1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <linux/anon_inodes.h> 64 #include <linux/sched/mm.h> 65 #include <linux/uaccess.h> 66 #include <linux/nospec.h> 67 #include <linux/highmem.h> 68 #include <linux/fsnotify.h> 69 #include <linux/fadvise.h> 70 #include <linux/task_work.h> 71 #include <linux/io_uring.h> 72 #include <linux/io_uring/cmd.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 #include <asm/shmparam.h> 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/io_uring.h> 79 80 #include <uapi/linux/io_uring.h> 81 82 #include "io-wq.h" 83 84 #include "io_uring.h" 85 #include "opdef.h" 86 #include "refs.h" 87 #include "tctx.h" 88 #include "register.h" 89 #include "sqpoll.h" 90 #include "fdinfo.h" 91 #include "kbuf.h" 92 #include "rsrc.h" 93 #include "cancel.h" 94 #include "net.h" 95 #include "notif.h" 96 #include "waitid.h" 97 #include "futex.h" 98 99 #include "timeout.h" 100 #include "poll.h" 101 #include "rw.h" 102 #include "alloc_cache.h" 103 104 #define IORING_MAX_ENTRIES 32768 105 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 125 enum { 126 IO_CHECK_CQ_OVERFLOW_BIT, 127 IO_CHECK_CQ_DROPPED_BIT, 128 }; 129 130 struct io_defer_entry { 131 struct list_head list; 132 struct io_kiocb *req; 133 u32 seq; 134 }; 135 136 /* requests with any of those set should undergo io_disarm_next() */ 137 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 138 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 139 140 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 141 struct task_struct *task, 142 bool cancel_all); 143 144 static void io_queue_sqe(struct io_kiocb *req); 145 146 struct kmem_cache *req_cachep; 147 148 static int __read_mostly sysctl_io_uring_disabled; 149 static int __read_mostly sysctl_io_uring_group = -1; 150 151 #ifdef CONFIG_SYSCTL 152 static struct ctl_table kernel_io_uring_disabled_table[] = { 153 { 154 .procname = "io_uring_disabled", 155 .data = &sysctl_io_uring_disabled, 156 .maxlen = sizeof(sysctl_io_uring_disabled), 157 .mode = 0644, 158 .proc_handler = proc_dointvec_minmax, 159 .extra1 = SYSCTL_ZERO, 160 .extra2 = SYSCTL_TWO, 161 }, 162 { 163 .procname = "io_uring_group", 164 .data = &sysctl_io_uring_group, 165 .maxlen = sizeof(gid_t), 166 .mode = 0644, 167 .proc_handler = proc_dointvec, 168 }, 169 {}, 170 }; 171 #endif 172 173 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 174 { 175 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 176 ctx->submit_state.cqes_count) 177 __io_submit_flush_completions(ctx); 178 } 179 180 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 181 { 182 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 183 } 184 185 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 186 { 187 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 188 } 189 190 static bool io_match_linked(struct io_kiocb *head) 191 { 192 struct io_kiocb *req; 193 194 io_for_each_link(req, head) { 195 if (req->flags & REQ_F_INFLIGHT) 196 return true; 197 } 198 return false; 199 } 200 201 /* 202 * As io_match_task() but protected against racing with linked timeouts. 203 * User must not hold timeout_lock. 204 */ 205 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 206 bool cancel_all) 207 { 208 bool matched; 209 210 if (task && head->task != task) 211 return false; 212 if (cancel_all) 213 return true; 214 215 if (head->flags & REQ_F_LINK_TIMEOUT) { 216 struct io_ring_ctx *ctx = head->ctx; 217 218 /* protect against races with linked timeouts */ 219 spin_lock_irq(&ctx->timeout_lock); 220 matched = io_match_linked(head); 221 spin_unlock_irq(&ctx->timeout_lock); 222 } else { 223 matched = io_match_linked(head); 224 } 225 return matched; 226 } 227 228 static inline void req_fail_link_node(struct io_kiocb *req, int res) 229 { 230 req_set_fail(req); 231 io_req_set_res(req, res, 0); 232 } 233 234 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 235 { 236 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 237 } 238 239 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 240 { 241 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 242 243 complete(&ctx->ref_comp); 244 } 245 246 static __cold void io_fallback_req_func(struct work_struct *work) 247 { 248 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 249 fallback_work.work); 250 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 251 struct io_kiocb *req, *tmp; 252 struct io_tw_state ts = { .locked = true, }; 253 254 percpu_ref_get(&ctx->refs); 255 mutex_lock(&ctx->uring_lock); 256 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 257 req->io_task_work.func(req, &ts); 258 if (WARN_ON_ONCE(!ts.locked)) 259 return; 260 io_submit_flush_completions(ctx); 261 mutex_unlock(&ctx->uring_lock); 262 percpu_ref_put(&ctx->refs); 263 } 264 265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 266 { 267 unsigned hash_buckets = 1U << bits; 268 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 269 270 table->hbs = kmalloc(hash_size, GFP_KERNEL); 271 if (!table->hbs) 272 return -ENOMEM; 273 274 table->hash_bits = bits; 275 init_hash_table(table, hash_buckets); 276 return 0; 277 } 278 279 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 280 { 281 struct io_ring_ctx *ctx; 282 int hash_bits; 283 284 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 285 if (!ctx) 286 return NULL; 287 288 xa_init(&ctx->io_bl_xa); 289 290 /* 291 * Use 5 bits less than the max cq entries, that should give us around 292 * 32 entries per hash list if totally full and uniformly spread, but 293 * don't keep too many buckets to not overconsume memory. 294 */ 295 hash_bits = ilog2(p->cq_entries) - 5; 296 hash_bits = clamp(hash_bits, 1, 8); 297 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 298 goto err; 299 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 300 goto err; 301 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 302 0, GFP_KERNEL)) 303 goto err; 304 305 ctx->flags = p->flags; 306 init_waitqueue_head(&ctx->sqo_sq_wait); 307 INIT_LIST_HEAD(&ctx->sqd_list); 308 INIT_LIST_HEAD(&ctx->cq_overflow_list); 309 INIT_LIST_HEAD(&ctx->io_buffers_cache); 310 INIT_HLIST_HEAD(&ctx->io_buf_list); 311 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 312 sizeof(struct io_rsrc_node)); 313 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, 314 sizeof(struct async_poll)); 315 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 316 sizeof(struct io_async_msghdr)); 317 io_futex_cache_init(ctx); 318 init_completion(&ctx->ref_comp); 319 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 320 mutex_init(&ctx->uring_lock); 321 init_waitqueue_head(&ctx->cq_wait); 322 init_waitqueue_head(&ctx->poll_wq); 323 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 324 spin_lock_init(&ctx->completion_lock); 325 spin_lock_init(&ctx->timeout_lock); 326 INIT_WQ_LIST(&ctx->iopoll_list); 327 INIT_LIST_HEAD(&ctx->io_buffers_comp); 328 INIT_LIST_HEAD(&ctx->defer_list); 329 INIT_LIST_HEAD(&ctx->timeout_list); 330 INIT_LIST_HEAD(&ctx->ltimeout_list); 331 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 332 init_llist_head(&ctx->work_llist); 333 INIT_LIST_HEAD(&ctx->tctx_list); 334 ctx->submit_state.free_list.next = NULL; 335 INIT_WQ_LIST(&ctx->locked_free_list); 336 INIT_HLIST_HEAD(&ctx->waitid_list); 337 #ifdef CONFIG_FUTEX 338 INIT_HLIST_HEAD(&ctx->futex_list); 339 #endif 340 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 341 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 342 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 343 return ctx; 344 err: 345 kfree(ctx->cancel_table.hbs); 346 kfree(ctx->cancel_table_locked.hbs); 347 kfree(ctx->io_bl); 348 xa_destroy(&ctx->io_bl_xa); 349 kfree(ctx); 350 return NULL; 351 } 352 353 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 354 { 355 struct io_rings *r = ctx->rings; 356 357 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 358 ctx->cq_extra--; 359 } 360 361 static bool req_need_defer(struct io_kiocb *req, u32 seq) 362 { 363 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 364 struct io_ring_ctx *ctx = req->ctx; 365 366 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 367 } 368 369 return false; 370 } 371 372 static void io_clean_op(struct io_kiocb *req) 373 { 374 if (req->flags & REQ_F_BUFFER_SELECTED) { 375 spin_lock(&req->ctx->completion_lock); 376 io_put_kbuf_comp(req); 377 spin_unlock(&req->ctx->completion_lock); 378 } 379 380 if (req->flags & REQ_F_NEED_CLEANUP) { 381 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 382 383 if (def->cleanup) 384 def->cleanup(req); 385 } 386 if ((req->flags & REQ_F_POLLED) && req->apoll) { 387 kfree(req->apoll->double_poll); 388 kfree(req->apoll); 389 req->apoll = NULL; 390 } 391 if (req->flags & REQ_F_INFLIGHT) { 392 struct io_uring_task *tctx = req->task->io_uring; 393 394 atomic_dec(&tctx->inflight_tracked); 395 } 396 if (req->flags & REQ_F_CREDS) 397 put_cred(req->creds); 398 if (req->flags & REQ_F_ASYNC_DATA) { 399 kfree(req->async_data); 400 req->async_data = NULL; 401 } 402 req->flags &= ~IO_REQ_CLEAN_FLAGS; 403 } 404 405 static inline void io_req_track_inflight(struct io_kiocb *req) 406 { 407 if (!(req->flags & REQ_F_INFLIGHT)) { 408 req->flags |= REQ_F_INFLIGHT; 409 atomic_inc(&req->task->io_uring->inflight_tracked); 410 } 411 } 412 413 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 414 { 415 if (WARN_ON_ONCE(!req->link)) 416 return NULL; 417 418 req->flags &= ~REQ_F_ARM_LTIMEOUT; 419 req->flags |= REQ_F_LINK_TIMEOUT; 420 421 /* linked timeouts should have two refs once prep'ed */ 422 io_req_set_refcount(req); 423 __io_req_set_refcount(req->link, 2); 424 return req->link; 425 } 426 427 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 428 { 429 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 430 return NULL; 431 return __io_prep_linked_timeout(req); 432 } 433 434 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 435 { 436 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 437 } 438 439 static inline void io_arm_ltimeout(struct io_kiocb *req) 440 { 441 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 442 __io_arm_ltimeout(req); 443 } 444 445 static void io_prep_async_work(struct io_kiocb *req) 446 { 447 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 448 struct io_ring_ctx *ctx = req->ctx; 449 450 if (!(req->flags & REQ_F_CREDS)) { 451 req->flags |= REQ_F_CREDS; 452 req->creds = get_current_cred(); 453 } 454 455 req->work.list.next = NULL; 456 req->work.flags = 0; 457 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 458 if (req->flags & REQ_F_FORCE_ASYNC) 459 req->work.flags |= IO_WQ_WORK_CONCURRENT; 460 461 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 462 req->flags |= io_file_get_flags(req->file); 463 464 if (req->file && (req->flags & REQ_F_ISREG)) { 465 bool should_hash = def->hash_reg_file; 466 467 /* don't serialize this request if the fs doesn't need it */ 468 if (should_hash && (req->file->f_flags & O_DIRECT) && 469 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) 470 should_hash = false; 471 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 472 io_wq_hash_work(&req->work, file_inode(req->file)); 473 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 474 if (def->unbound_nonreg_file) 475 req->work.flags |= IO_WQ_WORK_UNBOUND; 476 } 477 } 478 479 static void io_prep_async_link(struct io_kiocb *req) 480 { 481 struct io_kiocb *cur; 482 483 if (req->flags & REQ_F_LINK_TIMEOUT) { 484 struct io_ring_ctx *ctx = req->ctx; 485 486 spin_lock_irq(&ctx->timeout_lock); 487 io_for_each_link(cur, req) 488 io_prep_async_work(cur); 489 spin_unlock_irq(&ctx->timeout_lock); 490 } else { 491 io_for_each_link(cur, req) 492 io_prep_async_work(cur); 493 } 494 } 495 496 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) 497 { 498 struct io_kiocb *link = io_prep_linked_timeout(req); 499 struct io_uring_task *tctx = req->task->io_uring; 500 501 BUG_ON(!tctx); 502 BUG_ON(!tctx->io_wq); 503 504 /* init ->work of the whole link before punting */ 505 io_prep_async_link(req); 506 507 /* 508 * Not expected to happen, but if we do have a bug where this _can_ 509 * happen, catch it here and ensure the request is marked as 510 * canceled. That will make io-wq go through the usual work cancel 511 * procedure rather than attempt to run this request (or create a new 512 * worker for it). 513 */ 514 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 515 req->work.flags |= IO_WQ_WORK_CANCEL; 516 517 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 518 io_wq_enqueue(tctx->io_wq, &req->work); 519 if (link) 520 io_queue_linked_timeout(link); 521 } 522 523 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 524 { 525 while (!list_empty(&ctx->defer_list)) { 526 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 527 struct io_defer_entry, list); 528 529 if (req_need_defer(de->req, de->seq)) 530 break; 531 list_del_init(&de->list); 532 io_req_task_queue(de->req); 533 kfree(de); 534 } 535 } 536 537 void io_eventfd_ops(struct rcu_head *rcu) 538 { 539 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 540 int ops = atomic_xchg(&ev_fd->ops, 0); 541 542 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 543 eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE); 544 545 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 546 * ordering in a race but if references are 0 we know we have to free 547 * it regardless. 