1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <linux/anon_inodes.h> 63 #include <linux/sched/mm.h> 64 #include <linux/uaccess.h> 65 #include <linux/nospec.h> 66 #include <linux/fsnotify.h> 67 #include <linux/fadvise.h> 68 #include <linux/task_work.h> 69 #include <linux/io_uring.h> 70 #include <linux/io_uring/cmd.h> 71 #include <linux/audit.h> 72 #include <linux/security.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "memmap.h" 99 100 #include "timeout.h" 101 #include "poll.h" 102 #include "rw.h" 103 #include "alloc_cache.h" 104 105 #define IORING_MAX_ENTRIES 32768 106 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 107 108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 109 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 110 111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 113 114 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 115 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 116 REQ_F_ASYNC_DATA) 117 118 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 119 IO_REQ_CLEAN_FLAGS) 120 121 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 122 123 #define IO_COMPL_BATCH 32 124 #define IO_REQ_ALLOC_BATCH 8 125 126 struct io_defer_entry { 127 struct list_head list; 128 struct io_kiocb *req; 129 u32 seq; 130 }; 131 132 /* requests with any of those set should undergo io_disarm_next() */ 133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 135 136 /* 137 * No waiters. It's larger than any valid value of the tw counter 138 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 139 */ 140 #define IO_CQ_WAKE_INIT (-1U) 141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct task_struct *task, 146 bool cancel_all); 147 148 static void io_queue_sqe(struct io_kiocb *req); 149 150 struct kmem_cache *req_cachep; 151 static struct workqueue_struct *iou_wq __ro_after_init; 152 153 static int __read_mostly sysctl_io_uring_disabled; 154 static int __read_mostly sysctl_io_uring_group = -1; 155 156 #ifdef CONFIG_SYSCTL 157 static struct ctl_table kernel_io_uring_disabled_table[] = { 158 { 159 .procname = "io_uring_disabled", 160 .data = &sysctl_io_uring_disabled, 161 .maxlen = sizeof(sysctl_io_uring_disabled), 162 .mode = 0644, 163 .proc_handler = proc_dointvec_minmax, 164 .extra1 = SYSCTL_ZERO, 165 .extra2 = SYSCTL_TWO, 166 }, 167 { 168 .procname = "io_uring_group", 169 .data = &sysctl_io_uring_group, 170 .maxlen = sizeof(gid_t), 171 .mode = 0644, 172 .proc_handler = proc_dointvec, 173 }, 174 }; 175 #endif 176 177 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 178 { 179 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 180 } 181 182 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 183 { 184 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 185 } 186 187 static bool io_match_linked(struct io_kiocb *head) 188 { 189 struct io_kiocb *req; 190 191 io_for_each_link(req, head) { 192 if (req->flags & REQ_F_INFLIGHT) 193 return true; 194 } 195 return false; 196 } 197 198 /* 199 * As io_match_task() but protected against racing with linked timeouts. 200 * User must not hold timeout_lock. 201 */ 202 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 203 bool cancel_all) 204 { 205 bool matched; 206 207 if (task && head->task != task) 208 return false; 209 if (cancel_all) 210 return true; 211 212 if (head->flags & REQ_F_LINK_TIMEOUT) { 213 struct io_ring_ctx *ctx = head->ctx; 214 215 /* protect against races with linked timeouts */ 216 spin_lock_irq(&ctx->timeout_lock); 217 matched = io_match_linked(head); 218 spin_unlock_irq(&ctx->timeout_lock); 219 } else { 220 matched = io_match_linked(head); 221 } 222 return matched; 223 } 224 225 static inline void req_fail_link_node(struct io_kiocb *req, int res) 226 { 227 req_set_fail(req); 228 io_req_set_res(req, res, 0); 229 } 230 231 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 232 { 233 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 234 } 235 236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 237 { 238 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 239 240 complete(&ctx->ref_comp); 241 } 242 243 static __cold void io_fallback_req_func(struct work_struct *work) 244 { 245 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 246 fallback_work.work); 247 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 248 struct io_kiocb *req, *tmp; 249 struct io_tw_state ts = {}; 250 251 percpu_ref_get(&ctx->refs); 252 mutex_lock(&ctx->uring_lock); 253 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 254 req->io_task_work.func(req, &ts); 255 io_submit_flush_completions(ctx); 256 mutex_unlock(&ctx->uring_lock); 257 percpu_ref_put(&ctx->refs); 258 } 259 260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 261 { 262 unsigned hash_buckets = 1U << bits; 263 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 264 265 table->hbs = kmalloc(hash_size, GFP_KERNEL); 266 if (!table->hbs) 267 return -ENOMEM; 268 269 table->hash_bits = bits; 270 init_hash_table(table, hash_buckets); 271 return 0; 272 } 273 274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 275 { 276 struct io_ring_ctx *ctx; 277 int hash_bits; 278 bool ret; 279 280 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 281 if (!ctx) 282 return NULL; 283 284 xa_init(&ctx->io_bl_xa); 285 286 /* 287 * Use 5 bits less than the max cq entries, that should give us around 288 * 32 entries per hash list if totally full and uniformly spread, but 289 * don't keep too many buckets to not overconsume memory. 