
2400 	/*
2401 	 * The cached sq head (or cq tail) serves two purposes:
2402 	 *
2403 	 * 1) allows us to batch the cost of updating the user visible
2404 	 *    head updates.
2405 	 * 2) allows the kernel side to track the head on its own, even
2406 	 *    though the application is the one updating it.
2407 	 */
2408 
2409 	/* double index for 128-byte SQEs, twice as long */
2410 	if (ctx->flags & IORING_SETUP_SQE128)
2411 		head <<= 1;
2412 	*sqe = &ctx->sq_sqes[head];
2413 	return true;
2414 }
2415 
2416 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2417 	__must_hold(&ctx->uring_lock)
2418 {
2419 	unsigned int entries = io_sqring_entries(ctx);
2420 	unsigned int left;
2421 	int ret;
2422 
2423 	if (unlikely(!entries))
2424 		return 0;
2425 	/* make sure SQ entry isn't read before tail */
2426 	ret = left = min(nr, entries);
2427 	io_get_task_refs(left);
2428 	io_submit_state_start(&ctx->submit_state, left);
2429 
2430 	do {
2431 		const struct io_uring_sqe *sqe;
2432 		struct io_kiocb *req;
2433 
2434 		if (unlikely(!io_alloc_req(ctx, &req)))
2435 			break;
2436 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2437 			io_req_add_to_cache(req, ctx);
2438 			break;
2439 		}
2440 
2441 		/*
2442 		 * Continue submitting even for sqe failure if the
2443 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2444 		 */
2445 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2446 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2447 			left--;
2448 			break;
2449 		}
2450 	} while (--left);
2451 
2452 	if (unlikely(left)) {
2453 		ret -= left;
2454 		/* try again if it submitted nothing and can't allocate a req */
2455 		if (!ret && io_req_cache_empty(ctx))
2456 			ret = -EAGAIN;
2457 		current->io_uring->cached_refs += left;
2458 	}
2459 
2460 	io_submit_state_end(ctx);
2461 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2462 	io_commit_sqring(ctx);
2463 	return ret;
2464 }
2465 
2466 struct io_wait_queue {
2467 	struct wait_queue_entry wq;
2468 	struct io_ring_ctx *ctx;
2469 	unsigned cq_tail;
2470 	unsigned nr_timeouts;
2471 	ktime_t timeout;
2472 };
2473 
2474 static inline bool io_has_work(struct io_ring_ctx *ctx)
2475 {
2476 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2477 	       !llist_empty(&ctx->work_llist);
2478 }
2479 
2480 static inline bool io_should_wake(struct io_wait_queue *iowq)
2481 {
2482 	struct io_ring_ctx *ctx = iowq->ctx;
2483 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2484 
2485 	/*
2486 	 * Wake up if we have enough events, or if a timeout occurred since we
2487 	 * started waiting. For timeouts, we always want to return to userspace,
2488 	 * regardless of event count.
2489 	 */
2490 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2491 }
2492 
2493 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2494 			    int wake_flags, void *key)
2495 {
2496 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2497 
2498 	/*
2499 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2500 	 * the task, and the next invocation will do it.
2501 	 */
2502 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2503 		return autoremove_wake_function(curr, mode, wake_flags, key);
2504 	return -1;
2505 }
2506 
2507 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2508 {
2509 	if (!llist_empty(&ctx->work_llist)) {
2510 		__set_current_state(TASK_RUNNING);
2511 		if (io_run_local_work(ctx) > 0)
2512 			return 0;
2513 	}
2514 	if (io_run_task_work() > 0)
2515 		return 0;
2516 	if (task_sigpending(current))
2517 		return -EINTR;
2518 	return 0;
2519 }
2520 
2521 static bool current_pending_io(void)
2522 {
2523 	struct io_uring_task *tctx = current->io_uring;
2524 
2525 	if (!tctx)
2526 		return false;
2527 	return percpu_counter_read_positive(&tctx->inflight);
2528 }
2529 
2530 /* when returns >0, the caller should retry */
2531 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2532 					  struct io_wait_queue *iowq)
2533 {
2534 	int io_wait, ret;
2535 
2536 	if (unlikely(READ_ONCE(ctx->check_cq)))
2537 		return 1;
2538 	if (unlikely(!llist_empty(&ctx->work_llist)))
2539 		return 1;
2540 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2541 		return 1;
2542 	if (unlikely(task_sigpending(current)))
2543 		return -EINTR;
2544 	if (unlikely(io_should_wake(iowq)))
2545 		return 0;
2546 
2547 	/*
2548 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2549 	 * can take into account that the task is waiting for IO - turns out
2550 	 * to be important for low QD IO.
2551 	 */
2552 	io_wait = current->in_iowait;
2553 	if (current_pending_io())
2554 		current->in_iowait = 1;
2555 	ret = 0;
2556 	if (iowq->timeout == KTIME_MAX)
2557 		schedule();
2558 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2559 		ret = -ETIME;
2560 	current->in_iowait = io_wait;
2561 	return ret;
2562 }
2563 
2564 /*
2565  * Wait until events become available, if we don't already have some. The
2566  * application must reap them itself, as they reside on the shared cq ring.
2567  */
2568 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2569 			  const sigset_t __user *sig, size_t sigsz,
2570 			  struct __kernel_timespec __user *uts)
2571 {
2572 	struct io_wait_queue iowq;
2573 	struct io_rings *rings = ctx->rings;
2574 	int ret;
2575 
2576 	if (!io_allowed_run_tw(ctx))
2577 		return -EEXIST;
2578 	if (!llist_empty(&ctx->work_llist))
2579 		io_run_local_work(ctx);
2580 	io_run_task_work();
2581 	io_cqring_overflow_flush(ctx);
2582 	/* if user messes with these they will just get an early return */
2583 	if (__io_cqring_events_user(ctx) >= min_events)
2584 		return 0;
2585 
2586 	if (sig) {
2587 #ifdef CONFIG_COMPAT
2588 		if (in_compat_syscall())
2589 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2590 						      sigsz);
2591 		else
2592 #endif
2593 			ret = set_user_sigmask(sig, sigsz);
2594 
2595 		if (ret)
2596 			return ret;
2597 	}
2598 
2599 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2600 	iowq.wq.private = current;
2601 	INIT_LIST_HEAD(&iowq.wq.entry);
2602 	iowq.ctx = ctx;
2603 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2604 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2605 	iowq.timeout = KTIME_MAX;
2606 
2607 	if (uts) {
2608 		struct timespec64 ts;
2609 
2610 		if (get_timespec64(&ts, uts))
2611 			return -EFAULT;
2612 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2613 	}
2614 
2615 	trace_io_uring_cqring_wait(ctx, min_events);
2616 	do {
2617 		unsigned long check_cq;
2618 
2619 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2620 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2621 
2622 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2623 			set_current_state(TASK_INTERRUPTIBLE);
2624 		} else {
2625 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2626 							TASK_INTERRUPTIBLE);
2627 		}
2628 
2629 		ret = io_cqring_wait_schedule(ctx, &iowq);
2630 		__set_current_state(TASK_RUNNING);
2631 		atomic_set(&ctx->cq_wait_nr, 0);
2632 
2633 		if (ret < 0)
2634 			break;
2635 		/*
2636 		 * Run task_work after scheduling and before io_should_wake().
2637 		 * If we got woken because of task_work being processed, run it
2638 		 * now rather than let the caller do another wait loop.
2639 		 */
2640 		io_run_task_work();
2641 		if (!llist_empty(&ctx->work_llist))
2642 			io_run_local_work(ctx);
2643 
2644 		check_cq = READ_ONCE(ctx->check_cq);
2645 		if (unlikely(check_cq)) {
2646 			/* let the caller flush overflows, retry */
2647 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2648 				io_cqring_do_overflow_flush(ctx);
2649 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2650 				ret = -EBADR;
2651 				break;
2652 			}
2653 		}
2654 
2655 		if (io_should_wake(&iowq)) {
2656 			ret = 0;
2657 			break;
2658 		}
2659 		cond_resched();
2660 	} while (1);
2661 
2662 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2663 		finish_wait(&ctx->cq_wait, &iowq.wq);
2664 	restore_saved_sigmask_unless(ret == -EINTR);
2665 
2666 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2667 }
2668 
2669 static void io_mem_free(void *ptr)
2670 {
2671 	if (!ptr)
2672 		return;
2673 
2674 	folio_put(virt_to_folio(ptr));
2675 }
2676 
2677 static void io_pages_free(struct page ***pages, int npages)
2678 {
2679 	struct page **page_array;
2680 	int i;
2681 
2682 	if (!pages)
2683 		return;
2684 
2685 	page_array = *pages;
2686 	if (!page_array)
2687 		return;
2688 
2689 	for (i = 0; i < npages; i++)
2690 		unpin_user_page(page_array[i]);
2691 	kvfree(page_array);
2692 	*pages = NULL;
2693 }
2694 
2695 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2696 			    unsigned long uaddr, size_t size)
2697 {
2698 	struct page **page_array;
2699 	unsigned int nr_pages;
2700 	int ret, i;
2701 
2702 	*npages = 0;
2703 
2704 	if (uaddr & (PAGE_SIZE - 1) || !size)
2705 		return ERR_PTR(-EINVAL);
2706 
2707 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2708 	if (nr_pages > USHRT_MAX)
2709 		return ERR_PTR(-EINVAL);
2710 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2711 	if (!page_array)
2712 		return ERR_PTR(-ENOMEM);
2713 
2714 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2715 					page_array);
2716 	if (ret != nr_pages) {
2717 err:
2718 		io_pages_free(&page_array, ret > 0 ? ret : 0);
2719 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2720 	}
2721 	/*
2722 	 * Should be a single page. If the ring is small enough that we can
2723 	 * use a normal page, that is fine. If we need multiple pages, then
2724 	 * userspace should use a huge page. That's the only way to guarantee
2725 	 * that we get contigious memory, outside of just being lucky or
2726 	 * (currently) having low memory fragmentation.
