xref: /linux/io_uring/io_uring.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <linux/anon_inodes.h>
63 #include <linux/sched/mm.h>
64 #include <linux/uaccess.h>
65 #include <linux/nospec.h>
66 #include <linux/fsnotify.h>
67 #include <linux/fadvise.h>
68 #include <linux/task_work.h>
69 #include <linux/io_uring.h>
70 #include <linux/io_uring/cmd.h>
71 #include <linux/audit.h>
72 #include <linux/security.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106 
107 #define IORING_MAX_ENTRIES	32768
108 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
109 
110 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
111 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
112 
113 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
114 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
115 
116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 				REQ_F_ASYNC_DATA)
119 
120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
121 				 IO_REQ_CLEAN_FLAGS)
122 
123 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
124 
125 #define IO_COMPL_BATCH			32
126 #define IO_REQ_ALLOC_BATCH		8
127 
128 struct io_defer_entry {
129 	struct list_head	list;
130 	struct io_kiocb		*req;
131 	u32			seq;
132 };
133 
134 /* requests with any of those set should undergo io_disarm_next() */
135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
137 
138 /*
139  * No waiters. It's larger than any valid value of the tw counter
140  * so that tests against ->cq_wait_nr would fail and skip wake_up().
141  */
142 #define IO_CQ_WAKE_INIT		(-1U)
143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
144 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
145 
146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
147 					 struct task_struct *task,
148 					 bool cancel_all);
149 
150 static void io_queue_sqe(struct io_kiocb *req);
151 
152 struct kmem_cache *req_cachep;
153 static struct workqueue_struct *iou_wq __ro_after_init;
154 
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
157 
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
160 	{
161 		.procname	= "io_uring_disabled",
162 		.data		= &sysctl_io_uring_disabled,
163 		.maxlen		= sizeof(sysctl_io_uring_disabled),
164 		.mode		= 0644,
165 		.proc_handler	= proc_dointvec_minmax,
166 		.extra1		= SYSCTL_ZERO,
167 		.extra2		= SYSCTL_TWO,
168 	},
169 	{
170 		.procname	= "io_uring_group",
171 		.data		= &sysctl_io_uring_group,
172 		.maxlen		= sizeof(gid_t),
173 		.mode		= 0644,
174 		.proc_handler	= proc_dointvec,
175 	},
176 };
177 #endif
178 
179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
180 {
181 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
182 }
183 
184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
185 {
186 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
187 }
188 
189 static bool io_match_linked(struct io_kiocb *head)
190 {
191 	struct io_kiocb *req;
192 
193 	io_for_each_link(req, head) {
194 		if (req->flags & REQ_F_INFLIGHT)
195 			return true;
196 	}
197 	return false;
198 }
199 
200 /*
201  * As io_match_task() but protected against racing with linked timeouts.
202  * User must not hold timeout_lock.
203  */
204 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
205 			bool cancel_all)
206 {
207 	bool matched;
208 
209 	if (task && head->task != task)
210 		return false;
211 	if (cancel_all)
212 		return true;
213 
214 	if (head->flags & REQ_F_LINK_TIMEOUT) {
215 		struct io_ring_ctx *ctx = head->ctx;
216 
217 		/* protect against races with linked timeouts */
218 		spin_lock_irq(&ctx->timeout_lock);
219 		matched = io_match_linked(head);
220 		spin_unlock_irq(&ctx->timeout_lock);
221 	} else {
222 		matched = io_match_linked(head);
223 	}
224 	return matched;
225 }
226 
227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
228 {
229 	req_set_fail(req);
230 	io_req_set_res(req, res, 0);
231 }
232 
233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
234 {
235 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
236 }
237 
238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
239 {
240 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
241 
242 	complete(&ctx->ref_comp);
243 }
244 
245 static __cold void io_fallback_req_func(struct work_struct *work)
246 {
247 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 						fallback_work.work);
249 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 	struct io_kiocb *req, *tmp;
251 	struct io_tw_state ts = {};
252 
253 	percpu_ref_get(&ctx->refs);
254 	mutex_lock(&ctx->uring_lock);
255 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
256 		req->io_task_work.func(req, &ts);
257 	io_submit_flush_completions(ctx);
258 	mutex_unlock(&ctx->uring_lock);
259 	percpu_ref_put(&ctx->refs);
260 }
261 
262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263 {
264 	unsigned hash_buckets = 1U << bits;
265 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
266 
267 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
268 	if (!table->hbs)
269 		return -ENOMEM;
270 
271 	table->hash_bits = bits;
272 	init_hash_table(table, hash_buckets);
273 	return 0;
274 }
275 
276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
277 {
278 	struct io_ring_ctx *ctx;
279 	int hash_bits;
280 	bool ret;
281 
282 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
283 	if (!ctx)
284 		return NULL;
285 
286 	xa_init(&ctx->io_bl_xa);
287 
288 	/*
289 	 * Use 5 bits less than the max cq entries, that should give us around
290 	 * 32 entries per hash list if totally full and uniformly spread, but
291 	 * don't keep too many buckets to not overconsume memory.
292 	 */
293 	hash_bits = ilog2(p->cq_entries) - 5;
294 	hash_bits = clamp(hash_bits, 1, 8);
295 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
296 		goto err;
297 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
298 		goto err;
299 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
300 			    0, GFP_KERNEL))
301 		goto err;
302 
303 	ctx->flags = p->flags;
304 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
305 	init_waitqueue_head(&ctx->sqo_sq_wait);
306 	INIT_LIST_HEAD(&ctx->sqd_list);
307 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
308 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
309 	ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
310 			    sizeof(struct io_rsrc_node));
311 	ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
312 			    sizeof(struct async_poll));
313 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
314 			    sizeof(struct io_async_msghdr));
315 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
316 			    sizeof(struct io_async_rw));
317 	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
318 			    sizeof(struct uring_cache));
319 	spin_lock_init(&ctx->msg_lock);
320 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
321 			    sizeof(struct io_kiocb));
322 	ret |= io_futex_cache_init(ctx);
323 	if (ret)
324 		goto free_ref;
325 	init_completion(&ctx->ref_comp);
326 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
327 	mutex_init(&ctx->uring_lock);
328 	init_waitqueue_head(&ctx->cq_wait);
329 	init_waitqueue_head(&ctx->poll_wq);
330 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
331 	spin_lock_init(&ctx->completion_lock);
332 	spin_lock_init(&ctx->timeout_lock);
333 	INIT_WQ_LIST(&ctx->iopoll_list);
334 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
335 	INIT_LIST_HEAD(&ctx->defer_list);
336 	INIT_LIST_HEAD(&ctx->timeout_list);
337 	INIT_LIST_HEAD(&ctx->ltimeout_list);
338 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
339 	init_llist_head(&ctx->work_llist);
340 	INIT_LIST_HEAD(&ctx->tctx_list);
341 	ctx->submit_state.free_list.next = NULL;
342 	INIT_HLIST_HEAD(&ctx->waitid_list);
343 #ifdef CONFIG_FUTEX
344 	INIT_HLIST_HEAD(&ctx->futex_list);
345 #endif
346 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
347 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
348 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
349 	io_napi_init(ctx);
350 
351 	return ctx;
352 
353 free_ref:
354 	percpu_ref_exit(&ctx->refs);
355 err:
356 	io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
357 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
358 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
359 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
360 	io_alloc_cache_free(&ctx->uring_cache, kfree);
361 	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
362 	io_futex_cache_free(ctx);
363 	kfree(ctx->cancel_table.hbs);
364 	kfree(ctx->cancel_table_locked.hbs);
365 	xa_destroy(&ctx->io_bl_xa);
366 	kfree(ctx);
367 	return NULL;
368 }
369 
370 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
371 {
372 	struct io_rings *r = ctx->rings;
373 
374 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
375 	ctx->cq_extra--;
376 }
377 
378 static bool req_need_defer(struct io_kiocb *req, u32 seq)
379 {
380 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
381 		struct io_ring_ctx *ctx = req->ctx;
382 
383 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
384 	}
385 
386 	return false;
387 }
388 
389 static void io_clean_op(struct io_kiocb *req)
390 {
391 	if (req->flags & REQ_F_BUFFER_SELECTED) {
392 		spin_lock(&req->ctx->completion_lock);
393 		io_kbuf_drop(req);
394 		spin_unlock(&req->ctx->completion_lock);
395 	}
396 
397 	if (req->flags & REQ_F_NEED_CLEANUP) {
398 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
399 
400 		if (def->cleanup)
401 			def->cleanup(req);
402 	}
403 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
404 		kfree(req->apoll->double_poll);
405 		kfree(req->apoll);
406 		req->apoll = NULL;
407 	}
408 	if (req->flags & REQ_F_INFLIGHT) {
409 		struct io_uring_task *tctx = req->task->io_uring;
410 
411 		atomic_dec(&tctx->inflight_tracked);
412 	}
413 	if (req->flags & REQ_F_CREDS)
414 		put_cred(req->creds);
415 	if (req->flags & REQ_F_ASYNC_DATA) {
416 		kfree(req->async_data);
417 		req->async_data = NULL;
418 	}
419 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
420 }
421 
422 static inline void io_req_track_inflight(struct io_kiocb *req)
423 {
424 	if (!(req->flags & REQ_F_INFLIGHT)) {
425 		req->flags |= REQ_F_INFLIGHT;
426 		atomic_inc(&req->task->io_uring->inflight_tracked);
427 	}
428 }
429 
430 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
431 {
432 	if (WARN_ON_ONCE(!req->link))
433 		return NULL;
434 
435 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
436 	req->flags |= REQ_F_LINK_TIMEOUT;
437 
438 	/* linked timeouts should have two refs once prep'ed */
439 	io_req_set_refcount(req);
440 	__io_req_set_refcount(req->link, 2);
441 	return req->link;
442 }
443 
444 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
445 {
446 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
447 		return NULL;
448 	return __io_prep_linked_timeout(req);
449 }
450 
451 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
452 {
453 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
454 }
455 
456 static inline void io_arm_ltimeout(struct io_kiocb *req)
457 {
458 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
459 		__io_arm_ltimeout(req);
460 }
461 
462 static void io_prep_async_work(struct io_kiocb *req)
463 {
464 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
465 	struct io_ring_ctx *ctx = req->ctx;
466 
467 	if (!(req->flags & REQ_F_CREDS)) {
468 		req->flags |= REQ_F_CREDS;
469 		req->creds = get_current_cred();
470 	}
471 
472 	req->work.list.next = NULL;
473 	atomic_set(&req->work.flags, 0);
474 	if (req->flags & REQ_F_FORCE_ASYNC)
475 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
476 
477 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
478 		req->flags |= io_file_get_flags(req->file);
479 
480 	if (req->file && (req->flags & REQ_F_ISREG)) {
481 		bool should_hash = def->hash_reg_file;
482 
483 		/* don't serialize this request if the fs doesn't need it */
484 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
485 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
486 			should_hash = false;
487 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
488 			io_wq_hash_work(&req->work, file_inode(req->file));
489 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
490 		if (def->unbound_nonreg_file)
491 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
492 	}
493 }
494 
495 static void io_prep_async_link(struct io_kiocb *req)
496 {
497 	struct io_kiocb *cur;
498 
499 	if (req->flags & REQ_F_LINK_TIMEOUT) {
500 		struct io_ring_ctx *ctx = req->ctx;
501 
502 		spin_lock_irq(&ctx->timeout_lock);
503 		io_for_each_link(cur, req)
504 			io_prep_async_work(cur);
505 		spin_unlock_irq(&ctx->timeout_lock);
506 	} else {
507 		io_for_each_link(cur, req)
508 			io_prep_async_work(cur);
509 	}
510 }
511 
512 static void io_queue_iowq(struct io_kiocb *req)
513 {
514 	struct io_kiocb *link = io_prep_linked_timeout(req);
515 	struct io_uring_task *tctx = req->task->io_uring;
516 
517 	BUG_ON(!tctx);
518 	BUG_ON(!tctx->io_wq);
519 
520 	/* init ->work of the whole link before punting */
521 	io_prep_async_link(req);
522 
523 	/*
524 	 * Not expected to happen, but if we do have a bug where this _can_
525 	 * happen, catch it here and ensure the request is marked as
526 	 * canceled. That will make io-wq go through the usual work cancel
527 	 * procedure rather than attempt to run this request (or create a new
528 	 * worker for it).
529 	 */
530 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
531 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
532 
533 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
534 	io_wq_enqueue(tctx->io_wq, &req->work);
535 	if (link)
536 		io_queue_linked_timeout(link);
537 }
538 
539 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
540 {
541 	io_queue_iowq(req);
542 }
543 
544 void io_req_queue_iowq(struct io_kiocb *req)
545 {
546 	req->io_task_work.func = io_req_queue_iowq_tw;
547 	io_req_task_work_add(req);
548 }
549 
550 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
551 {
552 	while (!list_empty(&ctx->defer_list)) {
553 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
554 						struct io_defer_entry, list);
555 
556 		if (req_need_defer(de->req, de->seq))
557 			break;
558 		list_del_init(&de->list);
559 		io_req_task_queue(de->req);
560 		kfree(de);
561 	}
562 }
563 
564 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
565 {
566 	if (ctx->poll_activated)
567 		io_poll_wq_wake(ctx);
568 	if (ctx->off_timeout_used)
569 		io_flush_timeouts(ctx);
570 	if (ctx->drain_active) {
571 		spin_lock(&ctx->completion_lock);
572 		io_queue_deferred(ctx);
573 		spin_unlock(&ctx->completion_lock);
574 	}
575 	if (ctx->has_evfd)
576 		io_eventfd_flush_signal(ctx);
577 }
578 
579 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
580 {
581 	if (!ctx->lockless_cq)
582 		spin_lock(&ctx->completion_lock);
583 }
584 
585 static inline void io_cq_lock(struct io_ring_ctx *ctx)
586 	__acquires(ctx->completion_lock)
587 {
588 	spin_lock(&ctx->completion_lock);
589 }
590 
591 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
592 {
593 	io_commit_cqring(ctx);
594 	if (!ctx->task_complete) {
595 		if (!ctx->lockless_cq)
596 			spin_unlock(&ctx->completion_lock);
597 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
598 		if (!ctx->syscall_iopoll)
599 			io_cqring_wake(ctx);
600 	}
601 	io_commit_cqring_flush(ctx);
602 }
603 
604 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
605 	__releases(ctx->completion_lock)
606 {
607 	io_commit_cqring(ctx);
608 	spin_unlock(&ctx->completion_lock);
609 	io_cqring_wake(ctx);
610 	io_commit_cqring_flush(ctx);
611 }
612 
613 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
614 {
615 	size_t cqe_size = sizeof(struct io_uring_cqe);
616 
617 	lockdep_assert_held(&ctx->uring_lock);
618 
619 	/* don't abort if we're dying, entries must get freed */
620 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
621 		return;
622 
623 	if (ctx->flags & IORING_SETUP_CQE32)
624 		cqe_size <<= 1;
625 
626 	io_cq_lock(ctx);
627 	while (!list_empty(&ctx->cq_overflow_list)) {
628 		struct io_uring_cqe *cqe;
629 		struct io_overflow_cqe *ocqe;
630 
631 		ocqe = list_first_entry(&ctx->cq_overflow_list,
632 					struct io_overflow_cqe, list);
633 
634 		if (!dying) {
635 			if (!io_get_cqe_overflow(ctx, &cqe, true))
636 				break;
637 			memcpy(cqe, &ocqe->cqe, cqe_size);
638 		}
639 		list_del(&ocqe->list);
640 		kfree(ocqe);
641 
642 		/*
643 		 * For silly syzbot cases that deliberately overflow by huge
644 		 * amounts, check if we need to resched and drop and
645 		 * reacquire the locks if so. Nothing real would ever hit this.