290 */ 291 hash_bits = ilog2(p->cq_entries) - 5; 292 hash_bits = clamp(hash_bits, 1, 8); 293 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 294 goto err; 295 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 296 goto err; 297 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 298 0, GFP_KERNEL)) 299 goto err; 300 301 ctx->flags = p->flags; 302 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 303 init_waitqueue_head(&ctx->sqo_sq_wait); 304 INIT_LIST_HEAD(&ctx->sqd_list); 305 INIT_LIST_HEAD(&ctx->cq_overflow_list); 306 INIT_LIST_HEAD(&ctx->io_buffers_cache); 307 ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 308 sizeof(struct io_rsrc_node)); 309 ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 310 sizeof(struct async_poll)); 311 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 312 sizeof(struct io_async_msghdr)); 313 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 314 sizeof(struct io_async_rw)); 315 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX, 316 sizeof(struct uring_cache)); 317 ret |= io_futex_cache_init(ctx); 318 if (ret) 319 goto err; 320 init_completion(&ctx->ref_comp); 321 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 322 mutex_init(&ctx->uring_lock); 323 init_waitqueue_head(&ctx->cq_wait); 324 init_waitqueue_head(&ctx->poll_wq); 325 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 326 spin_lock_init(&ctx->completion_lock); 327 spin_lock_init(&ctx->timeout_lock); 328 INIT_WQ_LIST(&ctx->iopoll_list); 329 INIT_LIST_HEAD(&ctx->io_buffers_comp); 330 INIT_LIST_HEAD(&ctx->defer_list); 331 INIT_LIST_HEAD(&ctx->timeout_list); 332 INIT_LIST_HEAD(&ctx->ltimeout_list); 333 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 334 init_llist_head(&ctx->work_llist); 335 INIT_LIST_HEAD(&ctx->tctx_list); 336 ctx->submit_state.free_list.next = NULL; 337 INIT_HLIST_HEAD(&ctx->waitid_list); 338 #ifdef CONFIG_FUTEX 339 INIT_HLIST_HEAD(&ctx->futex_list); 340 #endif 341 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 342 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 343 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 344 io_napi_init(ctx); 345 346 return ctx; 347 err: 348 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree); 349 io_alloc_cache_free(&ctx->apoll_cache, kfree); 350 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 351 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 352 io_alloc_cache_free(&ctx->uring_cache, kfree); 353 io_futex_cache_free(ctx); 354 kfree(ctx->cancel_table.hbs); 355 kfree(ctx->cancel_table_locked.hbs); 356 xa_destroy(&ctx->io_bl_xa); 357 kfree(ctx); 358 return NULL; 359 } 360 361 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 362 { 363 struct io_rings *r = ctx->rings; 364 365 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 366 ctx->cq_extra--; 367 } 368 369 static bool req_need_defer(struct io_kiocb *req, u32 seq) 370 { 371 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 372 struct io_ring_ctx *ctx = req->ctx; 373 374 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 375 } 376 377 return false; 378 } 379 380 static void io_clean_op(struct io_kiocb *req) 381 { 382 if (req->flags & REQ_F_BUFFER_SELECTED) { 383 spin_lock(&req->ctx->completion_lock); 384 io_kbuf_drop(req); 385 spin_unlock(&req->ctx->completion_lock); 386 } 387 388 if (req->flags & REQ_F_NEED_CLEANUP) { 389 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 390 391 if (def->cleanup) 392 def->cleanup(req); 393 } 394 if ((req->flags & REQ_F_POLLED) && req->apoll) { 395 kfree(req->apoll->double_poll); 396 kfree(req->apoll); 397 req->apoll = NULL; 398 } 399 if (req->flags & REQ_F_INFLIGHT) { 400 struct io_uring_task *tctx = req->task->io_uring; 401 402 atomic_dec(&tctx->inflight_tracked); 403 } 404 if (req->flags & REQ_F_CREDS) 405 put_cred(req->creds); 406 if (req->flags & REQ_F_ASYNC_DATA) { 407 kfree(req->async_data); 408 req->async_data = NULL; 409 } 410 req->flags &= ~IO_REQ_CLEAN_FLAGS; 411 } 412 413 static inline void io_req_track_inflight(struct io_kiocb *req) 414 { 415 if (!(req->flags & REQ_F_INFLIGHT)) { 416 req->flags |= REQ_F_INFLIGHT; 417 atomic_inc(&req->task->io_uring->inflight_tracked); 418 } 419 } 420 421 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 422 { 423 if (WARN_ON_ONCE(!req->link)) 424 return NULL; 425 426 req->flags &= ~REQ_F_ARM_LTIMEOUT; 427 req->flags |= REQ_F_LINK_TIMEOUT; 428 429 /* linked timeouts should have two refs once prep'ed */ 430 io_req_set_refcount(req); 431 __io_req_set_refcount(req->link, 2); 432 return req->link; 433 } 434 435 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 436 { 437 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 438 return NULL; 439 return __io_prep_linked_timeout(req); 440 } 441 442 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 443 { 444 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 445 } 446 447 static inline void io_arm_ltimeout(struct io_kiocb *req) 448 { 449 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 450 __io_arm_ltimeout(req); 451 } 452 453 static void io_prep_async_work(struct io_kiocb *req) 454 { 455 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 456 struct io_ring_ctx *ctx = req->ctx; 457 458 if (!(req->flags & REQ_F_CREDS)) { 459 req->flags |= REQ_F_CREDS; 460 req->creds = get_current_cred(); 461 } 462 463 req->work.list.next = NULL; 464 req->work.flags = 0; 465 if (req->flags & REQ_F_FORCE_ASYNC) 466 req->work.flags |= IO_WQ_WORK_CONCURRENT; 467 468 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 469 req->flags |= io_file_get_flags(req->file); 470 471 if (req->file && (req->flags & REQ_F_ISREG)) { 472 bool should_hash = def->hash_reg_file; 473 474 /* don't serialize this request if the fs doesn't need it */ 475 if (should_hash && (req->file->f_flags & O_DIRECT) && 476 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 477 should_hash = false; 478 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 479 io_wq_hash_work(&req->work, file_inode(req->file)); 480 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 481 if (def->unbound_nonreg_file) 482 req->work.flags |= IO_WQ_WORK_UNBOUND; 483 } 484 } 485 486 static void io_prep_async_link(struct io_kiocb *req) 487 { 488 struct io_kiocb *cur; 489 490 if (req->flags & REQ_F_LINK_TIMEOUT) { 491 struct io_ring_ctx *ctx = req->ctx; 492 493 spin_lock_irq(&ctx->timeout_lock); 494 io_for_each_link(cur, req) 495 io_prep_async_work(cur); 496 spin_unlock_irq(&ctx->timeout_lock); 497 } else { 498 io_for_each_link(cur, req) 499 io_prep_async_work(cur); 500 } 501 } 502 503 static void io_queue_iowq(struct io_kiocb *req) 504 { 505 struct io_kiocb *link = io_prep_linked_timeout(req); 506 struct io_uring_task *tctx = req->task->io_uring; 507 508 BUG_ON(!tctx); 509 BUG_ON(!tctx->io_wq); 510 511 /* init ->work of the whole link before punting */ 512 io_prep_async_link(req); 513 514 /* 515 * Not expected to happen, but if we do have a bug where this _can_ 516 * happen, catch it here and ensure the request is marked as 517 * canceled. That will make io-wq go through the usual work cancel 518 * procedure rather than attempt to run this request (or create a new 519 * worker for it). 520 */ 521 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 522 req->work.flags |= IO_WQ_WORK_CANCEL; 523 524 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 525 io_wq_enqueue(tctx->io_wq, &req->work); 526 if (link) 527 io_queue_linked_timeout(link); 528 } 529 530 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 531 { 532 while (!list_empty(&ctx->defer_list)) { 533 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 534 struct io_defer_entry, list); 535 536 if (req_need_defer(de->req, de->seq)) 537 break; 538 list_del_init(&de->list); 539 io_req_task_queue(de->req); 540 kfree(de); 541 } 542 } 543 544 void io_eventfd_ops(struct rcu_head *rcu) 545 { 546 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 547 int ops = atomic_xchg(&ev_fd->ops, 0); 548 549 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 550 eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE); 551 552 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 553 * ordering in a race but if references are 0 we know we have to free 554 * it regardless. 555 */ 556 if (atomic_dec_and_test(&ev_fd->refs)) { 557 eventfd_ctx_put(ev_fd->cq_ev_fd); 558 kfree(ev_fd); 559 } 560 } 561 562 static void io_eventfd_signal(struct io_ring_ctx *ctx) 563 { 564 struct io_ev_fd *ev_fd = NULL; 565 566 rcu_read_lock(); 567 /* 568 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 569 * and eventfd_signal 570 */ 571 ev_fd = rcu_dereference(ctx->io_ev_fd); 572 573 /* 574 * Check again if ev_fd exists incase an io_eventfd_unregister call 575 * completed between the NULL check of ctx->io_ev_fd at the start of 576 * the function and rcu_read_lock. 577 */ 578 if (unlikely(!ev_fd)) 579 goto out; 580 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 581 goto out; 582 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 583 goto out; 584 585 if (likely(eventfd_signal_allowed())) { 586 eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE); 587 } else { 588 atomic_inc(&ev_fd->refs); 589 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 590 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 591 else 592 atomic_dec(&ev_fd->refs); 593 } 594 595 out: 596 rcu_read_unlock(); 597 } 598 599 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 600 { 601 bool skip; 602 603 spin_lock(&ctx->completion_lock); 604 605 /* 606 * Eventfd should only get triggered when at least one event has been 607 * posted. Some applications rely on the eventfd notification count 608 * only changing IFF a new CQE has been added to the CQ ring. There's 609 * no depedency on 1:1 relationship between how many times this 610 * function is called (and hence the eventfd count) and number of CQEs 611 * posted to the CQ ring. 612 */ 613 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 614 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 615 spin_unlock(&ctx->completion_lock); 616 if (skip) 617 return; 618 619 io_eventfd_signal(ctx); 620 } 621 622 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 623 { 624 if (ctx->poll_activated) 625 io_poll_wq_wake(ctx); 626 if (ctx->off_timeout_used) 627 io_flush_timeouts(ctx); 628 if (ctx->drain_active) { 629 spin_lock(&ctx->completion_lock); 630 io_queue_deferred(ctx); 631 spin_unlock(&ctx->completion_lock); 632 } 633 if (ctx->has_evfd) 634 io_eventfd_flush_signal(ctx); 635 } 636 637 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 638 { 639 if (!ctx->lockless_cq) 640 spin_lock(&ctx->completion_lock); 641 } 642 643 static inline void io_cq_lock(struct io_ring_ctx *ctx) 644 __acquires(ctx->completion_lock) 645 { 646 spin_lock(&ctx->completion_lock); 647 } 648 649 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 650 { 651 io_commit_cqring(ctx); 652 if (!ctx->task_complete) { 653 if (!ctx->lockless_cq) 654 spin_unlock(&ctx->completion_lock); 655 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 656 if (!ctx->syscall_iopoll) 657 io_cqring_wake(ctx); 658 } 659 io_commit_cqring_flush(ctx); 660 } 661 662 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 663 __releases(ctx->completion_lock) 664 { 665 io_commit_cqring(ctx); 666 spin_unlock(&ctx->completion_lock); 667 io_cqring_wake(ctx); 668 io_commit_cqring_flush(ctx); 669 } 670 671 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 672 { 673 size_t cqe_size = sizeof(struct io_uring_cqe); 674 675 lockdep_assert_held(&ctx->uring_lock); 676 677 /* don't abort if we're dying, entries must get freed */ 678 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 679 return; 680 681 if (ctx->flags & IORING_SETUP_CQE32) 682 cqe_size <<= 1; 683 684 io_cq_lock(ctx); 685 while (!list_empty(&ctx->cq_overflow_list)) { 686 struct io_uring_cqe *cqe; 687 struct io_overflow_cqe *ocqe; 688 689 ocqe = list_first_entry(&ctx->cq_overflow_list, 690 struct io_overflow_cqe, list); 691 692 if (!dying) { 693 if (!io_get_cqe_overflow(ctx, &cqe, true)) 694 break; 