xref: /linux/io_uring/io_uring.c (revision 67f49869106f78882a8a09b736d4884be85aba18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "alloc_cache.h"
98 
99 #define IORING_MAX_ENTRIES	32768
100 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
101 
102 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
103 				 IORING_REGISTER_LAST + IORING_OP_LAST)
104 
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
107 
108 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
110 
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
113 				REQ_F_ASYNC_DATA)
114 
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
116 				 IO_REQ_CLEAN_FLAGS)
117 
118 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
119 
120 #define IO_COMPL_BATCH			32
121 #define IO_REQ_ALLOC_BATCH		8
122 
123 enum {
124 	IO_CHECK_CQ_OVERFLOW_BIT,
125 	IO_CHECK_CQ_DROPPED_BIT,
126 };
127 
128 enum {
129 	IO_EVENTFD_OP_SIGNAL_BIT,
130 	IO_EVENTFD_OP_FREE_BIT,
131 };
132 
133 struct io_defer_entry {
134 	struct list_head	list;
135 	struct io_kiocb		*req;
136 	u32			seq;
137 };
138 
139 /* requests with any of those set should undergo io_disarm_next() */
140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
142 
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 					 struct task_struct *task,
145 					 bool cancel_all);
146 
147 static void io_dismantle_req(struct io_kiocb *req);
148 static void io_clean_op(struct io_kiocb *req);
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 static __cold void io_fallback_tw(struct io_uring_task *tctx);
153 
154 static struct kmem_cache *req_cachep;
155 
156 struct sock *io_uring_get_socket(struct file *file)
157 {
158 #if defined(CONFIG_UNIX)
159 	if (io_is_uring_fops(file)) {
160 		struct io_ring_ctx *ctx = file->private_data;
161 
162 		return ctx->ring_sock->sk;
163 	}
164 #endif
165 	return NULL;
166 }
167 EXPORT_SYMBOL(io_uring_get_socket);
168 
169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
170 {
171 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
172 	    ctx->submit_state.cqes_count)
173 		__io_submit_flush_completions(ctx);
174 }
175 
176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
177 {
178 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
179 }
180 
181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
182 {
183 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
184 }
185 
186 static bool io_match_linked(struct io_kiocb *head)
187 {
188 	struct io_kiocb *req;
189 
190 	io_for_each_link(req, head) {
191 		if (req->flags & REQ_F_INFLIGHT)
192 			return true;
193 	}
194 	return false;
195 }
196 
197 /*
198  * As io_match_task() but protected against racing with linked timeouts.
199  * User must not hold timeout_lock.
200  */
201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
202 			bool cancel_all)
203 {
204 	bool matched;
205 
206 	if (task && head->task != task)
207 		return false;
208 	if (cancel_all)
209 		return true;
210 
211 	if (head->flags & REQ_F_LINK_TIMEOUT) {
212 		struct io_ring_ctx *ctx = head->ctx;
213 
214 		/* protect against races with linked timeouts */
215 		spin_lock_irq(&ctx->timeout_lock);
216 		matched = io_match_linked(head);
217 		spin_unlock_irq(&ctx->timeout_lock);
218 	} else {
219 		matched = io_match_linked(head);
220 	}
221 	return matched;
222 }
223 
224 static inline void req_fail_link_node(struct io_kiocb *req, int res)
225 {
226 	req_set_fail(req);
227 	io_req_set_res(req, res, 0);
228 }
229 
230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
231 {
232 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
233 }
234 
235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
236 {
237 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
238 
239 	complete(&ctx->ref_comp);
240 }
241 
242 static __cold void io_fallback_req_func(struct work_struct *work)
243 {
244 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
245 						fallback_work.work);
246 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
247 	struct io_kiocb *req, *tmp;
248 	bool locked = false;
249 
250 	percpu_ref_get(&ctx->refs);
251 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
252 		req->io_task_work.func(req, &locked);
253 
254 	if (locked) {
255 		io_submit_flush_completions(ctx);
256 		mutex_unlock(&ctx->uring_lock);
257 	}
258 	percpu_ref_put(&ctx->refs);
259 }
260 
261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
262 {
263 	unsigned hash_buckets = 1U << bits;
264 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
265 
266 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
267 	if (!table->hbs)
268 		return -ENOMEM;
269 
270 	table->hash_bits = bits;
271 	init_hash_table(table, hash_buckets);
272 	return 0;
273 }
274 
275 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
276 {
277 	struct io_ring_ctx *ctx;
278 	int hash_bits;
279 
280 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
281 	if (!ctx)
282 		return NULL;
283 
284 	xa_init(&ctx->io_bl_xa);
285 
286 	/*
287 	 * Use 5 bits less than the max cq entries, that should give us around
288 	 * 32 entries per hash list if totally full and uniformly spread, but
289 	 * don't keep too many buckets to not overconsume memory.
290 	 */
291 	hash_bits = ilog2(p->cq_entries) - 5;
292 	hash_bits = clamp(hash_bits, 1, 8);
293 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
294 		goto err;
295 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
296 		goto err;
297 
298 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
299 	if (!ctx->dummy_ubuf)
300 		goto err;
301 	/* set invalid range, so io_import_fixed() fails meeting it */
302 	ctx->dummy_ubuf->ubuf = -1UL;
303 
304 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
305 			    0, GFP_KERNEL))
306 		goto err;
307 
308 	ctx->flags = p->flags;
309 	init_waitqueue_head(&ctx->sqo_sq_wait);
310 	INIT_LIST_HEAD(&ctx->sqd_list);
311 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
312 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
313 	io_alloc_cache_init(&ctx->apoll_cache);
314 	io_alloc_cache_init(&ctx->netmsg_cache);
315 	init_completion(&ctx->ref_comp);
316 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
317 	mutex_init(&ctx->uring_lock);
318 	init_waitqueue_head(&ctx->cq_wait);
319 	spin_lock_init(&ctx->completion_lock);
320 	spin_lock_init(&ctx->timeout_lock);
321 	INIT_WQ_LIST(&ctx->iopoll_list);
322 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
323 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
324 	INIT_LIST_HEAD(&ctx->defer_list);
325 	INIT_LIST_HEAD(&ctx->timeout_list);
326 	INIT_LIST_HEAD(&ctx->ltimeout_list);
327 	spin_lock_init(&ctx->rsrc_ref_lock);
328 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
329 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
330 	init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw);
331 	init_llist_head(&ctx->rsrc_put_llist);
332 	init_llist_head(&ctx->work_llist);
333 	INIT_LIST_HEAD(&ctx->tctx_list);
334 	ctx->submit_state.free_list.next = NULL;
335 	INIT_WQ_LIST(&ctx->locked_free_list);
336 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
337 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
338 	return ctx;
339 err:
340 	kfree(ctx->dummy_ubuf);
341 	kfree(ctx->cancel_table.hbs);
342 	kfree(ctx->cancel_table_locked.hbs);
343 	kfree(ctx->io_bl);
344 	xa_destroy(&ctx->io_bl_xa);
345 	kfree(ctx);
346 	return NULL;
347 }
348 
349 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
350 {
351 	struct io_rings *r = ctx->rings;
352 
353 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
354 	ctx->cq_extra--;
355 }
356 
357 static bool req_need_defer(struct io_kiocb *req, u32 seq)
358 {
359 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
360 		struct io_ring_ctx *ctx = req->ctx;
361 
362 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
363 	}
364 
365 	return false;
366 }
367 
368 static inline void io_req_track_inflight(struct io_kiocb *req)
369 {
370 	if (!(req->flags & REQ_F_INFLIGHT)) {
371 		req->flags |= REQ_F_INFLIGHT;
372 		atomic_inc(&req->task->io_uring->inflight_tracked);
373 	}
374 }
375 
376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
377 {
378 	if (WARN_ON_ONCE(!req->link))
379 		return NULL;
380 
381 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
382 	req->flags |= REQ_F_LINK_TIMEOUT;
383 
384 	/* linked timeouts should have two refs once prep'ed */
385 	io_req_set_refcount(req);
386 	__io_req_set_refcount(req->link, 2);
387 	return req->link;
388 }
389 
390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
391 {
392 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
393 		return NULL;
394 	return __io_prep_linked_timeout(req);
395 }
396 
397 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
398 {
399 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
400 }
401 
402 static inline void io_arm_ltimeout(struct io_kiocb *req)
403 {
404 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
405 		__io_arm_ltimeout(req);
406 }
407 
408 static void io_prep_async_work(struct io_kiocb *req)
409 {
410 	const struct io_op_def *def = &io_op_defs[req->opcode];
411 	struct io_ring_ctx *ctx = req->ctx;
412 
413 	if (!(req->flags & REQ_F_CREDS)) {
414 		req->flags |= REQ_F_CREDS;
415 		req->creds = get_current_cred();
416 	}
417 
418 	req->work.list.next = NULL;
419 	req->work.flags = 0;
420 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
421 	if (req->flags & REQ_F_FORCE_ASYNC)
422 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
423 
424 	if (req->file && !io_req_ffs_set(req))
425 		req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
426 
427 	if (req->flags & REQ_F_ISREG) {
428 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
429 			io_wq_hash_work(&req->work, file_inode(req->file));
430 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
431 		if (def->unbound_nonreg_file)
432 			req->work.flags |= IO_WQ_WORK_UNBOUND;
433 	}
434 }
435 
436 static void io_prep_async_link(struct io_kiocb *req)
437 {
438 	struct io_kiocb *cur;
439 
440 	if (req->flags & REQ_F_LINK_TIMEOUT) {
441 		struct io_ring_ctx *ctx = req->ctx;
442 
443 		spin_lock_irq(&ctx->timeout_lock);
444 		io_for_each_link(cur, req)
445 			io_prep_async_work(cur);
446 		spin_unlock_irq(&ctx->timeout_lock);
447 	} else {
448 		io_for_each_link(cur, req)
449 			io_prep_async_work(cur);
450 	}
451 }
452 
453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
454 {
455 	struct io_kiocb *link = io_prep_linked_timeout(req);
456 	struct io_uring_task *tctx = req->task->io_uring;
457 
458 	BUG_ON(!tctx);
459 	BUG_ON(!tctx->io_wq);
460 
461 	/* init ->work of the whole link before punting */
462 	io_prep_async_link(req);
463 
464 	/*
465 	 * Not expected to happen, but if we do have a bug where this _can_
466 	 * happen, catch it here and ensure the request is marked as
467 	 * canceled. That will make io-wq go through the usual work cancel
468 	 * procedure rather than attempt to run this request (or create a new
469 	 * worker for it).
470 	 */
471 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
472 		req->work.flags |= IO_WQ_WORK_CANCEL;
473 
474 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
475 	io_wq_enqueue(tctx->io_wq, &req->work);
476 	if (link)
477 		io_queue_linked_timeout(link);
478 }
479 
480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
481 {
482 	while (!list_empty(&ctx->defer_list)) {
483 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
484 						struct io_defer_entry, list);
485 
486 		if (req_need_defer(de->req, de->seq))
487 			break;
488 		list_del_init(&de->list);
489 		io_req_task_queue(de->req);
490 		kfree(de);
491 	}
492 }
493 
494 
495 static void io_eventfd_ops(struct rcu_head *rcu)
496 {
497 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
498 	int ops = atomic_xchg(&ev_fd->ops, 0);
499 
500 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
501 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
502 
503 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
504 	 * ordering in a race but if references are 0 we know we have to free
505 	 * it regardless.
506 	 */
507 	if (atomic_dec_and_test(&ev_fd->refs)) {
508 		eventfd_ctx_put(ev_fd->cq_ev_fd);
509 		kfree(ev_fd);
510 	}
511 }
512 
513 static void io_eventfd_signal(struct io_ring_ctx *ctx)
514 {
515 	struct io_ev_fd *ev_fd = NULL;
516 
517 	rcu_read_lock();
518 	/*
519 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
520 	 * and eventfd_signal
521 	 */
522 	ev_fd = rcu_dereference(ctx->io_ev_fd);
523 
524 	/*
525 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
526 	 * completed between the NULL check of ctx->io_ev_fd at the start of
527 	 * the function and rcu_read_lock.
528 	 */
529 	if (unlikely(!ev_fd))
530 		goto out;
531 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
532 		goto out;
533 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
534 		goto out;
535 
536 	if (likely(eventfd_signal_allowed())) {
537 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
538 	} else {
539 		atomic_inc(&ev_fd->refs);
540 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
541 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
542 		else
543 			atomic_dec(&ev_fd->refs);
544 	}
545 
546 out:
547 	rcu_read_unlock();
548 }
549 
550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
551 {
552 	bool skip;
553 
554 	spin_lock(&ctx->completion_lock);
555 
556 	/*
557 	 * Eventfd should only get triggered when at least one event has been
558 	 * posted. Some applications rely on the eventfd notification count
559 	 * only changing IFF a new CQE has been added to the CQ ring. There's
560 	 * no depedency on 1:1 relationship between how many times this
561 	 * function is called (and hence the eventfd count) and number of CQEs
562 	 * posted to the CQ ring.
563 	 */
564 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
565 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
566 	spin_unlock(&ctx->completion_lock);
567 	if (skip)
568 		return;
569 
570 	io_eventfd_signal(ctx);
571 }
572 
573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
574 {
575 	if (ctx->off_timeout_used)
576 		io_flush_timeouts(ctx);
577 	if (ctx->drain_active) {
578 		spin_lock(&ctx->completion_lock);
579 		io_queue_deferred(ctx);
580 		spin_unlock(&ctx->completion_lock);
581 	}
582 	if (ctx->has_evfd)
583 		io_eventfd_flush_signal(ctx);
584 }
585 
586 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
587 	__acquires(ctx->completion_lock)
588 {
589 	if (!ctx->task_complete)
590 		spin_lock(&ctx->completion_lock);
591 }
592 
593 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
594 {
595 	if (!ctx->task_complete)
596 		spin_unlock(&ctx->completion_lock);
597 }
598 
599 static inline void io_cq_lock(struct io_ring_ctx *ctx)
600 	__acquires(ctx->completion_lock)
601 {
602 	spin_lock(&ctx->completion_lock);
603 }
604 
605 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
606 	__releases(ctx->completion_lock)
607 {
608 	spin_unlock(&ctx->completion_lock);
609 }
610 
611 /* keep it inlined for io_submit_flush_completions() */
612 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
613 	__releases(ctx->completion_lock)
614 {
615 	io_commit_cqring(ctx);
616 	__io_cq_unlock(ctx);
617 	io_commit_cqring_flush(ctx);
618 	io_cqring_wake(ctx);
619 }
620 
621 void io_cq_unlock_post(struct io_ring_ctx *ctx)
622 	__releases(ctx->completion_lock)
623 {
624 	io_commit_cqring(ctx);
625 	spin_unlock(&ctx->completion_lock);
626 	io_commit_cqring_flush(ctx);
627 	io_cqring_wake(ctx);
628 }
629 
630 /* Returns true if there are no backlogged entries after the flush */
631 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
632 {
633 	struct io_overflow_cqe *ocqe;
634 	LIST_HEAD(list);
635 
636 	io_cq_lock(ctx);
637 	list_splice_init(&ctx->cq_overflow_list, &list);
638 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
639 	io_cq_unlock(ctx);
640 
641 	while (!list_empty(&list)) {
642 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
643 		list_del(&ocqe->list);
644 		kfree(ocqe);
645 	}
646 }
647 
648 /* Returns true if there are no backlogged entries after the flush */
649 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
650 {
651 	size_t cqe_size = sizeof(struct io_uring_cqe);
652 
653 	if (__io_cqring_events(ctx) == ctx->cq_entries)
654 		return;
655 
656 	if (ctx->flags & IORING_SETUP_CQE32)
657 		cqe_size <<= 1;
658 
659 	io_cq_lock(ctx);
660 	while (!list_empty(&ctx->cq_overflow_list)) {
661 		struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
662 		struct io_overflow_cqe *ocqe;
663 
664 		if (!cqe)
665 			break;
666 		ocqe = list_first_entry(&ctx->cq_overflow_list,
667 					struct io_overflow_cqe, list);
668 		memcpy(cqe, &ocqe->cqe, cqe_size);
669 		list_del(&ocqe->list);
670 		kfree(ocqe);
671 	}
672 
673 	if (list_empty(&ctx->cq_overflow_list)) {
674 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
675 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
676 	}
677 	io_cq_unlock_post(ctx);
678 }
679 
680 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
681 {
682 	/* iopoll syncs against uring_lock, not completion_lock */
683 	if (ctx->flags & IORING_SETUP_IOPOLL)
684 		mutex_lock(&ctx->uring_lock);
685 	__io_cqring_overflow_flush(ctx);
686 	if (ctx->flags & IORING_SETUP_IOPOLL)
687 		mutex_unlock(&ctx->uring_lock);
688 }
689 
690 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
691 {
692 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
693 		io_cqring_do_overflow_flush(ctx);
694 }
695 
696 void __io_put_task(struct task_struct *task, int nr)
697 {
698 	struct io_uring_task *tctx = task->io_uring;
699 
700 	percpu_counter_sub(&tctx->inflight, nr);
701 	if (unlikely(atomic_read(&tctx->in_idle)))
702 		wake_up(&tctx->wait);
703 	put_task_struct_many(task, nr);
704 }
705 
706 void io_task_refs_refill(struct io_uring_task *tctx)
707 {
708 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
709 
710 	percpu_counter_add(&tctx->inflight, refill);
711 	refcount_add(refill, &current->usage);
712 	tctx->cached_refs += refill;
713 }
714 
715 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
716 {
717 	struct io_uring_task *tctx = task->io_uring;
718 	unsigned int refs = tctx->cached_refs;
719 
720 	if (refs) {
721 		tctx->cached_refs = 0;
722 		percpu_counter_sub(&tctx->inflight, refs);
723 		put_task_struct_many(task, refs);
724 	}
725 }
726 
727 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
728 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
729 {
730 	struct io_overflow_cqe *ocqe;
731 	size_t ocq_size = sizeof(struct io_overflow_cqe);
732 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
733 
734 	lockdep_assert_held(&ctx->completion_lock);
735 
736 	if (is_cqe32)
737 		ocq_size += sizeof(struct io_uring_cqe);
738 
739 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
740 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
741 	if (!ocqe) {
742 		/*
743 		 * If we're in ring overflow flush mode, or in task cancel mode,
744 		 * or cannot allocate an overflow entry, then we need to drop it
745 		 * on the floor.
