1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 101 #include "timeout.h" 102 #include "poll.h" 103 #include "rw.h" 104 #include "alloc_cache.h" 105 #include "eventfd.h" 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 #define IO_LOCAL_TW_DEFAULT_MAX 20 125 126 struct io_defer_entry { 127 struct list_head list; 128 struct io_kiocb *req; 129 u32 seq; 130 }; 131 132 /* requests with any of those set should undergo io_disarm_next() */ 133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 135 136 /* 137 * No waiters. It's larger than any valid value of the tw counter 138 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 139 */ 140 #define IO_CQ_WAKE_INIT (-1U) 141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct io_uring_task *tctx, 146 bool cancel_all); 147 148 static void io_queue_sqe(struct io_kiocb *req); 149 150 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 151 152 struct kmem_cache *req_cachep; 153 static struct workqueue_struct *iou_wq __ro_after_init; 154 155 static int __read_mostly sysctl_io_uring_disabled; 156 static int __read_mostly sysctl_io_uring_group = -1; 157 158 #ifdef CONFIG_SYSCTL 159 static struct ctl_table kernel_io_uring_disabled_table[] = { 160 { 161 .procname = "io_uring_disabled", 162 .data = &sysctl_io_uring_disabled, 163 .maxlen = sizeof(sysctl_io_uring_disabled), 164 .mode = 0644, 165 .proc_handler = proc_dointvec_minmax, 166 .extra1 = SYSCTL_ZERO, 167 .extra2 = SYSCTL_TWO, 168 }, 169 { 170 .procname = "io_uring_group", 171 .data = &sysctl_io_uring_group, 172 .maxlen = sizeof(gid_t), 173 .mode = 0644, 174 .proc_handler = proc_dointvec, 175 }, 176 }; 177 #endif 178 179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 180 { 181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 182 } 183 184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 185 { 186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 187 } 188 189 static bool io_match_linked(struct io_kiocb *head) 190 { 191 struct io_kiocb *req; 192 193 io_for_each_link(req, head) { 194 if (req->flags & REQ_F_INFLIGHT) 195 return true; 196 } 197 return false; 198 } 199 200 /* 201 * As io_match_task() but protected against racing with linked timeouts. 202 * User must not hold timeout_lock. 203 */ 204 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 205 bool cancel_all) 206 { 207 bool matched; 208 209 if (tctx && head->tctx != tctx) 210 return false; 211 if (cancel_all) 212 return true; 213 214 if (head->flags & REQ_F_LINK_TIMEOUT) { 215 struct io_ring_ctx *ctx = head->ctx; 216 217 /* protect against races with linked timeouts */ 218 raw_spin_lock_irq(&ctx->timeout_lock); 219 matched = io_match_linked(head); 220 raw_spin_unlock_irq(&ctx->timeout_lock); 221 } else { 222 matched = io_match_linked(head); 223 } 224 return matched; 225 } 226 227 static inline void req_fail_link_node(struct io_kiocb *req, int res) 228 { 229 req_set_fail(req); 230 io_req_set_res(req, res, 0); 231 } 232 233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 234 { 235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 236 } 237 238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 239 { 240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 241 242 complete(&ctx->ref_comp); 243 } 244 245 static __cold void io_fallback_req_func(struct work_struct *work) 246 { 247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 248 fallback_work.work); 249 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 250 struct io_kiocb *req, *tmp; 251 struct io_tw_state ts = {}; 252 253 percpu_ref_get(&ctx->refs); 254 mutex_lock(&ctx->uring_lock); 255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 256 req->io_task_work.func(req, &ts); 257 io_submit_flush_completions(ctx); 258 mutex_unlock(&ctx->uring_lock); 259 percpu_ref_put(&ctx->refs); 260 } 261 262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 263 { 264 unsigned int hash_buckets; 265 int i; 266 267 do { 268 hash_buckets = 1U << bits; 269 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 270 GFP_KERNEL_ACCOUNT); 271 if (table->hbs) 272 break; 273 if (bits == 1) 274 return -ENOMEM; 275 bits--; 276 } while (1); 277 278 table->hash_bits = bits; 279 for (i = 0; i < hash_buckets; i++) 280 INIT_HLIST_HEAD(&table->hbs[i].list); 281 return 0; 282 } 283 284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 285 { 286 struct io_ring_ctx *ctx; 287 int hash_bits; 288 bool ret; 289 290 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 291 if (!ctx) 292 return NULL; 293 294 xa_init(&ctx->io_bl_xa); 295 296 /* 297 * Use 5 bits less than the max cq entries, that should give us around 298 * 32 entries per hash list if totally full and uniformly spread, but 299 * don't keep too many buckets to not overconsume memory. 300 */ 301 hash_bits = ilog2(p->cq_entries) - 5; 302 hash_bits = clamp(hash_bits, 1, 8); 303 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 304 goto err; 305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 306 0, GFP_KERNEL)) 307 goto err; 308 309 ctx->flags = p->flags; 310 ctx->hybrid_poll_time = LLONG_MAX; 311 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 312 init_waitqueue_head(&ctx->sqo_sq_wait); 313 INIT_LIST_HEAD(&ctx->sqd_list); 314 INIT_LIST_HEAD(&ctx->cq_overflow_list); 315 INIT_LIST_HEAD(&ctx->io_buffers_cache); 316 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 317 sizeof(struct async_poll)); 318 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 319 sizeof(struct io_async_msghdr)); 320 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 321 sizeof(struct io_async_rw)); 322 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX, 323 sizeof(struct io_uring_cmd_data)); 324 spin_lock_init(&ctx->msg_lock); 325 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 326 sizeof(struct io_kiocb)); 327 ret |= io_futex_cache_init(ctx); 328 if (ret) 329 goto free_ref; 330 init_completion(&ctx->ref_comp); 331 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 332 mutex_init(&ctx->uring_lock); 333 init_waitqueue_head(&ctx->cq_wait); 334 init_waitqueue_head(&ctx->poll_wq); 335 spin_lock_init(&ctx->completion_lock); 336 raw_spin_lock_init(&ctx->timeout_lock); 337 INIT_WQ_LIST(&ctx->iopoll_list); 338 INIT_LIST_HEAD(&ctx->io_buffers_comp); 339 INIT_LIST_HEAD(&ctx->defer_list); 340 INIT_LIST_HEAD(&ctx->timeout_list); 341 INIT_LIST_HEAD(&ctx->ltimeout_list); 342 init_llist_head(&ctx->work_llist); 343 INIT_LIST_HEAD(&ctx->tctx_list); 344 ctx->submit_state.free_list.next = NULL; 345 INIT_HLIST_HEAD(&ctx->waitid_list); 346 #ifdef CONFIG_FUTEX 347 INIT_HLIST_HEAD(&ctx->futex_list); 348 #endif 349 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 350 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 351 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 352 io_napi_init(ctx); 353 mutex_init(&ctx->resize_lock); 354 355 return ctx; 356 357 free_ref: 358 percpu_ref_exit(&ctx->refs); 359 err: 360 io_alloc_cache_free(&ctx->apoll_cache, kfree); 361 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 362 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 363 io_alloc_cache_free(&ctx->uring_cache, kfree); 364 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 365 io_futex_cache_free(ctx); 366 kvfree(ctx->cancel_table.hbs); 367 xa_destroy(&ctx->io_bl_xa); 368 kfree(ctx); 369 return NULL; 370 } 371 372 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 373 { 374 struct io_rings *r = ctx->rings; 375 376 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 377 ctx->cq_extra--; 378 } 379 380 static bool req_need_defer(struct io_kiocb *req, u32 seq) 381 { 382 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 383 struct io_ring_ctx *ctx = req->ctx; 384 385 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 386 } 387 388 return false; 389 } 390 391 static void io_clean_op(struct io_kiocb *req) 392 { 393 if (req->flags & REQ_F_BUFFER_SELECTED) { 394 spin_lock(&req->ctx->completion_lock); 395 io_kbuf_drop(req); 396 spin_unlock(&req->ctx->completion_lock); 397 } 398 399 if (req->flags & REQ_F_NEED_CLEANUP) { 400 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 401 402 if (def->cleanup) 403 def->cleanup(req); 404 } 405 if ((req->flags & REQ_F_POLLED) && req->apoll) { 406 kfree(req->apoll->double_poll); 407 kfree(req->apoll); 408 req->apoll = NULL; 409 } 410 if (req->flags & REQ_F_INFLIGHT) 411 atomic_dec(&req->tctx->inflight_tracked); 412 if (req->flags & REQ_F_CREDS) 413 put_cred(req->creds); 414 if (req->flags & REQ_F_ASYNC_DATA) { 415 kfree(req->async_data); 416 req->async_data = NULL; 417 } 418 req->flags &= ~IO_REQ_CLEAN_FLAGS; 419 } 420 421 static inline void io_req_track_inflight(struct io_kiocb *req) 422 { 423 if (!(req->flags & REQ_F_INFLIGHT)) { 424 req->flags |= REQ_F_INFLIGHT; 425 atomic_inc(&req->tctx->inflight_tracked); 426 } 427 } 428 429 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 430 { 431 if (WARN_ON_ONCE(!req->link)) 432 return NULL; 433 434 req->flags &= ~REQ_F_ARM_LTIMEOUT; 435 req->flags |= REQ_F_LINK_TIMEOUT; 436 437 /* linked timeouts should have two refs once prep'ed */ 438 io_req_set_refcount(req); 439 __io_req_set_refcount(req->link, 2); 440 return req->link; 441 } 442 443 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 444 { 445 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 446 return NULL; 447 return __io_prep_linked_timeout(req); 448 } 449 450 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 451 { 452 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 453 } 454 455 static inline void io_arm_ltimeout(struct io_kiocb *req) 456 { 457 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 458 __io_arm_ltimeout(req); 459 } 460 461 static void io_prep_async_work(struct io_kiocb *req) 462 { 463 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 464 struct io_ring_ctx *ctx = req->ctx; 465 466 if (!(req->flags & REQ_F_CREDS)) { 467 req->flags |= REQ_F_CREDS; 468 req->creds = get_current_cred(); 469 } 470 471 req->work.list.next = NULL; 472 atomic_set(&req->work.flags, 0); 473 if (req->flags & REQ_F_FORCE_ASYNC) 474 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 475 476 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 477 req->flags |= io_file_get_flags(req->file); 478 479 if (req->file && (req->flags & REQ_F_ISREG)) { 480 bool should_hash = def->hash_reg_file; 481 482 /* don't serialize this request if the fs doesn't need it */ 483 if (should_hash && (req->file->f_flags & O_DIRECT) && 484 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 485 should_hash = false; 486 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 487 io_wq_hash_work(&req->work, file_inode(req->file)); 488 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 489 if (def->unbound_nonreg_file) 490 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 491 } 492 } 493 494 static void io_prep_async_link(struct io_kiocb *req) 495 { 496 struct io_kiocb *cur; 497 498 if (req->flags & REQ_F_LINK_TIMEOUT) { 499 struct io_ring_ctx *ctx = req->ctx; 500 501 raw_spin_lock_irq(&ctx->timeout_lock); 502 io_for_each_link(cur, req) 503 io_prep_async_work(cur); 504 raw_spin_unlock_irq(&ctx->timeout_lock); 505 } else { 506 io_for_each_link(cur, req) 507 io_prep_async_work(cur); 508 } 509 } 510 511 static void io_queue_iowq(struct io_kiocb *req) 512 { 513 struct io_kiocb *link = io_prep_linked_timeout(req); 514 struct io_uring_task *tctx = req->tctx; 515 516 BUG_ON(!tctx); 517 518 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 519 io_req_task_queue_fail(req, -ECANCELED); 520 return; 521 } 522 523 /* init ->work of the whole link before punting */ 524 io_prep_async_link(req); 525 526 /* 527 * Not expected to happen, but if we do have a bug where this _can_ 528 * happen, catch it here and ensure the request is marked as 529 * canceled. That will make io-wq go through the usual work cancel 530 * procedure rather than attempt to run this request (or create a new 531 * worker for it). 532 */ 533 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 534 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 535 536 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 537 io_wq_enqueue(tctx->io_wq, &req->work); 538 if (link) 539 io_queue_linked_timeout(link); 540 } 541 542 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts) 543 { 544 io_queue_iowq(req); 545 } 546 547 void io_req_queue_iowq(struct io_kiocb *req) 548 { 549 req->io_task_work.func = io_req_queue_iowq_tw; 550 io_req_task_work_add(req); 551 } 552 553 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 554 { 555 while (!list_empty(&ctx->defer_list)) { 556 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 557 struct io_defer_entry, list); 558 559 if (req_need_defer(de->req, de->seq)) 560 break; 561 list_del_init(&de->list); 562 io_req_task_queue(de->req); 563 kfree(de); 564 } 565 } 566 567 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 568 { 569 if (ctx->poll_activated) 570 io_poll_wq_wake(ctx); 571 if (ctx->off_timeout_used) 572 io_flush_timeouts(ctx); 573 if (ctx->drain_active) { 574 spin_lock(&ctx->completion_lock); 575 io_queue_deferred(ctx); 576 spin_unlock(&ctx->completion_lock); 577 } 578 if (ctx->has_evfd) 579 io_eventfd_flush_signal(ctx); 580 } 581 582 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 583 { 584 if (!ctx->lockless_cq) 585 spin_lock(&ctx->completion_lock); 586 } 587 588 static inline void io_cq_lock(struct io_ring_ctx *ctx) 589 __acquires(ctx->completion_lock) 590 { 591 spin_lock(&ctx->completion_lock); 592 } 593 594 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 595 { 596 io_commit_cqring(ctx); 597 if (!ctx->task_complete) { 598 if (!ctx->lockless_cq) 599 spin_unlock(&ctx->completion_lock); 600 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 601 if (!ctx->syscall_iopoll) 602 io_cqring_wake(ctx); 603 } 604 io_commit_cqring_flush(ctx); 605 } 606 607 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 608 __releases(ctx->completion_lock) 609 { 610 io_commit_cqring(ctx); 611 spin_unlock(&ctx->completion_lock); 612 io_cqring_wake(ctx); 613 io_commit_cqring_flush(ctx); 614 } 615 616 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 617 { 618 size_t cqe_size = sizeof(struct io_uring_cqe); 619 620 lockdep_assert_held(&ctx->uring_lock); 621 622 /* don't abort if we're dying, entries