1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 #include "zcrx.h" 101 102 #include "timeout.h" 103 #include "poll.h" 104 #include "rw.h" 105 #include "alloc_cache.h" 106 #include "eventfd.h" 107 108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 109 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 110 111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 113 114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 118 REQ_F_ASYNC_DATA) 119 120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \ 121 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 #define IO_LOCAL_TW_DEFAULT_MAX 20 128 129 struct io_defer_entry { 130 struct list_head list; 131 struct io_kiocb *req; 132 }; 133 134 /* requests with any of those set should undergo io_disarm_next() */ 135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 136 137 /* 138 * No waiters. It's larger than any valid value of the tw counter 139 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 140 */ 141 #define IO_CQ_WAKE_INIT (-1U) 142 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 143 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 144 145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 146 struct io_uring_task *tctx, 147 bool cancel_all, 148 bool is_sqpoll_thread); 149 150 static void io_queue_sqe(struct io_kiocb *req); 151 static void __io_req_caches_free(struct io_ring_ctx *ctx); 152 153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 154 155 struct kmem_cache *req_cachep; 156 static struct workqueue_struct *iou_wq __ro_after_init; 157 158 static int __read_mostly sysctl_io_uring_disabled; 159 static int __read_mostly sysctl_io_uring_group = -1; 160 161 #ifdef CONFIG_SYSCTL 162 static const struct ctl_table kernel_io_uring_disabled_table[] = { 163 { 164 .procname = "io_uring_disabled", 165 .data = &sysctl_io_uring_disabled, 166 .maxlen = sizeof(sysctl_io_uring_disabled), 167 .mode = 0644, 168 .proc_handler = proc_dointvec_minmax, 169 .extra1 = SYSCTL_ZERO, 170 .extra2 = SYSCTL_TWO, 171 }, 172 { 173 .procname = "io_uring_group", 174 .data = &sysctl_io_uring_group, 175 .maxlen = sizeof(gid_t), 176 .mode = 0644, 177 .proc_handler = proc_dointvec, 178 }, 179 }; 180 #endif 181 182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 183 { 184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 185 } 186 187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 188 { 189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 190 } 191 192 static bool io_match_linked(struct io_kiocb *head) 193 { 194 struct io_kiocb *req; 195 196 io_for_each_link(req, head) { 197 if (req->flags & REQ_F_INFLIGHT) 198 return true; 199 } 200 return false; 201 } 202 203 /* 204 * As io_match_task() but protected against racing with linked timeouts. 205 * User must not hold timeout_lock. 206 */ 207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 208 bool cancel_all) 209 { 210 bool matched; 211 212 if (tctx && head->tctx != tctx) 213 return false; 214 if (cancel_all) 215 return true; 216 217 if (head->flags & REQ_F_LINK_TIMEOUT) { 218 struct io_ring_ctx *ctx = head->ctx; 219 220 /* protect against races with linked timeouts */ 221 raw_spin_lock_irq(&ctx->timeout_lock); 222 matched = io_match_linked(head); 223 raw_spin_unlock_irq(&ctx->timeout_lock); 224 } else { 225 matched = io_match_linked(head); 226 } 227 return matched; 228 } 229 230 static inline void req_fail_link_node(struct io_kiocb *req, int res) 231 { 232 req_set_fail(req); 233 io_req_set_res(req, res, 0); 234 } 235 236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 237 { 238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 239 } 240 241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 242 { 243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 244 245 complete(&ctx->ref_comp); 246 } 247 248 static __cold void io_fallback_req_func(struct work_struct *work) 249 { 250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 251 fallback_work.work); 252 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 253 struct io_kiocb *req, *tmp; 254 struct io_tw_state ts = {}; 255 256 percpu_ref_get(&ctx->refs); 257 mutex_lock(&ctx->uring_lock); 258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 259 req->io_task_work.func(req, ts); 260 io_submit_flush_completions(ctx); 261 mutex_unlock(&ctx->uring_lock); 262 percpu_ref_put(&ctx->refs); 263 } 264 265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 266 { 267 unsigned int hash_buckets; 268 int i; 269 270 do { 271 hash_buckets = 1U << bits; 272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 273 GFP_KERNEL_ACCOUNT); 274 if (table->hbs) 275 break; 276 if (bits == 1) 277 return -ENOMEM; 278 bits--; 279 } while (1); 280 281 table->hash_bits = bits; 282 for (i = 0; i < hash_buckets; i++) 283 INIT_HLIST_HEAD(&table->hbs[i].list); 284 return 0; 285 } 286 287 static void io_free_alloc_caches(struct io_ring_ctx *ctx) 288 { 289 io_alloc_cache_free(&ctx->apoll_cache, kfree); 290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free); 293 io_alloc_cache_free(&ctx->msg_cache, kfree); 294 io_futex_cache_free(ctx); 295 io_rsrc_cache_free(ctx); 296 } 297 298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 299 { 300 struct io_ring_ctx *ctx; 301 int hash_bits; 302 bool ret; 303 304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 305 if (!ctx) 306 return NULL; 307 308 xa_init(&ctx->io_bl_xa); 309 310 /* 311 * Use 5 bits less than the max cq entries, that should give us around 312 * 32 entries per hash list if totally full and uniformly spread, but 313 * don't keep too many buckets to not overconsume memory. 314 */ 315 hash_bits = ilog2(p->cq_entries) - 5; 316 hash_bits = clamp(hash_bits, 1, 8); 317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 ctx->hybrid_poll_time = LLONG_MAX; 325 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 326 init_waitqueue_head(&ctx->sqo_sq_wait); 327 INIT_LIST_HEAD(&ctx->sqd_list); 328 INIT_LIST_HEAD(&ctx->cq_overflow_list); 329 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 330 sizeof(struct async_poll), 0); 331 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct io_async_msghdr), 333 offsetof(struct io_async_msghdr, clear)); 334 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 335 sizeof(struct io_async_rw), 336 offsetof(struct io_async_rw, clear)); 337 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX, 338 sizeof(struct io_async_cmd), 339 sizeof(struct io_async_cmd)); 340 spin_lock_init(&ctx->msg_lock); 341 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 342 sizeof(struct io_kiocb), 0); 343 ret |= io_futex_cache_init(ctx); 344 ret |= io_rsrc_cache_init(ctx); 345 if (ret) 346 goto free_ref; 347 init_completion(&ctx->ref_comp); 348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 349 mutex_init(&ctx->uring_lock); 350 init_waitqueue_head(&ctx->cq_wait); 351 init_waitqueue_head(&ctx->poll_wq); 352 spin_lock_init(&ctx->completion_lock); 353 raw_spin_lock_init(&ctx->timeout_lock); 354 INIT_WQ_LIST(&ctx->iopoll_list); 355 INIT_LIST_HEAD(&ctx->defer_list); 356 INIT_LIST_HEAD(&ctx->timeout_list); 357 INIT_LIST_HEAD(&ctx->ltimeout_list); 358 init_llist_head(&ctx->work_llist); 359 INIT_LIST_HEAD(&ctx->tctx_list); 360 ctx->submit_state.free_list.next = NULL; 361 INIT_HLIST_HEAD(&ctx->waitid_list); 362 xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC); 363 #ifdef CONFIG_FUTEX 364 INIT_HLIST_HEAD(&ctx->futex_list); 365 #endif 366 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 367 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 368 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 369 io_napi_init(ctx); 370 mutex_init(&ctx->mmap_lock); 371 372 return ctx; 373 374 free_ref: 375 percpu_ref_exit(&ctx->refs); 376 err: 377 io_free_alloc_caches(ctx); 378 kvfree(ctx->cancel_table.hbs); 379 xa_destroy(&ctx->io_bl_xa); 380 kfree(ctx); 381 return NULL; 382 } 383 384 static void io_clean_op(struct io_kiocb *req) 385 { 386 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED)) 387 io_kbuf_drop_legacy(req); 388 389 if (req->flags & REQ_F_NEED_CLEANUP) { 390 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 391 392 if (def->cleanup) 393 def->cleanup(req); 394 } 395 if ((req->flags & REQ_F_POLLED) && req->apoll) { 396 kfree(req->apoll->double_poll); 397 kfree(req->apoll); 398 req->apoll = NULL; 399 } 400 if (req->flags & REQ_F_INFLIGHT) 401 atomic_dec(&req->tctx->inflight_tracked); 402 if (req->flags & REQ_F_CREDS) 403 put_cred(req->creds); 404 if (req->flags & REQ_F_ASYNC_DATA) { 405 kfree(req->async_data); 406 req->async_data = NULL; 407 } 408 req->flags &= ~IO_REQ_CLEAN_FLAGS; 409 } 410 411 static inline void io_req_track_inflight(struct io_kiocb *req) 412 { 413 if (!(req->flags & REQ_F_INFLIGHT)) { 414 req->flags |= REQ_F_INFLIGHT; 415 atomic_inc(&req->tctx->inflight_tracked); 416 } 417 } 418 419 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 420 { 421 if (WARN_ON_ONCE(!req->link)) 422 return NULL; 423 424 req->flags &= ~REQ_F_ARM_LTIMEOUT; 425 req->flags |= REQ_F_LINK_TIMEOUT; 426 427 /* linked timeouts should have two refs once prep'ed */ 428 io_req_set_refcount(req); 429 __io_req_set_refcount(req->link, 2); 430 return req->link; 431 } 432 433 static void io_prep_async_work(struct io_kiocb *req) 434 { 435 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 436 struct io_ring_ctx *ctx = req->ctx; 437 438 if (!(req->flags & REQ_F_CREDS)) { 439 req->flags |= REQ_F_CREDS; 440 req->creds = get_current_cred(); 441 } 442 443 req->work.list.next = NULL; 444 atomic_set(&req->work.flags, 0); 445 if (req->flags & REQ_F_FORCE_ASYNC) 446 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 447 448 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 449 req->flags |= io_file_get_flags(req->file); 450 451 if (req->file && (req->flags & REQ_F_ISREG)) { 452 bool should_hash = def->hash_reg_file; 453 454 /* don't serialize this request if the fs doesn't need it */ 455 if (should_hash && (req->file->f_flags & O_DIRECT) && 456 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 457 should_hash = false; 458 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 459 io_wq_hash_work(&req->work, file_inode(req->file)); 460 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 461 if (def->unbound_nonreg_file) 462 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 463 } 464 } 465 466 static void io_prep_async_link(struct io_kiocb *req) 467 { 468 struct io_kiocb *cur; 469 470 if (req->flags & REQ_F_LINK_TIMEOUT) { 471 struct io_ring_ctx *ctx = req->ctx; 472 473 raw_spin_lock_irq(&ctx->timeout_lock); 474 io_for_each_link(cur, req) 475 io_prep_async_work(cur); 476 raw_spin_unlock_irq(&ctx->timeout_lock); 477 } else { 478 io_for_each_link(cur, req) 479 io_prep_async_work(cur); 480 } 481 } 482 483 static void io_queue_iowq(struct io_kiocb *req) 484 { 485 struct io_uring_task *tctx = req->tctx; 486 487 BUG_ON(!tctx); 488 489 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 490 io_req_task_queue_fail(req, -ECANCELED); 491 return; 492 } 493 494 /* init ->work of the whole link before punting */ 495 io_prep_async_link(req); 496 497 /* 498 * Not expected to happen, but if we do have a bug where this _can_ 499 * happen, catch it here and ensure the request is marked as 500 * canceled. That will make io-wq go through the usual work cancel 501 * procedure rather than attempt to run this request (or create a new 502 * worker for it). 503 */ 504 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 505 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 506 507 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 508 io_wq_enqueue(tctx->io_wq, &req->work); 509 } 510 511 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw) 512 { 513 io_queue_iowq(req); 514 } 515 516 void io_req_queue_iowq(struct io_kiocb *req) 517 { 518 req->io_task_work.func = io_req_queue_iowq_tw; 519 io_req_task_work_add(req); 520 } 521 522 static unsigned io_linked_nr(struct io_kiocb *req) 523 { 524 struct io_kiocb *tmp; 525 unsigned nr = 0; 526 527 io_for_each_link(tmp, req) 528 nr++; 529 return nr; 530 } 531 532 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) 533 { 534 bool drain_seen = false, first = true; 535 536 lockdep_assert_held(&ctx->uring_lock); 537 __io_req_caches_free(ctx); 538 539 while (!list_empty(&ctx->defer_list)) { 540 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 541 struct io_defer_entry, list); 542 543 drain_seen |= de->req->flags & REQ_F_IO_DRAIN; 544 if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained) 545 return; 546 547 list_del_init(&de->list); 548 ctx->nr_drained -= io_linked_nr(de->req); 549 io_req_task_queue(de->req); 550 kfree(de); 551 first = false; 552 } 553 } 554 555 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 556 { 557 if (ctx->poll_activated) 558 io_poll_wq_wake(ctx); 559 if (ctx->off_timeout_used) 560 io_flush_timeouts(ctx); 561 if (ctx->has_evfd) 562 io_eventfd_signal(ctx, true); 563 } 564 565 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 566 { 567 if (!ctx->lockless_cq) 568 spin_lock(&ctx->completion_lock); 569 } 570 571 static inline void io_cq_lock(struct io_ring_ctx *ctx) 572 __acquires(ctx->completion_lock) 573 { 574 spin_lock(&ctx->completion_lock); 575 } 576 577 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 578 { 579 io_commit_cqring(ctx); 580 if (!ctx->task_complete) { 581 if (!ctx->lockless_cq) 582 spin_unlock(&ctx->completion_lock); 583 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 584 if (!ctx->syscall_iopoll) 585 io_cqring_wake(ctx); 586 } 587 io_commit_cqring_flush(ctx); 588 } 589 590 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 591 __releases(ctx->completion_lock) 592 { 593 io_commit_cqring(ctx); 594 spin_unlock(&ctx->completion_lock); 595 io_cqring_wake(ctx); 596 io_commit_cqring_flush(ctx); 597 } 598 599 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 600 { 601 size_t cqe_size = sizeof(struct io_uring_cqe); 602 603 lockdep_assert_held(&ctx->uring_lock); 604 605 /* don't abort if we're dying, entries must get freed */ 606 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 607 return; 608 609 if (ctx->flags & IORING_SETUP_CQE32) 610 cqe_size <<= 1; 611 612 io_cq_lock(ctx); 613 while (!list_empty(&ctx->cq_overflow_list)) { 614 struct io_uring_cqe *cqe; 615 struct io_overflow_cqe *ocqe; 616 617 ocqe = list_first_entry(&ctx->cq_overflow_list, 618 struct io_overflow_cqe, list); 619 620 