746 		 */
747 		io_account_cq_overflow(ctx);
748 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
749 		return false;
750 	}
751 	if (list_empty(&ctx->cq_overflow_list)) {
752 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
753 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
754 
755 	}
756 	ocqe->cqe.user_data = user_data;
757 	ocqe->cqe.res = res;
758 	ocqe->cqe.flags = cflags;
759 	if (is_cqe32) {
760 		ocqe->cqe.big_cqe[0] = extra1;
761 		ocqe->cqe.big_cqe[1] = extra2;
762 	}
763 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
764 	return true;
765 }
766 
767 bool io_req_cqe_overflow(struct io_kiocb *req)
768 {
769 	if (!(req->flags & REQ_F_CQE32_INIT)) {
770 		req->extra1 = 0;
771 		req->extra2 = 0;
772 	}
773 	return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
774 					req->cqe.res, req->cqe.flags,
775 					req->extra1, req->extra2);
776 }
777 
778 /*
779  * writes to the cq entry need to come after reading head; the
780  * control dependency is enough as we're using WRITE_ONCE to
781  * fill the cq entry
782  */
783 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
784 {
785 	struct io_rings *rings = ctx->rings;
786 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
787 	unsigned int free, queued, len;
788 
789 	/*
790 	 * Posting into the CQ when there are pending overflowed CQEs may break
791 	 * ordering guarantees, which will affect links, F_MORE users and more.
792 	 * Force overflow the completion.
793 	 */
794 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
795 		return NULL;
796 
797 	/* userspace may cheat modifying the tail, be safe and do min */
798 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
799 	free = ctx->cq_entries - queued;
800 	/* we need a contiguous range, limit based on the current array offset */
801 	len = min(free, ctx->cq_entries - off);
802 	if (!len)
803 		return NULL;
804 
805 	if (ctx->flags & IORING_SETUP_CQE32) {
806 		off <<= 1;
807 		len <<= 1;
808 	}
809 
810 	ctx->cqe_cached = &rings->cqes[off];
811 	ctx->cqe_sentinel = ctx->cqe_cached + len;
812 
813 	ctx->cached_cq_tail++;
814 	ctx->cqe_cached++;
815 	if (ctx->flags & IORING_SETUP_CQE32)
816 		ctx->cqe_cached++;
817 	return &rings->cqes[off];
818 }
819 
820 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
821 			      u32 cflags)
822 {
823 	struct io_uring_cqe *cqe;
824 
825 	ctx->cq_extra++;
826 
827 	/*
828 	 * If we can't get a cq entry, userspace overflowed the
829 	 * submission (by quite a lot). Increment the overflow count in
830 	 * the ring.
831 	 */
832 	cqe = io_get_cqe(ctx);
833 	if (likely(cqe)) {
834 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
835 
836 		WRITE_ONCE(cqe->user_data, user_data);
837 		WRITE_ONCE(cqe->res, res);
838 		WRITE_ONCE(cqe->flags, cflags);
839 
840 		if (ctx->flags & IORING_SETUP_CQE32) {
841 			WRITE_ONCE(cqe->big_cqe[0], 0);
842 			WRITE_ONCE(cqe->big_cqe[1], 0);
843 		}
844 		return true;
845 	}
846 	return false;
847 }
848 
849 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
850 	__must_hold(&ctx->uring_lock)
851 {
852 	struct io_submit_state *state = &ctx->submit_state;
853 	unsigned int i;
854 
855 	lockdep_assert_held(&ctx->uring_lock);
856 	for (i = 0; i < state->cqes_count; i++) {
857 		struct io_uring_cqe *cqe = &state->cqes[i];
858 
859 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
860 			if (ctx->task_complete) {
861 				spin_lock(&ctx->completion_lock);
862 				io_cqring_event_overflow(ctx, cqe->user_data,
863 							cqe->res, cqe->flags, 0, 0);
864 				spin_unlock(&ctx->completion_lock);
865 			} else {
866 				io_cqring_event_overflow(ctx, cqe->user_data,
867 							cqe->res, cqe->flags, 0, 0);
868 			}
869 		}
870 	}
871 	state->cqes_count = 0;
872 }
873 
874 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
875 			      bool allow_overflow)
876 {
877 	bool filled;
878 
879 	io_cq_lock(ctx);
880 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
881 	if (!filled && allow_overflow)
882 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
883 
884 	io_cq_unlock_post(ctx);
885 	return filled;
886 }
887 
888 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
889 {
890 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
891 }
892 
893 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
894 		bool allow_overflow)
895 {
896 	struct io_uring_cqe *cqe;
897 	unsigned int length;
898 
899 	if (!defer)
900 		return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
901 
902 	length = ARRAY_SIZE(ctx->submit_state.cqes);
903 
904 	lockdep_assert_held(&ctx->uring_lock);
905 
906 	if (ctx->submit_state.cqes_count == length) {
907 		__io_cq_lock(ctx);
908 		__io_flush_post_cqes(ctx);
909 		/* no need to flush - flush is deferred */
910 		__io_cq_unlock_post(ctx);
911 	}
912 
913 	/* For defered completions this is not as strict as it is otherwise,
914 	 * however it's main job is to prevent unbounded posted completions,
915 	 * and in that it works just as well.
916 	 */
917 	if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
918 		return false;
919 
920 	cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
921 	cqe->user_data = user_data;
922 	cqe->res = res;
923 	cqe->flags = cflags;
924 	return true;
925 }
926 
927 static void __io_req_complete_post(struct io_kiocb *req)
928 {
929 	struct io_ring_ctx *ctx = req->ctx;
930 
931 	io_cq_lock(ctx);
932 	if (!(req->flags & REQ_F_CQE_SKIP))
933 		io_fill_cqe_req(ctx, req);
934 
935 	/*
936 	 * If we're the last reference to this request, add to our locked
937 	 * free_list cache.
938 	 */
939 	if (req_ref_put_and_test(req)) {
940 		if (req->flags & IO_REQ_LINK_FLAGS) {
941 			if (req->flags & IO_DISARM_MASK)
942 				io_disarm_next(req);
943 			if (req->link) {
944 				io_req_task_queue(req->link);
945 				req->link = NULL;
946 			}
947 		}
948 		io_req_put_rsrc(req);
949 		/*
950 		 * Selected buffer deallocation in io_clean_op() assumes that
951 		 * we don't hold ->completion_lock. Clean them here to avoid
952 		 * deadlocks.
953 		 */
954 		io_put_kbuf_comp(req);
955 		io_dismantle_req(req);
956 		io_put_task(req->task, 1);
957 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
958 		ctx->locked_free_nr++;
959 	}
960 	io_cq_unlock_post(ctx);
961 }
962 
963 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
964 {
965 	if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) {
966 		req->io_task_work.func = io_req_task_complete;
967 		io_req_task_work_add(req);
968 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
969 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
970 		__io_req_complete_post(req);
971 	} else {
972 		struct io_ring_ctx *ctx = req->ctx;
973 
974 		mutex_lock(&ctx->uring_lock);
975 		__io_req_complete_post(req);
976 		mutex_unlock(&ctx->uring_lock);
977 	}
978 }
979 
980 void io_req_defer_failed(struct io_kiocb *req, s32 res)
981 	__must_hold(&ctx->uring_lock)
982 {
983 	const struct io_op_def *def = &io_op_defs[req->opcode];
984 
985 	lockdep_assert_held(&req->ctx->uring_lock);
986 
987 	req_set_fail(req);
988 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
989 	if (def->fail)
990 		def->fail(req);
991 	io_req_complete_defer(req);
992 }
993 
994 /*
995  * Don't initialise the fields below on every allocation, but do that in
996  * advance and keep them valid across allocations.
997  */
998 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
999 {
1000 	req->ctx = ctx;
1001 	req->link = NULL;
1002 	req->async_data = NULL;
1003 	/* not necessary, but safer to zero */
1004 	req->cqe.res = 0;
1005 }
1006 
1007 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1008 					struct io_submit_state *state)
1009 {
1010 	spin_lock(&ctx->completion_lock);
1011 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1012 	ctx->locked_free_nr = 0;
1013 	spin_unlock(&ctx->completion_lock);
1014 }
1015 
1016 /*
1017  * A request might get retired back into the request caches even before opcode
1018  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1019  * Because of that, io_alloc_req() should be called only under ->uring_lock
1020  * and with extra caution to not get a request that is still worked on.
1021  */
1022 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1023 	__must_hold(&ctx->uring_lock)
1024 {
1025 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1026 	void *reqs[IO_REQ_ALLOC_BATCH];
1027 	int ret, i;
1028 
1029 	/*
1030 	 * If we have more than a batch's worth of requests in our IRQ side
1031 	 * locked cache, grab the lock and move them over to our submission
1032 	 * side cache.
1033 	 */
1034 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1035 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1036 		if (!io_req_cache_empty(ctx))
1037 			return true;
1038 	}
1039 
1040 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1041 
1042 	/*
1043 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1044 	 * retry single alloc to be on the safe side.
1045 	 */
1046 	if (unlikely(ret <= 0)) {
1047 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1048 		if (!reqs[0])
1049 			return false;
1050 		ret = 1;
1051 	}
1052 
1053 	percpu_ref_get_many(&ctx->refs, ret);
1054 	for (i = 0; i < ret; i++) {
1055 		struct io_kiocb *req = reqs[i];
1056 
1057 		io_preinit_req(req, ctx);
1058 		io_req_add_to_cache(req, ctx);
1059 	}
1060 	return true;
1061 }
1062 
1063 static inline void io_dismantle_req(struct io_kiocb *req)
1064 {
1065 	unsigned int flags = req->flags;
1066 
1067 	if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
1068 		io_clean_op(req);
1069 	if (!(flags & REQ_F_FIXED_FILE))
1070 		io_put_file(req->file);
1071 }
1072 
1073 __cold void io_free_req(struct io_kiocb *req)
1074 {
1075 	struct io_ring_ctx *ctx = req->ctx;
1076 
1077 	io_req_put_rsrc(req);
1078 	io_dismantle_req(req);
1079 	io_put_task(req->task, 1);
1080 
1081 	spin_lock(&ctx->completion_lock);
1082 	wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1083 	ctx->locked_free_nr++;
1084 	spin_unlock(&ctx->completion_lock);
1085 }
1086 
1087 static void __io_req_find_next_prep(struct io_kiocb *req)
1088 {
1089 	struct io_ring_ctx *ctx = req->ctx;
1090 
1091 	spin_lock(&ctx->completion_lock);
1092 	io_disarm_next(req);
1093 	spin_unlock(&ctx->completion_lock);
1094 }
1095 
1096 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1097 {
1098 	struct io_kiocb *nxt;
1099 
1100 	/*
1101 	 * If LINK is set, we have dependent requests in this chain. If we
1102 	 * didn't fail this request, queue the first one up, moving any other
1103 	 * dependencies to the next request. In case of failure, fail the rest
1104 	 * of the chain.
1105 	 */
1106 	if (unlikely(req->flags & IO_DISARM_MASK))
1107 		__io_req_find_next_prep(req);
1108 	nxt = req->link;
1109 	req->link = NULL;
1110 	return nxt;
1111 }
1112 
1113 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1114 {
1115 	if (!ctx)
1116 		return;
1117 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1118 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1119 	if (*locked) {
1120 		io_submit_flush_completions(ctx);
1121 		mutex_unlock(&ctx->uring_lock);
1122 		*locked = false;
1123 	}
1124 	percpu_ref_put(&ctx->refs);
1125 }
1126 
1127 static unsigned int handle_tw_list(struct llist_node *node,
1128 				   struct io_ring_ctx **ctx, bool *locked,
1129 				   struct llist_node *last)
1130 {
1131 	unsigned int count = 0;
1132 
1133 	while (node != last) {
1134 		struct llist_node *next = node->next;
1135 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1136 						    io_task_work.node);
1137 
1138 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1139 
1140 		if (req->ctx != *ctx) {
1141 			ctx_flush_and_put(*ctx, locked);
1142 			*ctx = req->ctx;
1143 			/* if not contended, grab and improve batching */
1144 			*locked = mutex_trylock(&(*ctx)->uring_lock);
1145 			percpu_ref_get(&(*ctx)->refs);
1146 		}
1147 		req->io_task_work.func(req, locked);
1148 		node = next;
1149 		count++;
1150 	}
1151 
1152 	return count;
1153 }
1154 
1155 /**
1156  * io_llist_xchg - swap all entries in a lock-less list
1157  * @head:	the head of lock-less list to delete all entries
1158  * @new:	new entry as the head of the list
1159  *
1160  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1161  * The order of entries returned is from the newest to the oldest added one.
1162  */
1163 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1164 					       struct llist_node *new)
1165 {
1166 	return xchg(&head->first, new);
1167 }
1168 
1169 /**
1170  * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1171  * @head:	the head of lock-less list to delete all entries
1172  * @old:	expected old value of the first entry of the list
1173  * @new:	new entry as the head of the list
1174  *
1175  * perform a cmpxchg on the first entry of the list.