must get freed */ 623 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 624 return; 625 626 if (ctx->flags & IORING_SETUP_CQE32) 627 cqe_size <<= 1; 628 629 io_cq_lock(ctx); 630 while (!list_empty(&ctx->cq_overflow_list)) { 631 struct io_uring_cqe *cqe; 632 struct io_overflow_cqe *ocqe; 633 634 ocqe = list_first_entry(&ctx->cq_overflow_list, 635 struct io_overflow_cqe, list); 636 637 if (!dying) { 638 if (!io_get_cqe_overflow(ctx, &cqe, true)) 639 break; 640 memcpy(cqe, &ocqe->cqe, cqe_size); 641 } 642 list_del(&ocqe->list); 643 kfree(ocqe); 644 645 /* 646 * For silly syzbot cases that deliberately overflow by huge 647 * amounts, check if we need to resched and drop and 648 * reacquire the locks if so. Nothing real would ever hit this. 649 * Ideally we'd have a non-posting unlock for this, but hard 650 * to care for a non-real case. 651 */ 652 if (need_resched()) { 653 io_cq_unlock_post(ctx); 654 mutex_unlock(&ctx->uring_lock); 655 cond_resched(); 656 mutex_lock(&ctx->uring_lock); 657 io_cq_lock(ctx); 658 } 659 } 660 661 if (list_empty(&ctx->cq_overflow_list)) { 662 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 663 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 664 } 665 io_cq_unlock_post(ctx); 666 } 667 668 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 669 { 670 if (ctx->rings) 671 __io_cqring_overflow_flush(ctx, true); 672 } 673 674 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 675 { 676 mutex_lock(&ctx->uring_lock); 677 __io_cqring_overflow_flush(ctx, false); 678 mutex_unlock(&ctx->uring_lock); 679 } 680 681 /* must to be called somewhat shortly after putting a request */ 682 static inline void io_put_task(struct io_kiocb *req) 683 { 684 struct io_uring_task *tctx = req->tctx; 685 686 if (likely(tctx->task == current)) { 687 tctx->cached_refs++; 688 } else { 689 percpu_counter_sub(&tctx->inflight, 1); 690 if (unlikely(atomic_read(&tctx->in_cancel))) 691 wake_up(&tctx->wait); 692 put_task_struct(tctx->task); 693 } 694 } 695 696 void io_task_refs_refill(struct io_uring_task *tctx) 697 { 698 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 699 700 percpu_counter_add(&tctx->inflight, refill); 701 refcount_add(refill, ¤t->usage); 702 tctx->cached_refs += refill; 703 } 704 705 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 706 { 707 struct io_uring_task *tctx = task->io_uring; 708 unsigned int refs = tctx->cached_refs; 709 710 if (refs) { 711 tctx->cached_refs = 0; 712 percpu_counter_sub(&tctx->inflight, refs); 713 put_task_struct_many(task, refs); 714 } 715 } 716 717 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 718 s32 res, u32 cflags, u64 extra1, u64 extra2) 719 { 720 struct io_overflow_cqe *ocqe; 721 size_t ocq_size = sizeof(struct io_overflow_cqe); 722 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 723 724 lockdep_assert_held(&ctx->completion_lock); 725 726 if (is_cqe32) 727 ocq_size += sizeof(struct io_uring_cqe); 728 729 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 730 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 731 if (!ocqe) { 732 /* 733 * If we're in ring overflow flush mode, or in task cancel mode, 734 * or cannot allocate an overflow entry, then we need to drop it 735 * on the floor. 736 */ 737 io_account_cq_overflow(ctx); 738 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 739 return false; 740 } 741 if (list_empty(&ctx->cq_overflow_list)) { 742 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 743 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 744 745 } 746 ocqe->cqe.user_data = user_data; 747 ocqe->cqe.res = res; 748 ocqe->cqe.flags = cflags; 749 if (is_cqe32) { 750 ocqe->cqe.big_cqe[0] = extra1; 751 ocqe->cqe.big_cqe[1] = extra2; 752 } 753 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 754 return true; 755 } 756 757 static void io_req_cqe_overflow(struct io_kiocb *req) 758 { 759 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 760 req->cqe.res, req->cqe.flags, 761 req->big_cqe.extra1, req->big_cqe.extra2); 762 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 763 } 764 765 /* 766 * writes to the cq entry need to come after reading head; the 767 * control dependency is enough as we're using WRITE_ONCE to 768 * fill the cq entry 769 */ 770 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 771 { 772 struct io_rings *rings = ctx->rings; 773 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 774 unsigned int free, queued, len; 775 776 /* 777 * Posting into the CQ when there are pending overflowed CQEs may break 778 * ordering guarantees, which will affect links, F_MORE users and more. 779 * Force overflow the completion. 780 */ 781 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 782 return false; 783 784 /* userspace may cheat modifying the tail, be safe and do min */ 785 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 786 free = ctx->cq_entries - queued; 787 /* we need a contiguous range, limit based on the current array offset */ 788 len = min(free, ctx->cq_entries - off); 789 if (!len) 790 return false; 791 792 if (ctx->flags & IORING_SETUP_CQE32) { 793 off <<= 1; 794 len <<= 1; 795 } 796 797 ctx->cqe_cached = &rings->cqes[off]; 798 ctx->cqe_sentinel = ctx->cqe_cached + len; 799 return true; 800 } 801 802 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 803 u32 cflags) 804 { 805 struct io_uring_cqe *cqe; 806 807 ctx->cq_extra++; 808 809 /* 810 * If we can't get a cq entry, userspace overflowed the 811 * submission (by quite a lot). Increment the overflow count in 812 * the ring. 813 */ 814 if (likely(io_get_cqe(ctx, &cqe))) { 815 WRITE_ONCE(cqe->user_data, user_data); 816 WRITE_ONCE(cqe->res, res); 817 WRITE_ONCE(cqe->flags, cflags); 818 819 if (ctx->flags & IORING_SETUP_CQE32) { 820 WRITE_ONCE(cqe->big_cqe[0], 0); 821 WRITE_ONCE(cqe->big_cqe[1], 0); 822 } 823 824 trace_io_uring_complete(ctx, NULL, cqe); 825 return true; 826 } 827 return false; 828 } 829 830 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, 831 u32 cflags) 832 { 833 bool filled; 834 835 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 836 if (!filled) 837 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 838 839 return filled; 840 } 841 842 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 843 { 844 bool filled; 845 846 io_cq_lock(ctx); 847 filled = __io_post_aux_cqe(ctx, user_data, res, cflags); 848 io_cq_unlock_post(ctx); 849 return filled; 850 } 851 852 /* 853 * Must be called from inline task_work so we now a flush will happen later, 854 * and obviously with ctx->uring_lock held (tw always has that). 855 */ 856 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 857 { 858 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 859 spin_lock(&ctx->completion_lock); 860 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 861 spin_unlock(&ctx->completion_lock); 862 } 863 ctx->submit_state.cq_flush = true; 864 } 865 866 /* 867 * A helper for multishot requests posting additional CQEs. 868 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 869 */ 870 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 871 { 872 struct io_ring_ctx *ctx = req->ctx; 873 bool posted; 874 875 lockdep_assert(!io_wq_current_is_worker()); 876 lockdep_assert_held(&ctx->uring_lock); 877 878 __io_cq_lock(ctx); 879 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 880 ctx->submit_state.cq_flush = true; 881 __io_cq_unlock_post(ctx); 882 return posted; 883 } 884 885 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 886 { 887 struct io_ring_ctx *ctx = req->ctx; 888 889 /* 890 * All execution paths but io-wq use the deferred completions by 891 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 892 */ 893 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 894 return; 895 896 /* 897 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 898 * the submitter task context, IOPOLL protects with uring_lock. 899 */ 900 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) { 901 req->io_task_work.func = io_req_task_complete; 902 io_req_task_work_add(req); 903 return; 904 } 905 906 io_cq_lock(ctx); 907 if (!(req->flags & REQ_F_CQE_SKIP)) { 908 if (!io_fill_cqe_req(ctx, req)) 909 io_req_cqe_overflow(req); 910 } 911 io_cq_unlock_post(ctx); 912 913 /* 914 * We don't free the request here because we know it's called from 915 * io-wq only, which holds a reference, so it cannot be the last put. 916 */ 917 req_ref_put(req); 918 } 919 920 void io_req_defer_failed(struct io_kiocb *req, s32 res) 921 __must_hold(&ctx->uring_lock) 922 { 923 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 924 925 lockdep_assert_held(&req->ctx->uring_lock); 926 927 req_set_fail(req); 928 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 929 if (def->fail) 930 def->fail(req); 931 io_req_complete_defer(req); 932 } 933 934 /* 935 * Don't initialise the fields below on every allocation, but do that in 936 * advance and keep them valid across allocations. 937 */ 938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 939 { 940 req->ctx = ctx; 941 req->buf_node = NULL; 942 req->file_node = NULL; 943 req->link = NULL; 944 req->async_data = NULL; 945 /* not necessary, but safer to zero */ 946 memset(&req->cqe, 0, sizeof(req->cqe)); 947 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 948 } 949 950 /* 951 * A request might get retired back into the request caches even before opcode 952 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 953 * Because of that, io_alloc_req() should be called only under ->uring_lock 954 * and with extra caution to not get a request that is still worked on. 955 */ 956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 957 __must_hold(&ctx->uring_lock) 958 { 959 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 960 void *reqs[IO_REQ_ALLOC_BATCH]; 961 int ret; 962 963 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 964 965 /* 966 * Bulk alloc is all-or-nothing. If we fail to get a batch, 967 * retry single alloc to be on the safe side. 968 */ 969 if (unlikely(ret <= 0)) { 970 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 971 if (!reqs[0]) 972 return false; 973 ret = 1; 974 } 975 976 percpu_ref_get_many(&ctx->refs, ret); 977 while (ret--) { 978 struct io_kiocb *req = reqs[ret]; 979 980 io_preinit_req(req, ctx); 981 io_req_add_to_cache(req, ctx); 982 } 983 return true; 984 } 985 986 __cold void io_free_req(struct io_kiocb *req) 987 { 988 /* refs were already put, restore them for io_req_task_complete() */ 989 req->flags &= ~REQ_F_REFCOUNT; 990 /* we only want to free it, don't post CQEs */ 991 req->flags |= REQ_F_CQE_SKIP; 992 req->io_task_work.func = io_req_task_complete; 993 io_req_task_work_add(req); 994 } 995 996 static void __io_req_find_next_prep(struct io_kiocb *req) 997 { 998 struct io_ring_ctx *ctx = req->ctx; 999 1000 spin_lock(&ctx->completion_lock); 1001 io_disarm_next(req); 1002 spin_unlock(&ctx->completion_lock); 1003 } 1004 1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1006 { 1007 struct io_kiocb *nxt; 1008 1009 /* 1010 * If LINK is set, we have dependent requests in this chain. If we 1011 * didn't fail this request, queue the first one up, moving any other 1012 * dependencies to the next request. In case of failure, fail the rest 1013 * of the chain. 1014 */ 1015 if (unlikely(req->flags & IO_DISARM_MASK)) 1016 __io_req_find_next_prep(req); 1017 nxt = req->link; 1018 req->link = NULL; 1019 return nxt; 1020 } 1021 1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1023 { 1024 if (!ctx) 1025 return; 1026 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1027 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1028 1029 io_submit_flush_completions(ctx); 1030 mutex_unlock(&ctx->uring_lock); 1031 percpu_ref_put(&ctx->refs); 1032 } 1033 1034 /* 1035 * Run queued task_work, returning the number of entries processed in *count. 1036 * If more entries than max_entries are available, stop processing once this 1037 * is reached and return the rest of the list. 1038 */ 1039 struct llist_node *io_handle_tw_list(struct llist_node *node, 1040 unsigned int *count, 1041 unsigned int max_entries) 1042 { 1043 struct io_ring_ctx *ctx = NULL; 1044 struct io_tw_state ts = { }; 1045 1046 do { 1047 struct llist_node *next = node->next; 1048 struct io_kiocb *req = container_of(node, struct io_kiocb, 1049 io_task_work.node); 1050 1051 if (req->ctx != ctx) { 1052 ctx_flush_and_put(ctx, &ts); 1053 ctx = req->ctx; 1054 mutex_lock(&ctx->uring_lock); 1055 percpu_ref_get(&ctx->refs); 1056 } 1057 INDIRECT_CALL_2(req->io_task_work.func, 1058 io_poll_task_func, io_req_rw_complete, 1059 req, &ts); 1060 node = next; 1061 (*count)++; 1062 if (unlikely(need_resched())) { 1063 ctx_flush_and_put(ctx, &ts); 1064 ctx = NULL; 1065 cond_resched(); 1066 } 1067 } while (node && *count < max_entries); 1068 1069 ctx_flush_and_put(ctx, &ts); 1070 return node; 1071 } 1072 1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1074 { 1075 struct io_ring_ctx *last_ctx = NULL; 1076 struct io_kiocb *req; 1077 1078 while (node) { 1079 req = container_of(node, struct io_kiocb, io_task_work.node); 1080 node = node->next; 1081 if (sync && last_ctx != req->ctx) { 1082 if (last_ctx) { 1083 flush_delayed_work(&last_ctx->fallback_work); 1084 percpu_ref_put(&last_ctx->refs); 1085 } 1086 last_ctx = req->ctx; 1087 percpu_ref_get(&last_ctx->refs); 1088 } 1089 if (llist_add(&req->io_task_work.node, 1090 &req->ctx->fallback_llist)) 1091 schedule_delayed_work(&req->ctx->fallback_work, 1); 1092 } 1093 1094 if (last_ctx) { 1095 flush_delayed_work(&last_ctx->fallback_work); 1096 percpu_ref_put(&last_ctx->refs); 1097 } 1098 } 1099 1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1101 { 1102 struct llist_node *node = llist_del_all(&tctx->task_list); 1103 1104 __io_fallback_tw(node, sync); 1105 } 1106 1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1108 unsigned int max_entries, 1109 unsigned int *count) 1110 { 1111 struct llist_node *node; 1112 1113 if (unlikely(current->flags & PF_EXITING)) { 1114 io_fallback_tw(tctx, true); 1115 return NULL; 1116 } 1117 1118 node = llist_del_all(&tctx->task_list); 1119 if (node) { 1120 node = llist_reverse_order(node); 1121 node = io_handle_tw_list(node, count, max_entries); 1122 } 1123 1124 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1125 if (unlikely(atomic_read(&tctx->in_cancel))) 1126 io_uring_drop_tctx_refs(current); 1127 1128 trace_io_uring_task_work_run(tctx, *count); 1129 return node; 1130 } 1131 1132 void tctx_task_work(struct callback_head *cb) 1133 { 1134 struct io_uring_task *tctx; 1135 struct llist_node *ret; 1136 unsigned int count = 0; 1137 1138 tctx = container_of(cb, struct io_uring_task, task_work); 1139 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1140 /* can't happen */ 1141 WARN_ON_ONCE(ret); 1142 } 1143 1144 static inline void io_req_local_work_add(struct io_kiocb *req, 1145 struct io_ring_ctx *ctx, 1146 unsigned flags) 1147 { 1148 unsigned nr_wait, nr_tw, nr_tw_prev; 1149 struct llist_node *head; 1150 1151 /* See comment above IO_CQ_WAKE_INIT */ 1152 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1153 1154 /* 1155 * We don't know how many reuqests is there in the link and whether 1156 * they can even be queued lazily, fall back to non-lazy. 1157 */ 1158 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1159 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1160 1161 guard(rcu)(); 1162 1163 head = READ_ONCE(ctx->work_llist.first); 1164 do { 1165 nr_tw_prev = 0; 1166 if (head) { 1167 struct io_kiocb *first_req = container_of(head, 1168 struct io_kiocb, 1169 io_task_work.node); 1170 /* 1171 * Might be executed at any moment, rely on 1172 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1173 */ 1174 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1175 } 1176 1177 /* 1178 * Theoretically, it can overflow, but that's fine as one of 1179 * previous adds should've tried to wake the task. 1180 */ 1181 nr_tw = nr_tw_prev + 1; 1182 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1183 nr_tw = IO_CQ_WAKE_FORCE; 1184 1185 req->nr_tw = nr_tw; 1186 req->io_task_work.node.next = head; 1187 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1188 &req->io_task_work.node)); 1189 1190 /* 1191 * cmpxchg implies a full barrier, which pairs with the barrier 1192 * in set_current_state() on the io_cqring_wait() side. It's used 1193 * to ensure that either we see updated ->cq_wait_nr, or waiters 1194 * going to sleep will observe the work added to the list, which 1195 * is similar to the wait/wawke task state sync. 1196 */ 1197 1198 if (!head) { 1199 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1200 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1201 if (ctx->has_evfd) 1202 io_eventfd_signal(ctx); 1203 } 1204 1205 nr_wait = atomic_read(&ctx->cq_wait_nr); 1206 /* not enough or no one is waiting */ 1207 if (nr_tw < nr_wait) 1208 return; 1209 /* the previous add has already woken it up */ 1210 if (nr_tw_prev >= nr_wait) 1211 return; 1212 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1213 } 1214 1215 static void io_req_normal_work_add(struct io_kiocb *req) 1216 { 1217 struct io_uring_task *tctx = req->tctx; 1218 struct io_ring_ctx *ctx = req->ctx; 1219 1220 /* task_work already pending, we're done */ 1221 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1222 return; 1223 1224 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1225 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1226 1227 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1228 if (ctx->flags & IORING_SETUP_SQPOLL) { 1229 struct io_sq_data *sqd = ctx->sq_data; 1230 1231 if (sqd->thread) 1232 __set_notify_signal(sqd->thread); 1233 return; 1234 } 1235 1236 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1237 return; 1238 1239 io_fallback_tw(tctx, false); 1240 } 1241 1242 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1243 { 1244 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1245 io_req_local_work_add(req, req->ctx, flags); 1246 else 1247 io_req_normal_work_add(req); 1248 } 1249 1250 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 1251 unsigned flags) 1252 { 1253 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1254 return; 1255 io_req_local_work_add(req, ctx, flags); 1256 } 1257 1258 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1259 { 1260 struct llist_node *node = llist_del_all(&ctx->work_llist); 1261 1262 __io_fallback_tw(node, false); 1263 node = llist_del_all(&ctx->retry_llist); 1264 __io_fallback_tw(node, false); 1265 } 1266 1267 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1268 int min_events) 1269 { 1270 if (!io_local_work_pending(ctx)) 1271 return false; 1272 if (events < min_events) 1273 return true; 1274 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1275 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1276 return false; 1277 } 1278 1279 static int __io_run_local_work_loop(struct llist_node **node, 1280 struct io_tw_state *ts, 1281 int events) 1282 { 1283 int ret = 0; 1284 1285 while (*node) { 1286 struct llist_node *next = (*node)->next; 1287 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1288 io_task_work.node); 1289 INDIRECT_CALL_2(req->io_task_work.func, 1290 io_poll_task_func, io_req_rw_complete, 1291 req, ts); 1292 *node = next; 1293 if (++ret >= events) 1294 break; 1295 } 1296 1297 return ret; 1298 } 1299 1300 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1301 int min_events, int max_events) 1302 { 1303 struct llist_node *node; 1304 unsigned int loops = 0; 1305 int ret = 0; 1306 1307 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1308 return -EEXIST; 1309 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1310 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1311 again: 1312 min_events -= ret; 1313 ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events); 1314 if (ctx->retry_llist.first) 1315 goto retry_done; 1316 1317 /* 1318 * llists are in reverse order, flip it back the right way before 1319 * running the pending items. 1320 */ 1321 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1322 ret += __io_run_local_work_loop(&node, ts, max_events - ret); 1323 ctx->retry_llist.first = node; 1324 loops++; 1325 1326 if (io_run_local_work_continue(ctx, ret, min_events)) 1327 goto again; 1328 retry_done: 1329 io_submit_flush_completions(ctx); 1330 if (io_run_local_work_continue(ctx, ret, min_events)) 1331 goto again; 1332 1333 trace_io_uring_local_work_run(ctx, ret, loops); 1334 return ret; 1335 } 1336 1337 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1338 int min_events) 1339 { 1340 struct io_tw_state ts = {}; 1341 1342 if (!io_local_work_pending(ctx)) 1343 return 0; 1344 return __io_run_local_work(ctx, &ts, min_events, 1345 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1346 } 1347 1348 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1349 int max_events) 1350 { 1351 struct io_tw_state ts = {}; 1352 int ret; 1353 1354 mutex_lock(&ctx->uring_lock); 1355 ret = __io_run_local_work(ctx, &ts, min_events, max_events); 1356 mutex_unlock(&ctx->uring_lock); 1357 return ret; 1358 } 1359 1360 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1361 { 1362 io_tw_lock(req->ctx, ts); 1363 io_req_defer_failed(req, req->cqe.res); 1364 } 1365 1366 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1367 { 1368 io_tw_lock(req->ctx, ts); 1369 if (unlikely(io_should_terminate_tw())) 1370 io_req_defer_failed(req, -EFAULT); 1371 else if (req->flags & REQ_F_FORCE_ASYNC) 1372 io_queue_iowq(req); 1373 else 1374 io_queue_sqe(req); 1375 } 1376 1377 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1378 { 1379 io_req_set_res(req, ret, 0); 1380 req->io_task_work.func = io_req_task_cancel; 1381 io_req_task_work_add(req); 1382 } 1383 1384 void io_req_task_queue(struct io_kiocb *req) 1385 { 1386 req->io_task_work.func = io_req_task_submit; 1387 io_req_task_work_add(req); 1388 } 1389 1390 void io_queue_next(struct io_kiocb *req) 1391 { 1392 struct io_kiocb *nxt = io_req_find_next(req); 1393 1394 if (nxt) 1395 io_req_task_queue(nxt); 1396 } 1397 1398 static void io_free_batch_list(struct io_ring_ctx *ctx, 1399 struct io_wq_work_node *node) 1400 __must_hold(&ctx->uring_lock) 1401 { 1402 do { 1403 struct io_kiocb *req = container_of(node, struct io_kiocb, 1404 comp_list); 1405 1406 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1407 if (req->flags & REQ_F_REFCOUNT) { 1408 node = req->comp_list.next; 1409 if (!req_ref_put_and_test(req)) 1410 continue; 1411 } 1412 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1413 struct async_poll *apoll = req->apoll; 1414 1415 if (apoll->double_poll) 1416 kfree(apoll->double_poll); 1417 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll)) 1418 kfree(apoll); 1419 req->flags &= ~REQ_F_POLLED; 1420 } 1421 if (req->flags & IO_REQ_LINK_FLAGS) 1422 io_queue_next(req); 1423 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1424 io_clean_op(req); 1425 } 1426 io_put_file(req); 1427 io_req_put_rsrc_nodes(req); 1428 io_put_task(req); 1429 1430 node = req->comp_list.next; 1431 io_req_add_to_cache(req, ctx); 1432 } while (node); 1433 } 1434 1435 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1436 __must_hold(&ctx->uring_lock) 1437 { 1438 struct io_submit_state *state = &ctx->submit_state; 1439 struct io_wq_work_node *node; 1440 1441 __io_cq_lock(ctx); 1442 __wq_list_for_each(node, &state->compl_reqs) { 1443 struct io_kiocb *req = container_of(node, struct io_kiocb, 1444 comp_list); 1445 1446 if (!(req->flags & REQ_F_CQE_SKIP) && 1447 unlikely(!io_fill_cqe_req(ctx, req))) { 1448 if (ctx->lockless_cq) { 1449 spin_lock(&ctx->completion_lock); 1450 io_req_cqe_overflow(req); 1451 spin_unlock(&ctx->completion_lock); 1452 } else { 1453 io_req_cqe_overflow(req); 1454 } 1455 } 1456 } 1457 __io_cq_unlock_post(ctx); 1458 1459 if (!wq_list_empty(&state->compl_reqs)) { 1460 io_free_batch_list(ctx, state->compl_reqs.first); 1461 INIT_WQ_LIST(&state->compl_reqs); 1462 } 1463 ctx->submit_state.cq_flush = false; 1464 } 1465 1466 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1467 { 1468 /* See comment at the top of this file */ 1469 smp_rmb(); 1470 return __io_cqring_events(ctx); 1471 } 1472 1473 /* 1474 * We can't just wait for polled events to come to us, we have to actively 1475 * find and complete them. 1476 */ 1477 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1478 { 1479 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1480 return; 1481 1482 mutex_lock(&ctx->uring_lock); 1483 while (!wq_list_empty(&ctx->iopoll_list)) { 1484 /* let it sleep and repeat later if can't complete a request */ 1485 if (io_do_iopoll(ctx, true) == 0) 1486 break; 1487 /* 1488 * Ensure we allow local-to-the-cpu processing to take place, 1489 * in this case we need to ensure that we reap all events. 1490 * Also let task_work, etc. to progress by releasing the mutex 1491 */ 1492 if (need_resched()) { 1493 mutex_unlock(&ctx->uring_lock); 1494 cond_resched(); 1495 mutex_lock(&ctx->uring_lock); 1496 } 1497 } 1498 mutex_unlock(&ctx->uring_lock); 1499 } 1500 1501 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1502 { 1503 unsigned int nr_events = 0; 1504 unsigned long check_cq; 1505 1506 lockdep_assert_held(&ctx->uring_lock); 1507 1508 if (!io_allowed_run_tw(ctx)) 1509 return -EEXIST; 1510 1511 check_cq = READ_ONCE(ctx->check_cq); 1512 if (unlikely(check_cq)) { 1513 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1514 __io_cqring_overflow_flush(ctx, false); 1515 /* 1516 * Similarly do not spin if we have not informed the user of any 1517 * dropped CQE. 1518 */ 1519 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1520 return -EBADR; 1521 } 1522 /* 1523 * Don't enter poll loop if we already have events pending. 1524 * If we do, we can potentially be spinning for commands that 1525 * already triggered a CQE (eg in error). 1526 */ 1527 if (io_cqring_events(ctx)) 1528 return 0; 1529 1530 do { 1531 int ret = 0; 1532 1533 /* 1534 * If a submit got punted to a workqueue, we can have the 1535 * application entering polling for a command before it gets 1536 * issued. That app will hold the uring_lock for the duration 1537 * of the poll right here, so we need to take a breather every 1538 * now and then to ensure that the issue has a chance to add 1539 * the poll to the issued list. Otherwise we can spin here 1540 * forever, while the workqueue is stuck trying to acquire the 1541 * very same mutex. 1542 */ 1543 if (wq_list_empty(&ctx->iopoll_list) || 1544 io_task_work_pending(ctx)) { 1545 u32 tail = ctx->cached_cq_tail; 1546 1547 (void) io_run_local_work_locked(ctx, min); 1548 1549 if (task_work_pending(current) || 1550 wq_list_empty(&ctx->iopoll_list)) { 1551 mutex_unlock(&ctx->uring_lock); 1552 io_run_task_work(); 1553 mutex_lock(&ctx->uring_lock); 1554 } 1555 /* some requests don't go through iopoll_list */ 1556 if (tail != ctx->cached_cq_tail || 1557 wq_list_empty(&ctx->iopoll_list)) 1558 break; 1559 } 1560 ret = io_do_iopoll(ctx, !min); 1561 if (unlikely(ret < 0)) 1562 return ret; 1563 1564 if (task_sigpending(current)) 1565 return -EINTR; 1566 if (need_resched()) 1567 break; 1568 1569 nr_events += ret; 1570 } while (nr_events < min); 1571 1572 return 0; 1573 } 1574 1575 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1576 { 1577 io_req_complete_defer(req); 1578 } 1579 1580 /* 1581 * After the iocb has been issued, it's safe to be found on the poll list. 1582 * Adding the kiocb to the list AFTER submission ensures that we don't 1583 * find it from a io_do_iopoll() thread before the issuer is done 1584 * accessing the kiocb cookie. 1585 */ 1586 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1587 { 1588 struct io_ring_ctx *ctx = req->ctx; 1589 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1590 1591 /* workqueue context doesn't hold uring_lock, grab it now */ 1592 if (unlikely(needs_lock)) 1593 mutex_lock(&ctx->uring_lock); 1594 1595 /* 1596 * Track whether we have multiple files in our lists. This will impact 1597 * how we do polling eventually, not spinning if we're on potentially 1598 * different devices. 1599 */ 1600 if (wq_list_empty(&ctx->iopoll_list)) { 1601 ctx->poll_multi_queue = false; 1602 } else if (!ctx->poll_multi_queue) { 1603 struct io_kiocb *list_req; 1604 1605 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1606 comp_list); 1607 if (list_req->file != req->file) 1608 ctx->poll_multi_queue = true; 1609 } 1610 1611 /* 1612 * For fast devices, IO may have already completed. If it has, add 1613 * it to the front so we find it first. 