2727 	 */
2728 	if (page_array[0] != page_array[ret - 1])
2729 		goto err;
2730 
2731 	/*
2732 	 * Can't support mapping user allocated ring memory on 32-bit archs
2733 	 * where it could potentially reside in highmem. Just fail those with
2734 	 * -EINVAL, just like we did on kernels that didn't support this
2735 	 * feature.
2736 	 */
2737 	for (i = 0; i < nr_pages; i++) {
2738 		if (PageHighMem(page_array[i])) {
2739 			ret = -EINVAL;
2740 			goto err;
2741 		}
2742 	}
2743 
2744 	*pages = page_array;
2745 	*npages = nr_pages;
2746 	return page_to_virt(page_array[0]);
2747 }
2748 
2749 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2750 			  size_t size)
2751 {
2752 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2753 				size);
2754 }
2755 
2756 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2757 			 size_t size)
2758 {
2759 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2760 				size);
2761 }
2762 
2763 static void io_rings_free(struct io_ring_ctx *ctx)
2764 {
2765 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2766 		io_mem_free(ctx->rings);
2767 		io_mem_free(ctx->sq_sqes);
2768 		ctx->rings = NULL;
2769 		ctx->sq_sqes = NULL;
2770 	} else {
2771 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2772 		ctx->n_ring_pages = 0;
2773 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2774 		ctx->n_sqe_pages = 0;
2775 	}
2776 }
2777 
2778 static void *io_mem_alloc(size_t size)
2779 {
2780 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2781 	void *ret;
2782 
2783 	ret = (void *) __get_free_pages(gfp, get_order(size));
2784 	if (ret)
2785 		return ret;
2786 	return ERR_PTR(-ENOMEM);
2787 }
2788 
2789 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2790 				unsigned int cq_entries, size_t *sq_offset)
2791 {
2792 	struct io_rings *rings;
2793 	size_t off, sq_array_size;
2794 
2795 	off = struct_size(rings, cqes, cq_entries);
2796 	if (off == SIZE_MAX)
2797 		return SIZE_MAX;
2798 	if (ctx->flags & IORING_SETUP_CQE32) {
2799 		if (check_shl_overflow(off, 1, &off))
2800 			return SIZE_MAX;
2801 	}
2802 
2803 #ifdef CONFIG_SMP
2804 	off = ALIGN(off, SMP_CACHE_BYTES);
2805 	if (off == 0)
2806 		return SIZE_MAX;
2807 #endif
2808 
2809 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2810 		if (sq_offset)
2811 			*sq_offset = SIZE_MAX;
2812 		return off;
2813 	}
2814 
2815 	if (sq_offset)
2816 		*sq_offset = off;
2817 
2818 	sq_array_size = array_size(sizeof(u32), sq_entries);
2819 	if (sq_array_size == SIZE_MAX)
2820 		return SIZE_MAX;
2821 
2822 	if (check_add_overflow(off, sq_array_size, &off))
2823 		return SIZE_MAX;
2824 
2825 	return off;
2826 }
2827 
2828 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2829 			       unsigned int eventfd_async)
2830 {
2831 	struct io_ev_fd *ev_fd;
2832 	__s32 __user *fds = arg;
2833 	int fd;
2834 
2835 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2836 					lockdep_is_held(&ctx->uring_lock));
2837 	if (ev_fd)
2838 		return -EBUSY;
2839 
2840 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2841 		return -EFAULT;
2842 
2843 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2844 	if (!ev_fd)
2845 		return -ENOMEM;
2846 
2847 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2848 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2849 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2850 		kfree(ev_fd);
2851 		return ret;
2852 	}
2853 
2854 	spin_lock(&ctx->completion_lock);
2855 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2856 	spin_unlock(&ctx->completion_lock);
2857 
2858 	ev_fd->eventfd_async = eventfd_async;
2859 	ctx->has_evfd = true;
2860 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2861 	atomic_set(&ev_fd->refs, 1);
2862 	atomic_set(&ev_fd->ops, 0);
2863 	return 0;
2864 }
2865 
2866 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2867 {
2868 	struct io_ev_fd *ev_fd;
2869 
2870 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2871 					lockdep_is_held(&ctx->uring_lock));
2872 	if (ev_fd) {
2873 		ctx->has_evfd = false;
2874 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2875 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2876 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2877 		return 0;
2878 	}
2879 
2880 	return -ENXIO;
2881 }
2882 
2883 static void io_req_caches_free(struct io_ring_ctx *ctx)
2884 {
2885 	struct io_kiocb *req;
2886 	int nr = 0;
2887 
2888 	mutex_lock(&ctx->uring_lock);
2889 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2890 
2891 	while (!io_req_cache_empty(ctx)) {
2892 		req = io_extract_req(ctx);
2893 		kmem_cache_free(req_cachep, req);
2894 		nr++;
2895 	}
2896 	if (nr)
2897 		percpu_ref_put_many(&ctx->refs, nr);
2898 	mutex_unlock(&ctx->uring_lock);
2899 }
2900 
2901 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2902 {
2903 	kfree(container_of(entry, struct io_rsrc_node, cache));
2904 }
2905 
2906 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2907 {
2908 	io_sq_thread_finish(ctx);
2909 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2910 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2911 		return;
2912 
2913 	mutex_lock(&ctx->uring_lock);
2914 	if (ctx->buf_data)
2915 		__io_sqe_buffers_unregister(ctx);
2916 	if (ctx->file_data)
2917 		__io_sqe_files_unregister(ctx);
2918 	io_cqring_overflow_kill(ctx);
2919 	io_eventfd_unregister(ctx);
2920 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2921 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2922 	io_futex_cache_free(ctx);
2923 	io_destroy_buffers(ctx);
2924 	mutex_unlock(&ctx->uring_lock);
2925 	if (ctx->sq_creds)
2926 		put_cred(ctx->sq_creds);
2927 	if (ctx->submitter_task)
2928 		put_task_struct(ctx->submitter_task);
2929 
2930 	/* there are no registered resources left, nobody uses it */
2931 	if (ctx->rsrc_node)
2932 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2933 
2934 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2935 
2936 #if defined(CONFIG_UNIX)
2937 	if (ctx->ring_sock) {
2938 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2939 		sock_release(ctx->ring_sock);
2940 	}
2941 #endif
2942 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2943 
2944 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2945 	if (ctx->mm_account) {
2946 		mmdrop(ctx->mm_account);
2947 		ctx->mm_account = NULL;
2948 	}
2949 	io_rings_free(ctx);
2950 
2951 	percpu_ref_exit(&ctx->refs);
2952 	free_uid(ctx->user);
2953 	io_req_caches_free(ctx);
2954 	if (ctx->hash_map)
2955 		io_wq_put_hash(ctx->hash_map);
2956 	kfree(ctx->cancel_table.hbs);
2957 	kfree(ctx->cancel_table_locked.hbs);
2958 	kfree(ctx->io_bl);
2959 	xa_destroy(&ctx->io_bl_xa);
2960 	kfree(ctx);
2961 }
2962 
2963 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2964 {
2965 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2966 					       poll_wq_task_work);
2967 
2968 	mutex_lock(&ctx->uring_lock);
2969 	ctx->poll_activated = true;
2970 	mutex_unlock(&ctx->uring_lock);
2971 
2972 	/*
2973 	 * Wake ups for some events between start of polling and activation
2974 	 * might've been lost due to loose synchronisation.