if (!dying) { 621 if (!io_get_cqe_overflow(ctx, &cqe, true)) 622 break; 623 memcpy(cqe, &ocqe->cqe, cqe_size); 624 } 625 list_del(&ocqe->list); 626 kfree(ocqe); 627 628 /* 629 * For silly syzbot cases that deliberately overflow by huge 630 * amounts, check if we need to resched and drop and 631 * reacquire the locks if so. Nothing real would ever hit this. 632 * Ideally we'd have a non-posting unlock for this, but hard 633 * to care for a non-real case. 634 */ 635 if (need_resched()) { 636 ctx->cqe_sentinel = ctx->cqe_cached; 637 io_cq_unlock_post(ctx); 638 mutex_unlock(&ctx->uring_lock); 639 cond_resched(); 640 mutex_lock(&ctx->uring_lock); 641 io_cq_lock(ctx); 642 } 643 } 644 645 if (list_empty(&ctx->cq_overflow_list)) { 646 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 647 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 648 } 649 io_cq_unlock_post(ctx); 650 } 651 652 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 653 { 654 if (ctx->rings) 655 __io_cqring_overflow_flush(ctx, true); 656 } 657 658 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 659 { 660 mutex_lock(&ctx->uring_lock); 661 __io_cqring_overflow_flush(ctx, false); 662 mutex_unlock(&ctx->uring_lock); 663 } 664 665 /* must to be called somewhat shortly after putting a request */ 666 static inline void io_put_task(struct io_kiocb *req) 667 { 668 struct io_uring_task *tctx = req->tctx; 669 670 if (likely(tctx->task == current)) { 671 tctx->cached_refs++; 672 } else { 673 percpu_counter_sub(&tctx->inflight, 1); 674 if (unlikely(atomic_read(&tctx->in_cancel))) 675 wake_up(&tctx->wait); 676 put_task_struct(tctx->task); 677 } 678 } 679 680 void io_task_refs_refill(struct io_uring_task *tctx) 681 { 682 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 683 684 percpu_counter_add(&tctx->inflight, refill); 685 refcount_add(refill, ¤t->usage); 686 tctx->cached_refs += refill; 687 } 688 689 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 690 { 691 struct io_uring_task *tctx = task->io_uring; 692 unsigned int refs = tctx->cached_refs; 693 694 if (refs) { 695 tctx->cached_refs = 0; 696 percpu_counter_sub(&tctx->inflight, refs); 697 put_task_struct_many(task, refs); 698 } 699 } 700 701 static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx, 702 struct io_overflow_cqe *ocqe) 703 { 704 lockdep_assert_held(&ctx->completion_lock); 705 706 if (!ocqe) { 707 struct io_rings *r = ctx->rings; 708 709 /* 710 * If we're in ring overflow flush mode, or in task cancel mode, 711 * or cannot allocate an overflow entry, then we need to drop it 712 * on the floor. 713 */ 714 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 715 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 716 return false; 717 } 718 if (list_empty(&ctx->cq_overflow_list)) { 719 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 720 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 721 722 } 723 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 724 return true; 725 } 726 727 static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx, 728 struct io_cqe *cqe, 729 struct io_big_cqe *big_cqe, gfp_t gfp) 730 { 731 struct io_overflow_cqe *ocqe; 732 size_t ocq_size = sizeof(struct io_overflow_cqe); 733 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 734 735 if (is_cqe32) 736 ocq_size += sizeof(struct io_uring_cqe); 737 738 ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT); 739 trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe); 740 if (ocqe) { 741 ocqe->cqe.user_data = cqe->user_data; 742 ocqe->cqe.res = cqe->res; 743 ocqe->cqe.flags = cqe->flags; 744 if (is_cqe32 && big_cqe) { 745 ocqe->cqe.big_cqe[0] = big_cqe->extra1; 746 ocqe->cqe.big_cqe[1] = big_cqe->extra2; 747 } 748 } 749 if (big_cqe) 750 big_cqe->extra1 = big_cqe->extra2 = 0; 751 return ocqe; 752 } 753 754 /* 755 * writes to the cq entry need to come after reading head; the 756 * control dependency is enough as we're using WRITE_ONCE to 757 * fill the cq entry 758 */ 759 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 760 { 761 struct io_rings *rings = ctx->rings; 762 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 763 unsigned int free, queued, len; 764 765 /* 766 * Posting into the CQ when there are pending overflowed CQEs may break 767 * ordering guarantees, which will affect links, F_MORE users and more. 768 * Force overflow the completion. 769 */ 770 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 771 return false; 772 773 /* userspace may cheat modifying the tail, be safe and do min */ 774 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 775 free = ctx->cq_entries - queued; 776 /* we need a contiguous range, limit based on the current array offset */ 777 len = min(free, ctx->cq_entries - off); 778 if (!len) 779 return false; 780 781 if (ctx->flags & IORING_SETUP_CQE32) { 782 off <<= 1; 783 len <<= 1; 784 } 785 786 ctx->cqe_cached = &rings->cqes[off]; 787 ctx->cqe_sentinel = ctx->cqe_cached + len; 788 return true; 789 } 790 791 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 792 u32 cflags) 793 { 794 struct io_uring_cqe *cqe; 795 796 if (likely(io_get_cqe(ctx, &cqe))) { 797 WRITE_ONCE(cqe->user_data, user_data); 798 WRITE_ONCE(cqe->res, res); 799 WRITE_ONCE(cqe->flags, cflags); 800 801 if (ctx->flags & IORING_SETUP_CQE32) { 802 WRITE_ONCE(cqe->big_cqe[0], 0); 803 WRITE_ONCE(cqe->big_cqe[1], 0); 804 } 805 806 trace_io_uring_complete(ctx, NULL, cqe); 807 return true; 808 } 809 return false; 810 } 811 812 static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags) 813 { 814 return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags }; 815 } 816 817 static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe, 818 struct io_big_cqe *big_cqe) 819 { 820 struct io_overflow_cqe *ocqe; 821 822 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL); 823 spin_lock(&ctx->completion_lock); 824 io_cqring_add_overflow(ctx, ocqe); 825 spin_unlock(&ctx->completion_lock); 826 } 827 828 static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx, 829 struct io_cqe *cqe, 830 struct io_big_cqe *big_cqe) 831 { 832 struct io_overflow_cqe *ocqe; 833 834 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC); 835 return io_cqring_add_overflow(ctx, ocqe); 836 } 837 838 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 839 { 840 bool filled; 841 842 io_cq_lock(ctx); 843 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 844 if (unlikely(!filled)) { 845 struct io_cqe cqe = io_init_cqe(user_data, res, cflags); 846 847 filled = io_cqe_overflow_locked(ctx, &cqe, NULL); 848 } 849 io_cq_unlock_post(ctx); 850 return filled; 851 } 852 853 /* 854 * Must be called from inline task_work so we now a flush will happen later, 855 * and obviously with ctx->uring_lock held (tw always has that). 856 */ 857 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 858 { 859 lockdep_assert_held(&ctx->uring_lock); 860 lockdep_assert(ctx->lockless_cq); 861 862 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 863 struct io_cqe cqe = io_init_cqe(user_data, res, cflags); 864 865 io_cqe_overflow(ctx, &cqe, NULL); 866 } 867 ctx->submit_state.cq_flush = true; 868 } 869 870 /* 871 * A helper for multishot requests posting additional CQEs. 872 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 873 */ 874 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 875 { 876 struct io_ring_ctx *ctx = req->ctx; 877 bool posted; 878 879 /* 880 * If multishot has already posted deferred completions, ensure that 881 * those are flushed first before posting this one. If not, CQEs 882 * could get reordered. 883 */ 884 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 885 __io_submit_flush_completions(ctx); 886 887 lockdep_assert(!io_wq_current_is_worker()); 888 lockdep_assert_held(&ctx->uring_lock); 889 890 if (!ctx->lockless_cq) { 891 spin_lock(&ctx->completion_lock); 892 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 893 spin_unlock(&ctx->completion_lock); 894 } else { 895 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 896 } 897 898 ctx->submit_state.cq_flush = true; 899 return posted; 900 } 901 902 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 903 { 904 struct io_ring_ctx *ctx = req->ctx; 905 bool completed = true; 906 907 /* 908 * All execution paths but io-wq use the deferred completions by 909 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 910 */ 911 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 912 return; 913 914 /* 915 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 916 * the submitter task context, IOPOLL protects with uring_lock. 917 */ 918 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) { 919 defer_complete: 920 req->io_task_work.func = io_req_task_complete; 921 io_req_task_work_add(req); 922 return; 923 } 924 925 io_cq_lock(ctx); 926 if (!(req->flags & REQ_F_CQE_SKIP)) 927 completed = io_fill_cqe_req(ctx, req); 928 io_cq_unlock_post(ctx); 929 930 if (!completed) 931 goto defer_complete; 932 933 /* 934 * We don't free the request here because we know it's called from 935 * io-wq only, which holds a reference, so it cannot be the last put. 936 */ 937 req_ref_put(req); 938 } 939 940 void io_req_defer_failed(struct io_kiocb *req, s32 res) 941 __must_hold(&ctx->uring_lock) 942 { 943 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 944 945 lockdep_assert_held(&req->ctx->uring_lock); 946 947 req_set_fail(req); 948 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 949 if (def->fail) 950 def->fail(req); 951 io_req_complete_defer(req); 952 } 953 954 /* 955 * A request might get retired back into the request caches even before opcode 956 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 957 * Because of that, io_alloc_req() should be called only under ->uring_lock 958 * and with extra caution to not get a request that is still worked on. 959 */ 960 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 961 __must_hold(&ctx->uring_lock) 962 { 963 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO; 964 void *reqs[IO_REQ_ALLOC_BATCH]; 965 int ret; 966 967 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 968 969 /* 970 * Bulk alloc is all-or-nothing. If we fail to get a batch, 971 * retry single alloc to be on the safe side. 972 */ 973 if (unlikely(ret <= 0)) { 974 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 975 if (!reqs[0]) 976 return false; 977 ret = 1; 978 } 979 980 percpu_ref_get_many(&ctx->refs, ret); 981 ctx->nr_req_allocated += ret; 982 983 while (ret--) { 984 struct io_kiocb *req = reqs[ret]; 985 986 io_req_add_to_cache(req, ctx); 987 } 988 return true; 989 } 990 991 __cold void io_free_req(struct io_kiocb *req) 992 { 993 /* refs were already put, restore them for io_req_task_complete() */ 994 req->flags &= ~REQ_F_REFCOUNT; 995 /* we only want to free it, don't post CQEs */ 996 req->flags |= REQ_F_CQE_SKIP; 997 req->io_task_work.func = io_req_task_complete; 998 io_req_task_work_add(req); 999 } 1000 1001 static void __io_req_find_next_prep(struct io_kiocb *req) 1002 { 1003 struct io_ring_ctx *ctx = req->ctx; 1004 1005 spin_lock(&ctx->completion_lock); 1006 io_disarm_next(req); 1007 spin_unlock(&ctx->completion_lock); 1008 } 1009 1010 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1011 { 1012 struct io_kiocb *nxt; 1013 1014 /* 1015 * If LINK is set, we have dependent requests in this chain. If we 1016 * didn't fail this request, queue the first one up, moving any other 1017 * dependencies to the next request. In case of failure, fail the rest 1018 * of the chain. 1019 */ 1020 if (unlikely(req->flags & IO_DISARM_MASK)) 1021 __io_req_find_next_prep(req); 1022 nxt = req->link; 1023 req->link = NULL; 1024 return nxt; 1025 } 1026 1027 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw) 1028 { 1029 if (!ctx) 1030 return; 1031 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1032 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1033 1034 io_submit_flush_completions(ctx); 1035 mutex_unlock(&ctx->uring_lock); 1036 percpu_ref_put(&ctx->refs); 1037 } 1038 1039 /* 1040 * Run queued task_work, returning the number of entries processed in *count. 1041 * If more entries than max_entries are available, stop processing once this 1042 * is reached and return the rest of the list. 1043 */ 1044 struct llist_node *io_handle_tw_list(struct llist_node *node, 1045 unsigned int *count, 1046 unsigned int max_entries) 1047 { 1048 struct io_ring_ctx *ctx = NULL; 1049 struct io_tw_state ts = { }; 1050 1051 do { 1052 struct llist_node *next = node->next; 1053 struct io_kiocb *req = container_of(node, struct io_kiocb, 1054 io_task_work.node); 1055 1056 if (req->ctx != ctx) { 1057 ctx_flush_and_put(ctx, ts); 1058 ctx = req->ctx; 1059 mutex_lock(&ctx->uring_lock); 1060 percpu_ref_get(&ctx->refs); 1061 } 1062 INDIRECT_CALL_2(req->io_task_work.func, 1063 io_poll_task_func, io_req_rw_complete, 1064 req, ts); 1065 node = next; 1066 (*count)++; 1067 if (unlikely(need_resched())) { 1068 ctx_flush_and_put(ctx, ts); 1069 ctx = NULL; 1070 cond_resched(); 1071 } 1072 } while (node && *count < max_entries); 1073 1074 ctx_flush_and_put(ctx, ts); 1075 return node; 1076 } 1077 1078 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1079 { 1080 struct io_ring_ctx *last_ctx = NULL; 1081 struct io_kiocb *req; 1082 1083 while (node) { 1084 req = container_of(node, struct io_kiocb, io_task_work.node); 1085 node = node->next; 1086 if (last_ctx != req->ctx) { 1087 if (last_ctx) { 1088 if (sync) 1089 flush_delayed_work(&last_ctx->fallback_work); 1090 percpu_ref_put(&last_ctx->refs); 1091 } 1092 last_ctx = req->ctx; 1093 percpu_ref_get(&last_ctx->refs); 1094 } 1095 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist)) 1096 schedule_delayed_work(&last_ctx->fallback_work, 1); 1097 } 1098 1099 if (last_ctx) { 1100 if (sync) 1101 flush_delayed_work(&last_ctx->fallback_work); 1102 percpu_ref_put(&last_ctx->refs); 1103 } 1104 } 1105 1106 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1107 { 1108 struct llist_node *node = llist_del_all(&tctx->task_list); 1109 1110 __io_fallback_tw(node, sync); 1111 } 1112 1113 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1114 unsigned int max_entries, 1115 unsigned int *count) 1116 { 1117 struct llist_node *node; 1118 1119 if (unlikely(current->flags & PF_EXITING)) { 1120 io_fallback_tw(tctx, true); 1121 return NULL; 1122 } 1123 1124 node = llist_del_all(&tctx->task_list); 1125 if (node) { 1126 node = llist_reverse_order(node); 1127 node = io_handle_tw_list(node, count, max_entries); 1128 } 1129 1130 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1131 if (unlikely(atomic_read(&tctx->in_cancel))) 1132 io_uring_drop_tctx_refs(current); 1133 1134 trace_io_uring_task_work_run(tctx, *count); 1135 return node; 1136 } 1137 1138 void tctx_task_work(struct callback_head *cb) 1139 { 1140 struct io_uring_task *tctx; 1141 struct llist_node *ret; 1142 unsigned int count = 0; 1143 1144 tctx = container_of(cb, struct io_uring_task, task_work); 1145 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1146 /* can't happen */ 1147 WARN_ON_ONCE(ret); 1148 } 1149 1150 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1151 { 1152 struct io_ring_ctx *ctx = req->ctx; 1153 unsigned nr_wait, nr_tw, nr_tw_prev; 1154 struct llist_node *head; 1155 1156 /* See comment above IO_CQ_WAKE_INIT */ 1157 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1158 1159 /* 1160 * We don't know how many reuqests is there in the link and whether 1161 * they can even be queued lazily, fall back to non-lazy. 1162 */ 1163 if (req->flags & IO_REQ_LINK_FLAGS) 1164 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1165 1166 guard(rcu)(); 1167 1168 head = READ_ONCE(ctx->work_llist.first); 1169 do { 1170 nr_tw_prev = 0; 1171 if (head) { 1172 struct io_kiocb *first_req = container_of(head, 1173 struct io_kiocb, 1174 io_task_work.node); 1175 /* 1176 * Might be executed at any moment, rely on 1177 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1178 */ 1179 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1180 } 1181 1182 /* 1183 * Theoretically, it can overflow, but that's fine as one of 1184 * previous adds should've tried to wake the task. 1185 */ 1186 nr_tw = nr_tw_prev + 1; 1187 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1188 nr_tw = IO_CQ_WAKE_FORCE; 1189 1190 req->nr_tw = nr_tw; 1191 req->io_task_work.node.next = head; 1192 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1193 &req->io_task_work.node)); 1194 1195 /* 1196 * cmpxchg implies a full barrier, which pairs with the barrier 1197 * in set_current_state() on the io_cqring_wait() side. It's used 1198 * to ensure that either we see updated ->cq_wait_nr, or waiters 1199 * going to sleep will observe the work added to the list, which 1200 * is similar to the wait/wawke task state sync. 1201 */ 1202 1203 if (!head) { 1204 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1205 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1206 if (ctx->has_evfd) 1207 io_eventfd_signal(ctx, false); 1208 } 1209 1210 nr_wait = atomic_read(&ctx->cq_wait_nr); 1211 /* not enough or no one is waiting */ 1212 if (nr_tw < nr_wait) 1213 return; 1214 /* the previous add has already woken it up */ 1215 if (nr_tw_prev >= nr_wait) 1216 return; 1217 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1218 } 1219 1220 static void io_req_normal_work_add(struct io_kiocb *req) 1221 { 1222 struct io_uring_task *tctx = req->tctx; 1223 struct io_ring_ctx *ctx = req->ctx; 1224 1225 /* task_work already pending, we're done */ 1226 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1227 return; 1228 1229 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1230 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1231 1232 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1233 if (ctx->flags & IORING_SETUP_SQPOLL) { 1234 __set_notify_signal(tctx->task); 1235 return; 1236 } 1237 1238 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1239 return; 1240 1241 io_fallback_tw(tctx, false); 1242 } 1243 1244 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1245 { 1246 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1247 io_req_local_work_add(req, flags); 1248 else 1249 io_req_normal_work_add(req); 1250 } 1251 1252 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags) 1253 { 1254 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1255 return; 1256 __io_req_task_work_add(req, flags); 1257 } 1258 1259 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1260 { 1261 struct llist_node *node = llist_del_all(&ctx->work_llist); 1262 1263 __io_fallback_tw(node, false); 1264 node = llist_del_all(&ctx->retry_llist); 1265 __io_fallback_tw(node, false); 1266 } 1267 1268 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1269 int min_events) 1270 { 1271 if (!io_local_work_pending(ctx)) 1272 return false; 1273 if (events < min_events) 1274 return true; 1275 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1276 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1277 return false; 1278 } 1279 1280 static int __io_run_local_work_loop(struct llist_node **node, 1281 io_tw_token_t tw, 1282 int events) 1283 { 1284 int ret = 0; 1285 1286 while (*node) { 1287 struct llist_node *next = (*node)->next; 1288 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1289 io_task_work.node); 1290 INDIRECT_CALL_2(req->io_task_work.func, 1291 io_poll_task_func, io_req_rw_complete, 1292 req, tw); 1293 *node = next; 1294 if (++ret >= events) 1295 break; 1296 } 1297 1298 return ret; 1299 } 1300 1301 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw, 1302 int min_events, int max_events) 1303 { 1304 struct llist_node *node; 1305 unsigned int loops = 0; 1306 int ret = 0; 1307 1308 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1309 return -EEXIST; 1310 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1311 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1312 again: 1313 min_events -= ret; 1314 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events); 1315 if (ctx->retry_llist.first) 1316 goto retry_done; 1317 1318 /* 1319 * llists are in reverse order, flip it back the right way before 1320 * running the pending items. 1321 */ 1322 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1323 ret += __io_run_local_work_loop(&node, tw, max_events - ret); 1324 ctx->retry_llist.first = node; 1325 loops++; 1326 1327 if (io_run_local_work_continue(ctx, ret, min_events)) 1328 goto again; 1329 retry_done: 1330 io_submit_flush_completions(ctx); 1331 if (io_run_local_work_continue(ctx, ret, min_events)) 1332 goto again; 1333 1334 trace_io_uring_local_work_run(ctx, ret, loops); 1335 return ret; 1336 } 1337 1338 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1339 int min_events) 1340 { 1341 struct io_tw_state ts = {}; 1342 1343 if (!io_local_work_pending(ctx)) 1344 return 0; 1345 return __io_run_local_work(ctx, ts, min_events, 1346 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1347 } 1348 1349 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1350 int max_events) 1351 { 1352 struct io_tw_state ts = {}; 1353 int ret; 1354 1355 mutex_lock(&ctx->uring_lock); 1356 ret = __io_run_local_work(ctx, ts, min_events, max_events); 1357 mutex_unlock(&ctx->uring_lock); 1358 return ret; 1359 } 1360 1361 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw) 1362 { 1363 io_tw_lock(req->ctx, tw); 1364 io_req_defer_failed(req, req->cqe.res); 1365 } 1366 1367 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw) 1368 { 1369 io_tw_lock(req->ctx, tw); 1370 if (unlikely(io_should_terminate_tw())) 1371 io_req_defer_failed(req, -EFAULT); 1372 else if (req->flags & REQ_F_FORCE_ASYNC) 1373 io_queue_iowq(req); 1374 else 1375 io_queue_sqe(req); 1376 } 1377 1378 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1379 { 1380 io_req_set_res(req, ret, 0); 1381 req->io_task_work.func = io_req_task_cancel; 1382 io_req_task_work_add(req); 1383 } 1384 1385 void io_req_task_queue(struct io_kiocb *req) 1386 { 1387 req->io_task_work.func = io_req_task_submit; 1388 io_req_task_work_add(req); 1389 } 1390 1391 void io_queue_next(struct io_kiocb *req) 1392 { 1393 struct io_kiocb *nxt = io_req_find_next(req); 1394 1395 if (nxt) 1396 io_req_task_queue(nxt); 1397 } 1398 1399 static inline void io_req_put_rsrc_nodes(struct io_kiocb *req) 1400 { 1401 if (req->file_node) { 1402 io_put_rsrc_node(req->ctx, req->file_node); 1403 req->file_node = NULL; 1404 } 1405 if (req->flags & REQ_F_BUF_NODE) 1406 io_put_rsrc_node(req->ctx, req->buf_node); 1407 } 1408 1409 static void io_free_batch_list(struct io_ring_ctx *ctx, 1410 struct io_wq_work_node *node) 1411 __must_hold(&ctx->uring_lock) 1412 { 1413 do { 1414 struct io_kiocb *req = container_of(node, struct io_kiocb, 1415 comp_list); 1416 1417 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1418 if (req->flags & REQ_F_REISSUE) { 1419 node = req->comp_list.next; 1420 req->flags &= ~REQ_F_REISSUE; 1421 io_queue_iowq(req); 1422 continue; 1423 } 1424 if (req->flags & REQ_F_REFCOUNT) { 1425 node = req->comp_list.next; 1426 if (!req_ref_put_and_test(req)) 1427 continue; 1428 } 1429 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1430 struct async_poll *apoll = req->apoll; 1431 1432 if (apoll->double_poll) 1433 kfree(apoll->double_poll); 1434 io_cache_free(&ctx->apoll_cache, apoll); 1435 req->flags &= ~REQ_F_POLLED; 1436 } 1437 if (req->flags & IO_REQ_LINK_FLAGS) 1438 io_queue_next(req); 1439 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1440 io_clean_op(req); 1441 } 1442 io_put_file(req); 1443 io_req_put_rsrc_nodes(req); 1444 io_put_task(req); 1445 1446 node = req->comp_list.next; 1447 io_req_add_to_cache(req, ctx); 1448 } while (node); 1449 } 1450 1451 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1452 __must_hold(&ctx->uring_lock) 1453 { 1454 struct io_submit_state *state = &ctx->submit_state; 1455 struct io_wq_work_node *node; 1456 1457 __io_cq_lock(ctx); 1458 __wq_list_for_each(node, &state->compl_reqs) { 1459 struct io_kiocb *req = container_of(node, struct io_kiocb, 1460 comp_list); 1461 1462 /* 1463 * Requests marked with REQUEUE should not post a CQE, they 1464 * will go through the io-wq retry machinery and post one 1465 * later. 1466 */ 1467 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && 1468 unlikely(!io_fill_cqe_req(ctx, req))) { 1469 if (ctx->lockless_cq) 1470 io_cqe_overflow(ctx, &req->cqe, &req->big_cqe); 1471 else 1472 io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe); 1473 } 1474 } 1475 __io_cq_unlock_post(ctx); 1476 1477 if (!wq_list_empty(&state->compl_reqs)) { 1478 io_free_batch_list(ctx, state->compl_reqs.first); 1479 INIT_WQ_LIST(&state->compl_reqs); 1480 } 1481 1482 if (unlikely(ctx->drain_active)) 1483 io_queue_deferred(ctx); 1484 1485 ctx->submit_state.cq_flush = false; 1486 } 1487 1488 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1489 { 1490 /* See comment at the top of this file */ 1491 smp_rmb(); 1492 return __io_cqring_events(ctx); 1493 } 1494 1495 /* 1496 * We can't just wait for polled events to come to us, we have to actively 1497 * find and complete them. 1498 */ 1499 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1500 { 1501 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1502 return; 1503 1504 mutex_lock(&ctx->uring_lock); 1505 while (!wq_list_empty(&ctx->iopoll_list)) { 1506 /* let it sleep and repeat later if can't complete a request */ 1507 if (io_do_iopoll(ctx, true) == 0) 1508 break; 1509 /* 1510 * Ensure we allow local-to-the-cpu processing to take place, 1511 * in this case we need to ensure that we reap all events. 1512 * Also let task_work, etc. to progress by releasing the mutex 1513 */ 1514 if (need_resched()) { 1515 mutex_unlock(&ctx->uring_lock); 1516 cond_resched(); 1517 mutex_lock(&ctx->uring_lock); 1518 } 1519 } 1520 mutex_unlock(&ctx->uring_lock); 1521 } 1522 1523 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events) 1524 { 1525 unsigned int nr_events = 0; 1526 unsigned long check_cq; 1527 1528 min_events = min(min_events, ctx->cq_entries); 1529 1530 lockdep_assert_held(&ctx->uring_lock); 1531 1532 if (!io_allowed_run_tw(ctx)) 1533 return -EEXIST; 1534 1535 check_cq = READ_ONCE(ctx->check_cq); 1536 if (unlikely(check_cq)) { 1537 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1538 __io_cqring_overflow_flush(ctx, false); 1539 /* 1540 * Similarly do not spin if we have not informed the user of any 1541 * dropped CQE. 1542 */ 1543 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1544 return -EBADR; 1545 } 1546 /* 1547 * Don't enter poll loop if we already have events pending. 1548 * If we do, we can potentially be spinning for commands that 1549 * already triggered a CQE (eg in error). 1550 */ 1551 if (io_cqring_events(ctx)) 1552 return 0; 1553 1554 do { 1555 int ret = 0; 1556 1557 /* 1558 * If a submit got punted to a workqueue, we can have the 1559 * application entering polling for a command before it gets 1560 * issued. That app will hold the uring_lock for the duration 1561 * of the poll right here, so we need to take a breather every 1562 * now and then to ensure that the issue has a chance to add 1563 * the poll to the issued list. Otherwise we can spin here 1564 * forever, while the workqueue is stuck trying to acquire the 1565 * very same mutex. 1566 */ 1567 if (wq_list_empty(&ctx->iopoll_list) || 1568 io_task_work_pending(ctx)) { 1569 u32 tail = ctx->cached_cq_tail; 1570 1571 (void) io_run_local_work_locked(ctx, min_events); 1572 1573 if (task_work_pending(current) || 1574 wq_list_empty(&ctx->iopoll_list)) { 1575 mutex_unlock(&ctx->uring_lock); 1576 io_run_task_work(); 1577 mutex_lock(&ctx->uring_lock); 1578 } 1579 /* some requests don't go through iopoll_list */ 1580 if (tail != ctx->cached_cq_tail || 1581 wq_list_empty(&ctx->iopoll_list)) 1582 break; 1583 } 1584 ret = io_do_iopoll(ctx, !min_events); 1585 if (unlikely(ret < 0)) 1586 return ret; 1587 1588 if (task_sigpending(current)) 1589 return -EINTR; 1590 if (need_resched()) 1591 break; 1592 1593 nr_events += ret; 1594 } while (nr_events < min_events); 1595 1596 return 0; 1597 } 1598 1599 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw) 1600 { 1601 io_req_complete_defer(req); 1602 } 1603 1604 /* 1605 * After the iocb has been issued, it's safe to be found on the poll list. 1606 * Adding the kiocb to the list AFTER submission ensures that we don't 1607 * find it from a io_do_iopoll() thread before the issuer is done 1608 * accessing the kiocb cookie. 1609 */ 1610 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1611 { 1612 struct io_ring_ctx *ctx = req->ctx; 1613 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1614 1615 /* workqueue context doesn't hold uring_lock, grab it now */ 1616 if (unlikely(needs_lock)) 1617 mutex_lock(&ctx->uring_lock); 1618 1619 /* 1620 * Track whether we have multiple files in our lists. This will impact 1621 * how we do polling eventually, not spinning if we're on potentially 1622 * different devices. 