1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <linux/anon_inodes.h> 63 #include <linux/sched/mm.h> 64 #include <linux/uaccess.h> 65 #include <linux/nospec.h> 66 #include <linux/fsnotify.h> 67 #include <linux/fadvise.h> 68 #include <linux/task_work.h> 69 #include <linux/io_uring.h> 70 #include <linux/io_uring/cmd.h> 71 #include <linux/audit.h> 72 #include <linux/security.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 101 #include "timeout.h" 102 #include "poll.h" 103 #include "rw.h" 104 #include "alloc_cache.h" 105 #include "eventfd.h" 106 107 #define IORING_MAX_ENTRIES 32768 108 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 109 110 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 111 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 112 113 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 114 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 118 REQ_F_ASYNC_DATA) 119 120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 121 IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 128 struct io_defer_entry { 129 struct list_head list; 130 struct io_kiocb *req; 131 u32 seq; 132 }; 133 134 /* requests with any of those set should undergo io_disarm_next() */ 135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 136 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 137 138 /* 139 * No waiters. It's larger than any valid value of the tw counter 140 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 141 */ 142 #define IO_CQ_WAKE_INIT (-1U) 143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 145 146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 147 struct task_struct *task, 148 bool cancel_all); 149 150 static void io_queue_sqe(struct io_kiocb *req); 151 152 struct kmem_cache *req_cachep; 153 static struct workqueue_struct *iou_wq __ro_after_init; 154 155 static int __read_mostly sysctl_io_uring_disabled; 156 static int __read_mostly sysctl_io_uring_group = -1; 157 158 #ifdef CONFIG_SYSCTL 159 static struct ctl_table kernel_io_uring_disabled_table[] = { 160 { 161 .procname = "io_uring_disabled", 162 .data = &sysctl_io_uring_disabled, 163 .maxlen = sizeof(sysctl_io_uring_disabled), 164 .mode = 0644, 165 .proc_handler = proc_dointvec_minmax, 166 .extra1 = SYSCTL_ZERO, 167 .extra2 = SYSCTL_TWO, 168 }, 169 { 170 .procname = "io_uring_group", 171 .data = &sysctl_io_uring_group, 172 .maxlen = sizeof(gid_t), 173 .mode = 0644, 174 .proc_handler = proc_dointvec, 175 }, 176 }; 177 #endif 178 179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 180 { 181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 182 } 183 184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 185 { 186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 187 } 188 189 static bool io_match_linked(struct io_kiocb *head) 190 { 191 struct io_kiocb *req; 192 193 io_for_each_link(req, head) { 194 if (req->flags & REQ_F_INFLIGHT) 195 return true; 196 } 197 return false; 198 } 199 200 /* 201 * As io_match_task() but protected against racing with linked timeouts. 202 * User must not hold timeout_lock. 203 */ 204 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 205 bool cancel_all) 206 { 207 bool matched; 208 209 if (task && head->task != task) 210 return false; 211 if (cancel_all) 212 return true; 213 214 if (head->flags & REQ_F_LINK_TIMEOUT) { 215 struct io_ring_ctx *ctx = head->ctx; 216 217 /* protect against races with linked timeouts */ 218 spin_lock_irq(&ctx->timeout_lock); 219 matched = io_match_linked(head); 220 spin_unlock_irq(&ctx->timeout_lock); 221 } else { 222 matched = io_match_linked(head); 223 } 224 return matched; 225 } 226 227 static inline void req_fail_link_node(struct io_kiocb *req, int res) 228 { 229 req_set_fail(req); 230 io_req_set_res(req, res, 0); 231 } 232 233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 234 { 235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 236 } 237 238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 239 { 240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 241 242 complete(&ctx->ref_comp); 243 } 244 245 static __cold void io_fallback_req_func(struct work_struct *work) 246 { 247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 248 fallback_work.work); 249 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 250 struct io_kiocb *req, *tmp; 251 struct io_tw_state ts = {}; 252 253 percpu_ref_get(&ctx->refs); 254 mutex_lock(&ctx->uring_lock); 255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 256 req->io_task_work.func(req, &ts); 257 io_submit_flush_completions(ctx); 258 mutex_unlock(&ctx->uring_lock); 259 percpu_ref_put(&ctx->refs); 260 } 261 262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 263 { 264 unsigned hash_buckets = 1U << bits; 265 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 266 267 table->hbs = kmalloc(hash_size, GFP_KERNEL); 268 if (!table->hbs) 269 return -ENOMEM; 270 271 table->hash_bits = bits; 272 init_hash_table(table, hash_buckets); 273 return 0; 274 } 275 276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 277 { 278 struct io_ring_ctx *ctx; 279 int hash_bits; 280 bool ret; 281 282 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 283 if (!ctx) 284 return NULL; 285 286 xa_init(&ctx->io_bl_xa); 287 288 /* 289 * Use 5 bits less than the max cq entries, that should give us around 290 * 32 entries per hash list if totally full and uniformly spread, but 291 * don't keep too many buckets to not overconsume memory. 292 */ 293 hash_bits = ilog2(p->cq_entries) - 5; 294 hash_bits = clamp(hash_bits, 1, 8); 295 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 296 goto err; 297 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 298 goto err; 299 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 300 0, GFP_KERNEL)) 301 goto err; 302 303 ctx->flags = p->flags; 304 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 305 init_waitqueue_head(&ctx->sqo_sq_wait); 306 INIT_LIST_HEAD(&ctx->sqd_list); 307 INIT_LIST_HEAD(&ctx->cq_overflow_list); 308 INIT_LIST_HEAD(&ctx->io_buffers_cache); 309 ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 310 sizeof(struct io_rsrc_node)); 311 ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 312 sizeof(struct async_poll)); 313 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 314 sizeof(struct io_async_msghdr)); 315 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 316 sizeof(struct io_async_rw)); 317 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX, 318 sizeof(struct uring_cache)); 319 spin_lock_init(&ctx->msg_lock); 320 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 321 sizeof(struct io_kiocb)); 322 ret |= io_futex_cache_init(ctx); 323 if (ret) 324 goto err; 325 init_completion(&ctx->ref_comp); 326 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 327 mutex_init(&ctx->uring_lock); 328 init_waitqueue_head(&ctx->cq_wait); 329 init_waitqueue_head(&ctx->poll_wq); 330 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 331 spin_lock_init(&ctx->completion_lock); 332 spin_lock_init(&ctx->timeout_lock); 333 INIT_WQ_LIST(&ctx->iopoll_list); 334 INIT_LIST_HEAD(&ctx->io_buffers_comp); 335 INIT_LIST_HEAD(&ctx->defer_list); 336 INIT_LIST_HEAD(&ctx->timeout_list); 337 INIT_LIST_HEAD(&ctx->ltimeout_list); 338 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 339 init_llist_head(&ctx->work_llist); 340 INIT_LIST_HEAD(&ctx->tctx_list); 341 ctx->submit_state.free_list.next = NULL; 342 INIT_HLIST_HEAD(&ctx->waitid_list); 343 #ifdef CONFIG_FUTEX 344 INIT_HLIST_HEAD(&ctx->futex_list); 345 #endif 346 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 347 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 348 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 349 io_napi_init(ctx); 350 351 return ctx; 352 err: 353 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree); 354 io_alloc_cache_free(&ctx->apoll_cache, kfree); 355 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 356 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 357 io_alloc_cache_free(&ctx->uring_cache, kfree); 358 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 359 io_futex_cache_free(ctx); 360 kfree(ctx->cancel_table.hbs); 361 kfree(ctx->cancel_table_locked.hbs); 362 xa_destroy(&ctx->io_bl_xa); 363 kfree(ctx); 364 return NULL; 365 } 366 367 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 368 { 369 struct io_rings *r = ctx->rings; 370 371 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 372 ctx->cq_extra--; 373 } 374 375 static bool req_need_defer(struct io_kiocb *req, u32 seq) 376 { 377 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 378 struct io_ring_ctx *ctx = req->ctx; 379 380 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 381 } 382 383 return false; 384 } 385 386 static void io_clean_op(struct io_kiocb *req) 387 { 388 if (req->flags & REQ_F_BUFFER_SELECTED) { 389 spin_lock(&req->ctx->completion_lock); 390 io_kbuf_drop(req); 391 spin_unlock(&req->ctx->completion_lock); 392 } 393 394 if (req->flags & REQ_F_NEED_CLEANUP) { 395 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 396 397 if (def->cleanup) 398 def->cleanup(req); 399 } 400 if ((req->flags & REQ_F_POLLED) && req->apoll) { 401 kfree(req->apoll->double_poll); 402 kfree(req->apoll); 403 req->apoll = NULL; 404 } 405 if (req->flags & REQ_F_INFLIGHT) { 406 struct io_uring_task *tctx = req->task->io_uring; 407 408 atomic_dec(&tctx->inflight_tracked); 409 } 410 if (req->flags & REQ_F_CREDS) 411 put_cred(req->creds); 412 if (req->flags & REQ_F_ASYNC_DATA) { 413 kfree(req->async_data); 414 req->async_data = NULL; 415 } 416 req->flags &= ~IO_REQ_CLEAN_FLAGS; 417 } 418 419 static inline void io_req_track_inflight(struct io_kiocb *req) 420 { 421 if (!(req->flags & REQ_F_INFLIGHT)) { 422 req->flags |= REQ_F_INFLIGHT; 423 atomic_inc(&req->task->io_uring->inflight_tracked); 424 } 425 } 426 427 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 428 { 429 if (WARN_ON_ONCE(!req->link)) 430 return NULL; 431 432 req->flags &= ~REQ_F_ARM_LTIMEOUT; 433 req->flags |= REQ_F_LINK_TIMEOUT; 434 435 /* linked timeouts should have two refs once prep'ed */ 436 io_req_set_refcount(req); 437 __io_req_set_refcount(req->link, 2); 438 return req->link; 439 } 440 441 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 442 { 443 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 444 return NULL; 445 return __io_prep_linked_timeout(req); 446 } 447 448 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 449 { 450 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 451 } 452 453 static inline void io_arm_ltimeout(struct io_kiocb *req) 454 { 455 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 456 __io_arm_ltimeout(req); 457 } 458 459 static void io_prep_async_work(struct io_kiocb *req) 460 { 461 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 462 struct io_ring_ctx *ctx = req->ctx; 463 464 if (!(req->flags & REQ_F_CREDS)) { 465 req->flags |= REQ_F_CREDS; 466 req->creds = get_current_cred(); 467 } 468 469 req->work.list.next = NULL; 470 atomic_set(&req->work.flags, 0); 471 if (req->flags & REQ_F_FORCE_ASYNC) 472 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 473 474 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 475 req->flags |= io_file_get_flags(req->file); 476 477 if (req->file && (req->flags & REQ_F_ISREG)) { 478 bool should_hash = def->hash_reg_file; 479 480 /* don't serialize this request if the fs doesn't need it */ 481 if (should_hash && (req->file->f_flags & O_DIRECT) && 482 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 483 should_hash = false; 484 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 485 io_wq_hash_work(&req->work, file_inode(req->file)); 486 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 487 if (def->unbound_nonreg_file) 488 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 489 } 490 } 491 492 static void io_prep_async_link(struct io_kiocb *req) 493 { 494 struct io_kiocb *cur; 495 496 if (req->flags & REQ_F_LINK_TIMEOUT) { 497 struct io_ring_ctx *ctx = req->ctx; 498 499 spin_lock_irq(&ctx->timeout_lock); 500 io_for_each_link(cur, req) 501 io_prep_async_work(cur); 502 spin_unlock_irq(&ctx->timeout_lock); 503 } else { 504 io_for_each_link(cur, req) 505 io_prep_async_work(cur); 506 } 507 } 508 509 static void io_queue_iowq(struct io_kiocb *req) 510 { 511 struct io_kiocb *link = io_prep_linked_timeout(req); 512 struct io_uring_task *tctx = req->task->io_uring; 513 514 BUG_ON(!tctx); 515 BUG_ON(!tctx->io_wq); 516 517 /* init ->work of the whole link before punting */ 518 io_prep_async_link(req); 519 520 /* 521 * Not expected to happen, but if we do have a bug where this _can_ 522 * happen, catch it here and ensure the request is marked as 523 * canceled. That will make io-wq go through the usual work cancel 524 * procedure rather than attempt to run this request (or create a new 525 * worker for it). 