2975 	 */
2976 	wake_up_all(&ctx->poll_wq);
2977 	percpu_ref_put(&ctx->refs);
2978 }
2979 
2980 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2981 {
2982 	spin_lock(&ctx->completion_lock);
2983 	/* already activated or in progress */
2984 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2985 		goto out;
2986 	if (WARN_ON_ONCE(!ctx->task_complete))
2987 		goto out;
2988 	if (!ctx->submitter_task)
2989 		goto out;
2990 	/*
2991 	 * with ->submitter_task only the submitter task completes requests, we
2992 	 * only need to sync with it, which is done by injecting a tw
2993 	 */
2994 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2995 	percpu_ref_get(&ctx->refs);
2996 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2997 		percpu_ref_put(&ctx->refs);
2998 out:
2999 	spin_unlock(&ctx->completion_lock);
3000 }
3001 
3002 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3003 {
3004 	struct io_ring_ctx *ctx = file->private_data;
3005 	__poll_t mask = 0;
3006 
3007 	if (unlikely(!ctx->poll_activated))
3008 		io_activate_pollwq(ctx);
3009 
3010 	poll_wait(file, &ctx->poll_wq, wait);
3011 	/*
3012 	 * synchronizes with barrier from wq_has_sleeper call in
3013 	 * io_commit_cqring
3014 	 */
3015 	smp_rmb();
3016 	if (!io_sqring_full(ctx))
3017 		mask |= EPOLLOUT | EPOLLWRNORM;
3018 
3019 	/*
3020 	 * Don't flush cqring overflow list here, just do a simple check.
3021 	 * Otherwise there could possible be ABBA deadlock:
3022 	 *      CPU0                    CPU1
3023 	 *      ----                    ----
3024 	 * lock(&ctx->uring_lock);
3025 	 *                              lock(&ep->mtx);
3026 	 *                              lock(&ctx->uring_lock);
3027 	 * lock(&ep->mtx);
3028 	 *
3029 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3030 	 * pushes them to do the flush.
3031 	 */
3032 
3033 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3034 		mask |= EPOLLIN | EPOLLRDNORM;
3035 
3036 	return mask;
3037 }
3038 
3039 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3040 {
3041 	const struct cred *creds;
3042 
3043 	creds = xa_erase(&ctx->personalities, id);
3044 	if (creds) {
3045 		put_cred(creds);
3046 		return 0;
3047 	}
3048 
3049 	return -EINVAL;
3050 }
3051 
3052 struct io_tctx_exit {
3053 	struct callback_head		task_work;
3054 	struct completion		completion;
3055 	struct io_ring_ctx		*ctx;
3056 };
3057 
3058 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3059 {
3060 	struct io_uring_task *tctx = current->io_uring;
3061 	struct io_tctx_exit *work;
3062 
3063 	work = container_of(cb, struct io_tctx_exit, task_work);
3064 	/*
3065 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3066 	 * node. It'll be removed by the end of cancellation, just ignore it.
3067 	 * tctx can be NULL if the queueing of this task_work raced with
3068 	 * work cancelation off the exec path.
3069 	 */
3070 	if (tctx && !atomic_read(&tctx->in_cancel))
3071 		io_uring_del_tctx_node((unsigned long)work->ctx);
3072 	complete(&work->completion);
3073 }
3074 
3075 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3076 {
3077 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3078 
3079 	return req->ctx == data;
3080 }
3081 
3082 static __cold void io_ring_exit_work(struct work_struct *work)
3083 {
3084 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3085 	unsigned long timeout = jiffies + HZ * 60 * 5;
3086 	unsigned long interval = HZ / 20;
3087 	struct io_tctx_exit exit;
3088 	struct io_tctx_node *node;
3089 	int ret;
3090 
3091 	/*
3092 	 * If we're doing polled IO and end up having requests being
3093 	 * submitted async (out-of-line), then completions can come in while
3094 	 * we're waiting for refs to drop. We need to reap these manually,
3095 	 * as nobody else will be looking for them.
3096 	 */
3097 	do {
3098 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3099 			mutex_lock(&ctx->uring_lock);
3100 			io_cqring_overflow_kill(ctx);
3101 			mutex_unlock(&ctx->uring_lock);
3102 		}
3103 
3104 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3105 			io_move_task_work_from_local(ctx);
3106 
3107 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3108 			cond_resched();
3109 
3110 		if (ctx->sq_data) {
3111 			struct io_sq_data *sqd = ctx->sq_data;
3112 			struct task_struct *tsk;
3113 
3114 			io_sq_thread_park(sqd);
3115 			tsk = sqd->thread;
3116 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3117 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3118 						io_cancel_ctx_cb, ctx, true);
3119 			io_sq_thread_unpark(sqd);
3120 		}
3121 
3122 		io_req_caches_free(ctx);
3123 
3124 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3125 			/* there is little hope left, don't run it too often */
3126 			interval = HZ * 60;
3127 		}
3128 		/*
3129 		 * This is really an uninterruptible wait, as it has to be
3130 		 * complete. But it's also run from a kworker, which doesn't
3131 		 * take signals, so it's fine to make it interruptible. This
3132 		 * avoids scenarios where we knowingly can wait much longer
3133 		 * on completions, for example if someone does a SIGSTOP on
3134 		 * a task that needs to finish task_work to make this loop
3135 		 * complete. That's a synthetic situation that should not
3136 		 * cause a stuck task backtrace, and hence a potential panic
3137 		 * on stuck tasks if that is enabled.
3138 		 */
3139 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3140 
3141 	init_completion(&exit.completion);
3142 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3143 	exit.ctx = ctx;
3144 	/*
3145 	 * Some may use context even when all refs and requests have been put,
3146 	 * and they are free to do so while still holding uring_lock or
3147 	 * completion_lock, see io_req_task_submit(). Apart from other work,
3148 	 * this lock/unlock section also waits them to finish.
3149 	 */
3150 	mutex_lock(&ctx->uring_lock);
3151 	while (!list_empty(&ctx->tctx_list)) {
3152 		WARN_ON_ONCE(time_after(jiffies, timeout));
3153 
3154 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3155 					ctx_node);
3156 		/* don't spin on a single task if cancellation failed */
3157 		list_rotate_left(&ctx->tctx_list);
3158 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3159 		if (WARN_ON_ONCE(ret))
3160 			continue;
3161 
3162 		mutex_unlock(&ctx->uring_lock);
3163 		/*
3164 		 * See comment above for
3165 		 * wait_for_completion_interruptible_timeout() on why this
3166 		 * wait is marked as interruptible.
3167 		 */
3168 		wait_for_completion_interruptible(&exit.completion);
3169 		mutex_lock(&ctx->uring_lock);
3170 	}
3171 	mutex_unlock(&ctx->uring_lock);
3172 	spin_lock(&ctx->completion_lock);
3173 	spin_unlock(&ctx->completion_lock);
3174 
3175 	/* pairs with RCU read section in io_req_local_work_add() */
3176 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3177 		synchronize_rcu();
3178 
3179 	io_ring_ctx_free(ctx);
3180 }
3181 
3182 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3183 {
3184 	unsigned long index;
3185 	struct creds *creds;
3186 
3187 	mutex_lock(&ctx->uring_lock);
3188 	percpu_ref_kill(&ctx->refs);
3189 	xa_for_each(&ctx->personalities, index, creds)
3190 		io_unregister_personality(ctx, index);
3191 	if (ctx->rings)
3192 		io_poll_remove_all(ctx, NULL, true);
3193 	mutex_unlock(&ctx->uring_lock);
3194 
3195 	/*
3196 	 * If we failed setting up the ctx, we might not have any rings
3197 	 * and therefore did not submit any requests
3198 	 */
3199 	if (ctx->rings)
3200 		io_kill_timeouts(ctx, NULL, true);
3201 
3202 	flush_delayed_work(&ctx->fallback_work);
3203 
3204 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3205 	/*
3206 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3207 	 * if we're exiting a ton of rings at the same time. It just adds
3208 	 * noise and overhead, there's no discernable change in runtime
3209 	 * over using system_wq.
3210 	 */
3211 	queue_work(system_unbound_wq, &ctx->exit_work);
3212 }
3213 
3214 static int io_uring_release(struct inode *inode, struct file *file)
3215 {
3216 	struct io_ring_ctx *ctx = file->private_data;
3217 
3218 	file->private_data = NULL;
3219 	io_ring_ctx_wait_and_kill(ctx);
3220 	return 0;
3221 }
3222 
3223 struct io_task_cancel {
3224 	struct task_struct *task;
3225 	bool all;
3226 };
3227 
3228 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3229 {
3230 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3231 	struct io_task_cancel *cancel = data;
3232 
3233 	return io_match_task_safe(req, cancel->task, cancel->all);
3234 }
3235 
3236 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3237 					 struct task_struct *task,
3238 					 bool cancel_all)
3239 {
3240 	struct io_defer_entry *de;
3241 	LIST_HEAD(list);
3242 
3243 	spin_lock(&ctx->completion_lock);
3244 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3245 		if (io_match_task_safe(de->req, task, cancel_all)) {
3246 			list_cut_position(&list, &ctx->defer_list, &de->list);
3247 			break;
3248 		}
3249 	}
3250 	spin_unlock(&ctx->completion_lock);
3251 	if (list_empty(&list))
3252 		return false;
3253 
3254 	while (!list_empty(&list)) {
3255 		de = list_first_entry(&list, struct io_defer_entry, list);
3256 		list_del_init(&de->list);
3257 		io_req_task_queue_fail(de->req, -ECANCELED);
3258 		kfree(de);
3259 	}
3260 	return true;
3261 }
3262 
3263 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3264 {
3265 	struct io_tctx_node *node;
3266 	enum io_wq_cancel cret;
3267 	bool ret = false;
3268 
3269 	mutex_lock(&ctx->uring_lock);
3270 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3271 		struct io_uring_task *tctx = node->task->io_uring;
3272 
3273 		/*
3274 		 * io_wq will stay alive while we hold uring_lock, because it's
3275 		 * killed after ctx nodes, which requires to take the lock.
