xref: /linux/io_uring/io_uring.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <linux/anon_inodes.h>
63 #include <linux/sched/mm.h>
64 #include <linux/uaccess.h>
65 #include <linux/nospec.h>
66 #include <linux/fsnotify.h>
67 #include <linux/fadvise.h>
68 #include <linux/task_work.h>
69 #include <linux/io_uring.h>
70 #include <linux/io_uring/cmd.h>
71 #include <linux/audit.h>
72 #include <linux/security.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "memmap.h"
99 
100 #include "timeout.h"
101 #include "poll.h"
102 #include "rw.h"
103 #include "alloc_cache.h"
104 
105 #define IORING_MAX_ENTRIES	32768
106 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
107 
108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 
111 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 
114 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
115 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
116 				REQ_F_ASYNC_DATA)
117 
118 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
119 				 IO_REQ_CLEAN_FLAGS)
120 
121 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
122 
123 #define IO_COMPL_BATCH			32
124 #define IO_REQ_ALLOC_BATCH		8
125 
126 struct io_defer_entry {
127 	struct list_head	list;
128 	struct io_kiocb		*req;
129 	u32			seq;
130 };
131 
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
135 
136 /*
137  * No waiters. It's larger than any valid value of the tw counter
138  * so that tests against ->cq_wait_nr would fail and skip wake_up().
139  */
140 #define IO_CQ_WAKE_INIT		(-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct task_struct *task,
146 					 bool cancel_all);
147 
148 static void io_queue_sqe(struct io_kiocb *req);
149 
150 struct kmem_cache *req_cachep;
151 static struct workqueue_struct *iou_wq __ro_after_init;
152 
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155 
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 	{
159 		.procname	= "io_uring_disabled",
160 		.data		= &sysctl_io_uring_disabled,
161 		.maxlen		= sizeof(sysctl_io_uring_disabled),
162 		.mode		= 0644,
163 		.proc_handler	= proc_dointvec_minmax,
164 		.extra1		= SYSCTL_ZERO,
165 		.extra2		= SYSCTL_TWO,
166 	},
167 	{
168 		.procname	= "io_uring_group",
169 		.data		= &sysctl_io_uring_group,
170 		.maxlen		= sizeof(gid_t),
171 		.mode		= 0644,
172 		.proc_handler	= proc_dointvec,
173 	},
174 };
175 #endif
176 
177 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
178 {
179 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
180 }
181 
182 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
183 {
184 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
185 }
186 
187 static bool io_match_linked(struct io_kiocb *head)
188 {
189 	struct io_kiocb *req;
190 
191 	io_for_each_link(req, head) {
192 		if (req->flags & REQ_F_INFLIGHT)
193 			return true;
194 	}
195 	return false;
196 }
197 
198 /*
199  * As io_match_task() but protected against racing with linked timeouts.
200  * User must not hold timeout_lock.
201  */
202 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
203 			bool cancel_all)
204 {
205 	bool matched;
206 
207 	if (task && head->task != task)
208 		return false;
209 	if (cancel_all)
210 		return true;
211 
212 	if (head->flags & REQ_F_LINK_TIMEOUT) {
213 		struct io_ring_ctx *ctx = head->ctx;
214 
215 		/* protect against races with linked timeouts */
216 		spin_lock_irq(&ctx->timeout_lock);
217 		matched = io_match_linked(head);
218 		spin_unlock_irq(&ctx->timeout_lock);
219 	} else {
220 		matched = io_match_linked(head);
221 	}
222 	return matched;
223 }
224 
225 static inline void req_fail_link_node(struct io_kiocb *req, int res)
226 {
227 	req_set_fail(req);
228 	io_req_set_res(req, res, 0);
229 }
230 
231 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
232 {
233 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
234 }
235 
236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
237 {
238 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
239 
240 	complete(&ctx->ref_comp);
241 }
242 
243 static __cold void io_fallback_req_func(struct work_struct *work)
244 {
245 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
246 						fallback_work.work);
247 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
248 	struct io_kiocb *req, *tmp;
249 	struct io_tw_state ts = {};
250 
251 	percpu_ref_get(&ctx->refs);
252 	mutex_lock(&ctx->uring_lock);
253 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
254 		req->io_task_work.func(req, &ts);
255 	io_submit_flush_completions(ctx);
256 	mutex_unlock(&ctx->uring_lock);
257 	percpu_ref_put(&ctx->refs);
258 }
259 
260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
261 {
262 	unsigned hash_buckets = 1U << bits;
263 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
264 
265 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
266 	if (!table->hbs)
267 		return -ENOMEM;
268 
269 	table->hash_bits = bits;
270 	init_hash_table(table, hash_buckets);
271 	return 0;
272 }
273 
274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
275 {
276 	struct io_ring_ctx *ctx;
277 	int hash_bits;
278 	bool ret;
279 
280 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
281 	if (!ctx)
282 		return NULL;
283 
284 	xa_init(&ctx->io_bl_xa);
285 
286 	/*
287 	 * Use 5 bits less than the max cq entries, that should give us around
288 	 * 32 entries per hash list if totally full and uniformly spread, but
289 	 * don't keep too many buckets to not overconsume memory.
290 	 */
291 	hash_bits = ilog2(p->cq_entries) - 5;
292 	hash_bits = clamp(hash_bits, 1, 8);
293 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
294 		goto err;
295 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
296 		goto err;
297 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
298 			    0, GFP_KERNEL))
299 		goto err;
300 
301 	ctx->flags = p->flags;
302 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
303 	init_waitqueue_head(&ctx->sqo_sq_wait);
304 	INIT_LIST_HEAD(&ctx->sqd_list);
305 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
306 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
307 	ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
308 			    sizeof(struct io_rsrc_node));
309 	ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
310 			    sizeof(struct async_poll));
311 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
312 			    sizeof(struct io_async_msghdr));
313 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
314 			    sizeof(struct io_async_rw));
315 	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
316 			    sizeof(struct uring_cache));
317 	ret |= io_futex_cache_init(ctx);
318 	if (ret)
319 		goto err;
320 	init_completion(&ctx->ref_comp);
321 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
322 	mutex_init(&ctx->uring_lock);
323 	init_waitqueue_head(&ctx->cq_wait);
324 	init_waitqueue_head(&ctx->poll_wq);
325 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
326 	spin_lock_init(&ctx->completion_lock);
327 	spin_lock_init(&ctx->timeout_lock);
328 	INIT_WQ_LIST(&ctx->iopoll_list);
329 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
330 	INIT_LIST_HEAD(&ctx->defer_list);
331 	INIT_LIST_HEAD(&ctx->timeout_list);
332 	INIT_LIST_HEAD(&ctx->ltimeout_list);
333 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
334 	init_llist_head(&ctx->work_llist);
335 	INIT_LIST_HEAD(&ctx->tctx_list);
336 	ctx->submit_state.free_list.next = NULL;
337 	INIT_HLIST_HEAD(&ctx->waitid_list);
338 #ifdef CONFIG_FUTEX
339 	INIT_HLIST_HEAD(&ctx->futex_list);
340 #endif
341 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
342 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
343 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
344 	io_napi_init(ctx);
345 
346 	return ctx;
347 err:
348 	io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
349 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
350 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
351 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
352 	io_alloc_cache_free(&ctx->uring_cache, kfree);
353 	io_futex_cache_free(ctx);
354 	kfree(ctx->cancel_table.hbs);
355 	kfree(ctx->cancel_table_locked.hbs);
356 	xa_destroy(&ctx->io_bl_xa);
357 	kfree(ctx);
358 	return NULL;
359 }
360 
361 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
362 {
363 	struct io_rings *r = ctx->rings;
364 
365 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
366 	ctx->cq_extra--;
367 }
368 
369 static bool req_need_defer(struct io_kiocb *req, u32 seq)
370 {
371 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
372 		struct io_ring_ctx *ctx = req->ctx;
373 
374 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
375 	}
376 
377 	return false;
378 }
379 
380 static void io_clean_op(struct io_kiocb *req)
381 {
382 	if (req->flags & REQ_F_BUFFER_SELECTED) {
383 		spin_lock(&req->ctx->completion_lock);
384 		io_kbuf_drop(req);
385 		spin_unlock(&req->ctx->completion_lock);
386 	}
387 
388 	if (req->flags & REQ_F_NEED_CLEANUP) {
389 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
390 
391 		if (def->cleanup)
392 			def->cleanup(req);
393 	}
394 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
395 		kfree(req->apoll->double_poll);
396 		kfree(req->apoll);
397 		req->apoll = NULL;
398 	}
399 	if (req->flags & REQ_F_INFLIGHT) {
400 		struct io_uring_task *tctx = req->task->io_uring;
401 
402 		atomic_dec(&tctx->inflight_tracked);
403 	}
404 	if (req->flags & REQ_F_CREDS)
405 		put_cred(req->creds);
406 	if (req->flags & REQ_F_ASYNC_DATA) {
407 		kfree(req->async_data);
408 		req->async_data = NULL;
409 	}
410 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
411 }
412 
413 static inline void io_req_track_inflight(struct io_kiocb *req)
414 {
415 	if (!(req->flags & REQ_F_INFLIGHT)) {
416 		req->flags |= REQ_F_INFLIGHT;
417 		atomic_inc(&req->task->io_uring->inflight_tracked);
418 	}
419 }
420 
421 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
422 {
423 	if (WARN_ON_ONCE(!req->link))
424 		return NULL;
425 
426 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
427 	req->flags |= REQ_F_LINK_TIMEOUT;
428 
429 	/* linked timeouts should have two refs once prep'ed */
430 	io_req_set_refcount(req);
431 	__io_req_set_refcount(req->link, 2);
432 	return req->link;
433 }
434 
435 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
436 {
437 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
438 		return NULL;
439 	return __io_prep_linked_timeout(req);
440 }
441 
442 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
443 {
444 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
445 }
446 
447 static inline void io_arm_ltimeout(struct io_kiocb *req)
448 {
449 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
450 		__io_arm_ltimeout(req);
451 }
452 
453 static void io_prep_async_work(struct io_kiocb *req)
454 {
455 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
456 	struct io_ring_ctx *ctx = req->ctx;
457 
458 	if (!(req->flags & REQ_F_CREDS)) {
459 		req->flags |= REQ_F_CREDS;
460 		req->creds = get_current_cred();
461 	}
462 
463 	req->work.list.next = NULL;
464 	req->work.flags = 0;
465 	if (req->flags & REQ_F_FORCE_ASYNC)
466 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
467 
468 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
469 		req->flags |= io_file_get_flags(req->file);
470 
471 	if (req->file && (req->flags & REQ_F_ISREG)) {
472 		bool should_hash = def->hash_reg_file;
473 
474 		/* don't serialize this request if the fs doesn't need it */
475 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
476 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
477 			should_hash = false;
478 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
479 			io_wq_hash_work(&req->work, file_inode(req->file));
480 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
481 		if (def->unbound_nonreg_file)
482 			req->work.flags |= IO_WQ_WORK_UNBOUND;
483 	}
484 }
485 
486 static void io_prep_async_link(struct io_kiocb *req)
487 {
488 	struct io_kiocb *cur;
489 
490 	if (req->flags & REQ_F_LINK_TIMEOUT) {
491 		struct io_ring_ctx *ctx = req->ctx;
492 
493 		spin_lock_irq(&ctx->timeout_lock);
494 		io_for_each_link(cur, req)
495 			io_prep_async_work(cur);
496 		spin_unlock_irq(&ctx->timeout_lock);
497 	} else {
498 		io_for_each_link(cur, req)
499 			io_prep_async_work(cur);
500 	}
501 }
502 
503 static void io_queue_iowq(struct io_kiocb *req)
504 {
505 	struct io_kiocb *link = io_prep_linked_timeout(req);
506 	struct io_uring_task *tctx = req->task->io_uring;
507 
508 	BUG_ON(!tctx);
509 	BUG_ON(!tctx->io_wq);
510 
511 	/* init ->work of the whole link before punting */
512 	io_prep_async_link(req);
513 
514 	/*
515 	 * Not expected to happen, but if we do have a bug where this _can_
516 	 * happen, catch it here and ensure the request is marked as
517 	 * canceled. That will make io-wq go through the usual work cancel
518 	 * procedure rather than attempt to run this request (or create a new
519 	 * worker for it).
520 	 */
521 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
522 		req->work.flags |= IO_WQ_WORK_CANCEL;
523 
524 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
525 	io_wq_enqueue(tctx->io_wq, &req->work);
526 	if (link)
527 		io_queue_linked_timeout(link);
528 }
529 
530 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
531 {
532 	while (!list_empty(&ctx->defer_list)) {
533 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
534 						struct io_defer_entry, list);
535 
536 		if (req_need_defer(de->req, de->seq))
537 			break;
538 		list_del_init(&de->list);
539 		io_req_task_queue(de->req);
540 		kfree(de);
541 	}
542 }
543 
544 void io_eventfd_ops(struct rcu_head *rcu)
545 {
546 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
547 	int ops = atomic_xchg(&ev_fd->ops, 0);
548 
549 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
550 		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
551 
552 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
553 	 * ordering in a race but if references are 0 we know we have to free
554 	 * it regardless.
555 	 */
556 	if (atomic_dec_and_test(&ev_fd->refs)) {
557 		eventfd_ctx_put(ev_fd->cq_ev_fd);
558 		kfree(ev_fd);
559 	}
560 }
561 
562 static void io_eventfd_signal(struct io_ring_ctx *ctx)
563 {
564 	struct io_ev_fd *ev_fd = NULL;
565 
566 	rcu_read_lock();
567 	/*
568 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
569 	 * and eventfd_signal
570 	 */
571 	ev_fd = rcu_dereference(ctx->io_ev_fd);
572 
573 	/*
574 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
575 	 * completed between the NULL check of ctx->io_ev_fd at the start of
576 	 * the function and rcu_read_lock.