695 memcpy(cqe, &ocqe->cqe, cqe_size); 696 } 697 list_del(&ocqe->list); 698 kfree(ocqe); 699 } 700 701 if (list_empty(&ctx->cq_overflow_list)) { 702 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 703 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 704 } 705 io_cq_unlock_post(ctx); 706 } 707 708 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 709 { 710 if (ctx->rings) 711 __io_cqring_overflow_flush(ctx, true); 712 } 713 714 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 715 { 716 mutex_lock(&ctx->uring_lock); 717 __io_cqring_overflow_flush(ctx, false); 718 mutex_unlock(&ctx->uring_lock); 719 } 720 721 /* can be called by any task */ 722 static void io_put_task_remote(struct task_struct *task) 723 { 724 struct io_uring_task *tctx = task->io_uring; 725 726 percpu_counter_sub(&tctx->inflight, 1); 727 if (unlikely(atomic_read(&tctx->in_cancel))) 728 wake_up(&tctx->wait); 729 put_task_struct(task); 730 } 731 732 /* used by a task to put its own references */ 733 static void io_put_task_local(struct task_struct *task) 734 { 735 task->io_uring->cached_refs++; 736 } 737 738 /* must to be called somewhat shortly after putting a request */ 739 static inline void io_put_task(struct task_struct *task) 740 { 741 if (likely(task == current)) 742 io_put_task_local(task); 743 else 744 io_put_task_remote(task); 745 } 746 747 void io_task_refs_refill(struct io_uring_task *tctx) 748 { 749 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 750 751 percpu_counter_add(&tctx->inflight, refill); 752 refcount_add(refill, ¤t->usage); 753 tctx->cached_refs += refill; 754 } 755 756 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 757 { 758 struct io_uring_task *tctx = task->io_uring; 759 unsigned int refs = tctx->cached_refs; 760 761 if (refs) { 762 tctx->cached_refs = 0; 763 percpu_counter_sub(&tctx->inflight, refs); 764 put_task_struct_many(task, refs); 765 } 766 } 767 768 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 769 s32 res, u32 cflags, u64 extra1, u64 extra2) 770 { 771 struct io_overflow_cqe *ocqe; 772 size_t ocq_size = sizeof(struct io_overflow_cqe); 773 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 774 775 lockdep_assert_held(&ctx->completion_lock); 776 777 if (is_cqe32) 778 ocq_size += sizeof(struct io_uring_cqe); 779 780 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 781 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 782 if (!ocqe) { 783 /* 784 * If we're in ring overflow flush mode, or in task cancel mode, 785 * or cannot allocate an overflow entry, then we need to drop it 786 * on the floor. 787 */ 788 io_account_cq_overflow(ctx); 789 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 790 return false; 791 } 792 if (list_empty(&ctx->cq_overflow_list)) { 793 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 794 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 795 796 } 797 ocqe->cqe.user_data = user_data; 798 ocqe->cqe.res = res; 799 ocqe->cqe.flags = cflags; 800 if (is_cqe32) { 801 ocqe->cqe.big_cqe[0] = extra1; 802 ocqe->cqe.big_cqe[1] = extra2; 803 } 804 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 805 return true; 806 } 807 808 static void io_req_cqe_overflow(struct io_kiocb *req) 809 { 810 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 811 req->cqe.res, req->cqe.flags, 812 req->big_cqe.extra1, req->big_cqe.extra2); 813 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 814 } 815 816 /* 817 * writes to the cq entry need to come after reading head; the 818 * control dependency is enough as we're using WRITE_ONCE to 819 * fill the cq entry 820 */ 821 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 822 { 823 struct io_rings *rings = ctx->rings; 824 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 825 unsigned int free, queued, len; 826 827 /* 828 * Posting into the CQ when there are pending overflowed CQEs may break 829 * ordering guarantees, which will affect links, F_MORE users and more. 830 * Force overflow the completion. 831 */ 832 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 833 return false; 834 835 /* userspace may cheat modifying the tail, be safe and do min */ 836 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 837 free = ctx->cq_entries - queued; 838 /* we need a contiguous range, limit based on the current array offset */ 839 len = min(free, ctx->cq_entries - off); 840 if (!len) 841 return false; 842 843 if (ctx->flags & IORING_SETUP_CQE32) { 844 off <<= 1; 845 len <<= 1; 846 } 847 848 ctx->cqe_cached = &rings->cqes[off]; 849 ctx->cqe_sentinel = ctx->cqe_cached + len; 850 return true; 851 } 852 853 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 854 u32 cflags) 855 { 856 struct io_uring_cqe *cqe; 857 858 ctx->cq_extra++; 859 860 /* 861 * If we can't get a cq entry, userspace overflowed the 862 * submission (by quite a lot). Increment the overflow count in 863 * the ring. 864 */ 865 if (likely(io_get_cqe(ctx, &cqe))) { 866 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 867 868 WRITE_ONCE(cqe->user_data, user_data); 869 WRITE_ONCE(cqe->res, res); 870 WRITE_ONCE(cqe->flags, cflags); 871 872 if (ctx->flags & IORING_SETUP_CQE32) { 873 WRITE_ONCE(cqe->big_cqe[0], 0); 874 WRITE_ONCE(cqe->big_cqe[1], 0); 875 } 876 return true; 877 } 878 return false; 879 } 880 881 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 882 { 883 bool filled; 884 885 io_cq_lock(ctx); 886 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 887 if (!filled) 888 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 889 890 io_cq_unlock_post(ctx); 891 return filled; 892 } 893 894 /* 895 * A helper for multishot requests posting additional CQEs. 896 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 897 */ 898 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 899 { 900 struct io_ring_ctx *ctx = req->ctx; 901 bool posted; 902 