1623 */ 1624 if (wq_list_empty(&ctx->iopoll_list)) { 1625 ctx->poll_multi_queue = false; 1626 } else if (!ctx->poll_multi_queue) { 1627 struct io_kiocb *list_req; 1628 1629 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1630 comp_list); 1631 if (list_req->file != req->file) 1632 ctx->poll_multi_queue = true; 1633 } 1634 1635 /* 1636 * For fast devices, IO may have already completed. If it has, add 1637 * it to the front so we find it first. 1638 */ 1639 if (READ_ONCE(req->iopoll_completed)) 1640 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1641 else 1642 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1643 1644 if (unlikely(needs_lock)) { 1645 /* 1646 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1647 * in sq thread task context or in io worker task context. If 1648 * current task context is sq thread, we don't need to check 1649 * whether should wake up sq thread. 1650 */ 1651 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1652 wq_has_sleeper(&ctx->sq_data->wait)) 1653 wake_up(&ctx->sq_data->wait); 1654 1655 mutex_unlock(&ctx->uring_lock); 1656 } 1657 } 1658 1659 io_req_flags_t io_file_get_flags(struct file *file) 1660 { 1661 io_req_flags_t res = 0; 1662 1663 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1); 1664 1665 if (S_ISREG(file_inode(file)->i_mode)) 1666 res |= REQ_F_ISREG; 1667 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1668 res |= REQ_F_SUPPORT_NOWAIT; 1669 return res; 1670 } 1671 1672 static __cold void io_drain_req(struct io_kiocb *req) 1673 __must_hold(&ctx->uring_lock) 1674 { 1675 struct io_ring_ctx *ctx = req->ctx; 1676 bool drain = req->flags & IOSQE_IO_DRAIN; 1677 struct io_defer_entry *de; 1678 1679 de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT); 1680 if (!de) { 1681 io_req_defer_failed(req, -ENOMEM); 1682 return; 1683 } 1684 1685 io_prep_async_link(req); 1686 trace_io_uring_defer(req); 1687 de->req = req; 1688 1689 ctx->nr_drained += io_linked_nr(req); 1690 list_add_tail(&de->list, &ctx->defer_list); 1691 io_queue_deferred(ctx); 1692 if (!drain && list_empty(&ctx->defer_list)) 1693 ctx->drain_active = false; 1694 } 1695 1696 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1697 unsigned int issue_flags) 1698 { 1699 if (req->file || !def->needs_file) 1700 return true; 1701 1702 if (req->flags & REQ_F_FIXED_FILE) 1703 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1704 else 1705 req->file = io_file_get_normal(req, req->cqe.fd); 1706 1707 return !!req->file; 1708 } 1709 1710 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT) 1711 1712 static inline int __io_issue_sqe(struct io_kiocb *req, 1713 unsigned int issue_flags, 1714 const struct io_issue_def *def) 1715 { 1716 const struct cred *creds = NULL; 1717 struct io_kiocb *link = NULL; 1718 int ret; 1719 1720 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) { 1721 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred()) 1722 creds = override_creds(req->creds); 1723 if (req->flags & REQ_F_ARM_LTIMEOUT) 1724 link = __io_prep_linked_timeout(req); 1725 } 1726 1727 if (!def->audit_skip) 1728 audit_uring_entry(req->opcode); 1729 1730 ret = def->issue(req, issue_flags); 1731 1732 if (!def->audit_skip) 1733 audit_uring_exit(!ret, ret); 1734 1735 if (unlikely(creds || link)) { 1736 if (creds) 1737 revert_creds(creds); 1738 if (link) 1739 io_queue_linked_timeout(link); 1740 } 1741 1742 return ret; 1743 } 1744 1745 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1746 { 1747 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1748 int ret; 1749 1750 if (unlikely(!io_assign_file(req, def, issue_flags))) 1751 return -EBADF; 1752 1753 ret = __io_issue_sqe(req, issue_flags, def); 1754 1755 if (ret == IOU_COMPLETE) { 1756 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1757 io_req_complete_defer(req); 1758 else 1759 io_req_complete_post(req, issue_flags); 1760 1761 return 0; 1762 } 1763 1764 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1765 ret = 0; 1766 1767 /* If the op doesn't have a file, we're not polling for it */ 1768 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1769 io_iopoll_req_issued(req, issue_flags); 1770 } 1771 return ret; 1772 } 1773 1774 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw) 1775 { 1776 const unsigned int issue_flags = IO_URING_F_NONBLOCK | 1777 IO_URING_F_MULTISHOT | 1778 IO_URING_F_COMPLETE_DEFER; 1779 int ret; 1780 1781 io_tw_lock(req->ctx, tw); 1782 1783 WARN_ON_ONCE(!req->file); 1784 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL)) 1785 return -EFAULT; 1786 1787 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]); 1788 1789 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE); 1790 return ret; 1791 } 1792 1793 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1794 { 1795 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1796 struct io_kiocb *nxt = NULL; 1797 1798 if (req_ref_put_and_test_atomic(req)) { 1799 if (req->flags & IO_REQ_LINK_FLAGS) 1800 nxt = io_req_find_next(req); 1801 io_free_req(req); 1802 } 1803 return nxt ? &nxt->work : NULL; 1804 } 1805 1806 void io_wq_submit_work(struct io_wq_work *work) 1807 { 1808 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1809 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1810 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1811 bool needs_poll = false; 1812 int ret = 0, err = -ECANCELED; 1813 1814 /* one will be dropped by io_wq_free_work() after returning to io-wq */ 1815 if (!(req->flags & REQ_F_REFCOUNT)) 1816 __io_req_set_refcount(req, 2); 1817 else 1818 req_ref_get(req); 1819 1820 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1821 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1822 fail: 1823 io_req_task_queue_fail(req, err); 1824 return; 1825 } 1826 if (!io_assign_file(req, def, issue_flags)) { 1827 err = -EBADF; 1828 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1829 goto fail; 1830 } 1831 1832 /* 1833 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1834 * submitter task context. Final request completions are handed to the 1835 * right context, however this is not the case of auxiliary CQEs, 1836 * which is the main mean of operation for multishot requests. 1837 * Don't allow any multishot execution from io-wq. It's more restrictive 1838 * than necessary and also cleaner. 1839 */ 1840 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) { 1841 err = -EBADFD; 1842 if (!io_file_can_poll(req)) 1843 goto fail; 1844 if (req->file->f_flags & O_NONBLOCK || 1845 req->file->f_mode & FMODE_NOWAIT) { 1846 err = -ECANCELED; 1847 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1848 goto fail; 1849 return; 1850 } else { 1851 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT); 1852 } 1853 } 1854 1855 if (req->flags & REQ_F_FORCE_ASYNC) { 1856 bool opcode_poll = def->pollin || def->pollout; 1857 1858 if (opcode_poll && io_file_can_poll(req)) { 1859 needs_poll = true; 1860 issue_flags |= IO_URING_F_NONBLOCK; 1861 } 1862 } 1863 1864 do { 1865 ret = io_issue_sqe(req, issue_flags); 1866 if (ret != -EAGAIN) 1867 break; 1868 1869 /* 1870 * If REQ_F_NOWAIT is set, then don't wait or retry with 1871 * poll. -EAGAIN is final for that case. 1872 */ 1873 if (req->flags & REQ_F_NOWAIT) 1874 break; 1875 1876 /* 1877 * We can get EAGAIN for iopolled IO even though we're 1878 * forcing a sync submission from here, since we can't 1879 * wait for request slots on the block side. 1880 */ 1881 if (!needs_poll) { 1882 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1883 break; 1884 if (io_wq_worker_stopped()) 1885 break; 1886 cond_resched(); 1887 continue; 1888 } 1889 1890 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1891 return; 1892 /* aborted or ready, in either case retry blocking */ 1893 needs_poll = false; 1894 issue_flags &= ~IO_URING_F_NONBLOCK; 1895 } while (1); 1896 1897 /* avoid locking problems by failing it from a clean context */ 1898 if (ret) 1899 io_req_task_queue_fail(req, ret); 1900 } 1901 1902 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1903 unsigned int issue_flags) 1904 { 1905 struct io_ring_ctx *ctx = req->ctx; 1906 struct io_rsrc_node *node; 1907 struct file *file = NULL; 1908 1909 io_ring_submit_lock(ctx, issue_flags); 1910 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1911 if (node) { 1912 node->refs++; 1913 req->file_node = node; 1914 req->flags |= io_slot_flags(node); 1915 file = io_slot_file(node); 1916 } 1917 io_ring_submit_unlock(ctx, issue_flags); 1918 return file; 1919 } 1920 1921 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1922 { 1923 struct file *file = fget(fd); 1924 1925 trace_io_uring_file_get(req, fd); 1926 1927 /* we don't allow fixed io_uring files */ 1928 if (file && io_is_uring_fops(file)) 1929 io_req_track_inflight(req); 1930 return file; 1931 } 1932 1933 static void io_queue_async(struct io_kiocb *req, int ret) 1934 __must_hold(&req->ctx->uring_lock) 1935 { 1936 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1937 io_req_defer_failed(req, ret); 1938 return; 1939 } 1940 1941 switch (io_arm_poll_handler(req, 0)) { 1942 case IO_APOLL_READY: 1943 io_kbuf_recycle(req, 0); 1944 io_req_task_queue(req); 1945 break; 1946 case IO_APOLL_ABORTED: 1947 io_kbuf_recycle(req, 0); 1948 io_queue_iowq(req); 1949 break; 1950 case IO_APOLL_OK: 1951 break; 1952 } 1953 } 1954 1955 static inline void io_queue_sqe(struct io_kiocb *req) 1956 __must_hold(&req->ctx->uring_lock) 1957 { 1958 int ret; 1959 1960 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1961 1962 /* 1963 * We async punt it if the file wasn't marked NOWAIT, or if the file 1964 * doesn't support non-blocking read/write attempts 1965 */ 1966 if (unlikely(ret)) 1967 io_queue_async(req, ret); 1968 } 1969 1970 static void io_queue_sqe_fallback(struct io_kiocb *req) 1971 __must_hold(&req->ctx->uring_lock) 1972 { 1973 if (unlikely(req->flags & REQ_F_FAIL)) { 1974 /* 1975 * We don't submit, fail them all, for that replace hardlinks 1976 * with normal links. Extra REQ_F_LINK is tolerated. 1977 */ 1978 req->flags &= ~REQ_F_HARDLINK; 1979 req->flags |= REQ_F_LINK; 1980 io_req_defer_failed(req, req->cqe.res); 1981 } else { 1982 if (unlikely(req->ctx->drain_active)) 1983 io_drain_req(req); 1984 else 1985 io_queue_iowq(req); 1986 } 1987 } 1988 1989 /* 1990 * Check SQE restrictions (opcode and flags). 1991 * 1992 * Returns 'true' if SQE is allowed, 'false' otherwise. 1993 */ 1994 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1995 struct io_kiocb *req, 1996 unsigned int sqe_flags) 1997 { 1998 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1999 return false; 2000 2001 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2002 ctx->restrictions.sqe_flags_required) 2003 return false; 2004 2005 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2006 ctx->restrictions.sqe_flags_required)) 2007 return false; 2008 2009 return true; 2010 } 2011 2012 static void io_init_drain(struct io_ring_ctx *ctx) 2013 { 2014 struct io_kiocb *head = ctx->submit_state.link.head; 2015 2016 ctx->drain_active = true; 2017 if (head) { 2018 /* 2019 * If we need to drain a request in the middle of a link, drain 2020 * the head request and the next request/link after the current 2021 * link. Considering sequential execution of links, 2022 * REQ_F_IO_DRAIN will be maintained for every request of our 2023 * link. 2024 */ 2025 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2026 ctx->drain_next = true; 2027 } 2028 } 2029 2030 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2031 { 2032 /* ensure per-opcode data is cleared if we fail before prep */ 2033 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2034 return err; 2035 } 2036 2037 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2038 const struct io_uring_sqe *sqe) 2039 __must_hold(&ctx->uring_lock) 2040 { 2041 const struct io_issue_def *def; 2042 unsigned int sqe_flags; 2043 int personality; 2044 u8 opcode; 2045 2046 req->ctx = ctx; 2047 req->opcode = opcode = READ_ONCE(sqe->opcode); 2048 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2049 sqe_flags = READ_ONCE(sqe->flags); 2050 req->flags = (__force io_req_flags_t) sqe_flags; 2051 req->cqe.user_data = READ_ONCE(sqe->user_data); 2052 req->file = NULL; 2053 req->tctx = current->io_uring; 2054 req->cancel_seq_set = false; 2055 2056 if (unlikely(opcode >= IORING_OP_LAST)) { 2057 req->opcode = 0; 2058 return io_init_fail_req(req, -EINVAL); 2059 } 2060 opcode = array_index_nospec(opcode, IORING_OP_LAST); 2061 2062 def = &io_issue_defs[opcode]; 2063 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2064 /* enforce forwards compatibility on users */ 2065 if (sqe_flags & ~SQE_VALID_FLAGS) 2066 return io_init_fail_req(req, -EINVAL); 2067 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2068 if (!def->buffer_select) 2069 return io_init_fail_req(req, -EOPNOTSUPP); 2070 req->buf_index = READ_ONCE(sqe->buf_group); 2071 } 2072 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2073 ctx->drain_disabled = true; 2074 if (sqe_flags & IOSQE_IO_DRAIN) { 2075 if (ctx->drain_disabled) 2076 return io_init_fail_req(req, -EOPNOTSUPP); 2077 io_init_drain(ctx); 2078 } 2079 } 2080 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2081 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2082 return io_init_fail_req(req, -EACCES); 2083 /* knock it to the slow queue path, will be drained there */ 2084 if (ctx->drain_active) 2085 req->flags |= REQ_F_FORCE_ASYNC; 2086 /* if there is no link, we're at "next" request and need to drain */ 2087 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2088 ctx->drain_next = false; 2089 ctx->drain_active = true; 2090 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2091 } 2092 } 2093 2094 if (!def->ioprio && sqe->ioprio) 2095 return io_init_fail_req(req, -EINVAL); 2096 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2097 return io_init_fail_req(req, -EINVAL); 2098 2099 if (def->needs_file) { 2100 struct io_submit_state *state = &ctx->submit_state; 2101 2102 req->cqe.fd = READ_ONCE(sqe->fd); 2103 2104 /* 2105 * Plug now if we have more than 2 IO left after this, and the 2106 * target is potentially a read/write to block based storage. 