577 	 */
578 	if (unlikely(!ev_fd))
579 		goto out;
580 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
581 		goto out;
582 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
583 		goto out;
584 
585 	if (likely(eventfd_signal_allowed())) {
586 		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
587 	} else {
588 		atomic_inc(&ev_fd->refs);
589 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
590 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
591 		else
592 			atomic_dec(&ev_fd->refs);
593 	}
594 
595 out:
596 	rcu_read_unlock();
597 }
598 
599 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
600 {
601 	bool skip;
602 
603 	spin_lock(&ctx->completion_lock);
604 
605 	/*
606 	 * Eventfd should only get triggered when at least one event has been
607 	 * posted. Some applications rely on the eventfd notification count
608 	 * only changing IFF a new CQE has been added to the CQ ring. There's
609 	 * no depedency on 1:1 relationship between how many times this
610 	 * function is called (and hence the eventfd count) and number of CQEs
611 	 * posted to the CQ ring.
612 	 */
613 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
614 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
615 	spin_unlock(&ctx->completion_lock);
616 	if (skip)
617 		return;
618 
619 	io_eventfd_signal(ctx);
620 }
621 
622 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
623 {
624 	if (ctx->poll_activated)
625 		io_poll_wq_wake(ctx);
626 	if (ctx->off_timeout_used)
627 		io_flush_timeouts(ctx);
628 	if (ctx->drain_active) {
629 		spin_lock(&ctx->completion_lock);
630 		io_queue_deferred(ctx);
631 		spin_unlock(&ctx->completion_lock);
632 	}
633 	if (ctx->has_evfd)
634 		io_eventfd_flush_signal(ctx);
635 }
636 
637 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
638 {
639 	if (!ctx->lockless_cq)
640 		spin_lock(&ctx->completion_lock);
641 }
642 
643 static inline void io_cq_lock(struct io_ring_ctx *ctx)
644 	__acquires(ctx->completion_lock)
645 {
646 	spin_lock(&ctx->completion_lock);
647 }
648 
649 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
650 {
651 	io_commit_cqring(ctx);
652 	if (!ctx->task_complete) {
653 		if (!ctx->lockless_cq)
654 			spin_unlock(&ctx->completion_lock);
655 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
656 		if (!ctx->syscall_iopoll)
657 			io_cqring_wake(ctx);
658 	}
659 	io_commit_cqring_flush(ctx);
660 }
661 
662 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
663 	__releases(ctx->completion_lock)
664 {
665 	io_commit_cqring(ctx);
666 	spin_unlock(&ctx->completion_lock);
667 	io_cqring_wake(ctx);
668 	io_commit_cqring_flush(ctx);
669 }
670 
671 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
672 {
673 	size_t cqe_size = sizeof(struct io_uring_cqe);
674 
675 	lockdep_assert_held(&ctx->uring_lock);
676 
677 	/* don't abort if we're dying, entries must get freed */
678 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
679 		return;
680 
681 	if (ctx->flags & IORING_SETUP_CQE32)
682 		cqe_size <<= 1;
683 
684 	io_cq_lock(ctx);
685 	while (!list_empty(&ctx->cq_overflow_list)) {
686 		struct io_uring_cqe *cqe;
687 		struct io_overflow_cqe *ocqe;
688 
689 		ocqe = list_first_entry(&ctx->cq_overflow_list,
690 					struct io_overflow_cqe, list);
691 
692 		if (!dying) {
693 			if (!io_get_cqe_overflow(ctx, &cqe, true))
694 				break;
695 			memcpy(cqe, &ocqe->cqe, cqe_size);
696 		}
697 		list_del(&ocqe->list);
698 		kfree(ocqe);
699 	}
700 
701 	if (list_empty(&ctx->cq_overflow_list)) {
702 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
703 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
704 	}
705 	io_cq_unlock_post(ctx);
706 }
707 
708 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
709 {
710 	if (ctx->rings)
711 		__io_cqring_overflow_flush(ctx, true);
712 }
713 
714 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
715 {
716 	mutex_lock(&ctx->uring_lock);
717 	__io_cqring_overflow_flush(ctx, false);
718 	mutex_unlock(&ctx->uring_lock);
719 }
720 
721 /* can be called by any task */
722 static void io_put_task_remote(struct task_struct *task)
723 {
724 	struct io_uring_task *tctx = task->io_uring;
725 
726 	percpu_counter_sub(&tctx->inflight, 1);
727 	if (unlikely(atomic_read(&tctx->in_cancel)))
728 		wake_up(&tctx->wait);
729 	put_task_struct(task);
730 }
731 
732 /* used by a task to put its own references */
733 static void io_put_task_local(struct task_struct *task)
734 {
735 	task->io_uring->cached_refs++;
736 }
737 
738 /* must to be called somewhat shortly after putting a request */
739 static inline void io_put_task(struct task_struct *task)
740 {
741 	if (likely(task == current))
742 		io_put_task_local(task);
743 	else
744 		io_put_task_remote(task);
745 }
746 
747 void io_task_refs_refill(struct io_uring_task *tctx)
748 {
749 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
750 
751 	percpu_counter_add(&tctx->inflight, refill);
752 	refcount_add(refill, &current->usage);
753 	tctx->cached_refs += refill;
754 }
755 
756 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
757 {
758 	struct io_uring_task *tctx = task->io_uring;
759 	unsigned int refs = tctx->cached_refs;
760 
761 	if (refs) {
762 		tctx->cached_refs = 0;
763 		percpu_counter_sub(&tctx->inflight, refs);
764 		put_task_struct_many(task, refs);
765 	}
766 }
767 
768 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
769 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
770 {
771 	struct io_overflow_cqe *ocqe;
772 	size_t ocq_size = sizeof(struct io_overflow_cqe);
773 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
774 
775 	lockdep_assert_held(&ctx->completion_lock);
776 
777 	if (is_cqe32)
778 		ocq_size += sizeof(struct io_uring_cqe);
779 
780 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
781 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
782 	if (!ocqe) {
783 		/*
784 		 * If we're in ring overflow flush mode, or in task cancel mode,
785 		 * or cannot allocate an overflow entry, then we need to drop it
786 		 * on the floor.
787 		 */
788 		io_account_cq_overflow(ctx);
789 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
790 		return false;
791 	}
792 	if (list_empty(&ctx->cq_overflow_list)) {
793 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
794 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
795 
796 	}
797 	ocqe->cqe.user_data = user_data;
798 	ocqe->cqe.res = res;
799 	ocqe->cqe.flags = cflags;
800 	if (is_cqe32) {
801 		ocqe->cqe.big_cqe[0] = extra1;
802 		ocqe->cqe.big_cqe[1] = extra2;
803 	}
804 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
805 	return true;
806 }
807 
808 static void io_req_cqe_overflow(struct io_kiocb *req)
809 {
810 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
811 				req->cqe.res, req->cqe.flags,
812 				req->big_cqe.extra1, req->big_cqe.extra2);
813 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
814 }
815 
816 /*
817  * writes to the cq entry need to come after reading head; the
818  * control dependency is enough as we're using WRITE_ONCE to
819  * fill the cq entry
820  */
821 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
822 {
823 	struct io_rings *rings = ctx->rings;
824 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
825 	unsigned int free, queued, len;
826 
827 	/*
828 	 * Posting into the CQ when there are pending overflowed CQEs may break
829 	 * ordering guarantees, which will affect links, F_MORE users and more.
830 	 * Force overflow the completion.
831 	 */
832 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
833 		return false;
834 
835 	/* userspace may cheat modifying the tail, be safe and do min */
836 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
837 	free = ctx->cq_entries - queued;
838 	/* we need a contiguous range, limit based on the current array offset */
839 	len = min(free, ctx->cq_entries - off);
840 	if (!len)
841 		return false;
842 
843 	if (ctx->flags & IORING_SETUP_CQE32) {
844 		off <<= 1;
845 		len <<= 1;
846 	}
847 
848 	ctx->cqe_cached = &rings->cqes[off];
849 	ctx->cqe_sentinel = ctx->cqe_cached + len;
850 	return true;
851 }
852 
853 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
854 			      u32 cflags)
855 {
856 	struct io_uring_cqe *cqe;
857 
858 	ctx->cq_extra++;
859 
860 	/*
861 	 * If we can't get a cq entry, userspace overflowed the
862 	 * submission (by quite a lot). Increment the overflow count in
863 	 * the ring.
864 	 */
865 	if (likely(io_get_cqe(ctx, &cqe))) {
866 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
867 
868 		WRITE_ONCE(cqe->user_data, user_data);
869 		WRITE_ONCE(cqe->res, res);
870 		WRITE_ONCE(cqe->flags, cflags);
871 
872 		if (ctx->flags & IORING_SETUP_CQE32) {
873 			WRITE_ONCE(cqe->big_cqe[0], 0);
874 			WRITE_ONCE(cqe->big_cqe[1], 0);
875 		}
876 		return true;
877 	}
878 	return false;
879 }
880 
881 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
882 {
883 	bool filled;
884 
885 	io_cq_lock(ctx);
886 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
887 	if (!filled)
888 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
889 
890 	io_cq_unlock_post(ctx);
891 	return filled;
892 }
893 
894 /*
895  * A helper for multishot requests posting additional CQEs.
896  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
897  */
898 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
899 {
900 	struct io_ring_ctx *ctx = req->ctx;
901 	bool posted;
902 
903 	lockdep_assert(!io_wq_current_is_worker());
904 	lockdep_assert_held(&ctx->uring_lock);
905 
906 	__io_cq_lock(ctx);
907 	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
908 	ctx->submit_state.cq_flush = true;
909 	__io_cq_unlock_post(ctx);
910 	return posted;
911 }
912 
913 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
914 {
915 	struct io_ring_ctx *ctx = req->ctx;
916 
917 	/*
918 	 * All execution paths but io-wq use the deferred completions by
919 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
920 	 */
921 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
922 		return;
923 
924 	/*
925 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
926 	 * the submitter task context, IOPOLL protects with uring_lock.
927 	 */
928 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
929 		req->io_task_work.func = io_req_task_complete;
930 		io_req_task_work_add(req);
931 		return;
932 	}
933 
934 	io_cq_lock(ctx);
935 	if (!(req->flags & REQ_F_CQE_SKIP)) {
936 		if (!io_fill_cqe_req(ctx, req))
937 			io_req_cqe_overflow(req);
938 	}
939 	io_cq_unlock_post(ctx);
940 
941 	/*
942 	 * We don't free the request here because we know it's called from
943 	 * io-wq only, which holds a reference, so it cannot be the last put.
944 	 */
945 	req_ref_put(req);
946 }
947 
948 void io_req_defer_failed(struct io_kiocb *req, s32 res)
949 	__must_hold(&ctx->uring_lock)
950 {
951 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
952 
953 	lockdep_assert_held(&req->ctx->uring_lock);
954 
955 	req_set_fail(req);
956 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
957 	if (def->fail)
958 		def->fail(req);
959 	io_req_complete_defer(req);
960 }
961 
962 /*
963  * Don't initialise the fields below on every allocation, but do that in
964  * advance and keep them valid across allocations.
965  */
966 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
967 {
968 	req->ctx = ctx;
969 	req->link = NULL;
970 	req->async_data = NULL;
971 	/* not necessary, but safer to zero */
972 	memset(&req->cqe, 0, sizeof(req->cqe));
973 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
974 }
975 
976 /*
977  * A request might get retired back into the request caches even before opcode
978  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
979  * Because of that, io_alloc_req() should be called only under ->uring_lock
980  * and with extra caution to not get a request that is still worked on.
981  */
982 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
983 	__must_hold(&ctx->uring_lock)
984 {
985 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
986 	void *reqs[IO_REQ_ALLOC_BATCH];
987 	int ret;
988 
989 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
990 
991 	/*
992 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
993 	 * retry single alloc to be on the safe side.
994 	 */
995 	if (unlikely(ret <= 0)) {
996 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
997 		if (!reqs[0])
998 			return false;
999 		ret = 1;
1000 	}
1001 
1002 	percpu_ref_get_many(&ctx->refs, ret);
1003 	while (ret--) {
1004 		struct io_kiocb *req = reqs[ret];
1005 
1006 		io_preinit_req(req, ctx);
1007 		io_req_add_to_cache(req, ctx);
1008 	}
1009 	return true;
1010 }
1011 
1012 __cold void io_free_req(struct io_kiocb *req)
1013 {
1014 	/* refs were already put, restore them for io_req_task_complete() */
1015 	req->flags &= ~REQ_F_REFCOUNT;
1016 	/* we only want to free it, don't post CQEs */
1017 	req->flags |= REQ_F_CQE_SKIP;
1018 	req->io_task_work.func = io_req_task_complete;
1019 	io_req_task_work_add(req);
1020 }
1021 
1022 static void __io_req_find_next_prep(struct io_kiocb *req)
1023 {
1024 	struct io_ring_ctx *ctx = req->ctx;
1025 
1026 	spin_lock(&ctx->completion_lock);
1027 	io_disarm_next(req);
1028 	spin_unlock(&ctx->completion_lock);
1029 }
1030 
1031 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1032 {
1033 	struct io_kiocb *nxt;
1034 
1035 	/*
1036 	 * If LINK is set, we have dependent requests in this chain. If we
1037 	 * didn't fail this request, queue the first one up, moving any other
1038 	 * dependencies to the next request. In case of failure, fail the rest
1039 	 * of the chain.
1040 	 */
1041 	if (unlikely(req->flags & IO_DISARM_MASK))
1042 		__io_req_find_next_prep(req);
1043 	nxt = req->link;
1044 	req->link = NULL;
1045 	return nxt;
1046 }
1047 
1048 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1049 {
1050 	if (!ctx)
1051 		return;
1052 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1053 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1054 
1055 	io_submit_flush_completions(ctx);
1056 	mutex_unlock(&ctx->uring_lock);
1057 	percpu_ref_put(&ctx->refs);
1058 }
1059 
1060 /*
1061  * Run queued task_work, returning the number of entries processed in *count.