526 */ 527 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 528 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 529 530 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 531 io_wq_enqueue(tctx->io_wq, &req->work); 532 if (link) 533 io_queue_linked_timeout(link); 534 } 535 536 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts) 537 { 538 io_queue_iowq(req); 539 } 540 541 void io_req_queue_iowq(struct io_kiocb *req) 542 { 543 req->io_task_work.func = io_req_queue_iowq_tw; 544 io_req_task_work_add(req); 545 } 546 547 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 548 { 549 while (!list_empty(&ctx->defer_list)) { 550 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 551 struct io_defer_entry, list); 552 553 if (req_need_defer(de->req, de->seq)) 554 break; 555 list_del_init(&de->list); 556 io_req_task_queue(de->req); 557 kfree(de); 558 } 559 } 560 561 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 562 { 563 if (ctx->poll_activated) 564 io_poll_wq_wake(ctx); 565 if (ctx->off_timeout_used) 566 io_flush_timeouts(ctx); 567 if (ctx->drain_active) { 568 spin_lock(&ctx->completion_lock); 569 io_queue_deferred(ctx); 570 spin_unlock(&ctx->completion_lock); 571 } 572 if (ctx->has_evfd) 573 io_eventfd_flush_signal(ctx); 574 } 575 576 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 577 { 578 if (!ctx->lockless_cq) 579 spin_lock(&ctx->completion_lock); 580 } 581 582 static inline void io_cq_lock(struct io_ring_ctx *ctx) 583 __acquires(ctx->completion_lock) 584 { 585 spin_lock(&ctx->completion_lock); 586 } 587 588 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 589 { 590 io_commit_cqring(ctx); 591 if (!ctx->task_complete) { 592 if (!ctx->lockless_cq) 593 spin_unlock(&ctx->completion_lock); 594 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 595 if (!ctx->syscall_iopoll) 596 io_cqring_wake(ctx); 597 } 598 io_commit_cqring_flush(ctx); 599 } 600 601 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 602 __releases(ctx->completion_lock) 603 { 604 io_commit_cqring(ctx); 605 spin_unlock(&ctx->completion_lock); 606 io_cqring_wake(ctx); 607 io_commit_cqring_flush(ctx); 608 } 609 610 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 611 { 612 size_t cqe_size = sizeof(struct io_uring_cqe); 613 614 lockdep_assert_held(&ctx->uring_lock); 615 616 /* don't abort if we're dying, entries must get freed */ 617 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 618 return; 619 620 if (ctx->flags & IORING_SETUP_CQE32) 621 cqe_size <<= 1; 622 623 io_cq_lock(ctx); 624 while (!list_empty(&ctx->cq_overflow_list)) { 625 struct io_uring_cqe *cqe; 626 struct io_overflow_cqe *ocqe; 627 628 ocqe = list_first_entry(&ctx->cq_overflow_list, 629 struct io_overflow_cqe, list); 630 631 if (!dying) { 632 if (!io_get_cqe_overflow(ctx, &cqe, true)) 633 break; 634 memcpy(cqe, &ocqe->cqe, cqe_size); 635 } 636 list_del(&ocqe->list); 637 kfree(ocqe); 638 } 639 640 if (list_empty(&ctx->cq_overflow_list)) { 641 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 642 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 643 } 644 io_cq_unlock_post(ctx); 645 } 646 647 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 648 { 649 if (ctx->rings) 650 __io_cqring_overflow_flush(ctx, true); 651 } 652 653 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 654 { 655 mutex_lock(&ctx->uring_lock); 656 __io_cqring_overflow_flush(ctx, false); 657 mutex_unlock(&ctx->uring_lock); 658 } 659 660 /* can be called by any task */ 661 static void io_put_task_remote(struct task_struct *task) 662 { 663 struct io_uring_task *tctx = task->io_uring; 664 665 percpu_counter_sub(&tctx->inflight, 1); 666 if (unlikely(atomic_read(&tctx->in_cancel))) 667 wake_up(&tctx->wait); 668 put_task_struct(task); 669 } 670 671 /* used by a task to put its own references */ 672 static void io_put_task_local(struct task_struct *task) 673 { 674 task->io_uring->cached_refs++; 675 } 676 677 /* must to be called somewhat shortly after putting a request */ 678 static inline void io_put_task(struct task_struct *task) 679 { 680 if (likely(task == current)) 681 io_put_task_local(task); 682 else 683 io_put_task_remote(task); 684 } 685 686 void io_task_refs_refill(struct io_uring_task *tctx) 687 { 688 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 689 690 percpu_counter_add(&tctx->inflight, refill); 691 refcount_add(refill, ¤t->usage); 692 tctx->cached_refs += refill; 693 } 694 695 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 696 { 697 struct io_uring_task *tctx = task->io_uring; 698 unsigned int refs = tctx->cached_refs; 699 700 if (refs) { 701 tctx->cached_refs = 0; 702 percpu_counter_sub(&tctx->inflight, refs); 703 put_task_struct_many(task, refs); 704 } 705 } 706 707 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 708 s32 res, u32 cflags, u64 extra1, u64 extra2) 709 { 710 struct io_overflow_cqe *ocqe; 711 size_t ocq_size = sizeof(struct io_overflow_cqe); 712 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 713 714 lockdep_assert_held(&ctx->completion_lock); 715 716 if (is_cqe32) 717 ocq_size += sizeof(struct io_uring_cqe); 718 719 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 720 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 721 if (!ocqe) { 722 /* 723 * If we're in ring overflow flush mode, or in task cancel mode, 724 * or cannot allocate an overflow entry, then we need to drop it 725 * on the floor. 726 */ 727 io_account_cq_overflow(ctx); 728 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 729 return false; 730 } 731 if (list_empty(&ctx->cq_overflow_list)) { 732 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 733 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 734 735 } 736 ocqe->cqe.user_data = user_data; 737 ocqe->cqe.res = res; 738 ocqe->cqe.flags = cflags; 739 if (is_cqe32) { 740 ocqe->cqe.big_cqe[0] = extra1; 741 ocqe->cqe.big_cqe[1] = extra2; 742 } 743 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 744 return true; 745 } 746 747 static void io_req_cqe_overflow(struct io_kiocb *req) 748 { 749 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 750 req->cqe.res, req->cqe.flags, 751 req->big_cqe.extra1, req->big_cqe.extra2); 752 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 753 } 754 755 /* 756 * writes to the cq entry need to come after reading head; the 757 * control dependency is enough as we're using WRITE_ONCE to 758 * fill the cq entry 759 */ 760 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 761 { 762 struct io_rings *rings = ctx->rings; 763 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 764 unsigned int free, queued, len; 765 766 /* 767 * Posting into the CQ when there are pending overflowed CQEs may break 768 * ordering guarantees, which will affect links, F_MORE users and more. 769 * Force overflow the completion. 770 */ 771 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 772 return false; 773 774 /* userspace may cheat modifying the tail, be safe and do min */ 775 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 776 free = ctx->cq_entries - queued; 777 /* we need a contiguous range, limit based on the current array offset */ 778 len = min(free, ctx->cq_entries - off); 779 if (!len) 780 return false; 781 782 if (ctx->flags & IORING_SETUP_CQE32) { 783 off <<= 1; 784 len <<= 1; 785 } 786 787 ctx->cqe_cached = &rings->cqes[off]; 788 ctx->cqe_sentinel = ctx->cqe_cached + len; 789 return true; 790 } 791 792 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 793 u32 cflags) 794 { 795 struct io_uring_cqe *cqe; 796 797 ctx->cq_extra++; 798 799 /* 800 * If we can't get a cq entry, userspace overflowed the 801 * submission (by quite a lot). Increment the overflow count in 802 * the ring. 803 */ 804 if (likely(io_get_cqe(ctx, &cqe))) { 805 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 806 807 WRITE_ONCE(cqe->user_data, user_data); 808 WRITE_ONCE(cqe->res, res); 809 WRITE_ONCE(cqe->flags, cflags); 810 811 if (ctx->flags & IORING_SETUP_CQE32) { 812 WRITE_ONCE(cqe->big_cqe[0], 0); 813 WRITE_ONCE(cqe->big_cqe[1], 0); 814 } 815 return true; 816 } 817 return false; 818 } 819 820 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, 821 u32 cflags) 822 { 823 bool filled; 824 825 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 826 if (!filled) 827 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 828 829 return filled; 830 } 831 832 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 833 { 834 bool filled; 835 836 io_cq_lock(ctx); 837 filled = __io_post_aux_cqe(ctx, user_data, res, cflags); 838 io_cq_unlock_post(ctx); 839 return filled; 840 } 841 842 /* 843 * Must be called from inline task_work so we now a flush will happen later, 844 * and obviously with ctx->uring_lock held (tw always has that). 845 */ 846 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 847 { 848 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 849 spin_lock(&ctx->completion_lock); 850 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 851 spin_unlock(&ctx->completion_lock); 852 } 853 ctx->submit_state.cq_flush = true; 854 } 855 856 /* 857 * A helper for multishot requests posting additional CQEs. 858 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 859 */ 860 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 861 { 862 struct io_ring_ctx *ctx = req->ctx; 863 bool posted; 864 865 lockdep_assert(!io_wq_current_is_worker()); 866 lockdep_assert_held(&ctx->uring_lock); 867 868 __io_cq_lock(ctx); 869 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 870 ctx->submit_state.cq_flush = true; 871 __io_cq_unlock_post(ctx); 872 return posted; 873 } 874 875 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 876 { 877 struct io_ring_ctx *ctx = req->ctx; 878 879 /* 880 * All execution paths but io-wq use the deferred completions by 881 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 882 */ 883 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 884 return; 885 886 /* 887 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 888 * the submitter task context, IOPOLL protects with uring_lock. 889 */ 890 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) { 891 req->io_task_work.func = io_req_task_complete; 892 io_req_task_work_add(req); 893 return; 894 } 895 896 io_cq_lock(ctx); 897 if (!(req->flags & REQ_F_CQE_SKIP)) { 898 if (!io_fill_cqe_req(ctx, req)) 899 io_req_cqe_overflow(req); 900 } 901 io_cq_unlock_post(ctx); 902 903 /* 904 * We don't free the request here because we know it's called from 905 * io-wq only, which holds a reference, so it cannot be the last put. 906 */ 907 req_ref_put(req); 908 } 909 910 void io_req_defer_failed(struct io_kiocb *req, s32 res) 911 __must_hold(&ctx->uring_lock) 912 { 913 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 914 915 lockdep_assert_held(&req->ctx->uring_lock); 916 917 req_set_fail(req); 918 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 919 if (def->fail) 920 def->fail(req); 921 io_req_complete_defer(req); 922 } 923 924 /* 925 * Don't initialise the fields below on every allocation, but do that in 926 * advance and keep them valid across allocations. 927 */ 928 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 929 { 930 req->ctx = ctx; 931 req->link = NULL; 932 req->async_data = NULL; 933 /* not necessary, but safer to zero */ 934 memset(&req->cqe, 0, sizeof(req->cqe)); 935 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 936 } 937 938 /* 939 * A request might get retired back into the request caches even before opcode 940 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 941 * Because of that, io_alloc_req() should be called only under ->uring_lock 942 * and with extra caution to not get a request that is still worked on. 943 */ 944 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 945 __must_hold(&ctx->uring_lock) 946 { 947 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 948 void *reqs[IO_REQ_ALLOC_BATCH]; 949 int ret; 950 951 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 952 953 /* 954 * Bulk alloc is all-or-nothing. If we fail to get a batch, 955 * retry single alloc to be on the safe side. 956 */ 957 if (unlikely(ret <= 0)) { 958 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 959 if (!reqs[0]) 960 return false; 961 ret = 1; 962 } 963 964 percpu_ref_get_many(&ctx->refs, ret); 965 while (ret--) { 966 struct io_kiocb *req = reqs[ret]; 967 968 io_preinit_req(req, ctx); 969 io_req_add_to_cache(req, ctx); 970 } 971 return true; 972 } 973 974 __cold void io_free_req(struct io_kiocb *req) 975 { 976 /* refs were already put, restore them for io_req_task_complete() */ 977 req->flags &= ~REQ_F_REFCOUNT; 978 /* we only want to free it, don't post CQEs */ 979 req->flags |= REQ_F_CQE_SKIP; 980 req->io_task_work.func = io_req_task_complete; 981 io_req_task_work_add(req); 982 } 983 984 static void __io_req_find_next_prep(struct io_kiocb *req) 985 { 986 struct io_ring_ctx *ctx = req->ctx; 987 988 spin_lock(&ctx->completion_lock); 989 io_disarm_next(req); 990 spin_unlock(&ctx->completion_lock); 991 } 992 993 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 994 { 995 struct io_kiocb *nxt; 996 997 /* 998 * If LINK is set, we have dependent requests in this chain. If we 999 * didn't fail this request, queue the first one up, moving any other 1000 * dependencies to the next request. In case of failure, fail the rest 1001 * of the chain. 1002 */ 1003 if (unlikely(req->flags & IO_DISARM_MASK)) 1004 __io_req_find_next_prep(req); 1005 nxt = req->link; 1006 req->link = NULL; 1007 return nxt; 1008 } 1009 1010 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1011 { 1012 if (!ctx) 1013 return; 1014 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1015 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1016 1017 io_submit_flush_completions(ctx); 1018 mutex_unlock(&ctx->uring_lock); 1019 percpu_ref_put(&ctx->refs); 1020 } 1021 1022 /* 1023 * Run queued task_work, returning the number of entries processed in *count. 