2107 */ 2108 if (state->need_plug && def->plug) { 2109 state->plug_started = true; 2110 state->need_plug = false; 2111 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2112 } 2113 } 2114 2115 personality = READ_ONCE(sqe->personality); 2116 if (personality) { 2117 int ret; 2118 2119 req->creds = xa_load(&ctx->personalities, personality); 2120 if (!req->creds) 2121 return io_init_fail_req(req, -EINVAL); 2122 get_cred(req->creds); 2123 ret = security_uring_override_creds(req->creds); 2124 if (ret) { 2125 put_cred(req->creds); 2126 return io_init_fail_req(req, ret); 2127 } 2128 req->flags |= REQ_F_CREDS; 2129 } 2130 2131 return def->prep(req, sqe); 2132 } 2133 2134 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2135 struct io_kiocb *req, int ret) 2136 { 2137 struct io_ring_ctx *ctx = req->ctx; 2138 struct io_submit_link *link = &ctx->submit_state.link; 2139 struct io_kiocb *head = link->head; 2140 2141 trace_io_uring_req_failed(sqe, req, ret); 2142 2143 /* 2144 * Avoid breaking links in the middle as it renders links with SQPOLL 2145 * unusable. Instead of failing eagerly, continue assembling the link if 2146 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2147 * should find the flag and handle the rest. 2148 */ 2149 req_fail_link_node(req, ret); 2150 if (head && !(head->flags & REQ_F_FAIL)) 2151 req_fail_link_node(head, -ECANCELED); 2152 2153 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2154 if (head) { 2155 link->last->link = req; 2156 link->head = NULL; 2157 req = head; 2158 } 2159 io_queue_sqe_fallback(req); 2160 return ret; 2161 } 2162 2163 if (head) 2164 link->last->link = req; 2165 else 2166 link->head = req; 2167 link->last = req; 2168 return 0; 2169 } 2170 2171 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2172 const struct io_uring_sqe *sqe) 2173 __must_hold(&ctx->uring_lock) 2174 { 2175 struct io_submit_link *link = &ctx->submit_state.link; 2176 int ret; 2177 2178 ret = io_init_req(ctx, req, sqe); 2179 if (unlikely(ret)) 2180 return io_submit_fail_init(sqe, req, ret); 2181 2182 trace_io_uring_submit_req(req); 2183 2184 /* 2185 * If we already have a head request, queue this one for async 2186 * submittal once the head completes. If we don't have a head but 2187 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2188 * submitted sync once the chain is complete. If none of those 2189 * conditions are true (normal request), then just queue it. 2190 */ 2191 if (unlikely(link->head)) { 2192 trace_io_uring_link(req, link->last); 2193 link->last->link = req; 2194 link->last = req; 2195 2196 if (req->flags & IO_REQ_LINK_FLAGS) 2197 return 0; 2198 /* last request of the link, flush it */ 2199 req = link->head; 2200 link->head = NULL; 2201 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2202 goto fallback; 2203 2204 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2205 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2206 if (req->flags & IO_REQ_LINK_FLAGS) { 2207 link->head = req; 2208 link->last = req; 2209 } else { 2210 fallback: 2211 io_queue_sqe_fallback(req); 2212 } 2213 return 0; 2214 } 2215 2216 io_queue_sqe(req); 2217 return 0; 2218 } 2219 2220 /* 2221 * Batched submission is done, ensure local IO is flushed out. 2222 */ 2223 static void io_submit_state_end(struct io_ring_ctx *ctx) 2224 { 2225 struct io_submit_state *state = &ctx->submit_state; 2226 2227 if (unlikely(state->link.head)) 2228 io_queue_sqe_fallback(state->link.head); 2229 /* flush only after queuing links as they can generate completions */ 2230 io_submit_flush_completions(ctx); 2231 if (state->plug_started) 2232 blk_finish_plug(&state->plug); 2233 } 2234 2235 /* 2236 * Start submission side cache. 2237 */ 2238 static void io_submit_state_start(struct io_submit_state *state, 2239 unsigned int max_ios) 2240 { 2241 state->plug_started = false; 2242 state->need_plug = max_ios > 2; 2243 state->submit_nr = max_ios; 2244 /* set only head, no need to init link_last in advance */ 2245 state->link.head = NULL; 2246 } 2247 2248 static void io_commit_sqring(struct io_ring_ctx *ctx) 2249 { 2250 struct io_rings *rings = ctx->rings; 2251 2252 /* 2253 * Ensure any loads from the SQEs are done at this point, 2254 * since once we write the new head, the application could 2255 * write new data to them. 2256 */ 2257 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2258 } 2259 2260 /* 2261 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2262 * that is mapped by userspace. This means that care needs to be taken to 2263 * ensure that reads are stable, as we cannot rely on userspace always 2264 * being a good citizen. If members of the sqe are validated and then later 2265 * used, it's important that those reads are done through READ_ONCE() to 2266 * prevent a re-load down the line. 2267 */ 2268 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2269 { 2270 unsigned mask = ctx->sq_entries - 1; 2271 unsigned head = ctx->cached_sq_head++ & mask; 2272 2273 if (static_branch_unlikely(&io_key_has_sqarray) && 2274 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2275 head = READ_ONCE(ctx->sq_array[head]); 2276 if (unlikely(head >= ctx->sq_entries)) { 2277 WRITE_ONCE(ctx->rings->sq_dropped, 2278 READ_ONCE(ctx->rings->sq_dropped) + 1); 2279 return false; 2280 } 2281 head = array_index_nospec(head, ctx->sq_entries); 2282 } 2283 2284 /* 2285 * The cached sq head (or cq tail) serves two purposes: 2286 * 2287 * 1) allows us to batch the cost of updating the user visible 2288 * head updates. 2289 * 2) allows the kernel side to track the head on its own, even 2290 * though the application is the one updating it. 2291 */ 2292 2293 /* double index for 128-byte SQEs, twice as long */ 2294 if (ctx->flags & IORING_SETUP_SQE128) 2295 head <<= 1; 2296 *sqe = &ctx->sq_sqes[head]; 2297 return true; 2298 } 2299 2300 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2301 __must_hold(&ctx->uring_lock) 2302 { 2303 unsigned int entries = io_sqring_entries(ctx); 2304 unsigned int left; 2305 int ret; 2306 2307 if (unlikely(!entries)) 2308 return 0; 2309 /* make sure SQ entry isn't read before tail */ 2310 ret = left = min(nr, entries); 2311 io_get_task_refs(left); 2312 io_submit_state_start(&ctx->submit_state, left); 2313 2314 do { 2315 const struct io_uring_sqe *sqe; 2316 struct io_kiocb *req; 2317 2318 if (unlikely(!io_alloc_req(ctx, &req))) 2319 break; 2320 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2321 io_req_add_to_cache(req, ctx); 2322 break; 2323 } 2324 2325 /* 2326 * Continue submitting even for sqe failure if the 2327 * ring was setup with IORING_SETUP_SUBMIT_ALL 2328 */ 2329 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2330 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2331 left--; 2332 break; 2333 } 2334 } while (--left); 2335 2336 if (unlikely(left)) { 2337 ret -= left; 2338 /* try again if it submitted nothing and can't allocate a req */ 2339 if (!ret && io_req_cache_empty(ctx)) 2340 ret = -EAGAIN; 2341 current->io_uring->cached_refs += left; 2342 } 2343 2344 io_submit_state_end(ctx); 2345 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2346 io_commit_sqring(ctx); 2347 return ret; 2348 } 2349 2350 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2351 int wake_flags, void *key) 2352 { 2353 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2354 2355 /* 2356 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2357 * the task, and the next invocation will do it. 2358 */ 2359 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2360 return autoremove_wake_function(curr, mode, wake_flags, key); 2361 return -1; 2362 } 2363 2364 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2365 { 2366 if (io_local_work_pending(ctx)) { 2367 __set_current_state(TASK_RUNNING); 2368 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2369 return 0; 2370 } 2371 if (io_run_task_work() > 0) 2372 return 0; 2373 if (task_sigpending(current)) 2374 return -EINTR; 2375 return 0; 2376 } 2377 2378 static bool current_pending_io(void) 2379 { 2380 struct io_uring_task *tctx = current->io_uring; 2381 2382 if (!tctx) 2383 return false; 2384 return percpu_counter_read_positive(&tctx->inflight); 2385 } 2386 2387 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2388 { 2389 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2390 2391 WRITE_ONCE(iowq->hit_timeout, 1); 2392 iowq->min_timeout = 0; 2393 wake_up_process(iowq->wq.private); 2394 return HRTIMER_NORESTART; 2395 } 2396 2397 /* 2398 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2399 * wake up. If not, and we have a normal timeout, switch to that and keep 2400 * sleeping. 2401 */ 2402 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2403 { 2404 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2405 struct io_ring_ctx *ctx = iowq->ctx; 2406 2407 /* no general timeout, or shorter (or equal), we are done */ 2408 if (iowq->timeout == KTIME_MAX || 2409 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2410 goto out_wake; 2411 /* work we may need to run, wake function will see if we need to wake */ 2412 if (io_has_work(ctx)) 2413 goto out_wake; 2414 /* got events since we started waiting, min timeout is done */ 2415 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2416 goto out_wake; 2417 /* if we have any events and min timeout expired, we're done */ 2418 if (io_cqring_events(ctx)) 2419 goto out_wake; 2420 2421 /* 2422 * If using deferred task_work running and application is waiting on 2423 * more than one request, ensure we reset it now where we are switching 2424 * to normal sleeps. Any request completion post min_wait should wake 2425 * the task and return. 2426 */ 2427 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2428 atomic_set(&ctx->cq_wait_nr, 1); 2429 smp_mb(); 2430 if (!llist_empty(&ctx->work_llist)) 2431 goto out_wake; 2432 } 2433 2434 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup); 2435 hrtimer_set_expires(timer, iowq->timeout); 2436 return HRTIMER_RESTART; 2437 out_wake: 2438 return io_cqring_timer_wakeup(timer); 2439 } 2440 2441 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2442 clockid_t clock_id, ktime_t start_time) 2443 { 2444 ktime_t timeout; 2445 2446 if (iowq->min_timeout) { 2447 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2448 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2449 HRTIMER_MODE_ABS); 2450 } else { 2451 timeout = iowq->timeout; 2452 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2453 HRTIMER_MODE_ABS); 2454 } 2455 2456 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2457 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2458 2459 if (!READ_ONCE(iowq->hit_timeout)) 2460 schedule(); 2461 2462 hrtimer_cancel(&iowq->t); 2463 destroy_hrtimer_on_stack(&iowq->t); 2464 __set_current_state(TASK_RUNNING); 2465 2466 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2467 } 2468 2469 struct ext_arg { 2470 size_t argsz; 2471 struct timespec64 ts; 2472 const sigset_t __user *sig; 2473 ktime_t min_time; 2474 bool ts_set; 2475 bool iowait; 2476 }; 2477 2478 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2479 struct io_wait_queue *iowq, 2480 struct ext_arg *ext_arg, 2481 ktime_t start_time) 2482 { 2483 int ret = 0; 2484 2485 /* 2486 * Mark us as being in io_wait if we have pending requests, so cpufreq 2487 * can take into account that the task is waiting for IO - turns out 2488 * to be important for low QD IO. 2489 */ 2490 if (ext_arg->iowait && current_pending_io()) 2491 current->in_iowait = 1; 2492 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2493 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2494 else 2495 schedule(); 2496 current->in_iowait = 0; 2497 return ret; 2498 } 2499 2500 /* If this returns > 0, the caller should retry */ 2501 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2502 struct io_wait_queue *iowq, 2503 struct ext_arg *ext_arg, 2504 ktime_t start_time) 2505 { 2506 if (unlikely(READ_ONCE(ctx->check_cq))) 2507 return 1; 2508 if (unlikely(io_local_work_pending(ctx))) 2509 return 1; 2510 if (unlikely(task_work_pending(current))) 2511 return 1; 2512 if (unlikely(task_sigpending(current))) 2513 return -EINTR; 2514 if (unlikely(io_should_wake(iowq))) 2515 return 0; 2516 2517 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time); 2518 } 2519 2520 /* 2521 * Wait until events become available, if we don't already have some. The 2522 * application must reap them itself, as they reside on the shared cq ring. 2523 */ 2524 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2525 struct ext_arg *ext_arg) 2526 { 2527 struct io_wait_queue iowq; 2528 struct io_rings *rings = ctx->rings; 2529 ktime_t start_time; 2530 int ret; 2531 2532 min_events = min_t(int, min_events, ctx->cq_entries); 2533 2534 if (!io_allowed_run_tw(ctx)) 2535 return -EEXIST; 2536 if (io_local_work_pending(ctx)) 2537 io_run_local_work(ctx, min_events, 2538 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2539 io_run_task_work(); 2540 2541 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2542 io_cqring_do_overflow_flush(ctx); 2543 if (__io_cqring_events_user(ctx) >= min_events) 2544 return 0; 2545 2546 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2547 iowq.wq.private = current; 2548 INIT_LIST_HEAD(&iowq.wq.entry); 2549 iowq.ctx = ctx; 2550 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2551 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2552 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2553 iowq.hit_timeout = 0; 2554 iowq.min_timeout = ext_arg->min_time; 2555 iowq.timeout = KTIME_MAX; 2556 start_time = io_get_time(ctx); 2557 2558 if (ext_arg->ts_set) { 2559 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2560 if (!(flags & IORING_ENTER_ABS_TIMER)) 2561 iowq.timeout = ktime_add(iowq.timeout, start_time); 2562 } 2563 2564 if (ext_arg->sig) { 2565 #ifdef CONFIG_COMPAT 2566 if (in_compat_syscall()) 2567 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2568 ext_arg->argsz); 2569 else 2570 #endif 2571 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2572 2573 if (ret) 2574 return ret; 2575 } 2576 2577 io_napi_busy_loop(ctx, &iowq); 2578 2579 trace_io_uring_cqring_wait(ctx, min_events); 2580 do { 2581 unsigned long check_cq; 2582 int nr_wait; 2583 2584 /* if min timeout has been hit, don't reset wait count */ 2585 if (!iowq.hit_timeout) 2586 nr_wait = (int) iowq.cq_tail - 2587 READ_ONCE(ctx->rings->cq.tail); 2588 else 2589 nr_wait = 1; 2590 2591 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2592 atomic_set(&ctx->cq_wait_nr, nr_wait); 2593 set_current_state(TASK_INTERRUPTIBLE); 2594 } else { 2595 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2596 TASK_INTERRUPTIBLE); 2597 } 2598 2599 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time); 2600 __set_current_state(TASK_RUNNING); 2601 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2602 2603 /* 2604 * Run task_work after scheduling and before io_should_wake(). 