1062  * If more entries than max_entries are available, stop processing once this
1063  * is reached and return the rest of the list.
1064  */
1065 struct llist_node *io_handle_tw_list(struct llist_node *node,
1066 				     unsigned int *count,
1067 				     unsigned int max_entries)
1068 {
1069 	struct io_ring_ctx *ctx = NULL;
1070 	struct io_tw_state ts = { };
1071 
1072 	do {
1073 		struct llist_node *next = node->next;
1074 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1075 						    io_task_work.node);
1076 
1077 		if (req->ctx != ctx) {
1078 			ctx_flush_and_put(ctx, &ts);
1079 			ctx = req->ctx;
1080 			mutex_lock(&ctx->uring_lock);
1081 			percpu_ref_get(&ctx->refs);
1082 		}
1083 		INDIRECT_CALL_2(req->io_task_work.func,
1084 				io_poll_task_func, io_req_rw_complete,
1085 				req, &ts);
1086 		node = next;
1087 		(*count)++;
1088 		if (unlikely(need_resched())) {
1089 			ctx_flush_and_put(ctx, &ts);
1090 			ctx = NULL;
1091 			cond_resched();
1092 		}
1093 	} while (node && *count < max_entries);
1094 
1095 	ctx_flush_and_put(ctx, &ts);
1096 	return node;
1097 }
1098 
1099 /**
1100  * io_llist_xchg - swap all entries in a lock-less list
1101  * @head:	the head of lock-less list to delete all entries
1102  * @new:	new entry as the head of the list
1103  *
1104  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1105  * The order of entries returned is from the newest to the oldest added one.
1106  */
1107 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1108 					       struct llist_node *new)
1109 {
1110 	return xchg(&head->first, new);
1111 }
1112 
1113 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1114 {
1115 	struct llist_node *node = llist_del_all(&tctx->task_list);
1116 	struct io_ring_ctx *last_ctx = NULL;
1117 	struct io_kiocb *req;
1118 
1119 	while (node) {
1120 		req = container_of(node, struct io_kiocb, io_task_work.node);
1121 		node = node->next;
1122 		if (sync && last_ctx != req->ctx) {
1123 			if (last_ctx) {
1124 				flush_delayed_work(&last_ctx->fallback_work);
1125 				percpu_ref_put(&last_ctx->refs);
1126 			}
1127 			last_ctx = req->ctx;
1128 			percpu_ref_get(&last_ctx->refs);
1129 		}
1130 		if (llist_add(&req->io_task_work.node,
1131 			      &req->ctx->fallback_llist))
1132 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1133 	}
1134 
1135 	if (last_ctx) {
1136 		flush_delayed_work(&last_ctx->fallback_work);
1137 		percpu_ref_put(&last_ctx->refs);
1138 	}
1139 }
1140 
1141 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1142 				      unsigned int max_entries,
1143 				      unsigned int *count)
1144 {
1145 	struct llist_node *node;
1146 
1147 	if (unlikely(current->flags & PF_EXITING)) {
1148 		io_fallback_tw(tctx, true);
1149 		return NULL;
1150 	}
1151 
1152 	node = llist_del_all(&tctx->task_list);
1153 	if (node) {
1154 		node = llist_reverse_order(node);
1155 		node = io_handle_tw_list(node, count, max_entries);
1156 	}
1157 
1158 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1159 	if (unlikely(atomic_read(&tctx->in_cancel)))
1160 		io_uring_drop_tctx_refs(current);
1161 
1162 	trace_io_uring_task_work_run(tctx, *count);
1163 	return node;
1164 }
1165 
1166 void tctx_task_work(struct callback_head *cb)
1167 {
1168 	struct io_uring_task *tctx;
1169 	struct llist_node *ret;
1170 	unsigned int count = 0;
1171 
1172 	tctx = container_of(cb, struct io_uring_task, task_work);
1173 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1174 	/* can't happen */
1175 	WARN_ON_ONCE(ret);
1176 }
1177 
1178 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1179 {
1180 	struct io_ring_ctx *ctx = req->ctx;
1181 	unsigned nr_wait, nr_tw, nr_tw_prev;
1182 	struct llist_node *head;
1183 
1184 	/* See comment above IO_CQ_WAKE_INIT */
1185 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1186 
1187 	/*
1188 	 * We don't know how many reuqests is there in the link and whether
1189 	 * they can even be queued lazily, fall back to non-lazy.
1190 	 */
1191 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1192 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1193 
1194 	head = READ_ONCE(ctx->work_llist.first);
1195 	do {
1196 		nr_tw_prev = 0;
1197 		if (head) {
1198 			struct io_kiocb *first_req = container_of(head,
1199 							struct io_kiocb,
1200 							io_task_work.node);
1201 			/*
1202 			 * Might be executed at any moment, rely on
1203 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1204 			 */
1205 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1206 		}
1207 
1208 		/*
1209 		 * Theoretically, it can overflow, but that's fine as one of
1210 		 * previous adds should've tried to wake the task.
1211 		 */
1212 		nr_tw = nr_tw_prev + 1;
1213 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1214 			nr_tw = IO_CQ_WAKE_FORCE;
1215 
1216 		req->nr_tw = nr_tw;
1217 		req->io_task_work.node.next = head;
1218 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1219 			      &req->io_task_work.node));
1220 
1221 	/*
1222 	 * cmpxchg implies a full barrier, which pairs with the barrier
1223 	 * in set_current_state() on the io_cqring_wait() side. It's used
1224 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1225 	 * going to sleep will observe the work added to the list, which
1226 	 * is similar to the wait/wawke task state sync.
1227 	 */
1228 
1229 	if (!head) {
1230 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1231 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1232 		if (ctx->has_evfd)
1233 			io_eventfd_signal(ctx);
1234 	}
1235 
1236 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1237 	/* not enough or no one is waiting */
1238 	if (nr_tw < nr_wait)
1239 		return;
1240 	/* the previous add has already woken it up */
1241 	if (nr_tw_prev >= nr_wait)
1242 		return;
1243 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1244 }
1245 
1246 static void io_req_normal_work_add(struct io_kiocb *req)
1247 {
1248 	struct io_uring_task *tctx = req->task->io_uring;
1249 	struct io_ring_ctx *ctx = req->ctx;
1250 
1251 	/* task_work already pending, we're done */
1252 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1253 		return;
1254 
1255 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1256 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1257 
1258 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1259 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1260 		struct io_sq_data *sqd = ctx->sq_data;
1261 
1262 		if (wq_has_sleeper(&sqd->wait))
1263 			wake_up(&sqd->wait);
1264 		return;
1265 	}
1266 
1267 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1268 		return;
1269 
1270 	io_fallback_tw(tctx, false);
1271 }
1272 
1273 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1274 {
1275 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1276 		rcu_read_lock();
1277 		io_req_local_work_add(req, flags);
1278 		rcu_read_unlock();
1279 	} else {
1280 		io_req_normal_work_add(req);
1281 	}
1282 }
1283 
1284 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1285 {
1286 	struct llist_node *node;
1287 
1288 	node = llist_del_all(&ctx->work_llist);
1289 	while (node) {
1290 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1291 						    io_task_work.node);
1292 
1293 		node = node->next;
1294 		io_req_normal_work_add(req);
1295 	}
1296 }
1297 
1298 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1299 				       int min_events)
1300 {
1301 	if (llist_empty(&ctx->work_llist))
1302 		return false;
1303 	if (events < min_events)
1304 		return true;
1305 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1306 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1307 	return false;
1308 }
1309 
1310 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1311 			       int min_events)
1312 {
1313 	struct llist_node *node;
1314 	unsigned int loops = 0;
1315 	int ret = 0;
1316 
1317 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1318 		return -EEXIST;
1319 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1320 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1321 again:
1322 	/*
1323 	 * llists are in reverse order, flip it back the right way before
1324 	 * running the pending items.
1325 	 */
1326 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1327 	while (node) {
1328 		struct llist_node *next = node->next;
1329 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1330 						    io_task_work.node);
1331 		INDIRECT_CALL_2(req->io_task_work.func,
1332 				io_poll_task_func, io_req_rw_complete,
1333 				req, ts);
1334 		ret++;
1335 		node = next;
1336 	}
1337 	loops++;
1338 
1339 	if (io_run_local_work_continue(ctx, ret, min_events))
1340 		goto again;
1341 	io_submit_flush_completions(ctx);
1342 	if (io_run_local_work_continue(ctx, ret, min_events))
1343 		goto again;
1344 
1345 	trace_io_uring_local_work_run(ctx, ret, loops);
1346 	return ret;
1347 }
1348 
1349 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1350 					   int min_events)
1351 {
1352 	struct io_tw_state ts = {};
1353 
1354 	if (llist_empty(&ctx->work_llist))
1355 		return 0;
1356 	return __io_run_local_work(ctx, &ts, min_events);
1357 }
1358 
1359 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1360 {
1361 	struct io_tw_state ts = {};
1362 	int ret;
1363 
1364 	mutex_lock(&ctx->uring_lock);
1365 	ret = __io_run_local_work(ctx, &ts, min_events);
1366 	mutex_unlock(&ctx->uring_lock);
1367 	return ret;
1368 }
1369 
1370 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1371 {
1372 	io_tw_lock(req->ctx, ts);
1373 	io_req_defer_failed(req, req->cqe.res);
1374 }
1375 
1376 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1377 {
1378 	io_tw_lock(req->ctx, ts);
1379 	/* req->task == current here, checking PF_EXITING is safe */
1380 	if (unlikely(req->task->flags & PF_EXITING))
1381 		io_req_defer_failed(req, -EFAULT);
1382 	else if (req->flags & REQ_F_FORCE_ASYNC)
1383 		io_queue_iowq(req);
1384 	else
1385 		io_queue_sqe(req);
1386 }
1387 
1388 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1389 {
1390 	io_req_set_res(req, ret, 0);
1391 	req->io_task_work.func = io_req_task_cancel;
1392 	io_req_task_work_add(req);
1393 }
1394 
1395 void io_req_task_queue(struct io_kiocb *req)
1396 {
1397 	req->io_task_work.func = io_req_task_submit;
1398 	io_req_task_work_add(req);
1399 }
1400 
1401 void io_queue_next(struct io_kiocb *req)
1402 {
1403 	struct io_kiocb *nxt = io_req_find_next(req);
1404 
1405 	if (nxt)
1406 		io_req_task_queue(nxt);
1407 }
1408 
1409 static void io_free_batch_list(struct io_ring_ctx *ctx,
1410 			       struct io_wq_work_node *node)
1411 	__must_hold(&ctx->uring_lock)
1412 {
1413 	do {
1414 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1415 						    comp_list);
1416 
1417 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1418 			if (req->flags & REQ_F_REFCOUNT) {
1419 				node = req->comp_list.next;
1420 				if (!req_ref_put_and_test(req))
1421 					continue;
1422 			}
1423 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1424 				struct async_poll *apoll = req->apoll;
1425 
1426 				if (apoll->double_poll)
1427 					kfree(apoll->double_poll);
1428 				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1429 					kfree(apoll);
1430 				req->flags &= ~REQ_F_POLLED;
1431 			}
1432 			if (req->flags & IO_REQ_LINK_FLAGS)
1433 				io_queue_next(req);
1434 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1435 				io_clean_op(req);
1436 		}
1437 		io_put_file(req);
1438 		io_put_rsrc_node(ctx, req->rsrc_node);
1439 		io_put_task(req->task);
1440 
1441 		node = req->comp_list.next;
1442 		io_req_add_to_cache(req, ctx);
1443 	} while (node);
1444 }
1445 
1446 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1447 	__must_hold(&ctx->uring_lock)
1448 {
1449 	struct io_submit_state *state = &ctx->submit_state;
1450 	struct io_wq_work_node *node;
1451 
1452 	__io_cq_lock(ctx);
1453 	__wq_list_for_each(node, &state->compl_reqs) {
1454 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1455 					    comp_list);
1456 
1457 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1458 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1459 			if (ctx->lockless_cq) {
1460 				spin_lock(&ctx->completion_lock);
1461 				io_req_cqe_overflow(req);
1462 				spin_unlock(&ctx->completion_lock);
1463 			} else {
1464 				io_req_cqe_overflow(req);
1465 			}
1466 		}
1467 	}
1468 	__io_cq_unlock_post(ctx);
1469 
1470 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1471 		io_free_batch_list(ctx, state->compl_reqs.first);
1472 		INIT_WQ_LIST(&state->compl_reqs);
1473 	}
1474 	ctx->submit_state.cq_flush = false;
1475 }
1476 
1477 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1478 {
1479 	/* See comment at the top of this file */
1480 	smp_rmb();
1481 	return __io_cqring_events(ctx);
1482 }
1483 
1484 /*
1485  * We can't just wait for polled events to come to us, we have to actively
1486  * find and complete them.
1487  */
1488 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1489 {
1490 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1491 		return;
1492 
1493 	mutex_lock(&ctx->uring_lock);
1494 	while (!wq_list_empty(&ctx->iopoll_list)) {
1495 		/* let it sleep and repeat later if can't complete a request */
1496 		if (io_do_iopoll(ctx, true) == 0)
1497 			break;
1498 		/*
1499 		 * Ensure we allow local-to-the-cpu processing to take place,
1500 		 * in this case we need to ensure that we reap all events.