646 		 * Ideally we'd have a non-posting unlock for this, but hard
647 		 * to care for a non-real case.
648 		 */
649 		if (need_resched()) {
650 			io_cq_unlock_post(ctx);
651 			mutex_unlock(&ctx->uring_lock);
652 			cond_resched();
653 			mutex_lock(&ctx->uring_lock);
654 			io_cq_lock(ctx);
655 		}
656 	}
657 
658 	if (list_empty(&ctx->cq_overflow_list)) {
659 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
660 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
661 	}
662 	io_cq_unlock_post(ctx);
663 }
664 
665 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
666 {
667 	if (ctx->rings)
668 		__io_cqring_overflow_flush(ctx, true);
669 }
670 
671 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
672 {
673 	mutex_lock(&ctx->uring_lock);
674 	__io_cqring_overflow_flush(ctx, false);
675 	mutex_unlock(&ctx->uring_lock);
676 }
677 
678 /* can be called by any task */
679 static void io_put_task_remote(struct task_struct *task)
680 {
681 	struct io_uring_task *tctx = task->io_uring;
682 
683 	percpu_counter_sub(&tctx->inflight, 1);
684 	if (unlikely(atomic_read(&tctx->in_cancel)))
685 		wake_up(&tctx->wait);
686 	put_task_struct(task);
687 }
688 
689 /* used by a task to put its own references */
690 static void io_put_task_local(struct task_struct *task)
691 {
692 	task->io_uring->cached_refs++;
693 }
694 
695 /* must to be called somewhat shortly after putting a request */
696 static inline void io_put_task(struct task_struct *task)
697 {
698 	if (likely(task == current))
699 		io_put_task_local(task);
700 	else
701 		io_put_task_remote(task);
702 }
703 
704 void io_task_refs_refill(struct io_uring_task *tctx)
705 {
706 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
707 
708 	percpu_counter_add(&tctx->inflight, refill);
709 	refcount_add(refill, &current->usage);
710 	tctx->cached_refs += refill;
711 }
712 
713 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
714 {
715 	struct io_uring_task *tctx = task->io_uring;
716 	unsigned int refs = tctx->cached_refs;
717 
718 	if (refs) {
719 		tctx->cached_refs = 0;
720 		percpu_counter_sub(&tctx->inflight, refs);
721 		put_task_struct_many(task, refs);
722 	}
723 }
724 
725 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
726 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
727 {
728 	struct io_overflow_cqe *ocqe;
729 	size_t ocq_size = sizeof(struct io_overflow_cqe);
730 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
731 
732 	lockdep_assert_held(&ctx->completion_lock);
733 
734 	if (is_cqe32)
735 		ocq_size += sizeof(struct io_uring_cqe);
736 
737 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
738 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
739 	if (!ocqe) {
740 		/*
741 		 * If we're in ring overflow flush mode, or in task cancel mode,
742 		 * or cannot allocate an overflow entry, then we need to drop it
743 		 * on the floor.
744 		 */
745 		io_account_cq_overflow(ctx);
746 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
747 		return false;
748 	}
749 	if (list_empty(&ctx->cq_overflow_list)) {
750 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
751 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
752 
753 	}
754 	ocqe->cqe.user_data = user_data;
755 	ocqe->cqe.res = res;
756 	ocqe->cqe.flags = cflags;
757 	if (is_cqe32) {
758 		ocqe->cqe.big_cqe[0] = extra1;
759 		ocqe->cqe.big_cqe[1] = extra2;
760 	}
761 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
762 	return true;
763 }
764 
765 static void io_req_cqe_overflow(struct io_kiocb *req)
766 {
767 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
768 				req->cqe.res, req->cqe.flags,
769 				req->big_cqe.extra1, req->big_cqe.extra2);
770 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
771 }
772 
773 /*
774  * writes to the cq entry need to come after reading head; the
775  * control dependency is enough as we're using WRITE_ONCE to
776  * fill the cq entry
777  */
778 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
779 {
780 	struct io_rings *rings = ctx->rings;
781 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
782 	unsigned int free, queued, len;
783 
784 	/*
785 	 * Posting into the CQ when there are pending overflowed CQEs may break
786 	 * ordering guarantees, which will affect links, F_MORE users and more.
787 	 * Force overflow the completion.
788 	 */
789 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
790 		return false;
791 
792 	/* userspace may cheat modifying the tail, be safe and do min */
793 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
794 	free = ctx->cq_entries - queued;
795 	/* we need a contiguous range, limit based on the current array offset */
796 	len = min(free, ctx->cq_entries - off);
797 	if (!len)
798 		return false;
799 
800 	if (ctx->flags & IORING_SETUP_CQE32) {
801 		off <<= 1;
802 		len <<= 1;
803 	}
804 
805 	ctx->cqe_cached = &rings->cqes[off];
806 	ctx->cqe_sentinel = ctx->cqe_cached + len;
807 	return true;
808 }
809 
810 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
811 			      u32 cflags)
812 {
813 	struct io_uring_cqe *cqe;
814 
815 	ctx->cq_extra++;
816 
817 	/*
818 	 * If we can't get a cq entry, userspace overflowed the
819 	 * submission (by quite a lot). Increment the overflow count in
820 	 * the ring.
821 	 */
822 	if (likely(io_get_cqe(ctx, &cqe))) {
823 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
824 
825 		WRITE_ONCE(cqe->user_data, user_data);
826 		WRITE_ONCE(cqe->res, res);
827 		WRITE_ONCE(cqe->flags, cflags);
828 
829 		if (ctx->flags & IORING_SETUP_CQE32) {
830 			WRITE_ONCE(cqe->big_cqe[0], 0);
831 			WRITE_ONCE(cqe->big_cqe[1], 0);
832 		}
833 		return true;
834 	}
835 	return false;
836 }
837 
838 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
839 			      u32 cflags)
840 {
841 	bool filled;
842 
843 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
844 	if (!filled)
845 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
846 
847 	return filled;
848 }
849 
850 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
851 {
852 	bool filled;
853 
854 	io_cq_lock(ctx);
855 	filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
856 	io_cq_unlock_post(ctx);
857 	return filled;
858 }
859 
860 /*
861  * Must be called from inline task_work so we now a flush will happen later,
862  * and obviously with ctx->uring_lock held (tw always has that).
863  */
864 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
865 {
866 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
867 		spin_lock(&ctx->completion_lock);
868 		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
869 		spin_unlock(&ctx->completion_lock);
870 	}
871 	ctx->submit_state.cq_flush = true;
872 }
873 
874 /*
875  * A helper for multishot requests posting additional CQEs.
876  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
877  */
878 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
879 {
880 	struct io_ring_ctx *ctx = req->ctx;
881 	bool posted;
882 
883 	lockdep_assert(!io_wq_current_is_worker());
884 	lockdep_assert_held(&ctx->uring_lock);
885 
886 	__io_cq_lock(ctx);
887 	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
888 	ctx->submit_state.cq_flush = true;
889 	__io_cq_unlock_post(ctx);
890 	return posted;
891 }
892 
893 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
894 {
895 	struct io_ring_ctx *ctx = req->ctx;
896 
897 	/*
898 	 * All execution paths but io-wq use the deferred completions by
899 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
900 	 */
901 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
902 		return;
903 
904 	/*
905 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
906 	 * the submitter task context, IOPOLL protects with uring_lock.
907 	 */
908 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
909 		req->io_task_work.func = io_req_task_complete;
910 		io_req_task_work_add(req);
911 		return;
912 	}
913 
914 	io_cq_lock(ctx);
915 	if (!(req->flags & REQ_F_CQE_SKIP)) {
916 		if (!io_fill_cqe_req(ctx, req))
917 			io_req_cqe_overflow(req);
918 	}
919 	io_cq_unlock_post(ctx);
920 
921 	/*
922 	 * We don't free the request here because we know it's called from
923 	 * io-wq only, which holds a reference, so it cannot be the last put.
924 	 */
925 	req_ref_put(req);
926 }
927 
928 void io_req_defer_failed(struct io_kiocb *req, s32 res)
929 	__must_hold(&ctx->uring_lock)
930 {
931 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
932 
933 	lockdep_assert_held(&req->ctx->uring_lock);
934 
935 	req_set_fail(req);
936 	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
937 	if (def->fail)
938 		def->fail(req);
939 	io_req_complete_defer(req);
940 }
941 
942 /*
943  * Don't initialise the fields below on every allocation, but do that in
944  * advance and keep them valid across allocations.
945  */
946 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
947 {
948 	req->ctx = ctx;
949 	req->link = NULL;
950 	req->async_data = NULL;
951 	/* not necessary, but safer to zero */
952 	memset(&req->cqe, 0, sizeof(req->cqe));
953 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
954 }
955 
956 /*
957  * A request might get retired back into the request caches even before opcode
958  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
959  * Because of that, io_alloc_req() should be called only under ->uring_lock
960  * and with extra caution to not get a request that is still worked on.
961  */
962 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
963 	__must_hold(&ctx->uring_lock)
964 {
965 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
966 	void *reqs[IO_REQ_ALLOC_BATCH];
967 	int ret;
968 
969 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
970 
971 	/*
972 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
973 	 * retry single alloc to be on the safe side.
974 	 */
975 	if (unlikely(ret <= 0)) {
976 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
977 		if (!reqs[0])
978 			return false;
979 		ret = 1;
980 	}
981 
982 	percpu_ref_get_many(&ctx->refs, ret);
983 	while (ret--) {
984 		struct io_kiocb *req = reqs[ret];
985 
986 		io_preinit_req(req, ctx);
987 		io_req_add_to_cache(req, ctx);
988 	}
989 	return true;
990 }
991 
992 __cold void io_free_req(struct io_kiocb *req)
993 {
994 	/* refs were already put, restore them for io_req_task_complete() */
995 	req->flags &= ~REQ_F_REFCOUNT;
996 	/* we only want to free it, don't post CQEs */
997 	req->flags |= REQ_F_CQE_SKIP;
998 	req->io_task_work.func = io_req_task_complete;
999 	io_req_task_work_add(req);
1000 }
1001 
1002 static void __io_req_find_next_prep(struct io_kiocb *req)
1003 {
1004 	struct io_ring_ctx *ctx = req->ctx;
1005 
1006 	spin_lock(&ctx->completion_lock);
1007 	io_disarm_next(req);
1008 	spin_unlock(&ctx->completion_lock);
1009 }
1010 
1011 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1012 {
1013 	struct io_kiocb *nxt;
1014 
1015 	/*
1016 	 * If LINK is set, we have dependent requests in this chain. If we
1017 	 * didn't fail this request, queue the first one up, moving any other
1018 	 * dependencies to the next request. In case of failure, fail the rest
1019 	 * of the chain.
1020 	 */
1021 	if (unlikely(req->flags & IO_DISARM_MASK))
1022 		__io_req_find_next_prep(req);
1023 	nxt = req->link;
1024 	req->link = NULL;
1025 	return nxt;
1026 }
1027 
1028 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1029 {
1030 	if (!ctx)
1031 		return;
1032 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1033 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1034 
1035 	io_submit_flush_completions(ctx);
1036 	mutex_unlock(&ctx->uring_lock);
1037 	percpu_ref_put(&ctx->refs);
1038 }
1039 
1040 /*
1041  * Run queued task_work, returning the number of entries processed in *count.
1042  * If more entries than max_entries are available, stop processing once this
1043  * is reached and return the rest of the list.
1044  */
1045 struct llist_node *io_handle_tw_list(struct llist_node *node,
1046 				     unsigned int *count,
1047 				     unsigned int max_entries)
1048 {
1049 	struct io_ring_ctx *ctx = NULL;
1050 	struct io_tw_state ts = { };
1051 
1052 	do {
1053 		struct llist_node *next = node->next;
1054 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1055 						    io_task_work.node);
1056 
1057 		if (req->ctx != ctx) {
1058 			ctx_flush_and_put(ctx, &ts);
1059 			ctx = req->ctx;
1060 			mutex_lock(&ctx->uring_lock);
1061 			percpu_ref_get(&ctx->refs);
1062 		}
1063 		INDIRECT_CALL_2(req->io_task_work.func,
1064 				io_poll_task_func, io_req_rw_complete,
1065 				req, &ts);
1066 		node = next;
1067 		(*count)++;
1068 		if (unlikely(need_resched())) {
1069 			ctx_flush_and_put(ctx, &ts);
1070 			ctx = NULL;
1071 			cond_resched();
1072 		}
1073 	} while (node && *count < max_entries);
1074 
1075 	ctx_flush_and_put(ctx, &ts);
1076 	return node;
1077 }
1078 
1079 /**
1080  * io_llist_xchg - swap all entries in a lock-less list
1081  * @head:	the head of lock-less list to delete all entries
1082  * @new:	new entry as the head of the list
1083  *
1084  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1085  * The order of entries returned is from the newest to the oldest added one.