1614 */ 1615 if (READ_ONCE(req->iopoll_completed)) 1616 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1617 else 1618 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1619 1620 if (unlikely(needs_lock)) { 1621 /* 1622 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1623 * in sq thread task context or in io worker task context. If 1624 * current task context is sq thread, we don't need to check 1625 * whether should wake up sq thread. 1626 */ 1627 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1628 wq_has_sleeper(&ctx->sq_data->wait)) 1629 wake_up(&ctx->sq_data->wait); 1630 1631 mutex_unlock(&ctx->uring_lock); 1632 } 1633 } 1634 1635 io_req_flags_t io_file_get_flags(struct file *file) 1636 { 1637 io_req_flags_t res = 0; 1638 1639 if (S_ISREG(file_inode(file)->i_mode)) 1640 res |= REQ_F_ISREG; 1641 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1642 res |= REQ_F_SUPPORT_NOWAIT; 1643 return res; 1644 } 1645 1646 bool io_alloc_async_data(struct io_kiocb *req) 1647 { 1648 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1649 1650 WARN_ON_ONCE(!def->async_size); 1651 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 1652 if (req->async_data) { 1653 req->flags |= REQ_F_ASYNC_DATA; 1654 return false; 1655 } 1656 return true; 1657 } 1658 1659 static u32 io_get_sequence(struct io_kiocb *req) 1660 { 1661 u32 seq = req->ctx->cached_sq_head; 1662 struct io_kiocb *cur; 1663 1664 /* need original cached_sq_head, but it was increased for each req */ 1665 io_for_each_link(cur, req) 1666 seq--; 1667 return seq; 1668 } 1669 1670 static __cold void io_drain_req(struct io_kiocb *req) 1671 __must_hold(&ctx->uring_lock) 1672 { 1673 struct io_ring_ctx *ctx = req->ctx; 1674 struct io_defer_entry *de; 1675 int ret; 1676 u32 seq = io_get_sequence(req); 1677 1678 /* Still need defer if there is pending req in defer list. */ 1679 spin_lock(&ctx->completion_lock); 1680 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1681 spin_unlock(&ctx->completion_lock); 1682 queue: 1683 ctx->drain_active = false; 1684 io_req_task_queue(req); 1685 return; 1686 } 1687 spin_unlock(&ctx->completion_lock); 1688 1689 io_prep_async_link(req); 1690 de = kmalloc(sizeof(*de), GFP_KERNEL); 1691 if (!de) { 1692 ret = -ENOMEM; 1693 io_req_defer_failed(req, ret); 1694 return; 1695 } 1696 1697 spin_lock(&ctx->completion_lock); 1698 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1699 spin_unlock(&ctx->completion_lock); 1700 kfree(de); 1701 goto queue; 1702 } 1703 1704 trace_io_uring_defer(req); 1705 de->req = req; 1706 de->seq = seq; 1707 list_add_tail(&de->list, &ctx->defer_list); 1708 spin_unlock(&ctx->completion_lock); 1709 } 1710 1711 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1712 unsigned int issue_flags) 1713 { 1714 if (req->file || !def->needs_file) 1715 return true; 1716 1717 if (req->flags & REQ_F_FIXED_FILE) 1718 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1719 else 1720 req->file = io_file_get_normal(req, req->cqe.fd); 1721 1722 return !!req->file; 1723 } 1724 1725 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1726 { 1727 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1728 const struct cred *creds = NULL; 1729 int ret; 1730 1731 if (unlikely(!io_assign_file(req, def, issue_flags))) 1732 return -EBADF; 1733 1734 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1735 creds = override_creds(req->creds); 1736 1737 if (!def->audit_skip) 1738 audit_uring_entry(req->opcode); 1739 1740 ret = def->issue(req, issue_flags); 1741 1742 if (!def->audit_skip) 1743 audit_uring_exit(!ret, ret); 1744 1745 if (creds) 1746 revert_creds(creds); 1747 1748 if (ret == IOU_OK) { 1749 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1750 io_req_complete_defer(req); 1751 else 1752 io_req_complete_post(req, issue_flags); 1753 1754 return 0; 1755 } 1756 1757 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1758 ret = 0; 1759 io_arm_ltimeout(req); 1760 1761 /* If the op doesn't have a file, we're not polling for it */ 1762 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1763 io_iopoll_req_issued(req, issue_flags); 1764 } 1765 return ret; 1766 } 1767 1768 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1769 { 1770 io_tw_lock(req->ctx, ts); 1771 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1772 IO_URING_F_COMPLETE_DEFER); 1773 } 1774 1775 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1776 { 1777 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1778 struct io_kiocb *nxt = NULL; 1779 1780 if (req_ref_put_and_test(req)) { 1781 if (req->flags & IO_REQ_LINK_FLAGS) 1782 nxt = io_req_find_next(req); 1783 io_free_req(req); 1784 } 1785 return nxt ? &nxt->work : NULL; 1786 } 1787 1788 void io_wq_submit_work(struct io_wq_work *work) 1789 { 1790 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1791 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1792 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1793 bool needs_poll = false; 1794 int ret = 0, err = -ECANCELED; 1795 1796 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1797 if (!(req->flags & REQ_F_REFCOUNT)) 1798 __io_req_set_refcount(req, 2); 1799 else 1800 req_ref_get(req); 1801 1802 io_arm_ltimeout(req); 1803 1804 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1805 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1806 fail: 1807 io_req_task_queue_fail(req, err); 1808 return; 1809 } 1810 if (!io_assign_file(req, def, issue_flags)) { 1811 err = -EBADF; 1812 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1813 goto fail; 1814 } 1815 1816 /* 1817 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1818 * submitter task context. Final request completions are handed to the 1819 * right context, however this is not the case of auxiliary CQEs, 1820 * which is the main mean of operation for multishot requests. 1821 * Don't allow any multishot execution from io-wq. It's more restrictive 1822 * than necessary and also cleaner. 1823 */ 1824 if (req->flags & REQ_F_APOLL_MULTISHOT) { 1825 err = -EBADFD; 1826 if (!io_file_can_poll(req)) 1827 goto fail; 1828 if (req->file->f_flags & O_NONBLOCK || 1829 req->file->f_mode & FMODE_NOWAIT) { 1830 err = -ECANCELED; 1831 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1832 goto fail; 1833 return; 1834 } else { 1835 req->flags &= ~REQ_F_APOLL_MULTISHOT; 1836 } 1837 } 1838 1839 if (req->flags & REQ_F_FORCE_ASYNC) { 1840 bool opcode_poll = def->pollin || def->pollout; 1841 1842 if (opcode_poll && io_file_can_poll(req)) { 1843 needs_poll = true; 1844 issue_flags |= IO_URING_F_NONBLOCK; 1845 } 1846 } 1847 1848 do { 1849 ret = io_issue_sqe(req, issue_flags); 1850 if (ret != -EAGAIN) 1851 break; 1852 1853 /* 1854 * If REQ_F_NOWAIT is set, then don't wait or retry with 1855 * poll. -EAGAIN is final for that case. 1856 */ 1857 if (req->flags & REQ_F_NOWAIT) 1858 break; 1859 1860 /* 1861 * We can get EAGAIN for iopolled IO even though we're 1862 * forcing a sync submission from here, since we can't 1863 * wait for request slots on the block side. 1864 */ 1865 if (!needs_poll) { 1866 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1867 break; 1868 if (io_wq_worker_stopped()) 1869 break; 1870 cond_resched(); 1871 continue; 1872 } 1873 1874 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1875 return; 1876 /* aborted or ready, in either case retry blocking */ 1877 needs_poll = false; 1878 issue_flags &= ~IO_URING_F_NONBLOCK; 1879 } while (1); 1880 1881 /* avoid locking problems by failing it from a clean context */ 1882 if (ret) 1883 io_req_task_queue_fail(req, ret); 1884 } 1885 1886 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1887 unsigned int issue_flags) 1888 { 1889 struct io_ring_ctx *ctx = req->ctx; 1890 struct io_rsrc_node *node; 1891 struct file *file = NULL; 1892 1893 io_ring_submit_lock(ctx, issue_flags); 1894 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1895 if (node) { 1896 io_req_assign_rsrc_node(&req->file_node, node); 1897 req->flags |= io_slot_flags(node); 1898 file = io_slot_file(node); 1899 } 1900 io_ring_submit_unlock(ctx, issue_flags); 1901 return file; 1902 } 1903 1904 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1905 { 1906 struct file *file = fget(fd); 1907 1908 trace_io_uring_file_get(req, fd); 1909 1910 /* we don't allow fixed io_uring files */ 1911 if (file && io_is_uring_fops(file)) 1912 io_req_track_inflight(req); 1913 return file; 1914 } 1915 1916 static void io_queue_async(struct io_kiocb *req, int ret) 1917 __must_hold(&req->ctx->uring_lock) 1918 { 1919 struct io_kiocb *linked_timeout; 1920 1921 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1922 io_req_defer_failed(req, ret); 1923 return; 1924 } 1925 1926 linked_timeout = io_prep_linked_timeout(req); 1927 1928 switch (io_arm_poll_handler(req, 0)) { 1929 case IO_APOLL_READY: 1930 io_kbuf_recycle(req, 0); 1931 io_req_task_queue(req); 1932 break; 1933 case IO_APOLL_ABORTED: 1934 io_kbuf_recycle(req, 0); 1935 io_queue_iowq(req); 1936 break; 1937 case IO_APOLL_OK: 1938 break; 1939 } 1940 1941 if (linked_timeout) 1942 io_queue_linked_timeout(linked_timeout); 1943 } 1944 1945 static inline void io_queue_sqe(struct io_kiocb *req) 1946 __must_hold(&req->ctx->uring_lock) 1947 { 1948 int ret; 1949 1950 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1951 1952 /* 1953 * We async punt it if the file wasn't marked NOWAIT, or if the file 1954 * doesn't support non-blocking read/write attempts 1955 */ 1956 if (unlikely(ret)) 1957 io_queue_async(req, ret); 1958 } 1959 1960 static void io_queue_sqe_fallback(struct io_kiocb *req) 1961 __must_hold(&req->ctx->uring_lock) 1962 { 1963 if (unlikely(req->flags & REQ_F_FAIL)) { 1964 /* 1965 * We don't submit, fail them all, for that replace hardlinks 1966 * with normal links. Extra REQ_F_LINK is tolerated. 1967 */ 1968 req->flags &= ~REQ_F_HARDLINK; 1969 req->flags |= REQ_F_LINK; 1970 io_req_defer_failed(req, req->cqe.res); 1971 } else { 1972 if (unlikely(req->ctx->drain_active)) 1973 io_drain_req(req); 1974 else 1975 io_queue_iowq(req); 1976 } 1977 } 1978 1979 /* 1980 * Check SQE restrictions (opcode and flags). 1981 * 1982 * Returns 'true' if SQE is allowed, 'false' otherwise. 1983 */ 1984 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1985 struct io_kiocb *req, 1986 unsigned int sqe_flags) 1987 { 1988 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1989 return false; 1990 1991 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1992 ctx->restrictions.sqe_flags_required) 1993 return false; 1994 1995 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1996 ctx->restrictions.sqe_flags_required)) 1997 return false; 1998 1999 return true; 2000 } 2001 2002 static void io_init_req_drain(struct io_kiocb *req) 2003 { 2004 struct io_ring_ctx *ctx = req->ctx; 2005 struct io_kiocb *head = ctx->submit_state.link.head; 2006 2007 ctx->drain_active = true; 2008 if (head) { 2009 /* 2010 * If we need to drain a request in the middle of a link, drain 2011 * the head request and the next request/link after the current 2012 * link. Considering sequential execution of links, 2013 * REQ_F_IO_DRAIN will be maintained for every request of our 2014 * link. 2015 */ 2016 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2017 ctx->drain_next = true; 2018 } 2019 } 2020 2021 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2022 { 2023 /* ensure per-opcode data is cleared if we fail before prep */ 2024 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2025 return err; 2026 } 2027 2028 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2029 const struct io_uring_sqe *sqe) 2030 __must_hold(&ctx->uring_lock) 2031 { 2032 const struct io_issue_def *def; 2033 unsigned int sqe_flags; 2034 int personality; 2035 u8 opcode; 2036 2037 /* req is partially pre-initialised, see io_preinit_req() */ 2038 req->opcode = opcode = READ_ONCE(sqe->opcode); 2039 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2040 sqe_flags = READ_ONCE(sqe->flags); 2041 req->flags = (__force io_req_flags_t) sqe_flags; 2042 req->cqe.user_data = READ_ONCE(sqe->user_data); 2043 req->file = NULL; 2044 req->tctx = current->io_uring; 2045 req->cancel_seq_set = false; 2046 2047 if (unlikely(opcode >= IORING_OP_LAST)) { 2048 req->opcode = 0; 2049 return io_init_fail_req(req, -EINVAL); 2050 } 2051 def = &io_issue_defs[opcode]; 2052 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2053 /* enforce forwards compatibility on users */ 2054 if (sqe_flags & ~SQE_VALID_FLAGS) 2055 return io_init_fail_req(req, -EINVAL); 2056 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2057 if (!def->buffer_select) 2058 return io_init_fail_req(req, -EOPNOTSUPP); 2059 req->buf_index = READ_ONCE(sqe->buf_group); 2060 } 2061 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2062 ctx->drain_disabled = true; 2063 if (sqe_flags & IOSQE_IO_DRAIN) { 2064 if (ctx->drain_disabled) 2065 return io_init_fail_req(req, -EOPNOTSUPP); 2066 io_init_req_drain(req); 2067 } 2068 } 2069 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2070 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2071 return io_init_fail_req(req, -EACCES); 2072 /* knock it to the slow queue path, will be drained there */ 2073 if (ctx->drain_active) 2074 req->flags |= REQ_F_FORCE_ASYNC; 2075 /* if there is no link, we're at "next" request and need to drain */ 2076 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2077 ctx->drain_next = false; 2078 ctx->drain_active = true; 2079 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2080 } 2081 } 2082 2083 if (!def->ioprio && sqe->ioprio) 2084 return io_init_fail_req(req, -EINVAL); 2085 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2086 return io_init_fail_req(req, -EINVAL); 2087 2088 if (def->needs_file) { 2089 struct io_submit_state *state = &ctx->submit_state; 2090 2091 req->cqe.fd = READ_ONCE(sqe->fd); 2092 2093 /* 2094 * Plug now if we have more than 2 IO left after this, and the 2095 * target is potentially a read/write to block based storage. 