1501 		 * Also let task_work, etc. to progress by releasing the mutex
1502 		 */
1503 		if (need_resched()) {
1504 			mutex_unlock(&ctx->uring_lock);
1505 			cond_resched();
1506 			mutex_lock(&ctx->uring_lock);
1507 		}
1508 	}
1509 	mutex_unlock(&ctx->uring_lock);
1510 }
1511 
1512 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1513 {
1514 	unsigned int nr_events = 0;
1515 	unsigned long check_cq;
1516 
1517 	lockdep_assert_held(&ctx->uring_lock);
1518 
1519 	if (!io_allowed_run_tw(ctx))
1520 		return -EEXIST;
1521 
1522 	check_cq = READ_ONCE(ctx->check_cq);
1523 	if (unlikely(check_cq)) {
1524 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1525 			__io_cqring_overflow_flush(ctx, false);
1526 		/*
1527 		 * Similarly do not spin if we have not informed the user of any
1528 		 * dropped CQE.
1529 		 */
1530 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1531 			return -EBADR;
1532 	}
1533 	/*
1534 	 * Don't enter poll loop if we already have events pending.
1535 	 * If we do, we can potentially be spinning for commands that
1536 	 * already triggered a CQE (eg in error).
1537 	 */
1538 	if (io_cqring_events(ctx))
1539 		return 0;
1540 
1541 	do {
1542 		int ret = 0;
1543 
1544 		/*
1545 		 * If a submit got punted to a workqueue, we can have the
1546 		 * application entering polling for a command before it gets
1547 		 * issued. That app will hold the uring_lock for the duration
1548 		 * of the poll right here, so we need to take a breather every
1549 		 * now and then to ensure that the issue has a chance to add
1550 		 * the poll to the issued list. Otherwise we can spin here
1551 		 * forever, while the workqueue is stuck trying to acquire the
1552 		 * very same mutex.
1553 		 */
1554 		if (wq_list_empty(&ctx->iopoll_list) ||
1555 		    io_task_work_pending(ctx)) {
1556 			u32 tail = ctx->cached_cq_tail;
1557 
1558 			(void) io_run_local_work_locked(ctx, min);
1559 
1560 			if (task_work_pending(current) ||
1561 			    wq_list_empty(&ctx->iopoll_list)) {
1562 				mutex_unlock(&ctx->uring_lock);
1563 				io_run_task_work();
1564 				mutex_lock(&ctx->uring_lock);
1565 			}
1566 			/* some requests don't go through iopoll_list */
1567 			if (tail != ctx->cached_cq_tail ||
1568 			    wq_list_empty(&ctx->iopoll_list))
1569 				break;
1570 		}
1571 		ret = io_do_iopoll(ctx, !min);
1572 		if (unlikely(ret < 0))
1573 			return ret;
1574 
1575 		if (task_sigpending(current))
1576 			return -EINTR;
1577 		if (need_resched())
1578 			break;
1579 
1580 		nr_events += ret;
1581 	} while (nr_events < min);
1582 
1583 	return 0;
1584 }
1585 
1586 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1587 {
1588 	io_req_complete_defer(req);
1589 }
1590 
1591 /*
1592  * After the iocb has been issued, it's safe to be found on the poll list.
1593  * Adding the kiocb to the list AFTER submission ensures that we don't
1594  * find it from a io_do_iopoll() thread before the issuer is done
1595  * accessing the kiocb cookie.
1596  */
1597 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1598 {
1599 	struct io_ring_ctx *ctx = req->ctx;
1600 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1601 
1602 	/* workqueue context doesn't hold uring_lock, grab it now */
1603 	if (unlikely(needs_lock))
1604 		mutex_lock(&ctx->uring_lock);
1605 
1606 	/*
1607 	 * Track whether we have multiple files in our lists. This will impact
1608 	 * how we do polling eventually, not spinning if we're on potentially
1609 	 * different devices.
1610 	 */
1611 	if (wq_list_empty(&ctx->iopoll_list)) {
1612 		ctx->poll_multi_queue = false;
1613 	} else if (!ctx->poll_multi_queue) {
1614 		struct io_kiocb *list_req;
1615 
1616 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1617 					comp_list);
1618 		if (list_req->file != req->file)
1619 			ctx->poll_multi_queue = true;
1620 	}
1621 
1622 	/*
1623 	 * For fast devices, IO may have already completed. If it has, add
1624 	 * it to the front so we find it first.
1625 	 */
1626 	if (READ_ONCE(req->iopoll_completed))
1627 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1628 	else
1629 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1630 
1631 	if (unlikely(needs_lock)) {
1632 		/*
1633 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1634 		 * in sq thread task context or in io worker task context. If
1635 		 * current task context is sq thread, we don't need to check
1636 		 * whether should wake up sq thread.
1637 		 */
1638 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1639 		    wq_has_sleeper(&ctx->sq_data->wait))
1640 			wake_up(&ctx->sq_data->wait);
1641 
1642 		mutex_unlock(&ctx->uring_lock);
1643 	}
1644 }
1645 
1646 io_req_flags_t io_file_get_flags(struct file *file)
1647 {
1648 	io_req_flags_t res = 0;
1649 
1650 	if (S_ISREG(file_inode(file)->i_mode))
1651 		res |= REQ_F_ISREG;
1652 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1653 		res |= REQ_F_SUPPORT_NOWAIT;
1654 	return res;
1655 }
1656 
1657 bool io_alloc_async_data(struct io_kiocb *req)
1658 {
1659 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1660 
1661 	WARN_ON_ONCE(!def->async_size);
1662 	req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1663 	if (req->async_data) {
1664 		req->flags |= REQ_F_ASYNC_DATA;
1665 		return false;
1666 	}
1667 	return true;
1668 }
1669 
1670 static u32 io_get_sequence(struct io_kiocb *req)
1671 {
1672 	u32 seq = req->ctx->cached_sq_head;
1673 	struct io_kiocb *cur;
1674 
1675 	/* need original cached_sq_head, but it was increased for each req */
1676 	io_for_each_link(cur, req)
1677 		seq--;
1678 	return seq;
1679 }
1680 
1681 static __cold void io_drain_req(struct io_kiocb *req)
1682 	__must_hold(&ctx->uring_lock)
1683 {
1684 	struct io_ring_ctx *ctx = req->ctx;
1685 	struct io_defer_entry *de;
1686 	int ret;
1687 	u32 seq = io_get_sequence(req);
1688 
1689 	/* Still need defer if there is pending req in defer list. */
1690 	spin_lock(&ctx->completion_lock);
1691 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1692 		spin_unlock(&ctx->completion_lock);
1693 queue:
1694 		ctx->drain_active = false;
1695 		io_req_task_queue(req);
1696 		return;
1697 	}
1698 	spin_unlock(&ctx->completion_lock);
1699 
1700 	io_prep_async_link(req);
1701 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1702 	if (!de) {
1703 		ret = -ENOMEM;
1704 		io_req_defer_failed(req, ret);
1705 		return;
1706 	}
1707 
1708 	spin_lock(&ctx->completion_lock);
1709 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1710 		spin_unlock(&ctx->completion_lock);
1711 		kfree(de);
1712 		goto queue;
1713 	}
1714 
1715 	trace_io_uring_defer(req);
1716 	de->req = req;
1717 	de->seq = seq;
1718 	list_add_tail(&de->list, &ctx->defer_list);
1719 	spin_unlock(&ctx->completion_lock);
1720 }
1721 
1722 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1723 			   unsigned int issue_flags)
1724 {
1725 	if (req->file || !def->needs_file)
1726 		return true;
1727 
1728 	if (req->flags & REQ_F_FIXED_FILE)
1729 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1730 	else
1731 		req->file = io_file_get_normal(req, req->cqe.fd);
1732 
1733 	return !!req->file;
1734 }
1735 
1736 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1737 {
1738 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1739 	const struct cred *creds = NULL;
1740 	int ret;
1741 
1742 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1743 		return -EBADF;
1744 
1745 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1746 		creds = override_creds(req->creds);
1747 
1748 	if (!def->audit_skip)
1749 		audit_uring_entry(req->opcode);
1750 
1751 	ret = def->issue(req, issue_flags);
1752 
1753 	if (!def->audit_skip)
1754 		audit_uring_exit(!ret, ret);
1755 
1756 	if (creds)
1757 		revert_creds(creds);
1758 
1759 	if (ret == IOU_OK) {
1760 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1761 			io_req_complete_defer(req);
1762 		else
1763 			io_req_complete_post(req, issue_flags);
1764 
1765 		return 0;
1766 	}
1767 
1768 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1769 		ret = 0;
1770 		io_arm_ltimeout(req);
1771 
1772 		/* If the op doesn't have a file, we're not polling for it */
1773 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1774 			io_iopoll_req_issued(req, issue_flags);
1775 	}
1776 	return ret;
1777 }
1778 
1779 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1780 {
1781 	io_tw_lock(req->ctx, ts);
1782 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1783 				 IO_URING_F_COMPLETE_DEFER);
1784 }
1785 
1786 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1787 {
1788 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1789 	struct io_kiocb *nxt = NULL;
1790 
1791 	if (req_ref_put_and_test(req)) {
1792 		if (req->flags & IO_REQ_LINK_FLAGS)
1793 			nxt = io_req_find_next(req);
1794 		io_free_req(req);
1795 	}
1796 	return nxt ? &nxt->work : NULL;
1797 }
1798 
1799 void io_wq_submit_work(struct io_wq_work *work)
1800 {
1801 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1802 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1803 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1804 	bool needs_poll = false;
1805 	int ret = 0, err = -ECANCELED;
1806 
1807 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1808 	if (!(req->flags & REQ_F_REFCOUNT))
1809 		__io_req_set_refcount(req, 2);
1810 	else
1811 		req_ref_get(req);
1812 
1813 	io_arm_ltimeout(req);
1814 
1815 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1816 	if (work->flags & IO_WQ_WORK_CANCEL) {
1817 fail:
1818 		io_req_task_queue_fail(req, err);
1819 		return;
1820 	}
1821 	if (!io_assign_file(req, def, issue_flags)) {
1822 		err = -EBADF;
1823 		work->flags |= IO_WQ_WORK_CANCEL;
1824 		goto fail;
1825 	}
1826 
1827 	/*
1828 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1829 	 * submitter task context. Final request completions are handed to the
1830 	 * right context, however this is not the case of auxiliary CQEs,
1831 	 * which is the main mean of operation for multishot requests.
1832 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1833 	 * than necessary and also cleaner.
1834 	 */
1835 	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1836 		err = -EBADFD;
1837 		if (!io_file_can_poll(req))
1838 			goto fail;
1839 		if (req->file->f_flags & O_NONBLOCK ||
1840 		    req->file->f_mode & FMODE_NOWAIT) {
1841 			err = -ECANCELED;
1842 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1843 				goto fail;
1844 			return;
1845 		} else {
1846 			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1847 		}
1848 	}
1849 
1850 	if (req->flags & REQ_F_FORCE_ASYNC) {
1851 		bool opcode_poll = def->pollin || def->pollout;
1852 
1853 		if (opcode_poll && io_file_can_poll(req)) {
1854 			needs_poll = true;
1855 			issue_flags |= IO_URING_F_NONBLOCK;
1856 		}
1857 	}
1858 
1859 	do {
1860 		ret = io_issue_sqe(req, issue_flags);
1861 		if (ret != -EAGAIN)
1862 			break;
1863 
1864 		/*
1865 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1866 		 * poll. -EAGAIN is final for that case.
1867 		 */
1868 		if (req->flags & REQ_F_NOWAIT)
1869 			break;
1870 
1871 		/*
1872 		 * We can get EAGAIN for iopolled IO even though we're
1873 		 * forcing a sync submission from here, since we can't
1874 		 * wait for request slots on the block side.
1875 		 */
1876 		if (!needs_poll) {
1877 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1878 				break;
1879 			if (io_wq_worker_stopped())
1880 				break;
1881 			cond_resched();
1882 			continue;
1883 		}
1884 
1885 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1886 			return;
1887 		/* aborted or ready, in either case retry blocking */
1888 		needs_poll = false;
1889 		issue_flags &= ~IO_URING_F_NONBLOCK;
1890 	} while (1);
1891 
1892 	/* avoid locking problems by failing it from a clean context */
1893 	if (ret < 0)
1894 		io_req_task_queue_fail(req, ret);
1895 }
1896 
1897 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1898 				      unsigned int issue_flags)
1899 {
1900 	struct io_ring_ctx *ctx = req->ctx;
1901 	struct io_fixed_file *slot;
1902 	struct file *file = NULL;
1903 
1904 	io_ring_submit_lock(ctx, issue_flags);
1905 
1906 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1907 		goto out;
1908 	fd = array_index_nospec(fd, ctx->nr_user_files);
1909 	slot = io_fixed_file_slot(&ctx->file_table, fd);
1910 	if (!req->rsrc_node)
1911 		__io_req_set_rsrc_node(req, ctx);
1912 	req->flags |= io_slot_flags(slot);
1913 	file = io_slot_file(slot);
1914 out:
1915 	io_ring_submit_unlock(ctx, issue_flags);
1916 	return file;
1917 }
1918 
1919 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1920 {
1921 	struct file *file = fget(fd);
1922 
1923 	trace_io_uring_file_get(req, fd);
1924 
1925 	/* we don't allow fixed io_uring files */
1926 	if (file && io_is_uring_fops(file))
1927 		io_req_track_inflight(req);
1928 	return file;
1929 }
1930 
1931 static void io_queue_async(struct io_kiocb *req, int ret)
1932 	__must_hold(&req->ctx->uring_lock)
1933 {
1934 	struct io_kiocb *linked_timeout;
1935 
1936 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1937 		io_req_defer_failed(req, ret);
1938 		return;
1939 	}
1940 
1941 	linked_timeout = io_prep_linked_timeout(req);
1942 
1943 	switch (io_arm_poll_handler(req, 0)) {
1944 	case IO_APOLL_READY:
1945 		io_kbuf_recycle(req, 0);
1946 		io_req_task_queue(req);
1947 		break;
1948 	case IO_APOLL_ABORTED:
1949 		io_kbuf_recycle(req, 0);
1950 		io_queue_iowq(req);
1951 		break;
1952 	case IO_APOLL_OK:
1953 		break;
1954 	}
1955 
1956 	if (linked_timeout)
1957 		io_queue_linked_timeout(linked_timeout);
1958 }
1959 
1960 static inline void io_queue_sqe(struct io_kiocb *req)
1961 	__must_hold(&req->ctx->uring_lock)
1962 {
1963 	int ret;
1964 
1965 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1966 
1967 	/*
1968 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1969 	 * doesn't support non-blocking read/write attempts
1970 	 */
1971 	if (unlikely(ret))
1972 		io_queue_async(req, ret);
1973 }
1974 
1975 static void io_queue_sqe_fallback(struct io_kiocb *req)
1976 	__must_hold(&req->ctx->uring_lock)
1977 {
1978 	if (unlikely(req->flags & REQ_F_FAIL)) {
1979 		/*
1980 		 * We don't submit, fail them all, for that replace hardlinks
1981 		 * with normal links. Extra REQ_F_LINK is tolerated.
