xref: /linux/io_uring/io_uring.c (revision 7110f24f9e33979fd704f7a4a595a9d3e9bdacb7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 #define IO_LOCAL_TW_DEFAULT_MAX		20
125 
126 struct io_defer_entry {
127 	struct list_head	list;
128 	struct io_kiocb		*req;
129 	u32			seq;
130 };
131 
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
135 
136 /*
137  * No waiters. It's larger than any valid value of the tw counter
138  * so that tests against ->cq_wait_nr would fail and skip wake_up().
139  */
140 #define IO_CQ_WAKE_INIT		(-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct io_uring_task *tctx,
146 					 bool cancel_all);
147 
148 static void io_queue_sqe(struct io_kiocb *req);
149 
150 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
151 
152 struct kmem_cache *req_cachep;
153 static struct workqueue_struct *iou_wq __ro_after_init;
154 
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
157 
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
160 	{
161 		.procname	= "io_uring_disabled",
162 		.data		= &sysctl_io_uring_disabled,
163 		.maxlen		= sizeof(sysctl_io_uring_disabled),
164 		.mode		= 0644,
165 		.proc_handler	= proc_dointvec_minmax,
166 		.extra1		= SYSCTL_ZERO,
167 		.extra2		= SYSCTL_TWO,
168 	},
169 	{
170 		.procname	= "io_uring_group",
171 		.data		= &sysctl_io_uring_group,
172 		.maxlen		= sizeof(gid_t),
173 		.mode		= 0644,
174 		.proc_handler	= proc_dointvec,
175 	},
176 };
177 #endif
178 
179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
180 {
181 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
182 }
183 
184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
185 {
186 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
187 }
188 
189 static bool io_match_linked(struct io_kiocb *head)
190 {
191 	struct io_kiocb *req;
192 
193 	io_for_each_link(req, head) {
194 		if (req->flags & REQ_F_INFLIGHT)
195 			return true;
196 	}
197 	return false;
198 }
199 
200 /*
201  * As io_match_task() but protected against racing with linked timeouts.
202  * User must not hold timeout_lock.
203  */
204 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
205 			bool cancel_all)
206 {
207 	bool matched;
208 
209 	if (tctx && head->tctx != tctx)
210 		return false;
211 	if (cancel_all)
212 		return true;
213 
214 	if (head->flags & REQ_F_LINK_TIMEOUT) {
215 		struct io_ring_ctx *ctx = head->ctx;
216 
217 		/* protect against races with linked timeouts */
218 		raw_spin_lock_irq(&ctx->timeout_lock);
219 		matched = io_match_linked(head);
220 		raw_spin_unlock_irq(&ctx->timeout_lock);
221 	} else {
222 		matched = io_match_linked(head);
223 	}
224 	return matched;
225 }
226 
227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
228 {
229 	req_set_fail(req);
230 	io_req_set_res(req, res, 0);
231 }
232 
233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
234 {
235 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
236 }
237 
238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
239 {
240 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
241 
242 	complete(&ctx->ref_comp);
243 }
244 
245 static __cold void io_fallback_req_func(struct work_struct *work)
246 {
247 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 						fallback_work.work);
249 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 	struct io_kiocb *req, *tmp;
251 	struct io_tw_state ts = {};
252 
253 	percpu_ref_get(&ctx->refs);
254 	mutex_lock(&ctx->uring_lock);
255 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
256 		req->io_task_work.func(req, &ts);
257 	io_submit_flush_completions(ctx);
258 	mutex_unlock(&ctx->uring_lock);
259 	percpu_ref_put(&ctx->refs);
260 }
261 
262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263 {
264 	unsigned int hash_buckets;
265 	int i;
266 
267 	do {
268 		hash_buckets = 1U << bits;
269 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
270 						GFP_KERNEL_ACCOUNT);
271 		if (table->hbs)
272 			break;
273 		if (bits == 1)
274 			return -ENOMEM;
275 		bits--;
276 	} while (1);
277 
278 	table->hash_bits = bits;
279 	for (i = 0; i < hash_buckets; i++)
280 		INIT_HLIST_HEAD(&table->hbs[i].list);
281 	return 0;
282 }
283 
284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 	struct io_ring_ctx *ctx;
287 	int hash_bits;
288 	bool ret;
289 
290 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
291 	if (!ctx)
292 		return NULL;
293 
294 	xa_init(&ctx->io_bl_xa);
295 
296 	/*
297 	 * Use 5 bits less than the max cq entries, that should give us around
298 	 * 32 entries per hash list if totally full and uniformly spread, but
299 	 * don't keep too many buckets to not overconsume memory.
300 	 */
301 	hash_bits = ilog2(p->cq_entries) - 5;
302 	hash_bits = clamp(hash_bits, 1, 8);
303 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
304 		goto err;
305 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306 			    0, GFP_KERNEL))
307 		goto err;
308 
309 	ctx->flags = p->flags;
310 	ctx->hybrid_poll_time = LLONG_MAX;
311 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
312 	init_waitqueue_head(&ctx->sqo_sq_wait);
313 	INIT_LIST_HEAD(&ctx->sqd_list);
314 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
315 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
316 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
317 			    sizeof(struct async_poll));
318 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
319 			    sizeof(struct io_async_msghdr));
320 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
321 			    sizeof(struct io_async_rw));
322 	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
323 			    sizeof(struct io_uring_cmd_data));
324 	spin_lock_init(&ctx->msg_lock);
325 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
326 			    sizeof(struct io_kiocb));
327 	ret |= io_futex_cache_init(ctx);
328 	if (ret)
329 		goto free_ref;
330 	init_completion(&ctx->ref_comp);
331 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
332 	mutex_init(&ctx->uring_lock);
333 	init_waitqueue_head(&ctx->cq_wait);
334 	init_waitqueue_head(&ctx->poll_wq);
335 	spin_lock_init(&ctx->completion_lock);
336 	raw_spin_lock_init(&ctx->timeout_lock);
337 	INIT_WQ_LIST(&ctx->iopoll_list);
338 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
339 	INIT_LIST_HEAD(&ctx->defer_list);
340 	INIT_LIST_HEAD(&ctx->timeout_list);
341 	INIT_LIST_HEAD(&ctx->ltimeout_list);
342 	init_llist_head(&ctx->work_llist);
343 	INIT_LIST_HEAD(&ctx->tctx_list);
344 	ctx->submit_state.free_list.next = NULL;
345 	INIT_HLIST_HEAD(&ctx->waitid_list);
346 #ifdef CONFIG_FUTEX
347 	INIT_HLIST_HEAD(&ctx->futex_list);
348 #endif
349 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
350 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
351 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
352 	io_napi_init(ctx);
353 	mutex_init(&ctx->resize_lock);
354 
355 	return ctx;
356 
357 free_ref:
358 	percpu_ref_exit(&ctx->refs);
359 err:
360 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
361 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
362 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
363 	io_alloc_cache_free(&ctx->uring_cache, kfree);
364 	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
365 	io_futex_cache_free(ctx);
366 	kvfree(ctx->cancel_table.hbs);
367 	xa_destroy(&ctx->io_bl_xa);
368 	kfree(ctx);
369 	return NULL;
370 }
371 
372 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
373 {
374 	struct io_rings *r = ctx->rings;
375 
376 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
377 	ctx->cq_extra--;
378 }
379 
380 static bool req_need_defer(struct io_kiocb *req, u32 seq)
381 {
382 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
383 		struct io_ring_ctx *ctx = req->ctx;
384 
385 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
386 	}
387 
388 	return false;
389 }
390 
391 static void io_clean_op(struct io_kiocb *req)
392 {
393 	if (req->flags & REQ_F_BUFFER_SELECTED) {
394 		spin_lock(&req->ctx->completion_lock);
395 		io_kbuf_drop(req);
396 		spin_unlock(&req->ctx->completion_lock);
397 	}
398 
399 	if (req->flags & REQ_F_NEED_CLEANUP) {
400 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
401 
402 		if (def->cleanup)
403 			def->cleanup(req);
404 	}
405 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
406 		kfree(req->apoll->double_poll);
407 		kfree(req->apoll);
408 		req->apoll = NULL;
409 	}
410 	if (req->flags & REQ_F_INFLIGHT)
411 		atomic_dec(&req->tctx->inflight_tracked);
412 	if (req->flags & REQ_F_CREDS)
413 		put_cred(req->creds);
414 	if (req->flags & REQ_F_ASYNC_DATA) {
415 		kfree(req->async_data);
416 		req->async_data = NULL;
417 	}
418 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
419 }
420 
421 static inline void io_req_track_inflight(struct io_kiocb *req)
422 {
423 	if (!(req->flags & REQ_F_INFLIGHT)) {
424 		req->flags |= REQ_F_INFLIGHT;
425 		atomic_inc(&req->tctx->inflight_tracked);
426 	}
427 }
428 
429 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
430 {
431 	if (WARN_ON_ONCE(!req->link))
432 		return NULL;
433 
434 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
435 	req->flags |= REQ_F_LINK_TIMEOUT;
436 
437 	/* linked timeouts should have two refs once prep'ed */
438 	io_req_set_refcount(req);
439 	__io_req_set_refcount(req->link, 2);
440 	return req->link;
441 }
442 
443 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
444 {
445 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
446 		return NULL;
447 	return __io_prep_linked_timeout(req);
448 }
449 
450 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
451 {
452 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
453 }
454 
455 static inline void io_arm_ltimeout(struct io_kiocb *req)
456 {
457 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
458 		__io_arm_ltimeout(req);
459 }
460 
461 static void io_prep_async_work(struct io_kiocb *req)
462 {
463 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
464 	struct io_ring_ctx *ctx = req->ctx;
465 
466 	if (!(req->flags & REQ_F_CREDS)) {
467 		req->flags |= REQ_F_CREDS;
468 		req->creds = get_current_cred();
469 	}
470 
471 	req->work.list.next = NULL;
472 	atomic_set(&req->work.flags, 0);
473 	if (req->flags & REQ_F_FORCE_ASYNC)
474 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
475 
476 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
477 		req->flags |= io_file_get_flags(req->file);
478 
479 	if (req->file && (req->flags & REQ_F_ISREG)) {
480 		bool should_hash = def->hash_reg_file;
481 
482 		/* don't serialize this request if the fs doesn't need it */
483 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
484 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
485 			should_hash = false;
486 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
487 			io_wq_hash_work(&req->work, file_inode(req->file));
488 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
489 		if (def->unbound_nonreg_file)
490 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
491 	}
492 }
493 
494 static void io_prep_async_link(struct io_kiocb *req)
495 {
496 	struct io_kiocb *cur;
497 
498 	if (req->flags & REQ_F_LINK_TIMEOUT) {
499 		struct io_ring_ctx *ctx = req->ctx;
500 
501 		raw_spin_lock_irq(&ctx->timeout_lock);
502 		io_for_each_link(cur, req)
503 			io_prep_async_work(cur);
504 		raw_spin_unlock_irq(&ctx->timeout_lock);
505 	} else {
506 		io_for_each_link(cur, req)
507 			io_prep_async_work(cur);
508 	}
509 }
510 
511 static void io_queue_iowq(struct io_kiocb *req)
512 {
513 	struct io_kiocb *link = io_prep_linked_timeout(req);
514 	struct io_uring_task *tctx = req->tctx;
515 
516 	BUG_ON(!tctx);
517 
518 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
519 		io_req_task_queue_fail(req, -ECANCELED);
520 		return;
521 	}
522 
523 	/* init ->work of the whole link before punting */
524 	io_prep_async_link(req);
525 
526 	/*
527 	 * Not expected to happen, but if we do have a bug where this _can_
528 	 * happen, catch it here and ensure the request is marked as
529 	 * canceled. That will make io-wq go through the usual work cancel
530 	 * procedure rather than attempt to run this request (or create a new
531 	 * worker for it).
532 	 */
533 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
534 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
535 
536 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
537 	io_wq_enqueue(tctx->io_wq, &req->work);
538 	if (link)
539 		io_queue_linked_timeout(link);
540 }
541 
542 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
543 {
544 	io_queue_iowq(req);
545 }
546 
547 void io_req_queue_iowq(struct io_kiocb *req)
548 {
549 	req->io_task_work.func = io_req_queue_iowq_tw;
550 	io_req_task_work_add(req);
551 }
552 
553 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
554 {
555 	while (!list_empty(&ctx->defer_list)) {
556 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
557 						struct io_defer_entry, list);
558 
559 		if (req_need_defer(de->req, de->seq))
560 			break;
561 		list_del_init(&de->list);
562 		io_req_task_queue(de->req);
563 		kfree(de);
564 	}
565 }
566 
567 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
568 {
569 	if (ctx->poll_activated)
570 		io_poll_wq_wake(ctx);
571 	if (ctx->off_timeout_used)
572 		io_flush_timeouts(ctx);
573 	if (ctx->drain_active) {
574 		spin_lock(&ctx->completion_lock);
575 		io_queue_deferred(ctx);
576 		spin_unlock(&ctx->completion_lock);
577 	}
578 	if (ctx->has_evfd)
579 		io_eventfd_flush_signal(ctx);
580 }
581 
582 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
583 {
584 	if (!ctx->lockless_cq)
585 		spin_lock(&ctx->completion_lock);
586 }
587 
588 static inline void io_cq_lock(struct io_ring_ctx *ctx)
589 	__acquires(ctx->completion_lock)
590 {
591 	spin_lock(&ctx->completion_lock);
592 }
593 
594 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
595 {
596 	io_commit_cqring(ctx);
597 	if (!ctx->task_complete) {
598 		if (!ctx->lockless_cq)
599 			spin_unlock(&ctx->completion_lock);
600 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
601 		if (!ctx->syscall_iopoll)
602 			io_cqring_wake(ctx);
603 	}
604 	io_commit_cqring_flush(ctx);
605 }
606 
607 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
608 	__releases(ctx->completion_lock)
609 {
610 	io_commit_cqring(ctx);
611 	spin_unlock(&ctx->completion_lock);
612 	io_cqring_wake(ctx);
613 	io_commit_cqring_flush(ctx);
614 }
615 
616 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
617 {
618 	size_t cqe_size = sizeof(struct io_uring_cqe);
619 
620 	lockdep_assert_held(&ctx->uring_lock);
621 
622 	/* don't abort if we're dying, entries must get freed */
623 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
624 		return;
625 
626 	if (ctx->flags & IORING_SETUP_CQE32)
627 		cqe_size <<= 1;
628 
629 	io_cq_lock(ctx);
630 	while (!list_empty(&ctx->cq_overflow_list)) {
631 		struct io_uring_cqe *cqe;
632 		struct io_overflow_cqe *ocqe;
633 
634 		ocqe = list_first_entry(&ctx->cq_overflow_list,
635 					struct io_overflow_cqe, list);
636 
637 		if (!dying) {
638 			if (!io_get_cqe_overflow(ctx, &cqe, true))
639 				break;
640 			memcpy(cqe, &ocqe->cqe, cqe_size);
641 		}
642 		list_del(&ocqe->list);
643 		kfree(ocqe);
644 
645 		/*
646 		 * For silly syzbot cases that deliberately overflow by huge
647 		 * amounts, check if we need to resched and drop and
648 		 * reacquire the locks if so. Nothing real would ever hit this.