1176  */
1177 
1178 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1179 						  struct llist_node *old,
1180 						  struct llist_node *new)
1181 {
1182 	return cmpxchg(&head->first, old, new);
1183 }
1184 
1185 void tctx_task_work(struct callback_head *cb)
1186 {
1187 	bool uring_locked = false;
1188 	struct io_ring_ctx *ctx = NULL;
1189 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1190 						  task_work);
1191 	struct llist_node fake = {};
1192 	struct llist_node *node;
1193 	unsigned int loops = 1;
1194 	unsigned int count;
1195 
1196 	if (unlikely(current->flags & PF_EXITING)) {
1197 		io_fallback_tw(tctx);
1198 		return;
1199 	}
1200 
1201 	node = io_llist_xchg(&tctx->task_list, &fake);
1202 	count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1203 	node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1204 	while (node != &fake) {
1205 		loops++;
1206 		node = io_llist_xchg(&tctx->task_list, &fake);
1207 		count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1208 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1209 	}
1210 
1211 	ctx_flush_and_put(ctx, &uring_locked);
1212 
1213 	/* relaxed read is enough as only the task itself sets ->in_idle */
1214 	if (unlikely(atomic_read(&tctx->in_idle)))
1215 		io_uring_drop_tctx_refs(current);
1216 
1217 	trace_io_uring_task_work_run(tctx, count, loops);
1218 }
1219 
1220 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1221 {
1222 	struct llist_node *node = llist_del_all(&tctx->task_list);
1223 	struct io_kiocb *req;
1224 
1225 	while (node) {
1226 		req = container_of(node, struct io_kiocb, io_task_work.node);
1227 		node = node->next;
1228 		if (llist_add(&req->io_task_work.node,
1229 			      &req->ctx->fallback_llist))
1230 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1231 	}
1232 }
1233 
1234 static void io_req_local_work_add(struct io_kiocb *req)
1235 {
1236 	struct io_ring_ctx *ctx = req->ctx;
1237 
1238 	percpu_ref_get(&ctx->refs);
1239 
1240 	if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) {
1241 		percpu_ref_put(&ctx->refs);
1242 		return;
1243 	}
1244 	/* need it for the following io_cqring_wake() */
1245 	smp_mb__after_atomic();
1246 
1247 	if (unlikely(atomic_read(&req->task->io_uring->in_idle))) {
1248 		io_move_task_work_from_local(ctx);
1249 		percpu_ref_put(&ctx->refs);
1250 		return;
1251 	}
1252 
1253 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1254 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1255 
1256 	if (ctx->has_evfd)
1257 		io_eventfd_signal(ctx);
1258 	__io_cqring_wake(ctx);
1259 	percpu_ref_put(&ctx->refs);
1260 }
1261 
1262 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1263 {
1264 	struct io_uring_task *tctx = req->task->io_uring;
1265 	struct io_ring_ctx *ctx = req->ctx;
1266 
1267 	if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1268 		io_req_local_work_add(req);
1269 		return;
1270 	}
1271 
1272 	/* task_work already pending, we're done */
1273 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1274 		return;
1275 
1276 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1277 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1278 
1279 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1280 		return;
1281 
1282 	io_fallback_tw(tctx);
1283 }
1284 
1285 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1286 {
1287 	struct llist_node *node;
1288 
1289 	node = llist_del_all(&ctx->work_llist);
1290 	while (node) {
1291 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1292 						    io_task_work.node);
1293 
1294 		node = node->next;
1295 		__io_req_task_work_add(req, false);
1296 	}
1297 }
1298 
1299 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked)
1300 {
1301 	struct llist_node *node;
1302 	struct llist_node fake;
1303 	struct llist_node *current_final = NULL;
1304 	int ret;
1305 	unsigned int loops = 1;
1306 
1307 	if (unlikely(ctx->submitter_task != current))
1308 		return -EEXIST;
1309 
1310 	node = io_llist_xchg(&ctx->work_llist, &fake);
1311 	ret = 0;
1312 again:
1313 	while (node != current_final) {
1314 		struct llist_node *next = node->next;
1315 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1316 						    io_task_work.node);
1317 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1318 		req->io_task_work.func(req, locked);
1319 		ret++;
1320 		node = next;
1321 	}
1322 
1323 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1324 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1325 
1326 	node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL);
1327 	if (node != &fake) {
1328 		loops++;
1329 		current_final = &fake;
1330 		node = io_llist_xchg(&ctx->work_llist, &fake);
1331 		goto again;
1332 	}
1333 
1334 	if (*locked)
1335 		io_submit_flush_completions(ctx);
1336 	trace_io_uring_local_work_run(ctx, ret, loops);
1337 	return ret;
1338 
1339 }
1340 
1341 int io_run_local_work(struct io_ring_ctx *ctx)
1342 {
1343 	bool locked;
1344 	int ret;
1345 
1346 	if (llist_empty(&ctx->work_llist))
1347 		return 0;
1348 
1349 	__set_current_state(TASK_RUNNING);
1350 	locked = mutex_trylock(&ctx->uring_lock);
1351 	ret = __io_run_local_work(ctx, &locked);
1352 	if (locked)
1353 		mutex_unlock(&ctx->uring_lock);
1354 
1355 	return ret;
1356 }
1357 
1358 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1359 {
1360 	io_tw_lock(req->ctx, locked);
1361 	io_req_defer_failed(req, req->cqe.res);
1362 }
1363 
1364 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1365 {
1366 	io_tw_lock(req->ctx, locked);
1367 	/* req->task == current here, checking PF_EXITING is safe */
1368 	if (likely(!(req->task->flags & PF_EXITING)))
1369 		io_queue_sqe(req);
1370 	else
1371 		io_req_defer_failed(req, -EFAULT);
1372 }
1373 
1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1375 {
1376 	io_req_set_res(req, ret, 0);
1377 	req->io_task_work.func = io_req_task_cancel;
1378 	io_req_task_work_add(req);
1379 }
1380 
1381 void io_req_task_queue(struct io_kiocb *req)
1382 {
1383 	req->io_task_work.func = io_req_task_submit;
1384 	io_req_task_work_add(req);
1385 }
1386 
1387 void io_queue_next(struct io_kiocb *req)
1388 {
1389 	struct io_kiocb *nxt = io_req_find_next(req);
1390 
1391 	if (nxt)
1392 		io_req_task_queue(nxt);
1393 }
1394 
1395 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1396 	__must_hold(&ctx->uring_lock)
1397 {
1398 	struct task_struct *task = NULL;
1399 	int task_refs = 0;
1400 
1401 	do {
1402 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1403 						    comp_list);
1404 
1405 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1406 			if (req->flags & REQ_F_REFCOUNT) {
1407 				node = req->comp_list.next;
1408 				if (!req_ref_put_and_test(req))
1409 					continue;
1410 			}
1411 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1412 				struct async_poll *apoll = req->apoll;
1413 
1414 				if (apoll->double_poll)
1415 					kfree(apoll->double_poll);
1416 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1417 					kfree(apoll);
1418 				req->flags &= ~REQ_F_POLLED;
1419 			}
1420 			if (req->flags & IO_REQ_LINK_FLAGS)
1421 				io_queue_next(req);
1422 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1423 				io_clean_op(req);
1424 		}
1425 		if (!(req->flags & REQ_F_FIXED_FILE))
1426 			io_put_file(req->file);
1427 
1428 		io_req_put_rsrc_locked(req, ctx);
1429 
1430 		if (req->task != task) {
1431 			if (task)
1432 				io_put_task(task, task_refs);
1433 			task = req->task;
1434 			task_refs = 0;
1435 		}
1436 		task_refs++;
1437 		node = req->comp_list.next;
1438 		io_req_add_to_cache(req, ctx);
1439 	} while (node);
1440 
1441 	if (task)
1442 		io_put_task(task, task_refs);
1443 }
1444 
1445 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1446 	__must_hold(&ctx->uring_lock)
1447 {
1448 	struct io_wq_work_node *node, *prev;
1449 	struct io_submit_state *state = &ctx->submit_state;
1450 
1451 	__io_cq_lock(ctx);
1452 	/* must come first to preserve CQE ordering in failure cases */
1453 	if (state->cqes_count)
1454 		__io_flush_post_cqes(ctx);
1455 	wq_list_for_each(node, prev, &state->compl_reqs) {
1456 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1457 					    comp_list);
1458 
1459 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1460 		    unlikely(!__io_fill_cqe_req(ctx, req))) {
1461 			if (ctx->task_complete) {
1462 				spin_lock(&ctx->completion_lock);
1463 				io_req_cqe_overflow(req);
1464 				spin_unlock(&ctx->completion_lock);
1465 			} else {
1466 				io_req_cqe_overflow(req);
1467 			}
1468 		}
1469 	}
1470 	__io_cq_unlock_post(ctx);
1471 
1472 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1473 		io_free_batch_list(ctx, state->compl_reqs.first);
1474 		INIT_WQ_LIST(&state->compl_reqs);
1475 	}
1476 }
1477 
1478 /*
1479  * Drop reference to request, return next in chain (if there is one) if this
1480  * was the last reference to this request.
1481  */
1482 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1483 {
1484 	struct io_kiocb *nxt = NULL;
1485 
1486 	if (req_ref_put_and_test(req)) {
1487 		if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1488 			nxt = io_req_find_next(req);
1489 		io_free_req(req);
1490 	}
1491 	return nxt;
1492 }
1493 
1494 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1495 {
1496 	/* See comment at the top of this file */
1497 	smp_rmb();
1498 	return __io_cqring_events(ctx);
1499 }
1500 
1501 /*
1502  * We can't just wait for polled events to come to us, we have to actively
1503  * find and complete them.
1504  */
1505 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1506 {
1507 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1508 		return;
1509 
1510 	mutex_lock(&ctx->uring_lock);
1511 	while (!wq_list_empty(&ctx->iopoll_list)) {
1512 		/* let it sleep and repeat later if can't complete a request */
1513 		if (io_do_iopoll(ctx, true) == 0)
1514 			break;
1515 		/*
1516 		 * Ensure we allow local-to-the-cpu processing to take place,
1517 		 * in this case we need to ensure that we reap all events.
1518 		 * Also let task_work, etc. to progress by releasing the mutex
1519 		 */
1520 		if (need_resched()) {
1521 			mutex_unlock(&ctx->uring_lock);
1522 			cond_resched();
1523 			mutex_lock(&ctx->uring_lock);
1524 		}
1525 	}
1526 	mutex_unlock(&ctx->uring_lock);
1527 }
1528 
1529 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1530 {
1531 	unsigned int nr_events = 0;
1532 	int ret = 0;
1533 	unsigned long check_cq;
1534 
1535 	if (!io_allowed_run_tw(ctx))
1536 		return -EEXIST;
1537 
1538 	check_cq = READ_ONCE(ctx->check_cq);
1539 	if (unlikely(check_cq)) {
1540 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1541 			__io_cqring_overflow_flush(ctx);
1542 		/*
1543 		 * Similarly do not spin if we have not informed the user of any
1544 		 * dropped CQE.
1545 		 */
1546 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1547 			return -EBADR;
1548 	}
1549 	/*
1550 	 * Don't enter poll loop if we already have events pending.
1551 	 * If we do, we can potentially be spinning for commands that
1552 	 * already triggered a CQE (eg in error).
1553 	 */
1554 	if (io_cqring_events(ctx))
1555 		return 0;
1556 
1557 	do {
1558 		/*
1559 		 * If a submit got punted to a workqueue, we can have the
1560 		 * application entering polling for a command before it gets
1561 		 * issued. That app will hold the uring_lock for the duration
1562 		 * of the poll right here, so we need to take a breather every
1563 		 * now and then to ensure that the issue has a chance to add
1564 		 * the poll to the issued list. Otherwise we can spin here
1565 		 * forever, while the workqueue is stuck trying to acquire the
1566 		 * very same mutex.
1567 		 */
1568 		if (wq_list_empty(&ctx->iopoll_list) ||
1569 		    io_task_work_pending(ctx)) {
1570 			u32 tail = ctx->cached_cq_tail;
1571 
1572 			(void) io_run_local_work_locked(ctx);
1573 
1574 			if (task_work_pending(current) ||
1575 			    wq_list_empty(&ctx->iopoll_list)) {
1576 				mutex_unlock(&ctx->uring_lock);
1577 				io_run_task_work();
1578 				mutex_lock(&ctx->uring_lock);
1579 			}
1580 			/* some requests don't go through iopoll_list */
1581 			if (tail != ctx->cached_cq_tail ||
1582 			    wq_list_empty(&ctx->iopoll_list))
1583 				break;
1584 		}
1585 		ret = io_do_iopoll(ctx, !min);
1586 		if (ret < 0)
1587 			break;
1588 		nr_events += ret;
1589 		ret = 0;
1590 	} while (nr_events < min && !need_resched());
1591 
1592 	return ret;
1593 }
1594 
1595 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1596 {
1597 	if (*locked)
1598 		io_req_complete_defer(req);
1599 	else
1600 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1601 }
1602 
1603 /*
1604  * After the iocb has been issued, it's safe to be found on the poll list.
1605  * Adding the kiocb to the list AFTER submission ensures that we don't
1606  * find it from a io_do_iopoll() thread before the issuer is done
1607  * accessing the kiocb cookie.
1608  */
1609 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1610 {
1611 	struct io_ring_ctx *ctx = req->ctx;
1612 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1613 
1614 	/* workqueue context doesn't hold uring_lock, grab it now */
1615 	if (unlikely(needs_lock))
1616 		mutex_lock(&ctx->uring_lock);
1617 
1618 	/*
1619 	 * Track whether we have multiple files in our lists. This will impact
1620 	 * how we do polling eventually, not spinning if we're on potentially
1621 	 * different devices.
1622 	 */
1623 	if (wq_list_empty(&ctx->iopoll_list)) {
1624 		ctx->poll_multi_queue = false;
1625 	} else if (!ctx->poll_multi_queue) {
1626 		struct io_kiocb *list_req;
1627 
1628 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1629 					comp_list);
1630 		if (list_req->file != req->file)
1631 			ctx->poll_multi_queue = true;
1632 	}
1633 
1634 	/*
1635 	 * For fast devices, IO may have already completed. If it has, add
1636 	 * it to the front so we find it first.
1637 	 */
1638 	if (READ_ONCE(req->iopoll_completed))
1639 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1640 	else
1641 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1642 
1643 	if (unlikely(needs_lock)) {
1644 		/*
1645 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1646 		 * in sq thread task context or in io worker task context. If
1647 		 * current task context is sq thread, we don't need to check
1648 		 * whether should wake up sq thread.
1649 		 */
1650 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1651 		    wq_has_sleeper(&ctx->sq_data->wait))
1652 			wake_up(&ctx->sq_data->wait);
1653 
1654 		mutex_unlock(&ctx->uring_lock);
1655 	}
1656 }
1657 
1658 static bool io_bdev_nowait(struct block_device *bdev)
1659 {
1660 	return !bdev || bdev_nowait(bdev);
1661 }
1662 
1663 /*
1664  * If we tracked the file through the SCM inflight mechanism, we could support
1665  * any file. For now, just ensure that anything potentially problematic is done
1666  * inline.
1667  */
1668 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1669 {
1670 	if (S_ISBLK(mode)) {
1671 		if (IS_ENABLED(CONFIG_BLOCK) &&
1672 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1673 			return true;
1674 		return false;
1675 	}
1676 	if (S_ISSOCK(mode))
1677 		return true;
1678 	if (S_ISREG(mode)) {
1679 		if (IS_ENABLED(CONFIG_BLOCK) &&
1680 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1681 		    !io_is_uring_fops(file))
1682 			return true;
1683 		return false;
1684 	}
1685 
1686 	/* any ->read/write should understand O_NONBLOCK */
1687 	if (file->f_flags & O_NONBLOCK)
1688 		return true;
1689 	return file->f_mode & FMODE_NOWAIT;
1690 }
1691 
1692 /*
1693  * If we tracked the file through the SCM inflight mechanism, we could support
1694  * any file. For now, just ensure that anything potentially problematic is done
1695  * inline.