1982 		 */
1983 		req->flags &= ~REQ_F_HARDLINK;
1984 		req->flags |= REQ_F_LINK;
1985 		io_req_defer_failed(req, req->cqe.res);
1986 	} else {
1987 		if (unlikely(req->ctx->drain_active))
1988 			io_drain_req(req);
1989 		else
1990 			io_queue_iowq(req);
1991 	}
1992 }
1993 
1994 /*
1995  * Check SQE restrictions (opcode and flags).
1996  *
1997  * Returns 'true' if SQE is allowed, 'false' otherwise.
1998  */
1999 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2000 					struct io_kiocb *req,
2001 					unsigned int sqe_flags)
2002 {
2003 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2004 		return false;
2005 
2006 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2007 	    ctx->restrictions.sqe_flags_required)
2008 		return false;
2009 
2010 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2011 			  ctx->restrictions.sqe_flags_required))
2012 		return false;
2013 
2014 	return true;
2015 }
2016 
2017 static void io_init_req_drain(struct io_kiocb *req)
2018 {
2019 	struct io_ring_ctx *ctx = req->ctx;
2020 	struct io_kiocb *head = ctx->submit_state.link.head;
2021 
2022 	ctx->drain_active = true;
2023 	if (head) {
2024 		/*
2025 		 * If we need to drain a request in the middle of a link, drain
2026 		 * the head request and the next request/link after the current
2027 		 * link. Considering sequential execution of links,
2028 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2029 		 * link.
2030 		 */
2031 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2032 		ctx->drain_next = true;
2033 	}
2034 }
2035 
2036 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2037 {
2038 	/* ensure per-opcode data is cleared if we fail before prep */
2039 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2040 	return err;
2041 }
2042 
2043 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2044 		       const struct io_uring_sqe *sqe)
2045 	__must_hold(&ctx->uring_lock)
2046 {
2047 	const struct io_issue_def *def;
2048 	unsigned int sqe_flags;
2049 	int personality;
2050 	u8 opcode;
2051 
2052 	/* req is partially pre-initialised, see io_preinit_req() */
2053 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2054 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2055 	sqe_flags = READ_ONCE(sqe->flags);
2056 	req->flags = (io_req_flags_t) sqe_flags;
2057 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2058 	req->file = NULL;
2059 	req->rsrc_node = NULL;
2060 	req->task = current;
2061 
2062 	if (unlikely(opcode >= IORING_OP_LAST)) {
2063 		req->opcode = 0;
2064 		return io_init_fail_req(req, -EINVAL);
2065 	}
2066 	def = &io_issue_defs[opcode];
2067 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2068 		/* enforce forwards compatibility on users */
2069 		if (sqe_flags & ~SQE_VALID_FLAGS)
2070 			return io_init_fail_req(req, -EINVAL);
2071 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2072 			if (!def->buffer_select)
2073 				return io_init_fail_req(req, -EOPNOTSUPP);
2074 			req->buf_index = READ_ONCE(sqe->buf_group);
2075 		}
2076 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2077 			ctx->drain_disabled = true;
2078 		if (sqe_flags & IOSQE_IO_DRAIN) {
2079 			if (ctx->drain_disabled)
2080 				return io_init_fail_req(req, -EOPNOTSUPP);
2081 			io_init_req_drain(req);
2082 		}
2083 	}
2084 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2085 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2086 			return io_init_fail_req(req, -EACCES);
2087 		/* knock it to the slow queue path, will be drained there */
2088 		if (ctx->drain_active)
2089 			req->flags |= REQ_F_FORCE_ASYNC;
2090 		/* if there is no link, we're at "next" request and need to drain */
2091 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2092 			ctx->drain_next = false;
2093 			ctx->drain_active = true;
2094 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2095 		}
2096 	}
2097 
2098 	if (!def->ioprio && sqe->ioprio)
2099 		return io_init_fail_req(req, -EINVAL);
2100 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2101 		return io_init_fail_req(req, -EINVAL);
2102 
2103 	if (def->needs_file) {
2104 		struct io_submit_state *state = &ctx->submit_state;
2105 
2106 		req->cqe.fd = READ_ONCE(sqe->fd);
2107 
2108 		/*
2109 		 * Plug now if we have more than 2 IO left after this, and the
2110 		 * target is potentially a read/write to block based storage.
2111 		 */
2112 		if (state->need_plug && def->plug) {
2113 			state->plug_started = true;
2114 			state->need_plug = false;
2115 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2116 		}
2117 	}
2118 
2119 	personality = READ_ONCE(sqe->personality);
2120 	if (personality) {
2121 		int ret;
2122 
2123 		req->creds = xa_load(&ctx->personalities, personality);
2124 		if (!req->creds)
2125 			return io_init_fail_req(req, -EINVAL);
2126 		get_cred(req->creds);
2127 		ret = security_uring_override_creds(req->creds);
2128 		if (ret) {
2129 			put_cred(req->creds);
2130 			return io_init_fail_req(req, ret);
2131 		}
2132 		req->flags |= REQ_F_CREDS;
2133 	}
2134 
2135 	return def->prep(req, sqe);
2136 }
2137 
2138 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2139 				      struct io_kiocb *req, int ret)
2140 {
2141 	struct io_ring_ctx *ctx = req->ctx;
2142 	struct io_submit_link *link = &ctx->submit_state.link;
2143 	struct io_kiocb *head = link->head;
2144 
2145 	trace_io_uring_req_failed(sqe, req, ret);
2146 
2147 	/*
2148 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2149 	 * unusable. Instead of failing eagerly, continue assembling the link if
2150 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2151 	 * should find the flag and handle the rest.
2152 	 */
2153 	req_fail_link_node(req, ret);
2154 	if (head && !(head->flags & REQ_F_FAIL))
2155 		req_fail_link_node(head, -ECANCELED);
2156 
2157 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2158 		if (head) {
2159 			link->last->link = req;
2160 			link->head = NULL;
2161 			req = head;
2162 		}
2163 		io_queue_sqe_fallback(req);
2164 		return ret;
2165 	}
2166 
2167 	if (head)
2168 		link->last->link = req;
2169 	else
2170 		link->head = req;
2171 	link->last = req;
2172 	return 0;
2173 }
2174 
2175 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2176 			 const struct io_uring_sqe *sqe)
2177 	__must_hold(&ctx->uring_lock)
2178 {
2179 	struct io_submit_link *link = &ctx->submit_state.link;
2180 	int ret;
2181 
2182 	ret = io_init_req(ctx, req, sqe);
2183 	if (unlikely(ret))
2184 		return io_submit_fail_init(sqe, req, ret);
2185 
2186 	trace_io_uring_submit_req(req);
2187 
2188 	/*
2189 	 * If we already have a head request, queue this one for async
2190 	 * submittal once the head completes. If we don't have a head but
2191 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2192 	 * submitted sync once the chain is complete. If none of those
2193 	 * conditions are true (normal request), then just queue it.
2194 	 */
2195 	if (unlikely(link->head)) {
2196 		trace_io_uring_link(req, link->head);
2197 		link->last->link = req;
2198 		link->last = req;
2199 
2200 		if (req->flags & IO_REQ_LINK_FLAGS)
2201 			return 0;
2202 		/* last request of the link, flush it */
2203 		req = link->head;
2204 		link->head = NULL;
2205 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2206 			goto fallback;
2207 
2208 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2209 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2210 		if (req->flags & IO_REQ_LINK_FLAGS) {
2211 			link->head = req;
2212 			link->last = req;
2213 		} else {
2214 fallback:
2215 			io_queue_sqe_fallback(req);
2216 		}
2217 		return 0;
2218 	}
2219 
2220 	io_queue_sqe(req);
2221 	return 0;
2222 }
2223 
2224 /*
2225  * Batched submission is done, ensure local IO is flushed out.
2226  */
2227 static void io_submit_state_end(struct io_ring_ctx *ctx)
2228 {
2229 	struct io_submit_state *state = &ctx->submit_state;
2230 
2231 	if (unlikely(state->link.head))
2232 		io_queue_sqe_fallback(state->link.head);
2233 	/* flush only after queuing links as they can generate completions */
2234 	io_submit_flush_completions(ctx);
2235 	if (state->plug_started)
2236 		blk_finish_plug(&state->plug);
2237 }
2238 
2239 /*
2240  * Start submission side cache.
2241  */
2242 static void io_submit_state_start(struct io_submit_state *state,
2243 				  unsigned int max_ios)
2244 {
2245 	state->plug_started = false;
2246 	state->need_plug = max_ios > 2;
2247 	state->submit_nr = max_ios;
2248 	/* set only head, no need to init link_last in advance */
2249 	state->link.head = NULL;
2250 }
2251 
2252 static void io_commit_sqring(struct io_ring_ctx *ctx)
2253 {
2254 	struct io_rings *rings = ctx->rings;
2255 
2256 	/*
2257 	 * Ensure any loads from the SQEs are done at this point,
2258 	 * since once we write the new head, the application could
2259 	 * write new data to them.
2260 	 */
2261 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2262 }
2263 
2264 /*
2265  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2266  * that is mapped by userspace. This means that care needs to be taken to
2267  * ensure that reads are stable, as we cannot rely on userspace always
2268  * being a good citizen. If members of the sqe are validated and then later
2269  * used, it's important that those reads are done through READ_ONCE() to
2270  * prevent a re-load down the line.
2271  */
2272 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2273 {
2274 	unsigned mask = ctx->sq_entries - 1;
2275 	unsigned head = ctx->cached_sq_head++ & mask;
2276 
2277 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2278 		head = READ_ONCE(ctx->sq_array[head]);
2279 		if (unlikely(head >= ctx->sq_entries)) {
2280 			/* drop invalid entries */
2281 			spin_lock(&ctx->completion_lock);
2282 			ctx->cq_extra--;
2283 			spin_unlock(&ctx->completion_lock);
2284 			WRITE_ONCE(ctx->rings->sq_dropped,
2285 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2286 			return false;
2287 		}
2288 	}
2289 
2290 	/*
2291 	 * The cached sq head (or cq tail) serves two purposes:
2292 	 *
2293 	 * 1) allows us to batch the cost of updating the user visible
2294 	 *    head updates.
2295 	 * 2) allows the kernel side to track the head on its own, even
2296 	 *    though the application is the one updating it.
2297 	 */
2298 
2299 	/* double index for 128-byte SQEs, twice as long */
2300 	if (ctx->flags & IORING_SETUP_SQE128)
2301 		head <<= 1;
2302 	*sqe = &ctx->sq_sqes[head];
2303 	return true;
2304 }
2305 
2306 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2307 	__must_hold(&ctx->uring_lock)
2308 {
2309 	unsigned int entries = io_sqring_entries(ctx);
2310 	unsigned int left;
2311 	int ret;
2312 
2313 	if (unlikely(!entries))
2314 		return 0;
2315 	/* make sure SQ entry isn't read before tail */
2316 	ret = left = min(nr, entries);
2317 	io_get_task_refs(left);
2318 	io_submit_state_start(&ctx->submit_state, left);
2319 
2320 	do {
2321 		const struct io_uring_sqe *sqe;
2322 		struct io_kiocb *req;
2323 
2324 		if (unlikely(!io_alloc_req(ctx, &req)))
2325 			break;
2326 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2327 			io_req_add_to_cache(req, ctx);
2328 			break;
2329 		}
2330 
2331 		/*
2332 		 * Continue submitting even for sqe failure if the
2333 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2334 		 */
2335 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2336 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2337 			left--;
2338 			break;
2339 		}
2340 	} while (--left);
2341 
2342 	if (unlikely(left)) {
2343 		ret -= left;
2344 		/* try again if it submitted nothing and can't allocate a req */
2345 		if (!ret && io_req_cache_empty(ctx))
2346 			ret = -EAGAIN;
2347 		current->io_uring->cached_refs += left;
2348 	}
2349 
2350 	io_submit_state_end(ctx);
2351 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2352 	io_commit_sqring(ctx);
2353 	return ret;
2354 }
2355 
2356 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2357 			    int wake_flags, void *key)
2358 {
2359 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2360 
2361 	/*
2362 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2363 	 * the task, and the next invocation will do it.