903 lockdep_assert(!io_wq_current_is_worker()); 904 lockdep_assert_held(&ctx->uring_lock); 905 906 __io_cq_lock(ctx); 907 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 908 ctx->submit_state.cq_flush = true; 909 __io_cq_unlock_post(ctx); 910 return posted; 911 } 912 913 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 914 { 915 struct io_ring_ctx *ctx = req->ctx; 916 917 /* 918 * All execution paths but io-wq use the deferred completions by 919 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 920 */ 921 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 922 return; 923 924 /* 925 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 926 * the submitter task context, IOPOLL protects with uring_lock. 927 */ 928 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) { 929 req->io_task_work.func = io_req_task_complete; 930 io_req_task_work_add(req); 931 return; 932 } 933 934 io_cq_lock(ctx); 935 if (!(req->flags & REQ_F_CQE_SKIP)) { 936 if (!io_fill_cqe_req(ctx, req)) 937 io_req_cqe_overflow(req); 938 } 939 io_cq_unlock_post(ctx); 940 941 /* 942 * We don't free the request here because we know it's called from 943 * io-wq only, which holds a reference, so it cannot be the last put. 944 */ 945 req_ref_put(req); 946 } 947 948 void io_req_defer_failed(struct io_kiocb *req, s32 res) 949 __must_hold(&ctx->uring_lock) 950 { 951 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 952 953 lockdep_assert_held(&req->ctx->uring_lock); 954 955 req_set_fail(req); 956 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 957 if (def->fail) 958 def->fail(req); 959 io_req_complete_defer(req); 960 } 961 962 /* 963 * Don't initialise the fields below on every allocation, but do that in 964 * advance and keep them valid across allocations. 965 */ 966 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 967 { 968 req->ctx = ctx; 969 req->link = NULL; 970 req->async_data = NULL; 971 /* not necessary, but safer to zero */ 972 memset(&req->cqe, 0, sizeof(req->cqe)); 973 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 974 } 975 976 /* 977 * A request might get retired back into the request caches even before opcode 978 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 979 * Because of that, io_alloc_req() should be called only under ->uring_lock 980 * and with extra caution to not get a request that is still worked on. 981 */ 982 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 983 __must_hold(&ctx->uring_lock) 984 { 985 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 986 void *reqs[IO_REQ_ALLOC_BATCH]; 987 int ret; 988 989 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 990 991 /* 992 * Bulk alloc is all-or-nothing. If we fail to get a batch, 993 * retry single alloc to be on the safe side. 994 */ 995 if (unlikely(ret <= 0)) { 996 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 997 if (!reqs[0]) 998 return false; 999 ret = 1; 1000 } 1001 1002 percpu_ref_get_many(&ctx->refs, ret); 1003 while (ret--) { 1004 struct io_kiocb *req = reqs[ret]; 1005 1006 io_preinit_req(req, ctx); 1007 io_req_add_to_cache(req, ctx); 1008 } 1009 return true; 1010 } 1011 1012 __cold void io_free_req(struct io_kiocb *req) 1013 { 1014 /* refs were already put, restore them for io_req_task_complete() */ 1015 req->flags &= ~REQ_F_REFCOUNT; 1016 /* we only want to free it, don't post CQEs */ 1017 req->flags |= REQ_F_CQE_SKIP; 1018 req->io_task_work.func = io_req_task_complete; 1019 io_req_task_work_add(req); 1020 } 1021 1022 static void __io_req_find_next_prep(struct io_kiocb *req) 1023 { 1024 struct io_ring_ctx *ctx = req->ctx; 1025 1026 spin_lock(&ctx->completion_lock); 1027 io_disarm_next(req); 1028 spin_unlock(&ctx->completion_lock); 1029 } 1030 1031 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1032 { 1033 struct io_kiocb *nxt; 1034 1035 /* 1036 * If LINK is set, we have dependent requests in this chain. If we 1037 * didn't fail this request, queue the first one up, moving any other 1038 * dependencies to the next request. In case of failure, fail the rest 1039 * of the chain. 1040 */ 1041 if (unlikely(req->flags & IO_DISARM_MASK)) 1042 __io_req_find_next_prep(req); 1043 nxt = req->link; 1044 req->link = NULL; 1045 return nxt; 1046 } 1047 1048 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1049 { 1050 if (!ctx) 1051 return; 1052 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1053 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1054 1055 io_submit_flush_completions(ctx); 1056 mutex_unlock(&ctx->uring_lock); 1057 percpu_ref_put(&ctx->refs); 1058 } 1059 1060 /* 1061 * Run queued task_work, returning the number of entries processed in *count. 1062 * If more entries than max_entries are available, stop processing once this 1063 * is reached and return the rest of the list. 1064 */ 1065 struct llist_node *io_handle_tw_list(struct llist_node *node, 1066 unsigned int *count, 1067 unsigned int max_entries) 1068 { 1069 struct io_ring_ctx *ctx = NULL; 1070 struct io_tw_state ts = { }; 1071 1072 do { 1073 struct llist_node *next = node->next; 1074 struct io_kiocb *req = container_of(node, struct io_kiocb, 1075 io_task_work.node); 1076 1077 if (req->ctx != ctx) { 1078 ctx_flush_and_put(ctx, &ts); 1079 ctx = req->ctx; 1080 mutex_lock(&ctx->uring_lock); 1081 percpu_ref_get(&ctx->refs); 1082 } 1083 INDIRECT_CALL_2(req->io_task_work.func, 1084 io_poll_task_func, io_req_rw_complete, 1085 req, &ts); 1086 node = next; 1087 (*count)++; 1088 if (unlikely(need_resched())) { 1089 ctx_flush_and_put(ctx, &ts); 1090 ctx = NULL; 1091 cond_resched(); 1092 } 1093 } while (node && *count < max_entries); 1094 1095 ctx_flush_and_put(ctx, &ts); 1096 return node; 1097 } 1098 1099 /** 1100 * io_llist_xchg - swap all entries in a lock-less list 1101 * @head: the head of lock-less list to delete all entries 1102 * @new: new entry as the head