548 */ 549 if (atomic_dec_and_test(&ev_fd->refs)) { 550 eventfd_ctx_put(ev_fd->cq_ev_fd); 551 kfree(ev_fd); 552 } 553 } 554 555 static void io_eventfd_signal(struct io_ring_ctx *ctx) 556 { 557 struct io_ev_fd *ev_fd = NULL; 558 559 rcu_read_lock(); 560 /* 561 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 562 * and eventfd_signal 563 */ 564 ev_fd = rcu_dereference(ctx->io_ev_fd); 565 566 /* 567 * Check again if ev_fd exists incase an io_eventfd_unregister call 568 * completed between the NULL check of ctx->io_ev_fd at the start of 569 * the function and rcu_read_lock. 570 */ 571 if (unlikely(!ev_fd)) 572 goto out; 573 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 574 goto out; 575 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 576 goto out; 577 578 if (likely(eventfd_signal_allowed())) { 579 eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE); 580 } else { 581 atomic_inc(&ev_fd->refs); 582 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 583 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 584 else 585 atomic_dec(&ev_fd->refs); 586 } 587 588 out: 589 rcu_read_unlock(); 590 } 591 592 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 593 { 594 bool skip; 595 596 spin_lock(&ctx->completion_lock); 597 598 /* 599 * Eventfd should only get triggered when at least one event has been 600 * posted. Some applications rely on the eventfd notification count 601 * only changing IFF a new CQE has been added to the CQ ring. There's 602 * no depedency on 1:1 relationship between how many times this 603 * function is called (and hence the eventfd count) and number of CQEs 604 * posted to the CQ ring. 605 */ 606 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 607 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 608 spin_unlock(&ctx->completion_lock); 609 if (skip) 610 return; 611 612 io_eventfd_signal(ctx); 613 } 614 615 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 616 { 617 if (ctx->poll_activated) 618 io_poll_wq_wake(ctx); 619 if (ctx->off_timeout_used) 620 io_flush_timeouts(ctx); 621 if (ctx->drain_active) { 622 spin_lock(&ctx->completion_lock); 623 io_queue_deferred(ctx); 624 spin_unlock(&ctx->completion_lock); 625 } 626 if (ctx->has_evfd) 627 io_eventfd_flush_signal(ctx); 628 } 629 630 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 631 { 632 if (!ctx->lockless_cq) 633 spin_lock(&ctx->completion_lock); 634 } 635 636 static inline void io_cq_lock(struct io_ring_ctx *ctx) 637 __acquires(ctx->completion_lock) 638 { 639 spin_lock(&ctx->completion_lock); 640 } 641 642 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 643 { 644 io_commit_cqring(ctx); 645 if (!ctx->task_complete) { 646 if (!ctx->lockless_cq) 647 spin_unlock(&ctx->completion_lock); 648 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 649 if (!ctx->syscall_iopoll) 650 io_cqring_wake(ctx); 651 } 652 io_commit_cqring_flush(ctx); 653 } 654 655 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 656 __releases(ctx->completion_lock) 657 { 658 io_commit_cqring(ctx); 659 spin_unlock(&ctx->completion_lock); 660 io_cqring_wake(ctx); 661 io_commit_cqring_flush(ctx); 662 } 663 664 /* Returns true if there are no backlogged entries after the flush */ 665 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 666 { 667 struct io_overflow_cqe *ocqe; 668 LIST_HEAD(list); 669 670 spin_lock(&ctx->completion_lock); 671 list_splice_init(&ctx->cq_overflow_list, &list); 672 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 673 spin_unlock(&ctx->completion_lock); 674 675 while (!list_empty(&list)) { 676 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 677 list_del(&ocqe->list); 678 kfree(ocqe); 679 } 680 } 681 682 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 683 { 684 size_t cqe_size = sizeof(struct io_uring_cqe); 685 686 if (__io_cqring_events(ctx) == ctx->cq_entries) 687 return; 688 689 if (ctx->flags & IORING_SETUP_CQE32) 690 cqe_size <<= 1; 691 692 io_cq_lock(ctx); 693 while (!list_empty(&ctx->cq_overflow_list)) { 694 struct io_uring_cqe *cqe; 695 struct io_overflow_cqe *ocqe; 696 697 if (!io_get_cqe_overflow(ctx, &cqe, true)) 698 break; 699 ocqe = list_first_entry(&ctx->cq_overflow_list, 700 struct io_overflow_cqe, list); 701 memcpy(cqe, &ocqe->cqe, cqe_size); 702 list_del(&ocqe->list); 703 kfree(ocqe); 704 } 705 706 if (list_empty(&ctx->cq_overflow_list)) { 707 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 708 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 709 } 710 io_cq_unlock_post(ctx); 711 } 712 713 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 714 { 715 /* iopoll syncs against uring_lock, not completion_lock */ 716 if (ctx->flags & IORING_SETUP_IOPOLL) 717 mutex_lock(&ctx->uring_lock); 718 __io_cqring_overflow_flush(ctx); 719 if (ctx->flags & IORING_SETUP_IOPOLL) 720 mutex_unlock(&ctx->uring_lock); 721 } 722 723 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 724 { 725 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 726 io_cqring_do_overflow_flush(ctx); 727 } 728 729 /* can be called by any task */ 730 static void io_put_task_remote(struct task_struct *task) 731 { 732 struct io_uring_task *tctx = task->io_uring; 733 734 percpu_counter_sub(&tctx->inflight, 1); 735 if (unlikely(atomic_read(&tctx->in_cancel))) 736 wake_up(&tctx->wait); 737 put_task_struct(task); 738 } 739 740 /* used by a task to put its own references */ 741 static void io_put_task_local(struct task_struct *task) 742 { 743 task->io_uring->cached_refs++; 744 } 745 746 /* must to be called somewhat shortly after putting a request */ 747 static inline void io_put_task(struct task_struct *task) 748 { 749 if (likely(task == current)) 750 io_put_task_local(task); 751 else 752 io_put_task_remote(task); 753 } 754 755 void io_task_refs_refill(struct io_uring_task *tctx) 756 { 757 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 758 759 percpu_counter_add(&tctx->inflight, refill); 760 refcount_add(refill, ¤t->usage); 761 tctx->cached_refs += refill; 762 } 763 764 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 765 { 766 struct io_uring_task *tctx = task->io_uring; 767 unsigned int refs = tctx->cached_refs; 768 769 if (refs) { 770 tctx->cached_refs = 0; 771 percpu_counter_sub(&tctx->inflight, refs); 772 put_task_struct_many(task, refs); 773 } 774 } 775 776 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 777 s32 res, u32 cflags, u64 extra1, u64 extra2) 778 { 779 struct io_overflow_cqe *ocqe; 780 size_t ocq_size = sizeof(struct io_overflow_cqe); 781 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 782 783 lockdep_assert_held(&ctx->completion_lock); 784 785 if (is_cqe32) 786 ocq_size += sizeof(struct io_uring_cqe); 787 788 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 789 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 790 if (!ocqe) { 791 /* 792 * If we're in ring overflow flush mode, or in task cancel mode, 793 * or cannot allocate an overflow entry, then we need to drop it 794 * on the floor. 795 */ 796 io_account_cq_overflow(ctx); 797 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 798 return false; 799 } 800 if (list_empty(&ctx->cq_overflow_list)) { 801 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 802 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 803 804 } 805 ocqe->cqe.user_data = user_data; 806 ocqe->cqe.res = res; 807 ocqe->cqe.flags = cflags; 808 if (is_cqe32) { 809 ocqe->cqe.big_cqe[0] = extra1; 810 ocqe->cqe.big_cqe[1] = extra2; 811 } 812 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 813 return true; 814 } 815 816 void io_req_cqe_overflow(struct io_kiocb *req) 817 { 818 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 819 req->cqe.res, req->cqe.flags, 820 req->big_cqe.extra1, req->big_cqe.extra2); 821 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 822 } 823 824 /* 825 * writes to the cq entry need to come after reading head; the 826 * control dependency is enough as we're using WRITE_ONCE to 827 * fill the cq entry 828 */ 829 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 830 { 831 struct io_rings *rings = ctx->rings; 832 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 833 unsigned int free, queued, len; 834 835 /* 836 * Posting into the CQ when there are pending overflowed CQEs may break 837 * ordering guarantees, which will affect links, F_MORE users and more. 838 * Force overflow the completion. 839 */ 840 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 841 return false; 842 843 /* userspace may cheat modifying the tail, be safe and do min */ 844 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 845 free = ctx->cq_entries - queued; 846 /* we need a contiguous range, limit based on the current array offset */ 847 len = min(free, ctx->cq_entries - off); 848 if (!len) 849 return false; 850 851 if (ctx->flags & IORING_SETUP_CQE32) { 852 off <<= 1; 853 len <<= 1; 854 } 855 856 ctx->cqe_cached = &rings->cqes[off]; 857 ctx->cqe_sentinel = ctx->cqe_cached + len; 858 return true; 859 } 860 861 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 862 u32 cflags) 863 { 864 struct io_uring_cqe *cqe; 865 866 ctx->cq_extra++; 867 868 /* 869 * If we can't get a cq entry, userspace overflowed the 870 * submission (by quite a lot). Increment the overflow count in 871 * the ring. 872 */ 873 if (likely(io_get_cqe(ctx, &cqe))) { 874 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 875 876 WRITE_ONCE(cqe->user_data, user_data); 877 WRITE_ONCE(cqe->res, res); 878 WRITE_ONCE(cqe->flags, cflags); 879 880 if (ctx->flags & IORING_SETUP_CQE32) { 881 WRITE_ONCE(cqe->big_cqe[0], 0); 882 WRITE_ONCE(cqe->big_cqe[1], 0); 883 } 884 return true; 885 } 886 return false; 887 } 888 889 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 890 __must_hold(&ctx->uring_lock) 891 { 892 struct io_submit_state *state = &ctx->submit_state; 893 unsigned int i; 894 895 lockdep_assert_held(&ctx->uring_lock); 896 for (i = 0; i < state->cqes_count; i++) { 897 struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; 898 899 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 900 if (ctx->lockless_cq) { 901 spin_lock(&ctx->completion_lock); 902 io_cqring_event_overflow(ctx, cqe->user_data, 903 cqe->res, cqe->flags, 0, 0); 904 spin_unlock(&ctx->completion_lock); 905 } else { 906 io_cqring_event_overflow(ctx, cqe->user_data, 907 cqe->res, cqe->flags, 0, 0); 908 } 909 } 910 } 911 state->cqes_count = 0; 912 } 913 914 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 915 bool allow_overflow) 916 { 917 bool filled; 918 919 io_cq_lock(ctx); 920 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 921 if (!filled && allow_overflow) 922 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 923 924 io_cq_unlock_post(ctx); 925 return filled; 926 } 927 928 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 929 { 930 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 931 } 932 933 /* 934 * A helper for multishot requests posting additional CQEs. 935 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 936 */ 937 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) 938 { 939 struct io_ring_ctx *ctx = req->ctx; 940 u64 user_data = req->cqe.user_data; 941 struct io_uring_cqe *cqe; 942 943 if (!defer) 944 return __io_post_aux_cqe(ctx, user_data, res, cflags, false); 945 946 lockdep_assert_held(&ctx->uring_lock); 947 948 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { 949 __io_cq_lock(ctx); 950 __io_flush_post_cqes(ctx); 951 /* no need to flush - flush is deferred */ 952 __io_cq_unlock_post(ctx); 953 } 954 955 /* For defered completions this is not as strict as it is otherwise, 956 * however it's main job is to prevent unbounded posted completions, 957 * and in that it works just as well. 958 */ 959 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 960 return false; 961 962 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; 963 cqe->user_data = user_data; 964 cqe->res = res; 965 cqe->flags = cflags; 966 return true; 967 } 968 969 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 970 { 971 struct io_ring_ctx *ctx = req->ctx; 972 struct io_rsrc_node *rsrc_node = NULL; 973 974 io_cq_lock(ctx); 975 if (!(req->flags & REQ_F_CQE_SKIP)) { 976 if (!io_fill_cqe_req(ctx, req)) 977 io_req_cqe_overflow(req); 978 } 979 980 /* 981 * If we're the last reference to this request, add to our locked 982 * free_list cache. 983 */ 984 if (req_ref_put_and_test(req)) { 985 if (req->flags & IO_REQ_LINK_FLAGS) { 986 if (req->flags & IO_DISARM_MASK) 987 io_disarm_next(req); 988 if (req->link) { 989 io_req_task_queue(req->link); 990 req->link = NULL; 991 } 992 } 993 io_put_kbuf_comp(req); 994 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 995 io_clean_op(req); 996 io_put_file(req); 997 998 rsrc_node = req->rsrc_node; 999 /* 1000 * Selected buffer deallocation in io_clean_op() assumes that 1001 * we don't hold ->completion_lock. Clean them here to avoid 1002 * deadlocks. 1003 */ 1004 io_put_task_remote(req->task); 1005 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1006 ctx->locked_free_nr++; 1007 } 1008 io_cq_unlock_post(ctx); 1009 1010 if (rsrc_node) { 1011 io_ring_submit_lock(ctx, issue_flags); 1012 io_put_rsrc_node(ctx, rsrc_node); 1013 io_ring_submit_unlock(ctx, issue_flags); 1014 } 1015 } 1016 1017 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1018 { 1019 if (req->ctx->task_complete && req->ctx->submitter_task != current) { 1020 req->io_task_work.func = io_req_task_complete; 1021 io_req_task_work_add(req); 1022 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1023 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1024 __io_req_complete_post(req, issue_flags); 1025 } else { 1026 struct io_ring_ctx *ctx = req->ctx; 1027 1028 mutex_lock(&ctx->uring_lock); 1029 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); 1030 mutex_unlock(&ctx->uring_lock); 1031 } 1032 } 1033 1034 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1035 __must_hold(&ctx->uring_lock) 1036 { 1037 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1038 1039 lockdep_assert_held(&req->ctx->uring_lock); 1040 1041 req_set_fail(req); 1042 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1043 if (def->fail) 1044 def->fail(req); 1045 io_req_complete_defer(req); 1046 } 1047 1048 /* 1049 * Don't initialise the fields below on every allocation, but do that in 1050 * advance and keep them valid across allocations. 1051 */ 1052 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1053 { 1054 req->ctx = ctx; 1055 req->link = NULL; 1056 req->async_data = NULL; 1057 /* not necessary, but safer to zero */ 1058 memset(&req->cqe, 0, sizeof(req->cqe)); 1059 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 1060 } 1061 1062 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1063 struct io_submit_state *state) 1064 { 1065 spin_lock(&ctx->completion_lock); 1066 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1067 ctx->locked_free_nr = 0; 1068 spin_unlock(&ctx->completion_lock); 1069 } 1070 1071 /* 1072 * A request might get retired back into the request caches even before opcode 1073 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1074 * Because of that, io_alloc_req() should be called only under ->uring_lock 1075 * and with extra caution to not get a request that is still worked on. 1076 */ 1077 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1078 __must_hold(&ctx->uring_lock) 1079 { 1080 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1081 void *reqs[IO_REQ_ALLOC_BATCH]; 1082 int ret, i; 1083 1084 /* 1085 * If we have more than a batch's worth of requests in our IRQ side 1086 * locked cache, grab the lock and move them over to our submission 1087 * side cache. 1088 */ 1089 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1090 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1091 if (!io_req_cache_empty(ctx)) 1092 return true; 1093 } 1094 1095 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1096 1097 /* 1098 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1099 * retry single alloc to be on the safe side. 1100 */ 1101 if (unlikely(ret <= 0)) { 1102 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1103 if (!reqs[0]) 1104 return false; 1105 ret = 1; 1106 } 1107 1108 percpu_ref_get_many(&ctx->refs, ret); 1109 for (i = 0; i < ret; i++) { 1110 struct io_kiocb *req = reqs[i]; 1111 1112 io_preinit_req(req, ctx); 1113 io_req_add_to_cache(req, ctx); 1114 } 1115 return true; 1116 } 1117 1118 __cold void io_free_req(struct io_kiocb *req) 1119 { 1120 /* refs were already put, restore them for io_req_task_complete() */ 1121 req->flags &= ~REQ_F_REFCOUNT; 1122 /* we only want to free it, don't post CQEs */ 1123 req->flags |= REQ_F_CQE_SKIP; 1124 req->io_task_work.func = io_req_task_complete; 1125 io_req_task_work_add(req); 1126 } 1127 1128 static void __io_req_find_next_prep(struct io_kiocb *req) 1129 { 1130 struct io_ring_ctx *ctx = req->ctx; 1131 1132 spin_lock(&ctx->completion_lock); 1133 io_disarm_next(req); 1134 spin_unlock(&ctx->completion_lock); 1135 } 1136 1137 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1138 { 1139 struct io_kiocb *nxt; 1140 1141 /* 1142 * If LINK is set, we have dependent requests in this chain. If we 1143 * didn't fail this request, queue the first one up, moving any other 1144 * dependencies to the next request. In case of failure, fail the rest 1145 * of the chain. 