2605 * If we got woken because of task_work being processed, run it 2606 * now rather than let the caller do another wait loop. 2607 */ 2608 if (io_local_work_pending(ctx)) 2609 io_run_local_work(ctx, nr_wait, nr_wait); 2610 io_run_task_work(); 2611 2612 /* 2613 * Non-local task_work will be run on exit to userspace, but 2614 * if we're using DEFER_TASKRUN, then we could have waited 2615 * with a timeout for a number of requests. If the timeout 2616 * hits, we could have some requests ready to process. Ensure 2617 * this break is _after_ we have run task_work, to avoid 2618 * deferring running potentially pending requests until the 2619 * next time we wait for events. 2620 */ 2621 if (ret < 0) 2622 break; 2623 2624 check_cq = READ_ONCE(ctx->check_cq); 2625 if (unlikely(check_cq)) { 2626 /* let the caller flush overflows, retry */ 2627 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2628 io_cqring_do_overflow_flush(ctx); 2629 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2630 ret = -EBADR; 2631 break; 2632 } 2633 } 2634 2635 if (io_should_wake(&iowq)) { 2636 ret = 0; 2637 break; 2638 } 2639 cond_resched(); 2640 } while (1); 2641 2642 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2643 finish_wait(&ctx->cq_wait, &iowq.wq); 2644 restore_saved_sigmask_unless(ret == -EINTR); 2645 2646 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2647 } 2648 2649 static void io_rings_free(struct io_ring_ctx *ctx) 2650 { 2651 io_free_region(ctx, &ctx->sq_region); 2652 io_free_region(ctx, &ctx->ring_region); 2653 ctx->rings = NULL; 2654 ctx->sq_sqes = NULL; 2655 } 2656 2657 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2658 unsigned int cq_entries, size_t *sq_offset) 2659 { 2660 struct io_rings *rings; 2661 size_t off, sq_array_size; 2662 2663 off = struct_size(rings, cqes, cq_entries); 2664 if (off == SIZE_MAX) 2665 return SIZE_MAX; 2666 if (flags & IORING_SETUP_CQE32) { 2667 if (check_shl_overflow(off, 1, &off)) 2668 return SIZE_MAX; 2669 } 2670 2671 #ifdef CONFIG_SMP 2672 off = ALIGN(off, SMP_CACHE_BYTES); 2673 if (off == 0) 2674 return SIZE_MAX; 2675 #endif 2676 2677 if (flags & IORING_SETUP_NO_SQARRAY) { 2678 *sq_offset = SIZE_MAX; 2679 return off; 2680 } 2681 2682 *sq_offset = off; 2683 2684 sq_array_size = array_size(sizeof(u32), sq_entries); 2685 if (sq_array_size == SIZE_MAX) 2686 return SIZE_MAX; 2687 2688 if (check_add_overflow(off, sq_array_size, &off)) 2689 return SIZE_MAX; 2690 2691 return off; 2692 } 2693 2694 static __cold void __io_req_caches_free(struct io_ring_ctx *ctx) 2695 { 2696 struct io_kiocb *req; 2697 int nr = 0; 2698 2699 while (!io_req_cache_empty(ctx)) { 2700 req = io_extract_req(ctx); 2701 kmem_cache_free(req_cachep, req); 2702 nr++; 2703 } 2704 if (nr) { 2705 ctx->nr_req_allocated -= nr; 2706 percpu_ref_put_many(&ctx->refs, nr); 2707 } 2708 } 2709 2710 static __cold void io_req_caches_free(struct io_ring_ctx *ctx) 2711 { 2712 guard(mutex)(&ctx->uring_lock); 2713 __io_req_caches_free(ctx); 2714 } 2715 2716 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2717 { 2718 io_sq_thread_finish(ctx); 2719 2720 mutex_lock(&ctx->uring_lock); 2721 io_sqe_buffers_unregister(ctx); 2722 io_sqe_files_unregister(ctx); 2723 io_unregister_zcrx_ifqs(ctx); 2724 io_cqring_overflow_kill(ctx); 2725 io_eventfd_unregister(ctx); 2726 io_free_alloc_caches(ctx); 2727 io_destroy_buffers(ctx); 2728 io_free_region(ctx, &ctx->param_region); 2729 mutex_unlock(&ctx->uring_lock); 2730 if (ctx->sq_creds) 2731 put_cred(ctx->sq_creds); 2732 if (ctx->submitter_task) 2733 put_task_struct(ctx->submitter_task); 2734 2735 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2736 2737 if (ctx->mm_account) { 2738 mmdrop(ctx->mm_account); 2739 ctx->mm_account = NULL; 2740 } 2741 io_rings_free(ctx); 2742 2743 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2744 static_branch_dec(&io_key_has_sqarray); 2745 2746 percpu_ref_exit(&ctx->refs); 2747 free_uid(ctx->user); 2748 io_req_caches_free(ctx); 2749 2750 WARN_ON_ONCE(ctx->nr_req_allocated); 2751 2752 if (ctx->hash_map) 2753 io_wq_put_hash(ctx->hash_map); 2754 io_napi_free(ctx); 2755 kvfree(ctx->cancel_table.hbs); 2756 xa_destroy(&ctx->io_bl_xa); 2757 kfree(ctx); 2758 } 2759 2760 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2761 { 2762 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2763 poll_wq_task_work); 2764 2765 mutex_lock(&ctx->uring_lock); 2766 ctx->poll_activated = true; 2767 mutex_unlock(&ctx->uring_lock); 2768 2769 /* 2770 * Wake ups for some events between start of polling and activation 2771 * might've been lost due to loose synchronisation. 2772 */ 2773 wake_up_all(&ctx->poll_wq); 2774 percpu_ref_put(&ctx->refs); 2775 } 2776 2777 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2778 { 2779 spin_lock(&ctx->completion_lock); 2780 /* already activated or in progress */ 2781 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2782 goto out; 2783 if (WARN_ON_ONCE(!ctx->task_complete)) 2784 goto out; 2785 if (!ctx->submitter_task) 2786 goto out; 2787 /* 2788 * with ->submitter_task only the submitter task completes requests, we 2789 * only need to sync with it, which is done by injecting a tw 2790 */ 2791 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2792 percpu_ref_get(&ctx->refs); 2793 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2794 percpu_ref_put(&ctx->refs); 2795 out: 2796 spin_unlock(&ctx->completion_lock); 2797 } 2798 2799 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2800 { 2801 struct io_ring_ctx *ctx = file->private_data; 2802 __poll_t mask = 0; 2803 2804 if (unlikely(!ctx->poll_activated)) 2805 io_activate_pollwq(ctx); 2806 /* 2807 * provides mb() which pairs with barrier from wq_has_sleeper 2808 * call in io_commit_cqring 2809 */ 2810 poll_wait(file, &ctx->poll_wq, wait); 2811 2812 if (!io_sqring_full(ctx)) 2813 mask |= EPOLLOUT | EPOLLWRNORM; 2814 2815 /* 2816 * Don't flush cqring overflow list here, just do a simple check. 2817 * Otherwise there could possible be ABBA deadlock: 2818 * CPU0 CPU1 2819 * ---- ---- 2820 * lock(&ctx->uring_lock); 2821 * lock(&ep->mtx); 2822 * lock(&ctx->uring_lock); 2823 * lock(&ep->mtx); 2824 * 2825 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2826 * pushes them to do the flush. 2827 */ 2828 2829 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2830 mask |= EPOLLIN | EPOLLRDNORM; 2831 2832 return mask; 2833 } 2834 2835 struct io_tctx_exit { 2836 struct callback_head task_work; 2837 struct completion completion; 2838 struct io_ring_ctx *ctx; 2839 }; 2840 2841 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2842 { 2843 struct io_uring_task *tctx = current->io_uring; 2844 struct io_tctx_exit *work; 2845 2846 work = container_of(cb, struct io_tctx_exit, task_work); 2847 /* 2848 * When @in_cancel, we're in cancellation and it's racy to remove the 2849 * node. It'll be removed by the end of cancellation, just ignore it. 2850 * tctx can be NULL if the queueing of this task_work raced with 2851 * work cancelation off the exec path. 2852 */ 2853 if (tctx && !atomic_read(&tctx->in_cancel)) 2854 io_uring_del_tctx_node((unsigned long)work->ctx); 2855 complete(&work->completion); 2856 } 2857 2858 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2859 { 2860 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2861 2862 return req->ctx == data; 2863 } 2864 2865 static __cold void io_ring_exit_work(struct work_struct *work) 2866 { 2867 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2868 unsigned long timeout = jiffies + HZ * 60 * 5; 2869 unsigned long interval = HZ / 20; 2870 struct io_tctx_exit exit; 2871 struct io_tctx_node *node; 2872 int ret; 2873 2874 /* 2875 * If we're doing polled IO and end up having requests being 2876 * submitted async (out-of-line), then completions can come in while 2877 * we're waiting for refs to drop. We need to reap these manually, 2878 * as nobody else will be looking for them. 2879 */ 2880 do { 2881 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2882 mutex_lock(&ctx->uring_lock); 2883 io_cqring_overflow_kill(ctx); 2884 mutex_unlock(&ctx->uring_lock); 2885 } 2886 if (!xa_empty(&ctx->zcrx_ctxs)) { 2887 mutex_lock(&ctx->uring_lock); 2888 io_shutdown_zcrx_ifqs(ctx); 2889 mutex_unlock(&ctx->uring_lock); 2890 } 2891 2892 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2893 io_move_task_work_from_local(ctx); 2894 2895 /* The SQPOLL thread never reaches this path */ 2896 while (io_uring_try_cancel_requests(ctx, NULL, true, false)) 2897 cond_resched(); 2898 2899 if (ctx->sq_data) { 2900 struct io_sq_data *sqd = ctx->sq_data; 2901 struct task_struct *tsk; 2902 2903 io_sq_thread_park(sqd); 2904 tsk = sqd->thread; 2905 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2906 io_wq_cancel_cb(tsk->io_uring->io_wq, 2907 io_cancel_ctx_cb, ctx, true); 2908 io_sq_thread_unpark(sqd); 2909 } 2910 2911 io_req_caches_free(ctx); 2912 2913 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2914 /* there is little hope left, don't run it too often */ 2915 interval = HZ * 60; 2916 } 2917 /* 2918 * This is really an uninterruptible wait, as it has to be 2919 * complete. But it's also run from a kworker, which doesn't 2920 * take signals, so it's fine to make it interruptible. This 2921 * avoids scenarios where we knowingly can wait much longer 2922 * on completions, for example if someone does a SIGSTOP on 2923 * a task that needs to finish task_work to make this loop 2924 * complete. That's a synthetic situation that should not 2925 * cause a stuck task backtrace, and hence a potential panic 2926 * on stuck tasks if that is enabled. 2927 */ 2928 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2929 2930 init_completion(&exit.completion); 2931 init_task_work(&exit.task_work, io_tctx_exit_cb); 2932 exit.ctx = ctx; 2933 2934 mutex_lock(&ctx->uring_lock); 2935 while (!list_empty(&ctx->tctx_list)) { 2936 WARN_ON_ONCE(time_after(jiffies, timeout)); 2937 2938 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2939 ctx_node); 2940 /* don't spin on a single task if cancellation failed */ 2941 list_rotate_left(&ctx->tctx_list); 2942 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2943 if (WARN_ON_ONCE(ret)) 2944 continue; 2945 2946 mutex_unlock(&ctx->uring_lock); 2947 /* 2948 * See comment above for 2949 * wait_for_completion_interruptible_timeout() on why this 2950 * wait is marked as interruptible. 2951 */ 2952 wait_for_completion_interruptible(&exit.completion); 2953 mutex_lock(&ctx->uring_lock); 2954 } 2955 mutex_unlock(&ctx->uring_lock); 2956 spin_lock(&ctx->completion_lock); 2957 spin_unlock(&ctx->completion_lock); 2958 2959 /* pairs with RCU read section in io_req_local_work_add() */ 2960 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2961 synchronize_rcu(); 2962 2963 io_ring_ctx_free(ctx); 2964 } 2965 2966 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2967 { 2968 unsigned long index; 2969 struct creds *creds; 2970 2971 mutex_lock(&ctx->uring_lock); 2972 percpu_ref_kill(&ctx->refs); 2973 xa_for_each(&ctx->personalities, index, creds) 2974 io_unregister_personality(ctx, index); 2975 mutex_unlock(&ctx->uring_lock); 2976 2977 flush_delayed_work(&ctx->fallback_work); 2978 2979 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2980 /* 2981 * Use system_unbound_wq to avoid spawning tons of event kworkers 2982 * if we're exiting a ton of rings at the same time. It just adds 2983 * noise and overhead, there's no discernable change in runtime 2984 * over using system_wq. 2985 */ 2986 queue_work(iou_wq, &ctx->exit_work); 2987 } 2988 2989 static int io_uring_release(struct inode *inode, struct file *file) 2990 { 2991 struct io_ring_ctx *ctx = file->private_data; 2992 2993 file->private_data = NULL; 2994 io_ring_ctx_wait_and_kill(ctx); 2995 return 0; 2996 } 2997 2998 struct io_task_cancel { 2999 struct io_uring_task *tctx; 3000 bool all; 3001 }; 3002 3003 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3004 { 3005 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3006 struct io_task_cancel *cancel = data; 3007 3008 return io_match_task_safe(req, cancel->tctx, cancel->all); 3009 } 3010 3011 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3012 struct io_uring_task *tctx, 3013 bool cancel_all) 3014 { 3015 struct io_defer_entry *de; 3016 LIST_HEAD(list); 3017 3018 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3019 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3020 list_cut_position(&list, &ctx->defer_list, &de->list); 3021 break; 3022 } 3023 } 3024 if (list_empty(&list)) 3025 return false; 3026 3027 while (!list_empty(&list)) { 3028 de = list_first_entry(&list, struct io_defer_entry, list); 3029 list_del_init(&de->list); 3030 ctx->nr_drained -= io_linked_nr(de->req); 3031 io_req_task_queue_fail(de->req, -ECANCELED); 3032 kfree(de); 3033 } 3034 return true; 3035 } 3036 3037 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3038 { 3039 struct io_tctx_node *node; 3040 enum io_wq_cancel cret; 3041 bool ret = false; 3042 3043 mutex_lock(&ctx->uring_lock); 3044 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3045 struct io_uring_task *tctx = node->task->io_uring; 3046 3047 /* 3048 * io_wq will stay alive while we hold uring_lock, because it's 3049 * killed after ctx nodes, which requires to take the lock. 3050 */ 3051 if (!tctx || !tctx->io_wq) 3052 continue; 3053 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3054 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3055 } 3056 mutex_unlock(&ctx->uring_lock); 3057 3058 return ret; 3059 } 3060 3061 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3062 struct io_uring_task *tctx, 3063 bool cancel_all, 3064 bool is_sqpoll_thread) 3065 { 3066 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3067 enum io_wq_cancel cret; 3068 bool ret = false; 3069 3070 /* set it so io_req_local_work_add() would wake us up */ 3071 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3072 atomic_set(&ctx->cq_wait_nr, 1); 3073 smp_mb(); 3074 } 3075 3076 /* failed during ring init, it couldn't have issued any requests */ 3077 if (!ctx->rings) 3078 return false; 3079 3080 