1696  */
1697 unsigned int io_file_get_flags(struct file *file)
1698 {
1699 	umode_t mode = file_inode(file)->i_mode;
1700 	unsigned int res = 0;
1701 
1702 	if (S_ISREG(mode))
1703 		res |= FFS_ISREG;
1704 	if (__io_file_supports_nowait(file, mode))
1705 		res |= FFS_NOWAIT;
1706 	return res;
1707 }
1708 
1709 bool io_alloc_async_data(struct io_kiocb *req)
1710 {
1711 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1712 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1713 	if (req->async_data) {
1714 		req->flags |= REQ_F_ASYNC_DATA;
1715 		return false;
1716 	}
1717 	return true;
1718 }
1719 
1720 int io_req_prep_async(struct io_kiocb *req)
1721 {
1722 	const struct io_op_def *def = &io_op_defs[req->opcode];
1723 
1724 	/* assign early for deferred execution for non-fixed file */
1725 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1726 		req->file = io_file_get_normal(req, req->cqe.fd);
1727 	if (!def->prep_async)
1728 		return 0;
1729 	if (WARN_ON_ONCE(req_has_async_data(req)))
1730 		return -EFAULT;
1731 	if (!io_op_defs[req->opcode].manual_alloc) {
1732 		if (io_alloc_async_data(req))
1733 			return -EAGAIN;
1734 	}
1735 	return def->prep_async(req);
1736 }
1737 
1738 static u32 io_get_sequence(struct io_kiocb *req)
1739 {
1740 	u32 seq = req->ctx->cached_sq_head;
1741 	struct io_kiocb *cur;
1742 
1743 	/* need original cached_sq_head, but it was increased for each req */
1744 	io_for_each_link(cur, req)
1745 		seq--;
1746 	return seq;
1747 }
1748 
1749 static __cold void io_drain_req(struct io_kiocb *req)
1750 	__must_hold(&ctx->uring_lock)
1751 {
1752 	struct io_ring_ctx *ctx = req->ctx;
1753 	struct io_defer_entry *de;
1754 	int ret;
1755 	u32 seq = io_get_sequence(req);
1756 
1757 	/* Still need defer if there is pending req in defer list. */
1758 	spin_lock(&ctx->completion_lock);
1759 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1760 		spin_unlock(&ctx->completion_lock);
1761 queue:
1762 		ctx->drain_active = false;
1763 		io_req_task_queue(req);
1764 		return;
1765 	}
1766 	spin_unlock(&ctx->completion_lock);
1767 
1768 	ret = io_req_prep_async(req);
1769 	if (ret) {
1770 fail:
1771 		io_req_defer_failed(req, ret);
1772 		return;
1773 	}
1774 	io_prep_async_link(req);
1775 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1776 	if (!de) {
1777 		ret = -ENOMEM;
1778 		goto fail;
1779 	}
1780 
1781 	spin_lock(&ctx->completion_lock);
1782 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1783 		spin_unlock(&ctx->completion_lock);
1784 		kfree(de);
1785 		goto queue;
1786 	}
1787 
1788 	trace_io_uring_defer(req);
1789 	de->req = req;
1790 	de->seq = seq;
1791 	list_add_tail(&de->list, &ctx->defer_list);
1792 	spin_unlock(&ctx->completion_lock);
1793 }
1794 
1795 static void io_clean_op(struct io_kiocb *req)
1796 {
1797 	if (req->flags & REQ_F_BUFFER_SELECTED) {
1798 		spin_lock(&req->ctx->completion_lock);
1799 		io_put_kbuf_comp(req);
1800 		spin_unlock(&req->ctx->completion_lock);
1801 	}
1802 
1803 	if (req->flags & REQ_F_NEED_CLEANUP) {
1804 		const struct io_op_def *def = &io_op_defs[req->opcode];
1805 
1806 		if (def->cleanup)
1807 			def->cleanup(req);
1808 	}
1809 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
1810 		kfree(req->apoll->double_poll);
1811 		kfree(req->apoll);
1812 		req->apoll = NULL;
1813 	}
1814 	if (req->flags & REQ_F_INFLIGHT) {
1815 		struct io_uring_task *tctx = req->task->io_uring;
1816 
1817 		atomic_dec(&tctx->inflight_tracked);
1818 	}
1819 	if (req->flags & REQ_F_CREDS)
1820 		put_cred(req->creds);
1821 	if (req->flags & REQ_F_ASYNC_DATA) {
1822 		kfree(req->async_data);
1823 		req->async_data = NULL;
1824 	}
1825 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
1826 }
1827 
1828 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1829 {
1830 	if (req->file || !io_op_defs[req->opcode].needs_file)
1831 		return true;
1832 
1833 	if (req->flags & REQ_F_FIXED_FILE)
1834 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1835 	else
1836 		req->file = io_file_get_normal(req, req->cqe.fd);
1837 
1838 	return !!req->file;
1839 }
1840 
1841 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1842 {
1843 	const struct io_op_def *def = &io_op_defs[req->opcode];
1844 	const struct cred *creds = NULL;
1845 	int ret;
1846 
1847 	if (unlikely(!io_assign_file(req, issue_flags)))
1848 		return -EBADF;
1849 
1850 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1851 		creds = override_creds(req->creds);
1852 
1853 	if (!def->audit_skip)
1854 		audit_uring_entry(req->opcode);
1855 
1856 	ret = def->issue(req, issue_flags);
1857 
1858 	if (!def->audit_skip)
1859 		audit_uring_exit(!ret, ret);
1860 
1861 	if (creds)
1862 		revert_creds(creds);
1863 
1864 	if (ret == IOU_OK) {
1865 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1866 			io_req_complete_defer(req);
1867 		else
1868 			io_req_complete_post(req, issue_flags);
1869 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1870 		return ret;
1871 
1872 	/* If the op doesn't have a file, we're not polling for it */
1873 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1874 		io_iopoll_req_issued(req, issue_flags);
1875 
1876 	return 0;
1877 }
1878 
1879 int io_poll_issue(struct io_kiocb *req, bool *locked)
1880 {
1881 	io_tw_lock(req->ctx, locked);
1882 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1883 				 IO_URING_F_COMPLETE_DEFER);
1884 }
1885 
1886 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1887 {
1888 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1889 
1890 	req = io_put_req_find_next(req);
1891 	return req ? &req->work : NULL;
1892 }
1893 
1894 void io_wq_submit_work(struct io_wq_work *work)
1895 {
1896 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1897 	const struct io_op_def *def = &io_op_defs[req->opcode];
1898 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1899 	bool needs_poll = false;
1900 	int ret = 0, err = -ECANCELED;
1901 
1902 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1903 	if (!(req->flags & REQ_F_REFCOUNT))
1904 		__io_req_set_refcount(req, 2);
1905 	else
1906 		req_ref_get(req);
1907 
1908 	io_arm_ltimeout(req);
1909 
1910 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1911 	if (work->flags & IO_WQ_WORK_CANCEL) {
1912 fail:
1913 		io_req_task_queue_fail(req, err);
1914 		return;
1915 	}
1916 	if (!io_assign_file(req, issue_flags)) {
1917 		err = -EBADF;
1918 		work->flags |= IO_WQ_WORK_CANCEL;
1919 		goto fail;
1920 	}
1921 
1922 	if (req->flags & REQ_F_FORCE_ASYNC) {
1923 		bool opcode_poll = def->pollin || def->pollout;
1924 
1925 		if (opcode_poll && file_can_poll(req->file)) {
1926 			needs_poll = true;
1927 			issue_flags |= IO_URING_F_NONBLOCK;
1928 		}
1929 	}
1930 
1931 	do {
1932 		ret = io_issue_sqe(req, issue_flags);
1933 		if (ret != -EAGAIN)
1934 			break;
1935 		/*
1936 		 * We can get EAGAIN for iopolled IO even though we're
1937 		 * forcing a sync submission from here, since we can't
1938 		 * wait for request slots on the block side.
1939 		 */
1940 		if (!needs_poll) {
1941 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1942 				break;
1943 			cond_resched();
1944 			continue;
1945 		}
1946 
1947 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1948 			return;
1949 		/* aborted or ready, in either case retry blocking */
1950 		needs_poll = false;
1951 		issue_flags &= ~IO_URING_F_NONBLOCK;
1952 	} while (1);
1953 
1954 	/* avoid locking problems by failing it from a clean context */
1955 	if (ret < 0)
1956 		io_req_task_queue_fail(req, ret);
1957 }
1958 
1959 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1960 				      unsigned int issue_flags)
1961 {
1962 	struct io_ring_ctx *ctx = req->ctx;
1963 	struct file *file = NULL;
1964 	unsigned long file_ptr;
1965 
1966 	io_ring_submit_lock(ctx, issue_flags);
1967 
1968 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1969 		goto out;
1970 	fd = array_index_nospec(fd, ctx->nr_user_files);
1971 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1972 	file = (struct file *) (file_ptr & FFS_MASK);
1973 	file_ptr &= ~FFS_MASK;
1974 	/* mask in overlapping REQ_F and FFS bits */
1975 	req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1976 	io_req_set_rsrc_node(req, ctx, 0);
1977 out:
1978 	io_ring_submit_unlock(ctx, issue_flags);
1979 	return file;
1980 }
1981 
1982 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1983 {
1984 	struct file *file = fget(fd);
1985 
1986 	trace_io_uring_file_get(req, fd);
1987 
1988 	/* we don't allow fixed io_uring files */
1989 	if (file && io_is_uring_fops(file))
1990 		io_req_track_inflight(req);
1991 	return file;
1992 }
1993 
1994 static void io_queue_async(struct io_kiocb *req, int ret)
1995 	__must_hold(&req->ctx->uring_lock)
1996 {
1997 	struct io_kiocb *linked_timeout;
1998 
1999 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2000 		io_req_defer_failed(req, ret);
2001 		return;
2002 	}
2003 
2004 	linked_timeout = io_prep_linked_timeout(req);
2005 
2006 	switch (io_arm_poll_handler(req, 0)) {
2007 	case IO_APOLL_READY:
2008 		io_kbuf_recycle(req, 0);
2009 		io_req_task_queue(req);
2010 		break;
2011 	case IO_APOLL_ABORTED:
2012 		io_kbuf_recycle(req, 0);
2013 		io_queue_iowq(req, NULL);
2014 		break;
2015 	case IO_APOLL_OK:
2016 		break;
2017 	}
2018 
2019 	if (linked_timeout)
2020 		io_queue_linked_timeout(linked_timeout);
2021 }
2022 
2023 static inline void io_queue_sqe(struct io_kiocb *req)
2024 	__must_hold(&req->ctx->uring_lock)
2025 {
2026 	int ret;
2027 
2028 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2029 
2030 	/*
2031 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2032 	 * doesn't support non-blocking read/write attempts
2033 	 */
2034 	if (likely(!ret))
2035 		io_arm_ltimeout(req);
2036 	else
2037 		io_queue_async(req, ret);
2038 }
2039 
2040 static void io_queue_sqe_fallback(struct io_kiocb *req)
2041 	__must_hold(&req->ctx->uring_lock)
2042 {
2043 	if (unlikely(req->flags & REQ_F_FAIL)) {
2044 		/*
2045 		 * We don't submit, fail them all, for that replace hardlinks
2046 		 * with normal links. Extra REQ_F_LINK is tolerated.
2047 		 */
2048 		req->flags &= ~REQ_F_HARDLINK;
2049 		req->flags |= REQ_F_LINK;
2050 		io_req_defer_failed(req, req->cqe.res);
2051 	} else if (unlikely(req->ctx->drain_active)) {
2052 		io_drain_req(req);
2053 	} else {
2054 		int ret = io_req_prep_async(req);
2055 
2056 		if (unlikely(ret))
2057 			io_req_defer_failed(req, ret);
2058 		else
2059 			io_queue_iowq(req, NULL);
2060 	}
2061 }
2062 
2063 /*
2064  * Check SQE restrictions (opcode and flags).
2065  *
2066  * Returns 'true' if SQE is allowed, 'false' otherwise.
2067  */
2068 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2069 					struct io_kiocb *req,
2070 					unsigned int sqe_flags)
2071 {
2072 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2073 		return false;
2074 
2075 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2076 	    ctx->restrictions.sqe_flags_required)
2077 		return false;
2078 
2079 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2080 			  ctx->restrictions.sqe_flags_required))
2081 		return false;
2082 
2083 	return true;
2084 }
2085 
2086 static void io_init_req_drain(struct io_kiocb *req)
2087 {
2088 	struct io_ring_ctx *ctx = req->ctx;
2089 	struct io_kiocb *head = ctx->submit_state.link.head;
2090 
2091 	ctx->drain_active = true;
2092 	if (head) {
2093 		/*
2094 		 * If we need to drain a request in the middle of a link, drain
2095 		 * the head request and the next request/link after the current
2096 		 * link. Considering sequential execution of links,
2097 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2098 		 * link.
2099 		 */
2100 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2101 		ctx->drain_next = true;
2102 	}
2103 }
2104 
2105 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2106 		       const struct io_uring_sqe *sqe)
2107 	__must_hold(&ctx->uring_lock)
2108 {
2109 	const struct io_op_def *def;
2110 	unsigned int sqe_flags;
2111 	int personality;
2112 	u8 opcode;
2113 
2114 	/* req is partially pre-initialised, see io_preinit_req() */
2115 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2116 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2117 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2118 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2119 	req->file = NULL;
2120 	req->rsrc_node = NULL;
2121 	req->task = current;
2122 
2123 	if (unlikely(opcode >= IORING_OP_LAST)) {
2124 		req->opcode = 0;
2125 		return -EINVAL;
2126 	}
2127 	def = &io_op_defs[opcode];
2128 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2129 		/* enforce forwards compatibility on users */
2130 		if (sqe_flags & ~SQE_VALID_FLAGS)
2131 			return -EINVAL;
2132 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2133 			if (!def->buffer_select)
2134 				return -EOPNOTSUPP;
2135 			req->buf_index = READ_ONCE(sqe->buf_group);
2136 		}
2137 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2138 			ctx->drain_disabled = true;
2139 		if (sqe_flags & IOSQE_IO_DRAIN) {
2140 			if (ctx->drain_disabled)
2141 				return -EOPNOTSUPP;
2142 			io_init_req_drain(req);
2143 		}
2144 	}
2145 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2146 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2147 			return -EACCES;
2148 		/* knock it to the slow queue path, will be drained there */
2149 		if (ctx->drain_active)
2150 			req->flags |= REQ_F_FORCE_ASYNC;
2151 		/* if there is no link, we're at "next" request and need to drain */
2152 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2153 			ctx->drain_next = false;
2154 			ctx->drain_active = true;
2155 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2156 		}
2157 	}
2158 
2159 	if (!def->ioprio && sqe->ioprio)
2160 		return -EINVAL;
2161 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2162 		return -EINVAL;
2163 
2164 	if (def->needs_file) {
2165 		struct io_submit_state *state = &ctx->submit_state;
2166 
2167 		req->cqe.fd = READ_ONCE(sqe->fd);
2168 
2169 		/*
2170 		 * Plug now if we have more than 2 IO left after this, and the
2171 		 * target is potentially a read/write to block based storage.