2096 */ 2097 if (state->need_plug && def->plug) { 2098 state->plug_started = true; 2099 state->need_plug = false; 2100 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2101 } 2102 } 2103 2104 personality = READ_ONCE(sqe->personality); 2105 if (personality) { 2106 int ret; 2107 2108 req->creds = xa_load(&ctx->personalities, personality); 2109 if (!req->creds) 2110 return io_init_fail_req(req, -EINVAL); 2111 get_cred(req->creds); 2112 ret = security_uring_override_creds(req->creds); 2113 if (ret) { 2114 put_cred(req->creds); 2115 return io_init_fail_req(req, ret); 2116 } 2117 req->flags |= REQ_F_CREDS; 2118 } 2119 2120 return def->prep(req, sqe); 2121 } 2122 2123 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2124 struct io_kiocb *req, int ret) 2125 { 2126 struct io_ring_ctx *ctx = req->ctx; 2127 struct io_submit_link *link = &ctx->submit_state.link; 2128 struct io_kiocb *head = link->head; 2129 2130 trace_io_uring_req_failed(sqe, req, ret); 2131 2132 /* 2133 * Avoid breaking links in the middle as it renders links with SQPOLL 2134 * unusable. Instead of failing eagerly, continue assembling the link if 2135 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2136 * should find the flag and handle the rest. 2137 */ 2138 req_fail_link_node(req, ret); 2139 if (head && !(head->flags & REQ_F_FAIL)) 2140 req_fail_link_node(head, -ECANCELED); 2141 2142 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2143 if (head) { 2144 link->last->link = req; 2145 link->head = NULL; 2146 req = head; 2147 } 2148 io_queue_sqe_fallback(req); 2149 return ret; 2150 } 2151 2152 if (head) 2153 link->last->link = req; 2154 else 2155 link->head = req; 2156 link->last = req; 2157 return 0; 2158 } 2159 2160 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2161 const struct io_uring_sqe *sqe) 2162 __must_hold(&ctx->uring_lock) 2163 { 2164 struct io_submit_link *link = &ctx->submit_state.link; 2165 int ret; 2166 2167 ret = io_init_req(ctx, req, sqe); 2168 if (unlikely(ret)) 2169 return io_submit_fail_init(sqe, req, ret); 2170 2171 trace_io_uring_submit_req(req); 2172 2173 /* 2174 * If we already have a head request, queue this one for async 2175 * submittal once the head completes. If we don't have a head but 2176 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2177 * submitted sync once the chain is complete. If none of those 2178 * conditions are true (normal request), then just queue it. 2179 */ 2180 if (unlikely(link->head)) { 2181 trace_io_uring_link(req, link->last); 2182 link->last->link = req; 2183 link->last = req; 2184 2185 if (req->flags & IO_REQ_LINK_FLAGS) 2186 return 0; 2187 /* last request of the link, flush it */ 2188 req = link->head; 2189 link->head = NULL; 2190 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2191 goto fallback; 2192 2193 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2194 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2195 if (req->flags & IO_REQ_LINK_FLAGS) { 2196 link->head = req; 2197 link->last = req; 2198 } else { 2199 fallback: 2200 io_queue_sqe_fallback(req); 2201 } 2202 return 0; 2203 } 2204 2205 io_queue_sqe(req); 2206 return 0; 2207 } 2208 2209 /* 2210 * Batched submission is done, ensure local IO is flushed out. 2211 */ 2212 static void io_submit_state_end(struct io_ring_ctx *ctx) 2213 { 2214 struct io_submit_state *state = &ctx->submit_state; 2215 2216 if (unlikely(state->link.head)) 2217 io_queue_sqe_fallback(state->link.head); 2218 /* flush only after queuing links as they can generate completions */ 2219 io_submit_flush_completions(ctx); 2220 if (state->plug_started) 2221 blk_finish_plug(&state->plug); 2222 } 2223 2224 /* 2225 * Start submission side cache. 2226 */ 2227 static void io_submit_state_start(struct io_submit_state *state, 2228 unsigned int max_ios) 2229 { 2230 state->plug_started = false; 2231 state->need_plug = max_ios > 2; 2232 state->submit_nr = max_ios; 2233 /* set only head, no need to init link_last in advance */ 2234 state->link.head = NULL; 2235 } 2236 2237 static void io_commit_sqring(struct io_ring_ctx *ctx) 2238 { 2239 struct io_rings *rings = ctx->rings; 2240 2241 /* 2242 * Ensure any loads from the SQEs are done at this point, 2243 * since once we write the new head, the application could 2244 * write new data to them. 2245 */ 2246 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2247 } 2248 2249 /* 2250 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2251 * that is mapped by userspace. This means that care needs to be taken to 2252 * ensure that reads are stable, as we cannot rely on userspace always 2253 * being a good citizen. If members of the sqe are validated and then later 2254 * used, it's important that those reads are done through READ_ONCE() to 2255 * prevent a re-load down the line. 2256 */ 2257 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2258 { 2259 unsigned mask = ctx->sq_entries - 1; 2260 unsigned head = ctx->cached_sq_head++ & mask; 2261 2262 if (static_branch_unlikely(&io_key_has_sqarray) && 2263 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2264 head = READ_ONCE(ctx->sq_array[head]); 2265 if (unlikely(head >= ctx->sq_entries)) { 2266 /* drop invalid entries */ 2267 spin_lock(&ctx->completion_lock); 2268 ctx->cq_extra--; 2269 spin_unlock(&ctx->completion_lock); 2270 WRITE_ONCE(ctx->rings->sq_dropped, 2271 READ_ONCE(ctx->rings->sq_dropped) + 1); 2272 return false; 2273 } 2274 head = array_index_nospec(head, ctx->sq_entries); 2275 } 2276 2277 /* 2278 * The cached sq head (or cq tail) serves two purposes: 2279 * 2280 * 1) allows us to batch the cost of updating the user visible 2281 * head updates. 2282 * 2) allows the kernel side to track the head on its own, even 2283 * though the application is the one updating it. 2284 */ 2285 2286 /* double index for 128-byte SQEs, twice as long */ 2287 if (ctx->flags & IORING_SETUP_SQE128) 2288 head <<= 1; 2289 *sqe = &ctx->sq_sqes[head]; 2290 return true; 2291 } 2292 2293 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2294 __must_hold(&ctx->uring_lock) 2295 { 2296 unsigned int entries = io_sqring_entries(ctx); 2297 unsigned int left; 2298 int ret; 2299 2300 if (unlikely(!entries)) 2301 return 0; 2302 /* make sure SQ entry isn't read before tail */ 2303 ret = left = min(nr, entries); 2304 io_get_task_refs(left); 2305 io_submit_state_start(&ctx->submit_state, left); 2306 2307 do { 2308 const struct io_uring_sqe *sqe; 2309 struct io_kiocb *req; 2310 2311 if (unlikely(!io_alloc_req(ctx, &req))) 2312 break; 2313 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2314 io_req_add_to_cache(req, ctx); 2315 break; 2316 } 2317 2318 /* 2319 * Continue submitting even for sqe failure if the 2320 * ring was setup with IORING_SETUP_SUBMIT_ALL 2321 */ 2322 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2323 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2324 left--; 2325 break; 2326 } 2327 } while (--left); 2328 2329 if (unlikely(left)) { 2330 ret -= left; 2331 /* try again if it submitted nothing and can't allocate a req */ 2332 if (!ret && io_req_cache_empty(ctx)) 2333 ret = -EAGAIN; 2334 current->io_uring->cached_refs += left; 2335 } 2336 2337 io_submit_state_end(ctx); 2338 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2339 io_commit_sqring(ctx); 2340 return ret; 2341 } 2342 2343 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2344 int wake_flags, void *key) 2345 { 2346 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2347 2348 /* 2349 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2350 * the task, and the next invocation will do it. 2351 */ 2352 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2353 return autoremove_wake_function(curr, mode, wake_flags, key); 2354 return -1; 2355 } 2356 2357 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2358 { 2359 if (io_local_work_pending(ctx)) { 2360 __set_current_state(TASK_RUNNING); 2361 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2362 return 0; 2363 } 2364 if (io_run_task_work() > 0) 2365 return 0; 2366 if (task_sigpending(current)) 2367 return -EINTR; 2368 return 0; 2369 } 2370 2371 static bool current_pending_io(void) 2372 { 2373 struct io_uring_task *tctx = current->io_uring; 2374 2375 if (!tctx) 2376 return false; 2377 return percpu_counter_read_positive(&tctx->inflight); 2378 } 2379 2380 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2381 { 2382 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2383 2384 WRITE_ONCE(iowq->hit_timeout, 1); 2385 iowq->min_timeout = 0; 2386 wake_up_process(iowq->wq.private); 2387 return HRTIMER_NORESTART; 2388 } 2389 2390 /* 2391 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2392 * wake up. If not, and we have a normal timeout, switch to that and keep 2393 * sleeping. 2394 */ 2395 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2396 { 2397 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2398 struct io_ring_ctx *ctx = iowq->ctx; 2399 2400 /* no general timeout, or shorter (or equal), we are done */ 2401 if (iowq->timeout == KTIME_MAX || 2402 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2403 goto out_wake; 2404 /* work we may need to run, wake function will see if we need to wake */ 2405 if (io_has_work(ctx)) 2406 goto out_wake; 2407 /* got events since we started waiting, min timeout is done */ 2408 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2409 goto out_wake; 2410 /* if we have any events and min timeout expired, we're done */ 2411 if (io_cqring_events(ctx)) 2412 goto out_wake; 2413 2414 /* 2415 * If using deferred task_work running and application is waiting on 2416 * more than one request, ensure we reset it now where we are switching 2417 * to normal sleeps. Any request completion post min_wait should wake 2418 * the task and return. 2419 */ 2420 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2421 atomic_set(&ctx->cq_wait_nr, 1); 2422 smp_mb(); 2423 if (!llist_empty(&ctx->work_llist)) 2424 goto out_wake; 2425 } 2426 2427 iowq->t.function = io_cqring_timer_wakeup; 2428 hrtimer_set_expires(timer, iowq->timeout); 2429 return HRTIMER_RESTART; 2430 out_wake: 2431 return io_cqring_timer_wakeup(timer); 2432 } 2433 2434 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2435 clockid_t clock_id, ktime_t start_time) 2436 { 2437 ktime_t timeout; 2438 2439 if (iowq->min_timeout) { 2440 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2441 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2442 HRTIMER_MODE_ABS); 2443 } else { 2444 timeout = iowq->timeout; 2445 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2446 HRTIMER_MODE_ABS); 2447 } 2448 2449 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2450 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2451 2452 if (!READ_ONCE(iowq->hit_timeout)) 2453 schedule(); 2454 2455 hrtimer_cancel(&iowq->t); 2456 destroy_hrtimer_on_stack(&iowq->t); 2457 __set_current_state(TASK_RUNNING); 2458 2459 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2460 } 2461 2462 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2463 struct io_wait_queue *iowq, 2464 ktime_t start_time) 2465 { 2466 int ret = 0; 2467 2468 /* 2469 * Mark us as being in io_wait if we have pending requests, so cpufreq 2470 * can take into account that the task is waiting for IO - turns out 2471 * to be important for low QD IO. 2472 */ 2473 if (current_pending_io()) 2474 current->in_iowait = 1; 2475 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2476 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2477 else 2478 schedule(); 2479 current->in_iowait = 0; 2480 return ret; 2481 } 2482 2483 /* If this returns > 0, the caller should retry */ 2484 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2485 struct io_wait_queue *iowq, 2486 ktime_t start_time) 2487 { 2488 if (unlikely(READ_ONCE(ctx->check_cq))) 2489 return 1; 2490 if (unlikely(io_local_work_pending(ctx))) 2491 return 1; 2492 if (unlikely(task_work_pending(current))) 2493 return 1; 2494 if (unlikely(task_sigpending(current))) 2495 return -EINTR; 2496 if (unlikely(io_should_wake(iowq))) 2497 return 0; 2498 2499 return __io_cqring_wait_schedule(ctx, iowq, start_time); 2500 } 2501 2502 struct ext_arg { 2503 size_t argsz; 2504 struct timespec64 ts; 2505 const sigset_t __user *sig; 2506 ktime_t min_time; 2507 bool ts_set; 2508 }; 2509 2510 /* 2511 * Wait until events become available, if we don't already have some. The 2512 * application must reap them itself, as they reside on the shared cq ring. 2513 */ 2514 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2515 struct ext_arg *ext_arg) 2516 { 2517 struct io_wait_queue iowq; 2518 struct io_rings *rings = ctx->rings; 2519 ktime_t start_time; 2520 int ret; 2521 2522 if (!io_allowed_run_tw(ctx)) 2523 return -EEXIST; 2524 if (io_local_work_pending(ctx)) 2525 io_run_local_work(ctx, min_events, 2526 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2527 io_run_task_work(); 2528 2529 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2530 io_cqring_do_overflow_flush(ctx); 2531 if (__io_cqring_events_user(ctx) >= min_events) 2532 return 0; 2533 2534 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2535 iowq.wq.private = current; 2536 INIT_LIST_HEAD(&iowq.wq.entry); 2537 iowq.ctx = ctx; 2538 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2539 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2540 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2541 iowq.hit_timeout = 0; 2542 iowq.min_timeout = ext_arg->min_time; 2543 iowq.timeout = KTIME_MAX; 2544 start_time = io_get_time(ctx); 2545 2546 if (ext_arg->ts_set) { 2547 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2548 if (!(flags & IORING_ENTER_ABS_TIMER)) 2549 iowq.timeout = ktime_add(iowq.timeout, start_time); 2550 } 2551 2552 if (ext_arg->sig) { 2553 #ifdef CONFIG_COMPAT 2554 if (in_compat_syscall()) 2555 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2556 ext_arg->argsz); 2557 else 2558 #endif 2559 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2560 2561 if (ret) 2562 return ret; 2563 } 2564 2565 io_napi_busy_loop(ctx, &iowq); 2566 2567 trace_io_uring_cqring_wait(ctx, min_events); 2568 do { 2569 unsigned long check_cq; 2570 int nr_wait; 2571 2572 /* if min timeout has been hit, don't reset wait count */ 2573 if (!iowq.hit_timeout) 2574 nr_wait = (int) iowq.cq_tail - 2575 READ_ONCE(ctx->rings->cq.tail); 2576 else 2577 nr_wait = 1; 2578 2579 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2580 atomic_set(&ctx->cq_wait_nr, nr_wait); 2581 set_current_state(TASK_INTERRUPTIBLE); 2582 } else { 2583 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2584 TASK_INTERRUPTIBLE); 2585 } 2586 2587 ret = io_cqring_wait_schedule(ctx, &iowq, start_time); 2588 __set_current_state(TASK_RUNNING); 2589 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2590 2591 /* 2592 * Run task_work after scheduling and before io_should_wake(). 