1146 */ 1147 if (unlikely(req->flags & IO_DISARM_MASK)) 1148 __io_req_find_next_prep(req); 1149 nxt = req->link; 1150 req->link = NULL; 1151 return nxt; 1152 } 1153 1154 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1155 { 1156 if (!ctx) 1157 return; 1158 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1159 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1160 if (ts->locked) { 1161 io_submit_flush_completions(ctx); 1162 mutex_unlock(&ctx->uring_lock); 1163 ts->locked = false; 1164 } 1165 percpu_ref_put(&ctx->refs); 1166 } 1167 1168 static unsigned int handle_tw_list(struct llist_node *node, 1169 struct io_ring_ctx **ctx, 1170 struct io_tw_state *ts, 1171 struct llist_node *last) 1172 { 1173 unsigned int count = 0; 1174 1175 while (node && node != last) { 1176 struct llist_node *next = node->next; 1177 struct io_kiocb *req = container_of(node, struct io_kiocb, 1178 io_task_work.node); 1179 1180 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1181 1182 if (req->ctx != *ctx) { 1183 ctx_flush_and_put(*ctx, ts); 1184 *ctx = req->ctx; 1185 /* if not contended, grab and improve batching */ 1186 ts->locked = mutex_trylock(&(*ctx)->uring_lock); 1187 percpu_ref_get(&(*ctx)->refs); 1188 } 1189 INDIRECT_CALL_2(req->io_task_work.func, 1190 io_poll_task_func, io_req_rw_complete, 1191 req, ts); 1192 node = next; 1193 count++; 1194 if (unlikely(need_resched())) { 1195 ctx_flush_and_put(*ctx, ts); 1196 *ctx = NULL; 1197 cond_resched(); 1198 } 1199 } 1200 1201 return count; 1202 } 1203 1204 /** 1205 * io_llist_xchg - swap all entries in a lock-less list 1206 * @head: the head of lock-less list to delete all entries 1207 * @new: new entry as the head of the list 1208 * 1209 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1210 * The order of entries returned is from the newest to the oldest added one. 1211 */ 1212 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1213 struct llist_node *new) 1214 { 1215 return xchg(&head->first, new); 1216 } 1217 1218 /** 1219 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1220 * @head: the head of lock-less list to delete all entries 1221 * @old: expected old value of the first entry of the list 1222 * @new: new entry as the head of the list 1223 * 1224 * perform a cmpxchg on the first entry of the list. 1225 */ 1226 1227 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1228 struct llist_node *old, 1229 struct llist_node *new) 1230 { 1231 return cmpxchg(&head->first, old, new); 1232 } 1233 1234 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1235 { 1236 struct llist_node *node = llist_del_all(&tctx->task_list); 1237 struct io_ring_ctx *last_ctx = NULL; 1238 struct io_kiocb *req; 1239 1240 while (node) { 1241 req = container_of(node, struct io_kiocb, io_task_work.node); 1242 node = node->next; 1243 if (sync && last_ctx != req->ctx) { 1244 if (last_ctx) { 1245 flush_delayed_work(&last_ctx->fallback_work); 1246 percpu_ref_put(&last_ctx->refs); 1247 } 1248 last_ctx = req->ctx; 1249 percpu_ref_get(&last_ctx->refs); 1250 } 1251 if (llist_add(&req->io_task_work.node, 1252 &req->ctx->fallback_llist)) 1253 schedule_delayed_work(&req->ctx->fallback_work, 1); 1254 } 1255 1256 if (last_ctx) { 1257 flush_delayed_work(&last_ctx->fallback_work); 1258 percpu_ref_put(&last_ctx->refs); 1259 } 1260 } 1261 1262 void tctx_task_work(struct callback_head *cb) 1263 { 1264 struct io_tw_state ts = {}; 1265 struct io_ring_ctx *ctx = NULL; 1266 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1267 task_work); 1268 struct llist_node fake = {}; 1269 struct llist_node *node; 1270 unsigned int loops = 0; 1271 unsigned int count = 0; 1272 1273 if (unlikely(current->flags & PF_EXITING)) { 1274 io_fallback_tw(tctx, true); 1275 return; 1276 } 1277 1278 do { 1279 loops++; 1280 node = io_llist_xchg(&tctx->task_list, &fake); 1281 count += handle_tw_list(node, &ctx, &ts, &fake); 1282 1283 /* skip expensive cmpxchg if there are items in the list */ 1284 if (READ_ONCE(tctx->task_list.first) != &fake) 1285 continue; 1286 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1287 io_submit_flush_completions(ctx); 1288 if (READ_ONCE(tctx->task_list.first) != &fake) 1289 continue; 1290 } 1291 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1292 } while (node != &fake); 1293 1294 ctx_flush_and_put(ctx, &ts); 1295 1296 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1297 if (unlikely(atomic_read(&tctx->in_cancel))) 1298 io_uring_drop_tctx_refs(current); 1299 1300 trace_io_uring_task_work_run(tctx, count, loops); 1301 } 1302 1303 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1304 { 1305 struct io_ring_ctx *ctx = req->ctx; 1306 unsigned nr_wait, nr_tw, nr_tw_prev; 1307 struct llist_node *first; 1308 1309 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1310 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1311 1312 first = READ_ONCE(ctx->work_llist.first); 1313 do { 1314 nr_tw_prev = 0; 1315 if (first) { 1316 struct io_kiocb *first_req = container_of(first, 1317 struct io_kiocb, 1318 io_task_work.node); 1319 /* 1320 * Might be executed at any moment, rely on 1321 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1322 */ 1323 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1324 } 1325 nr_tw = nr_tw_prev + 1; 1326 /* Large enough to fail the nr_wait comparison below */ 1327 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1328 nr_tw = -1U; 1329 1330 req->nr_tw = nr_tw; 1331 req->io_task_work.node.next = first; 1332 } while (!try_cmpxchg(&ctx->work_llist.first, &first, 1333 &req->io_task_work.node)); 1334 1335 if (!first) { 1336 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1337 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1338 if (ctx->has_evfd) 1339 io_eventfd_signal(ctx); 1340 } 1341 1342 nr_wait = atomic_read(&ctx->cq_wait_nr); 1343 /* no one is waiting */ 1344 if (!nr_wait) 1345 return; 1346 /* either not enough or the previous add has already woken it up */ 1347 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) 1348 return; 1349 /* pairs with set_current_state() in io_cqring_wait() */ 1350 smp_mb__after_atomic(); 1351 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1352 } 1353 1354 static void io_req_normal_work_add(struct io_kiocb *req) 1355 { 1356 struct io_uring_task *tctx = req->task->io_uring; 1357 struct io_ring_ctx *ctx = req->ctx; 1358 1359 /* task_work already pending, we're done */ 1360 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1361 return; 1362 1363 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1364 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1365 1366 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1367 return; 1368 1369 io_fallback_tw(tctx, false); 1370 } 1371 1372 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1373 { 1374 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1375 rcu_read_lock(); 1376 io_req_local_work_add(req, flags); 1377 rcu_read_unlock(); 1378 } else { 1379 io_req_normal_work_add(req); 1380 } 1381 } 1382 1383 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1384 { 1385 struct llist_node *node; 1386 1387 node = llist_del_all(&ctx->work_llist); 1388 while (node) { 1389 struct io_kiocb *req = container_of(node, struct io_kiocb, 1390 io_task_work.node); 1391 1392 node = node->next; 1393 io_req_normal_work_add(req); 1394 } 1395 } 1396 1397 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1398 { 1399 struct llist_node *node; 1400 unsigned int loops = 0; 1401 int ret = 0; 1402 1403 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1404 return -EEXIST; 1405 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1406 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1407 again: 1408 /* 1409 * llists are in reverse order, flip it back the right way before 1410 * running the pending items. 1411 */ 1412 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1413 while (node) { 1414 struct llist_node *next = node->next; 1415 struct io_kiocb *req = container_of(node, struct io_kiocb, 1416 io_task_work.node); 1417 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1418 INDIRECT_CALL_2(req->io_task_work.func, 1419 io_poll_task_func, io_req_rw_complete, 1420 req, ts); 1421 ret++; 1422 node = next; 1423 } 1424 loops++; 1425 1426 if (!llist_empty(&ctx->work_llist)) 1427 goto again; 1428 if (ts->locked) { 1429 io_submit_flush_completions(ctx); 1430 if (!llist_empty(&ctx->work_llist)) 1431 goto again; 1432 } 1433 trace_io_uring_local_work_run(ctx, ret, loops); 1434 return ret; 1435 } 1436 1437 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1438 { 1439 struct io_tw_state ts = { .locked = true, }; 1440 int ret; 1441 1442 if (llist_empty(&ctx->work_llist)) 1443 return 0; 1444 1445 ret = __io_run_local_work(ctx, &ts); 1446 /* shouldn't happen! */ 1447 if (WARN_ON_ONCE(!ts.locked)) 1448 mutex_lock(&ctx->uring_lock); 1449 return ret; 1450 } 1451 1452 static int io_run_local_work(struct io_ring_ctx *ctx) 1453 { 1454 struct io_tw_state ts = {}; 1455 int ret; 1456 1457 ts.locked = mutex_trylock(&ctx->uring_lock); 1458 ret = __io_run_local_work(ctx, &ts); 1459 if (ts.locked) 1460 mutex_unlock(&ctx->uring_lock); 1461 1462 return ret; 1463 } 1464 1465 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1466 { 1467 io_tw_lock(req->ctx, ts); 1468 io_req_defer_failed(req, req->cqe.res); 1469 } 1470 1471 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1472 { 1473 io_tw_lock(req->ctx, ts); 1474 /* req->task == current here, checking PF_EXITING is safe */ 1475 if (unlikely(req->task->flags & PF_EXITING)) 1476 io_req_defer_failed(req, -EFAULT); 1477 else if (req->flags & REQ_F_FORCE_ASYNC) 1478 io_queue_iowq(req, ts); 1479 else 1480 io_queue_sqe(req); 1481 } 1482 1483 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1484 { 1485 io_req_set_res(req, ret, 0); 1486 req->io_task_work.func = io_req_task_cancel; 1487 io_req_task_work_add(req); 1488 } 1489 1490 void io_req_task_queue(struct io_kiocb *req) 1491 { 1492 req->io_task_work.func = io_req_task_submit; 1493 io_req_task_work_add(req); 1494 } 1495 1496 void io_queue_next(struct io_kiocb *req) 1497 { 1498 struct io_kiocb *nxt = io_req_find_next(req); 1499 1500 if (nxt) 1501 io_req_task_queue(nxt); 1502 } 1503 1504 static void io_free_batch_list(struct io_ring_ctx *ctx, 1505 struct io_wq_work_node *node) 1506 __must_hold(&ctx->uring_lock) 1507 { 1508 do { 1509 struct io_kiocb *req = container_of(node, struct io_kiocb, 1510 comp_list); 1511 1512 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1513 if (req->flags & REQ_F_REFCOUNT) { 1514 node = req->comp_list.next; 1515 if (!req_ref_put_and_test(req)) 1516 continue; 1517 } 1518 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1519 struct async_poll *apoll = req->apoll; 1520 1521 if (apoll->double_poll) 1522 kfree(apoll->double_poll); 1523 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1524 kfree(apoll); 1525 req->flags &= ~REQ_F_POLLED; 1526 } 1527 if (req->flags & IO_REQ_LINK_FLAGS) 1528 io_queue_next(req); 1529 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1530 io_clean_op(req); 1531 } 1532 io_put_file(req); 1533 1534 io_req_put_rsrc_locked(req, ctx); 1535 1536 io_put_task(req->task); 1537 node = req->comp_list.next; 1538 io_req_add_to_cache(req, ctx); 1539 } while (node); 1540 } 1541 1542 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1543 __must_hold(&ctx->uring_lock) 1544 { 1545 struct io_submit_state *state = &ctx->submit_state; 1546 struct io_wq_work_node *node; 1547 1548 __io_cq_lock(ctx); 1549 /* must come first to preserve CQE ordering in failure cases */ 1550 if (state->cqes_count) 1551 __io_flush_post_cqes(ctx); 1552 __wq_list_for_each(node, &state->compl_reqs) { 1553 struct io_kiocb *req = container_of(node, struct io_kiocb, 1554 comp_list); 1555 1556 if (!(req->flags & REQ_F_CQE_SKIP) && 1557 unlikely(!io_fill_cqe_req(ctx, req))) { 1558 if (ctx->lockless_cq) { 1559 spin_lock(&ctx->completion_lock); 1560 io_req_cqe_overflow(req); 1561 spin_unlock(&ctx->completion_lock); 1562 } else { 1563 io_req_cqe_overflow(req); 1564 } 1565 } 1566 } 1567 __io_cq_unlock_post(ctx); 1568 1569 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1570 io_free_batch_list(ctx, state->compl_reqs.first); 1571 INIT_WQ_LIST(&state->compl_reqs); 1572 } 1573 } 1574 1575 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1576 { 1577 /* See comment at the top of this file */ 1578 smp_rmb(); 1579 return __io_cqring_events(ctx); 1580 } 1581 1582 /* 1583 * We can't just wait for polled events to come to us, we have to actively 1584 * find and complete them. 1585 */ 1586 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1587 { 1588 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1589 return; 1590 1591 mutex_lock(&ctx->uring_lock); 1592 while (!wq_list_empty(&ctx->iopoll_list)) { 1593 /* let it sleep and repeat later if can't complete a request */ 1594 if (io_do_iopoll(ctx, true) == 0) 1595 break; 1596 /* 1597 * Ensure we allow local-to-the-cpu processing to take place, 1598 * in this case we need to ensure that we reap all events. 1599 * Also let task_work, etc. to progress by releasing the mutex 1600 */ 1601 if (need_resched()) { 1602 mutex_unlock(&ctx->uring_lock); 1603 cond_resched(); 1604 mutex_lock(&ctx->uring_lock); 1605 } 1606 } 1607 mutex_unlock(&ctx->uring_lock); 1608 } 1609 1610 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1611 { 1612 unsigned int nr_events = 0; 1613 unsigned long check_cq; 1614 1615 if (!io_allowed_run_tw(ctx)) 1616 return -EEXIST; 1617 1618 check_cq = READ_ONCE(ctx->check_cq); 1619 if (unlikely(check_cq)) { 1620 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1621 __io_cqring_overflow_flush(ctx); 1622 /* 1623 * Similarly do not spin if we have not informed the user of any 1624 * dropped CQE. 1625 */ 1626 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1627 return -EBADR; 1628 } 1629 /* 1630 * Don't enter poll loop if we already have events pending. 1631 * If we do, we can potentially be spinning for commands that 1632 * already triggered a CQE (eg in error). 1633 */ 1634 if (io_cqring_events(ctx)) 1635 return 0; 1636 1637 do { 1638 int ret = 0; 1639 1640 /* 1641 * If a submit got punted to a workqueue, we can have the 1642 * application entering polling for a command before it gets 1643 * issued. That app will hold the uring_lock for the duration 1644 * of the poll right here, so we need to take a breather every 1645 * now and then to ensure that the issue has a chance to add 1646 * the poll to the issued list. Otherwise we can spin here 1647 * forever, while the workqueue is stuck trying to acquire the 1648 * very same mutex. 