1024 * If more entries than max_entries are available, stop processing once this 1025 * is reached and return the rest of the list. 1026 */ 1027 struct llist_node *io_handle_tw_list(struct llist_node *node, 1028 unsigned int *count, 1029 unsigned int max_entries) 1030 { 1031 struct io_ring_ctx *ctx = NULL; 1032 struct io_tw_state ts = { }; 1033 1034 do { 1035 struct llist_node *next = node->next; 1036 struct io_kiocb *req = container_of(node, struct io_kiocb, 1037 io_task_work.node); 1038 1039 if (req->ctx != ctx) { 1040 ctx_flush_and_put(ctx, &ts); 1041 ctx = req->ctx; 1042 mutex_lock(&ctx->uring_lock); 1043 percpu_ref_get(&ctx->refs); 1044 } 1045 INDIRECT_CALL_2(req->io_task_work.func, 1046 io_poll_task_func, io_req_rw_complete, 1047 req, &ts); 1048 node = next; 1049 (*count)++; 1050 if (unlikely(need_resched())) { 1051 ctx_flush_and_put(ctx, &ts); 1052 ctx = NULL; 1053 cond_resched(); 1054 } 1055 } while (node && *count < max_entries); 1056 1057 ctx_flush_and_put(ctx, &ts); 1058 return node; 1059 } 1060 1061 /** 1062 * io_llist_xchg - swap all entries in a lock-less list 1063 * @head: the head of lock-less list to delete all entries 1064 * @new: new entry as the head of the list 1065 * 1066 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1067 * The order of entries returned is from the newest to the oldest added one. 1068 */ 1069 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1070 struct llist_node *new) 1071 { 1072 return xchg(&head->first, new); 1073 } 1074 1075 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1076 { 1077 struct llist_node *node = llist_del_all(&tctx->task_list); 1078 struct io_ring_ctx *last_ctx = NULL; 1079 struct io_kiocb *req; 1080 1081 while (node) { 1082 req = container_of(node, struct io_kiocb, io_task_work.node); 1083 node = node->next; 1084 if (sync && last_ctx != req->ctx) { 1085 if (last_ctx) { 1086 flush_delayed_work(&last_ctx->fallback_work); 1087 percpu_ref_put(&last_ctx->refs); 1088 } 1089 last_ctx = req->ctx; 1090 percpu_ref_get(&last_ctx->refs); 1091 } 1092 if (llist_add(&req->io_task_work.node, 1093 &req->ctx->fallback_llist)) 1094 schedule_delayed_work(&req->ctx->fallback_work, 1); 1095 } 1096 1097 if (last_ctx) { 1098 flush_delayed_work(&last_ctx->fallback_work); 1099 percpu_ref_put(&last_ctx->refs); 1100 } 1101 } 1102 1103 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1104 unsigned int max_entries, 1105 unsigned int *count) 1106 { 1107 struct llist_node *node; 1108 1109 if (unlikely(current->flags & PF_EXITING)) { 1110 io_fallback_tw(tctx, true); 1111 return NULL; 1112 } 1113 1114 node = llist_del_all(&tctx->task_list); 1115 if (node) { 1116 node = llist_reverse_order(node); 1117 node = io_handle_tw_list(node, count, max_entries); 1118 } 1119 1120 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1121 if (unlikely(atomic_read(&tctx->in_cancel))) 1122 io_uring_drop_tctx_refs(current); 1123 1124 trace_io_uring_task_work_run(tctx, *count); 1125 return node; 1126 } 1127 1128 void tctx_task_work(struct callback_head *cb) 1129 { 1130 struct io_uring_task *tctx; 1131 struct llist_node *ret; 1132 unsigned int count = 0; 1133 1134 tctx = container_of(cb, struct io_uring_task, task_work); 1135 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1136 /* can't happen */ 1137 WARN_ON_ONCE(ret); 1138 } 1139 1140 static inline void io_req_local_work_add(struct io_kiocb *req, 1141 struct io_ring_ctx *ctx, 1142 unsigned flags) 1143 { 1144 unsigned nr_wait, nr_tw, nr_tw_prev; 1145 struct llist_node *head; 1146 1147 /* See comment above IO_CQ_WAKE_INIT */ 1148 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1149 1150 /* 1151 * We don't know how many reuqests is there in the link and whether 1152 * they can even be queued lazily, fall back to non-lazy. 1153 */ 1154 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1155 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1156 1157 guard(rcu)(); 1158 1159 head = READ_ONCE(ctx->work_llist.first); 1160 do { 1161 nr_tw_prev = 0; 1162 if (head) { 1163 struct io_kiocb *first_req = container_of(head, 1164 struct io_kiocb, 1165 io_task_work.node); 1166 /* 1167 * Might be executed at any moment, rely on 1168 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1169 */ 1170 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1171 } 1172 1173 /* 1174 * Theoretically, it can overflow, but that's fine as one of 1175 * previous adds should've tried to wake the task. 1176 */ 1177 nr_tw = nr_tw_prev + 1; 1178 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1179 nr_tw = IO_CQ_WAKE_FORCE; 1180 1181 req->nr_tw = nr_tw; 1182 req->io_task_work.node.next = head; 1183 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1184 &req->io_task_work.node)); 1185 1186 /* 1187 * cmpxchg implies a full barrier, which pairs with the barrier 1188 * in set_current_state() on the io_cqring_wait() side. It's used 1189 * to ensure that either we see updated ->cq_wait_nr, or waiters 1190 * going to sleep will observe the work added to the list, which 1191 * is similar to the wait/wawke task state sync. 1192 */ 1193 1194 if (!head) { 1195 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1196 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1197 if (ctx->has_evfd) 1198 io_eventfd_signal(ctx); 1199 } 1200 1201 nr_wait = atomic_read(&ctx->cq_wait_nr); 1202 /* not enough or no one is waiting */ 1203 if (nr_tw < nr_wait) 1204 return; 1205 /* the previous add has already woken it up */ 1206 if (nr_tw_prev >= nr_wait) 1207 return; 1208 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1209 } 1210 1211 static void io_req_normal_work_add(struct io_kiocb *req) 1212 { 1213 struct io_uring_task *tctx = req->task->io_uring; 1214 struct io_ring_ctx *ctx = req->ctx; 1215 1216 /* task_work already pending, we're done */ 1217 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1218 return; 1219 1220 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1221 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1222 1223 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1224 if (ctx->flags & IORING_SETUP_SQPOLL) { 1225 struct io_sq_data *sqd = ctx->sq_data; 1226 1227 if (sqd->thread) 1228 __set_notify_signal(sqd->thread); 1229 return; 1230 } 1231 1232 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1233 return; 1234 1235 io_fallback_tw(tctx, false); 1236 } 1237 1238 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1239 { 1240 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1241 io_req_local_work_add(req, req->ctx, flags); 1242 else 1243 io_req_normal_work_add(req); 1244 } 1245 1246 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 1247 unsigned flags) 1248 { 1249 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1250 return; 1251 io_req_local_work_add(req, ctx, flags); 1252 } 1253 1254 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1255 { 1256 struct llist_node *node; 1257 1258 node = llist_del_all(&ctx->work_llist); 1259 while (node) { 1260 struct io_kiocb *req = container_of(node, struct io_kiocb, 1261 io_task_work.node); 1262 1263 node = node->next; 1264 io_req_normal_work_add(req); 1265 } 1266 } 1267 1268 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1269 int min_events) 1270 { 1271 if (llist_empty(&ctx->work_llist)) 1272 return false; 1273 if (events < min_events) 1274 return true; 1275 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1276 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1277 return false; 1278 } 1279 1280 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1281 int min_events) 1282 { 1283 struct llist_node *node; 1284 unsigned int loops = 0; 1285 int ret = 0; 1286 1287 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1288 return -EEXIST; 1289 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1290 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1291 again: 1292 /* 1293 * llists are in reverse order, flip it back the right way before 1294 * running the pending items. 1295 */ 1296 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1297 while (node) { 1298 struct llist_node *next = node->next; 1299 struct io_kiocb *req = container_of(node, struct io_kiocb, 1300 io_task_work.node); 1301 INDIRECT_CALL_2(req->io_task_work.func, 1302 io_poll_task_func, io_req_rw_complete, 1303 req, ts); 1304 ret++; 1305 node = next; 1306 } 1307 loops++; 1308 1309 if (io_run_local_work_continue(ctx, ret, min_events)) 1310 goto again; 1311 io_submit_flush_completions(ctx); 1312 if (io_run_local_work_continue(ctx, ret, min_events)) 1313 goto again; 1314 1315 trace_io_uring_local_work_run(ctx, ret, loops); 1316 return ret; 1317 } 1318 1319 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1320 int min_events) 1321 { 1322 struct io_tw_state ts = {}; 1323 1324 if (llist_empty(&ctx->work_llist)) 1325 return 0; 1326 return __io_run_local_work(ctx, &ts, min_events); 1327 } 1328 1329 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events) 1330 { 1331 struct io_tw_state ts = {}; 1332 int ret; 1333 1334 mutex_lock(&ctx->uring_lock); 1335 ret = __io_run_local_work(ctx, &ts, min_events); 1336 mutex_unlock(&ctx->uring_lock); 1337 return ret; 1338 } 1339 1340 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1341 { 1342 io_tw_lock(req->ctx, ts); 1343 io_req_defer_failed(req, req->cqe.res); 1344 } 1345 1346 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1347 { 1348 io_tw_lock(req->ctx, ts); 1349 /* req->task == current here, checking PF_EXITING is safe */ 1350 if (unlikely(req->task->flags & PF_EXITING)) 1351 io_req_defer_failed(req, -EFAULT); 1352 else if (req->flags & REQ_F_FORCE_ASYNC) 1353 io_queue_iowq(req); 1354 else 1355 io_queue_sqe(req); 1356 } 1357 1358 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1359 { 1360 io_req_set_res(req, ret, 0); 1361 req->io_task_work.func = io_req_task_cancel; 1362 io_req_task_work_add(req); 1363 } 1364 1365 void io_req_task_queue(struct io_kiocb *req) 1366 { 1367 req->io_task_work.func = io_req_task_submit; 1368 io_req_task_work_add(req); 1369 } 1370 1371 void io_queue_next(struct io_kiocb *req) 1372 { 1373 struct io_kiocb *nxt = io_req_find_next(req); 1374 1375 if (nxt) 1376 io_req_task_queue(nxt); 1377 } 1378 1379 static void io_free_batch_list(struct io_ring_ctx *ctx, 1380 struct io_wq_work_node *node) 1381 __must_hold(&ctx->uring_lock) 1382 { 1383 do { 1384 struct io_kiocb *req = container_of(node, struct io_kiocb, 1385 comp_list); 1386 1387 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1388 if (req->flags & REQ_F_REFCOUNT) { 1389 node = req->comp_list.next; 1390 if (!req_ref_put_and_test(req)) 1391 continue; 1392 } 1393 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1394 struct async_poll *apoll = req->apoll; 1395 1396 if (apoll->double_poll) 1397 kfree(apoll->double_poll); 1398 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll)) 1399 kfree(apoll); 1400 req->flags &= ~REQ_F_POLLED; 1401 } 1402 if (req->flags & IO_REQ_LINK_FLAGS) 1403 io_queue_next(req); 1404 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1405 io_clean_op(req); 1406 } 1407 io_put_file(req); 1408 io_put_rsrc_node(ctx, req->rsrc_node); 1409 io_put_task(req->task); 1410 1411 node = req->comp_list.next; 1412 io_req_add_to_cache(req, ctx); 1413 } while (node); 1414 } 1415 1416 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1417 __must_hold(&ctx->uring_lock) 1418 { 1419 struct io_submit_state *state = &ctx->submit_state; 1420 struct io_wq_work_node *node; 1421 1422 __io_cq_lock(ctx); 1423 __wq_list_for_each(node, &state->compl_reqs) { 1424 struct io_kiocb *req = container_of(node, struct io_kiocb, 1425 comp_list); 1426 1427 if (!(req->flags & REQ_F_CQE_SKIP) && 1428 unlikely(!io_fill_cqe_req(ctx, req))) { 1429 if (ctx->lockless_cq) { 1430 spin_lock(&ctx->completion_lock); 1431 io_req_cqe_overflow(req); 1432 spin_unlock(&ctx->completion_lock); 1433 } else { 1434 io_req_cqe_overflow(req); 1435 } 1436 } 1437 } 1438 __io_cq_unlock_post(ctx); 1439 1440 if (!wq_list_empty(&state->compl_reqs)) { 1441 io_free_batch_list(ctx, state->compl_reqs.first); 1442 INIT_WQ_LIST(&state->compl_reqs); 1443 } 1444 ctx->submit_state.cq_flush = false; 1445 } 1446 1447 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1448 { 1449 /* See comment at the top of this file */ 1450 smp_rmb(); 1451 return __io_cqring_events(ctx); 1452 } 1453 1454 /* 1455 * We can't just wait for polled events to come to us, we have to actively 1456 * find and complete them. 1457 */ 1458 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1459 { 1460 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1461 return; 1462 1463 mutex_lock(&ctx->uring_lock); 1464 while (!wq_list_empty(&ctx->iopoll_list)) { 1465 /* let it sleep and repeat later if can't complete a request */ 1466 if (io_do_iopoll(ctx, true) == 0) 1467 break; 1468 /* 1469 * Ensure we allow local-to-the-cpu processing to take place, 1470 * in this case we need to ensure that we reap all events. 1471 * Also let task_work, etc. to progress by releasing the mutex 1472 */ 1473 if (need_resched()) { 1474 mutex_unlock(&ctx->uring_lock); 1475 cond_resched(); 1476 mutex_lock(&ctx->uring_lock); 1477 } 1478 } 1479 mutex_unlock(&ctx->uring_lock); 1480 } 1481 1482 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1483 { 1484 unsigned int nr_events = 0; 1485 unsigned long check_cq; 1486 1487 lockdep_assert_held(&ctx->uring_lock); 1488 1489 if (!io_allowed_run_tw(ctx)) 1490 return -EEXIST; 1491 1492 check_cq = READ_ONCE(ctx->check_cq); 1493 if (unlikely(check_cq)) { 1494 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1495 __io_cqring_overflow_flush(ctx, false); 1496 /* 1497 * Similarly do not spin if we have not informed the user of any 1498 * dropped CQE. 1499 */ 1500 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1501 return -EBADR; 1502 } 1503 /* 1504 * Don't enter poll loop if we already have events pending. 1505 * If we do, we can potentially be spinning for commands that 1506 * already triggered a CQE (eg in error). 1507 */ 1508 if (io_cqring_events(ctx)) 1509 return 0; 1510 1511 do { 1512 int ret = 0; 1513 1514 /* 1515 * If a submit got punted to a workqueue, we can have the 1516 * application entering polling for a command before it gets 1517 * issued. That app will hold the uring_lock for the duration 1518 * of the poll right here, so we need to take a breather every 1519 * now and then to ensure that the issue has a chance to add 1520 * the poll to the issued list. Otherwise we can spin here 1521 * forever, while the workqueue is stuck trying to acquire the 1522 * very same mutex. 1523 */ 1524 if (wq_list_empty(&ctx->iopoll_list) || 1525 io_task_work_pending(ctx)) { 1526 u32 tail = ctx->cached_cq_tail; 1527 1528 (void) io_run_local_work_locked(ctx, min); 1529 1530 if (task_work_pending(current) || 1531 wq_list_empty(&ctx->iopoll_list)) { 1532 mutex_unlock(&ctx->uring_lock); 1533 io_run_task_work(); 1534 mutex_lock(&ctx->uring_lock); 1535 } 1536 /* some requests don't go through iopoll_list */ 1537 if (tail != ctx->cached_cq_tail || 1538 wq_list_empty(&ctx->iopoll_list)) 1539 break; 1540 } 1541 ret = io_do_iopoll(ctx, !min); 1542 if (unlikely(ret < 0)) 1543 return ret; 1544 1545 if (task_sigpending(current)) 1546 return -EINTR; 1547 if (need_resched()) 1548 break; 1549 1550 nr_events += ret; 1551 } while (nr_events < min); 1552 1553 return 0; 1554 } 1555 1556 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1557 { 1558 io_req_complete_defer(req); 1559 } 1560 1561 /* 1562 * After the iocb has been issued, it's safe to be found on the poll list. 1563 * Adding the kiocb to the list AFTER submission ensures that we don't 1564 * find it from a io_do_iopoll() thread before the issuer is done 1565 * accessing the kiocb cookie. 