649 		 * Ideally we'd have a non-posting unlock for this, but hard
650 		 * to care for a non-real case.
651 		 */
652 		if (need_resched()) {
653 			io_cq_unlock_post(ctx);
654 			mutex_unlock(&ctx->uring_lock);
655 			cond_resched();
656 			mutex_lock(&ctx->uring_lock);
657 			io_cq_lock(ctx);
658 		}
659 	}
660 
661 	if (list_empty(&ctx->cq_overflow_list)) {
662 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
663 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
664 	}
665 	io_cq_unlock_post(ctx);
666 }
667 
668 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
669 {
670 	if (ctx->rings)
671 		__io_cqring_overflow_flush(ctx, true);
672 }
673 
674 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
675 {
676 	mutex_lock(&ctx->uring_lock);
677 	__io_cqring_overflow_flush(ctx, false);
678 	mutex_unlock(&ctx->uring_lock);
679 }
680 
681 /* must to be called somewhat shortly after putting a request */
682 static inline void io_put_task(struct io_kiocb *req)
683 {
684 	struct io_uring_task *tctx = req->tctx;
685 
686 	if (likely(tctx->task == current)) {
687 		tctx->cached_refs++;
688 	} else {
689 		percpu_counter_sub(&tctx->inflight, 1);
690 		if (unlikely(atomic_read(&tctx->in_cancel)))
691 			wake_up(&tctx->wait);
692 		put_task_struct(tctx->task);
693 	}
694 }
695 
696 void io_task_refs_refill(struct io_uring_task *tctx)
697 {
698 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
699 
700 	percpu_counter_add(&tctx->inflight, refill);
701 	refcount_add(refill, &current->usage);
702 	tctx->cached_refs += refill;
703 }
704 
705 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
706 {
707 	struct io_uring_task *tctx = task->io_uring;
708 	unsigned int refs = tctx->cached_refs;
709 
710 	if (refs) {
711 		tctx->cached_refs = 0;
712 		percpu_counter_sub(&tctx->inflight, refs);
713 		put_task_struct_many(task, refs);
714 	}
715 }
716 
717 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
718 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
719 {
720 	struct io_overflow_cqe *ocqe;
721 	size_t ocq_size = sizeof(struct io_overflow_cqe);
722 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
723 
724 	lockdep_assert_held(&ctx->completion_lock);
725 
726 	if (is_cqe32)
727 		ocq_size += sizeof(struct io_uring_cqe);
728 
729 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
730 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
731 	if (!ocqe) {
732 		/*
733 		 * If we're in ring overflow flush mode, or in task cancel mode,
734 		 * or cannot allocate an overflow entry, then we need to drop it
735 		 * on the floor.
736 		 */
737 		io_account_cq_overflow(ctx);
738 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
739 		return false;
740 	}
741 	if (list_empty(&ctx->cq_overflow_list)) {
742 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
743 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
744 
745 	}
746 	ocqe->cqe.user_data = user_data;
747 	ocqe->cqe.res = res;
748 	ocqe->cqe.flags = cflags;
749 	if (is_cqe32) {
750 		ocqe->cqe.big_cqe[0] = extra1;
751 		ocqe->cqe.big_cqe[1] = extra2;
752 	}
753 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
754 	return true;
755 }
756 
757 static void io_req_cqe_overflow(struct io_kiocb *req)
758 {
759 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
760 				req->cqe.res, req->cqe.flags,
761 				req->big_cqe.extra1, req->big_cqe.extra2);
762 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
763 }
764 
765 /*
766  * writes to the cq entry need to come after reading head; the
767  * control dependency is enough as we're using WRITE_ONCE to
768  * fill the cq entry
769  */
770 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
771 {
772 	struct io_rings *rings = ctx->rings;
773 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
774 	unsigned int free, queued, len;
775 
776 	/*
777 	 * Posting into the CQ when there are pending overflowed CQEs may break
778 	 * ordering guarantees, which will affect links, F_MORE users and more.
779 	 * Force overflow the completion.
780 	 */
781 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
782 		return false;
783 
784 	/* userspace may cheat modifying the tail, be safe and do min */
785 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
786 	free = ctx->cq_entries - queued;
787 	/* we need a contiguous range, limit based on the current array offset */
788 	len = min(free, ctx->cq_entries - off);
789 	if (!len)
790 		return false;
791 
792 	if (ctx->flags & IORING_SETUP_CQE32) {
793 		off <<= 1;
794 		len <<= 1;
795 	}
796 
797 	ctx->cqe_cached = &rings->cqes[off];
798 	ctx->cqe_sentinel = ctx->cqe_cached + len;
799 	return true;
800 }
801 
802 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
803 			      u32 cflags)
804 {
805 	struct io_uring_cqe *cqe;
806 
807 	ctx->cq_extra++;
808 
809 	/*
810 	 * If we can't get a cq entry, userspace overflowed the
811 	 * submission (by quite a lot). Increment the overflow count in
812 	 * the ring.
813 	 */
814 	if (likely(io_get_cqe(ctx, &cqe))) {
815 		WRITE_ONCE(cqe->user_data, user_data);
816 		WRITE_ONCE(cqe->res, res);
817 		WRITE_ONCE(cqe->flags, cflags);
818 
819 		if (ctx->flags & IORING_SETUP_CQE32) {
820 			WRITE_ONCE(cqe->big_cqe[0], 0);
821 			WRITE_ONCE(cqe->big_cqe[1], 0);
822 		}
823 
824 		trace_io_uring_complete(ctx, NULL, cqe);
825 		return true;
826 	}
827 	return false;
828 }
829 
830 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
831 			      u32 cflags)
832 {
833 	bool filled;
834 
835 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
836 	if (!filled)
837 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
838 
839 	return filled;
840 }
841 
842 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
843 {
844 	bool filled;
845 
846 	io_cq_lock(ctx);
847 	filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
848 	io_cq_unlock_post(ctx);
849 	return filled;
850 }
851 
852 /*
853  * Must be called from inline task_work so we now a flush will happen later,
854  * and obviously with ctx->uring_lock held (tw always has that).
855  */
856 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
857 {
858 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
859 		spin_lock(&ctx->completion_lock);
860 		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
861 		spin_unlock(&ctx->completion_lock);
862 	}
863 	ctx->submit_state.cq_flush = true;
864 }
865 
866 /*
867  * A helper for multishot requests posting additional CQEs.
868  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
869  */
870 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
871 {
872 	struct io_ring_ctx *ctx = req->ctx;
873 	bool posted;
874 
875 	lockdep_assert(!io_wq_current_is_worker());
876 	lockdep_assert_held(&ctx->uring_lock);
877 
878 	__io_cq_lock(ctx);
879 	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
880 	ctx->submit_state.cq_flush = true;
881 	__io_cq_unlock_post(ctx);
882 	return posted;
883 }
884 
885 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
886 {
887 	struct io_ring_ctx *ctx = req->ctx;
888 
889 	/*
890 	 * All execution paths but io-wq use the deferred completions by
891 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
892 	 */
893 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
894 		return;
895 
896 	/*
897 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
898 	 * the submitter task context, IOPOLL protects with uring_lock.
899 	 */
900 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
901 		req->io_task_work.func = io_req_task_complete;
902 		io_req_task_work_add(req);
903 		return;
904 	}
905 
906 	io_cq_lock(ctx);
907 	if (!(req->flags & REQ_F_CQE_SKIP)) {
908 		if (!io_fill_cqe_req(ctx, req))
909 			io_req_cqe_overflow(req);
910 	}
911 	io_cq_unlock_post(ctx);
912 
913 	/*
914 	 * We don't free the request here because we know it's called from
915 	 * io-wq only, which holds a reference, so it cannot be the last put.
916 	 */
917 	req_ref_put(req);
918 }
919 
920 void io_req_defer_failed(struct io_kiocb *req, s32 res)
921 	__must_hold(&ctx->uring_lock)
922 {
923 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
924 
925 	lockdep_assert_held(&req->ctx->uring_lock);
926 
927 	req_set_fail(req);
928 	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
929 	if (def->fail)
930 		def->fail(req);
931 	io_req_complete_defer(req);
932 }
933 
934 /*
935  * Don't initialise the fields below on every allocation, but do that in
936  * advance and keep them valid across allocations.
937  */
938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
939 {
940 	req->ctx = ctx;
941 	req->buf_node = NULL;
942 	req->file_node = NULL;
943 	req->link = NULL;
944 	req->async_data = NULL;
945 	/* not necessary, but safer to zero */
946 	memset(&req->cqe, 0, sizeof(req->cqe));
947 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
948 }
949 
950 /*
951  * A request might get retired back into the request caches even before opcode
952  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
953  * Because of that, io_alloc_req() should be called only under ->uring_lock
954  * and with extra caution to not get a request that is still worked on.
955  */
956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
957 	__must_hold(&ctx->uring_lock)
958 {
959 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
960 	void *reqs[IO_REQ_ALLOC_BATCH];
961 	int ret;
962 
963 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
964 
965 	/*
966 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
967 	 * retry single alloc to be on the safe side.
968 	 */
969 	if (unlikely(ret <= 0)) {
970 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
971 		if (!reqs[0])
972 			return false;
973 		ret = 1;
974 	}
975 
976 	percpu_ref_get_many(&ctx->refs, ret);
977 	while (ret--) {
978 		struct io_kiocb *req = reqs[ret];
979 
980 		io_preinit_req(req, ctx);
981 		io_req_add_to_cache(req, ctx);
982 	}
983 	return true;
984 }
985 
986 __cold void io_free_req(struct io_kiocb *req)
987 {
988 	/* refs were already put, restore them for io_req_task_complete() */
989 	req->flags &= ~REQ_F_REFCOUNT;
990 	/* we only want to free it, don't post CQEs */
991 	req->flags |= REQ_F_CQE_SKIP;
992 	req->io_task_work.func = io_req_task_complete;
993 	io_req_task_work_add(req);
994 }
995 
996 static void __io_req_find_next_prep(struct io_kiocb *req)
997 {
998 	struct io_ring_ctx *ctx = req->ctx;
999 
1000 	spin_lock(&ctx->completion_lock);
1001 	io_disarm_next(req);
1002 	spin_unlock(&ctx->completion_lock);
1003 }
1004 
1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1006 {
1007 	struct io_kiocb *nxt;
1008 
1009 	/*
1010 	 * If LINK is set, we have dependent requests in this chain. If we
1011 	 * didn't fail this request, queue the first one up, moving any other
1012 	 * dependencies to the next request. In case of failure, fail the rest
1013 	 * of the chain.
1014 	 */
1015 	if (unlikely(req->flags & IO_DISARM_MASK))
1016 		__io_req_find_next_prep(req);
1017 	nxt = req->link;
1018 	req->link = NULL;
1019 	return nxt;
1020 }
1021 
1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1023 {
1024 	if (!ctx)
1025 		return;
1026 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1027 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1028 
1029 	io_submit_flush_completions(ctx);
1030 	mutex_unlock(&ctx->uring_lock);
1031 	percpu_ref_put(&ctx->refs);
1032 }
1033 
1034 /*
1035  * Run queued task_work, returning the number of entries processed in *count.
1036  * If more entries than max_entries are available, stop processing once this
1037  * is reached and return the rest of the list.
1038  */
1039 struct llist_node *io_handle_tw_list(struct llist_node *node,
1040 				     unsigned int *count,
1041 				     unsigned int max_entries)
1042 {
1043 	struct io_ring_ctx *ctx = NULL;
1044 	struct io_tw_state ts = { };
1045 
1046 	do {
1047 		struct llist_node *next = node->next;
1048 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1049 						    io_task_work.node);
1050 
1051 		if (req->ctx != ctx) {
1052 			ctx_flush_and_put(ctx, &ts);
1053 			ctx = req->ctx;
1054 			mutex_lock(&ctx->uring_lock);
1055 			percpu_ref_get(&ctx->refs);
1056 		}
1057 		INDIRECT_CALL_2(req->io_task_work.func,
1058 				io_poll_task_func, io_req_rw_complete,
1059 				req, &ts);
1060 		node = next;
1061 		(*count)++;
1062 		if (unlikely(need_resched())) {
1063 			ctx_flush_and_put(ctx, &ts);
1064 			ctx = NULL;
1065 			cond_resched();
1066 		}
1067 	} while (node && *count < max_entries);
1068 
1069 	ctx_flush_and_put(ctx, &ts);
1070 	return node;
1071 }
1072 
1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1074 {
1075 	struct io_ring_ctx *last_ctx = NULL;
1076 	struct io_kiocb *req;
1077 
1078 	while (node) {
1079 		req = container_of(node, struct io_kiocb, io_task_work.node);
1080 		node = node->next;
1081 		if (sync && last_ctx != req->ctx) {
1082 			if (last_ctx) {
1083 				flush_delayed_work(&last_ctx->fallback_work);
1084 				percpu_ref_put(&last_ctx->refs);
1085 			}
1086 			last_ctx = req->ctx;
1087 			percpu_ref_get(&last_ctx->refs);
1088 		}
1089 		if (llist_add(&req->io_task_work.node,
1090 			      &req->ctx->fallback_llist))
1091 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1092 	}
1093 
1094 	if (last_ctx) {
1095 		flush_delayed_work(&last_ctx->fallback_work);
1096 		percpu_ref_put(&last_ctx->refs);
1097 	}
1098 }
1099 
1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1101 {
1102 	struct llist_node *node = llist_del_all(&tctx->task_list);
1103 
1104 	__io_fallback_tw(node, sync);
1105 }
1106 
1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1108 				      unsigned int max_entries,
1109 				      unsigned int *count)
1110 {
1111 	struct llist_node *node;
1112 
1113 	if (unlikely(current->flags & PF_EXITING)) {
1114 		io_fallback_tw(tctx, true);
1115 		return NULL;
1116 	}
1117 
1118 	node = llist_del_all(&tctx->task_list);
1119 	if (node) {
1120 		node = llist_reverse_order(node);
1121 		node = io_handle_tw_list(node, count, max_entries);
1122 	}
1123 
1124 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1125 	if (unlikely(atomic_read(&tctx->in_cancel)))
1126 		io_uring_drop_tctx_refs(current);
1127 
1128 	trace_io_uring_task_work_run(tctx, *count);
1129 	return node;
1130 }
1131 
1132 void tctx_task_work(struct callback_head *cb)
1133 {
1134 	struct io_uring_task *tctx;
1135 	struct llist_node *ret;
1136 	unsigned int count = 0;
1137 
1138 	tctx = container_of(cb, struct io_uring_task, task_work);
1139 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1140 	/* can't happen */
1141 	WARN_ON_ONCE(ret);
1142 }
1143 
1144 static inline void io_req_local_work_add(struct io_kiocb *req,
1145 					 struct io_ring_ctx *ctx,
1146 					 unsigned flags)
1147 {
1148 	unsigned nr_wait, nr_tw, nr_tw_prev;
1149 	struct llist_node *head;
1150 
1151 	/* See comment above IO_CQ_WAKE_INIT */
1152 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1153 
1154 	/*
1155 	 * We don't know how many reuqests is there in the link and whether
1156 	 * they can even be queued lazily, fall back to non-lazy.