2593 * If we got woken because of task_work being processed, run it 2594 * now rather than let the caller do another wait loop. 2595 */ 2596 if (io_local_work_pending(ctx)) 2597 io_run_local_work(ctx, nr_wait, nr_wait); 2598 io_run_task_work(); 2599 2600 /* 2601 * Non-local task_work will be run on exit to userspace, but 2602 * if we're using DEFER_TASKRUN, then we could have waited 2603 * with a timeout for a number of requests. If the timeout 2604 * hits, we could have some requests ready to process. Ensure 2605 * this break is _after_ we have run task_work, to avoid 2606 * deferring running potentially pending requests until the 2607 * next time we wait for events. 2608 */ 2609 if (ret < 0) 2610 break; 2611 2612 check_cq = READ_ONCE(ctx->check_cq); 2613 if (unlikely(check_cq)) { 2614 /* let the caller flush overflows, retry */ 2615 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2616 io_cqring_do_overflow_flush(ctx); 2617 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2618 ret = -EBADR; 2619 break; 2620 } 2621 } 2622 2623 if (io_should_wake(&iowq)) { 2624 ret = 0; 2625 break; 2626 } 2627 cond_resched(); 2628 } while (1); 2629 2630 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2631 finish_wait(&ctx->cq_wait, &iowq.wq); 2632 restore_saved_sigmask_unless(ret == -EINTR); 2633 2634 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2635 } 2636 2637 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2638 size_t size) 2639 { 2640 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2641 size); 2642 } 2643 2644 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2645 size_t size) 2646 { 2647 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2648 size); 2649 } 2650 2651 static void io_rings_free(struct io_ring_ctx *ctx) 2652 { 2653 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2654 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages, 2655 true); 2656 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages, 2657 true); 2658 } else { 2659 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2660 ctx->n_ring_pages = 0; 2661 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2662 ctx->n_sqe_pages = 0; 2663 vunmap(ctx->rings); 2664 vunmap(ctx->sq_sqes); 2665 } 2666 2667 ctx->rings = NULL; 2668 ctx->sq_sqes = NULL; 2669 } 2670 2671 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2672 unsigned int cq_entries, size_t *sq_offset) 2673 { 2674 struct io_rings *rings; 2675 size_t off, sq_array_size; 2676 2677 off = struct_size(rings, cqes, cq_entries); 2678 if (off == SIZE_MAX) 2679 return SIZE_MAX; 2680 if (flags & IORING_SETUP_CQE32) { 2681 if (check_shl_overflow(off, 1, &off)) 2682 return SIZE_MAX; 2683 } 2684 2685 #ifdef CONFIG_SMP 2686 off = ALIGN(off, SMP_CACHE_BYTES); 2687 if (off == 0) 2688 return SIZE_MAX; 2689 #endif 2690 2691 if (flags & IORING_SETUP_NO_SQARRAY) { 2692 *sq_offset = SIZE_MAX; 2693 return off; 2694 } 2695 2696 *sq_offset = off; 2697 2698 sq_array_size = array_size(sizeof(u32), sq_entries); 2699 if (sq_array_size == SIZE_MAX) 2700 return SIZE_MAX; 2701 2702 if (check_add_overflow(off, sq_array_size, &off)) 2703 return SIZE_MAX; 2704 2705 return off; 2706 } 2707 2708 static void io_req_caches_free(struct io_ring_ctx *ctx) 2709 { 2710 struct io_kiocb *req; 2711 int nr = 0; 2712 2713 mutex_lock(&ctx->uring_lock); 2714 2715 while (!io_req_cache_empty(ctx)) { 2716 req = io_extract_req(ctx); 2717 kmem_cache_free(req_cachep, req); 2718 nr++; 2719 } 2720 if (nr) 2721 percpu_ref_put_many(&ctx->refs, nr); 2722 mutex_unlock(&ctx->uring_lock); 2723 } 2724 2725 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2726 { 2727 io_sq_thread_finish(ctx); 2728 2729 mutex_lock(&ctx->uring_lock); 2730 io_sqe_buffers_unregister(ctx); 2731 io_sqe_files_unregister(ctx); 2732 io_cqring_overflow_kill(ctx); 2733 io_eventfd_unregister(ctx); 2734 io_alloc_cache_free(&ctx->apoll_cache, kfree); 2735 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2736 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 2737 io_alloc_cache_free(&ctx->uring_cache, kfree); 2738 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 2739 io_futex_cache_free(ctx); 2740 io_destroy_buffers(ctx); 2741 io_free_region(ctx, &ctx->param_region); 2742 mutex_unlock(&ctx->uring_lock); 2743 if (ctx->sq_creds) 2744 put_cred(ctx->sq_creds); 2745 if (ctx->submitter_task) 2746 put_task_struct(ctx->submitter_task); 2747 2748 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2749 2750 if (ctx->mm_account) { 2751 mmdrop(ctx->mm_account); 2752 ctx->mm_account = NULL; 2753 } 2754 io_rings_free(ctx); 2755 2756 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2757 static_branch_dec(&io_key_has_sqarray); 2758 2759 percpu_ref_exit(&ctx->refs); 2760 free_uid(ctx->user); 2761 io_req_caches_free(ctx); 2762 if (ctx->hash_map) 2763 io_wq_put_hash(ctx->hash_map); 2764 io_napi_free(ctx); 2765 kvfree(ctx->cancel_table.hbs); 2766 xa_destroy(&ctx->io_bl_xa); 2767 kfree(ctx); 2768 } 2769 2770 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2771 { 2772 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2773 poll_wq_task_work); 2774 2775 mutex_lock(&ctx->uring_lock); 2776 ctx->poll_activated = true; 2777 mutex_unlock(&ctx->uring_lock); 2778 2779 /* 2780 * Wake ups for some events between start of polling and activation 2781 * might've been lost due to loose synchronisation. 2782 */ 2783 wake_up_all(&ctx->poll_wq); 2784 percpu_ref_put(&ctx->refs); 2785 } 2786 2787 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2788 { 2789 spin_lock(&ctx->completion_lock); 2790 /* already activated or in progress */ 2791 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2792 goto out; 2793 if (WARN_ON_ONCE(!ctx->task_complete)) 2794 goto out; 2795 if (!ctx->submitter_task) 2796 goto out; 2797 /* 2798 * with ->submitter_task only the submitter task completes requests, we 2799 * only need to sync with it, which is done by injecting a tw 2800 */ 2801 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2802 percpu_ref_get(&ctx->refs); 2803 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2804 percpu_ref_put(&ctx->refs); 2805 out: 2806 spin_unlock(&ctx->completion_lock); 2807 } 2808 2809 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2810 { 2811 struct io_ring_ctx *ctx = file->private_data; 2812 __poll_t mask = 0; 2813 2814 if (unlikely(!ctx->poll_activated)) 2815 io_activate_pollwq(ctx); 2816 2817 poll_wait(file, &ctx->poll_wq, wait); 2818 /* 2819 * synchronizes with barrier from wq_has_sleeper call in 2820 * io_commit_cqring 2821 */ 2822 smp_rmb(); 2823 if (!io_sqring_full(ctx)) 2824 mask |= EPOLLOUT | EPOLLWRNORM; 2825 2826 /* 2827 * Don't flush cqring overflow list here, just do a simple check. 2828 * Otherwise there could possible be ABBA deadlock: 2829 * CPU0 CPU1 2830 * ---- ---- 2831 * lock(&ctx->uring_lock); 2832 * lock(&ep->mtx); 2833 * lock(&ctx->uring_lock); 2834 * lock(&ep->mtx); 2835 * 2836 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2837 * pushes them to do the flush. 2838 */ 2839 2840 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2841 mask |= EPOLLIN | EPOLLRDNORM; 2842 2843 return mask; 2844 } 2845 2846 struct io_tctx_exit { 2847 struct callback_head task_work; 2848 struct completion completion; 2849 struct io_ring_ctx *ctx; 2850 }; 2851 2852 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2853 { 2854 struct io_uring_task *tctx = current->io_uring; 2855 struct io_tctx_exit *work; 2856 2857 work = container_of(cb, struct io_tctx_exit, task_work); 2858 /* 2859 * When @in_cancel, we're in cancellation and it's racy to remove the 2860 * node. It'll be removed by the end of cancellation, just ignore it. 2861 * tctx can be NULL if the queueing of this task_work raced with 2862 * work cancelation off the exec path. 2863 */ 2864 if (tctx && !atomic_read(&tctx->in_cancel)) 2865 io_uring_del_tctx_node((unsigned long)work->ctx); 2866 complete(&work->completion); 2867 } 2868 2869 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2870 { 2871 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2872 2873 return req->ctx == data; 2874 } 2875 2876 static __cold void io_ring_exit_work(struct work_struct *work) 2877 { 2878 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2879 unsigned long timeout = jiffies + HZ * 60 * 5; 2880 unsigned long interval = HZ / 20; 2881 struct io_tctx_exit exit; 2882 struct io_tctx_node *node; 2883 int ret; 2884 2885 /* 2886 * If we're doing polled IO and end up having requests being 2887 * submitted async (out-of-line), then completions can come in while 2888 * we're waiting for refs to drop. We need to reap these manually, 2889 * as nobody else will be looking for them. 2890 */ 2891 do { 2892 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2893 mutex_lock(&ctx->uring_lock); 2894 io_cqring_overflow_kill(ctx); 2895 mutex_unlock(&ctx->uring_lock); 2896 } 2897 2898 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2899 io_move_task_work_from_local(ctx); 2900 2901 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2902 cond_resched(); 2903 2904 if (ctx->sq_data) { 2905 struct io_sq_data *sqd = ctx->sq_data; 2906 struct task_struct *tsk; 2907 2908 io_sq_thread_park(sqd); 2909 tsk = sqd->thread; 2910 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2911 io_wq_cancel_cb(tsk->io_uring->io_wq, 2912 io_cancel_ctx_cb, ctx, true); 2913 io_sq_thread_unpark(sqd); 2914 } 2915 2916 io_req_caches_free(ctx); 2917 2918 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2919 /* there is little hope left, don't run it too often */ 2920 interval = HZ * 60; 2921 } 2922 /* 2923 * This is really an uninterruptible wait, as it has to be 2924 * complete. But it's also run from a kworker, which doesn't 2925 * take signals, so it's fine to make it interruptible. This 2926 * avoids scenarios where we knowingly can wait much longer 2927 * on completions, for example if someone does a SIGSTOP on 2928 * a task that needs to finish task_work to make this loop 2929 * complete. That's a synthetic situation that should not 2930 * cause a stuck task backtrace, and hence a potential panic 2931 * on stuck tasks if that is enabled. 2932 */ 2933 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2934 2935 init_completion(&exit.completion); 2936 init_task_work(&exit.task_work, io_tctx_exit_cb); 2937 exit.ctx = ctx; 2938 2939 mutex_lock(&ctx->uring_lock); 2940 while (!list_empty(&ctx->tctx_list)) { 2941 WARN_ON_ONCE(time_after(jiffies, timeout)); 2942 2943 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2944 ctx_node); 2945 /* don't spin on a single task if cancellation failed */ 2946 list_rotate_left(&ctx->tctx_list); 2947 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2948 if (WARN_ON_ONCE(ret)) 2949 continue; 2950 2951 mutex_unlock(&ctx->uring_lock); 2952 /* 2953 * See comment above for 2954 * wait_for_completion_interruptible_timeout() on why this 2955 * wait is marked as interruptible. 2956 */ 2957 wait_for_completion_interruptible(&exit.completion); 2958 mutex_lock(&ctx->uring_lock); 2959 } 2960 mutex_unlock(&ctx->uring_lock); 2961 spin_lock(&ctx->completion_lock); 2962 spin_unlock(&ctx->completion_lock); 2963 2964 /* pairs with RCU read section in io_req_local_work_add() */ 2965 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2966 synchronize_rcu(); 2967 2968 io_ring_ctx_free(ctx); 2969 } 2970 2971 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2972 { 2973 unsigned long index; 2974 struct creds *creds; 2975 2976 mutex_lock(&ctx->uring_lock); 2977 percpu_ref_kill(&ctx->refs); 2978 xa_for_each(&ctx->personalities, index, creds) 2979 io_unregister_personality(ctx, index); 2980 mutex_unlock(&ctx->uring_lock); 2981 2982 flush_delayed_work(&ctx->fallback_work); 2983 2984 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2985 /* 2986 * Use system_unbound_wq to avoid spawning tons of event kworkers 2987 * if we're exiting a ton of rings at the same time. It just adds 2988 * noise and overhead, there's no discernable change in runtime 2989 * over using system_wq. 2990 */ 2991 queue_work(iou_wq, &ctx->exit_work); 2992 } 2993 2994 static int io_uring_release(struct inode *inode, struct file *file) 2995 { 2996 struct io_ring_ctx *ctx = file->private_data; 2997 2998 file->private_data = NULL; 2999 io_ring_ctx_wait_and_kill(ctx); 3000 return 0; 3001 } 3002 3003 struct io_task_cancel { 3004 struct io_uring_task *tctx; 3005 bool all; 3006 }; 3007 3008 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3009 { 3010 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3011 struct io_task_cancel *cancel = data; 3012 3013 return io_match_task_safe(req, cancel->tctx, cancel->all); 3014 } 3015 3016 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3017 struct io_uring_task *tctx, 3018 bool cancel_all) 3019 { 3020 struct io_defer_entry *de; 3021 LIST_HEAD(list); 3022 3023 spin_lock(&ctx->completion_lock); 3024 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3025 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3026 list_cut_position(&list, &ctx->defer_list, &de->list); 3027 break; 3028 } 3029 } 3030 spin_unlock(&ctx->completion_lock); 3031 if (list_empty(&list)) 3032 return false; 3033 3034 while (!list_empty(&list)) { 3035 de = list_first_entry(&list, struct io_defer_entry, list); 3036 list_del_init(&de->list); 3037 io_req_task_queue_fail(de->req, -ECANCELED); 3038 kfree(de); 3039 } 3040 return true; 3041 } 3042 3043 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3044 { 3045 struct io_tctx_node *node; 3046 enum io_wq_cancel cret; 3047 bool ret = false; 3048 3049 mutex_lock(&ctx->uring_lock); 3050 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3051 struct io_uring_task *tctx = node->task->io_uring; 3052 3053 /* 3054 * io_wq will stay alive while we hold uring_lock, because it's 3055 * killed after ctx nodes, which requires to take the lock. 3056 */ 3057 if (!tctx || !tctx->io_wq) 3058 continue; 3059 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3060 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3061 } 3062 mutex_unlock(&ctx->uring_lock); 3063 