1649 */ 1650 if (wq_list_empty(&ctx->iopoll_list) || 1651 io_task_work_pending(ctx)) { 1652 u32 tail = ctx->cached_cq_tail; 1653 1654 (void) io_run_local_work_locked(ctx); 1655 1656 if (task_work_pending(current) || 1657 wq_list_empty(&ctx->iopoll_list)) { 1658 mutex_unlock(&ctx->uring_lock); 1659 io_run_task_work(); 1660 mutex_lock(&ctx->uring_lock); 1661 } 1662 /* some requests don't go through iopoll_list */ 1663 if (tail != ctx->cached_cq_tail || 1664 wq_list_empty(&ctx->iopoll_list)) 1665 break; 1666 } 1667 ret = io_do_iopoll(ctx, !min); 1668 if (unlikely(ret < 0)) 1669 return ret; 1670 1671 if (task_sigpending(current)) 1672 return -EINTR; 1673 if (need_resched()) 1674 break; 1675 1676 nr_events += ret; 1677 } while (nr_events < min); 1678 1679 return 0; 1680 } 1681 1682 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1683 { 1684 if (ts->locked) 1685 io_req_complete_defer(req); 1686 else 1687 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1688 } 1689 1690 /* 1691 * After the iocb has been issued, it's safe to be found on the poll list. 1692 * Adding the kiocb to the list AFTER submission ensures that we don't 1693 * find it from a io_do_iopoll() thread before the issuer is done 1694 * accessing the kiocb cookie. 1695 */ 1696 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1697 { 1698 struct io_ring_ctx *ctx = req->ctx; 1699 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1700 1701 /* workqueue context doesn't hold uring_lock, grab it now */ 1702 if (unlikely(needs_lock)) 1703 mutex_lock(&ctx->uring_lock); 1704 1705 /* 1706 * Track whether we have multiple files in our lists. This will impact 1707 * how we do polling eventually, not spinning if we're on potentially 1708 * different devices. 1709 */ 1710 if (wq_list_empty(&ctx->iopoll_list)) { 1711 ctx->poll_multi_queue = false; 1712 } else if (!ctx->poll_multi_queue) { 1713 struct io_kiocb *list_req; 1714 1715 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1716 comp_list); 1717 if (list_req->file != req->file) 1718 ctx->poll_multi_queue = true; 1719 } 1720 1721 /* 1722 * For fast devices, IO may have already completed. If it has, add 1723 * it to the front so we find it first. 1724 */ 1725 if (READ_ONCE(req->iopoll_completed)) 1726 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1727 else 1728 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1729 1730 if (unlikely(needs_lock)) { 1731 /* 1732 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1733 * in sq thread task context or in io worker task context. If 1734 * current task context is sq thread, we don't need to check 1735 * whether should wake up sq thread. 1736 */ 1737 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1738 wq_has_sleeper(&ctx->sq_data->wait)) 1739 wake_up(&ctx->sq_data->wait); 1740 1741 mutex_unlock(&ctx->uring_lock); 1742 } 1743 } 1744 1745 unsigned int io_file_get_flags(struct file *file) 1746 { 1747 unsigned int res = 0; 1748 1749 if (S_ISREG(file_inode(file)->i_mode)) 1750 res |= REQ_F_ISREG; 1751 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1752 res |= REQ_F_SUPPORT_NOWAIT; 1753 return res; 1754 } 1755 1756 bool io_alloc_async_data(struct io_kiocb *req) 1757 { 1758 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1759 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1760 if (req->async_data) { 1761 req->flags |= REQ_F_ASYNC_DATA; 1762 return false; 1763 } 1764 return true; 1765 } 1766 1767 int io_req_prep_async(struct io_kiocb *req) 1768 { 1769 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1770 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1771 1772 /* assign early for deferred execution for non-fixed file */ 1773 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1774 req->file = io_file_get_normal(req, req->cqe.fd); 1775 if (!cdef->prep_async) 1776 return 0; 1777 if (WARN_ON_ONCE(req_has_async_data(req))) 1778 return -EFAULT; 1779 if (!def->manual_alloc) { 1780 if (io_alloc_async_data(req)) 1781 return -EAGAIN; 1782 } 1783 return cdef->prep_async(req); 1784 } 1785 1786 static u32 io_get_sequence(struct io_kiocb *req) 1787 { 1788 u32 seq = req->ctx->cached_sq_head; 1789 struct io_kiocb *cur; 1790 1791 /* need original cached_sq_head, but it was increased for each req */ 1792 io_for_each_link(cur, req) 1793 seq--; 1794 return seq; 1795 } 1796 1797 static __cold void io_drain_req(struct io_kiocb *req) 1798 __must_hold(&ctx->uring_lock) 1799 { 1800 struct io_ring_ctx *ctx = req->ctx; 1801 struct io_defer_entry *de; 1802 int ret; 1803 u32 seq = io_get_sequence(req); 1804 1805 /* Still need defer if there is pending req in defer list. */ 1806 spin_lock(&ctx->completion_lock); 1807 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1808 spin_unlock(&ctx->completion_lock); 1809 queue: 1810 ctx->drain_active = false; 1811 io_req_task_queue(req); 1812 return; 1813 } 1814 spin_unlock(&ctx->completion_lock); 1815 1816 io_prep_async_link(req); 1817 de = kmalloc(sizeof(*de), GFP_KERNEL); 1818 if (!de) { 1819 ret = -ENOMEM; 1820 io_req_defer_failed(req, ret); 1821 return; 1822 } 1823 1824 spin_lock(&ctx->completion_lock); 1825 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1826 spin_unlock(&ctx->completion_lock); 1827 kfree(de); 1828 goto queue; 1829 } 1830 1831 trace_io_uring_defer(req); 1832 de->req = req; 1833 de->seq = seq; 1834 list_add_tail(&de->list, &ctx->defer_list); 1835 spin_unlock(&ctx->completion_lock); 1836 } 1837 1838 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1839 unsigned int issue_flags) 1840 { 1841 if (req->file || !def->needs_file) 1842 return true; 1843 1844 if (req->flags & REQ_F_FIXED_FILE) 1845 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1846 else 1847 req->file = io_file_get_normal(req, req->cqe.fd); 1848 1849 return !!req->file; 1850 } 1851 1852 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1853 { 1854 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1855 const struct cred *creds = NULL; 1856 int ret; 1857 1858 if (unlikely(!io_assign_file(req, def, issue_flags))) 1859 return -EBADF; 1860 1861 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1862 creds = override_creds(req->creds); 1863 1864 if (!def->audit_skip) 1865 audit_uring_entry(req->opcode); 1866 1867 ret = def->issue(req, issue_flags); 1868 1869 if (!def->audit_skip) 1870 audit_uring_exit(!ret, ret); 1871 1872 if (creds) 1873 revert_creds(creds); 1874 1875 if (ret == IOU_OK) { 1876 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1877 io_req_complete_defer(req); 1878 else 1879 io_req_complete_post(req, issue_flags); 1880 1881 return 0; 1882 } 1883 1884 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1885 ret = 0; 1886 io_arm_ltimeout(req); 1887 1888 /* If the op doesn't have a file, we're not polling for it */ 1889 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1890 io_iopoll_req_issued(req, issue_flags); 1891 } 1892 return ret; 1893 } 1894 1895 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1896 { 1897 io_tw_lock(req->ctx, ts); 1898 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1899 IO_URING_F_COMPLETE_DEFER); 1900 } 1901 1902 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1903 { 1904 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1905 struct io_kiocb *nxt = NULL; 1906 1907 if (req_ref_put_and_test(req)) { 1908 if (req->flags & IO_REQ_LINK_FLAGS) 1909 nxt = io_req_find_next(req); 1910 io_free_req(req); 1911 } 1912 return nxt ? &nxt->work : NULL; 1913 } 1914 1915 void io_wq_submit_work(struct io_wq_work *work) 1916 { 1917 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1918 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1919 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1920 bool needs_poll = false; 1921 int ret = 0, err = -ECANCELED; 1922 1923 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1924 if (!(req->flags & REQ_F_REFCOUNT)) 1925 __io_req_set_refcount(req, 2); 1926 else 1927 req_ref_get(req); 1928 1929 io_arm_ltimeout(req); 1930 1931 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1932 if (work->flags & IO_WQ_WORK_CANCEL) { 1933 fail: 1934 io_req_task_queue_fail(req, err); 1935 return; 1936 } 1937 if (!io_assign_file(req, def, issue_flags)) { 1938 err = -EBADF; 1939 work->flags |= IO_WQ_WORK_CANCEL; 1940 goto fail; 1941 } 1942 1943 if (req->flags & REQ_F_FORCE_ASYNC) { 1944 bool opcode_poll = def->pollin || def->pollout; 1945 1946 if (opcode_poll && file_can_poll(req->file)) { 1947 needs_poll = true; 1948 issue_flags |= IO_URING_F_NONBLOCK; 1949 } 1950 } 1951 1952 do { 1953 ret = io_issue_sqe(req, issue_flags); 1954 if (ret != -EAGAIN) 1955 break; 1956 1957 /* 1958 * If REQ_F_NOWAIT is set, then don't wait or retry with 1959 * poll. -EAGAIN is final for that case. 1960 */ 1961 if (req->flags & REQ_F_NOWAIT) 1962 break; 1963 1964 /* 1965 * We can get EAGAIN for iopolled IO even though we're 1966 * forcing a sync submission from here, since we can't 1967 * wait for request slots on the block side. 1968 */ 1969 if (!needs_poll) { 1970 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1971 break; 1972 if (io_wq_worker_stopped()) 1973 break; 1974 cond_resched(); 1975 continue; 1976 } 1977 1978 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1979 return; 1980 /* aborted or ready, in either case retry blocking */ 1981 needs_poll = false; 1982 issue_flags &= ~IO_URING_F_NONBLOCK; 1983 } while (1); 1984 1985 /* avoid locking problems by failing it from a clean context */ 1986 if (ret < 0) 1987 io_req_task_queue_fail(req, ret); 1988 } 1989 1990 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1991 unsigned int issue_flags) 1992 { 1993 struct io_ring_ctx *ctx = req->ctx; 1994 struct io_fixed_file *slot; 1995 struct file *file = NULL; 1996 1997 io_ring_submit_lock(ctx, issue_flags); 1998 1999 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2000 goto out; 2001 fd = array_index_nospec(fd, ctx->nr_user_files); 2002 slot = io_fixed_file_slot(&ctx->file_table, fd); 2003 file = io_slot_file(slot); 2004 req->flags |= io_slot_flags(slot); 2005 io_req_set_rsrc_node(req, ctx, 0); 2006 out: 2007 io_ring_submit_unlock(ctx, issue_flags); 2008 return file; 2009 } 2010 2011 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2012 { 2013 struct file *file = fget(fd); 2014 2015 trace_io_uring_file_get(req, fd); 2016 2017 /* we don't allow fixed io_uring files */ 2018 if (file && io_is_uring_fops(file)) 2019 io_req_track_inflight(req); 2020 return file; 2021 } 2022 2023 static void io_queue_async(struct io_kiocb *req, int ret) 2024 __must_hold(&req->ctx->uring_lock) 2025 { 2026 struct io_kiocb *linked_timeout; 2027 2028 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2029 io_req_defer_failed(req, ret); 2030 return; 2031 } 2032 2033 linked_timeout = io_prep_linked_timeout(req); 2034 2035 switch (io_arm_poll_handler(req, 0)) { 2036 case IO_APOLL_READY: 2037 io_kbuf_recycle(req, 0); 2038 io_req_task_queue(req); 2039 break; 2040 case IO_APOLL_ABORTED: 2041 io_kbuf_recycle(req, 0); 2042 io_queue_iowq(req, NULL); 2043 break; 2044 case IO_APOLL_OK: 2045 break; 2046 } 2047 2048 if (linked_timeout) 2049 io_queue_linked_timeout(linked_timeout); 2050 } 2051 2052 static inline void io_queue_sqe(struct io_kiocb *req) 2053 __must_hold(&req->ctx->uring_lock) 2054 { 2055 int ret; 2056 2057 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2058 2059 /* 2060 * We async punt it if the file wasn't marked NOWAIT, or if the file 2061 * doesn't support non-blocking read/write attempts 2062 */ 2063 if (unlikely(ret)) 2064 io_queue_async(req, ret); 2065 } 2066 2067 static void io_queue_sqe_fallback(struct io_kiocb *req) 2068 __must_hold(&req->ctx->uring_lock) 2069 { 2070 if (unlikely(req->flags & REQ_F_FAIL)) { 2071 /* 2072 * We don't submit, fail them all, for that replace hardlinks 2073 * with normal links. Extra REQ_F_LINK is tolerated. 2074 */ 2075 req->flags &= ~REQ_F_HARDLINK; 2076 req->flags |= REQ_F_LINK; 2077 io_req_defer_failed(req, req->cqe.res); 2078 } else { 2079 int ret = io_req_prep_async(req); 2080 2081 if (unlikely(ret)) { 2082 io_req_defer_failed(req, ret); 2083 return; 2084 } 2085 2086 if (unlikely(req->ctx->drain_active)) 2087 io_drain_req(req); 2088 else 2089 io_queue_iowq(req, NULL); 2090 } 2091 } 2092 2093 /* 2094 * Check SQE restrictions (opcode and flags). 2095 * 2096 * Returns 'true' if SQE is allowed, 'false' otherwise. 2097 */ 2098 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2099 struct io_kiocb *req, 2100 unsigned int sqe_flags) 2101 { 2102 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2103 return false; 2104 2105 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2106 ctx->restrictions.sqe_flags_required) 2107 return false; 2108 2109 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2110 ctx->restrictions.sqe_flags_required)) 2111 return false; 2112 2113 return true; 2114 } 2115 2116 static void io_init_req_drain(struct io_kiocb *req) 2117 { 2118 struct io_ring_ctx *ctx = req->ctx; 2119 struct io_kiocb *head = ctx->submit_state.link.head; 2120 2121 ctx->drain_active = true; 2122 if (head) { 2123 /* 2124 * If we need to drain a request in the middle of a link, drain 2125 * the head request and the next request/link after the current 2126 * link. Considering sequential execution of links, 2127 * REQ_F_IO_DRAIN will be maintained for every request of our 2128 * link. 2129 */ 2130 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2131 ctx->drain_next = true; 2132 } 2133 } 2134 2135 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2136 const struct io_uring_sqe *sqe) 2137 __must_hold(&ctx->uring_lock) 2138 { 2139 const struct io_issue_def *def; 2140 unsigned int sqe_flags; 2141 int personality; 2142 u8 opcode; 2143 2144 /* req is partially pre-initialised, see io_preinit_req() */ 2145 req->opcode = opcode = READ_ONCE(sqe->opcode); 2146 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2147 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2148 req->cqe.user_data = READ_ONCE(sqe->user_data); 2149 req->file = NULL; 2150 req->rsrc_node = NULL; 2151 req->task = current; 2152 2153 if (unlikely(opcode >= IORING_OP_LAST)) { 2154 req->opcode = 0; 2155 return -EINVAL; 2156 } 2157 def = &io_issue_defs[opcode]; 2158 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2159 /* enforce forwards compatibility on users */ 2160 if (sqe_flags & ~SQE_VALID_FLAGS) 2161 return -EINVAL; 2162 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2163 if (!def->buffer_select) 2164 return -EOPNOTSUPP; 2165 req->buf_index = READ_ONCE(sqe->buf_group); 2166 } 2167 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2168 ctx->drain_disabled = true; 2169 if (sqe_flags & IOSQE_IO_DRAIN) { 2170 if (ctx->drain_disabled) 2171 return -EOPNOTSUPP; 2172 io_init_req_drain(req); 2173 } 2174 } 2175 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2176 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2177 return -EACCES; 2178 /* knock it to the slow queue path, will be drained there */ 2179 if (ctx->drain_active) 2180 req->flags |= REQ_F_FORCE_ASYNC; 2181 /* if there is no link, we're at "next" request and need to drain */ 2182 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2183 ctx->drain_next = false; 2184 ctx->drain_active = true; 2185 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2186 } 2187 } 2188 2189 if (!def->ioprio && sqe->ioprio) 2190 return -EINVAL; 2191 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2192 return -EINVAL; 2193 2194 if (def->needs_file) { 2195 struct io_submit_state *state = &ctx->submit_state; 2196 2197 req->cqe.fd = READ_ONCE(sqe->fd); 2198 2199 /* 2200 * Plug now if we have more than 2 IO left after this, and the 2201 * target is potentially a read/write to block based storage. 