1157 	 */
1158 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1159 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1160 
1161 	guard(rcu)();
1162 
1163 	head = READ_ONCE(ctx->work_llist.first);
1164 	do {
1165 		nr_tw_prev = 0;
1166 		if (head) {
1167 			struct io_kiocb *first_req = container_of(head,
1168 							struct io_kiocb,
1169 							io_task_work.node);
1170 			/*
1171 			 * Might be executed at any moment, rely on
1172 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1173 			 */
1174 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1175 		}
1176 
1177 		/*
1178 		 * Theoretically, it can overflow, but that's fine as one of
1179 		 * previous adds should've tried to wake the task.
1180 		 */
1181 		nr_tw = nr_tw_prev + 1;
1182 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1183 			nr_tw = IO_CQ_WAKE_FORCE;
1184 
1185 		req->nr_tw = nr_tw;
1186 		req->io_task_work.node.next = head;
1187 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1188 			      &req->io_task_work.node));
1189 
1190 	/*
1191 	 * cmpxchg implies a full barrier, which pairs with the barrier
1192 	 * in set_current_state() on the io_cqring_wait() side. It's used
1193 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1194 	 * going to sleep will observe the work added to the list, which
1195 	 * is similar to the wait/wawke task state sync.
1196 	 */
1197 
1198 	if (!head) {
1199 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1200 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1201 		if (ctx->has_evfd)
1202 			io_eventfd_signal(ctx);
1203 	}
1204 
1205 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1206 	/* not enough or no one is waiting */
1207 	if (nr_tw < nr_wait)
1208 		return;
1209 	/* the previous add has already woken it up */
1210 	if (nr_tw_prev >= nr_wait)
1211 		return;
1212 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1213 }
1214 
1215 static void io_req_normal_work_add(struct io_kiocb *req)
1216 {
1217 	struct io_uring_task *tctx = req->tctx;
1218 	struct io_ring_ctx *ctx = req->ctx;
1219 
1220 	/* task_work already pending, we're done */
1221 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1222 		return;
1223 
1224 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1225 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1226 
1227 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1228 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1229 		struct io_sq_data *sqd = ctx->sq_data;
1230 
1231 		if (sqd->thread)
1232 			__set_notify_signal(sqd->thread);
1233 		return;
1234 	}
1235 
1236 	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1237 		return;
1238 
1239 	io_fallback_tw(tctx, false);
1240 }
1241 
1242 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1243 {
1244 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1245 		io_req_local_work_add(req, req->ctx, flags);
1246 	else
1247 		io_req_normal_work_add(req);
1248 }
1249 
1250 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1251 				 unsigned flags)
1252 {
1253 	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1254 		return;
1255 	io_req_local_work_add(req, ctx, flags);
1256 }
1257 
1258 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1259 {
1260 	struct llist_node *node = llist_del_all(&ctx->work_llist);
1261 
1262 	__io_fallback_tw(node, false);
1263 	node = llist_del_all(&ctx->retry_llist);
1264 	__io_fallback_tw(node, false);
1265 }
1266 
1267 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1268 				       int min_events)
1269 {
1270 	if (!io_local_work_pending(ctx))
1271 		return false;
1272 	if (events < min_events)
1273 		return true;
1274 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1275 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1276 	return false;
1277 }
1278 
1279 static int __io_run_local_work_loop(struct llist_node **node,
1280 				    struct io_tw_state *ts,
1281 				    int events)
1282 {
1283 	int ret = 0;
1284 
1285 	while (*node) {
1286 		struct llist_node *next = (*node)->next;
1287 		struct io_kiocb *req = container_of(*node, struct io_kiocb,
1288 						    io_task_work.node);
1289 		INDIRECT_CALL_2(req->io_task_work.func,
1290 				io_poll_task_func, io_req_rw_complete,
1291 				req, ts);
1292 		*node = next;
1293 		if (++ret >= events)
1294 			break;
1295 	}
1296 
1297 	return ret;
1298 }
1299 
1300 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1301 			       int min_events, int max_events)
1302 {
1303 	struct llist_node *node;
1304 	unsigned int loops = 0;
1305 	int ret = 0;
1306 
1307 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1308 		return -EEXIST;
1309 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1310 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1311 again:
1312 	min_events -= ret;
1313 	ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events);
1314 	if (ctx->retry_llist.first)
1315 		goto retry_done;
1316 
1317 	/*
1318 	 * llists are in reverse order, flip it back the right way before
1319 	 * running the pending items.
1320 	 */
1321 	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1322 	ret += __io_run_local_work_loop(&node, ts, max_events - ret);
1323 	ctx->retry_llist.first = node;
1324 	loops++;
1325 
1326 	if (io_run_local_work_continue(ctx, ret, min_events))
1327 		goto again;
1328 retry_done:
1329 	io_submit_flush_completions(ctx);
1330 	if (io_run_local_work_continue(ctx, ret, min_events))
1331 		goto again;
1332 
1333 	trace_io_uring_local_work_run(ctx, ret, loops);
1334 	return ret;
1335 }
1336 
1337 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1338 					   int min_events)
1339 {
1340 	struct io_tw_state ts = {};
1341 
1342 	if (!io_local_work_pending(ctx))
1343 		return 0;
1344 	return __io_run_local_work(ctx, &ts, min_events,
1345 					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1346 }
1347 
1348 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1349 			     int max_events)
1350 {
1351 	struct io_tw_state ts = {};
1352 	int ret;
1353 
1354 	mutex_lock(&ctx->uring_lock);
1355 	ret = __io_run_local_work(ctx, &ts, min_events, max_events);
1356 	mutex_unlock(&ctx->uring_lock);
1357 	return ret;
1358 }
1359 
1360 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1361 {
1362 	io_tw_lock(req->ctx, ts);
1363 	io_req_defer_failed(req, req->cqe.res);
1364 }
1365 
1366 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1367 {
1368 	io_tw_lock(req->ctx, ts);
1369 	if (unlikely(io_should_terminate_tw()))
1370 		io_req_defer_failed(req, -EFAULT);
1371 	else if (req->flags & REQ_F_FORCE_ASYNC)
1372 		io_queue_iowq(req);
1373 	else
1374 		io_queue_sqe(req);
1375 }
1376 
1377 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1378 {
1379 	io_req_set_res(req, ret, 0);
1380 	req->io_task_work.func = io_req_task_cancel;
1381 	io_req_task_work_add(req);
1382 }
1383 
1384 void io_req_task_queue(struct io_kiocb *req)
1385 {
1386 	req->io_task_work.func = io_req_task_submit;
1387 	io_req_task_work_add(req);
1388 }
1389 
1390 void io_queue_next(struct io_kiocb *req)
1391 {
1392 	struct io_kiocb *nxt = io_req_find_next(req);
1393 
1394 	if (nxt)
1395 		io_req_task_queue(nxt);
1396 }
1397 
1398 static void io_free_batch_list(struct io_ring_ctx *ctx,
1399 			       struct io_wq_work_node *node)
1400 	__must_hold(&ctx->uring_lock)
1401 {
1402 	do {
1403 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1404 						    comp_list);
1405 
1406 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1407 			if (req->flags & REQ_F_REFCOUNT) {
1408 				node = req->comp_list.next;
1409 				if (!req_ref_put_and_test(req))
1410 					continue;
1411 			}
1412 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1413 				struct async_poll *apoll = req->apoll;
1414 
1415 				if (apoll->double_poll)
1416 					kfree(apoll->double_poll);
1417 				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1418 					kfree(apoll);
1419 				req->flags &= ~REQ_F_POLLED;
1420 			}
1421 			if (req->flags & IO_REQ_LINK_FLAGS)
1422 				io_queue_next(req);
1423 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1424 				io_clean_op(req);
1425 		}
1426 		io_put_file(req);
1427 		io_req_put_rsrc_nodes(req);
1428 		io_put_task(req);
1429 
1430 		node = req->comp_list.next;
1431 		io_req_add_to_cache(req, ctx);
1432 	} while (node);
1433 }
1434 
1435 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1436 	__must_hold(&ctx->uring_lock)
1437 {
1438 	struct io_submit_state *state = &ctx->submit_state;
1439 	struct io_wq_work_node *node;
1440 
1441 	__io_cq_lock(ctx);
1442 	__wq_list_for_each(node, &state->compl_reqs) {
1443 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1444 					    comp_list);
1445 
1446 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1447 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1448 			if (ctx->lockless_cq) {
1449 				spin_lock(&ctx->completion_lock);
1450 				io_req_cqe_overflow(req);
1451 				spin_unlock(&ctx->completion_lock);
1452 			} else {
1453 				io_req_cqe_overflow(req);
1454 			}
1455 		}
1456 	}
1457 	__io_cq_unlock_post(ctx);
1458 
1459 	if (!wq_list_empty(&state->compl_reqs)) {
1460 		io_free_batch_list(ctx, state->compl_reqs.first);
1461 		INIT_WQ_LIST(&state->compl_reqs);
1462 	}
1463 	ctx->submit_state.cq_flush = false;
1464 }
1465 
1466 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1467 {
1468 	/* See comment at the top of this file */
1469 	smp_rmb();
1470 	return __io_cqring_events(ctx);
1471 }
1472 
1473 /*
1474  * We can't just wait for polled events to come to us, we have to actively
1475  * find and complete them.
1476  */
1477 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1478 {
1479 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1480 		return;
1481 
1482 	mutex_lock(&ctx->uring_lock);
1483 	while (!wq_list_empty(&ctx->iopoll_list)) {
1484 		/* let it sleep and repeat later if can't complete a request */
1485 		if (io_do_iopoll(ctx, true) == 0)
1486 			break;
1487 		/*
1488 		 * Ensure we allow local-to-the-cpu processing to take place,
1489 		 * in this case we need to ensure that we reap all events.
1490 		 * Also let task_work, etc. to progress by releasing the mutex
1491 		 */
1492 		if (need_resched()) {
1493 			mutex_unlock(&ctx->uring_lock);
1494 			cond_resched();
1495 			mutex_lock(&ctx->uring_lock);
1496 		}
1497 	}
1498 	mutex_unlock(&ctx->uring_lock);
1499 }
1500 
1501 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1502 {
1503 	unsigned int nr_events = 0;
1504 	unsigned long check_cq;
1505 
1506 	lockdep_assert_held(&ctx->uring_lock);
1507 
1508 	if (!io_allowed_run_tw(ctx))
1509 		return -EEXIST;
1510 
1511 	check_cq = READ_ONCE(ctx->check_cq);
1512 	if (unlikely(check_cq)) {
1513 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1514 			__io_cqring_overflow_flush(ctx, false);
1515 		/*
1516 		 * Similarly do not spin if we have not informed the user of any
1517 		 * dropped CQE.
1518 		 */
1519 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1520 			return -EBADR;
1521 	}
1522 	/*
1523 	 * Don't enter poll loop if we already have events pending.
1524 	 * If we do, we can potentially be spinning for commands that
1525 	 * already triggered a CQE (eg in error).
1526 	 */
1527 	if (io_cqring_events(ctx))
1528 		return 0;
1529 
1530 	do {
1531 		int ret = 0;
1532 
1533 		/*
1534 		 * If a submit got punted to a workqueue, we can have the
1535 		 * application entering polling for a command before it gets
1536 		 * issued. That app will hold the uring_lock for the duration
1537 		 * of the poll right here, so we need to take a breather every
1538 		 * now and then to ensure that the issue has a chance to add
1539 		 * the poll to the issued list. Otherwise we can spin here
1540 		 * forever, while the workqueue is stuck trying to acquire the
1541 		 * very same mutex.
1542 		 */
1543 		if (wq_list_empty(&ctx->iopoll_list) ||
1544 		    io_task_work_pending(ctx)) {
1545 			u32 tail = ctx->cached_cq_tail;
1546 
1547 			(void) io_run_local_work_locked(ctx, min);
1548 
1549 			if (task_work_pending(current) ||
1550 			    wq_list_empty(&ctx->iopoll_list)) {
1551 				mutex_unlock(&ctx->uring_lock);
1552 				io_run_task_work();
1553 				mutex_lock(&ctx->uring_lock);
1554 			}
1555 			/* some requests don't go through iopoll_list */
1556 			if (tail != ctx->cached_cq_tail ||
1557 			    wq_list_empty(&ctx->iopoll_list))
1558 				break;
1559 		}
1560 		ret = io_do_iopoll(ctx, !min);
1561 		if (unlikely(ret < 0))
1562 			return ret;
1563 
1564 		if (task_sigpending(current))
1565 			return -EINTR;
1566 		if (need_resched())
1567 			break;
1568 
1569 		nr_events += ret;
1570 	} while (nr_events < min);
1571 
1572 	return 0;
1573 }
1574 
1575 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1576 {
1577 	io_req_complete_defer(req);
1578 }
1579 
1580 /*
1581  * After the iocb has been issued, it's safe to be found on the poll list.