if (!tctx) { 3081 ret |= io_uring_try_cancel_iowq(ctx); 3082 } else if (tctx->io_wq) { 3083 /* 3084 * Cancels requests of all rings, not only @ctx, but 3085 * it's fine as the task is in exit/exec. 3086 */ 3087 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3088 &cancel, true); 3089 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3090 } 3091 3092 /* SQPOLL thread does its own polling */ 3093 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3094 is_sqpoll_thread) { 3095 while (!wq_list_empty(&ctx->iopoll_list)) { 3096 io_iopoll_try_reap_events(ctx); 3097 ret = true; 3098 cond_resched(); 3099 } 3100 } 3101 3102 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3103 io_allowed_defer_tw_run(ctx)) 3104 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3105 mutex_lock(&ctx->uring_lock); 3106 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3107 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3108 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3109 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3110 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3111 mutex_unlock(&ctx->uring_lock); 3112 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3113 if (tctx) 3114 ret |= io_run_task_work() > 0; 3115 else 3116 ret |= flush_delayed_work(&ctx->fallback_work); 3117 return ret; 3118 } 3119 3120 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3121 { 3122 if (tracked) 3123 return atomic_read(&tctx->inflight_tracked); 3124 return percpu_counter_sum(&tctx->inflight); 3125 } 3126 3127 /* 3128 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3129 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3130 */ 3131 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3132 { 3133 struct io_uring_task *tctx = current->io_uring; 3134 struct io_ring_ctx *ctx; 3135 struct io_tctx_node *node; 3136 unsigned long index; 3137 s64 inflight; 3138 DEFINE_WAIT(wait); 3139 3140 WARN_ON_ONCE(sqd && sqd->thread != current); 3141 3142 if (!current->io_uring) 3143 return; 3144 if (tctx->io_wq) 3145 io_wq_exit_start(tctx->io_wq); 3146 3147 atomic_inc(&tctx->in_cancel); 3148 do { 3149 bool loop = false; 3150 3151 io_uring_drop_tctx_refs(current); 3152 if (!tctx_inflight(tctx, !cancel_all)) 3153 break; 3154 3155 /* read completions before cancelations */ 3156 inflight = tctx_inflight(tctx, false); 3157 if (!inflight) 3158 break; 3159 3160 if (!sqd) { 3161 xa_for_each(&tctx->xa, index, node) { 3162 /* sqpoll task will cancel all its requests */ 3163 if (node->ctx->sq_data) 3164 continue; 3165 loop |= io_uring_try_cancel_requests(node->ctx, 3166 current->io_uring, 3167 cancel_all, 3168 false); 3169 } 3170 } else { 3171 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3172 loop |= io_uring_try_cancel_requests(ctx, 3173 current->io_uring, 3174 cancel_all, 3175 true); 3176 } 3177 3178 if (loop) { 3179 cond_resched(); 3180 continue; 3181 } 3182 3183 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3184 io_run_task_work(); 3185 io_uring_drop_tctx_refs(current); 3186 xa_for_each(&tctx->xa, index, node) { 3187 if (io_local_work_pending(node->ctx)) { 3188 WARN_ON_ONCE(node->ctx->submitter_task && 3189 node->ctx->submitter_task != current); 3190 goto end_wait; 3191 } 3192 } 3193 /* 3194 * If we've seen completions, retry without waiting. This 3195 * avoids a race where a completion comes in before we did 3196 * prepare_to_wait(). 3197 */ 3198 if (inflight == tctx_inflight(tctx, !cancel_all)) 3199 schedule(); 3200 end_wait: 3201 finish_wait(&tctx->wait, &wait); 3202 } while (1); 3203 3204 io_uring_clean_tctx(tctx); 3205 if (cancel_all) { 3206 /* 3207 * We shouldn't run task_works after cancel, so just leave 3208 * ->in_cancel set for normal exit. 3209 */ 3210 atomic_dec(&tctx->in_cancel); 3211 /* for exec all current's requests should be gone, kill tctx */ 3212 __io_uring_free(current); 3213 } 3214 } 3215 3216 void __io_uring_cancel(bool cancel_all) 3217 { 3218 io_uring_unreg_ringfd(); 3219 io_uring_cancel_generic(cancel_all, NULL); 3220 } 3221 3222 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3223 const struct io_uring_getevents_arg __user *uarg) 3224 { 3225 unsigned long size = sizeof(struct io_uring_reg_wait); 3226 unsigned long offset = (uintptr_t)uarg; 3227 unsigned long end; 3228 3229 if (unlikely(offset % sizeof(long))) 3230 return ERR_PTR(-EFAULT); 3231 3232 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3233 if (unlikely(check_add_overflow(offset, size, &end) || 3234 end > ctx->cq_wait_size)) 3235 return ERR_PTR(-EFAULT); 3236 3237 offset = array_index_nospec(offset, ctx->cq_wait_size - size); 3238 return ctx->cq_wait_arg + offset; 3239 } 3240 3241 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3242 const void __user *argp, size_t argsz) 3243 { 3244 struct io_uring_getevents_arg arg; 3245 3246 if (!(flags & IORING_ENTER_EXT_ARG)) 3247 return 0; 3248 if (flags & IORING_ENTER_EXT_ARG_REG) 3249 return -EINVAL; 3250 if (argsz != sizeof(arg)) 3251 return -EINVAL; 3252 if (copy_from_user(&arg, argp, sizeof(arg))) 3253 return -EFAULT; 3254 return 0; 3255 } 3256 3257 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3258 const void __user *argp, struct ext_arg *ext_arg) 3259 { 3260 const struct io_uring_getevents_arg __user *uarg = argp; 3261 struct io_uring_getevents_arg arg; 3262 3263 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT); 3264 3265 /* 3266 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3267 * is just a pointer to the sigset_t. 3268 */ 3269 if (!(flags & IORING_ENTER_EXT_ARG)) { 3270 ext_arg->sig = (const sigset_t __user *) argp; 3271 return 0; 3272 } 3273 3274 if (flags & IORING_ENTER_EXT_ARG_REG) { 3275 struct io_uring_reg_wait *w; 3276 3277 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3278 return -EINVAL; 3279 w = io_get_ext_arg_reg(ctx, argp); 3280 if (IS_ERR(w)) 3281 return PTR_ERR(w); 3282 3283 if (w->flags & ~IORING_REG_WAIT_TS) 3284 return -EINVAL; 3285 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3286 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3287 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3288 if (w->flags & IORING_REG_WAIT_TS) { 3289 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3290 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3291 ext_arg->ts_set = true; 3292 } 3293 return 0; 3294 } 3295 3296 /* 3297 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3298 * timespec and sigset_t pointers if good. 3299 */ 3300 if (ext_arg->argsz != sizeof(arg)) 3301 return -EINVAL; 3302 #ifdef CONFIG_64BIT 3303 if (!user_access_begin(uarg, sizeof(*uarg))) 3304 return -EFAULT; 3305 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3306 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3307 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3308 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3309 user_access_end(); 3310 #else 3311 if (copy_from_user(&arg, uarg, sizeof(arg))) 3312 return -EFAULT; 3313 #endif 3314 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3315 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3316 ext_arg->argsz = arg.sigmask_sz; 3317 if (arg.ts) { 3318 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3319 return -EFAULT; 3320 ext_arg->ts_set = true; 3321 } 3322 return 0; 3323 #ifdef CONFIG_64BIT 3324 uaccess_end: 3325 user_access_end(); 3326 return -EFAULT; 3327 #endif 3328 } 3329 3330 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3331 u32, min_complete, u32, flags, const void __user *, argp, 3332 size_t, argsz) 3333 { 3334 struct io_ring_ctx *ctx; 3335 struct file *file; 3336 long ret; 3337 3338 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3339 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3340 IORING_ENTER_REGISTERED_RING | 3341 IORING_ENTER_ABS_TIMER | 3342 IORING_ENTER_EXT_ARG_REG | 3343 IORING_ENTER_NO_IOWAIT))) 3344 return -EINVAL; 3345 3346 /* 3347 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3348 * need only dereference our task private array to find it. 3349 */ 3350 if (flags & IORING_ENTER_REGISTERED_RING) { 3351 struct io_uring_task *tctx = current->io_uring; 3352 3353 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3354 return -EINVAL; 3355 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3356 file = tctx->registered_rings[fd]; 3357 if (unlikely(!file)) 3358 return -EBADF; 3359 } else { 3360 file = fget(fd); 3361 if (unlikely(!file)) 3362 return -EBADF; 3363 ret = -EOPNOTSUPP; 3364 if (unlikely(!io_is_uring_fops(file))) 3365 goto out; 3366 } 3367 3368 ctx = file->private_data; 3369 ret = -EBADFD; 3370 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3371 goto out; 3372 3373 /* 3374 * For SQ polling, the thread will do all submissions and completions. 3375 * Just return the requested submit count, and wake the thread if 3376 * we were asked to. 3377 */ 3378 ret = 0; 3379 if (ctx->flags & IORING_SETUP_SQPOLL) { 3380 if (unlikely(ctx->sq_data->thread == NULL)) { 3381 ret = -EOWNERDEAD; 3382 goto out; 3383 } 3384 if (flags & IORING_ENTER_SQ_WAKEUP) 3385 wake_up(&ctx->sq_data->wait); 3386 if (flags & IORING_ENTER_SQ_WAIT) 3387 io_sqpoll_wait_sq(ctx); 3388 3389 ret = to_submit; 3390 } else if (to_submit) { 3391 ret = io_uring_add_tctx_node(ctx); 3392 if (unlikely(ret)) 3393 goto out; 3394 3395 mutex_lock(&ctx->uring_lock); 3396 ret = io_submit_sqes(ctx, to_submit); 3397 if (ret != to_submit) { 3398 mutex_unlock(&ctx->uring_lock); 3399 goto out; 3400 } 3401 if (flags & IORING_ENTER_GETEVENTS) { 3402 if (ctx->syscall_iopoll) 3403 goto iopoll_locked; 3404 /* 3405 * Ignore errors, we'll soon call io_cqring_wait() and 3406 * it should handle ownership problems if any. 3407 */ 3408 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3409 (void)io_run_local_work_locked(ctx, min_complete); 3410 } 3411 mutex_unlock(&ctx->uring_lock); 3412 } 3413 3414 if (flags & IORING_ENTER_GETEVENTS) { 3415 int ret2; 3416 3417 if (ctx->syscall_iopoll) { 3418 /* 3419 * We disallow the app entering submit/complete with 3420 * polling, but we still need to lock the ring to 3421 * prevent racing with polled issue that got punted to 3422 * a workqueue. 3423 */ 3424 mutex_lock(&ctx->uring_lock); 3425 iopoll_locked: 3426 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3427 if (likely(!ret2)) 3428 ret2 = io_iopoll_check(ctx, min_complete); 3429 mutex_unlock(&ctx->uring_lock); 3430 } else { 3431 struct ext_arg ext_arg = { .argsz = argsz }; 3432 3433 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3434 if (likely(!ret2)) 3435 ret2 = io_cqring_wait(ctx, min_complete, flags, 3436 &ext_arg); 3437 } 3438 3439 if (!ret) { 3440 ret = ret2; 3441 3442 /* 3443 * EBADR indicates that one or more CQE were dropped. 3444 * Once the user has been informed we can clear the bit 3445 * as they are obviously ok with those drops. 3446 */ 3447 if (unlikely(ret2 == -EBADR)) 3448 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3449 &ctx->check_cq); 3450 } 3451 } 3452 out: 3453 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3454 fput(file); 3455 return ret; 3456 } 3457 3458 static const struct file_operations io_uring_fops = { 3459 .release = io_uring_release, 3460 .mmap = io_uring_mmap, 3461 .get_unmapped_area = io_uring_get_unmapped_area, 3462 #ifndef CONFIG_MMU 3463 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3464 #endif 3465 .poll = io_uring_poll, 3466 #ifdef CONFIG_PROC_FS 3467 .show_fdinfo = io_uring_show_fdinfo, 3468 #endif 3469 }; 3470 3471 bool io_is_uring_fops(struct file *file) 3472 { 3473 return file->f_op == &io_uring_fops; 3474 } 3475 3476 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3477 struct io_uring_params *p) 3478 { 3479 struct io_uring_region_desc rd; 3480 struct io_rings *rings; 3481 size_t size, sq_array_offset; 3482 int ret; 3483 3484 /* make sure these are sane, as we already accounted them */ 3485 ctx->sq_entries = p->sq_entries; 3486 ctx->cq_entries = p->cq_entries; 3487 3488 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3489 &sq_array_offset); 3490 if (size == SIZE_MAX) 3491 return -EOVERFLOW; 3492 3493 memset(&rd, 0, sizeof(rd)); 3494 rd.size = PAGE_ALIGN(size); 3495 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3496 rd.user_addr = p->cq_off.user_addr; 3497 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3498 } 3499 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); 3500 if (ret) 3501 return ret; 3502 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); 3503 3504 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3505 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3506 rings->sq_ring_mask = p->sq_entries - 1; 3507 rings->cq_ring_mask = p->cq_entries - 1; 3508 rings->sq_ring_entries = p->sq_entries; 3509 rings->cq_ring_entries = p->cq_entries; 3510 3511 if (p->flags & IORING_SETUP_SQE128) 3512 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3513 else 3514 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3515 if (size == SIZE_MAX) { 3516 io_rings_free(ctx); 3517 return -EOVERFLOW; 3518 } 3519 3520 memset(&rd, 0, sizeof(rd)); 3521 rd.size = PAGE_ALIGN(size); 3522 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3523 rd.user_addr = p->sq_off.user_addr; 3524 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3525 } 3526 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); 3527 if (ret) { 3528 io_rings_free(ctx); 3529 return ret; 3530 } 3531 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); 3532 return 0; 3533 } 3534 3535 static int io_uring_install_fd(struct file *file) 3536 { 3537 int fd; 3538 3539 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3540 if (fd < 0) 3541 return fd; 3542 fd_install(fd, file); 3543 return fd; 3544 } 3545 3546 /* 3547 * Allocate an anonymous fd, this is what constitutes the application 3548 * visible backing of an io_uring instance. The application mmaps this 3549 * fd to gain access to the SQ/CQ ring details. 3550 */ 3551 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3552 { 3553 /* Create a new inode so that the LSM can block the creation. */ 3554 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3555 O_RDWR | O_CLOEXEC, NULL); 3556 } 3557 3558 static int io_uring_sanitise_params(struct io_uring_params *p) 3559 { 3560 unsigned flags = p->flags; 3561 3562 /* There is no way to mmap rings without a real fd */ 3563 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) && 3564 !