of the list 1103 * 1104 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1105 * The order of entries returned is from the newest to the oldest added one. 1106 */ 1107 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1108 struct llist_node *new) 1109 { 1110 return xchg(&head->first, new); 1111 } 1112 1113 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1114 { 1115 struct llist_node *node = llist_del_all(&tctx->task_list); 1116 struct io_ring_ctx *last_ctx = NULL; 1117 struct io_kiocb *req; 1118 1119 while (node) { 1120 req = container_of(node, struct io_kiocb, io_task_work.node); 1121 node = node->next; 1122 if (sync && last_ctx != req->ctx) { 1123 if (last_ctx) { 1124 flush_delayed_work(&last_ctx->fallback_work); 1125 percpu_ref_put(&last_ctx->refs); 1126 } 1127 last_ctx = req->ctx; 1128 percpu_ref_get(&last_ctx->refs); 1129 } 1130 if (llist_add(&req->io_task_work.node, 1131 &req->ctx->fallback_llist)) 1132 schedule_delayed_work(&req->ctx->fallback_work, 1); 1133 } 1134 1135 if (last_ctx) { 1136 flush_delayed_work(&last_ctx->fallback_work); 1137 percpu_ref_put(&last_ctx->refs); 1138 } 1139 } 1140 1141 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1142 unsigned int max_entries, 1143 unsigned int *count) 1144 { 1145 struct llist_node *node; 1146 1147 if (unlikely(current->flags & PF_EXITING)) { 1148 io_fallback_tw(tctx, true); 1149 return NULL; 1150 } 1151 1152 node = llist_del_all(&tctx->task_list); 1153 if (node) { 1154 node = llist_reverse_order(node); 1155 node = io_handle_tw_list(node, count, max_entries); 1156 } 1157 1158 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1159 if (unlikely(atomic_read(&tctx->in_cancel))) 1160 io_uring_drop_tctx_refs(current); 1161 1162 trace_io_uring_task_work_run(tctx, *count); 1163 return node; 1164 } 1165 1166 void tctx_task_work(struct callback_head *cb) 1167 { 1168 struct io_uring_task *tctx; 1169 struct llist_node *ret; 1170 unsigned int count = 0; 1171 1172 tctx = container_of(cb, struct io_uring_task, task_work); 1173 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1174 /* can't happen */ 1175 WARN_ON_ONCE(ret); 1176 } 1177 1178 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1179 { 1180 struct io_ring_ctx *ctx = req->ctx; 1181 unsigned nr_wait, nr_tw, nr_tw_prev; 1182 struct llist_node *head; 1183 1184 /* See comment above IO_CQ_WAKE_INIT */ 1185 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1186 1187 /* 1188 * We don't know how many reuqests is there in the link and whether 1189 * they can even be queued lazily, fall back to non-lazy. 1190 */ 1191 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1192 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1193 1194 head = READ_ONCE(ctx->work_llist.first); 1195 do { 1196 nr_tw_prev = 0; 1197 if (head) { 1198 struct io_kiocb *first_req = container_of(head, 1199 struct io_kiocb, 1200 io_task_work.node); 1201 /* 1202 * Might be executed at any moment, rely on 1203 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1204 */ 1205 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1206 } 1207 1208 /* 1209 * Theoretically, it can overflow, but that's fine as one of 1210 * previous adds should've tried to wake the task. 1211 */ 1212 nr_tw = nr_tw_prev + 1; 1213 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1214 nr_tw = IO_CQ_WAKE_FORCE; 1215 1216 req->nr_tw = nr_tw; 1217 req->io_task_work.node.next = head; 1218 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1219 &req->io_task_work.node)); 1220 1221 /* 1222 * cmpxchg implies a full barrier, which pairs with the barrier 1223 * in set_current_state() on the io_cqring_wait() side. It's used 1224 * to ensure that either we see updated ->cq_wait_nr, or waiters 1225 * going to sleep will observe the work added to the list, which 1226 * is similar to the wait/wawke task state sync. 1227 */ 1228 1229 if (!head) { 1230 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1231 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1232 if (ctx->has_evfd) 1233 io_eventfd_signal(ctx); 1234 } 1235 1236 nr_wait = atomic_read(&ctx->cq_wait_nr); 1237 /* not enough or no one is waiting */ 1238 if (nr_tw < nr_wait) 1239 return; 1240 /* the previous add has already woken it up */ 1241 if (nr_tw_prev >= nr_wait) 1242 return; 1243 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1244 } 1245 1246 static void io_req_normal_work_add(struct io_kiocb *req) 1247 { 1248 struct io_uring_task *tctx = req->task->io_uring; 1249 struct io_ring_ctx *ctx = req->ctx; 1250 1251 /* task_work already pending, we're done */ 1252 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1253 return; 1254 1255 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1256 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1257 1258 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1259 if (ctx->flags & IORING_SETUP_SQPOLL) { 1260 struct io_sq_data *sqd = ctx->sq_data; 1261 1262 if (wq_has_sleeper(&sqd->wait)) 1263 wake_up(&sqd->wait); 1264 return; 1265 } 1266 1267 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1268 return; 1269 1270 io_fallback_tw(tctx, false); 1271 } 1272 1273 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1274 { 1275 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1276 rcu_read_lock(); 1277 io_req_local_work_add(req, flags); 1278 rcu_read_unlock(); 1279 } else { 1280 io_req_normal_work_add(req); 1281 } 1282 } 1283 1284 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1285 { 1286 struct llist_node *node; 1287 1288 node = llist_del_all(&ctx->work_llist); 1289 while (node) { 1290 struct io_kiocb *req = container_of(node, struct io_kiocb, 1291 io_task_work.node); 1292 1293 node = node->next; 1294 io_req_normal_work_add(req); 1295 } 1296 } 1297 1298 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1299 int min_events) 1300 { 1301 if (llist_empty(&ctx->work_llist)) 1302 return false; 1303 if (events < min_events) 1304 return true; 1305 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1306 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1307 return false; 1308 } 1309 1310 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1311 int min_events) 1312 { 1313 struct llist_node *node; 1314 unsigned int loops = 0; 1315 int ret = 0; 1316 1317 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1318 return -EEXIST; 1319 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1320 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1321 again: 1322 /* 1323 * llists are in reverse order, flip it back the right way before 1324 * running the pending items. 