1582  * Adding the kiocb to the list AFTER submission ensures that we don't
1583  * find it from a io_do_iopoll() thread before the issuer is done
1584  * accessing the kiocb cookie.
1585  */
1586 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1587 {
1588 	struct io_ring_ctx *ctx = req->ctx;
1589 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1590 
1591 	/* workqueue context doesn't hold uring_lock, grab it now */
1592 	if (unlikely(needs_lock))
1593 		mutex_lock(&ctx->uring_lock);
1594 
1595 	/*
1596 	 * Track whether we have multiple files in our lists. This will impact
1597 	 * how we do polling eventually, not spinning if we're on potentially
1598 	 * different devices.
1599 	 */
1600 	if (wq_list_empty(&ctx->iopoll_list)) {
1601 		ctx->poll_multi_queue = false;
1602 	} else if (!ctx->poll_multi_queue) {
1603 		struct io_kiocb *list_req;
1604 
1605 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1606 					comp_list);
1607 		if (list_req->file != req->file)
1608 			ctx->poll_multi_queue = true;
1609 	}
1610 
1611 	/*
1612 	 * For fast devices, IO may have already completed. If it has, add
1613 	 * it to the front so we find it first.
1614 	 */
1615 	if (READ_ONCE(req->iopoll_completed))
1616 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1617 	else
1618 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1619 
1620 	if (unlikely(needs_lock)) {
1621 		/*
1622 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1623 		 * in sq thread task context or in io worker task context. If
1624 		 * current task context is sq thread, we don't need to check
1625 		 * whether should wake up sq thread.
1626 		 */
1627 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1628 		    wq_has_sleeper(&ctx->sq_data->wait))
1629 			wake_up(&ctx->sq_data->wait);
1630 
1631 		mutex_unlock(&ctx->uring_lock);
1632 	}
1633 }
1634 
1635 io_req_flags_t io_file_get_flags(struct file *file)
1636 {
1637 	io_req_flags_t res = 0;
1638 
1639 	if (S_ISREG(file_inode(file)->i_mode))
1640 		res |= REQ_F_ISREG;
1641 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1642 		res |= REQ_F_SUPPORT_NOWAIT;
1643 	return res;
1644 }
1645 
1646 bool io_alloc_async_data(struct io_kiocb *req)
1647 {
1648 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1649 
1650 	WARN_ON_ONCE(!def->async_size);
1651 	req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1652 	if (req->async_data) {
1653 		req->flags |= REQ_F_ASYNC_DATA;
1654 		return false;
1655 	}
1656 	return true;
1657 }
1658 
1659 static u32 io_get_sequence(struct io_kiocb *req)
1660 {
1661 	u32 seq = req->ctx->cached_sq_head;
1662 	struct io_kiocb *cur;
1663 
1664 	/* need original cached_sq_head, but it was increased for each req */
1665 	io_for_each_link(cur, req)
1666 		seq--;
1667 	return seq;
1668 }
1669 
1670 static __cold void io_drain_req(struct io_kiocb *req)
1671 	__must_hold(&ctx->uring_lock)
1672 {
1673 	struct io_ring_ctx *ctx = req->ctx;
1674 	struct io_defer_entry *de;
1675 	int ret;
1676 	u32 seq = io_get_sequence(req);
1677 
1678 	/* Still need defer if there is pending req in defer list. */
1679 	spin_lock(&ctx->completion_lock);
1680 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1681 		spin_unlock(&ctx->completion_lock);
1682 queue:
1683 		ctx->drain_active = false;
1684 		io_req_task_queue(req);
1685 		return;
1686 	}
1687 	spin_unlock(&ctx->completion_lock);
1688 
1689 	io_prep_async_link(req);
1690 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1691 	if (!de) {
1692 		ret = -ENOMEM;
1693 		io_req_defer_failed(req, ret);
1694 		return;
1695 	}
1696 
1697 	spin_lock(&ctx->completion_lock);
1698 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1699 		spin_unlock(&ctx->completion_lock);
1700 		kfree(de);
1701 		goto queue;
1702 	}
1703 
1704 	trace_io_uring_defer(req);
1705 	de->req = req;
1706 	de->seq = seq;
1707 	list_add_tail(&de->list, &ctx->defer_list);
1708 	spin_unlock(&ctx->completion_lock);
1709 }
1710 
1711 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1712 			   unsigned int issue_flags)
1713 {
1714 	if (req->file || !def->needs_file)
1715 		return true;
1716 
1717 	if (req->flags & REQ_F_FIXED_FILE)
1718 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1719 	else
1720 		req->file = io_file_get_normal(req, req->cqe.fd);
1721 
1722 	return !!req->file;
1723 }
1724 
1725 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1726 {
1727 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1728 	const struct cred *creds = NULL;
1729 	int ret;
1730 
1731 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1732 		return -EBADF;
1733 
1734 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1735 		creds = override_creds(req->creds);
1736 
1737 	if (!def->audit_skip)
1738 		audit_uring_entry(req->opcode);
1739 
1740 	ret = def->issue(req, issue_flags);
1741 
1742 	if (!def->audit_skip)
1743 		audit_uring_exit(!ret, ret);
1744 
1745 	if (creds)
1746 		revert_creds(creds);
1747 
1748 	if (ret == IOU_OK) {
1749 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1750 			io_req_complete_defer(req);
1751 		else
1752 			io_req_complete_post(req, issue_flags);
1753 
1754 		return 0;
1755 	}
1756 
1757 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1758 		ret = 0;
1759 		io_arm_ltimeout(req);
1760 
1761 		/* If the op doesn't have a file, we're not polling for it */
1762 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1763 			io_iopoll_req_issued(req, issue_flags);
1764 	}
1765 	return ret;
1766 }
1767 
1768 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1769 {
1770 	io_tw_lock(req->ctx, ts);
1771 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1772 				 IO_URING_F_COMPLETE_DEFER);
1773 }
1774 
1775 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1776 {
1777 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1778 	struct io_kiocb *nxt = NULL;
1779 
1780 	if (req_ref_put_and_test(req)) {
1781 		if (req->flags & IO_REQ_LINK_FLAGS)
1782 			nxt = io_req_find_next(req);
1783 		io_free_req(req);
1784 	}
1785 	return nxt ? &nxt->work : NULL;
1786 }
1787 
1788 void io_wq_submit_work(struct io_wq_work *work)
1789 {
1790 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1791 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1792 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1793 	bool needs_poll = false;
1794 	int ret = 0, err = -ECANCELED;
1795 
1796 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1797 	if (!(req->flags & REQ_F_REFCOUNT))
1798 		__io_req_set_refcount(req, 2);
1799 	else
1800 		req_ref_get(req);
1801 
1802 	io_arm_ltimeout(req);
1803 
1804 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1805 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1806 fail:
1807 		io_req_task_queue_fail(req, err);
1808 		return;
1809 	}
1810 	if (!io_assign_file(req, def, issue_flags)) {
1811 		err = -EBADF;
1812 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1813 		goto fail;
1814 	}
1815 
1816 	/*
1817 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1818 	 * submitter task context. Final request completions are handed to the
1819 	 * right context, however this is not the case of auxiliary CQEs,
1820 	 * which is the main mean of operation for multishot requests.
1821 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1822 	 * than necessary and also cleaner.
1823 	 */
1824 	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1825 		err = -EBADFD;
1826 		if (!io_file_can_poll(req))
1827 			goto fail;
1828 		if (req->file->f_flags & O_NONBLOCK ||
1829 		    req->file->f_mode & FMODE_NOWAIT) {
1830 			err = -ECANCELED;
1831 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1832 				goto fail;
1833 			return;
1834 		} else {
1835 			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1836 		}
1837 	}
1838 
1839 	if (req->flags & REQ_F_FORCE_ASYNC) {
1840 		bool opcode_poll = def->pollin || def->pollout;
1841 
1842 		if (opcode_poll && io_file_can_poll(req)) {
1843 			needs_poll = true;
1844 			issue_flags |= IO_URING_F_NONBLOCK;
1845 		}
1846 	}
1847 
1848 	do {
1849 		ret = io_issue_sqe(req, issue_flags);
1850 		if (ret != -EAGAIN)
1851 			break;
1852 
1853 		/*
1854 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1855 		 * poll. -EAGAIN is final for that case.
1856 		 */
1857 		if (req->flags & REQ_F_NOWAIT)
1858 			break;
1859 
1860 		/*
1861 		 * We can get EAGAIN for iopolled IO even though we're
1862 		 * forcing a sync submission from here, since we can't
1863 		 * wait for request slots on the block side.
1864 		 */
1865 		if (!needs_poll) {
1866 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1867 				break;
1868 			if (io_wq_worker_stopped())
1869 				break;
1870 			cond_resched();
1871 			continue;
1872 		}
1873 
1874 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1875 			return;
1876 		/* aborted or ready, in either case retry blocking */
1877 		needs_poll = false;
1878 		issue_flags &= ~IO_URING_F_NONBLOCK;
1879 	} while (1);
1880 
1881 	/* avoid locking problems by failing it from a clean context */
1882 	if (ret)
1883 		io_req_task_queue_fail(req, ret);
1884 }
1885 
1886 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1887 				      unsigned int issue_flags)
1888 {
1889 	struct io_ring_ctx *ctx = req->ctx;
1890 	struct io_rsrc_node *node;
1891 	struct file *file = NULL;
1892 
1893 	io_ring_submit_lock(ctx, issue_flags);
1894 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1895 	if (node) {
1896 		io_req_assign_rsrc_node(&req->file_node, node);
1897 		req->flags |= io_slot_flags(node);
1898 		file = io_slot_file(node);
1899 	}
1900 	io_ring_submit_unlock(ctx, issue_flags);
1901 	return file;
1902 }
1903 
1904 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1905 {
1906 	struct file *file = fget(fd);
1907 
1908 	trace_io_uring_file_get(req, fd);
1909 
1910 	/* we don't allow fixed io_uring files */
1911 	if (file && io_is_uring_fops(file))
1912 		io_req_track_inflight(req);
1913 	return file;
1914 }
1915 
1916 static void io_queue_async(struct io_kiocb *req, int ret)
1917 	__must_hold(&req->ctx->uring_lock)
1918 {
1919 	struct io_kiocb *linked_timeout;
1920 
1921 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1922 		io_req_defer_failed(req, ret);
1923 		return;
1924 	}
1925 
1926 	linked_timeout = io_prep_linked_timeout(req);
1927 
1928 	switch (io_arm_poll_handler(req, 0)) {
1929 	case IO_APOLL_READY:
1930 		io_kbuf_recycle(req, 0);
1931 		io_req_task_queue(req);
1932 		break;
1933 	case IO_APOLL_ABORTED:
1934 		io_kbuf_recycle(req, 0);
1935 		io_queue_iowq(req);
1936 		break;
1937 	case IO_APOLL_OK:
1938 		break;
1939 	}
1940 
1941 	if (linked_timeout)
1942 		io_queue_linked_timeout(linked_timeout);
1943 }
1944 
1945 static inline void io_queue_sqe(struct io_kiocb *req)
1946 	__must_hold(&req->ctx->uring_lock)
1947 {
1948 	int ret;
1949 
1950 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1951 
1952 	/*
1953 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1954 	 * doesn't support non-blocking read/write attempts
1955 	 */
1956 	if (unlikely(ret))
1957 		io_queue_async(req, ret);
1958 }
1959 
1960 static void io_queue_sqe_fallback(struct io_kiocb *req)
1961 	__must_hold(&req->ctx->uring_lock)
1962 {
1963 	if (unlikely(req->flags & REQ_F_FAIL)) {
1964 		/*
1965 		 * We don't submit, fail them all, for that replace hardlinks
1966 		 * with normal links. Extra REQ_F_LINK is tolerated.
1967 		 */
1968 		req->flags &= ~REQ_F_HARDLINK;
1969 		req->flags |= REQ_F_LINK;
1970 		io_req_defer_failed(req, req->cqe.res);
1971 	} else {
1972 		if (unlikely(req->ctx->drain_active))
1973 			io_drain_req(req);
1974 		else
1975 			io_queue_iowq(req);
1976 	}
1977 }
1978 
1979 /*
1980  * Check SQE restrictions (opcode and flags).
1981  *
1982  * Returns 'true' if SQE is allowed, 'false' otherwise.
1983  */
1984 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1985 					struct io_kiocb *req,
1986 					unsigned int sqe_flags)
1987 {
1988 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1989 		return false;
1990 
1991 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1992 	    ctx->restrictions.sqe_flags_required)
1993 		return false;
1994 
1995 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1996 			  ctx->restrictions.sqe_flags_required))
1997 		return false;
1998 
1999 	return true;
2000 }
2001 
2002 static void io_init_req_drain(struct io_kiocb *req)
2003 {
2004 	struct io_ring_ctx *ctx = req->ctx;
2005 	struct io_kiocb *head = ctx->submit_state.link.head;
2006 
2007 	ctx->drain_active = true;
2008 	if (head) {
2009 		/*
2010 		 * If we need to drain a request in the middle of a link, drain
2011 		 * the head request and the next request/link after the current
2012 		 * link. Considering sequential execution of links,
2013 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2014 		 * link.