3064 return ret; 3065 } 3066 3067 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3068 struct io_uring_task *tctx, 3069 bool cancel_all) 3070 { 3071 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3072 enum io_wq_cancel cret; 3073 bool ret = false; 3074 3075 /* set it so io_req_local_work_add() would wake us up */ 3076 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3077 atomic_set(&ctx->cq_wait_nr, 1); 3078 smp_mb(); 3079 } 3080 3081 /* failed during ring init, it couldn't have issued any requests */ 3082 if (!ctx->rings) 3083 return false; 3084 3085 if (!tctx) { 3086 ret |= io_uring_try_cancel_iowq(ctx); 3087 } else if (tctx->io_wq) { 3088 /* 3089 * Cancels requests of all rings, not only @ctx, but 3090 * it's fine as the task is in exit/exec. 3091 */ 3092 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3093 &cancel, true); 3094 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3095 } 3096 3097 /* SQPOLL thread does its own polling */ 3098 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3099 (ctx->sq_data && ctx->sq_data->thread == current)) { 3100 while (!wq_list_empty(&ctx->iopoll_list)) { 3101 io_iopoll_try_reap_events(ctx); 3102 ret = true; 3103 cond_resched(); 3104 } 3105 } 3106 3107 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3108 io_allowed_defer_tw_run(ctx)) 3109 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3110 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3111 mutex_lock(&ctx->uring_lock); 3112 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3113 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3114 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3115 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3116 mutex_unlock(&ctx->uring_lock); 3117 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3118 if (tctx) 3119 ret |= io_run_task_work() > 0; 3120 else 3121 ret |= flush_delayed_work(&ctx->fallback_work); 3122 return ret; 3123 } 3124 3125 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3126 { 3127 if (tracked) 3128 return atomic_read(&tctx->inflight_tracked); 3129 return percpu_counter_sum(&tctx->inflight); 3130 } 3131 3132 /* 3133 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3134 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3135 */ 3136 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3137 { 3138 struct io_uring_task *tctx = current->io_uring; 3139 struct io_ring_ctx *ctx; 3140 struct io_tctx_node *node; 3141 unsigned long index; 3142 s64 inflight; 3143 DEFINE_WAIT(wait); 3144 3145 WARN_ON_ONCE(sqd && sqd->thread != current); 3146 3147 if (!current->io_uring) 3148 return; 3149 if (tctx->io_wq) 3150 io_wq_exit_start(tctx->io_wq); 3151 3152 atomic_inc(&tctx->in_cancel); 3153 do { 3154 bool loop = false; 3155 3156 io_uring_drop_tctx_refs(current); 3157 if (!tctx_inflight(tctx, !cancel_all)) 3158 break; 3159 3160 /* read completions before cancelations */ 3161 inflight = tctx_inflight(tctx, false); 3162 if (!inflight) 3163 break; 3164 3165 if (!sqd) { 3166 xa_for_each(&tctx->xa, index, node) { 3167 /* sqpoll task will cancel all its requests */ 3168 if (node->ctx->sq_data) 3169 continue; 3170 loop |= io_uring_try_cancel_requests(node->ctx, 3171 current->io_uring, 3172 cancel_all); 3173 } 3174 } else { 3175 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3176 loop |= io_uring_try_cancel_requests(ctx, 3177 current->io_uring, 3178 cancel_all); 3179 } 3180 3181 if (loop) { 3182 cond_resched(); 3183 continue; 3184 } 3185 3186 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3187 io_run_task_work(); 3188 io_uring_drop_tctx_refs(current); 3189 xa_for_each(&tctx->xa, index, node) { 3190 if (io_local_work_pending(node->ctx)) { 3191 WARN_ON_ONCE(node->ctx->submitter_task && 3192 node->ctx->submitter_task != current); 3193 goto end_wait; 3194 } 3195 } 3196 /* 3197 * If we've seen completions, retry without waiting. This 3198 * avoids a race where a completion comes in before we did 3199 * prepare_to_wait(). 3200 */ 3201 if (inflight == tctx_inflight(tctx, !cancel_all)) 3202 schedule(); 3203 end_wait: 3204 finish_wait(&tctx->wait, &wait); 3205 } while (1); 3206 3207 io_uring_clean_tctx(tctx); 3208 if (cancel_all) { 3209 /* 3210 * We shouldn't run task_works after cancel, so just leave 3211 * ->in_cancel set for normal exit. 3212 */ 3213 atomic_dec(&tctx->in_cancel); 3214 /* for exec all current's requests should be gone, kill tctx */ 3215 __io_uring_free(current); 3216 } 3217 } 3218 3219 void __io_uring_cancel(bool cancel_all) 3220 { 3221 io_uring_unreg_ringfd(); 3222 io_uring_cancel_generic(cancel_all, NULL); 3223 } 3224 3225 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3226 const struct io_uring_getevents_arg __user *uarg) 3227 { 3228 unsigned long size = sizeof(struct io_uring_reg_wait); 3229 unsigned long offset = (uintptr_t)uarg; 3230 unsigned long end; 3231 3232 if (unlikely(offset % sizeof(long))) 3233 return ERR_PTR(-EFAULT); 3234 3235 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3236 if (unlikely(check_add_overflow(offset, size, &end) || 3237 end > ctx->cq_wait_size)) 3238 return ERR_PTR(-EFAULT); 3239 3240 return ctx->cq_wait_arg + offset; 3241 } 3242 3243 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3244 const void __user *argp, size_t argsz) 3245 { 3246 struct io_uring_getevents_arg arg; 3247 3248 if (!(flags & IORING_ENTER_EXT_ARG)) 3249 return 0; 3250 if (flags & IORING_ENTER_EXT_ARG_REG) 3251 return -EINVAL; 3252 if (argsz != sizeof(arg)) 3253 return -EINVAL; 3254 if (copy_from_user(&arg, argp, sizeof(arg))) 3255 return -EFAULT; 3256 return 0; 3257 } 3258 3259 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3260 const void __user *argp, struct ext_arg *ext_arg) 3261 { 3262 const struct io_uring_getevents_arg __user *uarg = argp; 3263 struct io_uring_getevents_arg arg; 3264 3265 /* 3266 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3267 * is just a pointer to the sigset_t. 3268 */ 3269 if (!(flags & IORING_ENTER_EXT_ARG)) { 3270 ext_arg->sig = (const sigset_t __user *) argp; 3271 return 0; 3272 } 3273 3274 if (flags & IORING_ENTER_EXT_ARG_REG) { 3275 struct io_uring_reg_wait *w; 3276 3277 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3278 return -EINVAL; 3279 w = io_get_ext_arg_reg(ctx, argp); 3280 if (IS_ERR(w)) 3281 return PTR_ERR(w); 3282 3283 if (w->flags & ~IORING_REG_WAIT_TS) 3284 return -EINVAL; 3285 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3286 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3287 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3288 if (w->flags & IORING_REG_WAIT_TS) { 3289 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3290 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3291 ext_arg->ts_set = true; 3292 } 3293 return 0; 3294 } 3295 3296 /* 3297 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3298 * timespec and sigset_t pointers if good. 3299 */ 3300 if (ext_arg->argsz != sizeof(arg)) 3301 return -EINVAL; 3302 #ifdef CONFIG_64BIT 3303 if (!user_access_begin(uarg, sizeof(*uarg))) 3304 return -EFAULT; 3305 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3306 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3307 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3308 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3309 user_access_end(); 3310 #else 3311 if (copy_from_user(&arg, uarg, sizeof(arg))) 3312 return -EFAULT; 3313 #endif 3314 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3315 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3316 ext_arg->argsz = arg.sigmask_sz; 3317 if (arg.ts) { 3318 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3319 return -EFAULT; 3320 ext_arg->ts_set = true; 3321 } 3322 return 0; 3323 #ifdef CONFIG_64BIT 3324 uaccess_end: 3325 user_access_end(); 3326 return -EFAULT; 3327 #endif 3328 } 3329 3330 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3331 u32, min_complete, u32, flags, const void __user *, argp, 3332 size_t, argsz) 3333 { 3334 struct io_ring_ctx *ctx; 3335 struct file *file; 3336 long ret; 3337 3338 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3339 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3340 IORING_ENTER_REGISTERED_RING | 3341 IORING_ENTER_ABS_TIMER | 3342 IORING_ENTER_EXT_ARG_REG))) 3343 return -EINVAL; 3344 3345 /* 3346 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3347 * need only dereference our task private array to find it. 3348 */ 3349 if (flags & IORING_ENTER_REGISTERED_RING) { 3350 struct io_uring_task *tctx = current->io_uring; 3351 3352 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3353 return -EINVAL; 3354 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3355 file = tctx->registered_rings[fd]; 3356 if (unlikely(!file)) 3357 return -EBADF; 3358 } else { 3359 file = fget(fd); 3360 if (unlikely(!file)) 3361 return -EBADF; 3362 ret = -EOPNOTSUPP; 3363 if (unlikely(!io_is_uring_fops(file))) 3364 goto out; 3365 } 3366 3367 ctx = file->private_data; 3368 ret = -EBADFD; 3369 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3370 goto out; 3371 3372 /* 3373 * For SQ polling, the thread will do all submissions and completions. 3374 * Just return the requested submit count, and wake the thread if 3375 * we were asked to. 3376 */ 3377 ret = 0; 3378 if (ctx->flags & IORING_SETUP_SQPOLL) { 3379 if (unlikely(ctx->sq_data->thread == NULL)) { 3380 ret = -EOWNERDEAD; 3381 goto out; 3382 } 3383 if (flags & IORING_ENTER_SQ_WAKEUP) 3384 wake_up(&ctx->sq_data->wait); 3385 if (flags & IORING_ENTER_SQ_WAIT) 3386 io_sqpoll_wait_sq(ctx); 3387 3388 ret = to_submit; 3389 } else if (to_submit) { 3390 ret = io_uring_add_tctx_node(ctx); 3391 if (unlikely(ret)) 3392 goto out; 3393 3394 mutex_lock(&ctx->uring_lock); 3395 ret = io_submit_sqes(ctx, to_submit); 3396 if (ret != to_submit) { 3397 mutex_unlock(&ctx->uring_lock); 3398 goto out; 3399 } 3400 if (flags & IORING_ENTER_GETEVENTS) { 3401 if (ctx->syscall_iopoll) 3402 goto iopoll_locked; 3403 /* 3404 * Ignore errors, we'll soon call io_cqring_wait() and 3405 * it should handle ownership problems if any. 3406 */ 3407 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3408 (void)io_run_local_work_locked(ctx, min_complete); 3409 } 3410 mutex_unlock(&ctx->uring_lock); 3411 } 3412 3413 if (flags & IORING_ENTER_GETEVENTS) { 3414 int ret2; 3415 3416 if (ctx->syscall_iopoll) { 3417 /* 3418 * We disallow the app entering submit/complete with 3419 * polling, but we still need to lock the ring to 3420 * prevent racing with polled issue that got punted to 3421 * a workqueue. 3422 */ 3423 mutex_lock(&ctx->uring_lock); 3424 iopoll_locked: 3425 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3426 if (likely(!ret2)) { 3427 min_complete = min(min_complete, 3428 ctx->cq_entries); 3429 ret2 = io_iopoll_check(ctx, min_complete); 3430 } 3431 mutex_unlock(&ctx->uring_lock); 3432 } else { 3433 struct ext_arg ext_arg = { .argsz = argsz }; 3434 3435 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3436 if (likely(!ret2)) { 3437 min_complete = min(min_complete, 3438 ctx->cq_entries); 3439 ret2 = io_cqring_wait(ctx, min_complete, flags, 3440 &ext_arg); 3441 } 3442 } 3443 3444 if (!ret) { 3445 ret = ret2; 3446 3447 /* 3448 * EBADR indicates that one or more CQE were dropped. 3449 * Once the user has been informed we can clear the bit 3450 * as they are obviously ok with those drops. 3451 */ 3452 if (unlikely(ret2 == -EBADR)) 3453 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3454 &ctx->check_cq); 3455 } 3456 } 3457 out: 3458 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3459 fput(file); 3460 return ret; 3461 } 3462 3463 static const struct file_operations io_uring_fops = { 3464 .release = io_uring_release, 3465 .mmap = io_uring_mmap, 3466 .get_unmapped_area = io_uring_get_unmapped_area, 3467 #ifndef CONFIG_MMU 3468 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3469 #endif 3470 .poll = io_uring_poll, 3471 #ifdef CONFIG_PROC_FS 3472 .show_fdinfo = io_uring_show_fdinfo, 3473 #endif 3474 }; 3475 3476 bool io_is_uring_fops(struct file *file) 3477 { 3478 return file->f_op == &io_uring_fops; 3479 } 3480 3481 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3482 struct io_uring_params *p) 3483 { 3484 struct io_rings *rings; 3485 size_t size, sq_array_offset; 3486 void *ptr; 3487 3488 /* make sure these are sane, as we already accounted them */ 3489 ctx->sq_entries = p->sq_entries; 3490 ctx->cq_entries = p->cq_entries; 3491 3492 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3493 &sq_array_offset); 3494 if (size == SIZE_MAX) 3495 return -EOVERFLOW; 3496 3497 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3498 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size); 3499 else 3500 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3501 3502 if (IS_ERR(rings)) 3503 return PTR_ERR(rings); 3504 3505 ctx->rings = rings; 3506 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3507 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3508 rings->sq_ring_mask = p->sq_entries - 1; 3509 rings->cq_ring_mask = p->cq_entries - 1; 3510 rings->sq_ring_entries = p->sq_entries; 3511 rings->cq_ring_entries = p->cq_entries; 3512 3513 if (p->flags & IORING_SETUP_SQE128) 3514 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3515 else 3516 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3517 if (size == SIZE_MAX) { 3518 io_rings_free(ctx); 3519 return -EOVERFLOW; 3520 } 3521 3522 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3523 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size); 3524 else 3525 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3526 3527 if (IS_ERR(ptr)) { 3528 io_rings_free(ctx); 3529 return PTR_ERR(ptr); 3530 } 3531 3532 ctx->sq_sqes = ptr; 3533 return 0; 3534 } 3535 3536 static int io_uring_install_fd(struct file *file) 3537 { 3538 int fd; 3539 3540 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3541 if (fd < 0) 3542 return fd; 3543 fd_install(fd, file); 3544 return fd; 3545 } 3546 3547 /* 3548 * Allocate an anonymous fd, this is what constitutes the application 3549 * visible backing of an io_uring instance. The application mmaps this 3550 * fd to gain access to the SQ/CQ ring details. 