1566 */ 1567 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1568 { 1569 struct io_ring_ctx *ctx = req->ctx; 1570 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1571 1572 /* workqueue context doesn't hold uring_lock, grab it now */ 1573 if (unlikely(needs_lock)) 1574 mutex_lock(&ctx->uring_lock); 1575 1576 /* 1577 * Track whether we have multiple files in our lists. This will impact 1578 * how we do polling eventually, not spinning if we're on potentially 1579 * different devices. 1580 */ 1581 if (wq_list_empty(&ctx->iopoll_list)) { 1582 ctx->poll_multi_queue = false; 1583 } else if (!ctx->poll_multi_queue) { 1584 struct io_kiocb *list_req; 1585 1586 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1587 comp_list); 1588 if (list_req->file != req->file) 1589 ctx->poll_multi_queue = true; 1590 } 1591 1592 /* 1593 * For fast devices, IO may have already completed. If it has, add 1594 * it to the front so we find it first. 1595 */ 1596 if (READ_ONCE(req->iopoll_completed)) 1597 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1598 else 1599 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1600 1601 if (unlikely(needs_lock)) { 1602 /* 1603 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1604 * in sq thread task context or in io worker task context. If 1605 * current task context is sq thread, we don't need to check 1606 * whether should wake up sq thread. 1607 */ 1608 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1609 wq_has_sleeper(&ctx->sq_data->wait)) 1610 wake_up(&ctx->sq_data->wait); 1611 1612 mutex_unlock(&ctx->uring_lock); 1613 } 1614 } 1615 1616 io_req_flags_t io_file_get_flags(struct file *file) 1617 { 1618 io_req_flags_t res = 0; 1619 1620 if (S_ISREG(file_inode(file)->i_mode)) 1621 res |= REQ_F_ISREG; 1622 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1623 res |= REQ_F_SUPPORT_NOWAIT; 1624 return res; 1625 } 1626 1627 bool io_alloc_async_data(struct io_kiocb *req) 1628 { 1629 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1630 1631 WARN_ON_ONCE(!def->async_size); 1632 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 1633 if (req->async_data) { 1634 req->flags |= REQ_F_ASYNC_DATA; 1635 return false; 1636 } 1637 return true; 1638 } 1639 1640 static u32 io_get_sequence(struct io_kiocb *req) 1641 { 1642 u32 seq = req->ctx->cached_sq_head; 1643 struct io_kiocb *cur; 1644 1645 /* need original cached_sq_head, but it was increased for each req */ 1646 io_for_each_link(cur, req) 1647 seq--; 1648 return seq; 1649 } 1650 1651 static __cold void io_drain_req(struct io_kiocb *req) 1652 __must_hold(&ctx->uring_lock) 1653 { 1654 struct io_ring_ctx *ctx = req->ctx; 1655 struct io_defer_entry *de; 1656 int ret; 1657 u32 seq = io_get_sequence(req); 1658 1659 /* Still need defer if there is pending req in defer list. */ 1660 spin_lock(&ctx->completion_lock); 1661 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1662 spin_unlock(&ctx->completion_lock); 1663 queue: 1664 ctx->drain_active = false; 1665 io_req_task_queue(req); 1666 return; 1667 } 1668 spin_unlock(&ctx->completion_lock); 1669 1670 io_prep_async_link(req); 1671 de = kmalloc(sizeof(*de), GFP_KERNEL); 1672 if (!de) { 1673 ret = -ENOMEM; 1674 io_req_defer_failed(req, ret); 1675 return; 1676 } 1677 1678 spin_lock(&ctx->completion_lock); 1679 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1680 spin_unlock(&ctx->completion_lock); 1681 kfree(de); 1682 goto queue; 1683 } 1684 1685 trace_io_uring_defer(req); 1686 de->req = req; 1687 de->seq = seq; 1688 list_add_tail(&de->list, &ctx->defer_list); 1689 spin_unlock(&ctx->completion_lock); 1690 } 1691 1692 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1693 unsigned int issue_flags) 1694 { 1695 if (req->file || !def->needs_file) 1696 return true; 1697 1698 if (req->flags & REQ_F_FIXED_FILE) 1699 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1700 else 1701 req->file = io_file_get_normal(req, req->cqe.fd); 1702 1703 return !!req->file; 1704 } 1705 1706 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1707 { 1708 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1709 const struct cred *creds = NULL; 1710 int ret; 1711 1712 if (unlikely(!io_assign_file(req, def, issue_flags))) 1713 return -EBADF; 1714 1715 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1716 creds = override_creds(req->creds); 1717 1718 if (!def->audit_skip) 1719 audit_uring_entry(req->opcode); 1720 1721 ret = def->issue(req, issue_flags); 1722 1723 if (!def->audit_skip) 1724 audit_uring_exit(!ret, ret); 1725 1726 if (creds) 1727 revert_creds(creds); 1728 1729 if (ret == IOU_OK) { 1730 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1731 io_req_complete_defer(req); 1732 else 1733 io_req_complete_post(req, issue_flags); 1734 1735 return 0; 1736 } 1737 1738 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1739 ret = 0; 1740 io_arm_ltimeout(req); 1741 1742 /* If the op doesn't have a file, we're not polling for it */ 1743 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1744 io_iopoll_req_issued(req, issue_flags); 1745 } 1746 return ret; 1747 } 1748 1749 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1750 { 1751 io_tw_lock(req->ctx, ts); 1752 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1753 IO_URING_F_COMPLETE_DEFER); 1754 } 1755 1756 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1757 { 1758 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1759 struct io_kiocb *nxt = NULL; 1760 1761 if (req_ref_put_and_test(req)) { 1762 if (req->flags & IO_REQ_LINK_FLAGS) 1763 nxt = io_req_find_next(req); 1764 io_free_req(req); 1765 } 1766 return nxt ? &nxt->work : NULL; 1767 } 1768 1769 void io_wq_submit_work(struct io_wq_work *work) 1770 { 1771 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1772 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1773 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1774 bool needs_poll = false; 1775 int ret = 0, err = -ECANCELED; 1776 1777 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1778 if (!(req->flags & REQ_F_REFCOUNT)) 1779 __io_req_set_refcount(req, 2); 1780 else 1781 req_ref_get(req); 1782 1783 io_arm_ltimeout(req); 1784 1785 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1786 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1787 fail: 1788 io_req_task_queue_fail(req, err); 1789 return; 1790 } 1791 if (!io_assign_file(req, def, issue_flags)) { 1792 err = -EBADF; 1793 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1794 goto fail; 1795 } 1796 1797 /* 1798 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1799 * submitter task context. Final request completions are handed to the 1800 * right context, however this is not the case of auxiliary CQEs, 1801 * which is the main mean of operation for multishot requests. 1802 * Don't allow any multishot execution from io-wq. It's more restrictive 1803 * than necessary and also cleaner. 1804 */ 1805 if (req->flags & REQ_F_APOLL_MULTISHOT) { 1806 err = -EBADFD; 1807 if (!io_file_can_poll(req)) 1808 goto fail; 1809 if (req->file->f_flags & O_NONBLOCK || 1810 req->file->f_mode & FMODE_NOWAIT) { 1811 err = -ECANCELED; 1812 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1813 goto fail; 1814 return; 1815 } else { 1816 req->flags &= ~REQ_F_APOLL_MULTISHOT; 1817 } 1818 } 1819 1820 if (req->flags & REQ_F_FORCE_ASYNC) { 1821 bool opcode_poll = def->pollin || def->pollout; 1822 1823 if (opcode_poll && io_file_can_poll(req)) { 1824 needs_poll = true; 1825 issue_flags |= IO_URING_F_NONBLOCK; 1826 } 1827 } 1828 1829 do { 1830 ret = io_issue_sqe(req, issue_flags); 1831 if (ret != -EAGAIN) 1832 break; 1833 1834 /* 1835 * If REQ_F_NOWAIT is set, then don't wait or retry with 1836 * poll. -EAGAIN is final for that case. 1837 */ 1838 if (req->flags & REQ_F_NOWAIT) 1839 break; 1840 1841 /* 1842 * We can get EAGAIN for iopolled IO even though we're 1843 * forcing a sync submission from here, since we can't 1844 * wait for request slots on the block side. 1845 */ 1846 if (!needs_poll) { 1847 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1848 break; 1849 if (io_wq_worker_stopped()) 1850 break; 1851 cond_resched(); 1852 continue; 1853 } 1854 1855 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1856 return; 1857 /* aborted or ready, in either case retry blocking */ 1858 needs_poll = false; 1859 issue_flags &= ~IO_URING_F_NONBLOCK; 1860 } while (1); 1861 1862 /* avoid locking problems by failing it from a clean context */ 1863 if (ret) 1864 io_req_task_queue_fail(req, ret); 1865 } 1866 1867 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1868 unsigned int issue_flags) 1869 { 1870 struct io_ring_ctx *ctx = req->ctx; 1871 struct io_fixed_file *slot; 1872 struct file *file = NULL; 1873 1874 io_ring_submit_lock(ctx, issue_flags); 1875 1876 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1877 goto out; 1878 fd = array_index_nospec(fd, ctx->nr_user_files); 1879 slot = io_fixed_file_slot(&ctx->file_table, fd); 1880 if (!req->rsrc_node) 1881 __io_req_set_rsrc_node(req, ctx); 1882 req->flags |= io_slot_flags(slot); 1883 file = io_slot_file(slot); 1884 out: 1885 io_ring_submit_unlock(ctx, issue_flags); 1886 return file; 1887 } 1888 1889 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1890 { 1891 struct file *file = fget(fd); 1892 1893 trace_io_uring_file_get(req, fd); 1894 1895 /* we don't allow fixed io_uring files */ 1896 if (file && io_is_uring_fops(file)) 1897 io_req_track_inflight(req); 1898 return file; 1899 } 1900 1901 static void io_queue_async(struct io_kiocb *req, int ret) 1902 __must_hold(&req->ctx->uring_lock) 1903 { 1904 struct io_kiocb *linked_timeout; 1905 1906 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1907 io_req_defer_failed(req, ret); 1908 return; 1909 } 1910 1911 linked_timeout = io_prep_linked_timeout(req); 1912 1913 switch (io_arm_poll_handler(req, 0)) { 1914 case IO_APOLL_READY: 1915 io_kbuf_recycle(req, 0); 1916 io_req_task_queue(req); 1917 break; 1918 case IO_APOLL_ABORTED: 1919 io_kbuf_recycle(req, 0); 1920 io_queue_iowq(req); 1921 break; 1922 case IO_APOLL_OK: 1923 break; 1924 } 1925 1926 if (linked_timeout) 1927 io_queue_linked_timeout(linked_timeout); 1928 } 1929 1930 static inline void io_queue_sqe(struct io_kiocb *req) 1931 __must_hold(&req->ctx->uring_lock) 1932 { 1933 int ret; 1934 1935 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1936 1937 /* 1938 * We async punt it if the file wasn't marked NOWAIT, or if the file 1939 * doesn't support non-blocking read/write attempts 1940 */ 1941 if (unlikely(ret)) 1942 io_queue_async(req, ret); 1943 } 1944 1945 static void io_queue_sqe_fallback(struct io_kiocb *req) 1946 __must_hold(&req->ctx->uring_lock) 1947 { 1948 if (unlikely(req->flags & REQ_F_FAIL)) { 1949 /* 1950 * We don't submit, fail them all, for that replace hardlinks 1951 * with normal links. Extra REQ_F_LINK is tolerated. 1952 */ 1953 req->flags &= ~REQ_F_HARDLINK; 1954 req->flags |= REQ_F_LINK; 1955 io_req_defer_failed(req, req->cqe.res); 1956 } else { 1957 if (unlikely(req->ctx->drain_active)) 1958 io_drain_req(req); 1959 else 1960 io_queue_iowq(req); 1961 } 1962 } 1963 1964 /* 1965 * Check SQE restrictions (opcode and flags). 1966 * 1967 * Returns 'true' if SQE is allowed, 'false' otherwise. 1968 */ 1969 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1970 struct io_kiocb *req, 1971 unsigned int sqe_flags) 1972 { 1973 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1974 return false; 1975 1976 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1977 ctx->restrictions.sqe_flags_required) 1978 return false; 1979 1980 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1981 ctx->restrictions.sqe_flags_required)) 1982 return false; 1983 1984 return true; 1985 } 1986 1987 static void io_init_req_drain(struct io_kiocb *req) 1988 { 1989 struct io_ring_ctx *ctx = req->ctx; 1990 struct io_kiocb *head = ctx->submit_state.link.head; 1991 1992 ctx->drain_active = true; 1993 if (head) { 1994 /* 1995 * If we need to drain a request in the middle of a link, drain 1996 * the head request and the next request/link after the current 1997 * link. Considering sequential execution of links, 1998 * REQ_F_IO_DRAIN will be maintained for every request of our 1999 * link. 2000 */ 2001 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2002 ctx->drain_next = true; 2003 } 2004 } 2005 2006 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2007 { 2008 /* ensure per-opcode data is cleared if we fail before prep */ 2009 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2010 return err; 2011 } 2012 2013 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2014 const struct io_uring_sqe *sqe) 2015 __must_hold(&ctx->uring_lock) 2016 { 2017 const struct io_issue_def *def; 2018 unsigned int sqe_flags; 2019 int personality; 2020 u8 opcode; 2021 2022 /* req is partially pre-initialised, see io_preinit_req() */ 2023 req->opcode = opcode = READ_ONCE(sqe->opcode); 2024 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2025 sqe_flags = READ_ONCE(sqe->flags); 2026 req->flags = (io_req_flags_t) sqe_flags; 2027 req->cqe.user_data = READ_ONCE(sqe->user_data); 2028 req->file = NULL; 2029 req->rsrc_node = NULL; 2030 req->task = current; 2031 req->cancel_seq_set = false; 2032 2033 if (unlikely(opcode >= IORING_OP_LAST)) { 2034 req->opcode = 0; 2035 return io_init_fail_req(req, -EINVAL); 2036 } 2037 def = &io_issue_defs[opcode]; 2038 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2039 /* enforce forwards compatibility on users */ 2040 if (sqe_flags & ~SQE_VALID_FLAGS) 2041 return io_init_fail_req(req, -EINVAL); 2042 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2043 if (!def->buffer_select) 2044 return io_init_fail_req(req, -EOPNOTSUPP); 2045 req->buf_index = READ_ONCE(sqe->buf_group); 2046 } 2047 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2048 ctx->drain_disabled = true; 2049 if (sqe_flags & IOSQE_IO_DRAIN) { 2050 if (ctx->drain_disabled) 2051 return io_init_fail_req(req, -EOPNOTSUPP); 2052 io_init_req_drain(req); 2053 } 2054 } 2055 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2056 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2057 return io_init_fail_req(req, -EACCES); 2058 /* knock it to the slow queue path, will be drained there */ 2059 if (ctx->drain_active) 2060 req->flags |= REQ_F_FORCE_ASYNC; 2061 /* if there is no link, we're at "next" request and need to drain */ 2062 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2063 ctx->drain_next = false; 2064 ctx->drain_active = true; 2065 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2066 } 2067 } 2068 2069 if (!def->ioprio && sqe->ioprio) 2070 return io_init_fail_req(req, -EINVAL); 2071 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2072 return io_init_fail_req(req, -EINVAL); 2073 2074 if (def->needs_file) { 2075 struct io_submit_state *state = &ctx->submit_state; 2076 2077 req->cqe.fd = READ_ONCE(sqe->fd); 2078 2079 /* 2080 * Plug now if we have more than 2 IO left after this, and the 2081 * target is potentially a read/write to block based storage. 