2015 		 */
2016 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2017 		ctx->drain_next = true;
2018 	}
2019 }
2020 
2021 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2022 {
2023 	/* ensure per-opcode data is cleared if we fail before prep */
2024 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2025 	return err;
2026 }
2027 
2028 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2029 		       const struct io_uring_sqe *sqe)
2030 	__must_hold(&ctx->uring_lock)
2031 {
2032 	const struct io_issue_def *def;
2033 	unsigned int sqe_flags;
2034 	int personality;
2035 	u8 opcode;
2036 
2037 	/* req is partially pre-initialised, see io_preinit_req() */
2038 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2039 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2040 	sqe_flags = READ_ONCE(sqe->flags);
2041 	req->flags = (__force io_req_flags_t) sqe_flags;
2042 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2043 	req->file = NULL;
2044 	req->tctx = current->io_uring;
2045 	req->cancel_seq_set = false;
2046 
2047 	if (unlikely(opcode >= IORING_OP_LAST)) {
2048 		req->opcode = 0;
2049 		return io_init_fail_req(req, -EINVAL);
2050 	}
2051 	def = &io_issue_defs[opcode];
2052 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2053 		/* enforce forwards compatibility on users */
2054 		if (sqe_flags & ~SQE_VALID_FLAGS)
2055 			return io_init_fail_req(req, -EINVAL);
2056 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2057 			if (!def->buffer_select)
2058 				return io_init_fail_req(req, -EOPNOTSUPP);
2059 			req->buf_index = READ_ONCE(sqe->buf_group);
2060 		}
2061 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2062 			ctx->drain_disabled = true;
2063 		if (sqe_flags & IOSQE_IO_DRAIN) {
2064 			if (ctx->drain_disabled)
2065 				return io_init_fail_req(req, -EOPNOTSUPP);
2066 			io_init_req_drain(req);
2067 		}
2068 	}
2069 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2070 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2071 			return io_init_fail_req(req, -EACCES);
2072 		/* knock it to the slow queue path, will be drained there */
2073 		if (ctx->drain_active)
2074 			req->flags |= REQ_F_FORCE_ASYNC;
2075 		/* if there is no link, we're at "next" request and need to drain */
2076 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2077 			ctx->drain_next = false;
2078 			ctx->drain_active = true;
2079 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2080 		}
2081 	}
2082 
2083 	if (!def->ioprio && sqe->ioprio)
2084 		return io_init_fail_req(req, -EINVAL);
2085 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2086 		return io_init_fail_req(req, -EINVAL);
2087 
2088 	if (def->needs_file) {
2089 		struct io_submit_state *state = &ctx->submit_state;
2090 
2091 		req->cqe.fd = READ_ONCE(sqe->fd);
2092 
2093 		/*
2094 		 * Plug now if we have more than 2 IO left after this, and the
2095 		 * target is potentially a read/write to block based storage.
2096 		 */
2097 		if (state->need_plug && def->plug) {
2098 			state->plug_started = true;
2099 			state->need_plug = false;
2100 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2101 		}
2102 	}
2103 
2104 	personality = READ_ONCE(sqe->personality);
2105 	if (personality) {
2106 		int ret;
2107 
2108 		req->creds = xa_load(&ctx->personalities, personality);
2109 		if (!req->creds)
2110 			return io_init_fail_req(req, -EINVAL);
2111 		get_cred(req->creds);
2112 		ret = security_uring_override_creds(req->creds);
2113 		if (ret) {
2114 			put_cred(req->creds);
2115 			return io_init_fail_req(req, ret);
2116 		}
2117 		req->flags |= REQ_F_CREDS;
2118 	}
2119 
2120 	return def->prep(req, sqe);
2121 }
2122 
2123 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2124 				      struct io_kiocb *req, int ret)
2125 {
2126 	struct io_ring_ctx *ctx = req->ctx;
2127 	struct io_submit_link *link = &ctx->submit_state.link;
2128 	struct io_kiocb *head = link->head;
2129 
2130 	trace_io_uring_req_failed(sqe, req, ret);
2131 
2132 	/*
2133 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2134 	 * unusable. Instead of failing eagerly, continue assembling the link if
2135 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2136 	 * should find the flag and handle the rest.
2137 	 */
2138 	req_fail_link_node(req, ret);
2139 	if (head && !(head->flags & REQ_F_FAIL))
2140 		req_fail_link_node(head, -ECANCELED);
2141 
2142 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2143 		if (head) {
2144 			link->last->link = req;
2145 			link->head = NULL;
2146 			req = head;
2147 		}
2148 		io_queue_sqe_fallback(req);
2149 		return ret;
2150 	}
2151 
2152 	if (head)
2153 		link->last->link = req;
2154 	else
2155 		link->head = req;
2156 	link->last = req;
2157 	return 0;
2158 }
2159 
2160 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2161 			 const struct io_uring_sqe *sqe)
2162 	__must_hold(&ctx->uring_lock)
2163 {
2164 	struct io_submit_link *link = &ctx->submit_state.link;
2165 	int ret;
2166 
2167 	ret = io_init_req(ctx, req, sqe);
2168 	if (unlikely(ret))
2169 		return io_submit_fail_init(sqe, req, ret);
2170 
2171 	trace_io_uring_submit_req(req);
2172 
2173 	/*
2174 	 * If we already have a head request, queue this one for async
2175 	 * submittal once the head completes. If we don't have a head but
2176 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2177 	 * submitted sync once the chain is complete. If none of those
2178 	 * conditions are true (normal request), then just queue it.
2179 	 */
2180 	if (unlikely(link->head)) {
2181 		trace_io_uring_link(req, link->last);
2182 		link->last->link = req;
2183 		link->last = req;
2184 
2185 		if (req->flags & IO_REQ_LINK_FLAGS)
2186 			return 0;
2187 		/* last request of the link, flush it */
2188 		req = link->head;
2189 		link->head = NULL;
2190 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2191 			goto fallback;
2192 
2193 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2194 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2195 		if (req->flags & IO_REQ_LINK_FLAGS) {
2196 			link->head = req;
2197 			link->last = req;
2198 		} else {
2199 fallback:
2200 			io_queue_sqe_fallback(req);
2201 		}
2202 		return 0;
2203 	}
2204 
2205 	io_queue_sqe(req);
2206 	return 0;
2207 }
2208 
2209 /*
2210  * Batched submission is done, ensure local IO is flushed out.
2211  */
2212 static void io_submit_state_end(struct io_ring_ctx *ctx)
2213 {
2214 	struct io_submit_state *state = &ctx->submit_state;
2215 
2216 	if (unlikely(state->link.head))
2217 		io_queue_sqe_fallback(state->link.head);
2218 	/* flush only after queuing links as they can generate completions */
2219 	io_submit_flush_completions(ctx);
2220 	if (state->plug_started)
2221 		blk_finish_plug(&state->plug);
2222 }
2223 
2224 /*
2225  * Start submission side cache.
2226  */
2227 static void io_submit_state_start(struct io_submit_state *state,
2228 				  unsigned int max_ios)
2229 {
2230 	state->plug_started = false;
2231 	state->need_plug = max_ios > 2;
2232 	state->submit_nr = max_ios;
2233 	/* set only head, no need to init link_last in advance */
2234 	state->link.head = NULL;
2235 }
2236 
2237 static void io_commit_sqring(struct io_ring_ctx *ctx)
2238 {
2239 	struct io_rings *rings = ctx->rings;
2240 
2241 	/*
2242 	 * Ensure any loads from the SQEs are done at this point,
2243 	 * since once we write the new head, the application could
2244 	 * write new data to them.
2245 	 */
2246 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2247 }
2248 
2249 /*
2250  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2251  * that is mapped by userspace. This means that care needs to be taken to
2252  * ensure that reads are stable, as we cannot rely on userspace always
2253  * being a good citizen. If members of the sqe are validated and then later
2254  * used, it's important that those reads are done through READ_ONCE() to
2255  * prevent a re-load down the line.
2256  */
2257 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2258 {
2259 	unsigned mask = ctx->sq_entries - 1;
2260 	unsigned head = ctx->cached_sq_head++ & mask;
2261 
2262 	if (static_branch_unlikely(&io_key_has_sqarray) &&
2263 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2264 		head = READ_ONCE(ctx->sq_array[head]);
2265 		if (unlikely(head >= ctx->sq_entries)) {
2266 			/* drop invalid entries */
2267 			spin_lock(&ctx->completion_lock);
2268 			ctx->cq_extra--;
2269 			spin_unlock(&ctx->completion_lock);
2270 			WRITE_ONCE(ctx->rings->sq_dropped,
2271 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2272 			return false;
2273 		}
2274 		head = array_index_nospec(head, ctx->sq_entries);
2275 	}
2276 
2277 	/*
2278 	 * The cached sq head (or cq tail) serves two purposes:
2279 	 *
2280 	 * 1) allows us to batch the cost of updating the user visible
2281 	 *    head updates.
2282 	 * 2) allows the kernel side to track the head on its own, even
2283 	 *    though the application is the one updating it.
2284 	 */
2285 
2286 	/* double index for 128-byte SQEs, twice as long */
2287 	if (ctx->flags & IORING_SETUP_SQE128)
2288 		head <<= 1;
2289 	*sqe = &ctx->sq_sqes[head];
2290 	return true;
2291 }
2292 
2293 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2294 	__must_hold(&ctx->uring_lock)
2295 {
2296 	unsigned int entries = io_sqring_entries(ctx);
2297 	unsigned int left;
2298 	int ret;
2299 
2300 	if (unlikely(!entries))
2301 		return 0;
2302 	/* make sure SQ entry isn't read before tail */
2303 	ret = left = min(nr, entries);
2304 	io_get_task_refs(left);
2305 	io_submit_state_start(&ctx->submit_state, left);
2306 
2307 	do {
2308 		const struct io_uring_sqe *sqe;
2309 		struct io_kiocb *req;
2310 
2311 		if (unlikely(!io_alloc_req(ctx, &req)))
2312 			break;
2313 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2314 			io_req_add_to_cache(req, ctx);
2315 			break;
2316 		}
2317 
2318 		/*
2319 		 * Continue submitting even for sqe failure if the
2320 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2321 		 */
2322 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2323 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2324 			left--;
2325 			break;
2326 		}
2327 	} while (--left);
2328 
2329 	if (unlikely(left)) {
2330 		ret -= left;
2331 		/* try again if it submitted nothing and can't allocate a req */
2332 		if (!ret && io_req_cache_empty(ctx))
2333 			ret = -EAGAIN;
2334 		current->io_uring->cached_refs += left;
2335 	}
2336 
2337 	io_submit_state_end(ctx);
2338 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2339 	io_commit_sqring(ctx);
2340 	return ret;
2341 }
2342 
2343 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2344 			    int wake_flags, void *key)
2345 {
2346 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2347 
2348 	/*
2349 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2350 	 * the task, and the next invocation will do it.
2351 	 */
2352 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2353 		return autoremove_wake_function(curr, mode, wake_flags, key);
2354 	return -1;
2355 }
2356 
2357 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2358 {
2359 	if (io_local_work_pending(ctx)) {
2360 		__set_current_state(TASK_RUNNING);
2361 		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2362 			return 0;
2363 	}
2364 	if (io_run_task_work() > 0)
2365 		return 0;
2366 	if (task_sigpending(current))
2367 		return -EINTR;
2368 	return 0;
2369 }
2370 
2371 static bool current_pending_io(void)
2372 {
2373 	struct io_uring_task *tctx = current->io_uring;
2374 
2375 	if (!tctx)
2376 		return false;
2377 	return percpu_counter_read_positive(&tctx->inflight);
2378 }
2379 
2380 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2381 {
2382 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2383 
2384 	WRITE_ONCE(iowq->hit_timeout, 1);
2385 	iowq->min_timeout = 0;
2386 	wake_up_process(iowq->wq.private);
2387 	return HRTIMER_NORESTART;
2388 }
2389 
2390 /*
2391  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2392  * wake up. If not, and we have a normal timeout, switch to that and keep
2393  * sleeping.
2394  */
2395 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2396 {
2397 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2398 	struct io_ring_ctx *ctx = iowq->ctx;
2399 
2400 	/* no general timeout, or shorter (or equal), we are done */
2401 	if (iowq->timeout == KTIME_MAX ||
2402 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2403 		goto out_wake;
2404 	/* work we may need to run, wake function will see if we need to wake */
2405 	if (io_has_work(ctx))
2406 		goto out_wake;
2407 	/* got events since we started waiting, min timeout is done */
2408 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2409 		goto out_wake;
2410 	/* if we have any events and min timeout expired, we're done */
2411 	if (io_cqring_events(ctx))
2412 		goto out_wake;
2413 
2414 	/*
2415 	 * If using deferred task_work running and application is waiting on
2416 	 * more than one request, ensure we reset it now where we are switching
2417 	 * to normal sleeps. Any request completion post min_wait should wake
2418 	 * the task and return.
2419 	 */
2420 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2421 		atomic_set(&ctx->cq_wait_nr, 1);
2422 		smp_mb();
2423 		if (!llist_empty(&ctx->work_llist))
2424 			goto out_wake;
2425 	}
2426 
2427 	iowq->t.function = io_cqring_timer_wakeup;
2428 	hrtimer_set_expires(timer, iowq->timeout);
2429 	return HRTIMER_RESTART;
2430 out_wake:
2431 	return io_cqring_timer_wakeup(timer);
2432 }
2433 
2434 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2435 				      clockid_t clock_id, ktime_t start_time)
2436 {
2437 	ktime_t timeout;
2438 
2439 	if (iowq->min_timeout) {
2440 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2441 		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2442 				       HRTIMER_MODE_ABS);
2443 	} else {
2444 		timeout = iowq->timeout;
2445 		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2446 				       HRTIMER_MODE_ABS);
2447 	}
2448 
2449 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2450 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2451 
2452 	if (!READ_ONCE(iowq->hit_timeout))
2453 		schedule();
2454 
2455 	hrtimer_cancel(&iowq->t);
2456 	destroy_hrtimer_on_stack(&iowq->t);
2457 	__set_current_state(TASK_RUNNING);
2458 
2459 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2460 }
2461 
2462 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2463 				     struct io_wait_queue *iowq,
2464 				     ktime_t start_time)
2465 {
2466 	int ret = 0;
2467 
2468 	/*
2469 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2470 	 * can take into account that the task is waiting for IO - turns out
2471 	 * to be important for low QD IO.
2472 	 */
2473 	if (current_pending_io())
2474 		current->in_iowait = 1;
2475 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2476 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2477 	else
2478 		schedule();
2479 	current->in_iowait = 0;
2480 	return ret;
2481 }
2482 
2483 /* If this returns > 0, the caller should retry */
2484 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2485 					  struct io_wait_queue *iowq,
2486 					  ktime_t start_time)
2487 {
2488 	if (unlikely(READ_ONCE(ctx->check_cq)))
2489 		return 1;
2490 	if (unlikely(io_local_work_pending(ctx)))
2491 		return 1;
2492 	if (unlikely(task_work_pending(current)))
2493 		return 1;
2494 	if (unlikely(task_sigpending(current)))
2495 		return -EINTR;
2496 	if (unlikely(io_should_wake(iowq)))
2497 		return 0;
2498 
2499 	return __io_cqring_wait_schedule(ctx, iowq, start_time);
2500 }
2501 
2502 struct ext_arg {
2503 	size_t argsz;
2504 	struct timespec64 ts;
2505 	const sigset_t __user *sig;
2506 	ktime_t min_time;
2507 	bool ts_set;
2508 };
2509 
2510 /*
2511  * Wait until events become available, if we don't already have some. The
2512  * application must reap them itself, as they reside on the shared cq ring.