3276 		 */
3277 		if (!tctx || !tctx->io_wq)
3278 			continue;
3279 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3280 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3281 	}
3282 	mutex_unlock(&ctx->uring_lock);
3283 
3284 	return ret;
3285 }
3286 
3287 static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx,
3288 		struct task_struct *task, bool cancel_all)
3289 {
3290 	struct hlist_node *tmp;
3291 	struct io_kiocb *req;
3292 	bool ret = false;
3293 
3294 	lockdep_assert_held(&ctx->uring_lock);
3295 
3296 	hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd,
3297 			hash_node) {
3298 		struct io_uring_cmd *cmd = io_kiocb_to_cmd(req,
3299 				struct io_uring_cmd);
3300 		struct file *file = req->file;
3301 
3302 		if (!cancel_all && req->task != task)
3303 			continue;
3304 
3305 		if (cmd->flags & IORING_URING_CMD_CANCELABLE) {
3306 			/* ->sqe isn't available if no async data */
3307 			if (!req_has_async_data(req))
3308 				cmd->sqe = NULL;
3309 			file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL);
3310 			ret = true;
3311 		}
3312 	}
3313 	io_submit_flush_completions(ctx);
3314 
3315 	return ret;
3316 }
3317 
3318 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3319 						struct task_struct *task,
3320 						bool cancel_all)
3321 {
3322 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3323 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3324 	enum io_wq_cancel cret;
3325 	bool ret = false;
3326 
3327 	/* set it so io_req_local_work_add() would wake us up */
3328 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3329 		atomic_set(&ctx->cq_wait_nr, 1);
3330 		smp_mb();
3331 	}
3332 
3333 	/* failed during ring init, it couldn't have issued any requests */
3334 	if (!ctx->rings)
3335 		return false;
3336 
3337 	if (!task) {
3338 		ret |= io_uring_try_cancel_iowq(ctx);
3339 	} else if (tctx && tctx->io_wq) {
3340 		/*
3341 		 * Cancels requests of all rings, not only @ctx, but
3342 		 * it's fine as the task is in exit/exec.
3343 		 */
3344 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3345 				       &cancel, true);
3346 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3347 	}
3348 
3349 	/* SQPOLL thread does its own polling */
3350 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3351 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3352 		while (!wq_list_empty(&ctx->iopoll_list)) {
3353 			io_iopoll_try_reap_events(ctx);
3354 			ret = true;
3355 			cond_resched();
3356 		}
3357 	}
3358 
3359 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3360 	    io_allowed_defer_tw_run(ctx))
3361 		ret |= io_run_local_work(ctx) > 0;
3362 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3363 	mutex_lock(&ctx->uring_lock);
3364 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3365 	ret |= io_waitid_remove_all(ctx, task, cancel_all);
3366 	ret |= io_futex_remove_all(ctx, task, cancel_all);
3367 	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3368 	mutex_unlock(&ctx->uring_lock);
3369 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3370 	if (task)
3371 		ret |= io_run_task_work() > 0;
3372 	return ret;
3373 }
3374 
3375 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3376 {
3377 	if (tracked)
3378 		return atomic_read(&tctx->inflight_tracked);
3379 	return percpu_counter_sum(&tctx->inflight);
3380 }
3381 
3382 /*
3383  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3384  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3385  */
3386 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3387 {
3388 	struct io_uring_task *tctx = current->io_uring;
3389 	struct io_ring_ctx *ctx;
3390 	struct io_tctx_node *node;
3391 	unsigned long index;
3392 	s64 inflight;
3393 	DEFINE_WAIT(wait);
3394 
3395 	WARN_ON_ONCE(sqd && sqd->thread != current);
3396 
3397 	if (!current->io_uring)
3398 		return;
3399 	if (tctx->io_wq)
3400 		io_wq_exit_start(tctx->io_wq);
3401 
3402 	atomic_inc(&tctx->in_cancel);
3403 	do {
3404 		bool loop = false;
3405 
3406 		io_uring_drop_tctx_refs(current);
3407 		/* read completions before cancelations */
3408 		inflight = tctx_inflight(tctx, !cancel_all);
3409 		if (!inflight)
3410 			break;
3411 
3412 		if (!sqd) {
3413 			xa_for_each(&tctx->xa, index, node) {
3414 				/* sqpoll task will cancel all its requests */
3415 				if (node->ctx->sq_data)
3416 					continue;
3417 				loop |= io_uring_try_cancel_requests(node->ctx,
3418 							current, cancel_all);
3419 			}
3420 		} else {
3421 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3422 				loop |= io_uring_try_cancel_requests(ctx,
3423 								     current,
3424 								     cancel_all);
3425 		}
3426 
3427 		if (loop) {
3428 			cond_resched();
3429 			continue;
3430 		}
3431 
3432 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3433 		io_run_task_work();
3434 		io_uring_drop_tctx_refs(current);
3435 		xa_for_each(&tctx->xa, index, node) {
3436 			if (!llist_empty(&node->ctx->work_llist)) {
3437 				WARN_ON_ONCE(node->ctx->submitter_task &&
3438 					     node->ctx->submitter_task != current);
3439 				goto end_wait;
3440 			}
3441 		}
3442 		/*
3443 		 * If we've seen completions, retry without waiting. This
3444 		 * avoids a race where a completion comes in before we did
3445 		 * prepare_to_wait().
3446 		 */
3447 		if (inflight == tctx_inflight(tctx, !cancel_all))
3448 			schedule();
3449 end_wait:
3450 		finish_wait(&tctx->wait, &wait);
3451 	} while (1);
3452 
3453 	io_uring_clean_tctx(tctx);
3454 	if (cancel_all) {
3455 		/*
3456 		 * We shouldn't run task_works after cancel, so just leave
3457 		 * ->in_cancel set for normal exit.
3458 		 */
3459 		atomic_dec(&tctx->in_cancel);
3460 		/* for exec all current's requests should be gone, kill tctx */
3461 		__io_uring_free(current);
3462 	}
3463 }
3464 
3465 void __io_uring_cancel(bool cancel_all)
3466 {
3467 	io_uring_cancel_generic(cancel_all, NULL);
3468 }
3469 
3470 static void *io_uring_validate_mmap_request(struct file *file,
3471 					    loff_t pgoff, size_t sz)
3472 {
3473 	struct io_ring_ctx *ctx = file->private_data;
3474 	loff_t offset = pgoff << PAGE_SHIFT;
3475 	struct page *page;
3476 	void *ptr;
3477 
3478 	/* Don't allow mmap if the ring was setup without it */
3479 	if (ctx->flags & IORING_SETUP_NO_MMAP)
3480 		return ERR_PTR(-EINVAL);
3481 
3482 	switch (offset & IORING_OFF_MMAP_MASK) {
3483 	case IORING_OFF_SQ_RING:
3484 	case IORING_OFF_CQ_RING:
3485 		ptr = ctx->rings;
3486 		break;
3487 	case IORING_OFF_SQES:
3488 		ptr = ctx->sq_sqes;
3489 		break;
3490 	case IORING_OFF_PBUF_RING: {
3491 		unsigned int bgid;
3492 
3493 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3494 		mutex_lock(&ctx->uring_lock);
3495 		ptr = io_pbuf_get_address(ctx, bgid);
3496 		mutex_unlock(&ctx->uring_lock);
3497 		if (!ptr)
3498 			return ERR_PTR(-EINVAL);
3499 		break;
3500 		}
3501 	default:
3502 		return ERR_PTR(-EINVAL);
3503 	}
3504 
3505 	page = virt_to_head_page(ptr);
3506 	if (sz > page_size(page))
3507 		return ERR_PTR(-EINVAL);
3508 
3509 	return ptr;
3510 }
3511 
3512 #ifdef CONFIG_MMU
3513 
3514 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3515 {
3516 	size_t sz = vma->vm_end - vma->vm_start;
3517 	unsigned long pfn;
3518 	void *ptr;
3519 
3520 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3521 	if (IS_ERR(ptr))
3522 		return PTR_ERR(ptr);
3523 
3524 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3525 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3526 }
3527 
3528 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3529 			unsigned long addr, unsigned long len,
3530 			unsigned long pgoff, unsigned long flags)
3531 {
3532 	void *ptr;
3533 
3534 	/*
3535 	 * Do not allow to map to user-provided address to avoid breaking the
3536 	 * aliasing rules. Userspace is not able to guess the offset address of
3537 	 * kernel kmalloc()ed memory area.