2082 */ 2083 if (state->need_plug && def->plug) { 2084 state->plug_started = true; 2085 state->need_plug = false; 2086 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2087 } 2088 } 2089 2090 personality = READ_ONCE(sqe->personality); 2091 if (personality) { 2092 int ret; 2093 2094 req->creds = xa_load(&ctx->personalities, personality); 2095 if (!req->creds) 2096 return io_init_fail_req(req, -EINVAL); 2097 get_cred(req->creds); 2098 ret = security_uring_override_creds(req->creds); 2099 if (ret) { 2100 put_cred(req->creds); 2101 return io_init_fail_req(req, ret); 2102 } 2103 req->flags |= REQ_F_CREDS; 2104 } 2105 2106 return def->prep(req, sqe); 2107 } 2108 2109 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2110 struct io_kiocb *req, int ret) 2111 { 2112 struct io_ring_ctx *ctx = req->ctx; 2113 struct io_submit_link *link = &ctx->submit_state.link; 2114 struct io_kiocb *head = link->head; 2115 2116 trace_io_uring_req_failed(sqe, req, ret); 2117 2118 /* 2119 * Avoid breaking links in the middle as it renders links with SQPOLL 2120 * unusable. Instead of failing eagerly, continue assembling the link if 2121 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2122 * should find the flag and handle the rest. 2123 */ 2124 req_fail_link_node(req, ret); 2125 if (head && !(head->flags & REQ_F_FAIL)) 2126 req_fail_link_node(head, -ECANCELED); 2127 2128 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2129 if (head) { 2130 link->last->link = req; 2131 link->head = NULL; 2132 req = head; 2133 } 2134 io_queue_sqe_fallback(req); 2135 return ret; 2136 } 2137 2138 if (head) 2139 link->last->link = req; 2140 else 2141 link->head = req; 2142 link->last = req; 2143 return 0; 2144 } 2145 2146 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2147 const struct io_uring_sqe *sqe) 2148 __must_hold(&ctx->uring_lock) 2149 { 2150 struct io_submit_link *link = &ctx->submit_state.link; 2151 int ret; 2152 2153 ret = io_init_req(ctx, req, sqe); 2154 if (unlikely(ret)) 2155 return io_submit_fail_init(sqe, req, ret); 2156 2157 trace_io_uring_submit_req(req); 2158 2159 /* 2160 * If we already have a head request, queue this one for async 2161 * submittal once the head completes. If we don't have a head but 2162 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2163 * submitted sync once the chain is complete. If none of those 2164 * conditions are true (normal request), then just queue it. 2165 */ 2166 if (unlikely(link->head)) { 2167 trace_io_uring_link(req, link->head); 2168 link->last->link = req; 2169 link->last = req; 2170 2171 if (req->flags & IO_REQ_LINK_FLAGS) 2172 return 0; 2173 /* last request of the link, flush it */ 2174 req = link->head; 2175 link->head = NULL; 2176 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2177 goto fallback; 2178 2179 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2180 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2181 if (req->flags & IO_REQ_LINK_FLAGS) { 2182 link->head = req; 2183 link->last = req; 2184 } else { 2185 fallback: 2186 io_queue_sqe_fallback(req); 2187 } 2188 return 0; 2189 } 2190 2191 io_queue_sqe(req); 2192 return 0; 2193 } 2194 2195 /* 2196 * Batched submission is done, ensure local IO is flushed out. 2197 */ 2198 static void io_submit_state_end(struct io_ring_ctx *ctx) 2199 { 2200 struct io_submit_state *state = &ctx->submit_state; 2201 2202 if (unlikely(state->link.head)) 2203 io_queue_sqe_fallback(state->link.head); 2204 /* flush only after queuing links as they can generate completions */ 2205 io_submit_flush_completions(ctx); 2206 if (state->plug_started) 2207 blk_finish_plug(&state->plug); 2208 } 2209 2210 /* 2211 * Start submission side cache. 2212 */ 2213 static void io_submit_state_start(struct io_submit_state *state, 2214 unsigned int max_ios) 2215 { 2216 state->plug_started = false; 2217 state->need_plug = max_ios > 2; 2218 state->submit_nr = max_ios; 2219 /* set only head, no need to init link_last in advance */ 2220 state->link.head = NULL; 2221 } 2222 2223 static void io_commit_sqring(struct io_ring_ctx *ctx) 2224 { 2225 struct io_rings *rings = ctx->rings; 2226 2227 /* 2228 * Ensure any loads from the SQEs are done at this point, 2229 * since once we write the new head, the application could 2230 * write new data to them. 2231 */ 2232 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2233 } 2234 2235 /* 2236 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2237 * that is mapped by userspace. This means that care needs to be taken to 2238 * ensure that reads are stable, as we cannot rely on userspace always 2239 * being a good citizen. If members of the sqe are validated and then later 2240 * used, it's important that those reads are done through READ_ONCE() to 2241 * prevent a re-load down the line. 2242 */ 2243 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2244 { 2245 unsigned mask = ctx->sq_entries - 1; 2246 unsigned head = ctx->cached_sq_head++ & mask; 2247 2248 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2249 head = READ_ONCE(ctx->sq_array[head]); 2250 if (unlikely(head >= ctx->sq_entries)) { 2251 /* drop invalid entries */ 2252 spin_lock(&ctx->completion_lock); 2253 ctx->cq_extra--; 2254 spin_unlock(&ctx->completion_lock); 2255 WRITE_ONCE(ctx->rings->sq_dropped, 2256 READ_ONCE(ctx->rings->sq_dropped) + 1); 2257 return false; 2258 } 2259 } 2260 2261 /* 2262 * The cached sq head (or cq tail) serves two purposes: 2263 * 2264 * 1) allows us to batch the cost of updating the user visible 2265 * head updates. 2266 * 2) allows the kernel side to track the head on its own, even 2267 * though the application is the one updating it. 2268 */ 2269 2270 /* double index for 128-byte SQEs, twice as long */ 2271 if (ctx->flags & IORING_SETUP_SQE128) 2272 head <<= 1; 2273 *sqe = &ctx->sq_sqes[head]; 2274 return true; 2275 } 2276 2277 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2278 __must_hold(&ctx->uring_lock) 2279 { 2280 unsigned int entries = io_sqring_entries(ctx); 2281 unsigned int left; 2282 int ret; 2283 2284 if (unlikely(!entries)) 2285 return 0; 2286 /* make sure SQ entry isn't read before tail */ 2287 ret = left = min(nr, entries); 2288 io_get_task_refs(left); 2289 io_submit_state_start(&ctx->submit_state, left); 2290 2291 do { 2292 const struct io_uring_sqe *sqe; 2293 struct io_kiocb *req; 2294 2295 if (unlikely(!io_alloc_req(ctx, &req))) 2296 break; 2297 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2298 io_req_add_to_cache(req, ctx); 2299 break; 2300 } 2301 2302 /* 2303 * Continue submitting even for sqe failure if the 2304 * ring was setup with IORING_SETUP_SUBMIT_ALL 2305 */ 2306 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2307 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2308 left--; 2309 break; 2310 } 2311 } while (--left); 2312 2313 if (unlikely(left)) { 2314 ret -= left; 2315 /* try again if it submitted nothing and can't allocate a req */ 2316 if (!ret && io_req_cache_empty(ctx)) 2317 ret = -EAGAIN; 2318 current->io_uring->cached_refs += left; 2319 } 2320 2321 io_submit_state_end(ctx); 2322 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2323 io_commit_sqring(ctx); 2324 return ret; 2325 } 2326 2327 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2328 int wake_flags, void *key) 2329 { 2330 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2331 2332 /* 2333 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2334 * the task, and the next invocation will do it. 2335 */ 2336 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2337 return autoremove_wake_function(curr, mode, wake_flags, key); 2338 return -1; 2339 } 2340 2341 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2342 { 2343 if (!llist_empty(&ctx->work_llist)) { 2344 __set_current_state(TASK_RUNNING); 2345 if (io_run_local_work(ctx, INT_MAX) > 0) 2346 return 0; 2347 } 2348 if (io_run_task_work() > 0) 2349 return 0; 2350 if (task_sigpending(current)) 2351 return -EINTR; 2352 return 0; 2353 } 2354 2355 static bool current_pending_io(void) 2356 { 2357 struct io_uring_task *tctx = current->io_uring; 2358 2359 if (!tctx) 2360 return false; 2361 return percpu_counter_read_positive(&tctx->inflight); 2362 } 2363 2364 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2365 { 2366 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2367 2368 WRITE_ONCE(iowq->hit_timeout, 1); 2369 iowq->min_timeout = 0; 2370 wake_up_process(iowq->wq.private); 2371 return HRTIMER_NORESTART; 2372 } 2373 2374 /* 2375 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2376 * wake up. If not, and we have a normal timeout, switch to that and keep 2377 * sleeping. 2378 */ 2379 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2380 { 2381 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2382 struct io_ring_ctx *ctx = iowq->ctx; 2383 2384 /* no general timeout, or shorter (or equal), we are done */ 2385 if (iowq->timeout == KTIME_MAX || 2386 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2387 goto out_wake; 2388 /* work we may need to run, wake function will see if we need to wake */ 2389 if (io_has_work(ctx)) 2390 goto out_wake; 2391 /* got events since we started waiting, min timeout is done */ 2392 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2393 goto out_wake; 2394 /* if we have any events and min timeout expired, we're done */ 2395 if (io_cqring_events(ctx)) 2396 goto out_wake; 2397 2398 /* 2399 * If using deferred task_work running and application is waiting on 2400 * more than one request, ensure we reset it now where we are switching 2401 * to normal sleeps. Any request completion post min_wait should wake 2402 * the task and return. 2403 */ 2404 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2405 atomic_set(&ctx->cq_wait_nr, 1); 2406 smp_mb(); 2407 if (!llist_empty(&ctx->work_llist)) 2408 goto out_wake; 2409 } 2410 2411 iowq->t.function = io_cqring_timer_wakeup; 2412 hrtimer_set_expires(timer, iowq->timeout); 2413 return HRTIMER_RESTART; 2414 out_wake: 2415 return io_cqring_timer_wakeup(timer); 2416 } 2417 2418 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2419 clockid_t clock_id, ktime_t start_time) 2420 { 2421 ktime_t timeout; 2422 2423 hrtimer_init_on_stack(&iowq->t, clock_id, HRTIMER_MODE_ABS); 2424 if (iowq->min_timeout) { 2425 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2426 iowq->t.function = io_cqring_min_timer_wakeup; 2427 } else { 2428 timeout = iowq->timeout; 2429 iowq->t.function = io_cqring_timer_wakeup; 2430 } 2431 2432 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2433 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2434 2435 if (!READ_ONCE(iowq->hit_timeout)) 2436 schedule(); 2437 2438 hrtimer_cancel(&iowq->t); 2439 destroy_hrtimer_on_stack(&iowq->t); 2440 __set_current_state(TASK_RUNNING); 2441 2442 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2443 } 2444 2445 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2446 struct io_wait_queue *iowq, 2447 ktime_t start_time) 2448 { 2449 int ret = 0; 2450 2451 /* 2452 * Mark us as being in io_wait if we have pending requests, so cpufreq 2453 * can take into account that the task is waiting for IO - turns out 2454 * to be important for low QD IO. 2455 */ 2456 if (current_pending_io()) 2457 current->in_iowait = 1; 2458 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2459 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2460 else 2461 schedule(); 2462 current->in_iowait = 0; 2463 return ret; 2464 } 2465 2466 /* If this returns > 0, the caller should retry */ 2467 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2468 struct io_wait_queue *iowq, 2469 ktime_t start_time) 2470 { 2471 if (unlikely(READ_ONCE(ctx->check_cq))) 2472 return 1; 2473 if (unlikely(!llist_empty(&ctx->work_llist))) 2474 return 1; 2475 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2476 return 1; 2477 if (unlikely(task_sigpending(current))) 2478 return -EINTR; 2479 if (unlikely(io_should_wake(iowq))) 2480 return 0; 2481 2482 return __io_cqring_wait_schedule(ctx, iowq, start_time); 2483 } 2484 2485 struct ext_arg { 2486 size_t argsz; 2487 struct __kernel_timespec __user *ts; 2488 const sigset_t __user *sig; 2489 ktime_t min_time; 2490 }; 2491 2492 /* 2493 * Wait until events become available, if we don't already have some. The 2494 * application must reap them itself, as they reside on the shared cq ring. 2495 */ 2496 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2497 struct ext_arg *ext_arg) 2498 { 2499 struct io_wait_queue iowq; 2500 struct io_rings *rings = ctx->rings; 2501 ktime_t start_time; 2502 int ret; 2503 2504 if (!io_allowed_run_tw(ctx)) 2505 return -EEXIST; 2506 if (!llist_empty(&ctx->work_llist)) 2507 io_run_local_work(ctx, min_events); 2508 io_run_task_work(); 2509 2510 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2511 io_cqring_do_overflow_flush(ctx); 2512 if (__io_cqring_events_user(ctx) >= min_events) 2513 return 0; 2514 2515 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2516 iowq.wq.private = current; 2517 INIT_LIST_HEAD(&iowq.wq.entry); 2518 iowq.ctx = ctx; 2519 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2520 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2521 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2522 iowq.hit_timeout = 0; 2523 iowq.min_timeout = ext_arg->min_time; 2524 iowq.timeout = KTIME_MAX; 2525 start_time = io_get_time(ctx); 2526 2527 if (ext_arg->ts) { 2528 struct timespec64 ts; 2529 2530 if (get_timespec64(&ts, ext_arg->ts)) 2531 return -EFAULT; 2532 2533 iowq.timeout = timespec64_to_ktime(ts); 2534 if (!