2513  */
2514 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2515 			  struct ext_arg *ext_arg)
2516 {
2517 	struct io_wait_queue iowq;
2518 	struct io_rings *rings = ctx->rings;
2519 	ktime_t start_time;
2520 	int ret;
2521 
2522 	if (!io_allowed_run_tw(ctx))
2523 		return -EEXIST;
2524 	if (io_local_work_pending(ctx))
2525 		io_run_local_work(ctx, min_events,
2526 				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2527 	io_run_task_work();
2528 
2529 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2530 		io_cqring_do_overflow_flush(ctx);
2531 	if (__io_cqring_events_user(ctx) >= min_events)
2532 		return 0;
2533 
2534 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2535 	iowq.wq.private = current;
2536 	INIT_LIST_HEAD(&iowq.wq.entry);
2537 	iowq.ctx = ctx;
2538 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2539 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2540 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2541 	iowq.hit_timeout = 0;
2542 	iowq.min_timeout = ext_arg->min_time;
2543 	iowq.timeout = KTIME_MAX;
2544 	start_time = io_get_time(ctx);
2545 
2546 	if (ext_arg->ts_set) {
2547 		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2548 		if (!(flags & IORING_ENTER_ABS_TIMER))
2549 			iowq.timeout = ktime_add(iowq.timeout, start_time);
2550 	}
2551 
2552 	if (ext_arg->sig) {
2553 #ifdef CONFIG_COMPAT
2554 		if (in_compat_syscall())
2555 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2556 						      ext_arg->argsz);
2557 		else
2558 #endif
2559 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2560 
2561 		if (ret)
2562 			return ret;
2563 	}
2564 
2565 	io_napi_busy_loop(ctx, &iowq);
2566 
2567 	trace_io_uring_cqring_wait(ctx, min_events);
2568 	do {
2569 		unsigned long check_cq;
2570 		int nr_wait;
2571 
2572 		/* if min timeout has been hit, don't reset wait count */
2573 		if (!iowq.hit_timeout)
2574 			nr_wait = (int) iowq.cq_tail -
2575 					READ_ONCE(ctx->rings->cq.tail);
2576 		else
2577 			nr_wait = 1;
2578 
2579 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2580 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2581 			set_current_state(TASK_INTERRUPTIBLE);
2582 		} else {
2583 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2584 							TASK_INTERRUPTIBLE);
2585 		}
2586 
2587 		ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2588 		__set_current_state(TASK_RUNNING);
2589 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2590 
2591 		/*
2592 		 * Run task_work after scheduling and before io_should_wake().
2593 		 * If we got woken because of task_work being processed, run it
2594 		 * now rather than let the caller do another wait loop.
2595 		 */
2596 		if (io_local_work_pending(ctx))
2597 			io_run_local_work(ctx, nr_wait, nr_wait);
2598 		io_run_task_work();
2599 
2600 		/*
2601 		 * Non-local task_work will be run on exit to userspace, but
2602 		 * if we're using DEFER_TASKRUN, then we could have waited
2603 		 * with a timeout for a number of requests. If the timeout
2604 		 * hits, we could have some requests ready to process. Ensure
2605 		 * this break is _after_ we have run task_work, to avoid
2606 		 * deferring running potentially pending requests until the
2607 		 * next time we wait for events.
2608 		 */
2609 		if (ret < 0)
2610 			break;
2611 
2612 		check_cq = READ_ONCE(ctx->check_cq);
2613 		if (unlikely(check_cq)) {
2614 			/* let the caller flush overflows, retry */
2615 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2616 				io_cqring_do_overflow_flush(ctx);
2617 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2618 				ret = -EBADR;
2619 				break;
2620 			}
2621 		}
2622 
2623 		if (io_should_wake(&iowq)) {
2624 			ret = 0;
2625 			break;
2626 		}
2627 		cond_resched();
2628 	} while (1);
2629 
2630 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2631 		finish_wait(&ctx->cq_wait, &iowq.wq);
2632 	restore_saved_sigmask_unless(ret == -EINTR);
2633 
2634 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2635 }
2636 
2637 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2638 			  size_t size)
2639 {
2640 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2641 				size);
2642 }
2643 
2644 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2645 			 size_t size)
2646 {
2647 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2648 				size);
2649 }
2650 
2651 static void io_rings_free(struct io_ring_ctx *ctx)
2652 {
2653 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2654 		io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2655 				true);
2656 		io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2657 				true);
2658 	} else {
2659 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2660 		ctx->n_ring_pages = 0;
2661 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2662 		ctx->n_sqe_pages = 0;
2663 		vunmap(ctx->rings);
2664 		vunmap(ctx->sq_sqes);
2665 	}
2666 
2667 	ctx->rings = NULL;
2668 	ctx->sq_sqes = NULL;
2669 }
2670 
2671 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2672 			 unsigned int cq_entries, size_t *sq_offset)
2673 {
2674 	struct io_rings *rings;
2675 	size_t off, sq_array_size;
2676 
2677 	off = struct_size(rings, cqes, cq_entries);
2678 	if (off == SIZE_MAX)
2679 		return SIZE_MAX;
2680 	if (flags & IORING_SETUP_CQE32) {
2681 		if (check_shl_overflow(off, 1, &off))
2682 			return SIZE_MAX;
2683 	}
2684 
2685 #ifdef CONFIG_SMP
2686 	off = ALIGN(off, SMP_CACHE_BYTES);
2687 	if (off == 0)
2688 		return SIZE_MAX;
2689 #endif
2690 
2691 	if (flags & IORING_SETUP_NO_SQARRAY) {
2692 		*sq_offset = SIZE_MAX;
2693 		return off;
2694 	}
2695 
2696 	*sq_offset = off;
2697 
2698 	sq_array_size = array_size(sizeof(u32), sq_entries);
2699 	if (sq_array_size == SIZE_MAX)
2700 		return SIZE_MAX;
2701 
2702 	if (check_add_overflow(off, sq_array_size, &off))
2703 		return SIZE_MAX;
2704 
2705 	return off;
2706 }
2707 
2708 static void io_req_caches_free(struct io_ring_ctx *ctx)
2709 {
2710 	struct io_kiocb *req;
2711 	int nr = 0;
2712 
2713 	mutex_lock(&ctx->uring_lock);
2714 
2715 	while (!io_req_cache_empty(ctx)) {
2716 		req = io_extract_req(ctx);
2717 		kmem_cache_free(req_cachep, req);
2718 		nr++;
2719 	}
2720 	if (nr)
2721 		percpu_ref_put_many(&ctx->refs, nr);
2722 	mutex_unlock(&ctx->uring_lock);
2723 }
2724 
2725 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2726 {
2727 	io_sq_thread_finish(ctx);
2728 
2729 	mutex_lock(&ctx->uring_lock);
2730 	io_sqe_buffers_unregister(ctx);
2731 	io_sqe_files_unregister(ctx);
2732 	io_cqring_overflow_kill(ctx);
2733 	io_eventfd_unregister(ctx);
2734 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2735 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2736 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2737 	io_alloc_cache_free(&ctx->uring_cache, kfree);
2738 	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2739 	io_futex_cache_free(ctx);
2740 	io_destroy_buffers(ctx);
2741 	io_free_region(ctx, &ctx->param_region);
2742 	mutex_unlock(&ctx->uring_lock);
2743 	if (ctx->sq_creds)
2744 		put_cred(ctx->sq_creds);
2745 	if (ctx->submitter_task)
2746 		put_task_struct(ctx->submitter_task);
2747 
2748 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2749 
2750 	if (ctx->mm_account) {
2751 		mmdrop(ctx->mm_account);
2752 		ctx->mm_account = NULL;
2753 	}
2754 	io_rings_free(ctx);
2755 
2756 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2757 		static_branch_dec(&io_key_has_sqarray);
2758 
2759 	percpu_ref_exit(&ctx->refs);
2760 	free_uid(ctx->user);
2761 	io_req_caches_free(ctx);
2762 	if (ctx->hash_map)
2763 		io_wq_put_hash(ctx->hash_map);
2764 	io_napi_free(ctx);
2765 	kvfree(ctx->cancel_table.hbs);
2766 	xa_destroy(&ctx->io_bl_xa);
2767 	kfree(ctx);
2768 }
2769 
2770 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2771 {
2772 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2773 					       poll_wq_task_work);
2774 
2775 	mutex_lock(&ctx->uring_lock);
2776 	ctx->poll_activated = true;
2777 	mutex_unlock(&ctx->uring_lock);
2778 
2779 	/*
2780 	 * Wake ups for some events between start of polling and activation
2781 	 * might've been lost due to loose synchronisation.
2782 	 */
2783 	wake_up_all(&ctx->poll_wq);
2784 	percpu_ref_put(&ctx->refs);
2785 }
2786 
2787 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2788 {
2789 	spin_lock(&ctx->completion_lock);
2790 	/* already activated or in progress */
2791 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2792 		goto out;
2793 	if (WARN_ON_ONCE(!ctx->task_complete))
2794 		goto out;
2795 	if (!ctx->submitter_task)
2796 		goto out;
2797 	/*
2798 	 * with ->submitter_task only the submitter task completes requests, we
2799 	 * only need to sync with it, which is done by injecting a tw
2800 	 */
2801 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2802 	percpu_ref_get(&ctx->refs);
2803 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2804 		percpu_ref_put(&ctx->refs);
2805 out:
2806 	spin_unlock(&ctx->completion_lock);
2807 }
2808 
2809 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2810 {
2811 	struct io_ring_ctx *ctx = file->private_data;
2812 	__poll_t mask = 0;
2813 
2814 	if (unlikely(!ctx->poll_activated))
2815 		io_activate_pollwq(ctx);
2816 	/*
2817 	 * provides mb() which pairs with barrier from wq_has_sleeper
2818 	 * call in io_commit_cqring
2819 	 */
2820 	poll_wait(file, &ctx->poll_wq, wait);
2821 
2822 	if (!io_sqring_full(ctx))
2823 		mask |= EPOLLOUT | EPOLLWRNORM;
2824 
2825 	/*
2826 	 * Don't flush cqring overflow list here, just do a simple check.
2827 	 * Otherwise there could possible be ABBA deadlock:
2828 	 *      CPU0                    CPU1
2829 	 *      ----                    ----
2830 	 * lock(&ctx->uring_lock);
2831 	 *                              lock(&ep->mtx);
2832 	 *                              lock(&ctx->uring_lock);
2833 	 * lock(&ep->mtx);
2834 	 *
2835 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2836 	 * pushes them to do the flush.
2837 	 */
2838 
2839 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2840 		mask |= EPOLLIN | EPOLLRDNORM;
2841 
2842 	return mask;
2843 }
2844 
2845 struct io_tctx_exit {
2846 	struct callback_head		task_work;
2847 	struct completion		completion;
2848 	struct io_ring_ctx		*ctx;
2849 };
2850 
2851 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2852 {
2853 	struct io_uring_task *tctx = current->io_uring;
2854 	struct io_tctx_exit *work;
2855 
2856 	work = container_of(cb, struct io_tctx_exit, task_work);
2857 	/*
2858 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2859 	 * node. It'll be removed by the end of cancellation, just ignore it.
2860 	 * tctx can be NULL if the queueing of this task_work raced with
2861 	 * work cancelation off the exec path.
2862 	 */
2863 	if (tctx && !atomic_read(&tctx->in_cancel))
2864 		io_uring_del_tctx_node((unsigned long)work->ctx);
2865 	complete(&work->completion);
2866 }
2867 
2868 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2869 {
2870 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2871 
2872 	return req->ctx == data;
2873 }
2874 
2875 static __cold void io_ring_exit_work(struct work_struct *work)
2876 {
2877 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2878 	unsigned long timeout = jiffies + HZ * 60 * 5;
2879 	unsigned long interval = HZ / 20;
2880 	struct io_tctx_exit exit;
2881 	struct io_tctx_node *node;
2882 	int ret;
2883 
2884 	/*
2885 	 * If we're doing polled IO and end up having requests being
2886 	 * submitted async (out-of-line), then completions can come in while
2887 	 * we're waiting for refs to drop. We need to reap these manually,
2888 	 * as nobody else will be looking for them.
2889 	 */
2890 	do {
2891 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2892 			mutex_lock(&ctx->uring_lock);
2893 			io_cqring_overflow_kill(ctx);
2894 			mutex_unlock(&ctx->uring_lock);
2895 		}
2896 
2897 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2898 			io_move_task_work_from_local(ctx);
2899 
2900 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2901 			cond_resched();
2902 
2903 		if (ctx->sq_data) {
2904 			struct io_sq_data *sqd = ctx->sq_data;
2905 			struct task_struct *tsk;
2906 
2907 			io_sq_thread_park(sqd);
2908 			tsk = sqd->thread;
2909 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2910 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2911 						io_cancel_ctx_cb, ctx, true);
2912 			io_sq_thread_unpark(sqd);
2913 		}
2914 
2915 		io_req_caches_free(ctx);
2916 
2917 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2918 			/* there is little hope left, don't run it too often */
2919 			interval = HZ * 60;
2920 		}
2921 		/*
2922 		 * This is really an uninterruptible wait, as it has to be
2923 		 * complete. But it's also run from a kworker, which doesn't
2924 		 * take signals, so it's fine to make it interruptible. This
2925 		 * avoids scenarios where we knowingly can wait much longer
2926 		 * on completions, for example if someone does a SIGSTOP on
2927 		 * a task that needs to finish task_work to make this loop
2928 		 * complete. That's a synthetic situation that should not
2929 		 * cause a stuck task backtrace, and hence a potential panic
2930 		 * on stuck tasks if that is enabled.