2172 		 */
2173 		if (state->need_plug && def->plug) {
2174 			state->plug_started = true;
2175 			state->need_plug = false;
2176 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2177 		}
2178 	}
2179 
2180 	personality = READ_ONCE(sqe->personality);
2181 	if (personality) {
2182 		int ret;
2183 
2184 		req->creds = xa_load(&ctx->personalities, personality);
2185 		if (!req->creds)
2186 			return -EINVAL;
2187 		get_cred(req->creds);
2188 		ret = security_uring_override_creds(req->creds);
2189 		if (ret) {
2190 			put_cred(req->creds);
2191 			return ret;
2192 		}
2193 		req->flags |= REQ_F_CREDS;
2194 	}
2195 
2196 	return def->prep(req, sqe);
2197 }
2198 
2199 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2200 				      struct io_kiocb *req, int ret)
2201 {
2202 	struct io_ring_ctx *ctx = req->ctx;
2203 	struct io_submit_link *link = &ctx->submit_state.link;
2204 	struct io_kiocb *head = link->head;
2205 
2206 	trace_io_uring_req_failed(sqe, req, ret);
2207 
2208 	/*
2209 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2210 	 * unusable. Instead of failing eagerly, continue assembling the link if
2211 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2212 	 * should find the flag and handle the rest.
2213 	 */
2214 	req_fail_link_node(req, ret);
2215 	if (head && !(head->flags & REQ_F_FAIL))
2216 		req_fail_link_node(head, -ECANCELED);
2217 
2218 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2219 		if (head) {
2220 			link->last->link = req;
2221 			link->head = NULL;
2222 			req = head;
2223 		}
2224 		io_queue_sqe_fallback(req);
2225 		return ret;
2226 	}
2227 
2228 	if (head)
2229 		link->last->link = req;
2230 	else
2231 		link->head = req;
2232 	link->last = req;
2233 	return 0;
2234 }
2235 
2236 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2237 			 const struct io_uring_sqe *sqe)
2238 	__must_hold(&ctx->uring_lock)
2239 {
2240 	struct io_submit_link *link = &ctx->submit_state.link;
2241 	int ret;
2242 
2243 	ret = io_init_req(ctx, req, sqe);
2244 	if (unlikely(ret))
2245 		return io_submit_fail_init(sqe, req, ret);
2246 
2247 	/* don't need @sqe from now on */
2248 	trace_io_uring_submit_sqe(req, true);
2249 
2250 	/*
2251 	 * If we already have a head request, queue this one for async
2252 	 * submittal once the head completes. If we don't have a head but
2253 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2254 	 * submitted sync once the chain is complete. If none of those
2255 	 * conditions are true (normal request), then just queue it.
2256 	 */
2257 	if (unlikely(link->head)) {
2258 		ret = io_req_prep_async(req);
2259 		if (unlikely(ret))
2260 			return io_submit_fail_init(sqe, req, ret);
2261 
2262 		trace_io_uring_link(req, link->head);
2263 		link->last->link = req;
2264 		link->last = req;
2265 
2266 		if (req->flags & IO_REQ_LINK_FLAGS)
2267 			return 0;
2268 		/* last request of the link, flush it */
2269 		req = link->head;
2270 		link->head = NULL;
2271 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2272 			goto fallback;
2273 
2274 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2275 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2276 		if (req->flags & IO_REQ_LINK_FLAGS) {
2277 			link->head = req;
2278 			link->last = req;
2279 		} else {
2280 fallback:
2281 			io_queue_sqe_fallback(req);
2282 		}
2283 		return 0;
2284 	}
2285 
2286 	io_queue_sqe(req);
2287 	return 0;
2288 }
2289 
2290 /*
2291  * Batched submission is done, ensure local IO is flushed out.
2292  */
2293 static void io_submit_state_end(struct io_ring_ctx *ctx)
2294 {
2295 	struct io_submit_state *state = &ctx->submit_state;
2296 
2297 	if (unlikely(state->link.head))
2298 		io_queue_sqe_fallback(state->link.head);
2299 	/* flush only after queuing links as they can generate completions */
2300 	io_submit_flush_completions(ctx);
2301 	if (state->plug_started)
2302 		blk_finish_plug(&state->plug);
2303 }
2304 
2305 /*
2306  * Start submission side cache.
2307  */
2308 static void io_submit_state_start(struct io_submit_state *state,
2309 				  unsigned int max_ios)
2310 {
2311 	state->plug_started = false;
2312 	state->need_plug = max_ios > 2;
2313 	state->submit_nr = max_ios;
2314 	/* set only head, no need to init link_last in advance */
2315 	state->link.head = NULL;
2316 }
2317 
2318 static void io_commit_sqring(struct io_ring_ctx *ctx)
2319 {
2320 	struct io_rings *rings = ctx->rings;
2321 
2322 	/*
2323 	 * Ensure any loads from the SQEs are done at this point,
2324 	 * since once we write the new head, the application could
2325 	 * write new data to them.
2326 	 */
2327 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2328 }
2329 
2330 /*
2331  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2332  * that is mapped by userspace. This means that care needs to be taken to
2333  * ensure that reads are stable, as we cannot rely on userspace always
2334  * being a good citizen. If members of the sqe are validated and then later
2335  * used, it's important that those reads are done through READ_ONCE() to
2336  * prevent a re-load down the line.
2337  */
2338 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2339 {
2340 	unsigned head, mask = ctx->sq_entries - 1;
2341 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
2342 
2343 	/*
2344 	 * The cached sq head (or cq tail) serves two purposes:
2345 	 *
2346 	 * 1) allows us to batch the cost of updating the user visible
2347 	 *    head updates.
2348 	 * 2) allows the kernel side to track the head on its own, even
2349 	 *    though the application is the one updating it.
2350 	 */
2351 	head = READ_ONCE(ctx->sq_array[sq_idx]);
2352 	if (likely(head < ctx->sq_entries)) {
2353 		/* double index for 128-byte SQEs, twice as long */
2354 		if (ctx->flags & IORING_SETUP_SQE128)
2355 			head <<= 1;
2356 		return &ctx->sq_sqes[head];
2357 	}
2358 
2359 	/* drop invalid entries */
2360 	ctx->cq_extra--;
2361 	WRITE_ONCE(ctx->rings->sq_dropped,
2362 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
2363 	return NULL;
2364 }
2365 
2366 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2367 	__must_hold(&ctx->uring_lock)
2368 {
2369 	unsigned int entries = io_sqring_entries(ctx);
2370 	unsigned int left;
2371 	int ret;
2372 
2373 	if (unlikely(!entries))
2374 		return 0;
2375 	/* make sure SQ entry isn't read before tail */
2376 	ret = left = min3(nr, ctx->sq_entries, entries);
2377 	io_get_task_refs(left);
2378 	io_submit_state_start(&ctx->submit_state, left);
2379 
2380 	do {
2381 		const struct io_uring_sqe *sqe;
2382 		struct io_kiocb *req;
2383 
2384 		if (unlikely(!io_alloc_req_refill(ctx)))
2385 			break;
2386 		req = io_alloc_req(ctx);
2387 		sqe = io_get_sqe(ctx);
2388 		if (unlikely(!sqe)) {
2389 			io_req_add_to_cache(req, ctx);
2390 			break;
2391 		}
2392 
2393 		/*
2394 		 * Continue submitting even for sqe failure if the
2395 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2396 		 */
2397 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2398 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2399 			left--;
2400 			break;
2401 		}
2402 	} while (--left);
2403 
2404 	if (unlikely(left)) {
2405 		ret -= left;
2406 		/* try again if it submitted nothing and can't allocate a req */
2407 		if (!ret && io_req_cache_empty(ctx))
2408 			ret = -EAGAIN;
2409 		current->io_uring->cached_refs += left;
2410 	}
2411 
2412 	io_submit_state_end(ctx);
2413 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2414 	io_commit_sqring(ctx);
2415 	return ret;
2416 }
2417 
2418 struct io_wait_queue {
2419 	struct wait_queue_entry wq;
2420 	struct io_ring_ctx *ctx;
2421 	unsigned cq_tail;
2422 	unsigned nr_timeouts;
2423 };
2424 
2425 static inline bool io_has_work(struct io_ring_ctx *ctx)
2426 {
2427 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2428 	       ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2429 		!llist_empty(&ctx->work_llist));
2430 }
2431 
2432 static inline bool io_should_wake(struct io_wait_queue *iowq)
2433 {
2434 	struct io_ring_ctx *ctx = iowq->ctx;
2435 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2436 
2437 	/*
2438 	 * Wake up if we have enough events, or if a timeout occurred since we
2439 	 * started waiting. For timeouts, we always want to return to userspace,
2440 	 * regardless of event count.
2441 	 */
2442 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2443 }
2444 
2445 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2446 			    int wake_flags, void *key)
2447 {
2448 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2449 							wq);
2450 	struct io_ring_ctx *ctx = iowq->ctx;
2451 
2452 	/*
2453 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2454 	 * the task, and the next invocation will do it.
2455 	 */
2456 	if (io_should_wake(iowq) || io_has_work(ctx))
2457 		return autoremove_wake_function(curr, mode, wake_flags, key);
2458 	return -1;
2459 }
2460 
2461 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2462 {
2463 	if (io_run_task_work_ctx(ctx) > 0)
2464 		return 1;
2465 	if (task_sigpending(current))
2466 		return -EINTR;
2467 	return 0;
2468 }
2469 
2470 /* when returns >0, the caller should retry */
2471 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2472 					  struct io_wait_queue *iowq,
2473 					  ktime_t *timeout)
2474 {
2475 	int ret;
2476 	unsigned long check_cq;
2477 
2478 	/* make sure we run task_work before checking for signals */
2479 	ret = io_run_task_work_sig(ctx);
2480 	if (ret || io_should_wake(iowq))
2481 		return ret;
2482 
2483 	check_cq = READ_ONCE(ctx->check_cq);
2484 	if (unlikely(check_cq)) {
2485 		/* let the caller flush overflows, retry */
2486 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2487 			return 1;
2488 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2489 			return -EBADR;
2490 	}
2491 	if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS))
2492 		return -ETIME;
2493 
2494 	/*
2495 	 * Run task_work after scheduling. If we got woken because of
2496 	 * task_work being processed, run it now rather than let the caller
2497 	 * do another wait loop.
2498 	 */
2499 	ret = io_run_task_work_sig(ctx);
2500 	return ret < 0 ? ret : 1;
2501 }
2502 
2503 /*
2504  * Wait until events become available, if we don't already have some. The
2505  * application must reap them itself, as they reside on the shared cq ring.
2506  */
2507 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2508 			  const sigset_t __user *sig, size_t sigsz,
2509 			  struct __kernel_timespec __user *uts)
2510 {
2511 	struct io_wait_queue iowq;
2512 	struct io_rings *rings = ctx->rings;
2513 	ktime_t timeout = KTIME_MAX;
2514 	int ret;
2515 
2516 	if (!io_allowed_run_tw(ctx))
2517 		return -EEXIST;
2518 
2519 	do {
2520 		/* always run at least 1 task work to process local work */
2521 		ret = io_run_task_work_ctx(ctx);
2522 		if (ret < 0)
2523 			return ret;
2524 		io_cqring_overflow_flush(ctx);
2525 
2526 		/* if user messes with these they will just get an early return */
2527 		if (__io_cqring_events_user(ctx) >= min_events)
2528 			return 0;
2529 	} while (ret > 0);
2530 
2531 	if (sig) {
2532 #ifdef CONFIG_COMPAT
2533 		if (in_compat_syscall())
2534 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2535 						      sigsz);
2536 		else
2537 #endif
2538 			ret = set_user_sigmask(sig, sigsz);
2539 
2540 		if (ret)
2541 			return ret;
2542 	}
2543 
2544 	if (uts) {
2545 		struct timespec64 ts;
2546 
2547 		if (get_timespec64(&ts, uts))
2548 			return -EFAULT;
2549 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2550 	}
2551 
2552 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2553 	iowq.wq.private = current;
2554 	INIT_LIST_HEAD(&iowq.wq.entry);
2555 	iowq.ctx = ctx;
2556 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2557 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2558 
2559 	trace_io_uring_cqring_wait(ctx, min_events);
2560 	do {
2561 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2562 			finish_wait(&ctx->cq_wait, &iowq.wq);
2563 			io_cqring_do_overflow_flush(ctx);
2564 		}
2565 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2566 						TASK_INTERRUPTIBLE);
2567 		ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
2568 		if (__io_cqring_events_user(ctx) >= min_events)
2569 			break;
2570 		cond_resched();
2571 	} while (ret > 0);
2572 
2573 	finish_wait(&ctx->cq_wait, &iowq.wq);
2574 	restore_saved_sigmask_unless(ret == -EINTR);
2575 
2576 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2577 }
2578 
2579 static void io_mem_free(void *ptr)
2580 {
2581 	struct page *page;
2582 
2583 	if (!ptr)
2584 		return;
2585 
2586 	page = virt_to_head_page(ptr);
2587 	if (put_page_testzero(page))
2588 		free_compound_page(page);
2589 }
2590 
2591 static void *io_mem_alloc(size_t size)
2592 {
2593 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2594 
2595 	return (void *) __get_free_pages(gfp, get_order(size));
2596 }
2597 
2598 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2599 				unsigned int cq_entries, size_t *sq_offset)
2600 {
2601 	struct io_rings *rings;
2602 	size_t off, sq_array_size;
2603 
2604 	off = struct_size(rings, cqes, cq_entries);
2605 	if (off == SIZE_MAX)
2606 		return SIZE_MAX;
2607 	if (ctx->flags & IORING_SETUP_CQE32) {
2608 		if (check_shl_overflow(off, 1, &off))
2609 			return SIZE_MAX;
2610 	}
2611 
2612 #ifdef CONFIG_SMP
2613 	off = ALIGN(off, SMP_CACHE_BYTES);
2614 	if (off == 0)
2615 		return SIZE_MAX;
2616 #endif
2617 
2618 	if (sq_offset)
2619 		*sq_offset = off;
2620 
2621 	sq_array_size = array_size(sizeof(u32), sq_entries);
2622 	if (sq_array_size == SIZE_MAX)
2623 		return SIZE_MAX;
2624 
2625 	if (check_add_overflow(off, sq_array_size, &off))
2626 		return SIZE_MAX;
2627 
2628 	return off;
2629 }
2630 
2631 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2632 			       unsigned int eventfd_async)
2633 {
2634 	struct io_ev_fd *ev_fd;
2635 	__s32 __user *fds = arg;
2636 	int fd;
2637 
2638 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2639 					lockdep_is_held(&ctx->uring_lock));
2640 	if (ev_fd)
2641 		return -EBUSY;
2642 
2643 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2644 		return -EFAULT;
2645 
2646 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2647 	if (!ev_fd)
2648 		return -ENOMEM;
2649 
2650 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2651 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2652 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2653 		kfree(ev_fd);
2654 		return ret;
2655 	}
2656 
2657 	spin_lock(&ctx->completion_lock);
2658 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2659 	spin_unlock(&ctx->completion_lock);
2660 
2661 	ev_fd->eventfd_async = eventfd_async;
2662 	ctx->has_evfd = true;
2663 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2664 	atomic_set(&ev_fd->refs, 1);
2665 	atomic_set(&ev_fd->ops, 0);
2666 	return 0;
2667 }
2668 
2669 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2670 {
2671 	struct io_ev_fd *ev_fd;
2672 
2673 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2674 					lockdep_is_held(&ctx->uring_lock));
2675 	if (ev_fd) {
2676 		ctx->has_evfd = false;
2677 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2678 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2679 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2680 		return 0;
2681 	}
2682 
2683 	return -ENXIO;
2684 }
2685 
2686 static void io_req_caches_free(struct io_ring_ctx *ctx)
2687 {
2688 	int nr = 0;
2689 
2690 	mutex_lock(&ctx->uring_lock);
2691 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2692 
2693 	while (!io_req_cache_empty(ctx)) {
2694 		struct io_kiocb *req = io_alloc_req(ctx);
2695 
2696 		kmem_cache_free(req_cachep, req);
2697 		nr++;
2698 	}
2699 	if (nr)
2700 		percpu_ref_put_many(&ctx->refs, nr);
2701 	mutex_unlock(&ctx->uring_lock);
2702 }
2703 
2704 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2705 {
2706 	io_sq_thread_finish(ctx);
2707 	io_rsrc_refs_drop(ctx);
2708 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2709 	io_wait_rsrc_data(ctx->buf_data);
2710 	io_wait_rsrc_data(ctx->file_data);
2711 
2712 	mutex_lock(&ctx->uring_lock);
2713 	if (ctx->buf_data)
2714 		__io_sqe_buffers_unregister(ctx);
2715 	if (ctx->file_data)
2716 		__io_sqe_files_unregister(ctx);
2717 	io_cqring_overflow_kill(ctx);
2718 	io_eventfd_unregister(ctx);
2719 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2720 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2721 	mutex_unlock(&ctx->uring_lock);
2722 	io_destroy_buffers(ctx);
2723 	if (ctx->sq_creds)
2724 		put_cred(ctx->sq_creds);
2725 	if (ctx->submitter_task)
2726 		put_task_struct(ctx->submitter_task);
2727 
2728 	/* there are no registered resources left, nobody uses it */
2729 	if (ctx->rsrc_node)
2730 		io_rsrc_node_destroy(ctx->rsrc_node);
2731 	if (ctx->rsrc_backup_node)
2732 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
2733 	flush_delayed_work(&ctx->rsrc_put_work);
2734 	flush_delayed_work(&ctx->fallback_work);
2735 
2736 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2737 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2738 
2739 #if defined(CONFIG_UNIX)
2740 	if (ctx->ring_sock) {
2741 		ctx->ring_sock->file = NULL; /* so that iput() is called */
2742 		sock_release(ctx->ring_sock);
2743 	}
2744 #endif
2745 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2746 
2747 	if (ctx->mm_account) {
2748 		mmdrop(ctx->mm_account);
2749 		ctx->mm_account = NULL;
2750 	}
2751 	io_mem_free(ctx->rings);
2752 	io_mem_free(ctx->sq_sqes);
2753 
2754 	percpu_ref_exit(&ctx->refs);
2755 	free_uid(ctx->user);
2756 	io_req_caches_free(ctx);
2757 	if (ctx->hash_map)
2758 		io_wq_put_hash(ctx->hash_map);
2759 	kfree(ctx->cancel_table.hbs);
2760 	kfree(ctx->cancel_table_locked.hbs);
2761 	kfree(ctx->dummy_ubuf);
2762 	kfree(ctx->io_bl);
2763 	xa_destroy(&ctx->io_bl_xa);
2764 	kfree(ctx);
2765 }
2766 
2767 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2768 {
2769 	struct io_ring_ctx *ctx = file->private_data;
2770 	__poll_t mask = 0;
2771 
2772 	poll_wait(file, &ctx->cq_wait, wait);
2773 	/*
2774 	 * synchronizes with barrier from wq_has_sleeper call in
2775 	 * io_commit_cqring
2776 	 */
2777 	smp_rmb();
2778 	if (!io_sqring_full(ctx))
2779 		mask |= EPOLLOUT | EPOLLWRNORM;
2780 
2781 	/*
2782 	 * Don't flush cqring overflow list here, just do a simple check.