(flags & IORING_ENTER_ABS_TIMER)) 2535 iowq.timeout = ktime_add(iowq.timeout, start_time); 2536 } 2537 2538 if (ext_arg->sig) { 2539 #ifdef CONFIG_COMPAT 2540 if (in_compat_syscall()) 2541 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2542 ext_arg->argsz); 2543 else 2544 #endif 2545 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2546 2547 if (ret) 2548 return ret; 2549 } 2550 2551 io_napi_busy_loop(ctx, &iowq); 2552 2553 trace_io_uring_cqring_wait(ctx, min_events); 2554 do { 2555 unsigned long check_cq; 2556 int nr_wait; 2557 2558 /* if min timeout has been hit, don't reset wait count */ 2559 if (!iowq.hit_timeout) 2560 nr_wait = (int) iowq.cq_tail - 2561 READ_ONCE(ctx->rings->cq.tail); 2562 else 2563 nr_wait = 1; 2564 2565 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2566 atomic_set(&ctx->cq_wait_nr, nr_wait); 2567 set_current_state(TASK_INTERRUPTIBLE); 2568 } else { 2569 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2570 TASK_INTERRUPTIBLE); 2571 } 2572 2573 ret = io_cqring_wait_schedule(ctx, &iowq, start_time); 2574 __set_current_state(TASK_RUNNING); 2575 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2576 2577 /* 2578 * Run task_work after scheduling and before io_should_wake(). 2579 * If we got woken because of task_work being processed, run it 2580 * now rather than let the caller do another wait loop. 2581 */ 2582 io_run_task_work(); 2583 if (!llist_empty(&ctx->work_llist)) 2584 io_run_local_work(ctx, nr_wait); 2585 2586 /* 2587 * Non-local task_work will be run on exit to userspace, but 2588 * if we're using DEFER_TASKRUN, then we could have waited 2589 * with a timeout for a number of requests. If the timeout 2590 * hits, we could have some requests ready to process. Ensure 2591 * this break is _after_ we have run task_work, to avoid 2592 * deferring running potentially pending requests until the 2593 * next time we wait for events. 2594 */ 2595 if (ret < 0) 2596 break; 2597 2598 check_cq = READ_ONCE(ctx->check_cq); 2599 if (unlikely(check_cq)) { 2600 /* let the caller flush overflows, retry */ 2601 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2602 io_cqring_do_overflow_flush(ctx); 2603 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2604 ret = -EBADR; 2605 break; 2606 } 2607 } 2608 2609 if (io_should_wake(&iowq)) { 2610 ret = 0; 2611 break; 2612 } 2613 cond_resched(); 2614 } while (1); 2615 2616 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2617 finish_wait(&ctx->cq_wait, &iowq.wq); 2618 restore_saved_sigmask_unless(ret == -EINTR); 2619 2620 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2621 } 2622 2623 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2624 size_t size) 2625 { 2626 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2627 size); 2628 } 2629 2630 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2631 size_t size) 2632 { 2633 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2634 size); 2635 } 2636 2637 static void io_rings_free(struct io_ring_ctx *ctx) 2638 { 2639 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2640 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages, 2641 true); 2642 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages, 2643 true); 2644 } else { 2645 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2646 ctx->n_ring_pages = 0; 2647 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2648 ctx->n_sqe_pages = 0; 2649 vunmap(ctx->rings); 2650 vunmap(ctx->sq_sqes); 2651 } 2652 2653 ctx->rings = NULL; 2654 ctx->sq_sqes = NULL; 2655 } 2656 2657 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2658 unsigned int cq_entries, size_t *sq_offset) 2659 { 2660 struct io_rings *rings; 2661 size_t off, sq_array_size; 2662 2663 off = struct_size(rings, cqes, cq_entries); 2664 if (off == SIZE_MAX) 2665 return SIZE_MAX; 2666 if (ctx->flags & IORING_SETUP_CQE32) { 2667 if (check_shl_overflow(off, 1, &off)) 2668 return SIZE_MAX; 2669 } 2670 2671 #ifdef CONFIG_SMP 2672 off = ALIGN(off, SMP_CACHE_BYTES); 2673 if (off == 0) 2674 return SIZE_MAX; 2675 #endif 2676 2677 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2678 *sq_offset = SIZE_MAX; 2679 return off; 2680 } 2681 2682 *sq_offset = off; 2683 2684 sq_array_size = array_size(sizeof(u32), sq_entries); 2685 if (sq_array_size == SIZE_MAX) 2686 return SIZE_MAX; 2687 2688 if (check_add_overflow(off, sq_array_size, &off)) 2689 return SIZE_MAX; 2690 2691 return off; 2692 } 2693 2694 static void io_req_caches_free(struct io_ring_ctx *ctx) 2695 { 2696 struct io_kiocb *req; 2697 int nr = 0; 2698 2699 mutex_lock(&ctx->uring_lock); 2700 2701 while (!io_req_cache_empty(ctx)) { 2702 req = io_extract_req(ctx); 2703 kmem_cache_free(req_cachep, req); 2704 nr++; 2705 } 2706 if (nr) 2707 percpu_ref_put_many(&ctx->refs, nr); 2708 mutex_unlock(&ctx->uring_lock); 2709 } 2710 2711 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2712 { 2713 io_sq_thread_finish(ctx); 2714 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2715 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2716 return; 2717 2718 mutex_lock(&ctx->uring_lock); 2719 if (ctx->buf_data) 2720 __io_sqe_buffers_unregister(ctx); 2721 if (ctx->file_data) 2722 __io_sqe_files_unregister(ctx); 2723 io_cqring_overflow_kill(ctx); 2724 io_eventfd_unregister(ctx); 2725 io_alloc_cache_free(&ctx->apoll_cache, kfree); 2726 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2727 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 2728 io_alloc_cache_free(&ctx->uring_cache, kfree); 2729 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 2730 io_futex_cache_free(ctx); 2731 io_destroy_buffers(ctx); 2732 mutex_unlock(&ctx->uring_lock); 2733 if (ctx->sq_creds) 2734 put_cred(ctx->sq_creds); 2735 if (ctx->submitter_task) 2736 put_task_struct(ctx->submitter_task); 2737 2738 /* there are no registered resources left, nobody uses it */ 2739 if (ctx->rsrc_node) 2740 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2741 2742 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2743 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2744 2745 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree); 2746 if (ctx->mm_account) { 2747 mmdrop(ctx->mm_account); 2748 ctx->mm_account = NULL; 2749 } 2750 io_rings_free(ctx); 2751 2752 percpu_ref_exit(&ctx->refs); 2753 free_uid(ctx->user); 2754 io_req_caches_free(ctx); 2755 if (ctx->hash_map) 2756 io_wq_put_hash(ctx->hash_map); 2757 io_napi_free(ctx); 2758 kfree(ctx->cancel_table.hbs); 2759 kfree(ctx->cancel_table_locked.hbs); 2760 xa_destroy(&ctx->io_bl_xa); 2761 kfree(ctx); 2762 } 2763 2764 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2765 { 2766 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2767 poll_wq_task_work); 2768 2769 mutex_lock(&ctx->uring_lock); 2770 ctx->poll_activated = true; 2771 mutex_unlock(&ctx->uring_lock); 2772 2773 /* 2774 * Wake ups for some events between start of polling and activation 2775 * might've been lost due to loose synchronisation. 2776 */ 2777 wake_up_all(&ctx->poll_wq); 2778 percpu_ref_put(&ctx->refs); 2779 } 2780 2781 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2782 { 2783 spin_lock(&ctx->completion_lock); 2784 /* already activated or in progress */ 2785 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2786 goto out; 2787 if (WARN_ON_ONCE(!ctx->task_complete)) 2788 goto out; 2789 if (!ctx->submitter_task) 2790 goto out; 2791 /* 2792 * with ->submitter_task only the submitter task completes requests, we 2793 * only need to sync with it, which is done by injecting a tw 2794 */ 2795 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2796 percpu_ref_get(&ctx->refs); 2797 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2798 percpu_ref_put(&ctx->refs); 2799 out: 2800 spin_unlock(&ctx->completion_lock); 2801 } 2802 2803 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2804 { 2805 struct io_ring_ctx *ctx = file->private_data; 2806 __poll_t mask = 0; 2807 2808 if (unlikely(!ctx->poll_activated)) 2809 io_activate_pollwq(ctx); 2810 2811 poll_wait(file, &ctx->poll_wq, wait); 2812 /* 2813 * synchronizes with barrier from wq_has_sleeper call in 2814 * io_commit_cqring 2815 */ 2816 smp_rmb(); 2817 if (!io_sqring_full(ctx)) 2818 mask |= EPOLLOUT | EPOLLWRNORM; 2819 2820 /* 2821 * Don't flush cqring overflow list here, just do a simple check. 2822 * Otherwise there could possible be ABBA deadlock: 2823 * CPU0 CPU1 2824 * ---- ---- 2825 * lock(&ctx->uring_lock); 2826 * lock(&ep->mtx); 2827 * lock(&ctx->uring_lock); 2828 * lock(&ep->mtx); 2829 * 2830 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2831 * pushes them to do the flush. 2832 */ 2833 2834 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2835 mask |= EPOLLIN | EPOLLRDNORM; 2836 2837 return mask; 2838 } 2839 2840 struct io_tctx_exit { 2841 struct callback_head task_work; 2842 struct completion completion; 2843 struct io_ring_ctx *ctx; 2844 }; 2845 2846 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2847 { 2848 struct io_uring_task *tctx = current->io_uring; 2849 struct io_tctx_exit *work; 2850 2851 work = container_of(cb, struct io_tctx_exit, task_work); 2852 /* 2853 * When @in_cancel, we're in cancellation and it's racy to remove the 2854 * node. It'll be removed by the end of cancellation, just ignore it. 2855 * tctx can be NULL if the queueing of this task_work raced with 2856 * work cancelation off the exec path. 2857 */ 2858 if (tctx && !atomic_read(&tctx->in_cancel)) 2859 io_uring_del_tctx_node((unsigned long)work->ctx); 2860 complete(&work->completion); 2861 } 2862 2863 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2864 { 2865 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2866 2867 return req->ctx == data; 2868 } 2869 2870 static __cold void io_ring_exit_work(struct work_struct *work) 2871 { 2872 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2873 unsigned long timeout = jiffies + HZ * 60 * 5; 2874 unsigned long interval = HZ / 20; 2875 struct io_tctx_exit exit; 2876 struct io_tctx_node *node; 2877 int ret; 2878 2879 /* 2880 * If we're doing polled IO and end up having requests being 2881 * submitted async (out-of-line), then completions can come in while 2882 * we're waiting for refs to drop. We need to reap these manually, 2883 * as nobody else will be looking for them. 2884 */ 2885 do { 2886 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2887 mutex_lock(&ctx->uring_lock); 2888 io_cqring_overflow_kill(ctx); 2889 mutex_unlock(&ctx->uring_lock); 2890 } 2891 2892 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2893 io_move_task_work_from_local(ctx); 2894 2895 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2896 cond_resched(); 2897 2898 if (ctx->sq_data) { 2899 struct io_sq_data *sqd = ctx->sq_data; 2900 struct task_struct *tsk; 2901 2902 io_sq_thread_park(sqd); 2903 tsk = sqd->thread; 2904 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2905 io_wq_cancel_cb(tsk->io_uring->io_wq, 2906 io_cancel_ctx_cb, ctx, true); 2907 io_sq_thread_unpark(sqd); 2908 } 2909 2910 io_req_caches_free(ctx); 2911 2912 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2913 /* there is little hope left, don't run it too often */ 2914 interval = HZ * 60; 2915 } 2916 /* 2917 * This is really an uninterruptible wait, as it has to be 2918 * complete. But it's also run from a kworker, which doesn't 2919 * take signals, so it's fine to make it interruptible. This 2920 * avoids scenarios where we knowingly can wait much longer 2921 * on completions, for example if someone does a SIGSTOP on 2922 * a task that needs to finish task_work to make this loop 2923 * complete. That's a synthetic situation that should not 2924 * cause a stuck task backtrace, and hence a potential panic 2925 * on stuck tasks if that is enabled. 2926 */ 2927 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2928 2929 init_completion(&exit.completion); 2930 init_task_work(&exit.task_work, io_tctx_exit_cb); 2931 exit.ctx = ctx; 2932 2933 mutex_lock(&ctx->uring_lock); 2934 while (!list_empty(&ctx->tctx_list)) { 2935 WARN_ON_ONCE(time_after(jiffies, timeout)); 2936 2937 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2938 ctx_node); 2939 /* don't spin on a single task if cancellation failed */ 2940 list_rotate_left(&ctx->tctx_list); 2941 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2942 if (WARN_ON_ONCE(ret)) 2943 continue; 2944 2945 mutex_unlock(&ctx->uring_lock); 2946 /* 2947 * See comment above for 2948 * wait_for_completion_interruptible_timeout() on why this 2949 * wait is marked as interruptible. 