2931 		 */
2932 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2933 
2934 	init_completion(&exit.completion);
2935 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2936 	exit.ctx = ctx;
2937 
2938 	mutex_lock(&ctx->uring_lock);
2939 	while (!list_empty(&ctx->tctx_list)) {
2940 		WARN_ON_ONCE(time_after(jiffies, timeout));
2941 
2942 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2943 					ctx_node);
2944 		/* don't spin on a single task if cancellation failed */
2945 		list_rotate_left(&ctx->tctx_list);
2946 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2947 		if (WARN_ON_ONCE(ret))
2948 			continue;
2949 
2950 		mutex_unlock(&ctx->uring_lock);
2951 		/*
2952 		 * See comment above for
2953 		 * wait_for_completion_interruptible_timeout() on why this
2954 		 * wait is marked as interruptible.
2955 		 */
2956 		wait_for_completion_interruptible(&exit.completion);
2957 		mutex_lock(&ctx->uring_lock);
2958 	}
2959 	mutex_unlock(&ctx->uring_lock);
2960 	spin_lock(&ctx->completion_lock);
2961 	spin_unlock(&ctx->completion_lock);
2962 
2963 	/* pairs with RCU read section in io_req_local_work_add() */
2964 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2965 		synchronize_rcu();
2966 
2967 	io_ring_ctx_free(ctx);
2968 }
2969 
2970 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2971 {
2972 	unsigned long index;
2973 	struct creds *creds;
2974 
2975 	mutex_lock(&ctx->uring_lock);
2976 	percpu_ref_kill(&ctx->refs);
2977 	xa_for_each(&ctx->personalities, index, creds)
2978 		io_unregister_personality(ctx, index);
2979 	mutex_unlock(&ctx->uring_lock);
2980 
2981 	flush_delayed_work(&ctx->fallback_work);
2982 
2983 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2984 	/*
2985 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2986 	 * if we're exiting a ton of rings at the same time. It just adds
2987 	 * noise and overhead, there's no discernable change in runtime
2988 	 * over using system_wq.
2989 	 */
2990 	queue_work(iou_wq, &ctx->exit_work);
2991 }
2992 
2993 static int io_uring_release(struct inode *inode, struct file *file)
2994 {
2995 	struct io_ring_ctx *ctx = file->private_data;
2996 
2997 	file->private_data = NULL;
2998 	io_ring_ctx_wait_and_kill(ctx);
2999 	return 0;
3000 }
3001 
3002 struct io_task_cancel {
3003 	struct io_uring_task *tctx;
3004 	bool all;
3005 };
3006 
3007 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3008 {
3009 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3010 	struct io_task_cancel *cancel = data;
3011 
3012 	return io_match_task_safe(req, cancel->tctx, cancel->all);
3013 }
3014 
3015 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3016 					 struct io_uring_task *tctx,
3017 					 bool cancel_all)
3018 {
3019 	struct io_defer_entry *de;
3020 	LIST_HEAD(list);
3021 
3022 	spin_lock(&ctx->completion_lock);
3023 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3024 		if (io_match_task_safe(de->req, tctx, cancel_all)) {
3025 			list_cut_position(&list, &ctx->defer_list, &de->list);
3026 			break;
3027 		}
3028 	}
3029 	spin_unlock(&ctx->completion_lock);
3030 	if (list_empty(&list))
3031 		return false;
3032 
3033 	while (!list_empty(&list)) {
3034 		de = list_first_entry(&list, struct io_defer_entry, list);
3035 		list_del_init(&de->list);
3036 		io_req_task_queue_fail(de->req, -ECANCELED);
3037 		kfree(de);
3038 	}
3039 	return true;
3040 }
3041 
3042 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3043 {
3044 	struct io_tctx_node *node;
3045 	enum io_wq_cancel cret;
3046 	bool ret = false;
3047 
3048 	mutex_lock(&ctx->uring_lock);
3049 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3050 		struct io_uring_task *tctx = node->task->io_uring;
3051 
3052 		/*
3053 		 * io_wq will stay alive while we hold uring_lock, because it's
3054 		 * killed after ctx nodes, which requires to take the lock.
3055 		 */
3056 		if (!tctx || !tctx->io_wq)
3057 			continue;
3058 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3059 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3060 	}
3061 	mutex_unlock(&ctx->uring_lock);
3062 
3063 	return ret;
3064 }
3065 
3066 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3067 						struct io_uring_task *tctx,
3068 						bool cancel_all)
3069 {
3070 	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3071 	enum io_wq_cancel cret;
3072 	bool ret = false;
3073 
3074 	/* set it so io_req_local_work_add() would wake us up */
3075 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3076 		atomic_set(&ctx->cq_wait_nr, 1);
3077 		smp_mb();
3078 	}
3079 
3080 	/* failed during ring init, it couldn't have issued any requests */
3081 	if (!ctx->rings)
3082 		return false;
3083 
3084 	if (!tctx) {
3085 		ret |= io_uring_try_cancel_iowq(ctx);
3086 	} else if (tctx->io_wq) {
3087 		/*
3088 		 * Cancels requests of all rings, not only @ctx, but
3089 		 * it's fine as the task is in exit/exec.
3090 		 */
3091 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3092 				       &cancel, true);
3093 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3094 	}
3095 
3096 	/* SQPOLL thread does its own polling */
3097 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3098 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3099 		while (!wq_list_empty(&ctx->iopoll_list)) {
3100 			io_iopoll_try_reap_events(ctx);
3101 			ret = true;
3102 			cond_resched();
3103 		}
3104 	}
3105 
3106 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3107 	    io_allowed_defer_tw_run(ctx))
3108 		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3109 	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3110 	mutex_lock(&ctx->uring_lock);
3111 	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3112 	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3113 	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3114 	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3115 	mutex_unlock(&ctx->uring_lock);
3116 	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3117 	if (tctx)
3118 		ret |= io_run_task_work() > 0;
3119 	else
3120 		ret |= flush_delayed_work(&ctx->fallback_work);
3121 	return ret;
3122 }
3123 
3124 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3125 {
3126 	if (tracked)
3127 		return atomic_read(&tctx->inflight_tracked);
3128 	return percpu_counter_sum(&tctx->inflight);
3129 }
3130 
3131 /*
3132  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3133  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3134  */
3135 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3136 {
3137 	struct io_uring_task *tctx = current->io_uring;
3138 	struct io_ring_ctx *ctx;
3139 	struct io_tctx_node *node;
3140 	unsigned long index;
3141 	s64 inflight;
3142 	DEFINE_WAIT(wait);
3143 
3144 	WARN_ON_ONCE(sqd && sqd->thread != current);
3145 
3146 	if (!current->io_uring)
3147 		return;
3148 	if (tctx->io_wq)
3149 		io_wq_exit_start(tctx->io_wq);
3150 
3151 	atomic_inc(&tctx->in_cancel);
3152 	do {
3153 		bool loop = false;
3154 
3155 		io_uring_drop_tctx_refs(current);
3156 		if (!tctx_inflight(tctx, !cancel_all))
3157 			break;
3158 
3159 		/* read completions before cancelations */
3160 		inflight = tctx_inflight(tctx, false);
3161 		if (!inflight)
3162 			break;
3163 
3164 		if (!sqd) {
3165 			xa_for_each(&tctx->xa, index, node) {
3166 				/* sqpoll task will cancel all its requests */
3167 				if (node->ctx->sq_data)
3168 					continue;
3169 				loop |= io_uring_try_cancel_requests(node->ctx,
3170 							current->io_uring,
3171 							cancel_all);
3172 			}
3173 		} else {
3174 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3175 				loop |= io_uring_try_cancel_requests(ctx,
3176 								     current->io_uring,
3177 								     cancel_all);
3178 		}
3179 
3180 		if (loop) {
3181 			cond_resched();
3182 			continue;
3183 		}
3184 
3185 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3186 		io_run_task_work();
3187 		io_uring_drop_tctx_refs(current);
3188 		xa_for_each(&tctx->xa, index, node) {
3189 			if (io_local_work_pending(node->ctx)) {
3190 				WARN_ON_ONCE(node->ctx->submitter_task &&
3191 					     node->ctx->submitter_task != current);
3192 				goto end_wait;
3193 			}
3194 		}
3195 		/*
3196 		 * If we've seen completions, retry without waiting. This
3197 		 * avoids a race where a completion comes in before we did
3198 		 * prepare_to_wait().
3199 		 */
3200 		if (inflight == tctx_inflight(tctx, !cancel_all))
3201 			schedule();
3202 end_wait:
3203 		finish_wait(&tctx->wait, &wait);
3204 	} while (1);
3205 
3206 	io_uring_clean_tctx(tctx);
3207 	if (cancel_all) {
3208 		/*
3209 		 * We shouldn't run task_works after cancel, so just leave
3210 		 * ->in_cancel set for normal exit.
3211 		 */
3212 		atomic_dec(&tctx->in_cancel);
3213 		/* for exec all current's requests should be gone, kill tctx */
3214 		__io_uring_free(current);
3215 	}
3216 }
3217 
3218 void __io_uring_cancel(bool cancel_all)
3219 {
3220 	io_uring_unreg_ringfd();
3221 	io_uring_cancel_generic(cancel_all, NULL);
3222 }
3223 
3224 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3225 			const struct io_uring_getevents_arg __user *uarg)
3226 {
3227 	unsigned long size = sizeof(struct io_uring_reg_wait);
3228 	unsigned long offset = (uintptr_t)uarg;
3229 	unsigned long end;
3230 
3231 	if (unlikely(offset % sizeof(long)))
3232 		return ERR_PTR(-EFAULT);
3233 
3234 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3235 	if (unlikely(check_add_overflow(offset, size, &end) ||
3236 		     end > ctx->cq_wait_size))
3237 		return ERR_PTR(-EFAULT);
3238 
3239 	return ctx->cq_wait_arg + offset;
3240 }
3241 
3242 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3243 			       const void __user *argp, size_t argsz)
3244 {
3245 	struct io_uring_getevents_arg arg;
3246 
3247 	if (!(flags & IORING_ENTER_EXT_ARG))
3248 		return 0;
3249 	if (flags & IORING_ENTER_EXT_ARG_REG)
3250 		return -EINVAL;
3251 	if (argsz != sizeof(arg))
3252 		return -EINVAL;
3253 	if (copy_from_user(&arg, argp, sizeof(arg)))
3254 		return -EFAULT;
3255 	return 0;
3256 }
3257 
3258 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3259 			  const void __user *argp, struct ext_arg *ext_arg)
3260 {
3261 	const struct io_uring_getevents_arg __user *uarg = argp;
3262 	struct io_uring_getevents_arg arg;
3263 
3264 	/*
3265 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3266 	 * is just a pointer to the sigset_t.
3267 	 */
3268 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3269 		ext_arg->sig = (const sigset_t __user *) argp;
3270 		return 0;
3271 	}
3272 
3273 	if (flags & IORING_ENTER_EXT_ARG_REG) {
3274 		struct io_uring_reg_wait *w;
3275 
3276 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3277 			return -EINVAL;
3278 		w = io_get_ext_arg_reg(ctx, argp);
3279 		if (IS_ERR(w))
3280 			return PTR_ERR(w);
3281 
3282 		if (w->flags & ~IORING_REG_WAIT_TS)
3283 			return -EINVAL;
3284 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3285 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3286 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3287 		if (w->flags & IORING_REG_WAIT_TS) {
3288 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3289 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3290 			ext_arg->ts_set = true;
3291 		}
3292 		return 0;
3293 	}
3294 
3295 	/*
3296 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3297 	 * timespec and sigset_t pointers if good.
3298 	 */
3299 	if (ext_arg->argsz != sizeof(arg))
3300 		return -EINVAL;
3301 #ifdef CONFIG_64BIT
3302 	if (!user_access_begin(uarg, sizeof(*uarg)))
3303 		return -EFAULT;
3304 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3305 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3306 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3307 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3308 	user_access_end();
3309 #else
3310 	if (copy_from_user(&arg, uarg, sizeof(arg)))
3311 		return -EFAULT;
3312 #endif
3313 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3314 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3315 	ext_arg->argsz = arg.sigmask_sz;
3316 	if (arg.ts) {
3317 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3318 			return -EFAULT;
3319 		ext_arg->ts_set = true;
3320 	}
3321 	return 0;
3322 #ifdef CONFIG_64BIT
3323 uaccess_end:
3324 	user_access_end();
3325 	return -EFAULT;
3326 #endif
3327 }
3328 
3329 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3330 		u32, min_complete, u32, flags, const void __user *, argp,
3331 		size_t, argsz)
3332 {
3333 	struct io_ring_ctx *ctx;
3334 	struct file *file;
3335 	long ret;
3336 
3337 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3338 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3339 			       IORING_ENTER_REGISTERED_RING |
3340 			       IORING_ENTER_ABS_TIMER |
3341 			       IORING_ENTER_EXT_ARG_REG)))
3342 		return -EINVAL;
3343 
3344 	/*
3345 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3346 	 * need only dereference our task private array to find it.
3347 	 */
3348 	if (flags & IORING_ENTER_REGISTERED_RING) {
3349 		struct io_uring_task *tctx = current->io_uring;
3350 
3351 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3352 			return -EINVAL;
3353 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3354 		file = tctx->registered_rings[fd];
3355 		if (unlikely(!file))
3356 			return -EBADF;
3357 	} else {
3358 		file = fget(fd);
3359 		if (unlikely(!file))
3360 			return -EBADF;
3361 		ret = -EOPNOTSUPP;
3362 		if (unlikely(!io_is_uring_fops(file)))
3363 			goto out;
3364 	}
3365 
3366 	ctx = file->private_data;
3367 	ret = -EBADFD;
3368 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3369 		goto out;
3370 
3371 	/*
3372 	 * For SQ polling, the thread will do all submissions and completions.
3373 	 * Just return the requested submit count, and wake the thread if
3374 	 * we were asked to.
3375 	 */
3376 	ret = 0;
3377 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3378 		if (unlikely(ctx->sq_data->thread == NULL)) {
3379 			ret = -EOWNERDEAD;
3380 			goto out;
3381 		}
3382 		if (flags & IORING_ENTER_SQ_WAKEUP)
3383 			wake_up(&ctx->sq_data->wait);
3384 		if (flags & IORING_ENTER_SQ_WAIT)
3385 			io_sqpoll_wait_sq(ctx);
3386 
3387 		ret = to_submit;
3388 	} else if (to_submit) {
3389 		ret = io_uring_add_tctx_node(ctx);
3390 		if (unlikely(ret))
3391 			goto out;
3392 
3393 		mutex_lock(&ctx->uring_lock);
3394 		ret = io_submit_sqes(ctx, to_submit);
3395 		if (ret != to_submit) {
3396 			mutex_unlock(&ctx->uring_lock);
3397 			goto out;
3398 		}
3399 		if (flags & IORING_ENTER_GETEVENTS) {
3400 			if (ctx->syscall_iopoll)
3401 				goto iopoll_locked;
3402 			/*
3403 			 * Ignore errors, we'll soon call io_cqring_wait() and
3404 			 * it should handle ownership problems if any.