2783 	 * Otherwise there could possible be ABBA deadlock:
2784 	 *      CPU0                    CPU1
2785 	 *      ----                    ----
2786 	 * lock(&ctx->uring_lock);
2787 	 *                              lock(&ep->mtx);
2788 	 *                              lock(&ctx->uring_lock);
2789 	 * lock(&ep->mtx);
2790 	 *
2791 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2792 	 * pushes them to do the flush.
2793 	 */
2794 
2795 	if (io_cqring_events(ctx) || io_has_work(ctx))
2796 		mask |= EPOLLIN | EPOLLRDNORM;
2797 
2798 	return mask;
2799 }
2800 
2801 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2802 {
2803 	const struct cred *creds;
2804 
2805 	creds = xa_erase(&ctx->personalities, id);
2806 	if (creds) {
2807 		put_cred(creds);
2808 		return 0;
2809 	}
2810 
2811 	return -EINVAL;
2812 }
2813 
2814 struct io_tctx_exit {
2815 	struct callback_head		task_work;
2816 	struct completion		completion;
2817 	struct io_ring_ctx		*ctx;
2818 };
2819 
2820 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2821 {
2822 	struct io_uring_task *tctx = current->io_uring;
2823 	struct io_tctx_exit *work;
2824 
2825 	work = container_of(cb, struct io_tctx_exit, task_work);
2826 	/*
2827 	 * When @in_idle, we're in cancellation and it's racy to remove the
2828 	 * node. It'll be removed by the end of cancellation, just ignore it.
2829 	 * tctx can be NULL if the queueing of this task_work raced with
2830 	 * work cancelation off the exec path.
2831 	 */
2832 	if (tctx && !atomic_read(&tctx->in_idle))
2833 		io_uring_del_tctx_node((unsigned long)work->ctx);
2834 	complete(&work->completion);
2835 }
2836 
2837 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2838 {
2839 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2840 
2841 	return req->ctx == data;
2842 }
2843 
2844 static __cold void io_ring_exit_work(struct work_struct *work)
2845 {
2846 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2847 	unsigned long timeout = jiffies + HZ * 60 * 5;
2848 	unsigned long interval = HZ / 20;
2849 	struct io_tctx_exit exit;
2850 	struct io_tctx_node *node;
2851 	int ret;
2852 
2853 	/*
2854 	 * If we're doing polled IO and end up having requests being
2855 	 * submitted async (out-of-line), then completions can come in while
2856 	 * we're waiting for refs to drop. We need to reap these manually,
2857 	 * as nobody else will be looking for them.
2858 	 */
2859 	do {
2860 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2861 			mutex_lock(&ctx->uring_lock);
2862 			io_cqring_overflow_kill(ctx);
2863 			mutex_unlock(&ctx->uring_lock);
2864 		}
2865 
2866 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2867 			io_move_task_work_from_local(ctx);
2868 
2869 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2870 			cond_resched();
2871 
2872 		if (ctx->sq_data) {
2873 			struct io_sq_data *sqd = ctx->sq_data;
2874 			struct task_struct *tsk;
2875 
2876 			io_sq_thread_park(sqd);
2877 			tsk = sqd->thread;
2878 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2879 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2880 						io_cancel_ctx_cb, ctx, true);
2881 			io_sq_thread_unpark(sqd);
2882 		}
2883 
2884 		io_req_caches_free(ctx);
2885 
2886 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2887 			/* there is little hope left, don't run it too often */
2888 			interval = HZ * 60;
2889 		}
2890 	} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2891 
2892 	init_completion(&exit.completion);
2893 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2894 	exit.ctx = ctx;
2895 	/*
2896 	 * Some may use context even when all refs and requests have been put,
2897 	 * and they are free to do so while still holding uring_lock or
2898 	 * completion_lock, see io_req_task_submit(). Apart from other work,
2899 	 * this lock/unlock section also waits them to finish.
2900 	 */
2901 	mutex_lock(&ctx->uring_lock);
2902 	while (!list_empty(&ctx->tctx_list)) {
2903 		WARN_ON_ONCE(time_after(jiffies, timeout));
2904 
2905 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2906 					ctx_node);
2907 		/* don't spin on a single task if cancellation failed */
2908 		list_rotate_left(&ctx->tctx_list);
2909 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2910 		if (WARN_ON_ONCE(ret))
2911 			continue;
2912 
2913 		mutex_unlock(&ctx->uring_lock);
2914 		wait_for_completion(&exit.completion);
2915 		mutex_lock(&ctx->uring_lock);
2916 	}
2917 	mutex_unlock(&ctx->uring_lock);
2918 	spin_lock(&ctx->completion_lock);
2919 	spin_unlock(&ctx->completion_lock);
2920 
2921 	io_ring_ctx_free(ctx);
2922 }
2923 
2924 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2925 {
2926 	unsigned long index;
2927 	struct creds *creds;
2928 
2929 	mutex_lock(&ctx->uring_lock);
2930 	percpu_ref_kill(&ctx->refs);
2931 	xa_for_each(&ctx->personalities, index, creds)
2932 		io_unregister_personality(ctx, index);
2933 	if (ctx->rings)
2934 		io_poll_remove_all(ctx, NULL, true);
2935 	mutex_unlock(&ctx->uring_lock);
2936 
2937 	/*
2938 	 * If we failed setting up the ctx, we might not have any rings
2939 	 * and therefore did not submit any requests
2940 	 */
2941 	if (ctx->rings)
2942 		io_kill_timeouts(ctx, NULL, true);
2943 
2944 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2945 	/*
2946 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2947 	 * if we're exiting a ton of rings at the same time. It just adds
2948 	 * noise and overhead, there's no discernable change in runtime
2949 	 * over using system_wq.
2950 	 */
2951 	queue_work(system_unbound_wq, &ctx->exit_work);
2952 }
2953 
2954 static int io_uring_release(struct inode *inode, struct file *file)
2955 {
2956 	struct io_ring_ctx *ctx = file->private_data;
2957 
2958 	file->private_data = NULL;
2959 	io_ring_ctx_wait_and_kill(ctx);
2960 	return 0;
2961 }
2962 
2963 struct io_task_cancel {
2964 	struct task_struct *task;
2965 	bool all;
2966 };
2967 
2968 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2969 {
2970 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2971 	struct io_task_cancel *cancel = data;
2972 
2973 	return io_match_task_safe(req, cancel->task, cancel->all);
2974 }
2975 
2976 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2977 					 struct task_struct *task,
2978 					 bool cancel_all)
2979 {
2980 	struct io_defer_entry *de;
2981 	LIST_HEAD(list);
2982 
2983 	spin_lock(&ctx->completion_lock);
2984 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2985 		if (io_match_task_safe(de->req, task, cancel_all)) {
2986 			list_cut_position(&list, &ctx->defer_list, &de->list);
2987 			break;
2988 		}
2989 	}
2990 	spin_unlock(&ctx->completion_lock);
2991 	if (list_empty(&list))
2992 		return false;
2993 
2994 	while (!list_empty(&list)) {
2995 		de = list_first_entry(&list, struct io_defer_entry, list);
2996 		list_del_init(&de->list);
2997 		io_req_task_queue_fail(de->req, -ECANCELED);
2998 		kfree(de);
2999 	}
3000 	return true;
3001 }
3002 
3003 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3004 {
3005 	struct io_tctx_node *node;
3006 	enum io_wq_cancel cret;
3007 	bool ret = false;
3008 
3009 	mutex_lock(&ctx->uring_lock);
3010 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3011 		struct io_uring_task *tctx = node->task->io_uring;
3012 
3013 		/*
3014 		 * io_wq will stay alive while we hold uring_lock, because it's
3015 		 * killed after ctx nodes, which requires to take the lock.
3016 		 */
3017 		if (!tctx || !tctx->io_wq)
3018 			continue;
3019 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3020 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3021 	}
3022 	mutex_unlock(&ctx->uring_lock);
3023 
3024 	return ret;
3025 }
3026 
3027 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3028 						struct task_struct *task,
3029 						bool cancel_all)
3030 {
3031 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3032 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3033 	enum io_wq_cancel cret;
3034 	bool ret = false;
3035 
3036 	/* failed during ring init, it couldn't have issued any requests */
3037 	if (!ctx->rings)
3038 		return false;
3039 
3040 	if (!task) {
3041 		ret |= io_uring_try_cancel_iowq(ctx);
3042 	} else if (tctx && tctx->io_wq) {
3043 		/*
3044 		 * Cancels requests of all rings, not only @ctx, but
3045 		 * it's fine as the task is in exit/exec.
3046 		 */
3047 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3048 				       &cancel, true);
3049 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3050 	}
3051 
3052 	/* SQPOLL thread does its own polling */
3053 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3054 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3055 		while (!wq_list_empty(&ctx->iopoll_list)) {
3056 			io_iopoll_try_reap_events(ctx);
3057 			ret = true;
3058 		}
3059 	}
3060 
3061 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3062 		ret |= io_run_local_work(ctx) > 0;
3063 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3064 	mutex_lock(&ctx->uring_lock);
3065 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3066 	mutex_unlock(&ctx->uring_lock);
3067 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3068 	if (task)
3069 		ret |= io_run_task_work() > 0;
3070 	return ret;
3071 }
3072 
3073 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3074 {
3075 	if (tracked)
3076 		return atomic_read(&tctx->inflight_tracked);
3077 	return percpu_counter_sum(&tctx->inflight);
3078 }
3079 
3080 /*
3081  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3082  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3083  */
3084 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3085 {
3086 	struct io_uring_task *tctx = current->io_uring;
3087 	struct io_ring_ctx *ctx;
3088 	s64 inflight;
3089 	DEFINE_WAIT(wait);
3090 
3091 	WARN_ON_ONCE(sqd && sqd->thread != current);
3092 
3093 	if (!current->io_uring)
3094 		return;
3095 	if (tctx->io_wq)
3096 		io_wq_exit_start(tctx->io_wq);
3097 
3098 	atomic_inc(&tctx->in_idle);
3099 	do {
3100 		bool loop = false;
3101 
3102 		io_uring_drop_tctx_refs(current);
3103 		/* read completions before cancelations */
3104 		inflight = tctx_inflight(tctx, !cancel_all);
3105 		if (!inflight)
3106 			break;
3107 
3108 		if (!sqd) {
3109 			struct io_tctx_node *node;
3110 			unsigned long index;
3111 
3112 			xa_for_each(&tctx->xa, index, node) {
3113 				/* sqpoll task will cancel all its requests */
3114 				if (node->ctx->sq_data)
3115 					continue;
3116 				loop |= io_uring_try_cancel_requests(node->ctx,
3117 							current, cancel_all);
3118 			}
3119 		} else {
3120 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3121 				loop |= io_uring_try_cancel_requests(ctx,
3122 								     current,
3123 								     cancel_all);
3124 		}
3125 
3126 		if (loop) {
3127 			cond_resched();
3128 			continue;
3129 		}
3130 
3131 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3132 		io_run_task_work();
3133 		io_uring_drop_tctx_refs(current);
3134 
3135 		/*
3136 		 * If we've seen completions, retry without waiting. This
3137 		 * avoids a race where a completion comes in before we did
3138 		 * prepare_to_wait().
3139 		 */
3140 		if (inflight == tctx_inflight(tctx, !cancel_all))
3141 			schedule();
3142 		finish_wait(&tctx->wait, &wait);
3143 	} while (1);
3144 
3145 	io_uring_clean_tctx(tctx);
3146 	if (cancel_all) {
3147 		/*
3148 		 * We shouldn't run task_works after cancel, so just leave
3149 		 * ->in_idle set for normal exit.