3538 	 */
3539 	if (addr)
3540 		return -EINVAL;
3541 
3542 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3543 	if (IS_ERR(ptr))
3544 		return -ENOMEM;
3545 
3546 	/*
3547 	 * Some architectures have strong cache aliasing requirements.
3548 	 * For such architectures we need a coherent mapping which aliases
3549 	 * kernel memory *and* userspace memory. To achieve that:
3550 	 * - use a NULL file pointer to reference physical memory, and
3551 	 * - use the kernel virtual address of the shared io_uring context
3552 	 *   (instead of the userspace-provided address, which has to be 0UL
3553 	 *   anyway).
3554 	 * - use the same pgoff which the get_unmapped_area() uses to
3555 	 *   calculate the page colouring.
3556 	 * For architectures without such aliasing requirements, the
3557 	 * architecture will return any suitable mapping because addr is 0.
3558 	 */
3559 	filp = NULL;
3560 	flags |= MAP_SHARED;
3561 	pgoff = 0;	/* has been translated to ptr above */
3562 #ifdef SHM_COLOUR
3563 	addr = (uintptr_t) ptr;
3564 	pgoff = addr >> PAGE_SHIFT;
3565 #else
3566 	addr = 0UL;
3567 #endif
3568 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3569 }
3570 
3571 #else /* !CONFIG_MMU */
3572 
3573 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3574 {
3575 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3576 }
3577 
3578 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3579 {
3580 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3581 }
3582 
3583 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3584 	unsigned long addr, unsigned long len,
3585 	unsigned long pgoff, unsigned long flags)
3586 {
3587 	void *ptr;
3588 
3589 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3590 	if (IS_ERR(ptr))
3591 		return PTR_ERR(ptr);
3592 
3593 	return (unsigned long) ptr;
3594 }
3595 
3596 #endif /* !CONFIG_MMU */
3597 
3598 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3599 {
3600 	if (flags & IORING_ENTER_EXT_ARG) {
3601 		struct io_uring_getevents_arg arg;
3602 
3603 		if (argsz != sizeof(arg))
3604 			return -EINVAL;
3605 		if (copy_from_user(&arg, argp, sizeof(arg)))
3606 			return -EFAULT;
3607 	}
3608 	return 0;
3609 }
3610 
3611 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3612 			  struct __kernel_timespec __user **ts,
3613 			  const sigset_t __user **sig)
3614 {
3615 	struct io_uring_getevents_arg arg;
3616 
3617 	/*
3618 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3619 	 * is just a pointer to the sigset_t.
3620 	 */
3621 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3622 		*sig = (const sigset_t __user *) argp;
3623 		*ts = NULL;
3624 		return 0;
3625 	}
3626 
3627 	/*
3628 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3629 	 * timespec and sigset_t pointers if good.
3630 	 */
3631 	if (*argsz != sizeof(arg))
3632 		return -EINVAL;
3633 	if (copy_from_user(&arg, argp, sizeof(arg)))
3634 		return -EFAULT;
3635 	if (arg.pad)
3636 		return -EINVAL;
3637 	*sig = u64_to_user_ptr(arg.sigmask);
3638 	*argsz = arg.sigmask_sz;
3639 	*ts = u64_to_user_ptr(arg.ts);
3640 	return 0;
3641 }
3642 
3643 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3644 		u32, min_complete, u32, flags, const void __user *, argp,
3645 		size_t, argsz)
3646 {
3647 	struct io_ring_ctx *ctx;
3648 	struct fd f;
3649 	long ret;
3650 
3651 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3652 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3653 			       IORING_ENTER_REGISTERED_RING)))
3654 		return -EINVAL;
3655 
3656 	/*
3657 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3658 	 * need only dereference our task private array to find it.
3659 	 */
3660 	if (flags & IORING_ENTER_REGISTERED_RING) {
3661 		struct io_uring_task *tctx = current->io_uring;
3662 
3663 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3664 			return -EINVAL;
3665 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3666 		f.file = tctx->registered_rings[fd];
3667 		f.flags = 0;
3668 		if (unlikely(!f.file))
3669 			return -EBADF;
3670 	} else {
3671 		f = fdget(fd);
3672 		if (unlikely(!f.file))
3673 			return -EBADF;
3674 		ret = -EOPNOTSUPP;
3675 		if (unlikely(!io_is_uring_fops(f.file)))
3676 			goto out;
3677 	}
3678 
3679 	ctx = f.file->private_data;
3680 	ret = -EBADFD;
3681 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3682 		goto out;
3683 
3684 	/*
3685 	 * For SQ polling, the thread will do all submissions and completions.
3686 	 * Just return the requested submit count, and wake the thread if
3687 	 * we were asked to.
3688 	 */
3689 	ret = 0;
3690 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3691 		io_cqring_overflow_flush(ctx);
3692 
3693 		if (unlikely(ctx->sq_data->thread == NULL)) {
3694 			ret = -EOWNERDEAD;
3695 			goto out;
3696 		}
3697 		if (flags & IORING_ENTER_SQ_WAKEUP)
3698 			wake_up(&ctx->sq_data->wait);
3699 		if (flags & IORING_ENTER_SQ_WAIT)
3700 			io_sqpoll_wait_sq(ctx);
3701 
3702 		ret = to_submit;
3703 	} else if (to_submit) {
3704 		ret = io_uring_add_tctx_node(ctx);
3705 		if (unlikely(ret))
3706 			goto out;
3707 
3708 		mutex_lock(&ctx->uring_lock);
3709 		ret = io_submit_sqes(ctx, to_submit);
3710 		if (ret != to_submit) {
3711 			mutex_unlock(&ctx->uring_lock);
3712 			goto out;
3713 		}
3714 		if (flags & IORING_ENTER_GETEVENTS) {
3715 			if (ctx->syscall_iopoll)
3716 				goto iopoll_locked;
3717 			/*
3718 			 * Ignore errors, we'll soon call io_cqring_wait() and
3719 			 * it should handle ownership problems if any.
3720 			 */
3721 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3722 				(void)io_run_local_work_locked(ctx);
3723 		}
3724 		mutex_unlock(&ctx->uring_lock);
3725 	}
3726 
3727 	if (flags & IORING_ENTER_GETEVENTS) {
3728 		int ret2;
3729 
3730 		if (ctx->syscall_iopoll) {
3731 			/*
3732 			 * We disallow the app entering submit/complete with
3733 			 * polling, but we still need to lock the ring to
3734 			 * prevent racing with polled issue that got punted to
3735 			 * a workqueue.
3736 			 */
3737 			mutex_lock(&ctx->uring_lock);
3738 iopoll_locked:
3739 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3740 			if (likely(!ret2)) {
3741 				min_complete = min(min_complete,
3742 						   ctx->cq_entries);
3743 				ret2 = io_iopoll_check(ctx, min_complete);
3744 			}
3745 			mutex_unlock(&ctx->uring_lock);
3746 		} else {
3747 			const sigset_t __user *sig;
3748 			struct __kernel_timespec __user *ts;
3749 
3750 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3751 			if (likely(!ret2)) {
3752 				min_complete = min(min_complete,
3753 						   ctx->cq_entries);
3754 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3755 						      argsz, ts);
3756 			}
3757 		}
3758 
3759 		if (!ret) {
3760 			ret = ret2;
3761 
3762 			/*
3763 			 * EBADR indicates that one or more CQE were dropped.
3764 			 * Once the user has been informed we can clear the bit
3765 			 * as they are obviously ok with those drops.