3405 			 */
3406 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3407 				(void)io_run_local_work_locked(ctx, min_complete);
3408 		}
3409 		mutex_unlock(&ctx->uring_lock);
3410 	}
3411 
3412 	if (flags & IORING_ENTER_GETEVENTS) {
3413 		int ret2;
3414 
3415 		if (ctx->syscall_iopoll) {
3416 			/*
3417 			 * We disallow the app entering submit/complete with
3418 			 * polling, but we still need to lock the ring to
3419 			 * prevent racing with polled issue that got punted to
3420 			 * a workqueue.
3421 			 */
3422 			mutex_lock(&ctx->uring_lock);
3423 iopoll_locked:
3424 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3425 			if (likely(!ret2)) {
3426 				min_complete = min(min_complete,
3427 						   ctx->cq_entries);
3428 				ret2 = io_iopoll_check(ctx, min_complete);
3429 			}
3430 			mutex_unlock(&ctx->uring_lock);
3431 		} else {
3432 			struct ext_arg ext_arg = { .argsz = argsz };
3433 
3434 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3435 			if (likely(!ret2)) {
3436 				min_complete = min(min_complete,
3437 						   ctx->cq_entries);
3438 				ret2 = io_cqring_wait(ctx, min_complete, flags,
3439 						      &ext_arg);
3440 			}
3441 		}
3442 
3443 		if (!ret) {
3444 			ret = ret2;
3445 
3446 			/*
3447 			 * EBADR indicates that one or more CQE were dropped.
3448 			 * Once the user has been informed we can clear the bit
3449 			 * as they are obviously ok with those drops.
3450 			 */
3451 			if (unlikely(ret2 == -EBADR))
3452 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3453 					  &ctx->check_cq);
3454 		}
3455 	}
3456 out:
3457 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3458 		fput(file);
3459 	return ret;
3460 }
3461 
3462 static const struct file_operations io_uring_fops = {
3463 	.release	= io_uring_release,
3464 	.mmap		= io_uring_mmap,
3465 	.get_unmapped_area = io_uring_get_unmapped_area,
3466 #ifndef CONFIG_MMU
3467 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3468 #endif
3469 	.poll		= io_uring_poll,
3470 #ifdef CONFIG_PROC_FS
3471 	.show_fdinfo	= io_uring_show_fdinfo,
3472 #endif
3473 };
3474 
3475 bool io_is_uring_fops(struct file *file)
3476 {
3477 	return file->f_op == &io_uring_fops;
3478 }
3479 
3480 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3481 					 struct io_uring_params *p)
3482 {
3483 	struct io_rings *rings;
3484 	size_t size, sq_array_offset;
3485 	void *ptr;
3486 
3487 	/* make sure these are sane, as we already accounted them */
3488 	ctx->sq_entries = p->sq_entries;
3489 	ctx->cq_entries = p->cq_entries;
3490 
3491 	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3492 			  &sq_array_offset);
3493 	if (size == SIZE_MAX)
3494 		return -EOVERFLOW;
3495 
3496 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3497 		rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3498 	else
3499 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3500 
3501 	if (IS_ERR(rings))
3502 		return PTR_ERR(rings);
3503 
3504 	ctx->rings = rings;
3505 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3506 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3507 	rings->sq_ring_mask = p->sq_entries - 1;
3508 	rings->cq_ring_mask = p->cq_entries - 1;
3509 	rings->sq_ring_entries = p->sq_entries;
3510 	rings->cq_ring_entries = p->cq_entries;
3511 
3512 	if (p->flags & IORING_SETUP_SQE128)
3513 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3514 	else
3515 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3516 	if (size == SIZE_MAX) {
3517 		io_rings_free(ctx);
3518 		return -EOVERFLOW;
3519 	}
3520 
3521 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3522 		ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3523 	else
3524 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3525 
3526 	if (IS_ERR(ptr)) {
3527 		io_rings_free(ctx);
3528 		return PTR_ERR(ptr);
3529 	}
3530 
3531 	ctx->sq_sqes = ptr;
3532 	return 0;
3533 }
3534 
3535 static int io_uring_install_fd(struct file *file)
3536 {
3537 	int fd;
3538 
3539 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3540 	if (fd < 0)
3541 		return fd;
3542 	fd_install(fd, file);
3543 	return fd;
3544 }
3545 
3546 /*
3547  * Allocate an anonymous fd, this is what constitutes the application
3548  * visible backing of an io_uring instance. The application mmaps this
3549  * fd to gain access to the SQ/CQ ring details.
3550  */
3551 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3552 {
3553 	/* Create a new inode so that the LSM can block the creation.  */
3554 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3555 					 O_RDWR | O_CLOEXEC, NULL);
3556 }
3557 
3558 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3559 {
3560 	if (!entries)
3561 		return -EINVAL;
3562 	if (entries > IORING_MAX_ENTRIES) {
3563 		if (!(p->flags & IORING_SETUP_CLAMP))
3564 			return -EINVAL;
3565 		entries = IORING_MAX_ENTRIES;
3566 	}
3567 
3568 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3569 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3570 		return -EINVAL;
3571 
3572 	/*
3573 	 * Use twice as many entries for the CQ ring. It's possible for the
3574 	 * application to drive a higher depth than the size of the SQ ring,
3575 	 * since the sqes are only used at submission time. This allows for
3576 	 * some flexibility in overcommitting a bit. If the application has
3577 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3578 	 * of CQ ring entries manually.
3579 	 */
3580 	p->sq_entries = roundup_pow_of_two(entries);
3581 	if (p->flags & IORING_SETUP_CQSIZE) {
3582 		/*
3583 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3584 		 * to a power-of-two, if it isn't already. We do NOT impose
3585 		 * any cq vs sq ring sizing.
3586 		 */
3587 		if (!p->cq_entries)
3588 			return -EINVAL;
3589 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3590 			if (!(p->flags & IORING_SETUP_CLAMP))
3591 				return -EINVAL;
3592 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3593 		}
3594 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3595 		if (p->cq_entries < p->sq_entries)
3596 			return -EINVAL;
3597 	} else {
3598 		p->cq_entries = 2 * p->sq_entries;
3599 	}
3600 
3601 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3602 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3603 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3604 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3605 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3606 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3607 	p->sq_off.resv1 = 0;
3608 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3609 		p->sq_off.user_addr = 0;
3610 
3611 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3612 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3613 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3614 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3615 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3616 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3617 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3618 	p->cq_off.resv1 = 0;
3619 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3620 		p->cq_off.user_addr = 0;
3621 
3622 	return 0;
3623 }
3624 
3625 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3626 				  struct io_uring_params __user *params)
3627 {
3628 	struct io_ring_ctx *ctx;
3629 	struct io_uring_task *tctx;
3630 	struct file *file;
3631 	int ret;
3632 
3633 	ret = io_uring_fill_params(entries, p);
3634 	if (unlikely(ret))
3635 		return ret;
3636 
3637 	ctx = io_ring_ctx_alloc(p);
3638 	if (!ctx)
3639 		return -ENOMEM;
3640 
3641 	ctx->clockid = CLOCK_MONOTONIC;
3642 	ctx->clock_offset = 0;
3643 
3644 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3645 		static_branch_inc(&io_key_has_sqarray);
3646 
3647 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3648 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3649 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3650 		ctx->task_complete = true;
3651 
3652 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3653 		ctx->lockless_cq = true;
3654 
3655 	/*
3656 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3657 	 * purposes, see io_activate_pollwq()
3658 	 */
3659 	if (!ctx->task_complete)
3660 		ctx->poll_activated = true;
3661 
3662 	/*
3663 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3664 	 * space applications don't need to do io completion events
3665 	 * polling again, they can rely on io_sq_thread to do polling
3666 	 * work, which can reduce cpu usage and uring_lock contention.
3667 	 */
3668 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3669 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3670 		ctx->syscall_iopoll = 1;
3671 
3672 	ctx->compat = in_compat_syscall();
3673 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3674 		ctx->user = get_uid(current_user());
3675 
3676 	/*
3677 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3678 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3679 	 */
3680 	ret = -EINVAL;
3681 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3682 		/* IPI related flags don't make sense with SQPOLL */
3683 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3684 				  IORING_SETUP_TASKRUN_FLAG |
3685 				  IORING_SETUP_DEFER_TASKRUN))
3686 			goto err;
3687 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3688 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3689 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3690 	} else {
3691 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3692 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3693 			goto err;
3694 		ctx->notify_method = TWA_SIGNAL;
3695 	}
3696 
3697 	/* HYBRID_IOPOLL only valid with IOPOLL */
3698 	if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3699 			IORING_SETUP_HYBRID_IOPOLL)
3700 		goto err;
3701 
3702 	/*
3703 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3704 	 * submission task. This implies that there is only one submitter, so enforce
3705 	 * that.
3706 	 */
3707 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3708 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3709 		goto err;
3710 	}
3711 
3712 	/*
3713 	 * This is just grabbed for accounting purposes. When a process exits,
3714 	 * the mm is exited and dropped before the files, hence we need to hang
3715 	 * on to this mm purely for the purposes of being able to unaccount
3716 	 * memory (locked/pinned vm). It's not used for anything else.
3717 	 */
3718 	mmgrab(current->mm);
3719 	ctx->mm_account = current->mm;
3720 
3721 	ret = io_allocate_scq_urings(ctx, p);
3722 	if (ret)
3723 		goto err;
3724 
3725 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3726 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3727 
3728 	ret = io_sq_offload_create(ctx, p);
3729 	if (ret)
3730 		goto err;
3731 
3732 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3733 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3734 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3735 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3736 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3737 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3738 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3739 			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3740 
3741 	if (copy_to_user(params, p, sizeof(*p))) {
3742 		ret = -EFAULT;
3743 		goto err;
3744 	}
3745 
3746 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3747 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3748 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3749 
3750 	file = io_uring_get_file(ctx);
3751 	if (IS_ERR(file)) {
3752 		ret = PTR_ERR(file);
3753 		goto err;
3754 	}
3755 
3756 	ret = __io_uring_add_tctx_node(ctx);
3757 	if (ret)
3758 		goto err_fput;
3759 	tctx = current->io_uring;
3760 
3761 	/*
3762 	 * Install ring fd as the very last thing, so we don't risk someone
3763 	 * having closed it before we finish setup
3764 	 */
3765 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3766 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3767 	else
3768 		ret = io_uring_install_fd(file);
3769 	if (ret < 0)
3770 		goto err_fput;
3771 
3772 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3773 	return ret;
3774 err:
3775 	io_ring_ctx_wait_and_kill(ctx);
3776 	return ret;
3777 err_fput:
3778 	fput(file);
3779 	return ret;
3780 }
3781 
3782 /*
3783  * Sets up an aio uring context, and returns the fd. Applications asks for a
3784  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3785  * params structure passed in.
3786  */
3787 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3788 {
3789 	struct io_uring_params p;
3790 	int i;
3791 
3792 	if (copy_from_user(&p, params, sizeof(p)))
3793 		return -EFAULT;
3794 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3795 		if (p.resv[i])
3796 			return -EINVAL;
3797 	}
3798 
3799 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3800 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3801 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3802 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3803 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3804 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3805 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3806 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3807 			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3808 		return -EINVAL;
3809 
3810 	return io_uring_create(entries, &p, params);
3811 }
3812 
3813 static inline bool io_uring_allowed(void)
3814 {
3815 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3816 	kgid_t io_uring_group;
3817 
3818 	if (disabled == 2)
3819 		return false;
3820 
3821 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3822 		return true;
3823 
3824 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3825 	if (!gid_valid(io_uring_group))
3826 		return false;
3827 
3828 	return in_group_p(io_uring_group);
3829 }
3830 
3831 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3832 		struct io_uring_params __user *, params)
3833 {
3834 	if (!io_uring_allowed())
3835 		return -EPERM;
3836 
3837 	return io_uring_setup(entries, params);
3838 }
3839 
3840 static int __init io_uring_init(void)
3841 {
3842 	struct kmem_cache_args kmem_args = {
3843 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3844 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3845 		.freeptr_offset = offsetof(struct io_kiocb, work),
3846 		.use_freeptr_offset = true,
3847 	};
3848 
3849 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3850 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3851 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3852 } while (0)
3853 
3854 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3855 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3856 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3857 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3858 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3859 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3860 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3861 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3862 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3863 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3864 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3865 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3866 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3867 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3868 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3869 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3870 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3871 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3872 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3873 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3874 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3875 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3876 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3877 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3878 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3879 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3880 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3881 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3882 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3883 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3884 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3885 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3886 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3887 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3888 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3889 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3890 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3891 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3892 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3893 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3894 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3895 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3896 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3897 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3898 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3899 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3900 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3901 
3902 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3903 		     sizeof(struct io_uring_rsrc_update));
3904 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3905 		     sizeof(struct io_uring_rsrc_update2));
3906 
3907 	/* ->buf_index is u16 */
3908 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3909 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3910 		     offsetof(struct io_uring_buf_ring, tail));
3911 
3912 	/* should fit into one byte */
3913 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3914 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3915 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3916 
3917 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3918 
3919 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3920 
3921 	/* top 8bits are for internal use */
3922 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3923 
3924 	io_uring_optable_init();
3925 
3926 	/*
3927 	 * Allow user copy in the per-command field, which starts after the
3928 	 * file in io_kiocb and until the opcode field. The openat2 handling
3929 	 * requires copying in user memory into the io_kiocb object in that
3930 	 * range, and HARDENED_USERCOPY will complain if we haven't
3931 	 * correctly annotated this range.
3932 	 */
3933 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3934 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3935 				SLAB_TYPESAFE_BY_RCU);
3936 	io_buf_cachep = KMEM_CACHE(io_buffer,
3937 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3938 
3939 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3940 
3941 #ifdef CONFIG_SYSCTL
3942 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3943 #endif
3944 
3945 	return 0;
3946 };
3947 __initcall(io_uring_init);
3948