3150 		 */
3151 		atomic_dec(&tctx->in_idle);
3152 		/* for exec all current's requests should be gone, kill tctx */
3153 		__io_uring_free(current);
3154 	}
3155 }
3156 
3157 void __io_uring_cancel(bool cancel_all)
3158 {
3159 	io_uring_cancel_generic(cancel_all, NULL);
3160 }
3161 
3162 static void *io_uring_validate_mmap_request(struct file *file,
3163 					    loff_t pgoff, size_t sz)
3164 {
3165 	struct io_ring_ctx *ctx = file->private_data;
3166 	loff_t offset = pgoff << PAGE_SHIFT;
3167 	struct page *page;
3168 	void *ptr;
3169 
3170 	switch (offset) {
3171 	case IORING_OFF_SQ_RING:
3172 	case IORING_OFF_CQ_RING:
3173 		ptr = ctx->rings;
3174 		break;
3175 	case IORING_OFF_SQES:
3176 		ptr = ctx->sq_sqes;
3177 		break;
3178 	default:
3179 		return ERR_PTR(-EINVAL);
3180 	}
3181 
3182 	page = virt_to_head_page(ptr);
3183 	if (sz > page_size(page))
3184 		return ERR_PTR(-EINVAL);
3185 
3186 	return ptr;
3187 }
3188 
3189 #ifdef CONFIG_MMU
3190 
3191 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3192 {
3193 	size_t sz = vma->vm_end - vma->vm_start;
3194 	unsigned long pfn;
3195 	void *ptr;
3196 
3197 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3198 	if (IS_ERR(ptr))
3199 		return PTR_ERR(ptr);
3200 
3201 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3202 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3203 }
3204 
3205 #else /* !CONFIG_MMU */
3206 
3207 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3208 {
3209 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
3210 }
3211 
3212 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3213 {
3214 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3215 }
3216 
3217 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3218 	unsigned long addr, unsigned long len,
3219 	unsigned long pgoff, unsigned long flags)
3220 {
3221 	void *ptr;
3222 
3223 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3224 	if (IS_ERR(ptr))
3225 		return PTR_ERR(ptr);
3226 
3227 	return (unsigned long) ptr;
3228 }
3229 
3230 #endif /* !CONFIG_MMU */
3231 
3232 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3233 {
3234 	if (flags & IORING_ENTER_EXT_ARG) {
3235 		struct io_uring_getevents_arg arg;
3236 
3237 		if (argsz != sizeof(arg))
3238 			return -EINVAL;
3239 		if (copy_from_user(&arg, argp, sizeof(arg)))
3240 			return -EFAULT;
3241 	}
3242 	return 0;
3243 }
3244 
3245 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3246 			  struct __kernel_timespec __user **ts,
3247 			  const sigset_t __user **sig)
3248 {
3249 	struct io_uring_getevents_arg arg;
3250 
3251 	/*
3252 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3253 	 * is just a pointer to the sigset_t.
3254 	 */
3255 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3256 		*sig = (const sigset_t __user *) argp;
3257 		*ts = NULL;
3258 		return 0;
3259 	}
3260 
3261 	/*
3262 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3263 	 * timespec and sigset_t pointers if good.
3264 	 */
3265 	if (*argsz != sizeof(arg))
3266 		return -EINVAL;
3267 	if (copy_from_user(&arg, argp, sizeof(arg)))
3268 		return -EFAULT;
3269 	if (arg.pad)
3270 		return -EINVAL;
3271 	*sig = u64_to_user_ptr(arg.sigmask);
3272 	*argsz = arg.sigmask_sz;
3273 	*ts = u64_to_user_ptr(arg.ts);
3274 	return 0;
3275 }
3276 
3277 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3278 		u32, min_complete, u32, flags, const void __user *, argp,
3279 		size_t, argsz)
3280 {
3281 	struct io_ring_ctx *ctx;
3282 	struct fd f;
3283 	long ret;
3284 
3285 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3286 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3287 			       IORING_ENTER_REGISTERED_RING)))
3288 		return -EINVAL;
3289 
3290 	/*
3291 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3292 	 * need only dereference our task private array to find it.
3293 	 */
3294 	if (flags & IORING_ENTER_REGISTERED_RING) {
3295 		struct io_uring_task *tctx = current->io_uring;
3296 
3297 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3298 			return -EINVAL;
3299 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3300 		f.file = tctx->registered_rings[fd];
3301 		f.flags = 0;
3302 		if (unlikely(!f.file))
3303 			return -EBADF;
3304 	} else {
3305 		f = fdget(fd);
3306 		if (unlikely(!f.file))
3307 			return -EBADF;
3308 		ret = -EOPNOTSUPP;
3309 		if (unlikely(!io_is_uring_fops(f.file)))
3310 			goto out;
3311 	}
3312 
3313 	ctx = f.file->private_data;
3314 	ret = -EBADFD;
3315 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3316 		goto out;
3317 
3318 	/*
3319 	 * For SQ polling, the thread will do all submissions and completions.
3320 	 * Just return the requested submit count, and wake the thread if
3321 	 * we were asked to.
3322 	 */
3323 	ret = 0;
3324 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3325 		io_cqring_overflow_flush(ctx);
3326 
3327 		if (unlikely(ctx->sq_data->thread == NULL)) {
3328 			ret = -EOWNERDEAD;
3329 			goto out;
3330 		}
3331 		if (flags & IORING_ENTER_SQ_WAKEUP)
3332 			wake_up(&ctx->sq_data->wait);
3333 		if (flags & IORING_ENTER_SQ_WAIT) {
3334 			ret = io_sqpoll_wait_sq(ctx);
3335 			if (ret)
3336 				goto out;
3337 		}
3338 		ret = to_submit;
3339 	} else if (to_submit) {
3340 		ret = io_uring_add_tctx_node(ctx);
3341 		if (unlikely(ret))
3342 			goto out;
3343 
3344 		mutex_lock(&ctx->uring_lock);
3345 		ret = io_submit_sqes(ctx, to_submit);
3346 		if (ret != to_submit) {
3347 			mutex_unlock(&ctx->uring_lock);
3348 			goto out;
3349 		}
3350 		if (flags & IORING_ENTER_GETEVENTS) {
3351 			if (ctx->syscall_iopoll)
3352 				goto iopoll_locked;
3353 			/*
3354 			 * Ignore errors, we'll soon call io_cqring_wait() and
3355 			 * it should handle ownership problems if any.
3356 			 */
3357 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3358 				(void)io_run_local_work_locked(ctx);
3359 		}
3360 		mutex_unlock(&ctx->uring_lock);
3361 	}
3362 
3363 	if (flags & IORING_ENTER_GETEVENTS) {
3364 		int ret2;
3365 
3366 		if (ctx->syscall_iopoll) {
3367 			/*
3368 			 * We disallow the app entering submit/complete with
3369 			 * polling, but we still need to lock the ring to
3370 			 * prevent racing with polled issue that got punted to
3371 			 * a workqueue.
3372 			 */
3373 			mutex_lock(&ctx->uring_lock);
3374 iopoll_locked:
3375 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3376 			if (likely(!ret2)) {
3377 				min_complete = min(min_complete,
3378 						   ctx->cq_entries);
3379 				ret2 = io_iopoll_check(ctx, min_complete);
3380 			}
3381 			mutex_unlock(&ctx->uring_lock);
3382 		} else {
3383 			const sigset_t __user *sig;
3384 			struct __kernel_timespec __user *ts;
3385 
3386 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3387 			if (likely(!ret2)) {
3388 				min_complete = min(min_complete,
3389 						   ctx->cq_entries);
3390 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3391 						      argsz, ts);
3392 			}
3393 		}
3394 
3395 		if (!ret) {
3396 			ret = ret2;
3397 
3398 			/*
3399 			 * EBADR indicates that one or more CQE were dropped.
3400 			 * Once the user has been informed we can clear the bit
3401 			 * as they are obviously ok with those drops.
3402 			 */
3403 			if (unlikely(ret2 == -EBADR))
3404 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3405 					  &ctx->check_cq);
3406 		}
3407 	}
3408 out:
3409 	fdput(f);
3410 	return ret;
3411 }
3412 
3413 static const struct file_operations io_uring_fops = {
3414 	.release	= io_uring_release,
3415 	.mmap		= io_uring_mmap,
3416 #ifndef CONFIG_MMU
3417 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3418 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3419 #endif
3420 	.poll		= io_uring_poll,
3421 #ifdef CONFIG_PROC_FS
3422 	.show_fdinfo	= io_uring_show_fdinfo,
3423 #endif
3424 };
3425 
3426 bool io_is_uring_fops(struct file *file)
3427 {
3428 	return file->f_op == &io_uring_fops;
3429 }
3430 
3431 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3432 					 struct io_uring_params *p)
3433 {
3434 	struct io_rings *rings;
3435 	size_t size, sq_array_offset;
3436 
3437 	/* make sure these are sane, as we already accounted them */
3438 	ctx->sq_entries = p->sq_entries;
3439 	ctx->cq_entries = p->cq_entries;
3440 
3441 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3442 	if (size == SIZE_MAX)
3443 		return -EOVERFLOW;
3444 
3445 	rings = io_mem_alloc(size);
3446 	if (!rings)
3447 		return -ENOMEM;
3448 
3449 	ctx->rings = rings;
3450 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3451 	rings->sq_ring_mask = p->sq_entries - 1;
3452 	rings->cq_ring_mask = p->cq_entries - 1;
3453 	rings->sq_ring_entries = p->sq_entries;
3454 	rings->cq_ring_entries = p->cq_entries;
3455 
3456 	if (p->flags & IORING_SETUP_SQE128)
3457 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3458 	else
3459 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3460 	if (size == SIZE_MAX) {
3461 		io_mem_free(ctx->rings);
3462 		ctx->rings = NULL;
3463 		return -EOVERFLOW;
3464 	}
3465 
3466 	ctx->sq_sqes = io_mem_alloc(size);
3467 	if (!ctx->sq_sqes) {
3468 		io_mem_free(ctx->rings);
3469 		ctx->rings = NULL;
3470 		return -ENOMEM;
3471 	}
3472 
3473 	return 0;
3474 }
3475 
3476 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3477 {
3478 	int ret, fd;
3479 
3480 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3481 	if (fd < 0)
3482 		return fd;
3483 
3484 	ret = __io_uring_add_tctx_node(ctx);
3485 	if (ret) {
3486 		put_unused_fd(fd);
3487 		return ret;
3488 	}
3489 	fd_install(fd, file);
3490 	return fd;
3491 }
3492 
3493 /*
3494  * Allocate an anonymous fd, this is what constitutes the application
3495  * visible backing of an io_uring instance. The application mmaps this
3496  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3497  * we have to tie this fd to a socket for file garbage collection purposes.
3498  */
3499 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3500 {
3501 	struct file *file;
3502 #if defined(CONFIG_UNIX)
3503 	int ret;
3504 
3505 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3506 				&ctx->ring_sock);
3507 	if (ret)
3508 		return ERR_PTR(ret);
3509 #endif
3510 
3511 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3512 					 O_RDWR | O_CLOEXEC, NULL);
3513 #if defined(CONFIG_UNIX)
3514 	if (IS_ERR(file)) {
3515 		sock_release(ctx->ring_sock);
3516 		ctx->ring_sock = NULL;
3517 	} else {
3518 		ctx->ring_sock->file = file;
3519 	}
3520 #endif
3521 	return file;
3522 }
3523 
3524 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3525 				  struct io_uring_params __user *params)
3526 {
3527 	struct io_ring_ctx *ctx;
3528 	struct file *file;
3529 	int ret;
3530 
3531 	if (!entries)
3532 		return -EINVAL;
3533 	if (entries > IORING_MAX_ENTRIES) {
3534 		if (!(p->flags & IORING_SETUP_CLAMP))
3535 			return -EINVAL;
3536 		entries = IORING_MAX_ENTRIES;
3537 	}
3538 
3539 	/*
3540 	 * Use twice as many entries for the CQ ring. It's possible for the
3541 	 * application to drive a higher depth than the size of the SQ ring,
3542 	 * since the sqes are only used at submission time. This allows for
3543 	 * some flexibility in overcommitting a bit. If the application has
3544 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3545 	 * of CQ ring entries manually.
3546 	 */
3547 	p->sq_entries = roundup_pow_of_two(entries);
3548 	if (p->flags & IORING_SETUP_CQSIZE) {
3549 		/*
3550 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3551 		 * to a power-of-two, if it isn't already. We do NOT impose
3552 		 * any cq vs sq ring sizing.
3553 		 */
3554 		if (!p->cq_entries)
3555 			return -EINVAL;
3556 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3557 			if (!(p->flags & IORING_SETUP_CLAMP))
3558 				return -EINVAL;
3559 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3560 		}
3561 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3562 		if (p->cq_entries < p->sq_entries)
3563 			return -EINVAL;
3564 	} else {
3565 		p->cq_entries = 2 * p->sq_entries;
3566 	}
3567 
3568 	ctx = io_ring_ctx_alloc(p);
3569 	if (!ctx)
3570 		return -ENOMEM;
3571 
3572 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3573 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3574 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3575 		ctx->task_complete = true;
3576 
3577 	/*
3578 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3579 	 * space applications don't need to do io completion events
3580 	 * polling again, they can rely on io_sq_thread to do polling
3581 	 * work, which can reduce cpu usage and uring_lock contention.
3582 	 */
3583 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3584 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3585 		ctx->syscall_iopoll = 1;
3586 
3587 	ctx->compat = in_compat_syscall();
3588 	if (!capable(CAP_IPC_LOCK))
3589 		ctx->user = get_uid(current_user());
3590 
3591 	/*
3592 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3593 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3594 	 */
3595 	ret = -EINVAL;
3596 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3597 		/* IPI related flags don't make sense with SQPOLL */
3598 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3599 				  IORING_SETUP_TASKRUN_FLAG |
3600 				  IORING_SETUP_DEFER_TASKRUN))
3601 			goto err;
3602 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3603 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3604 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3605 	} else {
3606 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3607 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3608 			goto err;
3609 		ctx->notify_method = TWA_SIGNAL;
3610 	}
3611 
3612 	/*
3613 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3614 	 * submission task. This implies that there is only one submitter, so enforce
3615 	 * that.
3616 	 */
3617 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3618 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3619 		goto err;
3620 	}
3621 
3622 	/*
3623 	 * This is just grabbed for accounting purposes. When a process exits,
3624 	 * the mm is exited and dropped before the files, hence we need to hang
3625 	 * on to this mm purely for the purposes of being able to unaccount
3626 	 * memory (locked/pinned vm). It's not used for anything else.
3627 	 */
3628 	mmgrab(current->mm);
3629 	ctx->mm_account = current->mm;
3630 
3631 	ret = io_allocate_scq_urings(ctx, p);
3632 	if (ret)
3633 		goto err;
3634 
3635 	ret = io_sq_offload_create(ctx, p);
3636 	if (ret)
3637 		goto err;
3638 	/* always set a rsrc node */
3639 	ret = io_rsrc_node_switch_start(ctx);
3640 	if (ret)
3641 		goto err;
3642 	io_rsrc_node_switch(ctx, NULL);
3643 
3644 	memset(&p->sq_off, 0, sizeof(p->sq_off));
3645 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3646 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3647 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3648 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3649 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3650 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3651 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3652 
3653 	memset(&p->cq_off, 0, sizeof(p->cq_off));
3654 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3655 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3656 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3657 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3658 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3659 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3660 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3661 
3662 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3663 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3664 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3665 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3666 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3667 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3668 			IORING_FEAT_LINKED_FILE;
3669 
3670 	if (copy_to_user(params, p, sizeof(*p))) {
3671 		ret = -EFAULT;
3672 		goto err;
3673 	}
3674 
3675 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3676 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3677 		ctx->submitter_task = get_task_struct(current);
3678 
3679 	file = io_uring_get_file(ctx);
3680 	if (IS_ERR(file)) {
3681 		ret = PTR_ERR(file);
3682 		goto err;
3683 	}
3684 
3685 	/*
3686 	 * Install ring fd as the very last thing, so we don't risk someone
3687 	 * having closed it before we finish setup
3688 	 */
3689 	ret = io_uring_install_fd(ctx, file);
3690 	if (ret < 0) {
3691 		/* fput will clean it up */
3692 		fput(file);
3693 		return ret;
3694 	}
3695 
3696 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3697 	return ret;
3698 err:
3699 	io_ring_ctx_wait_and_kill(ctx);
3700 	return ret;
3701 }
3702 
3703 /*
3704  * Sets up an aio uring context, and returns the fd. Applications asks for a
3705  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3706  * params structure passed in.