3766 			 */
3767 			if (unlikely(ret2 == -EBADR))
3768 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3769 					  &ctx->check_cq);
3770 		}
3771 	}
3772 out:
3773 	fdput(f);
3774 	return ret;
3775 }
3776 
3777 static const struct file_operations io_uring_fops = {
3778 	.release	= io_uring_release,
3779 	.mmap		= io_uring_mmap,
3780 #ifndef CONFIG_MMU
3781 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3782 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3783 #else
3784 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3785 #endif
3786 	.poll		= io_uring_poll,
3787 #ifdef CONFIG_PROC_FS
3788 	.show_fdinfo	= io_uring_show_fdinfo,
3789 #endif
3790 };
3791 
3792 bool io_is_uring_fops(struct file *file)
3793 {
3794 	return file->f_op == &io_uring_fops;
3795 }
3796 
3797 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3798 					 struct io_uring_params *p)
3799 {
3800 	struct io_rings *rings;
3801 	size_t size, sq_array_offset;
3802 	void *ptr;
3803 
3804 	/* make sure these are sane, as we already accounted them */
3805 	ctx->sq_entries = p->sq_entries;
3806 	ctx->cq_entries = p->cq_entries;
3807 
3808 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3809 	if (size == SIZE_MAX)
3810 		return -EOVERFLOW;
3811 
3812 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3813 		rings = io_mem_alloc(size);
3814 	else
3815 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3816 
3817 	if (IS_ERR(rings))
3818 		return PTR_ERR(rings);
3819 
3820 	ctx->rings = rings;
3821 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3822 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3823 	rings->sq_ring_mask = p->sq_entries - 1;
3824 	rings->cq_ring_mask = p->cq_entries - 1;
3825 	rings->sq_ring_entries = p->sq_entries;
3826 	rings->cq_ring_entries = p->cq_entries;
3827 
3828 	if (p->flags & IORING_SETUP_SQE128)
3829 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3830 	else
3831 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3832 	if (size == SIZE_MAX) {
3833 		io_rings_free(ctx);
3834 		return -EOVERFLOW;
3835 	}
3836 
3837 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3838 		ptr = io_mem_alloc(size);
3839 	else
3840 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3841 
3842 	if (IS_ERR(ptr)) {
3843 		io_rings_free(ctx);
3844 		return PTR_ERR(ptr);
3845 	}
3846 
3847 	ctx->sq_sqes = ptr;
3848 	return 0;
3849 }
3850 
3851 static int io_uring_install_fd(struct file *file)
3852 {
3853 	int fd;
3854 
3855 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3856 	if (fd < 0)
3857 		return fd;
3858 	fd_install(fd, file);
3859 	return fd;
3860 }
3861 
3862 /*
3863  * Allocate an anonymous fd, this is what constitutes the application
3864  * visible backing of an io_uring instance. The application mmaps this
3865  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3866  * we have to tie this fd to a socket for file garbage collection purposes.
3867  */
3868 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3869 {
3870 	struct file *file;
3871 #if defined(CONFIG_UNIX)
3872 	int ret;
3873 
3874 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3875 				&ctx->ring_sock);
3876 	if (ret)
3877 		return ERR_PTR(ret);
3878 #endif
3879 
3880 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3881 					 O_RDWR | O_CLOEXEC, NULL);
3882 #if defined(CONFIG_UNIX)
3883 	if (IS_ERR(file)) {
3884 		sock_release(ctx->ring_sock);
3885 		ctx->ring_sock = NULL;
3886 	} else {
3887 		ctx->ring_sock->file = file;
3888 	}
3889 #endif
3890 	return file;
3891 }
3892 
3893 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3894 				  struct io_uring_params __user *params)
3895 {
3896 	struct io_ring_ctx *ctx;
3897 	struct io_uring_task *tctx;
3898 	struct file *file;
3899 	int ret;
3900 
3901 	if (!entries)
3902 		return -EINVAL;
3903 	if (entries > IORING_MAX_ENTRIES) {
3904 		if (!(p->flags & IORING_SETUP_CLAMP))
3905 			return -EINVAL;
3906 		entries = IORING_MAX_ENTRIES;
3907 	}
3908 
3909 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3910 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3911 		return -EINVAL;
3912 
3913 	/*
3914 	 * Use twice as many entries for the CQ ring. It's possible for the
3915 	 * application to drive a higher depth than the size of the SQ ring,
3916 	 * since the sqes are only used at submission time. This allows for
3917 	 * some flexibility in overcommitting a bit. If the application has
3918 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3919 	 * of CQ ring entries manually.
3920 	 */
3921 	p->sq_entries = roundup_pow_of_two(entries);
3922 	if (p->flags & IORING_SETUP_CQSIZE) {
3923 		/*
3924 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3925 		 * to a power-of-two, if it isn't already. We do NOT impose
3926 		 * any cq vs sq ring sizing.
3927 		 */
3928 		if (!p->cq_entries)
3929 			return -EINVAL;
3930 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3931 			if (!(p->flags & IORING_SETUP_CLAMP))
3932 				return -EINVAL;
3933 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3934 		}
3935 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3936 		if (p->cq_entries < p->sq_entries)
3937 			return -EINVAL;
3938 	} else {
3939 		p->cq_entries = 2 * p->sq_entries;
3940 	}
3941 
3942 	ctx = io_ring_ctx_alloc(p);
3943 	if (!ctx)
3944 		return -ENOMEM;
3945 
3946 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3947 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3948 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3949 		ctx->task_complete = true;
3950 
3951 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3952 		ctx->lockless_cq = true;
3953 
3954 	/*
3955 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3956 	 * purposes, see io_activate_pollwq()
3957 	 */
3958 	if (!ctx->task_complete)
3959 		ctx->poll_activated = true;
3960 
3961 	/*
3962 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3963 	 * space applications don't need to do io completion events
3964 	 * polling again, they can rely on io_sq_thread to do polling
3965 	 * work, which can reduce cpu usage and uring_lock contention.
3966 	 */
3967 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3968 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3969 		ctx->syscall_iopoll = 1;
3970 
3971 	ctx->compat = in_compat_syscall();
3972 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3973 		ctx->user = get_uid(current_user());
3974 
3975 	/*
3976 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3977 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3978 	 */
3979 	ret = -EINVAL;
3980 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3981 		/* IPI related flags don't make sense with SQPOLL */
3982 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3983 				  IORING_SETUP_TASKRUN_FLAG |
3984 				  IORING_SETUP_DEFER_TASKRUN))
3985 			goto err;
3986 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3987 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3988 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3989 	} else {
3990 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3991 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3992 			goto err;
3993 		ctx->notify_method = TWA_SIGNAL;
3994 	}
3995 
3996 	/*
3997 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3998 	 * submission task. This implies that there is only one submitter, so enforce
3999 	 * that.
4000 	 */
4001 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
4002 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
4003 		goto err;
4004 	}
4005 
4006 	/*
4007 	 * This is just grabbed for accounting purposes. When a process exits,
4008 	 * the mm is exited and dropped before the files, hence we need to hang
4009 	 * on to this mm purely for the purposes of being able to unaccount
4010 	 * memory (locked/pinned vm). It's not used for anything else.
4011 	 */
4012 	mmgrab(current->mm);
4013 	ctx->mm_account = current->mm;
4014 
4015 	ret = io_allocate_scq_urings(ctx, p);
4016 	if (ret)
4017 		goto err;
4018 
4019 	ret = io_sq_offload_create(ctx, p);
4020 	if (ret)
4021 		goto err;
4022 
4023 	ret = io_rsrc_init(ctx);
4024 	if (ret)
4025 		goto err;
4026 
4027 	p->sq_off.head = offsetof(struct io_rings, sq.head);
4028 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
4029 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
4030 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
4031 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
4032 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
4033 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
4034 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4035 	p->sq_off.resv1 = 0;
4036 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4037 		p->sq_off.user_addr = 0;
4038 
4039 	p->cq_off.head = offsetof(struct io_rings, cq.head);
4040 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4041 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4042 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4043 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4044 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
4045 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4046 	p->cq_off.resv1 = 0;
4047 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4048 		p->cq_off.user_addr = 0;
4049 
4050 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4051 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4052 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4053 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4054 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4055 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4056 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4057 
4058 	if (copy_to_user(params, p, sizeof(*p))) {
4059 		ret = -EFAULT;
4060 		goto err;
4061 	}
4062 
4063 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4064 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4065 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4066 
4067 	file = io_uring_get_file(ctx);
4068 	if (IS_ERR(file)) {
4069 		ret = PTR_ERR(file);
4070 		goto err;
4071 	}
4072 
4073 	ret = __io_uring_add_tctx_node(ctx);
4074 	if (ret)
4075 		goto err_fput;
4076 	tctx = current->io_uring;
4077 
4078 	/*
4079 	 * Install ring fd as the very last thing, so we don't risk someone
4080 	 * having closed it before we finish setup
4081 	 */
4082 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4083 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4084 	else
4085 		ret = io_uring_install_fd(file);
4086 	if (ret < 0)
4087 		goto err_fput;
4088 
4089 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4090 	return ret;
4091 err:
4092 	io_ring_ctx_wait_and_kill(ctx);
4093 	return ret;
4094 err_fput:
4095 	fput(file);
4096 	return ret;
4097 }
4098 
4099 /*
4100  * Sets up an aio uring context, and returns the fd. Applications asks for a
4101  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4102  * params structure passed in.