2202 */ 2203 if (state->need_plug && def->plug) { 2204 state->plug_started = true; 2205 state->need_plug = false; 2206 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2207 } 2208 } 2209 2210 personality = READ_ONCE(sqe->personality); 2211 if (personality) { 2212 int ret; 2213 2214 req->creds = xa_load(&ctx->personalities, personality); 2215 if (!req->creds) 2216 return -EINVAL; 2217 get_cred(req->creds); 2218 ret = security_uring_override_creds(req->creds); 2219 if (ret) { 2220 put_cred(req->creds); 2221 return ret; 2222 } 2223 req->flags |= REQ_F_CREDS; 2224 } 2225 2226 return def->prep(req, sqe); 2227 } 2228 2229 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2230 struct io_kiocb *req, int ret) 2231 { 2232 struct io_ring_ctx *ctx = req->ctx; 2233 struct io_submit_link *link = &ctx->submit_state.link; 2234 struct io_kiocb *head = link->head; 2235 2236 trace_io_uring_req_failed(sqe, req, ret); 2237 2238 /* 2239 * Avoid breaking links in the middle as it renders links with SQPOLL 2240 * unusable. Instead of failing eagerly, continue assembling the link if 2241 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2242 * should find the flag and handle the rest. 2243 */ 2244 req_fail_link_node(req, ret); 2245 if (head && !(head->flags & REQ_F_FAIL)) 2246 req_fail_link_node(head, -ECANCELED); 2247 2248 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2249 if (head) { 2250 link->last->link = req; 2251 link->head = NULL; 2252 req = head; 2253 } 2254 io_queue_sqe_fallback(req); 2255 return ret; 2256 } 2257 2258 if (head) 2259 link->last->link = req; 2260 else 2261 link->head = req; 2262 link->last = req; 2263 return 0; 2264 } 2265 2266 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2267 const struct io_uring_sqe *sqe) 2268 __must_hold(&ctx->uring_lock) 2269 { 2270 struct io_submit_link *link = &ctx->submit_state.link; 2271 int ret; 2272 2273 ret = io_init_req(ctx, req, sqe); 2274 if (unlikely(ret)) 2275 return io_submit_fail_init(sqe, req, ret); 2276 2277 trace_io_uring_submit_req(req); 2278 2279 /* 2280 * If we already have a head request, queue this one for async 2281 * submittal once the head completes. If we don't have a head but 2282 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2283 * submitted sync once the chain is complete. If none of those 2284 * conditions are true (normal request), then just queue it. 2285 */ 2286 if (unlikely(link->head)) { 2287 ret = io_req_prep_async(req); 2288 if (unlikely(ret)) 2289 return io_submit_fail_init(sqe, req, ret); 2290 2291 trace_io_uring_link(req, link->head); 2292 link->last->link = req; 2293 link->last = req; 2294 2295 if (req->flags & IO_REQ_LINK_FLAGS) 2296 return 0; 2297 /* last request of the link, flush it */ 2298 req = link->head; 2299 link->head = NULL; 2300 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2301 goto fallback; 2302 2303 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2304 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2305 if (req->flags & IO_REQ_LINK_FLAGS) { 2306 link->head = req; 2307 link->last = req; 2308 } else { 2309 fallback: 2310 io_queue_sqe_fallback(req); 2311 } 2312 return 0; 2313 } 2314 2315 io_queue_sqe(req); 2316 return 0; 2317 } 2318 2319 /* 2320 * Batched submission is done, ensure local IO is flushed out. 2321 */ 2322 static void io_submit_state_end(struct io_ring_ctx *ctx) 2323 { 2324 struct io_submit_state *state = &ctx->submit_state; 2325 2326 if (unlikely(state->link.head)) 2327 io_queue_sqe_fallback(state->link.head); 2328 /* flush only after queuing links as they can generate completions */ 2329 io_submit_flush_completions(ctx); 2330 if (state->plug_started) 2331 blk_finish_plug(&state->plug); 2332 } 2333 2334 /* 2335 * Start submission side cache. 2336 */ 2337 static void io_submit_state_start(struct io_submit_state *state, 2338 unsigned int max_ios) 2339 { 2340 state->plug_started = false; 2341 state->need_plug = max_ios > 2; 2342 state->submit_nr = max_ios; 2343 /* set only head, no need to init link_last in advance */ 2344 state->link.head = NULL; 2345 } 2346 2347 static void io_commit_sqring(struct io_ring_ctx *ctx) 2348 { 2349 struct io_rings *rings = ctx->rings; 2350 2351 /* 2352 * Ensure any loads from the SQEs are done at this point, 2353 * since once we write the new head, the application could 2354 * write new data to them. 2355 */ 2356 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2357 } 2358 2359 /* 2360 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2361 * that is mapped by userspace. This means that care needs to be taken to 2362 * ensure that reads are stable, as we cannot rely on userspace always 2363 * being a good citizen. If members of the sqe are validated and then later 2364 * used, it's important that those reads are done through READ_ONCE() to 2365 * prevent a re-load down the line. 2366 */ 2367 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2368 { 2369 unsigned mask = ctx->sq_entries - 1; 2370 unsigned head = ctx->cached_sq_head++ & mask; 2371 2372 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2373 head = READ_ONCE(ctx->sq_array[head]); 2374 if (unlikely(head >= ctx->sq_entries)) { 2375 /* drop invalid entries */ 2376 spin_lock(&ctx->completion_lock); 2377 ctx->cq_extra--; 2378 spin_unlock(&ctx->completion_lock); 2379 WRITE_ONCE(ctx->rings->sq_dropped, 2380 READ_ONCE(ctx->rings->sq_dropped) + 1); 2381 return false; 2382 } 2383 } 2384 2385 /* 2386 * The cached sq head (or cq tail) serves two purposes: 2387 * 2388 * 1) allows us to batch the cost of updating the user visible 2389 * head updates. 2390 * 2) allows the kernel side to track the head on its own, even 2391 * though the application is the one updating it. 2392 */ 2393 2394 /* double index for 128-byte SQEs, twice as long */ 2395 if (ctx->flags & IORING_SETUP_SQE128) 2396 head <<= 1; 2397 *sqe = &ctx->sq_sqes[head]; 2398 return true; 2399 } 2400 2401 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2402 __must_hold(&ctx->uring_lock) 2403 { 2404 unsigned int entries = io_sqring_entries(ctx); 2405 unsigned int left; 2406 int ret; 2407 2408 if (unlikely(!entries)) 2409 return 0; 2410 /* make sure SQ entry isn't read before tail */ 2411 ret = left = min(nr, entries); 2412 io_get_task_refs(left); 2413 io_submit_state_start(&ctx->submit_state, left); 2414 2415 do { 2416 const struct io_uring_sqe *sqe; 2417 struct io_kiocb *req; 2418 2419 if (unlikely(!io_alloc_req(ctx, &req))) 2420 break; 2421 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2422 io_req_add_to_cache(req, ctx); 2423 break; 2424 } 2425 2426 /* 2427 * Continue submitting even for sqe failure if the 2428 * ring was setup with IORING_SETUP_SUBMIT_ALL 2429 */ 2430 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2431 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2432 left--; 2433 break; 2434 } 2435 } while (--left); 2436 2437 if (unlikely(left)) { 2438 ret -= left; 2439 /* try again if it submitted nothing and can't allocate a req */ 2440 if (!ret && io_req_cache_empty(ctx)) 2441 ret = -EAGAIN; 2442 current->io_uring->cached_refs += left; 2443 } 2444 2445 io_submit_state_end(ctx); 2446 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2447 io_commit_sqring(ctx); 2448 return ret; 2449 } 2450 2451 struct io_wait_queue { 2452 struct wait_queue_entry wq; 2453 struct io_ring_ctx *ctx; 2454 unsigned cq_tail; 2455 unsigned nr_timeouts; 2456 ktime_t timeout; 2457 }; 2458 2459 static inline bool io_has_work(struct io_ring_ctx *ctx) 2460 { 2461 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2462 !llist_empty(&ctx->work_llist); 2463 } 2464 2465 static inline bool io_should_wake(struct io_wait_queue *iowq) 2466 { 2467 struct io_ring_ctx *ctx = iowq->ctx; 2468 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2469 2470 /* 2471 * Wake up if we have enough events, or if a timeout occurred since we 2472 * started waiting. For timeouts, we always want to return to userspace, 2473 * regardless of event count. 2474 */ 2475 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2476 } 2477 2478 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2479 int wake_flags, void *key) 2480 { 2481 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2482 2483 /* 2484 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2485 * the task, and the next invocation will do it. 2486 */ 2487 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2488 return autoremove_wake_function(curr, mode, wake_flags, key); 2489 return -1; 2490 } 2491 2492 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2493 { 2494 if (!llist_empty(&ctx->work_llist)) { 2495 __set_current_state(TASK_RUNNING); 2496 if (io_run_local_work(ctx) > 0) 2497 return 0; 2498 } 2499 if (io_run_task_work() > 0) 2500 return 0; 2501 if (task_sigpending(current)) 2502 return -EINTR; 2503 return 0; 2504 } 2505 2506 static bool current_pending_io(void) 2507 { 2508 struct io_uring_task *tctx = current->io_uring; 2509 2510 if (!tctx) 2511 return false; 2512 return percpu_counter_read_positive(&tctx->inflight); 2513 } 2514 2515 /* when returns >0, the caller should retry */ 2516 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2517 struct io_wait_queue *iowq) 2518 { 2519 int io_wait, ret; 2520 2521 if (unlikely(READ_ONCE(ctx->check_cq))) 2522 return 1; 2523 if (unlikely(!llist_empty(&ctx->work_llist))) 2524 return 1; 2525 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2526 return 1; 2527 if (unlikely(task_sigpending(current))) 2528 return -EINTR; 2529 if (unlikely(io_should_wake(iowq))) 2530 return 0; 2531 2532 /* 2533 * Mark us as being in io_wait if we have pending requests, so cpufreq 2534 * can take into account that the task is waiting for IO - turns out 2535 * to be important for low QD IO. 2536 */ 2537 io_wait = current->in_iowait; 2538 if (current_pending_io()) 2539 current->in_iowait = 1; 2540 ret = 0; 2541 if (iowq->timeout == KTIME_MAX) 2542 schedule(); 2543 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2544 ret = -ETIME; 2545 current->in_iowait = io_wait; 2546 return ret; 2547 } 2548 2549 /* 2550 * Wait until events become available, if we don't already have some. The 2551 * application must reap them itself, as they reside on the shared cq ring. 2552 */ 2553 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2554 const sigset_t __user *sig, size_t sigsz, 2555 struct __kernel_timespec __user *uts) 2556 { 2557 struct io_wait_queue iowq; 2558 struct io_rings *rings = ctx->rings; 2559 int ret; 2560 2561 if (!io_allowed_run_tw(ctx)) 2562 return -EEXIST; 2563 if (!llist_empty(&ctx->work_llist)) 2564 io_run_local_work(ctx); 2565 io_run_task_work(); 2566 io_cqring_overflow_flush(ctx); 2567 /* if user messes with these they will just get an early return */ 2568 if (__io_cqring_events_user(ctx) >= min_events) 2569 return 0; 2570 2571 if (sig) { 2572 #ifdef CONFIG_COMPAT 2573 if (in_compat_syscall()) 2574 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2575 sigsz); 2576 else 2577 #endif 2578 ret = set_user_sigmask(sig, sigsz); 2579 2580 if (ret) 2581 return ret; 2582 } 2583 2584 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2585 iowq.wq.private = current; 2586 INIT_LIST_HEAD(&iowq.wq.entry); 2587 iowq.ctx = ctx; 2588 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2589 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2590 iowq.timeout = KTIME_MAX; 2591 2592 if (uts) { 2593 struct timespec64 ts; 2594 2595 if (get_timespec64(&ts, uts)) 2596 return -EFAULT; 2597 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2598 } 2599 2600 trace_io_uring_cqring_wait(ctx, min_events); 2601 do { 2602 unsigned long check_cq; 2603 2604 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2605 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2606 2607 atomic_set(&ctx->cq_wait_nr, nr_wait); 2608 set_current_state(TASK_INTERRUPTIBLE); 2609 } else { 2610 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2611 TASK_INTERRUPTIBLE); 2612 } 2613 2614 ret = io_cqring_wait_schedule(ctx, &iowq); 2615 __set_current_state(TASK_RUNNING); 2616 atomic_set(&ctx->cq_wait_nr, 0); 2617 2618 /* 2619 * Run task_work after scheduling and before io_should_wake(). 2620 * If we got woken because of task_work being processed, run it 2621 * now rather than let the caller do another wait loop. 2622 */ 2623 io_run_task_work(); 2624 if (!llist_empty(&ctx->work_llist)) 2625 io_run_local_work(ctx); 2626 2627 /* 2628 * Non-local task_work will be run on exit to userspace, but 2629 * if we're using DEFER_TASKRUN, then we could have waited 2630 * with a timeout for a number of requests. If the timeout 2631 * hits, we could have some requests ready to process. Ensure 2632 * this break is _after_ we have run task_work, to avoid 2633 * deferring running potentially pending requests until the 2634 * next time we wait for events. 2635 */ 2636 if (ret < 0) 2637 break; 2638 2639 check_cq = READ_ONCE(ctx->check_cq); 2640 if (unlikely(check_cq)) { 2641 /* let the caller flush overflows, retry */ 2642 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2643 io_cqring_do_overflow_flush(ctx); 2644 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2645 ret = -EBADR; 2646 break; 2647 } 2648 } 2649 2650 if (io_should_wake(&iowq)) { 2651 ret = 0; 2652 break; 2653 } 2654 cond_resched(); 2655 } while (1); 2656 2657 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2658 finish_wait(&ctx->cq_wait, &iowq.wq); 2659 restore_saved_sigmask_unless(ret == -EINTR); 2660 2661 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2662 } 2663 2664 void io_mem_free(void *ptr) 2665 { 2666 if (!ptr) 2667 return; 2668 2669 folio_put(virt_to_folio(ptr)); 2670 } 2671 2672 static void io_pages_free(struct page ***pages, int npages) 2673 { 2674 struct page **page_array; 2675 int i; 2676 2677 if (!pages) 2678 return; 2679 2680 page_array = *pages; 2681 if (!page_array) 2682 return; 2683 2684 for (i = 0; i < npages; i++) 2685 unpin_user_page(page_array[i]); 2686 kvfree(page_array); 2687 *pages = NULL; 2688 } 2689 2690 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, 2691 unsigned long uaddr, size_t size) 2692 { 2693 struct page **page_array; 2694 unsigned int nr_pages; 2695 void *page_addr; 2696 int ret, i; 2697 2698 *npages = 0; 2699 2700 if (uaddr & (PAGE_SIZE - 1) || !size) 2701 return ERR_PTR(-EINVAL); 2702 2703 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2704 if (nr_pages > USHRT_MAX) 2705 return ERR_PTR(-EINVAL); 2706 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); 2707 if (!page_array) 2708 return ERR_PTR(-ENOMEM); 2709 2710 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, 2711 page_array); 2712 if (ret != nr_pages) { 2713 err: 2714 io_pages_free(&page_array, ret > 0 ? ret : 0); 2715 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); 2716 } 2717 2718 page_addr = page_address(page_array[0]); 2719 for (i = 0; i < nr_pages; i++) { 2720 ret = -EINVAL; 2721 2722 /* 2723 * Can't support mapping user allocated ring memory on 32-bit 2724 * archs where it could potentially reside in highmem. Just 2725 * fail those with -EINVAL, just like we did on kernels that 2726 * didn't support this feature. 