1086  */
1087 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1088 					       struct llist_node *new)
1089 {
1090 	return xchg(&head->first, new);
1091 }
1092 
1093 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1094 {
1095 	struct llist_node *node = llist_del_all(&tctx->task_list);
1096 	struct io_ring_ctx *last_ctx = NULL;
1097 	struct io_kiocb *req;
1098 
1099 	while (node) {
1100 		req = container_of(node, struct io_kiocb, io_task_work.node);
1101 		node = node->next;
1102 		if (sync && last_ctx != req->ctx) {
1103 			if (last_ctx) {
1104 				flush_delayed_work(&last_ctx->fallback_work);
1105 				percpu_ref_put(&last_ctx->refs);
1106 			}
1107 			last_ctx = req->ctx;
1108 			percpu_ref_get(&last_ctx->refs);
1109 		}
1110 		if (llist_add(&req->io_task_work.node,
1111 			      &req->ctx->fallback_llist))
1112 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1113 	}
1114 
1115 	if (last_ctx) {
1116 		flush_delayed_work(&last_ctx->fallback_work);
1117 		percpu_ref_put(&last_ctx->refs);
1118 	}
1119 }
1120 
1121 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1122 				      unsigned int max_entries,
1123 				      unsigned int *count)
1124 {
1125 	struct llist_node *node;
1126 
1127 	if (unlikely(current->flags & PF_EXITING)) {
1128 		io_fallback_tw(tctx, true);
1129 		return NULL;
1130 	}
1131 
1132 	node = llist_del_all(&tctx->task_list);
1133 	if (node) {
1134 		node = llist_reverse_order(node);
1135 		node = io_handle_tw_list(node, count, max_entries);
1136 	}
1137 
1138 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1139 	if (unlikely(atomic_read(&tctx->in_cancel)))
1140 		io_uring_drop_tctx_refs(current);
1141 
1142 	trace_io_uring_task_work_run(tctx, *count);
1143 	return node;
1144 }
1145 
1146 void tctx_task_work(struct callback_head *cb)
1147 {
1148 	struct io_uring_task *tctx;
1149 	struct llist_node *ret;
1150 	unsigned int count = 0;
1151 
1152 	tctx = container_of(cb, struct io_uring_task, task_work);
1153 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1154 	/* can't happen */
1155 	WARN_ON_ONCE(ret);
1156 }
1157 
1158 static inline void io_req_local_work_add(struct io_kiocb *req,
1159 					 struct io_ring_ctx *ctx,
1160 					 unsigned flags)
1161 {
1162 	unsigned nr_wait, nr_tw, nr_tw_prev;
1163 	struct llist_node *head;
1164 
1165 	/* See comment above IO_CQ_WAKE_INIT */
1166 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1167 
1168 	/*
1169 	 * We don't know how many reuqests is there in the link and whether
1170 	 * they can even be queued lazily, fall back to non-lazy.
1171 	 */
1172 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1173 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1174 
1175 	guard(rcu)();
1176 
1177 	head = READ_ONCE(ctx->work_llist.first);
1178 	do {
1179 		nr_tw_prev = 0;
1180 		if (head) {
1181 			struct io_kiocb *first_req = container_of(head,
1182 							struct io_kiocb,
1183 							io_task_work.node);
1184 			/*
1185 			 * Might be executed at any moment, rely on
1186 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1187 			 */
1188 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1189 		}
1190 
1191 		/*
1192 		 * Theoretically, it can overflow, but that's fine as one of
1193 		 * previous adds should've tried to wake the task.
1194 		 */
1195 		nr_tw = nr_tw_prev + 1;
1196 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1197 			nr_tw = IO_CQ_WAKE_FORCE;
1198 
1199 		req->nr_tw = nr_tw;
1200 		req->io_task_work.node.next = head;
1201 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1202 			      &req->io_task_work.node));
1203 
1204 	/*
1205 	 * cmpxchg implies a full barrier, which pairs with the barrier
1206 	 * in set_current_state() on the io_cqring_wait() side. It's used
1207 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1208 	 * going to sleep will observe the work added to the list, which
1209 	 * is similar to the wait/wawke task state sync.
1210 	 */
1211 
1212 	if (!head) {
1213 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1214 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1215 		if (ctx->has_evfd)
1216 			io_eventfd_signal(ctx);
1217 	}
1218 
1219 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1220 	/* not enough or no one is waiting */
1221 	if (nr_tw < nr_wait)
1222 		return;
1223 	/* the previous add has already woken it up */
1224 	if (nr_tw_prev >= nr_wait)
1225 		return;
1226 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1227 }
1228 
1229 static void io_req_normal_work_add(struct io_kiocb *req)
1230 {
1231 	struct io_uring_task *tctx = req->task->io_uring;
1232 	struct io_ring_ctx *ctx = req->ctx;
1233 
1234 	/* task_work already pending, we're done */
1235 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1236 		return;
1237 
1238 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1239 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1240 
1241 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1242 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1243 		struct io_sq_data *sqd = ctx->sq_data;
1244 
1245 		if (sqd->thread)
1246 			__set_notify_signal(sqd->thread);
1247 		return;
1248 	}
1249 
1250 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1251 		return;
1252 
1253 	io_fallback_tw(tctx, false);
1254 }
1255 
1256 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1257 {
1258 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1259 		io_req_local_work_add(req, req->ctx, flags);
1260 	else
1261 		io_req_normal_work_add(req);
1262 }
1263 
1264 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1265 				 unsigned flags)
1266 {
1267 	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1268 		return;
1269 	io_req_local_work_add(req, ctx, flags);
1270 }
1271 
1272 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1273 {
1274 	struct llist_node *node;
1275 
1276 	node = llist_del_all(&ctx->work_llist);
1277 	while (node) {
1278 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1279 						    io_task_work.node);
1280 
1281 		node = node->next;
1282 		io_req_normal_work_add(req);
1283 	}
1284 }
1285 
1286 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1287 				       int min_events)
1288 {
1289 	if (llist_empty(&ctx->work_llist))
1290 		return false;
1291 	if (events < min_events)
1292 		return true;
1293 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1294 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1295 	return false;
1296 }
1297 
1298 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1299 			       int min_events)
1300 {
1301 	struct llist_node *node;
1302 	unsigned int loops = 0;
1303 	int ret = 0;
1304 
1305 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1306 		return -EEXIST;
1307 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1308 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1309 again:
1310 	/*
1311 	 * llists are in reverse order, flip it back the right way before
1312 	 * running the pending items.
1313 	 */
1314 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1315 	while (node) {
1316 		struct llist_node *next = node->next;
1317 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1318 						    io_task_work.node);
1319 		INDIRECT_CALL_2(req->io_task_work.func,
1320 				io_poll_task_func, io_req_rw_complete,
1321 				req, ts);
1322 		ret++;
1323 		node = next;
1324 	}
1325 	loops++;
1326 
1327 	if (io_run_local_work_continue(ctx, ret, min_events))
1328 		goto again;
1329 	io_submit_flush_completions(ctx);
1330 	if (io_run_local_work_continue(ctx, ret, min_events))
1331 		goto again;
1332 
1333 	trace_io_uring_local_work_run(ctx, ret, loops);
1334 	return ret;
1335 }
1336 
1337 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1338 					   int min_events)
1339 {
1340 	struct io_tw_state ts = {};
1341 
1342 	if (llist_empty(&ctx->work_llist))
1343 		return 0;
1344 	return __io_run_local_work(ctx, &ts, min_events);
1345 }
1346 
1347 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1348 {
1349 	struct io_tw_state ts = {};
1350 	int ret;
1351 
1352 	mutex_lock(&ctx->uring_lock);
1353 	ret = __io_run_local_work(ctx, &ts, min_events);
1354 	mutex_unlock(&ctx->uring_lock);
1355 	return ret;
1356 }
1357 
1358 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1359 {
1360 	io_tw_lock(req->ctx, ts);
1361 	io_req_defer_failed(req, req->cqe.res);
1362 }
1363 
1364 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1365 {
1366 	io_tw_lock(req->ctx, ts);
1367 	/* req->task == current here, checking PF_EXITING is safe */
1368 	if (unlikely(req->task->flags & PF_EXITING))
1369 		io_req_defer_failed(req, -EFAULT);
1370 	else if (req->flags & REQ_F_FORCE_ASYNC)
1371 		io_queue_iowq(req);
1372 	else
1373 		io_queue_sqe(req);
1374 }
1375 
1376 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1377 {
1378 	io_req_set_res(req, ret, 0);
1379 	req->io_task_work.func = io_req_task_cancel;
1380 	io_req_task_work_add(req);
1381 }
1382 
1383 void io_req_task_queue(struct io_kiocb *req)
1384 {
1385 	req->io_task_work.func = io_req_task_submit;
1386 	io_req_task_work_add(req);
1387 }
1388 
1389 void io_queue_next(struct io_kiocb *req)
1390 {
1391 	struct io_kiocb *nxt = io_req_find_next(req);
1392 
1393 	if (nxt)
1394 		io_req_task_queue(nxt);
1395 }
1396 
1397 static void io_free_batch_list(struct io_ring_ctx *ctx,
1398 			       struct io_wq_work_node *node)
1399 	__must_hold(&ctx->uring_lock)
1400 {
1401 	do {
1402 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1403 						    comp_list);
1404 
1405 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1406 			if (req->flags & REQ_F_REFCOUNT) {
1407 				node = req->comp_list.next;
1408 				if (!req_ref_put_and_test(req))
1409 					continue;
1410 			}
1411 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1412 				struct async_poll *apoll = req->apoll;
1413 
1414 				if (apoll->double_poll)
1415 					kfree(apoll->double_poll);
1416 				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1417 					kfree(apoll);
1418 				req->flags &= ~REQ_F_POLLED;
1419 			}
1420 			if (req->flags & IO_REQ_LINK_FLAGS)
1421 				io_queue_next(req);
1422 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1423 				io_clean_op(req);
1424 		}
1425 		io_put_file(req);
1426 		io_put_rsrc_node(ctx, req->rsrc_node);
1427 		io_put_task(req->task);
1428 
1429 		node = req->comp_list.next;
1430 		io_req_add_to_cache(req, ctx);
1431 	} while (node);
1432 }
1433 
1434 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1435 	__must_hold(&ctx->uring_lock)
1436 {
1437 	struct io_submit_state *state = &ctx->submit_state;
1438 	struct io_wq_work_node *node;
1439 
1440 	__io_cq_lock(ctx);
1441 	__wq_list_for_each(node, &state->compl_reqs) {
1442 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1443 					    comp_list);
1444 
1445 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1446 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1447 			if (ctx->lockless_cq) {
1448 				spin_lock(&ctx->completion_lock);
1449 				io_req_cqe_overflow(req);
1450 				spin_unlock(&ctx->completion_lock);
1451 			} else {
1452 				io_req_cqe_overflow(req);
1453 			}
1454 		}
1455 	}
1456 	__io_cq_unlock_post(ctx);
1457 
1458 	if (!wq_list_empty(&state->compl_reqs)) {
1459 		io_free_batch_list(ctx, state->compl_reqs.first);
1460 		INIT_WQ_LIST(&state->compl_reqs);
1461 	}
1462 	ctx->submit_state.cq_flush = false;
1463 }
1464 
1465 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1466 {
1467 	/* See comment at the top of this file */
1468 	smp_rmb();
1469 	return __io_cqring_events(ctx);
1470 }
1471 
1472 /*
1473  * We can't just wait for polled events to come to us, we have to actively
1474  * find and complete them.
1475  */
1476 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1477 {
1478 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1479 		return;
1480 
1481 	mutex_lock(&ctx->uring_lock);
1482 	while (!wq_list_empty(&ctx->iopoll_list)) {
1483 		/* let it sleep and repeat later if can't complete a request */
1484 		if (io_do_iopoll(ctx, true) == 0)
1485 			break;
1486 		/*
1487 		 * Ensure we allow local-to-the-cpu processing to take place,
1488 		 * in this case we need to ensure that we reap all events.
1489 		 * Also let task_work, etc. to progress by releasing the mutex
1490 		 */
1491 		if (need_resched()) {
1492 			mutex_unlock(&ctx->uring_lock);
1493 			cond_resched();
1494 			mutex_lock(&ctx->uring_lock);
1495 		}
1496 	}
1497 	mutex_unlock(&ctx->uring_lock);
1498 }
1499 
1500 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1501 {
1502 	unsigned int nr_events = 0;
1503 	unsigned long check_cq;
1504 
1505 	lockdep_assert_held(&ctx->uring_lock);
1506 
1507 	if (!io_allowed_run_tw(ctx))
1508 		return -EEXIST;
1509 
1510 	check_cq = READ_ONCE(ctx->check_cq);
1511 	if (unlikely(check_cq)) {
1512 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1513 			__io_cqring_overflow_flush(ctx, false);
1514 		/*
1515 		 * Similarly do not spin if we have not informed the user of any
1516 		 * dropped CQE.
1517 		 */
1518 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1519 			return -EBADR;
1520 	}
1521 	/*
1522 	 * Don't enter poll loop if we already have events pending.
1523 	 * If we do, we can potentially be spinning for commands that
1524 	 * already triggered a CQE (eg in error).
1525 	 */
1526 	if (io_cqring_events(ctx))
1527 		return 0;
1528 
1529 	do {
1530 		int ret = 0;
1531 
1532 		/*
1533 		 * If a submit got punted to a workqueue, we can have the
1534 		 * application entering polling for a command before it gets
1535 		 * issued. That app will hold the uring_lock for the duration
1536 		 * of the poll right here, so we need to take a breather every
1537 		 * now and then to ensure that the issue has a chance to add
1538 		 * the poll to the issued list. Otherwise we can spin here
1539 		 * forever, while the workqueue is stuck trying to acquire the
1540 		 * very same mutex.