2364 	 */
2365 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2366 		return autoremove_wake_function(curr, mode, wake_flags, key);
2367 	return -1;
2368 }
2369 
2370 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2371 {
2372 	if (!llist_empty(&ctx->work_llist)) {
2373 		__set_current_state(TASK_RUNNING);
2374 		if (io_run_local_work(ctx, INT_MAX) > 0)
2375 			return 0;
2376 	}
2377 	if (io_run_task_work() > 0)
2378 		return 0;
2379 	if (task_sigpending(current))
2380 		return -EINTR;
2381 	return 0;
2382 }
2383 
2384 static bool current_pending_io(void)
2385 {
2386 	struct io_uring_task *tctx = current->io_uring;
2387 
2388 	if (!tctx)
2389 		return false;
2390 	return percpu_counter_read_positive(&tctx->inflight);
2391 }
2392 
2393 /* when returns >0, the caller should retry */
2394 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2395 					  struct io_wait_queue *iowq)
2396 {
2397 	int ret;
2398 
2399 	if (unlikely(READ_ONCE(ctx->check_cq)))
2400 		return 1;
2401 	if (unlikely(!llist_empty(&ctx->work_llist)))
2402 		return 1;
2403 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2404 		return 1;
2405 	if (unlikely(task_sigpending(current)))
2406 		return -EINTR;
2407 	if (unlikely(io_should_wake(iowq)))
2408 		return 0;
2409 
2410 	/*
2411 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2412 	 * can take into account that the task is waiting for IO - turns out
2413 	 * to be important for low QD IO.
2414 	 */
2415 	if (current_pending_io())
2416 		current->in_iowait = 1;
2417 	ret = 0;
2418 	if (iowq->timeout == KTIME_MAX)
2419 		schedule();
2420 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2421 		ret = -ETIME;
2422 	current->in_iowait = 0;
2423 	return ret;
2424 }
2425 
2426 /*
2427  * Wait until events become available, if we don't already have some. The
2428  * application must reap them itself, as they reside on the shared cq ring.
2429  */
2430 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2431 			  const sigset_t __user *sig, size_t sigsz,
2432 			  struct __kernel_timespec __user *uts)
2433 {
2434 	struct io_wait_queue iowq;
2435 	struct io_rings *rings = ctx->rings;
2436 	int ret;
2437 
2438 	if (!io_allowed_run_tw(ctx))
2439 		return -EEXIST;
2440 	if (!llist_empty(&ctx->work_llist))
2441 		io_run_local_work(ctx, min_events);
2442 	io_run_task_work();
2443 
2444 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2445 		io_cqring_do_overflow_flush(ctx);
2446 	if (__io_cqring_events_user(ctx) >= min_events)
2447 		return 0;
2448 
2449 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2450 	iowq.wq.private = current;
2451 	INIT_LIST_HEAD(&iowq.wq.entry);
2452 	iowq.ctx = ctx;
2453 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2454 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2455 	iowq.timeout = KTIME_MAX;
2456 
2457 	if (uts) {
2458 		struct timespec64 ts;
2459 
2460 		if (get_timespec64(&ts, uts))
2461 			return -EFAULT;
2462 
2463 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2464 		io_napi_adjust_timeout(ctx, &iowq, &ts);
2465 	}
2466 
2467 	if (sig) {
2468 #ifdef CONFIG_COMPAT
2469 		if (in_compat_syscall())
2470 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2471 						      sigsz);
2472 		else
2473 #endif
2474 			ret = set_user_sigmask(sig, sigsz);
2475 
2476 		if (ret)
2477 			return ret;
2478 	}
2479 
2480 	io_napi_busy_loop(ctx, &iowq);
2481 
2482 	trace_io_uring_cqring_wait(ctx, min_events);
2483 	do {
2484 		int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2485 		unsigned long check_cq;
2486 
2487 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2488 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2489 			set_current_state(TASK_INTERRUPTIBLE);
2490 		} else {
2491 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2492 							TASK_INTERRUPTIBLE);
2493 		}
2494 
2495 		ret = io_cqring_wait_schedule(ctx, &iowq);
2496 		__set_current_state(TASK_RUNNING);
2497 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2498 
2499 		/*
2500 		 * Run task_work after scheduling and before io_should_wake().
2501 		 * If we got woken because of task_work being processed, run it
2502 		 * now rather than let the caller do another wait loop.
2503 		 */
2504 		io_run_task_work();
2505 		if (!llist_empty(&ctx->work_llist))
2506 			io_run_local_work(ctx, nr_wait);
2507 
2508 		/*
2509 		 * Non-local task_work will be run on exit to userspace, but
2510 		 * if we're using DEFER_TASKRUN, then we could have waited
2511 		 * with a timeout for a number of requests. If the timeout
2512 		 * hits, we could have some requests ready to process. Ensure
2513 		 * this break is _after_ we have run task_work, to avoid
2514 		 * deferring running potentially pending requests until the
2515 		 * next time we wait for events.
2516 		 */
2517 		if (ret < 0)
2518 			break;
2519 
2520 		check_cq = READ_ONCE(ctx->check_cq);
2521 		if (unlikely(check_cq)) {
2522 			/* let the caller flush overflows, retry */
2523 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2524 				io_cqring_do_overflow_flush(ctx);
2525 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2526 				ret = -EBADR;
2527 				break;
2528 			}
2529 		}
2530 
2531 		if (io_should_wake(&iowq)) {
2532 			ret = 0;
2533 			break;
2534 		}
2535 		cond_resched();
2536 	} while (1);
2537 
2538 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2539 		finish_wait(&ctx->cq_wait, &iowq.wq);
2540 	restore_saved_sigmask_unless(ret == -EINTR);
2541 
2542 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2543 }
2544 
2545 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2546 			  size_t size)
2547 {
2548 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2549 				size);
2550 }
2551 
2552 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2553 			 size_t size)
2554 {
2555 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2556 				size);
2557 }
2558 
2559 static void io_rings_free(struct io_ring_ctx *ctx)
2560 {
2561 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2562 		io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2563 				true);
2564 		io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2565 				true);
2566 	} else {
2567 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2568 		ctx->n_ring_pages = 0;
2569 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2570 		ctx->n_sqe_pages = 0;
2571 		vunmap(ctx->rings);
2572 		vunmap(ctx->sq_sqes);
2573 	}
2574 
2575 	ctx->rings = NULL;
2576 	ctx->sq_sqes = NULL;
2577 }
2578 
2579 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2580 				unsigned int cq_entries, size_t *sq_offset)
2581 {
2582 	struct io_rings *rings;
2583 	size_t off, sq_array_size;
2584 
2585 	off = struct_size(rings, cqes, cq_entries);
2586 	if (off == SIZE_MAX)
2587 		return SIZE_MAX;
2588 	if (ctx->flags & IORING_SETUP_CQE32) {
2589 		if (check_shl_overflow(off, 1, &off))
2590 			return SIZE_MAX;
2591 	}
2592 
2593 #ifdef CONFIG_SMP
2594 	off = ALIGN(off, SMP_CACHE_BYTES);
2595 	if (off == 0)
2596 		return SIZE_MAX;
2597 #endif
2598 
2599 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2600 		*sq_offset = SIZE_MAX;
2601 		return off;
2602 	}
2603 
2604 	*sq_offset = off;
2605 
2606 	sq_array_size = array_size(sizeof(u32), sq_entries);
2607 	if (sq_array_size == SIZE_MAX)
2608 		return SIZE_MAX;
2609 
2610 	if (check_add_overflow(off, sq_array_size, &off))
2611 		return SIZE_MAX;
2612 
2613 	return off;
2614 }
2615 
2616 static void io_req_caches_free(struct io_ring_ctx *ctx)
2617 {
2618 	struct io_kiocb *req;
2619 	int nr = 0;
2620 
2621 	mutex_lock(&ctx->uring_lock);
2622 
2623 	while (!io_req_cache_empty(ctx)) {
2624 		req = io_extract_req(ctx);
2625 		kmem_cache_free(req_cachep, req);
2626 		nr++;
2627 	}
2628 	if (nr)
2629 		percpu_ref_put_many(&ctx->refs, nr);
2630 	mutex_unlock(&ctx->uring_lock);
2631 }
2632 
2633 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2634 {
2635 	io_sq_thread_finish(ctx);
2636 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2637 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2638 		return;
2639 
2640 	mutex_lock(&ctx->uring_lock);
2641 	if (ctx->buf_data)
2642 		__io_sqe_buffers_unregister(ctx);
2643 	if (ctx->file_data)
2644 		__io_sqe_files_unregister(ctx);
2645 	io_cqring_overflow_kill(ctx);
2646 	io_eventfd_unregister(ctx);
2647 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2648 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2649 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2650 	io_alloc_cache_free(&ctx->uring_cache, kfree);
2651 	io_futex_cache_free(ctx);
2652 	io_destroy_buffers(ctx);
2653 	mutex_unlock(&ctx->uring_lock);
2654 	if (ctx->sq_creds)
2655 		put_cred(ctx->sq_creds);
2656 	if (ctx->submitter_task)
2657 		put_task_struct(ctx->submitter_task);
2658 
2659 	/* there are no registered resources left, nobody uses it */
2660 	if (ctx->rsrc_node)
2661 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2662 
2663 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2664 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2665 
2666 	io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
2667 	if (ctx->mm_account) {
2668 		mmdrop(ctx->mm_account);
2669 		ctx->mm_account = NULL;
2670 	}
2671 	io_rings_free(ctx);
2672 
2673 	percpu_ref_exit(&ctx->refs);
2674 	free_uid(ctx->user);
2675 	io_req_caches_free(ctx);
2676 	if (ctx->hash_map)
2677 		io_wq_put_hash(ctx->hash_map);
2678 	io_napi_free(ctx);
2679 	kfree(ctx->cancel_table.hbs);
2680 	kfree(ctx->cancel_table_locked.hbs);
2681 	xa_destroy(&ctx->io_bl_xa);
2682 	kfree(ctx);
2683 }
2684 
2685 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2686 {
2687 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2688 					       poll_wq_task_work);
2689 
2690 	mutex_lock(&ctx->uring_lock);
2691 	ctx->poll_activated = true;
2692 	mutex_unlock(&ctx->uring_lock);
2693 
2694 	/*
2695 	 * Wake ups for some events between start of polling and activation
2696 	 * might've been lost due to loose synchronisation.
2697 	 */
2698 	wake_up_all(&ctx->poll_wq);
2699 	percpu_ref_put(&ctx->refs);
2700 }
2701 
2702 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2703 {
2704 	spin_lock(&ctx->completion_lock);
2705 	/* already activated or in progress */
2706 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2707 		goto out;
2708 	if (WARN_ON_ONCE(!ctx->task_complete))
2709 		goto out;
2710 	if (!ctx->submitter_task)
2711 		goto out;
2712 	/*
2713 	 * with ->submitter_task only the submitter task completes requests, we
2714 	 * only need to sync with it, which is done by injecting a tw
2715 	 */
2716 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2717 	percpu_ref_get(&ctx->refs);
2718 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2719 		percpu_ref_put(&ctx->refs);
2720 out:
2721 	spin_unlock(&ctx->completion_lock);
2722 }
2723 
2724 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2725 {
2726 	struct io_ring_ctx *ctx = file->private_data;
2727 	__poll_t mask = 0;
2728 
2729 	if (unlikely(!ctx->poll_activated))
2730 		io_activate_pollwq(ctx);
2731 
2732 	poll_wait(file, &ctx->poll_wq, wait);
2733 	/*
2734 	 * synchronizes with barrier from wq_has_sleeper call in
2735 	 * io_commit_cqring
2736 	 */
2737 	smp_rmb();
2738 	if (!io_sqring_full(ctx))
2739 		mask |= EPOLLOUT | EPOLLWRNORM;
2740 
2741 	/*
2742 	 * Don't flush cqring overflow list here, just do a simple check.
2743 	 * Otherwise there could possible be ABBA deadlock:
2744 	 *      CPU0                    CPU1
2745 	 *      ----                    ----
2746 	 * lock(&ctx->uring_lock);
2747 	 *                              lock(&ep->mtx);
2748 	 *                              lock(&ctx->uring_lock);
2749 	 * lock(&ep->mtx);
2750 	 *
2751 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2752 	 * pushes them to do the flush.
2753 	 */
2754 
2755 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2756 		mask |= EPOLLIN | EPOLLRDNORM;
2757 
2758 	return mask;
2759 }
2760 
2761 struct io_tctx_exit {
2762 	struct callback_head		task_work;
2763 	struct completion		completion;
2764 	struct io_ring_ctx		*ctx;
2765 };
2766 
2767 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2768 {
2769 	struct io_uring_task *tctx = current->io_uring;
2770 	struct io_tctx_exit *work;
2771 
2772 	work = container_of(cb, struct io_tctx_exit, task_work);
2773 	/*
2774 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2775 	 * node. It'll be removed by the end of cancellation, just ignore it.
2776 	 * tctx can be NULL if the queueing of this task_work raced with
2777 	 * work cancelation off the exec path.
2778 	 */
2779 	if (tctx && !atomic_read(&tctx->in_cancel))
2780 		io_uring_del_tctx_node((unsigned long)work->ctx);
2781 	complete(&work->completion);
2782 }
2783 
2784 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2785 {
2786 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2787 
2788 	return req->ctx == data;
2789 }
2790 
2791 static __cold void io_ring_exit_work(struct work_struct *work)
2792 {
2793 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2794 	unsigned long timeout = jiffies + HZ * 60 * 5;
2795 	unsigned long interval = HZ / 20;
2796 	struct io_tctx_exit exit;
2797 	struct io_tctx_node *node;
2798 	int ret;
2799 
2800 	/*
2801 	 * If we're doing polled IO and end up having requests being
2802 	 * submitted async (out-of-line), then completions can come in while
2803 	 * we're waiting for refs to drop. We need to reap these manually,
2804 	 * as nobody else will be looking for them.