2727 */ 2728 if (PageHighMem(page_array[i])) 2729 goto err; 2730 2731 /* 2732 * No support for discontig pages for now, should either be a 2733 * single normal page, or a huge page. Later on we can add 2734 * support for remapping discontig pages, for now we will 2735 * just fail them with EINVAL. 2736 */ 2737 if (page_address(page_array[i]) != page_addr) 2738 goto err; 2739 page_addr += PAGE_SIZE; 2740 } 2741 2742 *pages = page_array; 2743 *npages = nr_pages; 2744 return page_to_virt(page_array[0]); 2745 } 2746 2747 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2748 size_t size) 2749 { 2750 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2751 size); 2752 } 2753 2754 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2755 size_t size) 2756 { 2757 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2758 size); 2759 } 2760 2761 static void io_rings_free(struct io_ring_ctx *ctx) 2762 { 2763 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2764 io_mem_free(ctx->rings); 2765 io_mem_free(ctx->sq_sqes); 2766 ctx->rings = NULL; 2767 ctx->sq_sqes = NULL; 2768 } else { 2769 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2770 ctx->n_ring_pages = 0; 2771 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2772 ctx->n_sqe_pages = 0; 2773 } 2774 } 2775 2776 void *io_mem_alloc(size_t size) 2777 { 2778 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2779 void *ret; 2780 2781 ret = (void *) __get_free_pages(gfp, get_order(size)); 2782 if (ret) 2783 return ret; 2784 return ERR_PTR(-ENOMEM); 2785 } 2786 2787 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2788 unsigned int cq_entries, size_t *sq_offset) 2789 { 2790 struct io_rings *rings; 2791 size_t off, sq_array_size; 2792 2793 off = struct_size(rings, cqes, cq_entries); 2794 if (off == SIZE_MAX) 2795 return SIZE_MAX; 2796 if (ctx->flags & IORING_SETUP_CQE32) { 2797 if (check_shl_overflow(off, 1, &off)) 2798 return SIZE_MAX; 2799 } 2800 2801 #ifdef CONFIG_SMP 2802 off = ALIGN(off, SMP_CACHE_BYTES); 2803 if (off == 0) 2804 return SIZE_MAX; 2805 #endif 2806 2807 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2808 if (sq_offset) 2809 *sq_offset = SIZE_MAX; 2810 return off; 2811 } 2812 2813 if (sq_offset) 2814 *sq_offset = off; 2815 2816 sq_array_size = array_size(sizeof(u32), sq_entries); 2817 if (sq_array_size == SIZE_MAX) 2818 return SIZE_MAX; 2819 2820 if (check_add_overflow(off, sq_array_size, &off)) 2821 return SIZE_MAX; 2822 2823 return off; 2824 } 2825 2826 static void io_req_caches_free(struct io_ring_ctx *ctx) 2827 { 2828 struct io_kiocb *req; 2829 int nr = 0; 2830 2831 mutex_lock(&ctx->uring_lock); 2832 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2833 2834 while (!io_req_cache_empty(ctx)) { 2835 req = io_extract_req(ctx); 2836 kmem_cache_free(req_cachep, req); 2837 nr++; 2838 } 2839 if (nr) 2840 percpu_ref_put_many(&ctx->refs, nr); 2841 mutex_unlock(&ctx->uring_lock); 2842 } 2843 2844 static void io_rsrc_node_cache_free(struct io_cache_entry *entry) 2845 { 2846 kfree(container_of(entry, struct io_rsrc_node, cache)); 2847 } 2848 2849 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2850 { 2851 io_sq_thread_finish(ctx); 2852 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2853 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2854 return; 2855 2856 mutex_lock(&ctx->uring_lock); 2857 if (ctx->buf_data) 2858 __io_sqe_buffers_unregister(ctx); 2859 if (ctx->file_data) 2860 __io_sqe_files_unregister(ctx); 2861 io_cqring_overflow_kill(ctx); 2862 io_eventfd_unregister(ctx); 2863 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2864 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2865 io_futex_cache_free(ctx); 2866 io_destroy_buffers(ctx); 2867 mutex_unlock(&ctx->uring_lock); 2868 if (ctx->sq_creds) 2869 put_cred(ctx->sq_creds); 2870 if (ctx->submitter_task) 2871 put_task_struct(ctx->submitter_task); 2872 2873 /* there are no registered resources left, nobody uses it */ 2874 if (ctx->rsrc_node) 2875 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2876 2877 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2878 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2879 2880 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); 2881 if (ctx->mm_account) { 2882 mmdrop(ctx->mm_account); 2883 ctx->mm_account = NULL; 2884 } 2885 io_rings_free(ctx); 2886 io_kbuf_mmap_list_free(ctx); 2887 2888 percpu_ref_exit(&ctx->refs); 2889 free_uid(ctx->user); 2890 io_req_caches_free(ctx); 2891 if (ctx->hash_map) 2892 io_wq_put_hash(ctx->hash_map); 2893 kfree(ctx->cancel_table.hbs); 2894 kfree(ctx->cancel_table_locked.hbs); 2895 kfree(ctx->io_bl); 2896 xa_destroy(&ctx->io_bl_xa); 2897 kfree(ctx); 2898 } 2899 2900 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2901 { 2902 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2903 poll_wq_task_work); 2904 2905 mutex_lock(&ctx->uring_lock); 2906 ctx->poll_activated = true; 2907 mutex_unlock(&ctx->uring_lock); 2908 2909 /* 2910 * Wake ups for some events between start of polling and activation 2911 * might've been lost due to loose synchronisation. 2912 */ 2913 wake_up_all(&ctx->poll_wq); 2914 percpu_ref_put(&ctx->refs); 2915 } 2916 2917 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2918 { 2919 spin_lock(&ctx->completion_lock); 2920 /* already activated or in progress */ 2921 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2922 goto out; 2923 if (WARN_ON_ONCE(!ctx->task_complete)) 2924 goto out; 2925 if (!ctx->submitter_task) 2926 goto out; 2927 /* 2928 * with ->submitter_task only the submitter task completes requests, we 2929 * only need to sync with it, which is done by injecting a tw 2930 */ 2931 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2932 percpu_ref_get(&ctx->refs); 2933 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2934 percpu_ref_put(&ctx->refs); 2935 out: 2936 spin_unlock(&ctx->completion_lock); 2937 } 2938 2939 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2940 { 2941 struct io_ring_ctx *ctx = file->private_data; 2942 __poll_t mask = 0; 2943 2944 if (unlikely(!ctx->poll_activated)) 2945 io_activate_pollwq(ctx); 2946 2947 poll_wait(file, &ctx->poll_wq, wait); 2948 /* 2949 * synchronizes with barrier from wq_has_sleeper call in 2950 * io_commit_cqring 2951 */ 2952 smp_rmb(); 2953 if (!io_sqring_full(ctx)) 2954 mask |= EPOLLOUT | EPOLLWRNORM; 2955 2956 /* 2957 * Don't flush cqring overflow list here, just do a simple check. 2958 * Otherwise there could possible be ABBA deadlock: 2959 * CPU0 CPU1 2960 * ---- ---- 2961 * lock(&ctx->uring_lock); 2962 * lock(&ep->mtx); 2963 * lock(&ctx->uring_lock); 2964 * lock(&ep->mtx); 2965 * 2966 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2967 * pushes them to do the flush. 2968 */ 2969 2970 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2971 mask |= EPOLLIN | EPOLLRDNORM; 2972 2973 return mask; 2974 } 2975 2976 struct io_tctx_exit { 2977 struct callback_head task_work; 2978 struct completion completion; 2979 struct io_ring_ctx *ctx; 2980 }; 2981 2982 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2983 { 2984 struct io_uring_task *tctx = current->io_uring; 2985 struct io_tctx_exit *work; 2986 2987 work = container_of(cb, struct io_tctx_exit, task_work); 2988 /* 2989 * When @in_cancel, we're in cancellation and it's racy to remove the 2990 * node. It'll be removed by the end of cancellation, just ignore it. 2991 * tctx can be NULL if the queueing of this task_work raced with 2992 * work cancelation off the exec path. 2993 */ 2994 if (tctx && !atomic_read(&tctx->in_cancel)) 2995 io_uring_del_tctx_node((unsigned long)work->ctx); 2996 complete(&work->completion); 2997 } 2998 2999 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 3000 { 3001 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3002 3003 return req->ctx == data; 3004 } 3005 3006 static __cold void io_ring_exit_work(struct work_struct *work) 3007 { 3008 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 3009 unsigned long timeout = jiffies + HZ * 60 * 5; 3010 unsigned long interval = HZ / 20; 3011 struct io_tctx_exit exit; 3012 struct io_tctx_node *node; 3013 int ret; 3014 3015 /* 3016 * If we're doing polled IO and end up having requests being 3017 * submitted async (out-of-line), then completions can come in while 3018 * we're waiting for refs to drop. We need to reap these manually, 3019 * as nobody else will be looking for them. 3020 */ 3021 do { 3022 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 3023 mutex_lock(&ctx->uring_lock); 3024 io_cqring_overflow_kill(ctx); 3025 mutex_unlock(&ctx->uring_lock); 3026 } 3027 3028 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3029 io_move_task_work_from_local(ctx); 3030 3031 while (io_uring_try_cancel_requests(ctx, NULL, true)) 3032 cond_resched(); 3033 3034 if (ctx->sq_data) { 3035 struct io_sq_data *sqd = ctx->sq_data; 3036 struct task_struct *tsk; 3037 3038 io_sq_thread_park(sqd); 3039 tsk = sqd->thread; 3040 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 3041 io_wq_cancel_cb(tsk->io_uring->io_wq, 3042 io_cancel_ctx_cb, ctx, true); 3043 io_sq_thread_unpark(sqd); 3044 } 3045 3046 io_req_caches_free(ctx); 3047 3048 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3049 /* there is little hope left, don't run it too often */ 3050 interval = HZ * 60; 3051 } 3052 /* 3053 * This is really an uninterruptible wait, as it has to be 3054 * complete. But it's also run from a kworker, which doesn't 3055 * take signals, so it's fine to make it interruptible. This 3056 * avoids scenarios where we knowingly can wait much longer 3057 * on completions, for example if someone does a SIGSTOP on 3058 * a task that needs to finish task_work to make this loop 3059 * complete. That's a synthetic situation that should not 3060 * cause a stuck task backtrace, and hence a potential panic 3061 * on stuck tasks if that is enabled. 3062 */ 3063 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 3064 3065 init_completion(&exit.completion); 3066 init_task_work(&exit.task_work, io_tctx_exit_cb); 3067 exit.ctx = ctx; 3068 3069 mutex_lock(&ctx->uring_lock); 3070 while (!list_empty(&ctx->tctx_list)) { 3071 WARN_ON_ONCE(time_after(jiffies, timeout)); 3072 3073 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3074 ctx_node); 3075 /* don't spin on a single task if cancellation failed */ 3076 list_rotate_left(&ctx->tctx_list); 3077 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3078 if (WARN_ON_ONCE(ret)) 3079 continue; 3080 3081 mutex_unlock(&ctx->uring_lock); 3082 /* 3083 * See comment above for 3084 * wait_for_completion_interruptible_timeout() on why this 3085 * wait is marked as interruptible. 3086 */ 3087 wait_for_completion_interruptible(&exit.completion); 3088 mutex_lock(&ctx->uring_lock); 3089 } 3090 mutex_unlock(&ctx->uring_lock); 3091 spin_lock(&ctx->completion_lock); 3092 spin_unlock(&ctx->completion_lock); 3093 3094 /* pairs with RCU read section in io_req_local_work_add() */ 3095 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3096 synchronize_rcu(); 3097 3098 io_ring_ctx_free(ctx); 3099 } 3100 3101 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3102 { 3103 unsigned long index; 3104 struct creds *creds; 3105 3106 mutex_lock(&ctx->uring_lock); 3107 percpu_ref_kill(&ctx->refs); 3108 xa_for_each(&ctx->personalities, index, creds) 3109 io_unregister_personality(ctx, index); 3110 if (ctx->rings) 3111 io_poll_remove_all(ctx, NULL, true); 3112 mutex_unlock(&ctx->uring_lock); 3113 3114 /* 3115 * If we failed setting up the ctx, we might not have any rings 3116 * and therefore did not submit any requests 3117 */ 3118 if (ctx->rings) 3119 io_kill_timeouts(ctx, NULL, true); 3120 3121 flush_delayed_work(&ctx->fallback_work); 3122 3123 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3124 /* 3125 * Use system_unbound_wq to avoid spawning tons of event kworkers 3126 * if we're exiting a ton of rings at the same time. It just adds 3127 * noise and overhead, there's no discernable change in runtime 3128 * over using system_wq. 3129 */ 3130 queue_work(system_unbound_wq, &ctx->exit_work); 3131 } 3132 3133 static int io_uring_release(struct inode *inode, struct file *file) 3134 { 3135 struct io_ring_ctx *ctx = file->private_data; 3136 3137 file->private_data = NULL; 3138 io_ring_ctx_wait_and_kill(ctx); 3139 return 0; 3140 } 3141 3142 struct io_task_cancel { 3143 struct task_struct *task; 3144 bool all; 3145 }; 3146 3147 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3148 { 3149 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3150 struct io_task_cancel *cancel = data; 3151 3152 return io_match_task_safe(req, cancel->task, cancel->all); 3153 } 3154 3155 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3156 struct task_struct *task, 3157 bool cancel_all) 3158 { 3159 struct io_defer_entry *de; 3160 LIST_HEAD(list); 3161 3162 spin_lock(&ctx->completion_lock); 3163 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3164 if (io_match_task_safe(de->req, task, cancel_all)) { 3165 list_cut_position(&list, &ctx->defer_list, &de->list); 3166 break; 3167 } 3168 } 3169 spin_unlock(&ctx->completion_lock); 3170 if (list_empty(&list)) 3171 return false; 3172 3173 while (!list_empty(&list)) { 3174 de = list_first_entry(&list, struct io_defer_entry, list); 3175 list_del_init(&de->list); 3176 io_req_task_queue_fail(de->req, -ECANCELED); 3177 kfree(de); 3178 } 3179 return true; 3180 } 3181 3182 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3183 { 3184 struct io_tctx_node *node; 3185 enum io_wq_cancel cret; 3186 bool ret = false; 3187 3188 mutex_lock(&ctx->uring_lock); 3189 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3190 struct io_uring_task *tctx = node->task->io_uring; 3191 3192 /* 3193 * io_wq will stay alive while we hold uring_lock, because it's 3194 * killed after ctx nodes, which requires to take the lock. 3195 */ 3196 if (!tctx || !tctx->io_wq) 3197 continue; 3198 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3199 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3200 } 3201 mutex_unlock(&ctx->uring_lock); 3202 3203 return ret; 3204 } 3205 3206 static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx, 3207 struct task_struct *task, bool cancel_all) 3208 { 3209 struct hlist_node *tmp; 3210 struct io_kiocb *req; 3211 bool ret = false; 3212 3213 lockdep_assert_held(&ctx->uring_lock); 3214 3215 hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd, 3216 hash_node) { 3217 struct io_uring_cmd *cmd = io_kiocb_to_cmd(req, 3218 struct io_uring_cmd); 3219 struct file *file = req->file; 3220 3221 if (!cancel_all && req->task != task) 3222 continue; 3223 3224 if (cmd->flags & IORING_URING_CMD_CANCELABLE) { 3225 /* ->sqe isn't available if no async data */ 3226 if (!req_has_async_data(req)) 3227 cmd->sqe = NULL; 3228 file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL); 3229 ret = true; 3230 } 3231 } 3232 io_submit_flush_completions(ctx); 3233 3234 return ret; 3235 } 3236 3237 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3238 struct task_struct *task, 3239 bool cancel_all) 3240 { 3241 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3242 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3243 enum io_wq_cancel cret; 3244 bool ret = false; 3245 3246 /* set it so io_req_local_work_add() would wake us up */ 3247 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3248 atomic_set(&ctx->cq_wait_nr, 1); 3249 smp_mb(); 3250 } 3251 3252 /* failed during ring init, it couldn't have issued any requests */ 3253 if (!ctx->rings) 3254 return false; 3255 3256 if (!task) { 3257 ret |= io_uring_try_cancel_iowq(ctx); 3258 } else if (tctx && tctx->io_wq) { 3259 /* 3260 * Cancels requests of all rings, not only @ctx, but 3261 * it's fine as the task is in exit/exec. 3262 */ 3263 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3264 &cancel, true); 3265 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3266 } 3267 3268 /* SQPOLL thread does its own polling */ 3269 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3270 (ctx->sq_data && ctx->sq_data->thread == current)) { 3271 while (!wq_list_empty(&ctx->iopoll_list)) { 3272 io_iopoll_try_reap_events(ctx); 3273 ret = true; 3274 cond_resched(); 3275 } 3276 } 3277 3278 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3279 io_allowed_defer_tw_run(ctx)) 3280 ret |= io_run_local_work(ctx) > 0; 3281 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3282 mutex_lock(&ctx->uring_lock); 3283 ret |= io_poll_remove_all(ctx, task, cancel_all); 3284 ret |= io_waitid_remove_all(ctx, task, cancel_all); 3285 ret |= io_futex_remove_all(ctx, task, cancel_all); 3286 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); 3287 mutex_unlock(&ctx->uring_lock); 3288 ret |= io_kill_timeouts(ctx, task, cancel_all); 3289 if (task) 3290 ret |= io_run_task_work() > 0; 3291 return ret; 3292 } 3293 3294 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3295 { 3296 if (tracked) 3297 return atomic_read(&tctx->inflight_tracked); 3298 return percpu_counter_sum(&tctx->inflight); 3299 } 3300 3301 /* 3302 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3303 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3304 */ 3305 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3306 { 3307 struct io_uring_task *tctx = current->io_uring; 3308 struct io_ring_ctx *ctx; 3309 struct io_tctx_node *node; 3310 unsigned long index; 3311 s64 inflight; 3312 DEFINE_WAIT(wait); 3313 3314 WARN_ON_ONCE(sqd && sqd->thread != current); 3315 3316 if (!current->io_uring) 3317 return; 3318 if (tctx->io_wq) 3319 io_wq_exit_start(tctx->io_wq); 3320 3321 atomic_inc(&tctx->in_cancel); 3322 do { 3323 bool loop = false; 3324 3325 io_uring_drop_tctx_refs(current); 3326 /* read completions before cancelations */ 3327 inflight = tctx_inflight(tctx, !cancel_all); 3328 if (!inflight) 3329 break; 3330 3331 if (!sqd) { 3332 xa_for_each(&tctx->xa, index, node) { 3333 /* sqpoll task will cancel all its requests */ 3334 if (node->ctx->sq_data) 3335 continue; 3336 loop |= io_uring_try_cancel_requests(node->ctx, 3337 current, cancel_all); 3338 } 3339 } else { 3340 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3341 loop |= io_uring_try_cancel_requests(ctx, 3342 current, 3343 cancel_all); 3344 } 3345 3346 if (loop) { 3347 cond_resched(); 3348 continue; 3349 } 3350 3351 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3352 io_run_task_work(); 3353 io_uring_drop_tctx_refs(current); 3354 xa_for_each(&tctx->xa, index, node) { 3355 if (!llist_empty(&node->ctx->work_llist)) { 3356 WARN_ON_ONCE(node->ctx->submitter_task && 3357 node->ctx->submitter_task != current); 3358 goto end_wait; 3359 } 3360 } 3361 /* 3362 * If we've seen completions, retry without waiting. This 3363 * avoids a race where a completion comes in before we did 3364 * prepare_to_wait(). 3365 */ 3366 if (inflight == tctx_inflight(tctx, !cancel_all)) 3367 schedule(); 3368 end_wait: 3369 finish_wait(&tctx->wait, &wait); 3370 } while (1); 3371 3372 io_uring_clean_tctx(tctx); 3373 if (cancel_all) { 3374 /* 3375 * We shouldn't run task_works after cancel, so just leave 3376 * ->in_cancel set for normal exit. 3377 */ 3378 atomic_dec(&tctx->in_cancel); 3379 /* for exec all current's requests should be gone, kill tctx */ 3380 __io_uring_free(current); 3381 } 3382 } 3383 3384 void __io_uring_cancel(bool cancel_all) 3385 { 3386 io_uring_cancel_generic(cancel_all, NULL); 3387 } 3388 3389 static void *io_uring_validate_mmap_request(struct file *file, 3390 loff_t pgoff, size_t sz) 3391 { 3392 struct io_ring_ctx *ctx = file->private_data; 3393 loff_t offset = pgoff << PAGE_SHIFT; 3394 struct page *page; 3395 void *ptr; 3396 3397 switch (offset & IORING_OFF_MMAP_MASK) { 3398 case IORING_OFF_SQ_RING: 3399 case IORING_OFF_CQ_RING: 3400 /* Don't allow mmap if the ring was setup without it */ 3401 if (ctx->flags & IORING_SETUP_NO_MMAP) 3402 return ERR_PTR(-EINVAL); 3403 ptr = ctx->rings; 3404 break; 3405 case IORING_OFF_SQES: 3406 /* Don't allow mmap if the ring was setup without it */ 3407 if (ctx->flags & IORING_SETUP_NO_MMAP) 3408 return ERR_PTR(-EINVAL); 3409 ptr = ctx->sq_sqes; 3410 break; 3411 case IORING_OFF_PBUF_RING: { 3412 unsigned int bgid; 3413 3414 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; 3415 rcu_read_lock(); 3416 ptr = io_pbuf_get_address(ctx, bgid); 3417 rcu_read_unlock(); 3418 if (!ptr) 3419 return ERR_PTR(-EINVAL); 3420 break; 3421 } 3422 default: 3423 return ERR_PTR(-EINVAL); 3424 } 3425 3426 page = virt_to_head_page(ptr); 3427 if (sz > page_size(page)) 3428 return ERR_PTR(-EINVAL); 3429 3430 return ptr; 3431 } 3432 3433 #ifdef CONFIG_MMU 3434 3435 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3436 { 3437 size_t sz = vma->vm_end - vma->vm_start; 3438 unsigned long pfn; 3439 void *ptr; 3440 3441 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3442 if (IS_ERR(ptr)) 3443 return PTR_ERR(ptr); 3444 3445 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3446 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3447 } 3448 3449 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, 3450 unsigned long addr, unsigned long len, 3451 unsigned long pgoff, unsigned long flags) 3452 { 3453 void *ptr; 3454 3455 /* 3456 * Do not allow to map to user-provided address to avoid breaking the 3457 * aliasing rules. Userspace is not able to guess the offset address of 3458 * kernel kmalloc()ed memory area. 3459 */ 3460 if (addr) 3461 return -EINVAL; 3462 3463 ptr = io_uring_validate_mmap_request(filp, pgoff, len); 3464 if (IS_ERR(ptr)) 3465 return -ENOMEM; 3466 3467 /* 3468 * Some architectures have strong cache aliasing requirements. 3469 * For such architectures we need a coherent mapping which aliases 3470 * kernel memory *and* userspace memory. To achieve that: 3471 * - use a NULL file pointer to reference physical memory, and 3472 * - use the kernel virtual address of the shared io_uring context 3473 * (instead of the userspace-provided address, which has to be 0UL 3474 * anyway). 3475 * - use the same pgoff which the get_unmapped_area() uses to 3476 * calculate the page colouring. 3477 * For architectures without such aliasing requirements, the 3478 * architecture will return any suitable mapping because addr is 0. 3479 */ 3480 filp = NULL; 3481 flags |= MAP_SHARED; 3482 pgoff = 0; /* has been translated to ptr above */ 3483 #ifdef SHM_COLOUR 3484 addr = (uintptr_t) ptr; 3485 pgoff = addr >> PAGE_SHIFT; 3486 #else 3487 addr = 0UL; 3488 #endif 3489 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 3490 } 3491 3492 #else /* !CONFIG_MMU */ 3493 3494 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3495 { 3496 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3497 } 3498 3499 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3500 { 3501 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3502 } 3503 3504 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3505 unsigned long addr, unsigned long len, 3506 unsigned long pgoff, unsigned long flags) 3507 { 3508 void *ptr; 3509 3510 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3511 if (IS_ERR(ptr)) 3512 return PTR_ERR(ptr); 3513 3514 return (unsigned long) ptr; 3515 } 3516 3517 #endif /* !CONFIG_MMU */ 3518 3519 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3520 { 3521 if (flags & IORING_ENTER_EXT_ARG) { 3522 struct io_uring_getevents_arg arg; 3523 3524 if (argsz != sizeof(arg)) 3525 return -EINVAL; 3526 if (copy_from_user(&arg, argp, sizeof(arg))) 3527 return -EFAULT; 3528 } 3529 return 0; 3530 } 3531 3532 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3533 struct __kernel_timespec __user **ts, 3534 const sigset_t __user **sig) 3535 { 3536 struct io_uring_getevents_arg arg; 3537 3538 /* 3539 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3540 * is just a pointer to the sigset_t. 3541 */ 3542 if (!(flags & IORING_ENTER_EXT_ARG)) { 3543 *sig = (const sigset_t __user *) argp; 3544 *ts = NULL; 3545 return 0; 3546 } 3547 3548 /* 3549 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3550 * timespec and sigset_t pointers if good. 3551 */ 3552 if (*argsz != sizeof(arg)) 3553 return -EINVAL; 3554 if (copy_from_user(&arg, argp, sizeof(arg))) 3555 return -EFAULT; 3556 if (arg.pad) 3557 return -EINVAL; 3558 *sig = u64_to_user_ptr(arg.sigmask); 3559 *argsz = arg.sigmask_sz; 3560 *ts = u64_to_user_ptr(arg.ts); 3561 return 0; 3562 } 3563 3564 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3565 u32, min_complete, u32, flags, const void __user *, argp, 3566 size_t, argsz) 3567 { 3568 struct io_ring_ctx *ctx; 3569 struct file *file; 3570 long ret; 3571 3572 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3573 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3574 IORING_ENTER_REGISTERED_RING))) 3575 return -EINVAL; 3576 3577 /* 3578 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3579 * need only dereference our task private array to find it. 3580 */ 3581 if (flags & IORING_ENTER_REGISTERED_RING) { 3582 struct io_uring_task *tctx = current->io_uring; 3583 3584 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3585 return -EINVAL; 3586 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3587 file = tctx->registered_rings[fd]; 3588 if (unlikely(!file)) 3589 return -EBADF; 3590 } else { 3591 file = fget(fd); 3592 if (unlikely(!file)) 3593 return -EBADF; 3594 ret = -EOPNOTSUPP; 3595 if (unlikely(!io_is_uring_fops(file))) 3596 goto out; 3597 } 3598 3599 ctx = file->private_data; 3600 ret = -EBADFD; 3601 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3602 goto out; 3603 3604 /* 3605 * For SQ polling, the thread will do all submissions and completions. 3606 * Just return the requested submit count, and wake the thread if 3607 * we were asked to. 3608 */ 3609 ret = 0; 3610 if (ctx->flags & IORING_SETUP_SQPOLL) { 3611 io_cqring_overflow_flush(ctx); 3612 3613 if (unlikely(ctx->sq_data->thread == NULL)) { 3614 ret = -EOWNERDEAD; 3615 goto out; 3616 } 3617 if (flags & IORING_ENTER_SQ_WAKEUP) 3618 wake_up(&ctx->sq_data->wait); 3619 if (flags & IORING_ENTER_SQ_WAIT) 3620 io_sqpoll_wait_sq(ctx); 3621 3622 ret = to_submit; 3623 } else if (to_submit) { 3624 ret = io_uring_add_tctx_node(ctx); 3625 if (unlikely(ret)) 3626 goto out; 3627 3628 mutex_lock(&ctx->uring_lock); 3629 ret = io_submit_sqes(ctx, to_submit); 3630 if (ret != to_submit) { 3631 mutex_unlock(&ctx->uring_lock); 3632 goto out; 3633 } 3634 if (flags & IORING_ENTER_GETEVENTS) { 3635 if (ctx->syscall_iopoll) 3636 goto iopoll_locked; 3637 /* 3638 * Ignore errors, we'll soon call io_cqring_wait() and 3639 * it should handle ownership problems if any. 3640 */ 3641 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3642 (void)io_run_local_work_locked(ctx); 3643 } 3644 mutex_unlock(&ctx->uring_lock); 3645 } 3646 3647 if (flags & IORING_ENTER_GETEVENTS) { 3648 int ret2; 3649 3650 if (ctx->syscall_iopoll) { 3651 /* 3652 * We disallow the app entering submit/complete with 3653 * polling, but we still need to lock the ring to 3654 * prevent racing with polled issue that got punted to 3655 * a workqueue. 3656 */ 3657 mutex_lock(&ctx->uring_lock); 3658 iopoll_locked: 3659 ret2 = io_validate_ext_arg(flags, argp, argsz); 3660 if (likely(!ret2)) { 3661 min_complete = min(min_complete, 3662 ctx->cq_entries); 3663 ret2 = io_iopoll_check(ctx, min_complete); 3664 } 3665 mutex_unlock(&ctx->uring_lock); 3666 } else { 3667 const sigset_t __user *sig; 3668 struct __kernel_timespec __user *ts; 3669 3670 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3671 if (likely(!ret2)) { 3672 min_complete = min(min_complete, 3673 ctx->cq_entries); 3674 ret2 = io_cqring_wait(ctx, min_complete, sig, 3675 argsz, ts); 3676 } 3677 } 3678 3679 if (!ret) { 3680 ret = ret2; 3681 3682 /* 3683 * EBADR indicates that one or more CQE were dropped. 3684 * Once the user has been informed we can clear the bit 3685 * as they are obviously ok with those drops. 3686 */ 3687 if (unlikely(ret2 == -EBADR)) 3688 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3689 &ctx->check_cq); 3690 } 3691 } 3692 out: 3693 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3694 fput(file); 3695 return ret; 3696 } 3697 3698 static const struct file_operations io_uring_fops = { 3699 .release = io_uring_release, 3700 .mmap = io_uring_mmap, 3701 #ifndef CONFIG_MMU 3702 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3703 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3704 #else 3705 .get_unmapped_area = io_uring_mmu_get_unmapped_area, 3706 #endif 3707 .poll = io_uring_poll, 3708 #ifdef CONFIG_PROC_FS 3709 .show_fdinfo = io_uring_show_fdinfo, 3710 #endif 3711 }; 3712 3713 bool io_is_uring_fops(struct file *file) 3714 { 3715 return file->f_op == &io_uring_fops; 3716 } 3717 3718 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3719 struct io_uring_params *p) 3720 { 3721 struct io_rings *rings; 3722 size_t size, sq_array_offset; 3723 void *ptr; 3724 3725 /* make sure these are sane, as we already accounted them */ 3726 ctx->sq_entries = p->sq_entries; 3727 ctx->cq_entries = p->cq_entries; 3728 3729 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3730 if (size == SIZE_MAX) 3731 return -EOVERFLOW; 3732 3733 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3734 rings = io_mem_alloc(size); 3735 else 3736 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3737 3738 if (IS_ERR(rings)) 3739 return PTR_ERR(rings); 3740 3741 ctx->rings = rings; 3742 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3743 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3744 rings->sq_ring_mask = p->sq_entries - 1; 3745 rings->cq_ring_mask = p->cq_entries - 1; 3746 rings->sq_ring_entries = p->sq_entries; 3747 rings->cq_ring_entries = p->cq_entries; 3748 3749 if (p->flags & IORING_SETUP_SQE128) 3750 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3751 else 3752 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3753 if (size == SIZE_MAX) { 3754 io_rings_free(ctx); 3755 return -EOVERFLOW; 3756 } 3757 3758 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3759 ptr = io_mem_alloc(size); 3760 else 3761 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3762 3763 if (IS_ERR(ptr)) { 3764 io_rings_free(ctx); 3765 return PTR_ERR(ptr); 3766 } 3767 3768 ctx->sq_sqes = ptr; 3769 return 0; 3770 } 3771 3772 static int io_uring_install_fd(struct file *file) 3773 { 3774 int fd; 3775 3776 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3777 if (fd < 0) 3778 return fd; 3779 fd_install(fd, file); 3780 return fd; 3781 } 3782 3783 /* 3784 * Allocate an anonymous fd, this is what constitutes the application 3785 * visible backing of an io_uring instance. The application mmaps this 3786 * fd to gain access to the SQ/CQ ring details. 