1541 		 */
1542 		if (wq_list_empty(&ctx->iopoll_list) ||
1543 		    io_task_work_pending(ctx)) {
1544 			u32 tail = ctx->cached_cq_tail;
1545 
1546 			(void) io_run_local_work_locked(ctx, min);
1547 
1548 			if (task_work_pending(current) ||
1549 			    wq_list_empty(&ctx->iopoll_list)) {
1550 				mutex_unlock(&ctx->uring_lock);
1551 				io_run_task_work();
1552 				mutex_lock(&ctx->uring_lock);
1553 			}
1554 			/* some requests don't go through iopoll_list */
1555 			if (tail != ctx->cached_cq_tail ||
1556 			    wq_list_empty(&ctx->iopoll_list))
1557 				break;
1558 		}
1559 		ret = io_do_iopoll(ctx, !min);
1560 		if (unlikely(ret < 0))
1561 			return ret;
1562 
1563 		if (task_sigpending(current))
1564 			return -EINTR;
1565 		if (need_resched())
1566 			break;
1567 
1568 		nr_events += ret;
1569 	} while (nr_events < min);
1570 
1571 	return 0;
1572 }
1573 
1574 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1575 {
1576 	io_req_complete_defer(req);
1577 }
1578 
1579 /*
1580  * After the iocb has been issued, it's safe to be found on the poll list.
1581  * Adding the kiocb to the list AFTER submission ensures that we don't
1582  * find it from a io_do_iopoll() thread before the issuer is done
1583  * accessing the kiocb cookie.
1584  */
1585 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1586 {
1587 	struct io_ring_ctx *ctx = req->ctx;
1588 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1589 
1590 	/* workqueue context doesn't hold uring_lock, grab it now */
1591 	if (unlikely(needs_lock))
1592 		mutex_lock(&ctx->uring_lock);
1593 
1594 	/*
1595 	 * Track whether we have multiple files in our lists. This will impact
1596 	 * how we do polling eventually, not spinning if we're on potentially
1597 	 * different devices.
1598 	 */
1599 	if (wq_list_empty(&ctx->iopoll_list)) {
1600 		ctx->poll_multi_queue = false;
1601 	} else if (!ctx->poll_multi_queue) {
1602 		struct io_kiocb *list_req;
1603 
1604 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1605 					comp_list);
1606 		if (list_req->file != req->file)
1607 			ctx->poll_multi_queue = true;
1608 	}
1609 
1610 	/*
1611 	 * For fast devices, IO may have already completed. If it has, add
1612 	 * it to the front so we find it first.
1613 	 */
1614 	if (READ_ONCE(req->iopoll_completed))
1615 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1616 	else
1617 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1618 
1619 	if (unlikely(needs_lock)) {
1620 		/*
1621 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1622 		 * in sq thread task context or in io worker task context. If
1623 		 * current task context is sq thread, we don't need to check
1624 		 * whether should wake up sq thread.
1625 		 */
1626 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1627 		    wq_has_sleeper(&ctx->sq_data->wait))
1628 			wake_up(&ctx->sq_data->wait);
1629 
1630 		mutex_unlock(&ctx->uring_lock);
1631 	}
1632 }
1633 
1634 io_req_flags_t io_file_get_flags(struct file *file)
1635 {
1636 	io_req_flags_t res = 0;
1637 
1638 	if (S_ISREG(file_inode(file)->i_mode))
1639 		res |= REQ_F_ISREG;
1640 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1641 		res |= REQ_F_SUPPORT_NOWAIT;
1642 	return res;
1643 }
1644 
1645 bool io_alloc_async_data(struct io_kiocb *req)
1646 {
1647 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1648 
1649 	WARN_ON_ONCE(!def->async_size);
1650 	req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1651 	if (req->async_data) {
1652 		req->flags |= REQ_F_ASYNC_DATA;
1653 		return false;
1654 	}
1655 	return true;
1656 }
1657 
1658 static u32 io_get_sequence(struct io_kiocb *req)
1659 {
1660 	u32 seq = req->ctx->cached_sq_head;
1661 	struct io_kiocb *cur;
1662 
1663 	/* need original cached_sq_head, but it was increased for each req */
1664 	io_for_each_link(cur, req)
1665 		seq--;
1666 	return seq;
1667 }
1668 
1669 static __cold void io_drain_req(struct io_kiocb *req)
1670 	__must_hold(&ctx->uring_lock)
1671 {
1672 	struct io_ring_ctx *ctx = req->ctx;
1673 	struct io_defer_entry *de;
1674 	int ret;
1675 	u32 seq = io_get_sequence(req);
1676 
1677 	/* Still need defer if there is pending req in defer list. */
1678 	spin_lock(&ctx->completion_lock);
1679 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1680 		spin_unlock(&ctx->completion_lock);
1681 queue:
1682 		ctx->drain_active = false;
1683 		io_req_task_queue(req);
1684 		return;
1685 	}
1686 	spin_unlock(&ctx->completion_lock);
1687 
1688 	io_prep_async_link(req);
1689 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1690 	if (!de) {
1691 		ret = -ENOMEM;
1692 		io_req_defer_failed(req, ret);
1693 		return;
1694 	}
1695 
1696 	spin_lock(&ctx->completion_lock);
1697 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1698 		spin_unlock(&ctx->completion_lock);
1699 		kfree(de);
1700 		goto queue;
1701 	}
1702 
1703 	trace_io_uring_defer(req);
1704 	de->req = req;
1705 	de->seq = seq;
1706 	list_add_tail(&de->list, &ctx->defer_list);
1707 	spin_unlock(&ctx->completion_lock);
1708 }
1709 
1710 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1711 			   unsigned int issue_flags)
1712 {
1713 	if (req->file || !def->needs_file)
1714 		return true;
1715 
1716 	if (req->flags & REQ_F_FIXED_FILE)
1717 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1718 	else
1719 		req->file = io_file_get_normal(req, req->cqe.fd);
1720 
1721 	return !!req->file;
1722 }
1723 
1724 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1725 {
1726 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1727 	const struct cred *creds = NULL;
1728 	int ret;
1729 
1730 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1731 		return -EBADF;
1732 
1733 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1734 		creds = override_creds(req->creds);
1735 
1736 	if (!def->audit_skip)
1737 		audit_uring_entry(req->opcode);
1738 
1739 	ret = def->issue(req, issue_flags);
1740 
1741 	if (!def->audit_skip)
1742 		audit_uring_exit(!ret, ret);
1743 
1744 	if (creds)
1745 		revert_creds(creds);
1746 
1747 	if (ret == IOU_OK) {
1748 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1749 			io_req_complete_defer(req);
1750 		else
1751 			io_req_complete_post(req, issue_flags);
1752 
1753 		return 0;
1754 	}
1755 
1756 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1757 		ret = 0;
1758 		io_arm_ltimeout(req);
1759 
1760 		/* If the op doesn't have a file, we're not polling for it */
1761 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1762 			io_iopoll_req_issued(req, issue_flags);
1763 	}
1764 	return ret;
1765 }
1766 
1767 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1768 {
1769 	io_tw_lock(req->ctx, ts);
1770 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1771 				 IO_URING_F_COMPLETE_DEFER);
1772 }
1773 
1774 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1775 {
1776 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1777 	struct io_kiocb *nxt = NULL;
1778 
1779 	if (req_ref_put_and_test(req)) {
1780 		if (req->flags & IO_REQ_LINK_FLAGS)
1781 			nxt = io_req_find_next(req);
1782 		io_free_req(req);
1783 	}
1784 	return nxt ? &nxt->work : NULL;
1785 }
1786 
1787 void io_wq_submit_work(struct io_wq_work *work)
1788 {
1789 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1790 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1791 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1792 	bool needs_poll = false;
1793 	int ret = 0, err = -ECANCELED;
1794 
1795 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1796 	if (!(req->flags & REQ_F_REFCOUNT))
1797 		__io_req_set_refcount(req, 2);
1798 	else
1799 		req_ref_get(req);
1800 
1801 	io_arm_ltimeout(req);
1802 
1803 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1804 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1805 fail:
1806 		io_req_task_queue_fail(req, err);
1807 		return;
1808 	}
1809 	if (!io_assign_file(req, def, issue_flags)) {
1810 		err = -EBADF;
1811 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1812 		goto fail;
1813 	}
1814 
1815 	/*
1816 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1817 	 * submitter task context. Final request completions are handed to the
1818 	 * right context, however this is not the case of auxiliary CQEs,
1819 	 * which is the main mean of operation for multishot requests.
1820 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1821 	 * than necessary and also cleaner.
1822 	 */
1823 	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1824 		err = -EBADFD;
1825 		if (!io_file_can_poll(req))
1826 			goto fail;
1827 		if (req->file->f_flags & O_NONBLOCK ||
1828 		    req->file->f_mode & FMODE_NOWAIT) {
1829 			err = -ECANCELED;
1830 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1831 				goto fail;
1832 			return;
1833 		} else {
1834 			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1835 		}
1836 	}
1837 
1838 	if (req->flags & REQ_F_FORCE_ASYNC) {
1839 		bool opcode_poll = def->pollin || def->pollout;
1840 
1841 		if (opcode_poll && io_file_can_poll(req)) {
1842 			needs_poll = true;
1843 			issue_flags |= IO_URING_F_NONBLOCK;
1844 		}
1845 	}
1846 
1847 	do {
1848 		ret = io_issue_sqe(req, issue_flags);
1849 		if (ret != -EAGAIN)
1850 			break;
1851 
1852 		/*
1853 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1854 		 * poll. -EAGAIN is final for that case.
1855 		 */
1856 		if (req->flags & REQ_F_NOWAIT)
1857 			break;
1858 
1859 		/*
1860 		 * We can get EAGAIN for iopolled IO even though we're
1861 		 * forcing a sync submission from here, since we can't
1862 		 * wait for request slots on the block side.
1863 		 */
1864 		if (!needs_poll) {
1865 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1866 				break;
1867 			if (io_wq_worker_stopped())
1868 				break;
1869 			cond_resched();
1870 			continue;
1871 		}
1872 
1873 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1874 			return;
1875 		/* aborted or ready, in either case retry blocking */
1876 		needs_poll = false;
1877 		issue_flags &= ~IO_URING_F_NONBLOCK;
1878 	} while (1);
1879 
1880 	/* avoid locking problems by failing it from a clean context */
1881 	if (ret)
1882 		io_req_task_queue_fail(req, ret);
1883 }
1884 
1885 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1886 				      unsigned int issue_flags)
1887 {
1888 	struct io_ring_ctx *ctx = req->ctx;
1889 	struct io_fixed_file *slot;
1890 	struct file *file = NULL;
1891 
1892 	io_ring_submit_lock(ctx, issue_flags);
1893 
1894 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1895 		goto out;
1896 	fd = array_index_nospec(fd, ctx->nr_user_files);
1897 	slot = io_fixed_file_slot(&ctx->file_table, fd);
1898 	if (!req->rsrc_node)
1899 		__io_req_set_rsrc_node(req, ctx);
1900 	req->flags |= io_slot_flags(slot);
1901 	file = io_slot_file(slot);
1902 out:
1903 	io_ring_submit_unlock(ctx, issue_flags);
1904 	return file;
1905 }
1906 
1907 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1908 {
1909 	struct file *file = fget(fd);
1910 
1911 	trace_io_uring_file_get(req, fd);
1912 
1913 	/* we don't allow fixed io_uring files */
1914 	if (file && io_is_uring_fops(file))
1915 		io_req_track_inflight(req);
1916 	return file;
1917 }
1918 
1919 static void io_queue_async(struct io_kiocb *req, int ret)
1920 	__must_hold(&req->ctx->uring_lock)
1921 {
1922 	struct io_kiocb *linked_timeout;
1923 
1924 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1925 		io_req_defer_failed(req, ret);
1926 		return;
1927 	}
1928 
1929 	linked_timeout = io_prep_linked_timeout(req);
1930 
1931 	switch (io_arm_poll_handler(req, 0)) {
1932 	case IO_APOLL_READY:
1933 		io_kbuf_recycle(req, 0);
1934 		io_req_task_queue(req);
1935 		break;
1936 	case IO_APOLL_ABORTED:
1937 		io_kbuf_recycle(req, 0);
1938 		io_queue_iowq(req);
1939 		break;
1940 	case IO_APOLL_OK:
1941 		break;
1942 	}
1943 
1944 	if (linked_timeout)
1945 		io_queue_linked_timeout(linked_timeout);
1946 }
1947 
1948 static inline void io_queue_sqe(struct io_kiocb *req)
1949 	__must_hold(&req->ctx->uring_lock)
1950 {
1951 	int ret;
1952 
1953 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1954 
1955 	/*
1956 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1957 	 * doesn't support non-blocking read/write attempts
1958 	 */
1959 	if (unlikely(ret))
1960 		io_queue_async(req, ret);
1961 }
1962 
1963 static void io_queue_sqe_fallback(struct io_kiocb *req)
1964 	__must_hold(&req->ctx->uring_lock)
1965 {
1966 	if (unlikely(req->flags & REQ_F_FAIL)) {
1967 		/*
1968 		 * We don't submit, fail them all, for that replace hardlinks
1969 		 * with normal links. Extra REQ_F_LINK is tolerated.
1970 		 */
1971 		req->flags &= ~REQ_F_HARDLINK;
1972 		req->flags |= REQ_F_LINK;
1973 		io_req_defer_failed(req, req->cqe.res);
1974 	} else {
1975 		if (unlikely(req->ctx->drain_active))
1976 			io_drain_req(req);
1977 		else
1978 			io_queue_iowq(req);
1979 	}
1980 }
1981 
1982 /*
1983  * Check SQE restrictions (opcode and flags).
1984  *
1985  * Returns 'true' if SQE is allowed, 'false' otherwise.
1986  */
1987 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1988 					struct io_kiocb *req,
1989 					unsigned int sqe_flags)
1990 {
1991 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1992 		return false;
1993 
1994 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1995 	    ctx->restrictions.sqe_flags_required)
1996 		return false;
1997 
1998 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1999 			  ctx->restrictions.sqe_flags_required))
2000 		return false;
2001 
2002 	return true;
2003 }
2004 
2005 static void io_init_req_drain(struct io_kiocb *req)
2006 {
2007 	struct io_ring_ctx *ctx = req->ctx;
2008 	struct io_kiocb *head = ctx->submit_state.link.head;
2009 
2010 	ctx->drain_active = true;
2011 	if (head) {
2012 		/*
2013 		 * If we need to drain a request in the middle of a link, drain
2014 		 * the head request and the next request/link after the current
2015 		 * link. Considering sequential execution of links,
2016 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2017 		 * link.