3707  */
3708 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3709 {
3710 	struct io_uring_params p;
3711 	int i;
3712 
3713 	if (copy_from_user(&p, params, sizeof(p)))
3714 		return -EFAULT;
3715 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3716 		if (p.resv[i])
3717 			return -EINVAL;
3718 	}
3719 
3720 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3721 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3722 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3723 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3724 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3725 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3726 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3727 		return -EINVAL;
3728 
3729 	return io_uring_create(entries, &p, params);
3730 }
3731 
3732 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3733 		struct io_uring_params __user *, params)
3734 {
3735 	return io_uring_setup(entries, params);
3736 }
3737 
3738 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3739 			   unsigned nr_args)
3740 {
3741 	struct io_uring_probe *p;
3742 	size_t size;
3743 	int i, ret;
3744 
3745 	size = struct_size(p, ops, nr_args);
3746 	if (size == SIZE_MAX)
3747 		return -EOVERFLOW;
3748 	p = kzalloc(size, GFP_KERNEL);
3749 	if (!p)
3750 		return -ENOMEM;
3751 
3752 	ret = -EFAULT;
3753 	if (copy_from_user(p, arg, size))
3754 		goto out;
3755 	ret = -EINVAL;
3756 	if (memchr_inv(p, 0, size))
3757 		goto out;
3758 
3759 	p->last_op = IORING_OP_LAST - 1;
3760 	if (nr_args > IORING_OP_LAST)
3761 		nr_args = IORING_OP_LAST;
3762 
3763 	for (i = 0; i < nr_args; i++) {
3764 		p->ops[i].op = i;
3765 		if (!io_op_defs[i].not_supported)
3766 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
3767 	}
3768 	p->ops_len = i;
3769 
3770 	ret = 0;
3771 	if (copy_to_user(arg, p, size))
3772 		ret = -EFAULT;
3773 out:
3774 	kfree(p);
3775 	return ret;
3776 }
3777 
3778 static int io_register_personality(struct io_ring_ctx *ctx)
3779 {
3780 	const struct cred *creds;
3781 	u32 id;
3782 	int ret;
3783 
3784 	creds = get_current_cred();
3785 
3786 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3787 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3788 	if (ret < 0) {
3789 		put_cred(creds);
3790 		return ret;
3791 	}
3792 	return id;
3793 }
3794 
3795 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3796 					   void __user *arg, unsigned int nr_args)
3797 {
3798 	struct io_uring_restriction *res;
3799 	size_t size;
3800 	int i, ret;
3801 
3802 	/* Restrictions allowed only if rings started disabled */
3803 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3804 		return -EBADFD;
3805 
3806 	/* We allow only a single restrictions registration */
3807 	if (ctx->restrictions.registered)
3808 		return -EBUSY;
3809 
3810 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3811 		return -EINVAL;
3812 
3813 	size = array_size(nr_args, sizeof(*res));
3814 	if (size == SIZE_MAX)
3815 		return -EOVERFLOW;
3816 
3817 	res = memdup_user(arg, size);
3818 	if (IS_ERR(res))
3819 		return PTR_ERR(res);
3820 
3821 	ret = 0;
3822 
3823 	for (i = 0; i < nr_args; i++) {
3824 		switch (res[i].opcode) {
3825 		case IORING_RESTRICTION_REGISTER_OP:
3826 			if (res[i].register_op >= IORING_REGISTER_LAST) {
3827 				ret = -EINVAL;
3828 				goto out;
3829 			}
3830 
3831 			__set_bit(res[i].register_op,
3832 				  ctx->restrictions.register_op);
3833 			break;
3834 		case IORING_RESTRICTION_SQE_OP:
3835 			if (res[i].sqe_op >= IORING_OP_LAST) {
3836 				ret = -EINVAL;
3837 				goto out;
3838 			}
3839 
3840 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3841 			break;
3842 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3843 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3844 			break;
3845 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3846 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3847 			break;
3848 		default:
3849 			ret = -EINVAL;
3850 			goto out;
3851 		}
3852 	}
3853 
3854 out:
3855 	/* Reset all restrictions if an error happened */
3856 	if (ret != 0)
3857 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3858 	else
3859 		ctx->restrictions.registered = true;
3860 
3861 	kfree(res);
3862 	return ret;
3863 }
3864 
3865 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3866 {
3867 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3868 		return -EBADFD;
3869 
3870 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task)
3871 		ctx->submitter_task = get_task_struct(current);
3872 
3873 	if (ctx->restrictions.registered)
3874 		ctx->restricted = 1;
3875 
3876 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
3877 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3878 		wake_up(&ctx->sq_data->wait);
3879 	return 0;
3880 }
3881 
3882 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3883 				       void __user *arg, unsigned len)
3884 {
3885 	struct io_uring_task *tctx = current->io_uring;
3886 	cpumask_var_t new_mask;
3887 	int ret;
3888 
3889 	if (!tctx || !tctx->io_wq)
3890 		return -EINVAL;
3891 
3892 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3893 		return -ENOMEM;
3894 
3895 	cpumask_clear(new_mask);
3896 	if (len > cpumask_size())
3897 		len = cpumask_size();
3898 
3899 	if (in_compat_syscall()) {
3900 		ret = compat_get_bitmap(cpumask_bits(new_mask),
3901 					(const compat_ulong_t __user *)arg,
3902 					len * 8 /* CHAR_BIT */);
3903 	} else {
3904 		ret = copy_from_user(new_mask, arg, len);
3905 	}
3906 
3907 	if (ret) {
3908 		free_cpumask_var(new_mask);
3909 		return -EFAULT;
3910 	}
3911 
3912 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3913 	free_cpumask_var(new_mask);
3914 	return ret;
3915 }
3916 
3917 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3918 {
3919 	struct io_uring_task *tctx = current->io_uring;
3920 
3921 	if (!tctx || !tctx->io_wq)
3922 		return -EINVAL;
3923 
3924 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
3925 }
3926 
3927 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3928 					       void __user *arg)
3929 	__must_hold(&ctx->uring_lock)
3930 {
3931 	struct io_tctx_node *node;
3932 	struct io_uring_task *tctx = NULL;
3933 	struct io_sq_data *sqd = NULL;
3934 	__u32 new_count[2];
3935 	int i, ret;
3936 
3937 	if (copy_from_user(new_count, arg, sizeof(new_count)))
3938 		return -EFAULT;
3939 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3940 		if (new_count[i] > INT_MAX)
3941 			return -EINVAL;
3942 
3943 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3944 		sqd = ctx->sq_data;
3945 		if (sqd) {
3946 			/*
3947 			 * Observe the correct sqd->lock -> ctx->uring_lock
3948 			 * ordering. Fine to drop uring_lock here, we hold
3949 			 * a ref to the ctx.
3950 			 */
3951 			refcount_inc(&sqd->refs);
3952 			mutex_unlock(&ctx->uring_lock);
3953 			mutex_lock(&sqd->lock);
3954 			mutex_lock(&ctx->uring_lock);
3955 			if (sqd->thread)
3956 				tctx = sqd->thread->io_uring;
3957 		}
3958 	} else {
3959 		tctx = current->io_uring;
3960 	}
3961 
3962 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3963 
3964 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
3965 		if (new_count[i])
3966 			ctx->iowq_limits[i] = new_count[i];
3967 	ctx->iowq_limits_set = true;
3968 
3969 	if (tctx && tctx->io_wq) {
3970 		ret = io_wq_max_workers(tctx->io_wq, new_count);
3971 		if (ret)
3972 			goto err;
3973 	} else {
3974 		memset(new_count, 0, sizeof(new_count));
3975 	}
3976 
3977 	if (sqd) {
3978 		mutex_unlock(&sqd->lock);
3979 		io_put_sq_data(sqd);
3980 	}
3981 
3982 	if (copy_to_user(arg, new_count, sizeof(new_count)))
3983 		return -EFAULT;
3984 
3985 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
3986 	if (sqd)
3987 		return 0;
3988 
3989 	/* now propagate the restriction to all registered users */
3990 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3991 		struct io_uring_task *tctx = node->task->io_uring;
3992 
3993 		if (WARN_ON_ONCE(!tctx->io_wq))
3994 			continue;
3995 
3996 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
3997 			new_count[i] = ctx->iowq_limits[i];
3998 		/* ignore errors, it always returns zero anyway */
3999 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4000 	}
4001 	return 0;
4002 err:
4003 	if (sqd) {
4004 		mutex_unlock(&sqd->lock);
4005 		io_put_sq_data(sqd);
4006 	}
4007 	return ret;
4008 }
4009 
4010 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4011 			       void __user *arg, unsigned nr_args)
4012 	__releases(ctx->uring_lock)
4013 	__acquires(ctx->uring_lock)
4014 {
4015 	int ret;
4016 
4017 	/*
4018 	 * We don't quiesce the refs for register anymore and so it can't be
4019 	 * dying as we're holding a file ref here.
4020 	 */
4021 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4022 		return -ENXIO;
4023 
4024 	if (ctx->submitter_task && ctx->submitter_task != current)
4025 		return -EEXIST;
4026 
4027 	if (ctx->restricted) {
4028 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4029 		if (!test_bit(opcode, ctx->restrictions.register_op))
4030 			return -EACCES;
4031 	}
4032 
4033 	switch (opcode) {
4034 	case IORING_REGISTER_BUFFERS:
4035 		ret = -EFAULT;
4036 		if (!arg)
4037 			break;
4038 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4039 		break;
4040 	case IORING_UNREGISTER_BUFFERS:
4041 		ret = -EINVAL;
4042 		if (arg || nr_args)
4043 			break;
4044 		ret = io_sqe_buffers_unregister(ctx);
4045 		break;
4046 	case IORING_REGISTER_FILES:
4047 		ret = -EFAULT;
4048 		if (!arg)
4049 			break;
4050 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4051 		break;
4052 	case IORING_UNREGISTER_FILES:
4053 		ret = -EINVAL;
4054 		if (arg || nr_args)
4055 			break;
4056 		ret = io_sqe_files_unregister(ctx);
4057 		break;
4058 	case IORING_REGISTER_FILES_UPDATE:
4059 		ret = io_register_files_update(ctx, arg, nr_args);
4060 		break;
4061 	case IORING_REGISTER_EVENTFD:
4062 		ret = -EINVAL;
4063 		if (nr_args != 1)
4064 			break;
4065 		ret = io_eventfd_register(ctx, arg, 0);
4066 		break;
4067 	case IORING_REGISTER_EVENTFD_ASYNC:
4068 		ret = -EINVAL;
4069 		if (nr_args != 1)
4070 			break;
4071 		ret = io_eventfd_register(ctx, arg, 1);
4072 		break;
4073 	case IORING_UNREGISTER_EVENTFD:
4074 		ret = -EINVAL;
4075 		if (arg || nr_args)
4076 			break;
4077 		ret = io_eventfd_unregister(ctx);
4078 		break;
4079 	case IORING_REGISTER_PROBE:
4080 		ret = -EINVAL;
4081 		if (!arg || nr_args > 256)
4082 			break;
4083 		ret = io_probe(ctx, arg, nr_args);
4084 		break;
4085 	case IORING_REGISTER_PERSONALITY:
4086 		ret = -EINVAL;
4087 		if (arg || nr_args)
4088 			break;
4089 		ret = io_register_personality(ctx);
4090 		break;
4091 	case IORING_UNREGISTER_PERSONALITY:
4092 		ret = -EINVAL;
4093 		if (arg)
4094 			break;
4095 		ret = io_unregister_personality(ctx, nr_args);
4096 		break;
4097 	case IORING_REGISTER_ENABLE_RINGS:
4098 		ret = -EINVAL;
4099 		if (arg || nr_args)
4100 			break;
4101 		ret = io_register_enable_rings(ctx);
4102 		break;
4103 	case IORING_REGISTER_RESTRICTIONS:
4104 		ret = io_register_restrictions(ctx, arg, nr_args);
4105 		break;
4106 	case IORING_REGISTER_FILES2:
4107 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4108 		break;
4109 	case IORING_REGISTER_FILES_UPDATE2:
4110 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4111 					      IORING_RSRC_FILE);
4112 		break;
4113 	case IORING_REGISTER_BUFFERS2:
4114 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4115 		break;
4116 	case IORING_REGISTER_BUFFERS_UPDATE:
4117 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4118 					      IORING_RSRC_BUFFER);
4119 		break;
4120 	case IORING_REGISTER_IOWQ_AFF:
4121 		ret = -EINVAL;
4122 		if (!arg || !nr_args)
4123 			break;
4124 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4125 		break;
4126 	case IORING_UNREGISTER_IOWQ_AFF:
4127 		ret = -EINVAL;
4128 		if (arg || nr_args)
4129 			break;
4130 		ret = io_unregister_iowq_aff(ctx);
4131 		break;
4132 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4133 		ret = -EINVAL;
4134 		if (!arg || nr_args != 2)
4135 			break;
4136 		ret = io_register_iowq_max_workers(ctx, arg);
4137 		break;
4138 	case IORING_REGISTER_RING_FDS:
4139 		ret = io_ringfd_register(ctx, arg, nr_args);
4140 		break;
4141 	case IORING_UNREGISTER_RING_FDS:
4142 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4143 		break;
4144 	case IORING_REGISTER_PBUF_RING:
4145 		ret = -EINVAL;
4146 		if (!arg || nr_args != 1)
4147 			break;
4148 		ret = io_register_pbuf_ring(ctx, arg);
4149 		break;
4150 	case IORING_UNREGISTER_PBUF_RING:
4151 		ret = -EINVAL;
4152 		if (!arg || nr_args != 1)
4153 			break;
4154 		ret = io_unregister_pbuf_ring(ctx, arg);
4155 		break;
4156 	case IORING_REGISTER_SYNC_CANCEL:
4157 		ret = -EINVAL;
4158 		if (!arg || nr_args != 1)
4159 			break;
4160 		ret = io_sync_cancel(ctx, arg);
4161 		break;
4162 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4163 		ret = -EINVAL;
4164 		if (!arg || nr_args)
4165 			break;
4166 		ret = io_register_file_alloc_range(ctx, arg);
4167 		break;
4168 	default:
4169 		ret = -EINVAL;
4170 		break;
4171 	}
4172 
4173 	return ret;
4174 }
4175 
4176 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4177 		void __user *, arg, unsigned int, nr_args)
4178 {
4179 	struct io_ring_ctx *ctx;
4180 	long ret = -EBADF;
4181 	struct fd f;
4182 
4183 	if (opcode >= IORING_REGISTER_LAST)
4184 		return -EINVAL;
4185 
4186 	f = fdget(fd);
4187 	if (!f.file)
4188 		return -EBADF;
4189 
4190 	ret = -EOPNOTSUPP;
4191 	if (!io_is_uring_fops(f.file))
4192 		goto out_fput;
4193 
4194 	ctx = f.file->private_data;
4195 
4196 	mutex_lock(&ctx->uring_lock);
4197 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4198 	mutex_unlock(&ctx->uring_lock);
4199 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4200 out_fput:
4201 	fdput(f);
4202 	return ret;
4203 }
4204 
4205 static int __init io_uring_init(void)
4206 {
4207 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4208 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4209 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4210 } while (0)
4211 
4212 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4213 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4214 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4215 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4216 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4217 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4218 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4219 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4220 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4221 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4222 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4223 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4224 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4225 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4226 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4227 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4228 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4229 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4230 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4231 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4232 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4233 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4234 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4235 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4236 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4237 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4238 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4239 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4240 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4241 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4242 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4243 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4244 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4245 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4246 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4247 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4248 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4249 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4250 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4251 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4252 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4253 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4254 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4255 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4256 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4257 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4258 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4259 
4260 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4261 		     sizeof(struct io_uring_rsrc_update));
4262 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4263 		     sizeof(struct io_uring_rsrc_update2));
4264 
4265 	/* ->buf_index is u16 */
4266 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4267 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4268 		     offsetof(struct io_uring_buf_ring, tail));
4269 
4270 	/* should fit into one byte */
4271 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4272 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4273 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4274 
4275 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4276 
4277 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4278 
4279 	io_uring_optable_init();
4280 
4281 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4282 				SLAB_ACCOUNT);
4283 	return 0;
4284 };
4285 __initcall(io_uring_init);
4286