2950 */ 2951 wait_for_completion_interruptible(&exit.completion); 2952 mutex_lock(&ctx->uring_lock); 2953 } 2954 mutex_unlock(&ctx->uring_lock); 2955 spin_lock(&ctx->completion_lock); 2956 spin_unlock(&ctx->completion_lock); 2957 2958 /* pairs with RCU read section in io_req_local_work_add() */ 2959 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2960 synchronize_rcu(); 2961 2962 io_ring_ctx_free(ctx); 2963 } 2964 2965 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2966 { 2967 unsigned long index; 2968 struct creds *creds; 2969 2970 mutex_lock(&ctx->uring_lock); 2971 percpu_ref_kill(&ctx->refs); 2972 xa_for_each(&ctx->personalities, index, creds) 2973 io_unregister_personality(ctx, index); 2974 mutex_unlock(&ctx->uring_lock); 2975 2976 flush_delayed_work(&ctx->fallback_work); 2977 2978 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2979 /* 2980 * Use system_unbound_wq to avoid spawning tons of event kworkers 2981 * if we're exiting a ton of rings at the same time. It just adds 2982 * noise and overhead, there's no discernable change in runtime 2983 * over using system_wq. 2984 */ 2985 queue_work(iou_wq, &ctx->exit_work); 2986 } 2987 2988 static int io_uring_release(struct inode *inode, struct file *file) 2989 { 2990 struct io_ring_ctx *ctx = file->private_data; 2991 2992 file->private_data = NULL; 2993 io_ring_ctx_wait_and_kill(ctx); 2994 return 0; 2995 } 2996 2997 struct io_task_cancel { 2998 struct task_struct *task; 2999 bool all; 3000 }; 3001 3002 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3003 { 3004 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3005 struct io_task_cancel *cancel = data; 3006 3007 return io_match_task_safe(req, cancel->task, cancel->all); 3008 } 3009 3010 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3011 struct task_struct *task, 3012 bool cancel_all) 3013 { 3014 struct io_defer_entry *de; 3015 LIST_HEAD(list); 3016 3017 spin_lock(&ctx->completion_lock); 3018 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3019 if (io_match_task_safe(de->req, task, cancel_all)) { 3020 list_cut_position(&list, &ctx->defer_list, &de->list); 3021 break; 3022 } 3023 } 3024 spin_unlock(&ctx->completion_lock); 3025 if (list_empty(&list)) 3026 return false; 3027 3028 while (!list_empty(&list)) { 3029 de = list_first_entry(&list, struct io_defer_entry, list); 3030 list_del_init(&de->list); 3031 io_req_task_queue_fail(de->req, -ECANCELED); 3032 kfree(de); 3033 } 3034 return true; 3035 } 3036 3037 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3038 { 3039 struct io_tctx_node *node; 3040 enum io_wq_cancel cret; 3041 bool ret = false; 3042 3043 mutex_lock(&ctx->uring_lock); 3044 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3045 struct io_uring_task *tctx = node->task->io_uring; 3046 3047 /* 3048 * io_wq will stay alive while we hold uring_lock, because it's 3049 * killed after ctx nodes, which requires to take the lock. 3050 */ 3051 if (!tctx || !tctx->io_wq) 3052 continue; 3053 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3054 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3055 } 3056 mutex_unlock(&ctx->uring_lock); 3057 3058 return ret; 3059 } 3060 3061 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3062 struct task_struct *task, 3063 bool cancel_all) 3064 { 3065 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3066 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3067 enum io_wq_cancel cret; 3068 bool ret = false; 3069 3070 /* set it so io_req_local_work_add() would wake us up */ 3071 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3072 atomic_set(&ctx->cq_wait_nr, 1); 3073 smp_mb(); 3074 } 3075 3076 /* failed during ring init, it couldn't have issued any requests */ 3077 if (!ctx->rings) 3078 return false; 3079 3080 if (!task) { 3081 ret |= io_uring_try_cancel_iowq(ctx); 3082 } else if (tctx && tctx->io_wq) { 3083 /* 3084 * Cancels requests of all rings, not only @ctx, but 3085 * it's fine as the task is in exit/exec. 3086 */ 3087 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3088 &cancel, true); 3089 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3090 } 3091 3092 /* SQPOLL thread does its own polling */ 3093 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3094 (ctx->sq_data && ctx->sq_data->thread == current)) { 3095 while (!wq_list_empty(&ctx->iopoll_list)) { 3096 io_iopoll_try_reap_events(ctx); 3097 ret = true; 3098 cond_resched(); 3099 } 3100 } 3101 3102 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3103 io_allowed_defer_tw_run(ctx)) 3104 ret |= io_run_local_work(ctx, INT_MAX) > 0; 3105 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3106 mutex_lock(&ctx->uring_lock); 3107 ret |= io_poll_remove_all(ctx, task, cancel_all); 3108 ret |= io_waitid_remove_all(ctx, task, cancel_all); 3109 ret |= io_futex_remove_all(ctx, task, cancel_all); 3110 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); 3111 mutex_unlock(&ctx->uring_lock); 3112 ret |= io_kill_timeouts(ctx, task, cancel_all); 3113 if (task) 3114 ret |= io_run_task_work() > 0; 3115 else 3116 ret |= flush_delayed_work(&ctx->fallback_work); 3117 return ret; 3118 } 3119 3120 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3121 { 3122 if (tracked) 3123 return atomic_read(&tctx->inflight_tracked); 3124 return percpu_counter_sum(&tctx->inflight); 3125 } 3126 3127 /* 3128 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3129 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3130 */ 3131 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3132 { 3133 struct io_uring_task *tctx = current->io_uring; 3134 struct io_ring_ctx *ctx; 3135 struct io_tctx_node *node; 3136 unsigned long index; 3137 s64 inflight; 3138 DEFINE_WAIT(wait); 3139 3140 WARN_ON_ONCE(sqd && sqd->thread != current); 3141 3142 if (!current->io_uring) 3143 return; 3144 if (tctx->io_wq) 3145 io_wq_exit_start(tctx->io_wq); 3146 3147 atomic_inc(&tctx->in_cancel); 3148 do { 3149 bool loop = false; 3150 3151 io_uring_drop_tctx_refs(current); 3152 if (!tctx_inflight(tctx, !cancel_all)) 3153 break; 3154 3155 /* read completions before cancelations */ 3156 inflight = tctx_inflight(tctx, false); 3157 if (!inflight) 3158 break; 3159 3160 if (!sqd) { 3161 xa_for_each(&tctx->xa, index, node) { 3162 /* sqpoll task will cancel all its requests */ 3163 if (node->ctx->sq_data) 3164 continue; 3165 loop |= io_uring_try_cancel_requests(node->ctx, 3166 current, cancel_all); 3167 } 3168 } else { 3169 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3170 loop |= io_uring_try_cancel_requests(ctx, 3171 current, 3172 cancel_all); 3173 } 3174 3175 if (loop) { 3176 cond_resched(); 3177 continue; 3178 } 3179 3180 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3181 io_run_task_work(); 3182 io_uring_drop_tctx_refs(current); 3183 xa_for_each(&tctx->xa, index, node) { 3184 if (!llist_empty(&node->ctx->work_llist)) { 3185 WARN_ON_ONCE(node->ctx->submitter_task && 3186 node->ctx->submitter_task != current); 3187 goto end_wait; 3188 } 3189 } 3190 /* 3191 * If we've seen completions, retry without waiting. This 3192 * avoids a race where a completion comes in before we did 3193 * prepare_to_wait(). 3194 */ 3195 if (inflight == tctx_inflight(tctx, !cancel_all)) 3196 schedule(); 3197 end_wait: 3198 finish_wait(&tctx->wait, &wait); 3199 } while (1); 3200 3201 io_uring_clean_tctx(tctx); 3202 if (cancel_all) { 3203 /* 3204 * We shouldn't run task_works after cancel, so just leave 3205 * ->in_cancel set for normal exit. 3206 */ 3207 atomic_dec(&tctx->in_cancel); 3208 /* for exec all current's requests should be gone, kill tctx */ 3209 __io_uring_free(current); 3210 } 3211 } 3212 3213 void __io_uring_cancel(bool cancel_all) 3214 { 3215 io_uring_cancel_generic(cancel_all, NULL); 3216 } 3217 3218 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3219 { 3220 if (flags & IORING_ENTER_EXT_ARG) { 3221 struct io_uring_getevents_arg arg; 3222 3223 if (argsz != sizeof(arg)) 3224 return -EINVAL; 3225 if (copy_from_user(&arg, argp, sizeof(arg))) 3226 return -EFAULT; 3227 } 3228 return 0; 3229 } 3230 3231 static int io_get_ext_arg(unsigned flags, const void __user *argp, 3232 struct ext_arg *ext_arg) 3233 { 3234 struct io_uring_getevents_arg arg; 3235 3236 /* 3237 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3238 * is just a pointer to the sigset_t. 3239 */ 3240 if (!(flags & IORING_ENTER_EXT_ARG)) { 3241 ext_arg->sig = (const sigset_t __user *) argp; 3242 ext_arg->ts = NULL; 3243 return 0; 3244 } 3245 3246 /* 3247 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3248 * timespec and sigset_t pointers if good. 3249 */ 3250 if (ext_arg->argsz != sizeof(arg)) 3251 return -EINVAL; 3252 if (copy_from_user(&arg, argp, sizeof(arg))) 3253 return -EFAULT; 3254 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3255 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3256 ext_arg->argsz = arg.sigmask_sz; 3257 ext_arg->ts = u64_to_user_ptr(arg.ts); 3258 return 0; 3259 } 3260 3261 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3262 u32, min_complete, u32, flags, const void __user *, argp, 3263 size_t, argsz) 3264 { 3265 struct io_ring_ctx *ctx; 3266 struct file *file; 3267 long ret; 3268 3269 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3270 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3271 IORING_ENTER_REGISTERED_RING | 3272 IORING_ENTER_ABS_TIMER))) 3273 return -EINVAL; 3274 3275 /* 3276 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3277 * need only dereference our task private array to find it. 3278 */ 3279 if (flags & IORING_ENTER_REGISTERED_RING) { 3280 struct io_uring_task *tctx = current->io_uring; 3281 3282 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3283 return -EINVAL; 3284 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3285 file = tctx->registered_rings[fd]; 3286 if (unlikely(!file)) 3287 return -EBADF; 3288 } else { 3289 file = fget(fd); 3290 if (unlikely(!file)) 3291 return -EBADF; 3292 ret = -EOPNOTSUPP; 3293 if (unlikely(!io_is_uring_fops(file))) 3294 goto out; 3295 } 3296 3297 ctx = file->private_data; 3298 ret = -EBADFD; 3299 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3300 goto out; 3301 3302 /* 3303 * For SQ polling, the thread will do all submissions and completions. 3304 * Just return the requested submit count, and wake the thread if 3305 * we were asked to. 3306 */ 3307 ret = 0; 3308 if (ctx->flags & IORING_SETUP_SQPOLL) { 3309 if (unlikely(ctx->sq_data->thread == NULL)) { 3310 ret = -EOWNERDEAD; 3311 goto out; 3312 } 3313 if (flags & IORING_ENTER_SQ_WAKEUP) 3314 wake_up(&ctx->sq_data->wait); 3315 if (flags & IORING_ENTER_SQ_WAIT) 3316 io_sqpoll_wait_sq(ctx); 3317 3318 ret = to_submit; 3319 } else if (to_submit) { 3320 ret = io_uring_add_tctx_node(ctx); 3321 if (unlikely(ret)) 3322 goto out; 3323 3324 mutex_lock(&ctx->uring_lock); 3325 ret = io_submit_sqes(ctx, to_submit); 3326 if (ret != to_submit) { 3327 mutex_unlock(&ctx->uring_lock); 3328 goto out; 3329 } 3330 if (flags & IORING_ENTER_GETEVENTS) { 3331 if (ctx->syscall_iopoll) 3332 goto iopoll_locked; 3333 /* 3334 * Ignore errors, we'll soon call io_cqring_wait() and 3335 * it should handle ownership problems if any. 3336 */ 3337 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3338 (void)io_run_local_work_locked(ctx, min_complete); 3339 } 3340 mutex_unlock(&ctx->uring_lock); 3341 } 3342 3343 if (flags & IORING_ENTER_GETEVENTS) { 3344 int ret2; 3345 3346 if (ctx->syscall_iopoll) { 3347 /* 3348 * We disallow the app entering submit/complete with 3349 * polling, but we still need to lock the ring to 3350 * prevent racing with polled issue that got punted to 3351 * a workqueue. 3352 */ 3353 mutex_lock(&ctx->uring_lock); 3354 iopoll_locked: 3355 ret2 = io_validate_ext_arg(flags, argp, argsz); 3356 if (likely(!ret2)) { 3357 min_complete = min(min_complete, 3358 ctx->cq_entries); 3359 ret2 = io_iopoll_check(ctx, min_complete); 3360 } 3361 mutex_unlock(&ctx->uring_lock); 3362 } else { 3363 struct ext_arg ext_arg = { .argsz = argsz }; 3364 3365 ret2 = io_get_ext_arg(flags, argp, &ext_arg); 3366 if (likely(!ret2)) { 3367 min_complete = min(min_complete, 3368 ctx->cq_entries); 3369 ret2 = io_cqring_wait(ctx, min_complete, flags, 3370 &ext_arg); 3371 } 3372 } 3373 3374 if (!ret) { 3375 ret = ret2; 3376 3377 /* 3378 * EBADR indicates that one or more CQE were dropped. 3379 * Once the user has been informed we can clear the bit 3380 * as they are obviously ok with those drops. 3381 */ 3382 if (unlikely(ret2 == -EBADR)) 3383 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3384 &ctx->check_cq); 3385 } 3386 } 3387 out: 3388 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3389 fput(file); 3390 return ret; 3391 } 3392 3393 static const struct file_operations io_uring_fops = { 3394 .release = io_uring_release, 3395 .mmap = io_uring_mmap, 3396 .get_unmapped_area = io_uring_get_unmapped_area, 3397 #ifndef CONFIG_MMU 3398 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3399 #endif 3400 .poll = io_uring_poll, 3401 #ifdef CONFIG_PROC_FS 3402 .show_fdinfo = io_uring_show_fdinfo, 3403 #endif 3404 }; 3405 3406 bool io_is_uring_fops(struct file *file) 3407 { 3408 return file->f_op == &io_uring_fops; 3409 } 3410 3411 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3412 struct io_uring_params *p) 3413 { 3414 struct io_rings *rings; 3415 size_t size, sq_array_offset; 3416 void *ptr; 3417 3418 /* make sure these are sane, as we already accounted them */ 3419 ctx->sq_entries = p->sq_entries; 3420 ctx->cq_entries = p->cq_entries; 3421 3422 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3423 if (size == SIZE_MAX) 3424 return -EOVERFLOW; 3425 3426 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3427 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size); 3428 else 3429 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3430 3431 if (IS_ERR(rings)) 3432 return PTR_ERR(rings); 3433 3434 ctx->rings = rings; 3435 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3436 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3437 rings->sq_ring_mask = p->sq_entries - 1; 3438 rings->cq_ring_mask = p->cq_entries - 1; 3439 rings->sq_ring_entries = p->sq_entries; 3440 rings->cq_ring_entries = p->cq_entries; 3441 3442 if (p->flags & IORING_SETUP_SQE128) 3443 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3444 else 3445 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3446 if (size == SIZE_MAX) { 3447 io_rings_free(ctx); 3448 return -EOVERFLOW; 3449 } 3450 3451 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3452 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size); 3453 else 3454 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3455 3456 if (IS_ERR(ptr)) { 3457 io_rings_free(ctx); 3458 return PTR_ERR(ptr); 3459 } 3460 3461 ctx->sq_sqes = ptr; 3462 return 0; 3463 } 3464 3465 static int io_uring_install_fd(struct file *file) 3466 { 3467 int fd; 3468 3469 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3470 if (fd < 0) 3471 return fd; 3472 fd_install(fd, file); 3473 return fd; 3474 } 3475 3476 /* 3477 * Allocate an anonymous fd, this is what constitutes the application 3478 * visible backing of an io_uring instance. The application mmaps this 3479 * fd to gain access to the SQ/CQ ring details. 