2018 		 */
2019 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2020 		ctx->drain_next = true;
2021 	}
2022 }
2023 
2024 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2025 {
2026 	/* ensure per-opcode data is cleared if we fail before prep */
2027 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2028 	return err;
2029 }
2030 
2031 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2032 		       const struct io_uring_sqe *sqe)
2033 	__must_hold(&ctx->uring_lock)
2034 {
2035 	const struct io_issue_def *def;
2036 	unsigned int sqe_flags;
2037 	int personality;
2038 	u8 opcode;
2039 
2040 	/* req is partially pre-initialised, see io_preinit_req() */
2041 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2042 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2043 	sqe_flags = READ_ONCE(sqe->flags);
2044 	req->flags = (__force io_req_flags_t) sqe_flags;
2045 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2046 	req->file = NULL;
2047 	req->rsrc_node = NULL;
2048 	req->task = current;
2049 	req->cancel_seq_set = false;
2050 
2051 	if (unlikely(opcode >= IORING_OP_LAST)) {
2052 		req->opcode = 0;
2053 		return io_init_fail_req(req, -EINVAL);
2054 	}
2055 	def = &io_issue_defs[opcode];
2056 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2057 		/* enforce forwards compatibility on users */
2058 		if (sqe_flags & ~SQE_VALID_FLAGS)
2059 			return io_init_fail_req(req, -EINVAL);
2060 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2061 			if (!def->buffer_select)
2062 				return io_init_fail_req(req, -EOPNOTSUPP);
2063 			req->buf_index = READ_ONCE(sqe->buf_group);
2064 		}
2065 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2066 			ctx->drain_disabled = true;
2067 		if (sqe_flags & IOSQE_IO_DRAIN) {
2068 			if (ctx->drain_disabled)
2069 				return io_init_fail_req(req, -EOPNOTSUPP);
2070 			io_init_req_drain(req);
2071 		}
2072 	}
2073 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2074 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2075 			return io_init_fail_req(req, -EACCES);
2076 		/* knock it to the slow queue path, will be drained there */
2077 		if (ctx->drain_active)
2078 			req->flags |= REQ_F_FORCE_ASYNC;
2079 		/* if there is no link, we're at "next" request and need to drain */
2080 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2081 			ctx->drain_next = false;
2082 			ctx->drain_active = true;
2083 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2084 		}
2085 	}
2086 
2087 	if (!def->ioprio && sqe->ioprio)
2088 		return io_init_fail_req(req, -EINVAL);
2089 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2090 		return io_init_fail_req(req, -EINVAL);
2091 
2092 	if (def->needs_file) {
2093 		struct io_submit_state *state = &ctx->submit_state;
2094 
2095 		req->cqe.fd = READ_ONCE(sqe->fd);
2096 
2097 		/*
2098 		 * Plug now if we have more than 2 IO left after this, and the
2099 		 * target is potentially a read/write to block based storage.
2100 		 */
2101 		if (state->need_plug && def->plug) {
2102 			state->plug_started = true;
2103 			state->need_plug = false;
2104 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2105 		}
2106 	}
2107 
2108 	personality = READ_ONCE(sqe->personality);
2109 	if (personality) {
2110 		int ret;
2111 
2112 		req->creds = xa_load(&ctx->personalities, personality);
2113 		if (!req->creds)
2114 			return io_init_fail_req(req, -EINVAL);
2115 		get_cred(req->creds);
2116 		ret = security_uring_override_creds(req->creds);
2117 		if (ret) {
2118 			put_cred(req->creds);
2119 			return io_init_fail_req(req, ret);
2120 		}
2121 		req->flags |= REQ_F_CREDS;
2122 	}
2123 
2124 	return def->prep(req, sqe);
2125 }
2126 
2127 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2128 				      struct io_kiocb *req, int ret)
2129 {
2130 	struct io_ring_ctx *ctx = req->ctx;
2131 	struct io_submit_link *link = &ctx->submit_state.link;
2132 	struct io_kiocb *head = link->head;
2133 
2134 	trace_io_uring_req_failed(sqe, req, ret);
2135 
2136 	/*
2137 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2138 	 * unusable. Instead of failing eagerly, continue assembling the link if
2139 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2140 	 * should find the flag and handle the rest.
2141 	 */
2142 	req_fail_link_node(req, ret);
2143 	if (head && !(head->flags & REQ_F_FAIL))
2144 		req_fail_link_node(head, -ECANCELED);
2145 
2146 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2147 		if (head) {
2148 			link->last->link = req;
2149 			link->head = NULL;
2150 			req = head;
2151 		}
2152 		io_queue_sqe_fallback(req);
2153 		return ret;
2154 	}
2155 
2156 	if (head)
2157 		link->last->link = req;
2158 	else
2159 		link->head = req;
2160 	link->last = req;
2161 	return 0;
2162 }
2163 
2164 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2165 			 const struct io_uring_sqe *sqe)
2166 	__must_hold(&ctx->uring_lock)
2167 {
2168 	struct io_submit_link *link = &ctx->submit_state.link;
2169 	int ret;
2170 
2171 	ret = io_init_req(ctx, req, sqe);
2172 	if (unlikely(ret))
2173 		return io_submit_fail_init(sqe, req, ret);
2174 
2175 	trace_io_uring_submit_req(req);
2176 
2177 	/*
2178 	 * If we already have a head request, queue this one for async
2179 	 * submittal once the head completes. If we don't have a head but
2180 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2181 	 * submitted sync once the chain is complete. If none of those
2182 	 * conditions are true (normal request), then just queue it.
2183 	 */
2184 	if (unlikely(link->head)) {
2185 		trace_io_uring_link(req, link->last);
2186 		link->last->link = req;
2187 		link->last = req;
2188 
2189 		if (req->flags & IO_REQ_LINK_FLAGS)
2190 			return 0;
2191 		/* last request of the link, flush it */
2192 		req = link->head;
2193 		link->head = NULL;
2194 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2195 			goto fallback;
2196 
2197 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2198 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2199 		if (req->flags & IO_REQ_LINK_FLAGS) {
2200 			link->head = req;
2201 			link->last = req;
2202 		} else {
2203 fallback:
2204 			io_queue_sqe_fallback(req);
2205 		}
2206 		return 0;
2207 	}
2208 
2209 	io_queue_sqe(req);
2210 	return 0;
2211 }
2212 
2213 /*
2214  * Batched submission is done, ensure local IO is flushed out.
2215  */
2216 static void io_submit_state_end(struct io_ring_ctx *ctx)
2217 {
2218 	struct io_submit_state *state = &ctx->submit_state;
2219 
2220 	if (unlikely(state->link.head))
2221 		io_queue_sqe_fallback(state->link.head);
2222 	/* flush only after queuing links as they can generate completions */
2223 	io_submit_flush_completions(ctx);
2224 	if (state->plug_started)
2225 		blk_finish_plug(&state->plug);
2226 }
2227 
2228 /*
2229  * Start submission side cache.
2230  */
2231 static void io_submit_state_start(struct io_submit_state *state,
2232 				  unsigned int max_ios)
2233 {
2234 	state->plug_started = false;
2235 	state->need_plug = max_ios > 2;
2236 	state->submit_nr = max_ios;
2237 	/* set only head, no need to init link_last in advance */
2238 	state->link.head = NULL;
2239 }
2240 
2241 static void io_commit_sqring(struct io_ring_ctx *ctx)
2242 {
2243 	struct io_rings *rings = ctx->rings;
2244 
2245 	/*
2246 	 * Ensure any loads from the SQEs are done at this point,
2247 	 * since once we write the new head, the application could
2248 	 * write new data to them.
2249 	 */
2250 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2251 }
2252 
2253 /*
2254  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2255  * that is mapped by userspace. This means that care needs to be taken to
2256  * ensure that reads are stable, as we cannot rely on userspace always
2257  * being a good citizen. If members of the sqe are validated and then later
2258  * used, it's important that those reads are done through READ_ONCE() to
2259  * prevent a re-load down the line.
2260  */
2261 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2262 {
2263 	unsigned mask = ctx->sq_entries - 1;
2264 	unsigned head = ctx->cached_sq_head++ & mask;
2265 
2266 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2267 		head = READ_ONCE(ctx->sq_array[head]);
2268 		if (unlikely(head >= ctx->sq_entries)) {
2269 			/* drop invalid entries */
2270 			spin_lock(&ctx->completion_lock);
2271 			ctx->cq_extra--;
2272 			spin_unlock(&ctx->completion_lock);
2273 			WRITE_ONCE(ctx->rings->sq_dropped,
2274 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2275 			return false;
2276 		}
2277 	}
2278 
2279 	/*
2280 	 * The cached sq head (or cq tail) serves two purposes:
2281 	 *
2282 	 * 1) allows us to batch the cost of updating the user visible
2283 	 *    head updates.
2284 	 * 2) allows the kernel side to track the head on its own, even
2285 	 *    though the application is the one updating it.
2286 	 */
2287 
2288 	/* double index for 128-byte SQEs, twice as long */
2289 	if (ctx->flags & IORING_SETUP_SQE128)
2290 		head <<= 1;
2291 	*sqe = &ctx->sq_sqes[head];
2292 	return true;
2293 }
2294 
2295 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2296 	__must_hold(&ctx->uring_lock)
2297 {
2298 	unsigned int entries = io_sqring_entries(ctx);
2299 	unsigned int left;
2300 	int ret;
2301 
2302 	if (unlikely(!entries))
2303 		return 0;
2304 	/* make sure SQ entry isn't read before tail */
2305 	ret = left = min(nr, entries);
2306 	io_get_task_refs(left);
2307 	io_submit_state_start(&ctx->submit_state, left);
2308 
2309 	do {
2310 		const struct io_uring_sqe *sqe;
2311 		struct io_kiocb *req;
2312 
2313 		if (unlikely(!io_alloc_req(ctx, &req)))
2314 			break;
2315 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2316 			io_req_add_to_cache(req, ctx);
2317 			break;
2318 		}
2319 
2320 		/*
2321 		 * Continue submitting even for sqe failure if the
2322 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2323 		 */
2324 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2325 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2326 			left--;
2327 			break;
2328 		}
2329 	} while (--left);
2330 
2331 	if (unlikely(left)) {
2332 		ret -= left;
2333 		/* try again if it submitted nothing and can't allocate a req */
2334 		if (!ret && io_req_cache_empty(ctx))
2335 			ret = -EAGAIN;
2336 		current->io_uring->cached_refs += left;
2337 	}
2338 
2339 	io_submit_state_end(ctx);
2340 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2341 	io_commit_sqring(ctx);
2342 	return ret;
2343 }
2344 
2345 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2346 			    int wake_flags, void *key)
2347 {
2348 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2349 
2350 	/*
2351 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2352 	 * the task, and the next invocation will do it.
2353 	 */
2354 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2355 		return autoremove_wake_function(curr, mode, wake_flags, key);
2356 	return -1;
2357 }
2358 
2359 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2360 {
2361 	if (!llist_empty(&ctx->work_llist)) {
2362 		__set_current_state(TASK_RUNNING);
2363 		if (io_run_local_work(ctx, INT_MAX) > 0)
2364 			return 0;
2365 	}
2366 	if (io_run_task_work() > 0)
2367 		return 0;
2368 	if (task_sigpending(current))
2369 		return -EINTR;
2370 	return 0;
2371 }
2372 
2373 static bool current_pending_io(void)
2374 {
2375 	struct io_uring_task *tctx = current->io_uring;
2376 
2377 	if (!tctx)
2378 		return false;
2379 	return percpu_counter_read_positive(&tctx->inflight);
2380 }
2381 
2382 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2383 {
2384 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2385 
2386 	WRITE_ONCE(iowq->hit_timeout, 1);
2387 	iowq->min_timeout = 0;
2388 	wake_up_process(iowq->wq.private);
2389 	return HRTIMER_NORESTART;
2390 }
2391 
2392 /*
2393  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2394  * wake up. If not, and we have a normal timeout, switch to that and keep
2395  * sleeping.
2396  */
2397 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2398 {
2399 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2400 	struct io_ring_ctx *ctx = iowq->ctx;
2401 
2402 	/* no general timeout, or shorter (or equal), we are done */
2403 	if (iowq->timeout == KTIME_MAX ||
2404 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2405 		goto out_wake;
2406 	/* work we may need to run, wake function will see if we need to wake */
2407 	if (io_has_work(ctx))
2408 		goto out_wake;
2409 	/* got events since we started waiting, min timeout is done */
2410 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2411 		goto out_wake;
2412 	/* if we have any events and min timeout expired, we're done */
2413 	if (io_cqring_events(ctx))
2414 		goto out_wake;
2415 
2416 	/*
2417 	 * If using deferred task_work running and application is waiting on
2418 	 * more than one request, ensure we reset it now where we are switching
2419 	 * to normal sleeps. Any request completion post min_wait should wake
2420 	 * the task and return.
2421 	 */
2422 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2423 		atomic_set(&ctx->cq_wait_nr, 1);
2424 		smp_mb();
2425 		if (!llist_empty(&ctx->work_llist))
2426 			goto out_wake;
2427 	}
2428 
2429 	iowq->t.function = io_cqring_timer_wakeup;
2430 	hrtimer_set_expires(timer, iowq->timeout);
2431 	return HRTIMER_RESTART;
2432 out_wake:
2433 	return io_cqring_timer_wakeup(timer);
2434 }
2435 
2436 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2437 				      clockid_t clock_id, ktime_t start_time)
2438 {
2439 	ktime_t timeout;
2440 
2441 	hrtimer_init_on_stack(&iowq->t, clock_id, HRTIMER_MODE_ABS);
2442 	if (iowq->min_timeout) {
2443 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2444 		iowq->t.function = io_cqring_min_timer_wakeup;
2445 	} else {
2446 		timeout = iowq->timeout;
2447 		iowq->t.function = io_cqring_timer_wakeup;
2448 	}
2449 
2450 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2451 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2452 
2453 	if (!READ_ONCE(iowq->hit_timeout))
2454 		schedule();
2455 
2456 	hrtimer_cancel(&iowq->t);
2457 	destroy_hrtimer_on_stack(&iowq->t);
2458 	__set_current_state(TASK_RUNNING);
2459 
2460 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2461 }
2462 
2463 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2464 				     struct io_wait_queue *iowq,
2465 				     ktime_t start_time)
2466 {
2467 	int ret = 0;
2468 
2469 	/*
2470 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2471 	 * can take into account that the task is waiting for IO - turns out
2472 	 * to be important for low QD IO.