1325 */ 1326 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1327 while (node) { 1328 struct llist_node *next = node->next; 1329 struct io_kiocb *req = container_of(node, struct io_kiocb, 1330 io_task_work.node); 1331 INDIRECT_CALL_2(req->io_task_work.func, 1332 io_poll_task_func, io_req_rw_complete, 1333 req, ts); 1334 ret++; 1335 node = next; 1336 } 1337 loops++; 1338 1339 if (io_run_local_work_continue(ctx, ret, min_events)) 1340 goto again; 1341 io_submit_flush_completions(ctx); 1342 if (io_run_local_work_continue(ctx, ret, min_events)) 1343 goto again; 1344 1345 trace_io_uring_local_work_run(ctx, ret, loops); 1346 return ret; 1347 } 1348 1349 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1350 int min_events) 1351 { 1352 struct io_tw_state ts = {}; 1353 1354 if (llist_empty(&ctx->work_llist)) 1355 return 0; 1356 return __io_run_local_work(ctx, &ts, min_events); 1357 } 1358 1359 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events) 1360 { 1361 struct io_tw_state ts = {}; 1362 int ret; 1363 1364 mutex_lock(&ctx->uring_lock); 1365 ret = __io_run_local_work(ctx, &ts, min_events); 1366 mutex_unlock(&ctx->uring_lock); 1367 return ret; 1368 } 1369 1370 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1371 { 1372 io_tw_lock(req->ctx, ts); 1373 io_req_defer_failed(req, req->cqe.res); 1374 } 1375 1376 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1377 { 1378 io_tw_lock(req->ctx, ts); 1379 /* req->task == current here, checking PF_EXITING is safe */ 1380 if (unlikely(req->task->flags & PF_EXITING)) 1381 io_req_defer_failed(req, -EFAULT); 1382 else if (req->flags & REQ_F_FORCE_ASYNC) 1383 io_queue_iowq(req); 1384 else 1385 io_queue_sqe(req); 1386 } 1387 1388 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1389 { 1390 io_req_set_res(req, ret, 0); 1391 req->io_task_work.func = io_req_task_cancel; 1392 io_req_task_work_add(req); 1393 } 1394 1395 void io_req_task_queue(struct io_kiocb *req) 1396 { 1397 req->io_task_work.func = io_req_task_submit; 1398 io_req_task_work_add(req); 1399 } 1400 1401 void io_queue_next(struct io_kiocb *req) 1402 { 1403 struct io_kiocb *nxt = io_req_find_next(req); 1404 1405 if (nxt) 1406 io_req_task_queue(nxt); 1407 } 1408 1409 static void io_free_batch_list(struct io_ring_ctx *ctx, 1410 struct io_wq_work_node *node) 1411 __must_hold(&ctx->uring_lock) 1412 { 1413 do { 1414 struct io_kiocb *req = container_of(node, struct io_kiocb, 1415 comp_list); 1416 1417 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1418 if (req->flags & REQ_F_REFCOUNT) { 1419 node = req->comp_list.next; 1420 if (!req_ref_put_and_test(req)) 1421 continue; 1422 } 1423 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1424 struct async_poll *apoll = req->apoll; 1425 1426 if (apoll->double_poll) 1427 kfree(apoll->double_poll); 1428 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll)) 1429 kfree(apoll); 1430 req->flags &= ~REQ_F_POLLED; 1431 } 1432 if (req->flags & IO_REQ_LINK_FLAGS) 1433 io_queue_next(req); 1434 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1435 io_clean_op(req); 1436 } 1437 io_put_file(req); 1438 io_put_rsrc_node(ctx, req->rsrc_node); 1439 io_put_task(req->task); 1440 1441 node = req->comp_list.next; 1442 io_req_add_to_cache(req, ctx); 1443 } while (node); 1444 } 1445 1446 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1447 __must_hold(&ctx->uring_lock) 1448 { 1449 struct io_submit_state *state = &ctx->submit_state; 1450 struct io_wq_work_node *node; 1451 1452 __io_cq_lock(ctx); 1453 __wq_list_for_each(node, &state->compl_reqs) { 1454 struct io_kiocb *req = container_of(node, struct io_kiocb, 1455 comp_list); 1456 1457 if (!(req->flags & REQ_F_CQE_SKIP) && 1458 unlikely(!io_fill_cqe_req(ctx, req))) { 1459 if (ctx->lockless_cq) { 1460 spin_lock(&ctx->completion_lock); 1461 io_req_cqe_overflow(req); 1462 spin_unlock(&ctx->completion_lock); 1463 } else { 1464 io_req_cqe_overflow(req); 1465 } 1466 } 1467 } 1468 __io_cq_unlock_post(ctx); 1469 1470 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1471 io_free_batch_list(ctx, state->compl_reqs.first); 1472 INIT_WQ_LIST(&state->compl_reqs); 1473 } 1474 ctx->submit_state.cq_flush = false; 1475 } 1476 1477 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1478 { 1479 /* See comment at the top of this file */ 1480 smp_rmb(); 1481 return __io_cqring_events(ctx); 1482 } 1483 1484 /* 1485 * We can't just wait for polled events to come to us, we have to actively 1486 * find and complete them. 1487 */ 1488 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1489 { 1490 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1491 return; 1492 1493 mutex_lock(&ctx->uring_lock); 1494 while (!wq_list_empty(&ctx->iopoll_list)) { 1495 /* let it sleep and repeat later if can't complete a request */ 1496 if (io_do_iopoll(ctx, true) == 0) 1497 break; 1498 /* 1499 * Ensure we allow local-to-the-cpu processing to take place, 1500 * in this case we need to ensure that we reap all events. 