3551 */ 3552 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3553 { 3554 /* Create a new inode so that the LSM can block the creation. */ 3555 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3556 O_RDWR | O_CLOEXEC, NULL); 3557 } 3558 3559 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3560 { 3561 if (!entries) 3562 return -EINVAL; 3563 if (entries > IORING_MAX_ENTRIES) { 3564 if (!(p->flags & IORING_SETUP_CLAMP)) 3565 return -EINVAL; 3566 entries = IORING_MAX_ENTRIES; 3567 } 3568 3569 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3570 && !(p->flags & IORING_SETUP_NO_MMAP)) 3571 return -EINVAL; 3572 3573 /* 3574 * Use twice as many entries for the CQ ring. It's possible for the 3575 * application to drive a higher depth than the size of the SQ ring, 3576 * since the sqes are only used at submission time. This allows for 3577 * some flexibility in overcommitting a bit. If the application has 3578 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3579 * of CQ ring entries manually. 3580 */ 3581 p->sq_entries = roundup_pow_of_two(entries); 3582 if (p->flags & IORING_SETUP_CQSIZE) { 3583 /* 3584 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3585 * to a power-of-two, if it isn't already. We do NOT impose 3586 * any cq vs sq ring sizing. 3587 */ 3588 if (!p->cq_entries) 3589 return -EINVAL; 3590 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3591 if (!(p->flags & IORING_SETUP_CLAMP)) 3592 return -EINVAL; 3593 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3594 } 3595 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3596 if (p->cq_entries < p->sq_entries) 3597 return -EINVAL; 3598 } else { 3599 p->cq_entries = 2 * p->sq_entries; 3600 } 3601 3602 p->sq_off.head = offsetof(struct io_rings, sq.head); 3603 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3604 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3605 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3606 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3607 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3608 p->sq_off.resv1 = 0; 3609 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3610 p->sq_off.user_addr = 0; 3611 3612 p->cq_off.head = offsetof(struct io_rings, cq.head); 3613 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3614 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3615 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3616 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3617 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3618 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3619 p->cq_off.resv1 = 0; 3620 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3621 p->cq_off.user_addr = 0; 3622 3623 return 0; 3624 } 3625 3626 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3627 struct io_uring_params __user *params) 3628 { 3629 struct io_ring_ctx *ctx; 3630 struct io_uring_task *tctx; 3631 struct file *file; 3632 int ret; 3633 3634 ret = io_uring_fill_params(entries, p); 3635 if (unlikely(ret)) 3636 return ret; 3637 3638 ctx = io_ring_ctx_alloc(p); 3639 if (!ctx) 3640 return -ENOMEM; 3641 3642 ctx->clockid = CLOCK_MONOTONIC; 3643 ctx->clock_offset = 0; 3644 3645 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3646 static_branch_inc(&io_key_has_sqarray); 3647 3648 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3649 !(ctx->flags & IORING_SETUP_IOPOLL) && 3650 !(ctx->flags & IORING_SETUP_SQPOLL)) 3651 ctx->task_complete = true; 3652 3653 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3654 ctx->lockless_cq = true; 3655 3656 /* 3657 * lazy poll_wq activation relies on ->task_complete for synchronisation 3658 * purposes, see io_activate_pollwq() 3659 */ 3660 if (!ctx->task_complete) 3661 ctx->poll_activated = true; 3662 3663 /* 3664 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3665 * space applications don't need to do io completion events 3666 * polling again, they can rely on io_sq_thread to do polling 3667 * work, which can reduce cpu usage and uring_lock contention. 3668 */ 3669 if (ctx->flags & IORING_SETUP_IOPOLL && 3670 !(ctx->flags & IORING_SETUP_SQPOLL)) 3671 ctx->syscall_iopoll = 1; 3672 3673 ctx->compat = in_compat_syscall(); 3674 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3675 ctx->user = get_uid(current_user()); 3676 3677 /* 3678 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3679 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3680 */ 3681 ret = -EINVAL; 3682 if (ctx->flags & IORING_SETUP_SQPOLL) { 3683 /* IPI related flags don't make sense with SQPOLL */ 3684 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3685 IORING_SETUP_TASKRUN_FLAG | 3686 IORING_SETUP_DEFER_TASKRUN)) 3687 goto err; 3688 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3689 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3690 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3691 } else { 3692 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3693 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3694 goto err; 3695 ctx->notify_method = TWA_SIGNAL; 3696 } 3697 3698 /* HYBRID_IOPOLL only valid with IOPOLL */ 3699 if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) == 3700 IORING_SETUP_HYBRID_IOPOLL) 3701 goto err; 3702 3703 /* 3704 * For DEFER_TASKRUN we require the completion task to be the same as the 3705 * submission task. This implies that there is only one submitter, so enforce 3706 * that. 3707 */ 3708 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3709 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3710 goto err; 3711 } 3712 3713 /* 3714 * This is just grabbed for accounting purposes. When a process exits, 3715 * the mm is exited and dropped before the files, hence we need to hang 3716 * on to this mm purely for the purposes of being able to unaccount 3717 * memory (locked/pinned vm). It's not used for anything else. 3718 */ 3719 mmgrab(current->mm); 3720 ctx->mm_account = current->mm; 3721 3722 ret = io_allocate_scq_urings(ctx, p); 3723 if (ret) 3724 goto err; 3725 3726 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3727 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3728 3729 ret = io_sq_offload_create(ctx, p); 3730 if (ret) 3731 goto err; 3732 3733 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3734 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3735 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3736 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3737 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3738 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3739 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3740 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT; 3741 3742 if (copy_to_user(params, p, sizeof(*p))) { 3743 ret = -EFAULT; 3744 goto err; 3745 } 3746 3747 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3748 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3749 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3750 3751 file = io_uring_get_file(ctx); 3752 if (IS_ERR(file)) { 3753 ret = PTR_ERR(file); 3754 goto err; 3755 } 3756 3757 ret = __io_uring_add_tctx_node(ctx); 3758 if (ret) 3759 goto err_fput; 3760 tctx = current->io_uring; 3761 3762 /* 3763 * Install ring fd as the very last thing, so we don't risk someone 3764 * having closed it before we finish setup 3765 */ 3766 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3767 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3768 else 3769 ret = io_uring_install_fd(file); 3770 if (ret < 0) 3771 goto err_fput; 3772 3773 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3774 return ret; 3775 err: 3776 io_ring_ctx_wait_and_kill(ctx); 3777 return ret; 3778 err_fput: 3779 fput(file); 3780 return ret; 3781 } 3782 3783 /* 3784 * Sets up an aio uring context, and returns the fd. Applications asks for a 3785 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3786 * params structure passed in. 3787 */ 3788 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3789 { 3790 struct io_uring_params p; 3791 int i; 3792 3793 if (copy_from_user(&p, params, sizeof(p))) 3794 return -EFAULT; 3795 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3796 if (p.resv[i]) 3797 return -EINVAL; 3798 } 3799 3800 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3801 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3802 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3803 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3804 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3805 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3806 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3807 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3808 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3809 return -EINVAL; 3810 3811 return io_uring_create(entries, &p, params); 3812 } 3813 3814 static inline bool io_uring_allowed(void) 3815 { 3816 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3817 kgid_t io_uring_group; 3818 3819 if (disabled == 2) 3820 return false; 3821 3822 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3823 return true; 3824 3825 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3826 if (!gid_valid(io_uring_group)) 3827 return false; 3828 3829 return in_group_p(io_uring_group); 3830 } 3831 3832 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3833 struct io_uring_params __user *, params) 3834 { 3835 if (!io_uring_allowed()) 3836 return -EPERM; 3837 3838 return io_uring_setup(entries, params); 3839 } 3840 3841 static int __init io_uring_init(void) 3842 { 3843 struct kmem_cache_args kmem_args = { 3844 .useroffset = offsetof(struct io_kiocb, cmd.data), 3845 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3846 .freeptr_offset = offsetof(struct io_kiocb, work), 3847 .use_freeptr_offset = true, 3848 }; 3849 3850 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3851 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3852 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3853 } while (0) 3854 3855 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3856 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3857 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3858 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3859 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3860 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3861 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3862 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3863 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3864 BUILD_BUG_SQE_ELEM(8, __u64, off); 3865 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3866 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3867 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3868 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3869 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3870 BUILD_BUG_SQE_ELEM(24, __u32, len); 3871 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3872 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3873 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3874 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3875 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3876 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3877 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3878 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3879 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3880 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3881 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3882 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3883 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3884 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3885 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3886 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3887 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3888 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3889 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3890 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3891 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3892 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3893 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3894 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3895 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3896 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3897 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3898 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3899 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3900 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3901 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3902 3903 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3904 sizeof(struct io_uring_rsrc_update)); 3905 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3906 sizeof(struct io_uring_rsrc_update2)); 3907 3908 /* ->buf_index is u16 */ 3909 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3910 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3911 offsetof(struct io_uring_buf_ring, tail)); 3912 3913 /* should fit into one byte */ 3914 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3915 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3916 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3917 3918 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3919 3920 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3921 3922 /* top 8bits are for internal use */ 3923 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3924 3925 io_uring_optable_init(); 3926 3927 /* 3928 * Allow user copy in the per-command field, which starts after the 3929 * file in io_kiocb and until the opcode field. The openat2 handling 3930 * requires copying in user memory into the io_kiocb object in that 3931 * range, and HARDENED_USERCOPY will complain if we haven't 3932 * correctly annotated this range. 3933 */ 3934 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3935 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3936 SLAB_TYPESAFE_BY_RCU); 3937 io_buf_cachep = KMEM_CACHE(io_buffer, 3938 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 3939 3940 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3941 3942 #ifdef CONFIG_SYSCTL 3943 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3944 #endif 3945 3946 return 0; 3947 }; 3948 __initcall(io_uring_init); 3949