2473 	 */
2474 	if (current_pending_io())
2475 		current->in_iowait = 1;
2476 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2477 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2478 	else
2479 		schedule();
2480 	current->in_iowait = 0;
2481 	return ret;
2482 }
2483 
2484 /* If this returns > 0, the caller should retry */
2485 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2486 					  struct io_wait_queue *iowq,
2487 					  ktime_t start_time)
2488 {
2489 	if (unlikely(READ_ONCE(ctx->check_cq)))
2490 		return 1;
2491 	if (unlikely(!llist_empty(&ctx->work_llist)))
2492 		return 1;
2493 	if (unlikely(task_work_pending(current)))
2494 		return 1;
2495 	if (unlikely(task_sigpending(current)))
2496 		return -EINTR;
2497 	if (unlikely(io_should_wake(iowq)))
2498 		return 0;
2499 
2500 	return __io_cqring_wait_schedule(ctx, iowq, start_time);
2501 }
2502 
2503 struct ext_arg {
2504 	size_t argsz;
2505 	struct __kernel_timespec __user *ts;
2506 	const sigset_t __user *sig;
2507 	ktime_t min_time;
2508 };
2509 
2510 /*
2511  * Wait until events become available, if we don't already have some. The
2512  * application must reap them itself, as they reside on the shared cq ring.
2513  */
2514 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2515 			  struct ext_arg *ext_arg)
2516 {
2517 	struct io_wait_queue iowq;
2518 	struct io_rings *rings = ctx->rings;
2519 	ktime_t start_time;
2520 	int ret;
2521 
2522 	if (!io_allowed_run_tw(ctx))
2523 		return -EEXIST;
2524 	if (!llist_empty(&ctx->work_llist))
2525 		io_run_local_work(ctx, min_events);
2526 	io_run_task_work();
2527 
2528 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2529 		io_cqring_do_overflow_flush(ctx);
2530 	if (__io_cqring_events_user(ctx) >= min_events)
2531 		return 0;
2532 
2533 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2534 	iowq.wq.private = current;
2535 	INIT_LIST_HEAD(&iowq.wq.entry);
2536 	iowq.ctx = ctx;
2537 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2538 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2539 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2540 	iowq.hit_timeout = 0;
2541 	iowq.min_timeout = ext_arg->min_time;
2542 	iowq.timeout = KTIME_MAX;
2543 	start_time = io_get_time(ctx);
2544 
2545 	if (ext_arg->ts) {
2546 		struct timespec64 ts;
2547 
2548 		if (get_timespec64(&ts, ext_arg->ts))
2549 			return -EFAULT;
2550 
2551 		iowq.timeout = timespec64_to_ktime(ts);
2552 		if (!(flags & IORING_ENTER_ABS_TIMER))
2553 			iowq.timeout = ktime_add(iowq.timeout, start_time);
2554 	}
2555 
2556 	if (ext_arg->sig) {
2557 #ifdef CONFIG_COMPAT
2558 		if (in_compat_syscall())
2559 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2560 						      ext_arg->argsz);
2561 		else
2562 #endif
2563 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2564 
2565 		if (ret)
2566 			return ret;
2567 	}
2568 
2569 	io_napi_busy_loop(ctx, &iowq);
2570 
2571 	trace_io_uring_cqring_wait(ctx, min_events);
2572 	do {
2573 		unsigned long check_cq;
2574 		int nr_wait;
2575 
2576 		/* if min timeout has been hit, don't reset wait count */
2577 		if (!iowq.hit_timeout)
2578 			nr_wait = (int) iowq.cq_tail -
2579 					READ_ONCE(ctx->rings->cq.tail);
2580 		else
2581 			nr_wait = 1;
2582 
2583 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2584 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2585 			set_current_state(TASK_INTERRUPTIBLE);
2586 		} else {
2587 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2588 							TASK_INTERRUPTIBLE);
2589 		}
2590 
2591 		ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2592 		__set_current_state(TASK_RUNNING);
2593 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2594 
2595 		/*
2596 		 * Run task_work after scheduling and before io_should_wake().
2597 		 * If we got woken because of task_work being processed, run it
2598 		 * now rather than let the caller do another wait loop.
2599 		 */
2600 		if (!llist_empty(&ctx->work_llist))
2601 			io_run_local_work(ctx, nr_wait);
2602 		io_run_task_work();
2603 
2604 		/*
2605 		 * Non-local task_work will be run on exit to userspace, but
2606 		 * if we're using DEFER_TASKRUN, then we could have waited
2607 		 * with a timeout for a number of requests. If the timeout
2608 		 * hits, we could have some requests ready to process. Ensure
2609 		 * this break is _after_ we have run task_work, to avoid
2610 		 * deferring running potentially pending requests until the
2611 		 * next time we wait for events.
2612 		 */
2613 		if (ret < 0)
2614 			break;
2615 
2616 		check_cq = READ_ONCE(ctx->check_cq);
2617 		if (unlikely(check_cq)) {
2618 			/* let the caller flush overflows, retry */
2619 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2620 				io_cqring_do_overflow_flush(ctx);
2621 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2622 				ret = -EBADR;
2623 				break;
2624 			}
2625 		}
2626 
2627 		if (io_should_wake(&iowq)) {
2628 			ret = 0;
2629 			break;
2630 		}
2631 		cond_resched();
2632 	} while (1);
2633 
2634 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2635 		finish_wait(&ctx->cq_wait, &iowq.wq);
2636 	restore_saved_sigmask_unless(ret == -EINTR);
2637 
2638 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2639 }
2640 
2641 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2642 			  size_t size)
2643 {
2644 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2645 				size);
2646 }
2647 
2648 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2649 			 size_t size)
2650 {
2651 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2652 				size);
2653 }
2654 
2655 static void io_rings_free(struct io_ring_ctx *ctx)
2656 {
2657 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2658 		io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2659 				true);
2660 		io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2661 				true);
2662 	} else {
2663 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2664 		ctx->n_ring_pages = 0;
2665 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2666 		ctx->n_sqe_pages = 0;
2667 		vunmap(ctx->rings);
2668 		vunmap(ctx->sq_sqes);
2669 	}
2670 
2671 	ctx->rings = NULL;
2672 	ctx->sq_sqes = NULL;
2673 }
2674 
2675 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2676 				unsigned int cq_entries, size_t *sq_offset)
2677 {
2678 	struct io_rings *rings;
2679 	size_t off, sq_array_size;
2680 
2681 	off = struct_size(rings, cqes, cq_entries);
2682 	if (off == SIZE_MAX)
2683 		return SIZE_MAX;
2684 	if (ctx->flags & IORING_SETUP_CQE32) {
2685 		if (check_shl_overflow(off, 1, &off))
2686 			return SIZE_MAX;
2687 	}
2688 
2689 #ifdef CONFIG_SMP
2690 	off = ALIGN(off, SMP_CACHE_BYTES);
2691 	if (off == 0)
2692 		return SIZE_MAX;
2693 #endif
2694 
2695 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2696 		*sq_offset = SIZE_MAX;
2697 		return off;
2698 	}
2699 
2700 	*sq_offset = off;
2701 
2702 	sq_array_size = array_size(sizeof(u32), sq_entries);
2703 	if (sq_array_size == SIZE_MAX)
2704 		return SIZE_MAX;
2705 
2706 	if (check_add_overflow(off, sq_array_size, &off))
2707 		return SIZE_MAX;
2708 
2709 	return off;
2710 }
2711 
2712 static void io_req_caches_free(struct io_ring_ctx *ctx)
2713 {
2714 	struct io_kiocb *req;
2715 	int nr = 0;
2716 
2717 	mutex_lock(&ctx->uring_lock);
2718 
2719 	while (!io_req_cache_empty(ctx)) {
2720 		req = io_extract_req(ctx);
2721 		kmem_cache_free(req_cachep, req);
2722 		nr++;
2723 	}
2724 	if (nr)
2725 		percpu_ref_put_many(&ctx->refs, nr);
2726 	mutex_unlock(&ctx->uring_lock);
2727 }
2728 
2729 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2730 {
2731 	io_sq_thread_finish(ctx);
2732 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2733 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2734 		return;
2735 
2736 	mutex_lock(&ctx->uring_lock);
2737 	if (ctx->buf_data)
2738 		__io_sqe_buffers_unregister(ctx);
2739 	if (ctx->file_data)
2740 		__io_sqe_files_unregister(ctx);
2741 	io_cqring_overflow_kill(ctx);
2742 	io_eventfd_unregister(ctx);
2743 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2744 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2745 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2746 	io_alloc_cache_free(&ctx->uring_cache, kfree);
2747 	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2748 	io_futex_cache_free(ctx);
2749 	io_destroy_buffers(ctx);
2750 	mutex_unlock(&ctx->uring_lock);
2751 	if (ctx->sq_creds)
2752 		put_cred(ctx->sq_creds);
2753 	if (ctx->submitter_task)
2754 		put_task_struct(ctx->submitter_task);
2755 
2756 	/* there are no registered resources left, nobody uses it */
2757 	if (ctx->rsrc_node)
2758 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2759 
2760 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2761 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2762 
2763 	io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
2764 	if (ctx->mm_account) {
2765 		mmdrop(ctx->mm_account);
2766 		ctx->mm_account = NULL;
2767 	}
2768 	io_rings_free(ctx);
2769 
2770 	percpu_ref_exit(&ctx->refs);
2771 	free_uid(ctx->user);
2772 	io_req_caches_free(ctx);
2773 	if (ctx->hash_map)
2774 		io_wq_put_hash(ctx->hash_map);
2775 	io_napi_free(ctx);
2776 	kfree(ctx->cancel_table.hbs);
2777 	kfree(ctx->cancel_table_locked.hbs);
2778 	xa_destroy(&ctx->io_bl_xa);
2779 	kfree(ctx);
2780 }
2781 
2782 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2783 {
2784 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2785 					       poll_wq_task_work);
2786 
2787 	mutex_lock(&ctx->uring_lock);
2788 	ctx->poll_activated = true;
2789 	mutex_unlock(&ctx->uring_lock);
2790 
2791 	/*
2792 	 * Wake ups for some events between start of polling and activation
2793 	 * might've been lost due to loose synchronisation.
2794 	 */
2795 	wake_up_all(&ctx->poll_wq);
2796 	percpu_ref_put(&ctx->refs);
2797 }
2798 
2799 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2800 {
2801 	spin_lock(&ctx->completion_lock);
2802 	/* already activated or in progress */
2803 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2804 		goto out;
2805 	if (WARN_ON_ONCE(!ctx->task_complete))
2806 		goto out;
2807 	if (!ctx->submitter_task)
2808 		goto out;
2809 	/*
2810 	 * with ->submitter_task only the submitter task completes requests, we
2811 	 * only need to sync with it, which is done by injecting a tw
2812 	 */
2813 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2814 	percpu_ref_get(&ctx->refs);
2815 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2816 		percpu_ref_put(&ctx->refs);
2817 out:
2818 	spin_unlock(&ctx->completion_lock);
2819 }
2820 
2821 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2822 {
2823 	struct io_ring_ctx *ctx = file->private_data;
2824 	__poll_t mask = 0;
2825 
2826 	if (unlikely(!ctx->poll_activated))
2827 		io_activate_pollwq(ctx);
2828 
2829 	poll_wait(file, &ctx->poll_wq, wait);
2830 	/*
2831 	 * synchronizes with barrier from wq_has_sleeper call in
2832 	 * io_commit_cqring
2833 	 */
2834 	smp_rmb();
2835 	if (!io_sqring_full(ctx))
2836 		mask |= EPOLLOUT | EPOLLWRNORM;
2837 
2838 	/*
2839 	 * Don't flush cqring overflow list here, just do a simple check.
2840 	 * Otherwise there could possible be ABBA deadlock:
2841 	 *      CPU0                    CPU1
2842 	 *      ----                    ----
2843 	 * lock(&ctx->uring_lock);
2844 	 *                              lock(&ep->mtx);
2845 	 *                              lock(&ctx->uring_lock);
2846 	 * lock(&ep->mtx);
2847 	 *
2848 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2849 	 * pushes them to do the flush.
2850 	 */
2851 
2852 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2853 		mask |= EPOLLIN | EPOLLRDNORM;
2854 
2855 	return mask;
2856 }
2857 
2858 struct io_tctx_exit {
2859 	struct callback_head		task_work;
2860 	struct completion		completion;
2861 	struct io_ring_ctx		*ctx;
2862 };
2863 
2864 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2865 {
2866 	struct io_uring_task *tctx = current->io_uring;
2867 	struct io_tctx_exit *work;
2868 
2869 	work = container_of(cb, struct io_tctx_exit, task_work);
2870 	/*
2871 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2872 	 * node. It'll be removed by the end of cancellation, just ignore it.
2873 	 * tctx can be NULL if the queueing of this task_work raced with
2874 	 * work cancelation off the exec path.
2875 	 */
2876 	if (tctx && !atomic_read(&tctx->in_cancel))
2877 		io_uring_del_tctx_node((unsigned long)work->ctx);
2878 	complete(&work->completion);
2879 }
2880 
2881 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2882 {
2883 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2884 
2885 	return req->ctx == data;
2886 }
2887 
2888 static __cold void io_ring_exit_work(struct work_struct *work)
2889 {
2890 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2891 	unsigned long timeout = jiffies + HZ * 60 * 5;
2892 	unsigned long interval = HZ / 20;
2893 	struct io_tctx_exit exit;
2894 	struct io_tctx_node *node;
2895 	int ret;
2896 
2897 	/*
2898 	 * If we're doing polled IO and end up having requests being
2899 	 * submitted async (out-of-line), then completions can come in while
2900 	 * we're waiting for refs to drop. We need to reap these manually,
2901 	 * as nobody else will be looking for them.