(flags & IORING_SETUP_NO_MMAP)) 3565 return -EINVAL; 3566 3567 if (flags & IORING_SETUP_SQPOLL) { 3568 /* IPI related flags don't make sense with SQPOLL */ 3569 if (flags & (IORING_SETUP_COOP_TASKRUN | 3570 IORING_SETUP_TASKRUN_FLAG | 3571 IORING_SETUP_DEFER_TASKRUN)) 3572 return -EINVAL; 3573 } 3574 3575 if (flags & IORING_SETUP_TASKRUN_FLAG) { 3576 if (!(flags & (IORING_SETUP_COOP_TASKRUN | 3577 IORING_SETUP_DEFER_TASKRUN))) 3578 return -EINVAL; 3579 } 3580 3581 /* HYBRID_IOPOLL only valid with IOPOLL */ 3582 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL)) 3583 return -EINVAL; 3584 3585 /* 3586 * For DEFER_TASKRUN we require the completion task to be the same as 3587 * the submission task. This implies that there is only one submitter. 3588 */ 3589 if ((flags & IORING_SETUP_DEFER_TASKRUN) && 3590 !(flags & IORING_SETUP_SINGLE_ISSUER)) 3591 return -EINVAL; 3592 3593 return 0; 3594 } 3595 3596 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3597 { 3598 if (!entries) 3599 return -EINVAL; 3600 if (entries > IORING_MAX_ENTRIES) { 3601 if (!(p->flags & IORING_SETUP_CLAMP)) 3602 return -EINVAL; 3603 entries = IORING_MAX_ENTRIES; 3604 } 3605 3606 /* 3607 * Use twice as many entries for the CQ ring. It's possible for the 3608 * application to drive a higher depth than the size of the SQ ring, 3609 * since the sqes are only used at submission time. This allows for 3610 * some flexibility in overcommitting a bit. If the application has 3611 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3612 * of CQ ring entries manually. 3613 */ 3614 p->sq_entries = roundup_pow_of_two(entries); 3615 if (p->flags & IORING_SETUP_CQSIZE) { 3616 /* 3617 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3618 * to a power-of-two, if it isn't already. We do NOT impose 3619 * any cq vs sq ring sizing. 3620 */ 3621 if (!p->cq_entries) 3622 return -EINVAL; 3623 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3624 if (!(p->flags & IORING_SETUP_CLAMP)) 3625 return -EINVAL; 3626 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3627 } 3628 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3629 if (p->cq_entries < p->sq_entries) 3630 return -EINVAL; 3631 } else { 3632 p->cq_entries = 2 * p->sq_entries; 3633 } 3634 3635 p->sq_off.head = offsetof(struct io_rings, sq.head); 3636 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3637 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3638 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3639 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3640 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3641 p->sq_off.resv1 = 0; 3642 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3643 p->sq_off.user_addr = 0; 3644 3645 p->cq_off.head = offsetof(struct io_rings, cq.head); 3646 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3647 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3648 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3649 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3650 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3651 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3652 p->cq_off.resv1 = 0; 3653 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3654 p->cq_off.user_addr = 0; 3655 3656 return 0; 3657 } 3658 3659 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3660 struct io_uring_params __user *params) 3661 { 3662 struct io_ring_ctx *ctx; 3663 struct io_uring_task *tctx; 3664 struct file *file; 3665 int ret; 3666 3667 ret = io_uring_sanitise_params(p); 3668 if (ret) 3669 return ret; 3670 3671 ret = io_uring_fill_params(entries, p); 3672 if (unlikely(ret)) 3673 return ret; 3674 3675 ctx = io_ring_ctx_alloc(p); 3676 if (!ctx) 3677 return -ENOMEM; 3678 3679 ctx->clockid = CLOCK_MONOTONIC; 3680 ctx->clock_offset = 0; 3681 3682 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3683 static_branch_inc(&io_key_has_sqarray); 3684 3685 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3686 !(ctx->flags & IORING_SETUP_IOPOLL) && 3687 !(ctx->flags & IORING_SETUP_SQPOLL)) 3688 ctx->task_complete = true; 3689 3690 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3691 ctx->lockless_cq = true; 3692 3693 /* 3694 * lazy poll_wq activation relies on ->task_complete for synchronisation 3695 * purposes, see io_activate_pollwq() 3696 */ 3697 if (!ctx->task_complete) 3698 ctx->poll_activated = true; 3699 3700 /* 3701 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3702 * space applications don't need to do io completion events 3703 * polling again, they can rely on io_sq_thread to do polling 3704 * work, which can reduce cpu usage and uring_lock contention. 3705 */ 3706 if (ctx->flags & IORING_SETUP_IOPOLL && 3707 !(ctx->flags & IORING_SETUP_SQPOLL)) 3708 ctx->syscall_iopoll = 1; 3709 3710 ctx->compat = in_compat_syscall(); 3711 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3712 ctx->user = get_uid(current_user()); 3713 3714 /* 3715 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3716 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3717 */ 3718 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN)) 3719 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3720 else 3721 ctx->notify_method = TWA_SIGNAL; 3722 3723 /* 3724 * This is just grabbed for accounting purposes. When a process exits, 3725 * the mm is exited and dropped before the files, hence we need to hang 3726 * on to this mm purely for the purposes of being able to unaccount 3727 * memory (locked/pinned vm). It's not used for anything else. 3728 */ 3729 mmgrab(current->mm); 3730 ctx->mm_account = current->mm; 3731 3732 ret = io_allocate_scq_urings(ctx, p); 3733 if (ret) 3734 goto err; 3735 3736 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3737 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3738 3739 ret = io_sq_offload_create(ctx, p); 3740 if (ret) 3741 goto err; 3742 3743 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3744 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3745 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3746 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3747 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3748 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3749 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3750 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT | 3751 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT; 3752 3753 if (copy_to_user(params, p, sizeof(*p))) { 3754 ret = -EFAULT; 3755 goto err; 3756 } 3757 3758 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3759 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3760 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3761 3762 file = io_uring_get_file(ctx); 3763 if (IS_ERR(file)) { 3764 ret = PTR_ERR(file); 3765 goto err; 3766 } 3767 3768 ret = __io_uring_add_tctx_node(ctx); 3769 if (ret) 3770 goto err_fput; 3771 tctx = current->io_uring; 3772 3773 /* 3774 * Install ring fd as the very last thing, so we don't risk someone 3775 * having closed it before we finish setup 3776 */ 3777 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3778 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3779 else 3780 ret = io_uring_install_fd(file); 3781 if (ret < 0) 3782 goto err_fput; 3783 3784 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3785 return ret; 3786 err: 3787 io_ring_ctx_wait_and_kill(ctx); 3788 return ret; 3789 err_fput: 3790 fput(file); 3791 return ret; 3792 } 3793 3794 /* 3795 * Sets up an aio uring context, and returns the fd. Applications asks for a 3796 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3797 * params structure passed in. 3798 */ 3799 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3800 { 3801 struct io_uring_params p; 3802 int i; 3803 3804 if (copy_from_user(&p, params, sizeof(p))) 3805 return -EFAULT; 3806 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3807 if (p.resv[i]) 3808 return -EINVAL; 3809 } 3810 3811 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3812 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3813 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3814 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3815 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3816 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3817 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3818 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3819 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3820 return -EINVAL; 3821 3822 return io_uring_create(entries, &p, params); 3823 } 3824 3825 static inline int io_uring_allowed(void) 3826 { 3827 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3828 kgid_t io_uring_group; 3829 3830 if (disabled == 2) 3831 return -EPERM; 3832 3833 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3834 goto allowed_lsm; 3835 3836 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3837 if (!gid_valid(io_uring_group)) 3838 return -EPERM; 3839 3840 if (!in_group_p(io_uring_group)) 3841 return -EPERM; 3842 3843 allowed_lsm: 3844 return security_uring_allowed(); 3845 } 3846 3847 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3848 struct io_uring_params __user *, params) 3849 { 3850 int ret; 3851 3852 ret = io_uring_allowed(); 3853 if (ret) 3854 return ret; 3855 3856 return io_uring_setup(entries, params); 3857 } 3858 3859 static int __init io_uring_init(void) 3860 { 3861 struct kmem_cache_args kmem_args = { 3862 .useroffset = offsetof(struct io_kiocb, cmd.data), 3863 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3864 .freeptr_offset = offsetof(struct io_kiocb, work), 3865 .use_freeptr_offset = true, 3866 }; 3867 3868 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3869 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3870 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3871 } while (0) 3872 3873 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3874 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3875 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3876 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3877 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3878 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3879 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3880 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3881 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3882 BUILD_BUG_SQE_ELEM(8, __u64, off); 3883 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3884 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3885 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3886 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3887 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3888 BUILD_BUG_SQE_ELEM(24, __u32, len); 3889 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3890 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3891 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3892 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3893 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3894 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3895 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3896 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3897 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3898 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3899 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3900 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3901 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3902 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3903 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3904 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3905 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3906 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3907 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3908 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3909 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3910 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3911 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3912 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3913 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3914 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3915 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3916 BUILD_BUG_SQE_ELEM(44, __u8, write_stream); 3917 BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]); 3918 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3919 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3920 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3921 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); 3922 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); 3923 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3924 3925 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3926 sizeof(struct io_uring_rsrc_update)); 3927 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3928 sizeof(struct io_uring_rsrc_update2)); 3929 3930 /* ->buf_index is u16 */ 3931 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3932 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3933 offsetof(struct io_uring_buf_ring, tail)); 3934 3935 /* should fit into one byte */ 3936 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3937 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3938 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3939 3940 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3941 3942 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3943 3944 /* top 8bits are for internal use */ 3945 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3946 3947 io_uring_optable_init(); 3948 3949 /* imu->dir is u8 */ 3950 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX); 3951 3952 /* 3953 * Allow user copy in the per-command field, which starts after the 3954 * file in io_kiocb and until the opcode field. The openat2 handling 3955 * requires copying in user memory into the io_kiocb object in that 3956 * range, and HARDENED_USERCOPY will complain if we haven't 3957 * correctly annotated this range. 3958 */ 3959 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3960 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3961 SLAB_TYPESAFE_BY_RCU); 3962 3963 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3964 BUG_ON(!iou_wq); 3965 3966 #ifdef CONFIG_SYSCTL 3967 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3968 #endif 3969 3970 return 0; 3971 }; 3972 __initcall(io_uring_init); 3973