4103  */
4104 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4105 {
4106 	struct io_uring_params p;
4107 	int i;
4108 
4109 	if (copy_from_user(&p, params, sizeof(p)))
4110 		return -EFAULT;
4111 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4112 		if (p.resv[i])
4113 			return -EINVAL;
4114 	}
4115 
4116 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4117 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4118 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4119 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4120 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4121 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4122 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4123 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4124 			IORING_SETUP_NO_SQARRAY))
4125 		return -EINVAL;
4126 
4127 	return io_uring_create(entries, &p, params);
4128 }
4129 
4130 static inline bool io_uring_allowed(void)
4131 {
4132 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4133 	kgid_t io_uring_group;
4134 
4135 	if (disabled == 2)
4136 		return false;
4137 
4138 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4139 		return true;
4140 
4141 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4142 	if (!gid_valid(io_uring_group))
4143 		return false;
4144 
4145 	return in_group_p(io_uring_group);
4146 }
4147 
4148 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4149 		struct io_uring_params __user *, params)
4150 {
4151 	if (!io_uring_allowed())
4152 		return -EPERM;
4153 
4154 	return io_uring_setup(entries, params);
4155 }
4156 
4157 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4158 			   unsigned nr_args)
4159 {
4160 	struct io_uring_probe *p;
4161 	size_t size;
4162 	int i, ret;
4163 
4164 	size = struct_size(p, ops, nr_args);
4165 	if (size == SIZE_MAX)
4166 		return -EOVERFLOW;
4167 	p = kzalloc(size, GFP_KERNEL);
4168 	if (!p)
4169 		return -ENOMEM;
4170 
4171 	ret = -EFAULT;
4172 	if (copy_from_user(p, arg, size))
4173 		goto out;
4174 	ret = -EINVAL;
4175 	if (memchr_inv(p, 0, size))
4176 		goto out;
4177 
4178 	p->last_op = IORING_OP_LAST - 1;
4179 	if (nr_args > IORING_OP_LAST)
4180 		nr_args = IORING_OP_LAST;
4181 
4182 	for (i = 0; i < nr_args; i++) {
4183 		p->ops[i].op = i;
4184 		if (!io_issue_defs[i].not_supported)
4185 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4186 	}
4187 	p->ops_len = i;
4188 
4189 	ret = 0;
4190 	if (copy_to_user(arg, p, size))
4191 		ret = -EFAULT;
4192 out:
4193 	kfree(p);
4194 	return ret;
4195 }
4196 
4197 static int io_register_personality(struct io_ring_ctx *ctx)
4198 {
4199 	const struct cred *creds;
4200 	u32 id;
4201 	int ret;
4202 
4203 	creds = get_current_cred();
4204 
4205 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4206 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4207 	if (ret < 0) {
4208 		put_cred(creds);
4209 		return ret;
4210 	}
4211 	return id;
4212 }
4213 
4214 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4215 					   void __user *arg, unsigned int nr_args)
4216 {
4217 	struct io_uring_restriction *res;
4218 	size_t size;
4219 	int i, ret;
4220 
4221 	/* Restrictions allowed only if rings started disabled */
4222 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4223 		return -EBADFD;
4224 
4225 	/* We allow only a single restrictions registration */
4226 	if (ctx->restrictions.registered)
4227 		return -EBUSY;
4228 
4229 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4230 		return -EINVAL;
4231 
4232 	size = array_size(nr_args, sizeof(*res));
4233 	if (size == SIZE_MAX)
4234 		return -EOVERFLOW;
4235 
4236 	res = memdup_user(arg, size);
4237 	if (IS_ERR(res))
4238 		return PTR_ERR(res);
4239 
4240 	ret = 0;
4241 
4242 	for (i = 0; i < nr_args; i++) {
4243 		switch (res[i].opcode) {
4244 		case IORING_RESTRICTION_REGISTER_OP:
4245 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4246 				ret = -EINVAL;
4247 				goto out;
4248 			}
4249 
4250 			__set_bit(res[i].register_op,
4251 				  ctx->restrictions.register_op);
4252 			break;
4253 		case IORING_RESTRICTION_SQE_OP:
4254 			if (res[i].sqe_op >= IORING_OP_LAST) {
4255 				ret = -EINVAL;
4256 				goto out;
4257 			}
4258 
4259 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4260 			break;
4261 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4262 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4263 			break;
4264 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4265 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4266 			break;
4267 		default:
4268 			ret = -EINVAL;
4269 			goto out;
4270 		}
4271 	}
4272 
4273 out:
4274 	/* Reset all restrictions if an error happened */
4275 	if (ret != 0)
4276 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4277 	else
4278 		ctx->restrictions.registered = true;
4279 
4280 	kfree(res);
4281 	return ret;
4282 }
4283 
4284 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4285 {
4286 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4287 		return -EBADFD;
4288 
4289 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4290 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4291 		/*
4292 		 * Lazy activation attempts would fail if it was polled before
4293 		 * submitter_task is set.
4294 		 */
4295 		if (wq_has_sleeper(&ctx->poll_wq))
4296 			io_activate_pollwq(ctx);
4297 	}
4298 
4299 	if (ctx->restrictions.registered)
4300 		ctx->restricted = 1;
4301 
4302 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4303 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4304 		wake_up(&ctx->sq_data->wait);
4305 	return 0;
4306 }
4307 
4308 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4309 					 cpumask_var_t new_mask)
4310 {
4311 	int ret;
4312 
4313 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4314 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4315 	} else {
4316 		mutex_unlock(&ctx->uring_lock);
4317 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4318 		mutex_lock(&ctx->uring_lock);
4319 	}
4320 
4321 	return ret;
4322 }
4323 
4324 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4325 				       void __user *arg, unsigned len)
4326 {
4327 	cpumask_var_t new_mask;
4328 	int ret;
4329 
4330 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4331 		return -ENOMEM;
4332 
4333 	cpumask_clear(new_mask);
4334 	if (len > cpumask_size())
4335 		len = cpumask_size();
4336 
4337 	if (in_compat_syscall()) {
4338 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4339 					(const compat_ulong_t __user *)arg,
4340 					len * 8 /* CHAR_BIT */);
4341 	} else {
4342 		ret = copy_from_user(new_mask, arg, len);
4343 	}
4344 
4345 	if (ret) {
4346 		free_cpumask_var(new_mask);
4347 		return -EFAULT;
4348 	}
4349 
4350 	ret = __io_register_iowq_aff(ctx, new_mask);
4351 	free_cpumask_var(new_mask);
4352 	return ret;
4353 }
4354 
4355 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4356 {
4357 	return __io_register_iowq_aff(ctx, NULL);
4358 }
4359 
4360 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4361 					       void __user *arg)
4362 	__must_hold(&ctx->uring_lock)
4363 {
4364 	struct io_tctx_node *node;
4365 	struct io_uring_task *tctx = NULL;
4366 	struct io_sq_data *sqd = NULL;
4367 	__u32 new_count[2];
4368 	int i, ret;
4369 
4370 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4371 		return -EFAULT;
4372 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4373 		if (new_count[i] > INT_MAX)
4374 			return -EINVAL;
4375 
4376 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4377 		sqd = ctx->sq_data;
4378 		if (sqd) {
4379 			/*
4380 			 * Observe the correct sqd->lock -> ctx->uring_lock
4381 			 * ordering. Fine to drop uring_lock here, we hold
4382 			 * a ref to the ctx.
4383 			 */
4384 			refcount_inc(&sqd->refs);
4385 			mutex_unlock(&ctx->uring_lock);
4386 			mutex_lock(&sqd->lock);
4387 			mutex_lock(&ctx->uring_lock);
4388 			if (sqd->thread)
4389 				tctx = sqd->thread->io_uring;
4390 		}
4391 	} else {
4392 		tctx = current->io_uring;
4393 	}
4394 
4395 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4396 
4397 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4398 		if (new_count[i])
4399 			ctx->iowq_limits[i] = new_count[i];
4400 	ctx->iowq_limits_set = true;
4401 
4402 	if (tctx && tctx->io_wq) {
4403 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4404 		if (ret)
4405 			goto err;
4406 	} else {
4407 		memset(new_count, 0, sizeof(new_count));
4408 	}
4409 
4410 	if (sqd) {
4411 		mutex_unlock(&sqd->lock);
4412 		io_put_sq_data(sqd);
4413 	}
4414 
4415 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4416 		return -EFAULT;
4417 
4418 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4419 	if (sqd)
4420 		return 0;
4421 
4422 	/* now propagate the restriction to all registered users */
4423 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4424 		struct io_uring_task *tctx = node->task->io_uring;
4425 
4426 		if (WARN_ON_ONCE(!tctx->io_wq))
4427 			continue;
4428 
4429 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4430 			new_count[i] = ctx->iowq_limits[i];
4431 		/* ignore errors, it always returns zero anyway */
4432 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4433 	}
4434 	return 0;
4435 err:
4436 	if (sqd) {
4437 		mutex_unlock(&sqd->lock);
4438 		io_put_sq_data(sqd);
4439 	}
4440 	return ret;
4441 }
4442 
4443 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4444 			       void __user *arg, unsigned nr_args)
4445 	__releases(ctx->uring_lock)
4446 	__acquires(ctx->uring_lock)
4447 {
4448 	int ret;
4449 
4450 	/*
4451 	 * We don't quiesce the refs for register anymore and so it can't be
4452 	 * dying as we're holding a file ref here.