2902 	 */
2903 	do {
2904 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2905 			mutex_lock(&ctx->uring_lock);
2906 			io_cqring_overflow_kill(ctx);
2907 			mutex_unlock(&ctx->uring_lock);
2908 		}
2909 
2910 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2911 			io_move_task_work_from_local(ctx);
2912 
2913 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2914 			cond_resched();
2915 
2916 		if (ctx->sq_data) {
2917 			struct io_sq_data *sqd = ctx->sq_data;
2918 			struct task_struct *tsk;
2919 
2920 			io_sq_thread_park(sqd);
2921 			tsk = sqd->thread;
2922 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2923 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2924 						io_cancel_ctx_cb, ctx, true);
2925 			io_sq_thread_unpark(sqd);
2926 		}
2927 
2928 		io_req_caches_free(ctx);
2929 
2930 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2931 			/* there is little hope left, don't run it too often */
2932 			interval = HZ * 60;
2933 		}
2934 		/*
2935 		 * This is really an uninterruptible wait, as it has to be
2936 		 * complete. But it's also run from a kworker, which doesn't
2937 		 * take signals, so it's fine to make it interruptible. This
2938 		 * avoids scenarios where we knowingly can wait much longer
2939 		 * on completions, for example if someone does a SIGSTOP on
2940 		 * a task that needs to finish task_work to make this loop
2941 		 * complete. That's a synthetic situation that should not
2942 		 * cause a stuck task backtrace, and hence a potential panic
2943 		 * on stuck tasks if that is enabled.
2944 		 */
2945 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2946 
2947 	init_completion(&exit.completion);
2948 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2949 	exit.ctx = ctx;
2950 
2951 	mutex_lock(&ctx->uring_lock);
2952 	while (!list_empty(&ctx->tctx_list)) {
2953 		WARN_ON_ONCE(time_after(jiffies, timeout));
2954 
2955 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2956 					ctx_node);
2957 		/* don't spin on a single task if cancellation failed */
2958 		list_rotate_left(&ctx->tctx_list);
2959 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2960 		if (WARN_ON_ONCE(ret))
2961 			continue;
2962 
2963 		mutex_unlock(&ctx->uring_lock);
2964 		/*
2965 		 * See comment above for
2966 		 * wait_for_completion_interruptible_timeout() on why this
2967 		 * wait is marked as interruptible.
2968 		 */
2969 		wait_for_completion_interruptible(&exit.completion);
2970 		mutex_lock(&ctx->uring_lock);
2971 	}
2972 	mutex_unlock(&ctx->uring_lock);
2973 	spin_lock(&ctx->completion_lock);
2974 	spin_unlock(&ctx->completion_lock);
2975 
2976 	/* pairs with RCU read section in io_req_local_work_add() */
2977 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2978 		synchronize_rcu();
2979 
2980 	io_ring_ctx_free(ctx);
2981 }
2982 
2983 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2984 {
2985 	unsigned long index;
2986 	struct creds *creds;
2987 
2988 	mutex_lock(&ctx->uring_lock);
2989 	percpu_ref_kill(&ctx->refs);
2990 	xa_for_each(&ctx->personalities, index, creds)
2991 		io_unregister_personality(ctx, index);
2992 	mutex_unlock(&ctx->uring_lock);
2993 
2994 	flush_delayed_work(&ctx->fallback_work);
2995 
2996 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2997 	/*
2998 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2999 	 * if we're exiting a ton of rings at the same time. It just adds
3000 	 * noise and overhead, there's no discernable change in runtime
3001 	 * over using system_wq.
3002 	 */
3003 	queue_work(iou_wq, &ctx->exit_work);
3004 }
3005 
3006 static int io_uring_release(struct inode *inode, struct file *file)
3007 {
3008 	struct io_ring_ctx *ctx = file->private_data;
3009 
3010 	file->private_data = NULL;
3011 	io_ring_ctx_wait_and_kill(ctx);
3012 	return 0;
3013 }
3014 
3015 struct io_task_cancel {
3016 	struct task_struct *task;
3017 	bool all;
3018 };
3019 
3020 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3021 {
3022 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3023 	struct io_task_cancel *cancel = data;
3024 
3025 	return io_match_task_safe(req, cancel->task, cancel->all);
3026 }
3027 
3028 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3029 					 struct task_struct *task,
3030 					 bool cancel_all)
3031 {
3032 	struct io_defer_entry *de;
3033 	LIST_HEAD(list);
3034 
3035 	spin_lock(&ctx->completion_lock);
3036 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3037 		if (io_match_task_safe(de->req, task, cancel_all)) {
3038 			list_cut_position(&list, &ctx->defer_list, &de->list);
3039 			break;
3040 		}
3041 	}
3042 	spin_unlock(&ctx->completion_lock);
3043 	if (list_empty(&list))
3044 		return false;
3045 
3046 	while (!list_empty(&list)) {
3047 		de = list_first_entry(&list, struct io_defer_entry, list);
3048 		list_del_init(&de->list);
3049 		io_req_task_queue_fail(de->req, -ECANCELED);
3050 		kfree(de);
3051 	}
3052 	return true;
3053 }
3054 
3055 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3056 {
3057 	struct io_tctx_node *node;
3058 	enum io_wq_cancel cret;
3059 	bool ret = false;
3060 
3061 	mutex_lock(&ctx->uring_lock);
3062 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3063 		struct io_uring_task *tctx = node->task->io_uring;
3064 
3065 		/*
3066 		 * io_wq will stay alive while we hold uring_lock, because it's
3067 		 * killed after ctx nodes, which requires to take the lock.
3068 		 */
3069 		if (!tctx || !tctx->io_wq)
3070 			continue;
3071 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3072 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3073 	}
3074 	mutex_unlock(&ctx->uring_lock);
3075 
3076 	return ret;
3077 }
3078 
3079 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3080 						struct task_struct *task,
3081 						bool cancel_all)
3082 {
3083 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3084 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3085 	enum io_wq_cancel cret;
3086 	bool ret = false;
3087 
3088 	/* set it so io_req_local_work_add() would wake us up */
3089 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3090 		atomic_set(&ctx->cq_wait_nr, 1);
3091 		smp_mb();
3092 	}
3093 
3094 	/* failed during ring init, it couldn't have issued any requests */
3095 	if (!ctx->rings)
3096 		return false;
3097 
3098 	if (!task) {
3099 		ret |= io_uring_try_cancel_iowq(ctx);
3100 	} else if (tctx && tctx->io_wq) {
3101 		/*
3102 		 * Cancels requests of all rings, not only @ctx, but
3103 		 * it's fine as the task is in exit/exec.
3104 		 */
3105 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3106 				       &cancel, true);
3107 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3108 	}
3109 
3110 	/* SQPOLL thread does its own polling */
3111 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3112 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3113 		while (!wq_list_empty(&ctx->iopoll_list)) {
3114 			io_iopoll_try_reap_events(ctx);
3115 			ret = true;
3116 			cond_resched();
3117 		}
3118 	}
3119 
3120 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3121 	    io_allowed_defer_tw_run(ctx))
3122 		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3123 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3124 	mutex_lock(&ctx->uring_lock);
3125 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3126 	ret |= io_waitid_remove_all(ctx, task, cancel_all);
3127 	ret |= io_futex_remove_all(ctx, task, cancel_all);
3128 	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3129 	mutex_unlock(&ctx->uring_lock);
3130 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3131 	if (task)
3132 		ret |= io_run_task_work() > 0;
3133 	else
3134 		ret |= flush_delayed_work(&ctx->fallback_work);
3135 	return ret;
3136 }
3137 
3138 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3139 {
3140 	if (tracked)
3141 		return atomic_read(&tctx->inflight_tracked);
3142 	return percpu_counter_sum(&tctx->inflight);
3143 }
3144 
3145 /*
3146  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3147  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3148  */
3149 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3150 {
3151 	struct io_uring_task *tctx = current->io_uring;
3152 	struct io_ring_ctx *ctx;
3153 	struct io_tctx_node *node;
3154 	unsigned long index;
3155 	s64 inflight;
3156 	DEFINE_WAIT(wait);
3157 
3158 	WARN_ON_ONCE(sqd && sqd->thread != current);
3159 
3160 	if (!current->io_uring)
3161 		return;
3162 	if (tctx->io_wq)
3163 		io_wq_exit_start(tctx->io_wq);
3164 
3165 	atomic_inc(&tctx->in_cancel);
3166 	do {
3167 		bool loop = false;
3168 
3169 		io_uring_drop_tctx_refs(current);
3170 		if (!tctx_inflight(tctx, !cancel_all))
3171 			break;
3172 
3173 		/* read completions before cancelations */
3174 		inflight = tctx_inflight(tctx, false);
3175 		if (!inflight)
3176 			break;
3177 
3178 		if (!sqd) {
3179 			xa_for_each(&tctx->xa, index, node) {
3180 				/* sqpoll task will cancel all its requests */
3181 				if (node->ctx->sq_data)
3182 					continue;
3183 				loop |= io_uring_try_cancel_requests(node->ctx,
3184 							current, cancel_all);
3185 			}
3186 		} else {
3187 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3188 				loop |= io_uring_try_cancel_requests(ctx,
3189 								     current,
3190 								     cancel_all);
3191 		}
3192 
3193 		if (loop) {
3194 			cond_resched();
3195 			continue;
3196 		}
3197 
3198 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3199 		io_run_task_work();
3200 		io_uring_drop_tctx_refs(current);
3201 		xa_for_each(&tctx->xa, index, node) {
3202 			if (!llist_empty(&node->ctx->work_llist)) {
3203 				WARN_ON_ONCE(node->ctx->submitter_task &&
3204 					     node->ctx->submitter_task != current);
3205 				goto end_wait;
3206 			}
3207 		}
3208 		/*
3209 		 * If we've seen completions, retry without waiting. This
3210 		 * avoids a race where a completion comes in before we did
3211 		 * prepare_to_wait().
3212 		 */
3213 		if (inflight == tctx_inflight(tctx, !cancel_all))
3214 			schedule();
3215 end_wait:
3216 		finish_wait(&tctx->wait, &wait);
3217 	} while (1);
3218 
3219 	io_uring_clean_tctx(tctx);
3220 	if (cancel_all) {
3221 		/*
3222 		 * We shouldn't run task_works after cancel, so just leave
3223 		 * ->in_cancel set for normal exit.
3224 		 */
3225 		atomic_dec(&tctx->in_cancel);
3226 		/* for exec all current's requests should be gone, kill tctx */
3227 		__io_uring_free(current);
3228 	}
3229 }
3230 
3231 void __io_uring_cancel(bool cancel_all)
3232 {
3233 	io_uring_cancel_generic(cancel_all, NULL);
3234 }
3235 
3236 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3237 {
3238 	if (flags & IORING_ENTER_EXT_ARG) {
3239 		struct io_uring_getevents_arg arg;
3240 
3241 		if (argsz != sizeof(arg))
3242 			return -EINVAL;
3243 		if (copy_from_user(&arg, argp, sizeof(arg)))
3244 			return -EFAULT;
3245 	}
3246 	return 0;
3247 }
3248 
3249 static int io_get_ext_arg(unsigned flags, const void __user *argp,
3250 			  struct ext_arg *ext_arg)
3251 {
3252 	struct io_uring_getevents_arg arg;
3253 
3254 	/*
3255 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3256 	 * is just a pointer to the sigset_t.
3257 	 */
3258 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3259 		ext_arg->sig = (const sigset_t __user *) argp;
3260 		ext_arg->ts = NULL;
3261 		return 0;
3262 	}
3263 
3264 	/*
3265 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3266 	 * timespec and sigset_t pointers if good.
3267 	 */
3268 	if (ext_arg->argsz != sizeof(arg))
3269 		return -EINVAL;
3270 	if (copy_from_user(&arg, argp, sizeof(arg)))
3271 		return -EFAULT;
3272 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3273 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3274 	ext_arg->argsz = arg.sigmask_sz;
3275 	ext_arg->ts = u64_to_user_ptr(arg.ts);
3276 	return 0;
3277 }
3278 
3279 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3280 		u32, min_complete, u32, flags, const void __user *, argp,
3281 		size_t, argsz)
3282 {
3283 	struct io_ring_ctx *ctx;
3284 	struct file *file;
3285 	long ret;
3286 
3287 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3288 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3289 			       IORING_ENTER_REGISTERED_RING |
3290 			       IORING_ENTER_ABS_TIMER)))
3291 		return -EINVAL;
3292 
3293 	/*
3294 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3295 	 * need only dereference our task private array to find it.
3296 	 */
3297 	if (flags & IORING_ENTER_REGISTERED_RING) {
3298 		struct io_uring_task *tctx = current->io_uring;
3299 
3300 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3301 			return -EINVAL;
3302 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3303 		file = tctx->registered_rings[fd];
3304 		if (unlikely(!file))
3305 			return -EBADF;
3306 	} else {
3307 		file = fget(fd);
3308 		if (unlikely(!file))
3309 			return -EBADF;
3310 		ret = -EOPNOTSUPP;
3311 		if (unlikely(!io_is_uring_fops(file)))
3312 			goto out;
3313 	}
3314 
3315 	ctx = file->private_data;
3316 	ret = -EBADFD;
3317 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3318 		goto out;
3319 
3320 	/*
3321 	 * For SQ polling, the thread will do all submissions and completions.
3322 	 * Just return the requested submit count, and wake the thread if
3323 	 * we were asked to.