3787 */ 3788 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3789 { 3790 return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3791 O_RDWR | O_CLOEXEC, NULL); 3792 } 3793 3794 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3795 struct io_uring_params __user *params) 3796 { 3797 struct io_ring_ctx *ctx; 3798 struct io_uring_task *tctx; 3799 struct file *file; 3800 int ret; 3801 3802 if (!entries) 3803 return -EINVAL; 3804 if (entries > IORING_MAX_ENTRIES) { 3805 if (!(p->flags & IORING_SETUP_CLAMP)) 3806 return -EINVAL; 3807 entries = IORING_MAX_ENTRIES; 3808 } 3809 3810 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3811 && !(p->flags & IORING_SETUP_NO_MMAP)) 3812 return -EINVAL; 3813 3814 /* 3815 * Use twice as many entries for the CQ ring. It's possible for the 3816 * application to drive a higher depth than the size of the SQ ring, 3817 * since the sqes are only used at submission time. This allows for 3818 * some flexibility in overcommitting a bit. If the application has 3819 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3820 * of CQ ring entries manually. 3821 */ 3822 p->sq_entries = roundup_pow_of_two(entries); 3823 if (p->flags & IORING_SETUP_CQSIZE) { 3824 /* 3825 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3826 * to a power-of-two, if it isn't already. We do NOT impose 3827 * any cq vs sq ring sizing. 3828 */ 3829 if (!p->cq_entries) 3830 return -EINVAL; 3831 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3832 if (!(p->flags & IORING_SETUP_CLAMP)) 3833 return -EINVAL; 3834 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3835 } 3836 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3837 if (p->cq_entries < p->sq_entries) 3838 return -EINVAL; 3839 } else { 3840 p->cq_entries = 2 * p->sq_entries; 3841 } 3842 3843 ctx = io_ring_ctx_alloc(p); 3844 if (!ctx) 3845 return -ENOMEM; 3846 3847 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3848 !(ctx->flags & IORING_SETUP_IOPOLL) && 3849 !(ctx->flags & IORING_SETUP_SQPOLL)) 3850 ctx->task_complete = true; 3851 3852 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3853 ctx->lockless_cq = true; 3854 3855 /* 3856 * lazy poll_wq activation relies on ->task_complete for synchronisation 3857 * purposes, see io_activate_pollwq() 3858 */ 3859 if (!ctx->task_complete) 3860 ctx->poll_activated = true; 3861 3862 /* 3863 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3864 * space applications don't need to do io completion events 3865 * polling again, they can rely on io_sq_thread to do polling 3866 * work, which can reduce cpu usage and uring_lock contention. 3867 */ 3868 if (ctx->flags & IORING_SETUP_IOPOLL && 3869 !(ctx->flags & IORING_SETUP_SQPOLL)) 3870 ctx->syscall_iopoll = 1; 3871 3872 ctx->compat = in_compat_syscall(); 3873 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3874 ctx->user = get_uid(current_user()); 3875 3876 /* 3877 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3878 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3879 */ 3880 ret = -EINVAL; 3881 if (ctx->flags & IORING_SETUP_SQPOLL) { 3882 /* IPI related flags don't make sense with SQPOLL */ 3883 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3884 IORING_SETUP_TASKRUN_FLAG | 3885 IORING_SETUP_DEFER_TASKRUN)) 3886 goto err; 3887 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3888 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3889 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3890 } else { 3891 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3892 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3893 goto err; 3894 ctx->notify_method = TWA_SIGNAL; 3895 } 3896 3897 /* 3898 * For DEFER_TASKRUN we require the completion task to be the same as the 3899 * submission task. This implies that there is only one submitter, so enforce 3900 * that. 3901 */ 3902 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3903 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3904 goto err; 3905 } 3906 3907 /* 3908 * This is just grabbed for accounting purposes. When a process exits, 3909 * the mm is exited and dropped before the files, hence we need to hang 3910 * on to this mm purely for the purposes of being able to unaccount 3911 * memory (locked/pinned vm). It's not used for anything else. 3912 */ 3913 mmgrab(current->mm); 3914 ctx->mm_account = current->mm; 3915 3916 ret = io_allocate_scq_urings(ctx, p); 3917 if (ret) 3918 goto err; 3919 3920 ret = io_sq_offload_create(ctx, p); 3921 if (ret) 3922 goto err; 3923 3924 ret = io_rsrc_init(ctx); 3925 if (ret) 3926 goto err; 3927 3928 p->sq_off.head = offsetof(struct io_rings, sq.head); 3929 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3930 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3931 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3932 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3933 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3934 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3935 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3936 p->sq_off.resv1 = 0; 3937 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3938 p->sq_off.user_addr = 0; 3939 3940 p->cq_off.head = offsetof(struct io_rings, cq.head); 3941 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3942 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3943 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3944 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3945 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3946 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3947 p->cq_off.resv1 = 0; 3948 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3949 p->cq_off.user_addr = 0; 3950 3951 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3952 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3953 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3954 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3955 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3956 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3957 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3958 3959 if (copy_to_user(params, p, sizeof(*p))) { 3960 ret = -EFAULT; 3961 goto err; 3962 } 3963 3964 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3965 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3966 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3967 3968 file = io_uring_get_file(ctx); 3969 if (IS_ERR(file)) { 3970 ret = PTR_ERR(file); 3971 goto err; 3972 } 3973 3974 ret = __io_uring_add_tctx_node(ctx); 3975 if (ret) 3976 goto err_fput; 3977 tctx = current->io_uring; 3978 3979 /* 3980 * Install ring fd as the very last thing, so we don't risk someone 3981 * having closed it before we finish setup 3982 */ 3983 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3984 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3985 else 3986 ret = io_uring_install_fd(file); 3987 if (ret < 0) 3988 goto err_fput; 3989 3990 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3991 return ret; 3992 err: 3993 io_ring_ctx_wait_and_kill(ctx); 3994 return ret; 3995 err_fput: 3996 fput(file); 3997 return ret; 3998 } 3999 4000 /* 4001 * Sets up an aio uring context, and returns the fd. Applications asks for a 4002 * ring size, we return the actual sq/cq ring sizes (among other things) in the 4003 * params structure passed in. 4004 */ 4005 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 4006 { 4007 struct io_uring_params p; 4008 int i; 4009 4010 if (copy_from_user(&p, params, sizeof(p))) 4011 return -EFAULT; 4012 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 4013 if (p.resv[i]) 4014 return -EINVAL; 4015 } 4016 4017 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 4018 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 4019 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 4020 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 4021 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 4022 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 4023 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 4024 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 4025 IORING_SETUP_NO_SQARRAY)) 4026 return -EINVAL; 4027 4028 return io_uring_create(entries, &p, params); 4029 } 4030 4031 static inline bool io_uring_allowed(void) 4032 { 4033 int disabled = READ_ONCE(sysctl_io_uring_disabled); 4034 kgid_t io_uring_group; 4035 4036 if (disabled == 2) 4037 return false; 4038 4039 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 4040 return true; 4041 4042 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 4043 if (!gid_valid(io_uring_group)) 4044 return false; 4045 4046 return in_group_p(io_uring_group); 4047 } 4048 4049 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 4050 struct io_uring_params __user *, params) 4051 { 4052 if (!io_uring_allowed()) 4053 return -EPERM; 4054 4055 return io_uring_setup(entries, params); 4056 } 4057 4058 static int __init io_uring_init(void) 4059 { 4060 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4061 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4062 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4063 } while (0) 4064 4065 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4066 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4067 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4068 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4069 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4070 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4071 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4072 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4073 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4074 BUILD_BUG_SQE_ELEM(8, __u64, off); 4075 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4076 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4077 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4078 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4079 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4080 BUILD_BUG_SQE_ELEM(24, __u32, len); 4081 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4082 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4083 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4084 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4085 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4086 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4087 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4088 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4089 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4090 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4091 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4092 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4093 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4094 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4095 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4096 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4097 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4098 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4099 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4100 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4101 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4102 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4103 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4104 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4105 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4106 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4107 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4108 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4109 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4110 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4111 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4112 4113 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4114 sizeof(struct io_uring_rsrc_update)); 4115 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4116 sizeof(struct io_uring_rsrc_update2)); 4117 4118 /* ->buf_index is u16 */ 4119 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4120 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4121 offsetof(struct io_uring_buf_ring, tail)); 4122 4123 /* should fit into one byte */ 4124 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4125 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4126 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4127 4128 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4129 4130 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4131 4132 /* top 8bits are for internal use */ 4133 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 4134 4135 io_uring_optable_init(); 4136 4137 /* 4138 * Allow user copy in the per-command field, which starts after the 4139 * file in io_kiocb and until the opcode field. The openat2 handling 4140 * requires copying in user memory into the io_kiocb object in that 4141 * range, and HARDENED_USERCOPY will complain if we haven't 4142 * correctly annotated this range. 4143 */ 4144 req_cachep = kmem_cache_create_usercopy("io_kiocb", 4145 sizeof(struct io_kiocb), 0, 4146 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4147 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 4148 offsetof(struct io_kiocb, cmd.data), 4149 sizeof_field(struct io_kiocb, cmd.data), NULL); 4150 io_buf_cachep = kmem_cache_create("io_buffer", sizeof(struct io_buffer), 0, 4151 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 4152 NULL); 4153 4154 #ifdef CONFIG_SYSCTL 4155 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 4156 #endif 4157 4158 return 0; 4159 }; 4160 __initcall(io_uring_init); 4161