2805 	 */
2806 	do {
2807 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2808 			mutex_lock(&ctx->uring_lock);
2809 			io_cqring_overflow_kill(ctx);
2810 			mutex_unlock(&ctx->uring_lock);
2811 		}
2812 
2813 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2814 			io_move_task_work_from_local(ctx);
2815 
2816 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2817 			cond_resched();
2818 
2819 		if (ctx->sq_data) {
2820 			struct io_sq_data *sqd = ctx->sq_data;
2821 			struct task_struct *tsk;
2822 
2823 			io_sq_thread_park(sqd);
2824 			tsk = sqd->thread;
2825 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2826 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2827 						io_cancel_ctx_cb, ctx, true);
2828 			io_sq_thread_unpark(sqd);
2829 		}
2830 
2831 		io_req_caches_free(ctx);
2832 
2833 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2834 			/* there is little hope left, don't run it too often */
2835 			interval = HZ * 60;
2836 		}
2837 		/*
2838 		 * This is really an uninterruptible wait, as it has to be
2839 		 * complete. But it's also run from a kworker, which doesn't
2840 		 * take signals, so it's fine to make it interruptible. This
2841 		 * avoids scenarios where we knowingly can wait much longer
2842 		 * on completions, for example if someone does a SIGSTOP on
2843 		 * a task that needs to finish task_work to make this loop
2844 		 * complete. That's a synthetic situation that should not
2845 		 * cause a stuck task backtrace, and hence a potential panic
2846 		 * on stuck tasks if that is enabled.
2847 		 */
2848 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2849 
2850 	init_completion(&exit.completion);
2851 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2852 	exit.ctx = ctx;
2853 
2854 	mutex_lock(&ctx->uring_lock);
2855 	while (!list_empty(&ctx->tctx_list)) {
2856 		WARN_ON_ONCE(time_after(jiffies, timeout));
2857 
2858 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2859 					ctx_node);
2860 		/* don't spin on a single task if cancellation failed */
2861 		list_rotate_left(&ctx->tctx_list);
2862 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2863 		if (WARN_ON_ONCE(ret))
2864 			continue;
2865 
2866 		mutex_unlock(&ctx->uring_lock);
2867 		/*
2868 		 * See comment above for
2869 		 * wait_for_completion_interruptible_timeout() on why this
2870 		 * wait is marked as interruptible.
2871 		 */
2872 		wait_for_completion_interruptible(&exit.completion);
2873 		mutex_lock(&ctx->uring_lock);
2874 	}
2875 	mutex_unlock(&ctx->uring_lock);
2876 	spin_lock(&ctx->completion_lock);
2877 	spin_unlock(&ctx->completion_lock);
2878 
2879 	/* pairs with RCU read section in io_req_local_work_add() */
2880 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2881 		synchronize_rcu();
2882 
2883 	io_ring_ctx_free(ctx);
2884 }
2885 
2886 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2887 {
2888 	unsigned long index;
2889 	struct creds *creds;
2890 
2891 	mutex_lock(&ctx->uring_lock);
2892 	percpu_ref_kill(&ctx->refs);
2893 	xa_for_each(&ctx->personalities, index, creds)
2894 		io_unregister_personality(ctx, index);
2895 	mutex_unlock(&ctx->uring_lock);
2896 
2897 	flush_delayed_work(&ctx->fallback_work);
2898 
2899 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2900 	/*
2901 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2902 	 * if we're exiting a ton of rings at the same time. It just adds
2903 	 * noise and overhead, there's no discernable change in runtime
2904 	 * over using system_wq.
2905 	 */
2906 	queue_work(iou_wq, &ctx->exit_work);
2907 }
2908 
2909 static int io_uring_release(struct inode *inode, struct file *file)
2910 {
2911 	struct io_ring_ctx *ctx = file->private_data;
2912 
2913 	file->private_data = NULL;
2914 	io_ring_ctx_wait_and_kill(ctx);
2915 	return 0;
2916 }
2917 
2918 struct io_task_cancel {
2919 	struct task_struct *task;
2920 	bool all;
2921 };
2922 
2923 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2924 {
2925 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2926 	struct io_task_cancel *cancel = data;
2927 
2928 	return io_match_task_safe(req, cancel->task, cancel->all);
2929 }
2930 
2931 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2932 					 struct task_struct *task,
2933 					 bool cancel_all)
2934 {
2935 	struct io_defer_entry *de;
2936 	LIST_HEAD(list);
2937 
2938 	spin_lock(&ctx->completion_lock);
2939 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2940 		if (io_match_task_safe(de->req, task, cancel_all)) {
2941 			list_cut_position(&list, &ctx->defer_list, &de->list);
2942 			break;
2943 		}
2944 	}
2945 	spin_unlock(&ctx->completion_lock);
2946 	if (list_empty(&list))
2947 		return false;
2948 
2949 	while (!list_empty(&list)) {
2950 		de = list_first_entry(&list, struct io_defer_entry, list);
2951 		list_del_init(&de->list);
2952 		io_req_task_queue_fail(de->req, -ECANCELED);
2953 		kfree(de);
2954 	}
2955 	return true;
2956 }
2957 
2958 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2959 {
2960 	struct io_tctx_node *node;
2961 	enum io_wq_cancel cret;
2962 	bool ret = false;
2963 
2964 	mutex_lock(&ctx->uring_lock);
2965 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2966 		struct io_uring_task *tctx = node->task->io_uring;
2967 
2968 		/*
2969 		 * io_wq will stay alive while we hold uring_lock, because it's
2970 		 * killed after ctx nodes, which requires to take the lock.
2971 		 */
2972 		if (!tctx || !tctx->io_wq)
2973 			continue;
2974 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2975 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2976 	}
2977 	mutex_unlock(&ctx->uring_lock);
2978 
2979 	return ret;
2980 }
2981 
2982 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2983 						struct task_struct *task,
2984 						bool cancel_all)
2985 {
2986 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2987 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
2988 	enum io_wq_cancel cret;
2989 	bool ret = false;
2990 
2991 	/* set it so io_req_local_work_add() would wake us up */
2992 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2993 		atomic_set(&ctx->cq_wait_nr, 1);
2994 		smp_mb();
2995 	}
2996 
2997 	/* failed during ring init, it couldn't have issued any requests */
2998 	if (!ctx->rings)
2999 		return false;
3000 
3001 	if (!task) {
3002 		ret |= io_uring_try_cancel_iowq(ctx);
3003 	} else if (tctx && tctx->io_wq) {
3004 		/*
3005 		 * Cancels requests of all rings, not only @ctx, but
3006 		 * it's fine as the task is in exit/exec.
3007 		 */
3008 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3009 				       &cancel, true);
3010 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3011 	}
3012 
3013 	/* SQPOLL thread does its own polling */
3014 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3015 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3016 		while (!wq_list_empty(&ctx->iopoll_list)) {
3017 			io_iopoll_try_reap_events(ctx);
3018 			ret = true;
3019 			cond_resched();
3020 		}
3021 	}
3022 
3023 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3024 	    io_allowed_defer_tw_run(ctx))
3025 		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3026 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3027 	mutex_lock(&ctx->uring_lock);
3028 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3029 	ret |= io_waitid_remove_all(ctx, task, cancel_all);
3030 	ret |= io_futex_remove_all(ctx, task, cancel_all);
3031 	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3032 	mutex_unlock(&ctx->uring_lock);
3033 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3034 	if (task)
3035 		ret |= io_run_task_work() > 0;
3036 	else
3037 		ret |= flush_delayed_work(&ctx->fallback_work);
3038 	return ret;
3039 }
3040 
3041 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3042 {
3043 	if (tracked)
3044 		return atomic_read(&tctx->inflight_tracked);
3045 	return percpu_counter_sum(&tctx->inflight);
3046 }
3047 
3048 /*
3049  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3050  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3051  */
3052 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3053 {
3054 	struct io_uring_task *tctx = current->io_uring;
3055 	struct io_ring_ctx *ctx;
3056 	struct io_tctx_node *node;
3057 	unsigned long index;
3058 	s64 inflight;
3059 	DEFINE_WAIT(wait);
3060 
3061 	WARN_ON_ONCE(sqd && sqd->thread != current);
3062 
3063 	if (!current->io_uring)
3064 		return;
3065 	if (tctx->io_wq)
3066 		io_wq_exit_start(tctx->io_wq);
3067 
3068 	atomic_inc(&tctx->in_cancel);
3069 	do {
3070 		bool loop = false;
3071 
3072 		io_uring_drop_tctx_refs(current);
3073 		/* read completions before cancelations */
3074 		inflight = tctx_inflight(tctx, !cancel_all);
3075 		if (!inflight)
3076 			break;
3077 
3078 		if (!sqd) {
3079 			xa_for_each(&tctx->xa, index, node) {
3080 				/* sqpoll task will cancel all its requests */
3081 				if (node->ctx->sq_data)
3082 					continue;
3083 				loop |= io_uring_try_cancel_requests(node->ctx,
3084 							current, cancel_all);
3085 			}
3086 		} else {
3087 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3088 				loop |= io_uring_try_cancel_requests(ctx,
3089 								     current,
3090 								     cancel_all);
3091 		}
3092 
3093 		if (loop) {
3094 			cond_resched();
3095 			continue;
3096 		}
3097 
3098 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3099 		io_run_task_work();
3100 		io_uring_drop_tctx_refs(current);
3101 		xa_for_each(&tctx->xa, index, node) {
3102 			if (!llist_empty(&node->ctx->work_llist)) {
3103 				WARN_ON_ONCE(node->ctx->submitter_task &&
3104 					     node->ctx->submitter_task != current);
3105 				goto end_wait;
3106 			}
3107 		}
3108 		/*
3109 		 * If we've seen completions, retry without waiting. This
3110 		 * avoids a race where a completion comes in before we did
3111 		 * prepare_to_wait().
3112 		 */
3113 		if (inflight == tctx_inflight(tctx, !cancel_all))
3114 			schedule();
3115 end_wait:
3116 		finish_wait(&tctx->wait, &wait);
3117 	} while (1);
3118 
3119 	io_uring_clean_tctx(tctx);
3120 	if (cancel_all) {
3121 		/*
3122 		 * We shouldn't run task_works after cancel, so just leave
3123 		 * ->in_cancel set for normal exit.
3124 		 */
3125 		atomic_dec(&tctx->in_cancel);
3126 		/* for exec all current's requests should be gone, kill tctx */
3127 		__io_uring_free(current);
3128 	}
3129 }
3130 
3131 void __io_uring_cancel(bool cancel_all)
3132 {
3133 	io_uring_cancel_generic(cancel_all, NULL);
3134 }
3135 
3136 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3137 {
3138 	if (flags & IORING_ENTER_EXT_ARG) {
3139 		struct io_uring_getevents_arg arg;
3140 
3141 		if (argsz != sizeof(arg))
3142 			return -EINVAL;
3143 		if (copy_from_user(&arg, argp, sizeof(arg)))
3144 			return -EFAULT;
3145 	}
3146 	return 0;
3147 }
3148 
3149 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3150 			  struct __kernel_timespec __user **ts,
3151 			  const sigset_t __user **sig)
3152 {
3153 	struct io_uring_getevents_arg arg;
3154 
3155 	/*
3156 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3157 	 * is just a pointer to the sigset_t.
3158 	 */
3159 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3160 		*sig = (const sigset_t __user *) argp;
3161 		*ts = NULL;
3162 		return 0;
3163 	}
3164 
3165 	/*
3166 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3167 	 * timespec and sigset_t pointers if good.
3168 	 */
3169 	if (*argsz != sizeof(arg))
3170 		return -EINVAL;
3171 	if (copy_from_user(&arg, argp, sizeof(arg)))
3172 		return -EFAULT;
3173 	if (arg.pad)
3174 		return -EINVAL;
3175 	*sig = u64_to_user_ptr(arg.sigmask);
3176 	*argsz = arg.sigmask_sz;
3177 	*ts = u64_to_user_ptr(arg.ts);
3178 	return 0;
3179 }
3180 
3181 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3182 		u32, min_complete, u32, flags, const void __user *, argp,
3183 		size_t, argsz)
3184 {
3185 	struct io_ring_ctx *ctx;
3186 	struct file *file;
3187 	long ret;
3188 
3189 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3190 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3191 			       IORING_ENTER_REGISTERED_RING)))
3192 		return -EINVAL;
3193 
3194 	/*
3195 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3196 	 * need only dereference our task private array to find it.
3197 	 */
3198 	if (flags & IORING_ENTER_REGISTERED_RING) {
3199 		struct io_uring_task *tctx = current->io_uring;
3200 
3201 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3202 			return -EINVAL;
3203 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3204 		file = tctx->registered_rings[fd];
3205 		if (unlikely(!file))
3206 			return -EBADF;
3207 	} else {
3208 		file = fget(fd);
3209 		if (unlikely(!file))
3210 			return -EBADF;
3211 		ret = -EOPNOTSUPP;
3212 		if (unlikely(!io_is_uring_fops(file)))
3213 			goto out;
3214 	}
3215 
3216 	ctx = file->private_data;
3217 	ret = -EBADFD;
3218 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3219 		goto out;
3220 
3221 	/*
3222 	 * For SQ polling, the thread will do all submissions and completions.
3223 	 * Just return the requested submit count, and wake the thread if
3224 	 * we were asked to.
3225 	 */
3226 	ret = 0;
3227 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3228 		if (unlikely(ctx->sq_data->thread == NULL)) {
3229 			ret = -EOWNERDEAD;
3230 			goto out;
3231 		}
3232 		if (flags & IORING_ENTER_SQ_WAKEUP)
3233 			wake_up(&ctx->sq_data->wait);
3234 		if (flags & IORING_ENTER_SQ_WAIT)
3235 			io_sqpoll_wait_sq(ctx);
3236 
3237 		ret = to_submit;
3238 	} else if (to_submit) {
3239 		ret = io_uring_add_tctx_node(ctx);
3240 		if (unlikely(ret))
3241 			goto out;
3242 
3243 		mutex_lock(&ctx->uring_lock);
3244 		ret = io_submit_sqes(ctx, to_submit);
3245 		if (ret != to_submit) {
3246 			mutex_unlock(&ctx->uring_lock);
3247 			goto out;
3248 		}
3249 		if (flags & IORING_ENTER_GETEVENTS) {
3250 			if (ctx->syscall_iopoll)
3251 				goto iopoll_locked;
3252 			/*
3253 			 * Ignore errors, we'll soon call io_cqring_wait() and
3254 			 * it should handle ownership problems if any.