3324 	 */
3325 	ret = 0;
3326 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3327 		if (unlikely(ctx->sq_data->thread == NULL)) {
3328 			ret = -EOWNERDEAD;
3329 			goto out;
3330 		}
3331 		if (flags & IORING_ENTER_SQ_WAKEUP)
3332 			wake_up(&ctx->sq_data->wait);
3333 		if (flags & IORING_ENTER_SQ_WAIT)
3334 			io_sqpoll_wait_sq(ctx);
3335 
3336 		ret = to_submit;
3337 	} else if (to_submit) {
3338 		ret = io_uring_add_tctx_node(ctx);
3339 		if (unlikely(ret))
3340 			goto out;
3341 
3342 		mutex_lock(&ctx->uring_lock);
3343 		ret = io_submit_sqes(ctx, to_submit);
3344 		if (ret != to_submit) {
3345 			mutex_unlock(&ctx->uring_lock);
3346 			goto out;
3347 		}
3348 		if (flags & IORING_ENTER_GETEVENTS) {
3349 			if (ctx->syscall_iopoll)
3350 				goto iopoll_locked;
3351 			/*
3352 			 * Ignore errors, we'll soon call io_cqring_wait() and
3353 			 * it should handle ownership problems if any.
3354 			 */
3355 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3356 				(void)io_run_local_work_locked(ctx, min_complete);
3357 		}
3358 		mutex_unlock(&ctx->uring_lock);
3359 	}
3360 
3361 	if (flags & IORING_ENTER_GETEVENTS) {
3362 		int ret2;
3363 
3364 		if (ctx->syscall_iopoll) {
3365 			/*
3366 			 * We disallow the app entering submit/complete with
3367 			 * polling, but we still need to lock the ring to
3368 			 * prevent racing with polled issue that got punted to
3369 			 * a workqueue.
3370 			 */
3371 			mutex_lock(&ctx->uring_lock);
3372 iopoll_locked:
3373 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3374 			if (likely(!ret2)) {
3375 				min_complete = min(min_complete,
3376 						   ctx->cq_entries);
3377 				ret2 = io_iopoll_check(ctx, min_complete);
3378 			}
3379 			mutex_unlock(&ctx->uring_lock);
3380 		} else {
3381 			struct ext_arg ext_arg = { .argsz = argsz };
3382 
3383 			ret2 = io_get_ext_arg(flags, argp, &ext_arg);
3384 			if (likely(!ret2)) {
3385 				min_complete = min(min_complete,
3386 						   ctx->cq_entries);
3387 				ret2 = io_cqring_wait(ctx, min_complete, flags,
3388 						      &ext_arg);
3389 			}
3390 		}
3391 
3392 		if (!ret) {
3393 			ret = ret2;
3394 
3395 			/*
3396 			 * EBADR indicates that one or more CQE were dropped.
3397 			 * Once the user has been informed we can clear the bit
3398 			 * as they are obviously ok with those drops.
3399 			 */
3400 			if (unlikely(ret2 == -EBADR))
3401 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3402 					  &ctx->check_cq);
3403 		}
3404 	}
3405 out:
3406 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3407 		fput(file);
3408 	return ret;
3409 }
3410 
3411 static const struct file_operations io_uring_fops = {
3412 	.release	= io_uring_release,
3413 	.mmap		= io_uring_mmap,
3414 	.get_unmapped_area = io_uring_get_unmapped_area,
3415 #ifndef CONFIG_MMU
3416 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3417 #endif
3418 	.poll		= io_uring_poll,
3419 #ifdef CONFIG_PROC_FS
3420 	.show_fdinfo	= io_uring_show_fdinfo,
3421 #endif
3422 };
3423 
3424 bool io_is_uring_fops(struct file *file)
3425 {
3426 	return file->f_op == &io_uring_fops;
3427 }
3428 
3429 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3430 					 struct io_uring_params *p)
3431 {
3432 	struct io_rings *rings;
3433 	size_t size, sq_array_offset;
3434 	void *ptr;
3435 
3436 	/* make sure these are sane, as we already accounted them */
3437 	ctx->sq_entries = p->sq_entries;
3438 	ctx->cq_entries = p->cq_entries;
3439 
3440 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3441 	if (size == SIZE_MAX)
3442 		return -EOVERFLOW;
3443 
3444 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3445 		rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3446 	else
3447 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3448 
3449 	if (IS_ERR(rings))
3450 		return PTR_ERR(rings);
3451 
3452 	ctx->rings = rings;
3453 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3454 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3455 	rings->sq_ring_mask = p->sq_entries - 1;
3456 	rings->cq_ring_mask = p->cq_entries - 1;
3457 	rings->sq_ring_entries = p->sq_entries;
3458 	rings->cq_ring_entries = p->cq_entries;
3459 
3460 	if (p->flags & IORING_SETUP_SQE128)
3461 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3462 	else
3463 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3464 	if (size == SIZE_MAX) {
3465 		io_rings_free(ctx);
3466 		return -EOVERFLOW;
3467 	}
3468 
3469 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3470 		ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3471 	else
3472 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3473 
3474 	if (IS_ERR(ptr)) {
3475 		io_rings_free(ctx);
3476 		return PTR_ERR(ptr);
3477 	}
3478 
3479 	ctx->sq_sqes = ptr;
3480 	return 0;
3481 }
3482 
3483 static int io_uring_install_fd(struct file *file)
3484 {
3485 	int fd;
3486 
3487 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3488 	if (fd < 0)
3489 		return fd;
3490 	fd_install(fd, file);
3491 	return fd;
3492 }
3493 
3494 /*
3495  * Allocate an anonymous fd, this is what constitutes the application
3496  * visible backing of an io_uring instance. The application mmaps this
3497  * fd to gain access to the SQ/CQ ring details.
3498  */
3499 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3500 {
3501 	/* Create a new inode so that the LSM can block the creation.  */
3502 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3503 					 O_RDWR | O_CLOEXEC, NULL);
3504 }
3505 
3506 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3507 				  struct io_uring_params __user *params)
3508 {
3509 	struct io_ring_ctx *ctx;
3510 	struct io_uring_task *tctx;
3511 	struct file *file;
3512 	int ret;
3513 
3514 	if (!entries)
3515 		return -EINVAL;
3516 	if (entries > IORING_MAX_ENTRIES) {
3517 		if (!(p->flags & IORING_SETUP_CLAMP))
3518 			return -EINVAL;
3519 		entries = IORING_MAX_ENTRIES;
3520 	}
3521 
3522 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3523 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3524 		return -EINVAL;
3525 
3526 	/*
3527 	 * Use twice as many entries for the CQ ring. It's possible for the
3528 	 * application to drive a higher depth than the size of the SQ ring,
3529 	 * since the sqes are only used at submission time. This allows for
3530 	 * some flexibility in overcommitting a bit. If the application has
3531 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3532 	 * of CQ ring entries manually.
3533 	 */
3534 	p->sq_entries = roundup_pow_of_two(entries);
3535 	if (p->flags & IORING_SETUP_CQSIZE) {
3536 		/*
3537 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3538 		 * to a power-of-two, if it isn't already. We do NOT impose
3539 		 * any cq vs sq ring sizing.
3540 		 */
3541 		if (!p->cq_entries)
3542 			return -EINVAL;
3543 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3544 			if (!(p->flags & IORING_SETUP_CLAMP))
3545 				return -EINVAL;
3546 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3547 		}
3548 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3549 		if (p->cq_entries < p->sq_entries)
3550 			return -EINVAL;
3551 	} else {
3552 		p->cq_entries = 2 * p->sq_entries;
3553 	}
3554 
3555 	ctx = io_ring_ctx_alloc(p);
3556 	if (!ctx)
3557 		return -ENOMEM;
3558 
3559 	ctx->clockid = CLOCK_MONOTONIC;
3560 	ctx->clock_offset = 0;
3561 
3562 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3563 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3564 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3565 		ctx->task_complete = true;
3566 
3567 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3568 		ctx->lockless_cq = true;
3569 
3570 	/*
3571 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3572 	 * purposes, see io_activate_pollwq()
3573 	 */
3574 	if (!ctx->task_complete)
3575 		ctx->poll_activated = true;
3576 
3577 	/*
3578 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3579 	 * space applications don't need to do io completion events
3580 	 * polling again, they can rely on io_sq_thread to do polling
3581 	 * work, which can reduce cpu usage and uring_lock contention.
3582 	 */
3583 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3584 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3585 		ctx->syscall_iopoll = 1;
3586 
3587 	ctx->compat = in_compat_syscall();
3588 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3589 		ctx->user = get_uid(current_user());
3590 
3591 	/*
3592 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3593 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3594 	 */
3595 	ret = -EINVAL;
3596 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3597 		/* IPI related flags don't make sense with SQPOLL */
3598 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3599 				  IORING_SETUP_TASKRUN_FLAG |
3600 				  IORING_SETUP_DEFER_TASKRUN))
3601 			goto err;
3602 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3603 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3604 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3605 	} else {
3606 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3607 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3608 			goto err;
3609 		ctx->notify_method = TWA_SIGNAL;
3610 	}
3611 
3612 	/*
3613 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3614 	 * submission task. This implies that there is only one submitter, so enforce
3615 	 * that.
3616 	 */
3617 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3618 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3619 		goto err;
3620 	}
3621 
3622 	/*
3623 	 * This is just grabbed for accounting purposes. When a process exits,
3624 	 * the mm is exited and dropped before the files, hence we need to hang
3625 	 * on to this mm purely for the purposes of being able to unaccount
3626 	 * memory (locked/pinned vm). It's not used for anything else.
3627 	 */
3628 	mmgrab(current->mm);
3629 	ctx->mm_account = current->mm;
3630 
3631 	ret = io_allocate_scq_urings(ctx, p);
3632 	if (ret)
3633 		goto err;
3634 
3635 	ret = io_sq_offload_create(ctx, p);
3636 	if (ret)
3637 		goto err;
3638 
3639 	ret = io_rsrc_init(ctx);
3640 	if (ret)
3641 		goto err;
3642 
3643 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3644 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3645 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3646 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3647 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3648 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3649 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3650 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3651 	p->sq_off.resv1 = 0;
3652 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3653 		p->sq_off.user_addr = 0;
3654 
3655 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3656 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3657 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3658 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3659 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3660 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3661 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3662 	p->cq_off.resv1 = 0;
3663 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3664 		p->cq_off.user_addr = 0;
3665 
3666 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3667 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3668 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3669 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3670 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3671 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3672 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3673 			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3674 
3675 	if (copy_to_user(params, p, sizeof(*p))) {
3676 		ret = -EFAULT;
3677 		goto err;
3678 	}
3679 
3680 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3681 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3682 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3683 
3684 	file = io_uring_get_file(ctx);
3685 	if (IS_ERR(file)) {
3686 		ret = PTR_ERR(file);
3687 		goto err;
3688 	}
3689 
3690 	ret = __io_uring_add_tctx_node(ctx);
3691 	if (ret)
3692 		goto err_fput;
3693 	tctx = current->io_uring;
3694 
3695 	/*
3696 	 * Install ring fd as the very last thing, so we don't risk someone
3697 	 * having closed it before we finish setup
3698 	 */
3699 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3700 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3701 	else
3702 		ret = io_uring_install_fd(file);
3703 	if (ret < 0)
3704 		goto err_fput;
3705 
3706 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3707 	return ret;
3708 err:
3709 	io_ring_ctx_wait_and_kill(ctx);
3710 	return ret;
3711 err_fput:
3712 	fput(file);
3713 	return ret;
3714 }
3715 
3716 /*
3717  * Sets up an aio uring context, and returns the fd. Applications asks for a
3718  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3719  * params structure passed in.
3720  */
3721 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3722 {
3723 	struct io_uring_params p;
3724 	int i;
3725 
3726 	if (copy_from_user(&p, params, sizeof(p)))
3727 		return -EFAULT;
3728 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3729 		if (p.resv[i])
3730 			return -EINVAL;
3731 	}
3732 
3733 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3734 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3735 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3736 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3737 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3738 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3739 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3740 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3741 			IORING_SETUP_NO_SQARRAY))
3742 		return -EINVAL;
3743 
3744 	return io_uring_create(entries, &p, params);
3745 }
3746 
3747 static inline bool io_uring_allowed(void)
3748 {
3749 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3750 	kgid_t io_uring_group;
3751 
3752 	if (disabled == 2)
3753 		return false;
3754 
3755 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3756 		return true;
3757 
3758 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3759 	if (!gid_valid(io_uring_group))
3760 		return false;
3761 
3762 	return in_group_p(io_uring_group);
3763 }
3764 
3765 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3766 		struct io_uring_params __user *, params)
3767 {
3768 	if (!io_uring_allowed())
3769 		return -EPERM;
3770 
3771 	return io_uring_setup(entries, params);
3772 }
3773 
3774 static int __init io_uring_init(void)
3775 {
3776 	struct kmem_cache_args kmem_args = {
3777 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3778 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3779 	};
3780 
3781 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3782 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3783 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3784 } while (0)
3785 
3786 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3787 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3788 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3789 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3790 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3791 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3792 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3793 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3794 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3795 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3796 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3797 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3798 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3799 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3800 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3801 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3802 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3803 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3804 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3805 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3806 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3807 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3808 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3809 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3810 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3811 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3812 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3813 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3814 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3815 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3816 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3817 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3818 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3819 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3820 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3821 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3822 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3823 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3824 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3825 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3826 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3827 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3828 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3829 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3830 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3831 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3832 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3833 
3834 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3835 		     sizeof(struct io_uring_rsrc_update));
3836 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3837 		     sizeof(struct io_uring_rsrc_update2));
3838 
3839 	/* ->buf_index is u16 */
3840 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3841 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3842 		     offsetof(struct io_uring_buf_ring, tail));
3843 
3844 	/* should fit into one byte */
3845 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3846 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3847 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3848 
3849 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3850 
3851 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3852 
3853 	/* top 8bits are for internal use */
3854 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3855 
3856 	io_uring_optable_init();
3857 
3858 	/*
3859 	 * Allow user copy in the per-command field, which starts after the
3860 	 * file in io_kiocb and until the opcode field. The openat2 handling
3861 	 * requires copying in user memory into the io_kiocb object in that
3862 	 * range, and HARDENED_USERCOPY will complain if we haven't
3863 	 * correctly annotated this range.
3864 	 */
3865 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3866 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3867 				SLAB_TYPESAFE_BY_RCU);
3868 	io_buf_cachep = KMEM_CACHE(io_buffer,
3869 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3870 
3871 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3872 
3873 #ifdef CONFIG_SYSCTL
3874 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3875 #endif
3876 
3877 	return 0;
3878 };
3879 __initcall(io_uring_init);
3880