3480 */ 3481 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3482 { 3483 /* Create a new inode so that the LSM can block the creation. */ 3484 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3485 O_RDWR | O_CLOEXEC, NULL); 3486 } 3487 3488 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3489 struct io_uring_params __user *params) 3490 { 3491 struct io_ring_ctx *ctx; 3492 struct io_uring_task *tctx; 3493 struct file *file; 3494 int ret; 3495 3496 if (!entries) 3497 return -EINVAL; 3498 if (entries > IORING_MAX_ENTRIES) { 3499 if (!(p->flags & IORING_SETUP_CLAMP)) 3500 return -EINVAL; 3501 entries = IORING_MAX_ENTRIES; 3502 } 3503 3504 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3505 && !(p->flags & IORING_SETUP_NO_MMAP)) 3506 return -EINVAL; 3507 3508 /* 3509 * Use twice as many entries for the CQ ring. It's possible for the 3510 * application to drive a higher depth than the size of the SQ ring, 3511 * since the sqes are only used at submission time. This allows for 3512 * some flexibility in overcommitting a bit. If the application has 3513 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3514 * of CQ ring entries manually. 3515 */ 3516 p->sq_entries = roundup_pow_of_two(entries); 3517 if (p->flags & IORING_SETUP_CQSIZE) { 3518 /* 3519 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3520 * to a power-of-two, if it isn't already. We do NOT impose 3521 * any cq vs sq ring sizing. 3522 */ 3523 if (!p->cq_entries) 3524 return -EINVAL; 3525 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3526 if (!(p->flags & IORING_SETUP_CLAMP)) 3527 return -EINVAL; 3528 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3529 } 3530 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3531 if (p->cq_entries < p->sq_entries) 3532 return -EINVAL; 3533 } else { 3534 p->cq_entries = 2 * p->sq_entries; 3535 } 3536 3537 ctx = io_ring_ctx_alloc(p); 3538 if (!ctx) 3539 return -ENOMEM; 3540 3541 ctx->clockid = CLOCK_MONOTONIC; 3542 ctx->clock_offset = 0; 3543 3544 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3545 !(ctx->flags & IORING_SETUP_IOPOLL) && 3546 !(ctx->flags & IORING_SETUP_SQPOLL)) 3547 ctx->task_complete = true; 3548 3549 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3550 ctx->lockless_cq = true; 3551 3552 /* 3553 * lazy poll_wq activation relies on ->task_complete for synchronisation 3554 * purposes, see io_activate_pollwq() 3555 */ 3556 if (!ctx->task_complete) 3557 ctx->poll_activated = true; 3558 3559 /* 3560 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3561 * space applications don't need to do io completion events 3562 * polling again, they can rely on io_sq_thread to do polling 3563 * work, which can reduce cpu usage and uring_lock contention. 3564 */ 3565 if (ctx->flags & IORING_SETUP_IOPOLL && 3566 !(ctx->flags & IORING_SETUP_SQPOLL)) 3567 ctx->syscall_iopoll = 1; 3568 3569 ctx->compat = in_compat_syscall(); 3570 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3571 ctx->user = get_uid(current_user()); 3572 3573 /* 3574 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3575 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3576 */ 3577 ret = -EINVAL; 3578 if (ctx->flags & IORING_SETUP_SQPOLL) { 3579 /* IPI related flags don't make sense with SQPOLL */ 3580 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3581 IORING_SETUP_TASKRUN_FLAG | 3582 IORING_SETUP_DEFER_TASKRUN)) 3583 goto err; 3584 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3585 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3586 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3587 } else { 3588 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3589 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3590 goto err; 3591 ctx->notify_method = TWA_SIGNAL; 3592 } 3593 3594 /* 3595 * For DEFER_TASKRUN we require the completion task to be the same as the 3596 * submission task. This implies that there is only one submitter, so enforce 3597 * that. 3598 */ 3599 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3600 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3601 goto err; 3602 } 3603 3604 /* 3605 * This is just grabbed for accounting purposes. When a process exits, 3606 * the mm is exited and dropped before the files, hence we need to hang 3607 * on to this mm purely for the purposes of being able to unaccount 3608 * memory (locked/pinned vm). It's not used for anything else. 3609 */ 3610 mmgrab(current->mm); 3611 ctx->mm_account = current->mm; 3612 3613 ret = io_allocate_scq_urings(ctx, p); 3614 if (ret) 3615 goto err; 3616 3617 ret = io_sq_offload_create(ctx, p); 3618 if (ret) 3619 goto err; 3620 3621 ret = io_rsrc_init(ctx); 3622 if (ret) 3623 goto err; 3624 3625 p->sq_off.head = offsetof(struct io_rings, sq.head); 3626 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3627 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3628 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3629 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3630 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3631 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3632 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3633 p->sq_off.resv1 = 0; 3634 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3635 p->sq_off.user_addr = 0; 3636 3637 p->cq_off.head = offsetof(struct io_rings, cq.head); 3638 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3639 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3640 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3641 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3642 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3643 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3644 p->cq_off.resv1 = 0; 3645 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3646 p->cq_off.user_addr = 0; 3647 3648 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3649 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3650 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3651 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3652 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3653 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3654 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3655 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT; 3656 3657 if (copy_to_user(params, p, sizeof(*p))) { 3658 ret = -EFAULT; 3659 goto err; 3660 } 3661 3662 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3663 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3664 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3665 3666 file = io_uring_get_file(ctx); 3667 if (IS_ERR(file)) { 3668 ret = PTR_ERR(file); 3669 goto err; 3670 } 3671 3672 ret = __io_uring_add_tctx_node(ctx); 3673 if (ret) 3674 goto err_fput; 3675 tctx = current->io_uring; 3676 3677 /* 3678 * Install ring fd as the very last thing, so we don't risk someone 3679 * having closed it before we finish setup 3680 */ 3681 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3682 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3683 else 3684 ret = io_uring_install_fd(file); 3685 if (ret < 0) 3686 goto err_fput; 3687 3688 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3689 return ret; 3690 err: 3691 io_ring_ctx_wait_and_kill(ctx); 3692 return ret; 3693 err_fput: 3694 fput(file); 3695 return ret; 3696 } 3697 3698 /* 3699 * Sets up an aio uring context, and returns the fd. Applications asks for a 3700 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3701 * params structure passed in. 3702 */ 3703 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3704 { 3705 struct io_uring_params p; 3706 int i; 3707 3708 if (copy_from_user(&p, params, sizeof(p))) 3709 return -EFAULT; 3710 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3711 if (p.resv[i]) 3712 return -EINVAL; 3713 } 3714 3715 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3716 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3717 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3718 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3719 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3720 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3721 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3722 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3723 IORING_SETUP_NO_SQARRAY)) 3724 return -EINVAL; 3725 3726 return io_uring_create(entries, &p, params); 3727 } 3728 3729 static inline bool io_uring_allowed(void) 3730 { 3731 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3732 kgid_t io_uring_group; 3733 3734 if (disabled == 2) 3735 return false; 3736 3737 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3738 return true; 3739 3740 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3741 if (!gid_valid(io_uring_group)) 3742 return false; 3743 3744 return in_group_p(io_uring_group); 3745 } 3746 3747 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3748 struct io_uring_params __user *, params) 3749 { 3750 if (!io_uring_allowed()) 3751 return -EPERM; 3752 3753 return io_uring_setup(entries, params); 3754 } 3755 3756 static int __init io_uring_init(void) 3757 { 3758 struct kmem_cache_args kmem_args = { 3759 .useroffset = offsetof(struct io_kiocb, cmd.data), 3760 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3761 }; 3762 3763 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3764 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3765 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3766 } while (0) 3767 3768 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3769 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3770 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3771 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3772 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3773 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3774 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3775 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3776 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3777 BUILD_BUG_SQE_ELEM(8, __u64, off); 3778 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3779 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3780 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3781 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3782 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3783 BUILD_BUG_SQE_ELEM(24, __u32, len); 3784 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3785 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3786 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3787 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3788 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3789 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3790 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3791 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3792 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3793 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3794 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3795 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3796 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3797 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3798 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3799 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3800 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3801 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3802 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3803 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3804 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3805 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3806 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3807 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3808 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3809 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3810 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3811 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3812 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3813 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3814 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3815 3816 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3817 sizeof(struct io_uring_rsrc_update)); 3818 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3819 sizeof(struct io_uring_rsrc_update2)); 3820 3821 /* ->buf_index is u16 */ 3822 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3823 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3824 offsetof(struct io_uring_buf_ring, tail)); 3825 3826 /* should fit into one byte */ 3827 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3828 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3829 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3830 3831 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3832 3833 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3834 3835 /* top 8bits are for internal use */ 3836 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3837 3838 io_uring_optable_init(); 3839 3840 /* 3841 * Allow user copy in the per-command field, which starts after the 3842 * file in io_kiocb and until the opcode field. The openat2 handling 3843 * requires copying in user memory into the io_kiocb object in that 3844 * range, and HARDENED_USERCOPY will complain if we haven't 3845 * correctly annotated this range. 3846 */ 3847 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3848 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3849 SLAB_TYPESAFE_BY_RCU); 3850 io_buf_cachep = KMEM_CACHE(io_buffer, 3851 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 3852 3853 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3854 3855 #ifdef CONFIG_SYSCTL 3856 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3857 #endif 3858 3859 return 0; 3860 }; 3861 __initcall(io_uring_init); 3862