3255 			 */
3256 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3257 				(void)io_run_local_work_locked(ctx, min_complete);
3258 		}
3259 		mutex_unlock(&ctx->uring_lock);
3260 	}
3261 
3262 	if (flags & IORING_ENTER_GETEVENTS) {
3263 		int ret2;
3264 
3265 		if (ctx->syscall_iopoll) {
3266 			/*
3267 			 * We disallow the app entering submit/complete with
3268 			 * polling, but we still need to lock the ring to
3269 			 * prevent racing with polled issue that got punted to
3270 			 * a workqueue.
3271 			 */
3272 			mutex_lock(&ctx->uring_lock);
3273 iopoll_locked:
3274 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3275 			if (likely(!ret2)) {
3276 				min_complete = min(min_complete,
3277 						   ctx->cq_entries);
3278 				ret2 = io_iopoll_check(ctx, min_complete);
3279 			}
3280 			mutex_unlock(&ctx->uring_lock);
3281 		} else {
3282 			const sigset_t __user *sig;
3283 			struct __kernel_timespec __user *ts;
3284 
3285 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3286 			if (likely(!ret2)) {
3287 				min_complete = min(min_complete,
3288 						   ctx->cq_entries);
3289 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3290 						      argsz, ts);
3291 			}
3292 		}
3293 
3294 		if (!ret) {
3295 			ret = ret2;
3296 
3297 			/*
3298 			 * EBADR indicates that one or more CQE were dropped.
3299 			 * Once the user has been informed we can clear the bit
3300 			 * as they are obviously ok with those drops.
3301 			 */
3302 			if (unlikely(ret2 == -EBADR))
3303 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3304 					  &ctx->check_cq);
3305 		}
3306 	}
3307 out:
3308 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3309 		fput(file);
3310 	return ret;
3311 }
3312 
3313 static const struct file_operations io_uring_fops = {
3314 	.release	= io_uring_release,
3315 	.mmap		= io_uring_mmap,
3316 	.get_unmapped_area = io_uring_get_unmapped_area,
3317 #ifndef CONFIG_MMU
3318 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3319 #endif
3320 	.poll		= io_uring_poll,
3321 #ifdef CONFIG_PROC_FS
3322 	.show_fdinfo	= io_uring_show_fdinfo,
3323 #endif
3324 };
3325 
3326 bool io_is_uring_fops(struct file *file)
3327 {
3328 	return file->f_op == &io_uring_fops;
3329 }
3330 
3331 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3332 					 struct io_uring_params *p)
3333 {
3334 	struct io_rings *rings;
3335 	size_t size, sq_array_offset;
3336 	void *ptr;
3337 
3338 	/* make sure these are sane, as we already accounted them */
3339 	ctx->sq_entries = p->sq_entries;
3340 	ctx->cq_entries = p->cq_entries;
3341 
3342 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3343 	if (size == SIZE_MAX)
3344 		return -EOVERFLOW;
3345 
3346 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3347 		rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3348 	else
3349 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3350 
3351 	if (IS_ERR(rings))
3352 		return PTR_ERR(rings);
3353 
3354 	ctx->rings = rings;
3355 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3356 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3357 	rings->sq_ring_mask = p->sq_entries - 1;
3358 	rings->cq_ring_mask = p->cq_entries - 1;
3359 	rings->sq_ring_entries = p->sq_entries;
3360 	rings->cq_ring_entries = p->cq_entries;
3361 
3362 	if (p->flags & IORING_SETUP_SQE128)
3363 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3364 	else
3365 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3366 	if (size == SIZE_MAX) {
3367 		io_rings_free(ctx);
3368 		return -EOVERFLOW;
3369 	}
3370 
3371 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3372 		ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3373 	else
3374 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3375 
3376 	if (IS_ERR(ptr)) {
3377 		io_rings_free(ctx);
3378 		return PTR_ERR(ptr);
3379 	}
3380 
3381 	ctx->sq_sqes = ptr;
3382 	return 0;
3383 }
3384 
3385 static int io_uring_install_fd(struct file *file)
3386 {
3387 	int fd;
3388 
3389 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3390 	if (fd < 0)
3391 		return fd;
3392 	fd_install(fd, file);
3393 	return fd;
3394 }
3395 
3396 /*
3397  * Allocate an anonymous fd, this is what constitutes the application
3398  * visible backing of an io_uring instance. The application mmaps this
3399  * fd to gain access to the SQ/CQ ring details.
3400  */
3401 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3402 {
3403 	/* Create a new inode so that the LSM can block the creation.  */
3404 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3405 					 O_RDWR | O_CLOEXEC, NULL);
3406 }
3407 
3408 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3409 				  struct io_uring_params __user *params)
3410 {
3411 	struct io_ring_ctx *ctx;
3412 	struct io_uring_task *tctx;
3413 	struct file *file;
3414 	int ret;
3415 
3416 	if (!entries)
3417 		return -EINVAL;
3418 	if (entries > IORING_MAX_ENTRIES) {
3419 		if (!(p->flags & IORING_SETUP_CLAMP))
3420 			return -EINVAL;
3421 		entries = IORING_MAX_ENTRIES;
3422 	}
3423 
3424 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3425 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3426 		return -EINVAL;
3427 
3428 	/*
3429 	 * Use twice as many entries for the CQ ring. It's possible for the
3430 	 * application to drive a higher depth than the size of the SQ ring,
3431 	 * since the sqes are only used at submission time. This allows for
3432 	 * some flexibility in overcommitting a bit. If the application has
3433 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3434 	 * of CQ ring entries manually.
3435 	 */
3436 	p->sq_entries = roundup_pow_of_two(entries);
3437 	if (p->flags & IORING_SETUP_CQSIZE) {
3438 		/*
3439 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3440 		 * to a power-of-two, if it isn't already. We do NOT impose
3441 		 * any cq vs sq ring sizing.
3442 		 */
3443 		if (!p->cq_entries)
3444 			return -EINVAL;
3445 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3446 			if (!(p->flags & IORING_SETUP_CLAMP))
3447 				return -EINVAL;
3448 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3449 		}
3450 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3451 		if (p->cq_entries < p->sq_entries)
3452 			return -EINVAL;
3453 	} else {
3454 		p->cq_entries = 2 * p->sq_entries;
3455 	}
3456 
3457 	ctx = io_ring_ctx_alloc(p);
3458 	if (!ctx)
3459 		return -ENOMEM;
3460 
3461 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3462 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3463 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3464 		ctx->task_complete = true;
3465 
3466 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3467 		ctx->lockless_cq = true;
3468 
3469 	/*
3470 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3471 	 * purposes, see io_activate_pollwq()
3472 	 */
3473 	if (!ctx->task_complete)
3474 		ctx->poll_activated = true;
3475 
3476 	/*
3477 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3478 	 * space applications don't need to do io completion events
3479 	 * polling again, they can rely on io_sq_thread to do polling
3480 	 * work, which can reduce cpu usage and uring_lock contention.
3481 	 */
3482 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3483 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3484 		ctx->syscall_iopoll = 1;
3485 
3486 	ctx->compat = in_compat_syscall();
3487 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3488 		ctx->user = get_uid(current_user());
3489 
3490 	/*
3491 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3492 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3493 	 */
3494 	ret = -EINVAL;
3495 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3496 		/* IPI related flags don't make sense with SQPOLL */
3497 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3498 				  IORING_SETUP_TASKRUN_FLAG |
3499 				  IORING_SETUP_DEFER_TASKRUN))
3500 			goto err;
3501 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3502 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3503 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3504 	} else {
3505 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3506 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3507 			goto err;
3508 		ctx->notify_method = TWA_SIGNAL;
3509 	}
3510 
3511 	/*
3512 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3513 	 * submission task. This implies that there is only one submitter, so enforce
3514 	 * that.
3515 	 */
3516 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3517 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3518 		goto err;
3519 	}
3520 
3521 	/*
3522 	 * This is just grabbed for accounting purposes. When a process exits,
3523 	 * the mm is exited and dropped before the files, hence we need to hang
3524 	 * on to this mm purely for the purposes of being able to unaccount
3525 	 * memory (locked/pinned vm). It's not used for anything else.
3526 	 */
3527 	mmgrab(current->mm);
3528 	ctx->mm_account = current->mm;
3529 
3530 	ret = io_allocate_scq_urings(ctx, p);
3531 	if (ret)
3532 		goto err;
3533 
3534 	ret = io_sq_offload_create(ctx, p);
3535 	if (ret)
3536 		goto err;
3537 
3538 	ret = io_rsrc_init(ctx);
3539 	if (ret)
3540 		goto err;
3541 
3542 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3543 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3544 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3545 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3546 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3547 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3548 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3549 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3550 	p->sq_off.resv1 = 0;
3551 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3552 		p->sq_off.user_addr = 0;
3553 
3554 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3555 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3556 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3557 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3558 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3559 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3560 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3561 	p->cq_off.resv1 = 0;
3562 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3563 		p->cq_off.user_addr = 0;
3564 
3565 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3566 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3567 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3568 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3569 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3570 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3571 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3572 			IORING_FEAT_RECVSEND_BUNDLE;
3573 
3574 	if (copy_to_user(params, p, sizeof(*p))) {
3575 		ret = -EFAULT;
3576 		goto err;
3577 	}
3578 
3579 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3580 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3581 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3582 
3583 	file = io_uring_get_file(ctx);
3584 	if (IS_ERR(file)) {
3585 		ret = PTR_ERR(file);
3586 		goto err;
3587 	}
3588 
3589 	ret = __io_uring_add_tctx_node(ctx);
3590 	if (ret)
3591 		goto err_fput;
3592 	tctx = current->io_uring;
3593 
3594 	/*
3595 	 * Install ring fd as the very last thing, so we don't risk someone
3596 	 * having closed it before we finish setup
3597 	 */
3598 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3599 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3600 	else
3601 		ret = io_uring_install_fd(file);
3602 	if (ret < 0)
3603 		goto err_fput;
3604 
3605 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3606 	return ret;
3607 err:
3608 	io_ring_ctx_wait_and_kill(ctx);
3609 	return ret;
3610 err_fput:
3611 	fput(file);
3612 	return ret;
3613 }
3614 
3615 /*
3616  * Sets up an aio uring context, and returns the fd. Applications asks for a
3617  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3618  * params structure passed in.
3619  */
3620 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3621 {
3622 	struct io_uring_params p;
3623 	int i;
3624 
3625 	if (copy_from_user(&p, params, sizeof(p)))
3626 		return -EFAULT;
3627 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3628 		if (p.resv[i])
3629 			return -EINVAL;
3630 	}
3631 
3632 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3633 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3634 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3635 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3636 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3637 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3638 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3639 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3640 			IORING_SETUP_NO_SQARRAY))
3641 		return -EINVAL;
3642 
3643 	return io_uring_create(entries, &p, params);
3644 }
3645 
3646 static inline bool io_uring_allowed(void)
3647 {
3648 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3649 	kgid_t io_uring_group;
3650 
3651 	if (disabled == 2)
3652 		return false;
3653 
3654 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3655 		return true;
3656 
3657 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3658 	if (!gid_valid(io_uring_group))
3659 		return false;
3660 
3661 	return in_group_p(io_uring_group);
3662 }
3663 
3664 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3665 		struct io_uring_params __user *, params)
3666 {
3667 	if (!io_uring_allowed())
3668 		return -EPERM;
3669 
3670 	return io_uring_setup(entries, params);
3671 }
3672 
3673 static int __init io_uring_init(void)
3674 {
3675 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3676 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3677 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3678 } while (0)
3679 
3680 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3681 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3682 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3683 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3684 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3685 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3686 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3687 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3688 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3689 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3690 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3691 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3692 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3693 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3694 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3695 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3696 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3697 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3698 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3699 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3700 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3701 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3702 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3703 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3704 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3705 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3706 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3707 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3708 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3709 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3710 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3711 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3712 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3713 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3714 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3715 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3716 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3717 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3718 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3719 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3720 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3721 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3722 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3723 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3724 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3725 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3726 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3727 
3728 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3729 		     sizeof(struct io_uring_rsrc_update));
3730 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3731 		     sizeof(struct io_uring_rsrc_update2));
3732 
3733 	/* ->buf_index is u16 */
3734 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3735 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3736 		     offsetof(struct io_uring_buf_ring, tail));
3737 
3738 	/* should fit into one byte */
3739 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3740 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3741 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3742 
3743 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3744 
3745 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3746 
3747 	/* top 8bits are for internal use */
3748 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3749 
3750 	io_uring_optable_init();
3751 
3752 	/*
3753 	 * Allow user copy in the per-command field, which starts after the
3754 	 * file in io_kiocb and until the opcode field. The openat2 handling
3755 	 * requires copying in user memory into the io_kiocb object in that
3756 	 * range, and HARDENED_USERCOPY will complain if we haven't
3757 	 * correctly annotated this range.
3758 	 */
3759 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
3760 				sizeof(struct io_kiocb), 0,
3761 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
3762 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
3763 				offsetof(struct io_kiocb, cmd.data),
3764 				sizeof_field(struct io_kiocb, cmd.data), NULL);
3765 	io_buf_cachep = KMEM_CACHE(io_buffer,
3766 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3767 
3768 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3769 
3770 #ifdef CONFIG_SYSCTL
3771 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3772 #endif
3773 
3774 	return 0;
3775 };
3776 __initcall(io_uring_init);
3777