4453 	 */
4454 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4455 		return -ENXIO;
4456 
4457 	if (ctx->submitter_task && ctx->submitter_task != current)
4458 		return -EEXIST;
4459 
4460 	if (ctx->restricted) {
4461 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4462 		if (!test_bit(opcode, ctx->restrictions.register_op))
4463 			return -EACCES;
4464 	}
4465 
4466 	switch (opcode) {
4467 	case IORING_REGISTER_BUFFERS:
4468 		ret = -EFAULT;
4469 		if (!arg)
4470 			break;
4471 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4472 		break;
4473 	case IORING_UNREGISTER_BUFFERS:
4474 		ret = -EINVAL;
4475 		if (arg || nr_args)
4476 			break;
4477 		ret = io_sqe_buffers_unregister(ctx);
4478 		break;
4479 	case IORING_REGISTER_FILES:
4480 		ret = -EFAULT;
4481 		if (!arg)
4482 			break;
4483 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4484 		break;
4485 	case IORING_UNREGISTER_FILES:
4486 		ret = -EINVAL;
4487 		if (arg || nr_args)
4488 			break;
4489 		ret = io_sqe_files_unregister(ctx);
4490 		break;
4491 	case IORING_REGISTER_FILES_UPDATE:
4492 		ret = io_register_files_update(ctx, arg, nr_args);
4493 		break;
4494 	case IORING_REGISTER_EVENTFD:
4495 		ret = -EINVAL;
4496 		if (nr_args != 1)
4497 			break;
4498 		ret = io_eventfd_register(ctx, arg, 0);
4499 		break;
4500 	case IORING_REGISTER_EVENTFD_ASYNC:
4501 		ret = -EINVAL;
4502 		if (nr_args != 1)
4503 			break;
4504 		ret = io_eventfd_register(ctx, arg, 1);
4505 		break;
4506 	case IORING_UNREGISTER_EVENTFD:
4507 		ret = -EINVAL;
4508 		if (arg || nr_args)
4509 			break;
4510 		ret = io_eventfd_unregister(ctx);
4511 		break;
4512 	case IORING_REGISTER_PROBE:
4513 		ret = -EINVAL;
4514 		if (!arg || nr_args > 256)
4515 			break;
4516 		ret = io_probe(ctx, arg, nr_args);
4517 		break;
4518 	case IORING_REGISTER_PERSONALITY:
4519 		ret = -EINVAL;
4520 		if (arg || nr_args)
4521 			break;
4522 		ret = io_register_personality(ctx);
4523 		break;
4524 	case IORING_UNREGISTER_PERSONALITY:
4525 		ret = -EINVAL;
4526 		if (arg)
4527 			break;
4528 		ret = io_unregister_personality(ctx, nr_args);
4529 		break;
4530 	case IORING_REGISTER_ENABLE_RINGS:
4531 		ret = -EINVAL;
4532 		if (arg || nr_args)
4533 			break;
4534 		ret = io_register_enable_rings(ctx);
4535 		break;
4536 	case IORING_REGISTER_RESTRICTIONS:
4537 		ret = io_register_restrictions(ctx, arg, nr_args);
4538 		break;
4539 	case IORING_REGISTER_FILES2:
4540 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4541 		break;
4542 	case IORING_REGISTER_FILES_UPDATE2:
4543 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4544 					      IORING_RSRC_FILE);
4545 		break;
4546 	case IORING_REGISTER_BUFFERS2:
4547 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4548 		break;
4549 	case IORING_REGISTER_BUFFERS_UPDATE:
4550 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4551 					      IORING_RSRC_BUFFER);
4552 		break;
4553 	case IORING_REGISTER_IOWQ_AFF:
4554 		ret = -EINVAL;
4555 		if (!arg || !nr_args)
4556 			break;
4557 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4558 		break;
4559 	case IORING_UNREGISTER_IOWQ_AFF:
4560 		ret = -EINVAL;
4561 		if (arg || nr_args)
4562 			break;
4563 		ret = io_unregister_iowq_aff(ctx);
4564 		break;
4565 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4566 		ret = -EINVAL;
4567 		if (!arg || nr_args != 2)
4568 			break;
4569 		ret = io_register_iowq_max_workers(ctx, arg);
4570 		break;
4571 	case IORING_REGISTER_RING_FDS:
4572 		ret = io_ringfd_register(ctx, arg, nr_args);
4573 		break;
4574 	case IORING_UNREGISTER_RING_FDS:
4575 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4576 		break;
4577 	case IORING_REGISTER_PBUF_RING:
4578 		ret = -EINVAL;
4579 		if (!arg || nr_args != 1)
4580 			break;
4581 		ret = io_register_pbuf_ring(ctx, arg);
4582 		break;
4583 	case IORING_UNREGISTER_PBUF_RING:
4584 		ret = -EINVAL;
4585 		if (!arg || nr_args != 1)
4586 			break;
4587 		ret = io_unregister_pbuf_ring(ctx, arg);
4588 		break;
4589 	case IORING_REGISTER_SYNC_CANCEL:
4590 		ret = -EINVAL;
4591 		if (!arg || nr_args != 1)
4592 			break;
4593 		ret = io_sync_cancel(ctx, arg);
4594 		break;
4595 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4596 		ret = -EINVAL;
4597 		if (!arg || nr_args)
4598 			break;
4599 		ret = io_register_file_alloc_range(ctx, arg);
4600 		break;
4601 	default:
4602 		ret = -EINVAL;
4603 		break;
4604 	}
4605 
4606 	return ret;
4607 }
4608 
4609 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4610 		void __user *, arg, unsigned int, nr_args)
4611 {
4612 	struct io_ring_ctx *ctx;
4613 	long ret = -EBADF;
4614 	struct fd f;
4615 	bool use_registered_ring;
4616 
4617 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4618 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4619 
4620 	if (opcode >= IORING_REGISTER_LAST)
4621 		return -EINVAL;
4622 
4623 	if (use_registered_ring) {
4624 		/*
4625 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4626 		 * need only dereference our task private array to find it.
4627 		 */
4628 		struct io_uring_task *tctx = current->io_uring;
4629 
4630 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4631 			return -EINVAL;
4632 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4633 		f.file = tctx->registered_rings[fd];
4634 		f.flags = 0;
4635 		if (unlikely(!f.file))
4636 			return -EBADF;
4637 	} else {
4638 		f = fdget(fd);
4639 		if (unlikely(!f.file))
4640 			return -EBADF;
4641 		ret = -EOPNOTSUPP;
4642 		if (!io_is_uring_fops(f.file))
4643 			goto out_fput;
4644 	}
4645 
4646 	ctx = f.file->private_data;
4647 
4648 	mutex_lock(&ctx->uring_lock);
4649 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4650 	mutex_unlock(&ctx->uring_lock);
4651 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4652 out_fput:
4653 	fdput(f);
4654 	return ret;
4655 }
4656 
4657 static int __init io_uring_init(void)
4658 {
4659 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4660 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4661 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4662 } while (0)
4663 
4664 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4665 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4666 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4667 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4668 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4669 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4670 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4671 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4672 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4673 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4674 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4675 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4676 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4677 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4678 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4679 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4680 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4681 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4682 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4683 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4684 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4685 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4686 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4687 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4688 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4689 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4690 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4691 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4692 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4693 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4694 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4695 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4696 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4697 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4698 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4699 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4700 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4701 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4702 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4703 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4704 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4705 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4706 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4707 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4708 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4709 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4710 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4711 
4712 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4713 		     sizeof(struct io_uring_rsrc_update));
4714 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4715 		     sizeof(struct io_uring_rsrc_update2));
4716 
4717 	/* ->buf_index is u16 */
4718 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4719 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4720 		     offsetof(struct io_uring_buf_ring, tail));
4721 
4722 	/* should fit into one byte */
4723 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4724 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4725 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4726 
4727 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4728 
4729 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4730 
4731 	/* top 8bits are for internal use */
4732 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4733 
4734 	io_uring_optable_init();
4735 
4736 	/*
4737 	 * Allow user copy in the per-command field, which starts after the
4738 	 * file in io_kiocb and until the opcode field. The openat2 handling
4739 	 * requires copying in user memory into the io_kiocb object in that
4740 	 * range, and HARDENED_USERCOPY will complain if we haven't
4741 	 * correctly annotated this range.
4742 	 */
4743 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4744 				sizeof(struct io_kiocb), 0,
4745 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4746 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4747 				offsetof(struct io_kiocb, cmd.data),
4748 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4749 	io_buf_cachep = kmem_cache_create("io_buffer", sizeof(struct io_buffer), 0,
4750 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
4751 					  NULL);
4752 
4753 #ifdef CONFIG_SYSCTL
4754 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4755 #endif
4756 
4757 	return 0;
4758 };
4759 __initcall(io_uring_init);
4760