1501 * Also let task_work, etc. to progress by releasing the mutex 1502 */ 1503 if (need_resched()) { 1504 mutex_unlock(&ctx->uring_lock); 1505 cond_resched(); 1506 mutex_lock(&ctx->uring_lock); 1507 } 1508 } 1509 mutex_unlock(&ctx->uring_lock); 1510 } 1511 1512 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1513 { 1514 unsigned int nr_events = 0; 1515 unsigned long check_cq; 1516 1517 lockdep_assert_held(&ctx->uring_lock); 1518 1519 if (!io_allowed_run_tw(ctx)) 1520 return -EEXIST; 1521 1522 check_cq = READ_ONCE(ctx->check_cq); 1523 if (unlikely(check_cq)) { 1524 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1525 __io_cqring_overflow_flush(ctx, false); 1526 /* 1527 * Similarly do not spin if we have not informed the user of any 1528 * dropped CQE. 1529 */ 1530 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1531 return -EBADR; 1532 } 1533 /* 1534 * Don't enter poll loop if we already have events pending. 1535 * If we do, we can potentially be spinning for commands that 1536 * already triggered a CQE (eg in error). 1537 */ 1538 if (io_cqring_events(ctx)) 1539 return 0; 1540 1541 do { 1542 int ret = 0; 1543 1544 /* 1545 * If a submit got punted to a workqueue, we can have the 1546 * application entering polling for a command before it gets 1547 * issued. That app will hold the uring_lock for the duration 1548 * of the poll right here, so we need to take a breather every 1549 * now and then to ensure that the issue has a chance to add 1550 * the poll to the issued list. Otherwise we can spin here 1551 * forever, while the workqueue is stuck trying to acquire the 1552 * very same mutex. 1553 */ 1554 if (wq_list_empty(&ctx->iopoll_list) || 1555 io_task_work_pending(ctx)) { 1556 u32 tail = ctx->cached_cq_tail; 1557 1558 (void) io_run_local_work_locked(ctx, min); 1559 1560 if (task_work_pending(current) || 1561 wq_list_empty(&ctx->iopoll_list)) { 1562 mutex_unlock(&ctx->uring_lock); 1563 io_run_task_work(); 1564 mutex_lock(&ctx->uring_lock); 1565 } 1566 /* some requests don't go through iopoll_list */ 1567 if (tail != ctx->cached_cq_tail || 1568 wq_list_empty(&ctx->iopoll_list)) 1569 break; 1570 } 1571 ret = io_do_iopoll(ctx, !min); 1572 if (unlikely(ret < 0)) 1573 return ret; 1574 1575 if (task_sigpending(current)) 1576 return -EINTR; 1577 if (need_resched()) 1578 break; 1579 1580 nr_events += ret; 1581 } while (nr_events < min); 1582 1583 return 0; 1584 } 1585 1586 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1587 { 1588 io_req_complete_defer(req); 1589 } 1590 1591 /* 1592 * After the iocb has been issued, it's safe to be found on the poll list. 1593 * Adding the kiocb to the list AFTER submission ensures that we don't 1594 * find it from a io_do_iopoll() thread before the issuer is done 1595 * accessing the kiocb cookie. 1596 */ 1597 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1598 { 1599 struct io_ring_ctx *ctx = req->ctx; 1600 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1601 1602 /* workqueue context doesn't hold uring_lock, grab it now */ 1603 if (unlikely(needs_lock)) 1604 mutex_lock(&ctx->uring_lock); 1605 1606 /* 1607 * Track whether we have multiple files in our lists. This will impact 1608 * how we do polling eventually, not spinning if we're on potentially 1609 * different devices. 1610 */ 1611 if (wq_list_empty(&ctx->iopoll_list)) { 1612 ctx->poll_multi_queue = false; 1613 } else if (!ctx->poll_multi_queue) { 1614 struct io_kiocb *list_req; 1615 1616 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1617 comp_list); 1618 if (list_req->file != req->file) 1619 ctx->poll_multi_queue = true; 1620 } 1621 1622 /* 1623 * For fast devices, IO may have already completed. If it has, add 1624 * it to the front so we find it first. 1625 */ 1626 if (READ_ONCE(req->iopoll_completed)) 1627 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1628 else 1629 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1630 1631 if (unlikely(needs_lock)) { 1632 /* 1633 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1634 * in sq thread task context or in io worker task context. If 1635 * current task context is sq thread, we don't need to check 1636 * whether should wake up sq thread. 1637 */ 1638 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1639 wq_has_sleeper(&ctx->sq_data->wait)) 1640 wake_up(&ctx->sq_data->wait); 1641 1642 mutex_unlock(&ctx->uring_lock); 1643 } 1644 } 1645 1646 io_req_flags_t io_file_get_flags(struct file *file) 1647 { 1648 io_req_flags_t res = 0; 1649 1650 if (S_ISREG(file_inode(file)->i_mode)) 1651 res |= REQ_F_ISREG; 1652 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1653 res |= REQ_F_SUPPORT_NOWAIT; 1654 return res; 1655 } 1656 1657 bool io_alloc_async_data(struct io_kiocb *req) 1658 { 1659 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1660 1661 WARN_ON_ONCE(!def->async_size); 1662 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 1663 if (req->async_data) { 1664 req->flags |= REQ_F_ASYNC_DATA; 1665 return false; 1666 } 1667 return true; 1668 } 1669 1670 static u32 io_get_sequence(struct io_kiocb *req) 1671 { 1672 u32 seq = req->ctx->cached_sq_head; 1673 struct io_kiocb *cur; 1674 1675 /* need original cached_sq_head, but it was increased for each req */ 1676 io_for_each_link(cur, req) 1677 seq--; 1678 return seq; 1679 } 1680 1681 static __cold void io_drain_req(struct io_kiocb *req) 1682 __must_hold(&ctx->uring_lock) 1683 { 1684 struct io_ring_ctx *ctx = req->ctx; 1685 struct io_defer_entry *de; 1686 int ret; 1687 u32 seq = io_get_sequence(req); 1688 1689 /* Still need defer if there is pending req in defer list. */ 1690 spin_lock(&ctx->completion_lock); 1691 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1692 spin_unlock(&ctx->completion_lock); 1693 queue: 1694 ctx->drain_active = false; 1695 io_req_task_queue(req); 1696 return; 1697 } 1698 spin_unlock(&ctx->completion_lock); 1699 1700 io_prep_async_link(req); 1701 de = kmalloc(sizeof(*de), GFP_KERNEL); 1702 if (!de) { 1703 ret = -ENOMEM; 1704 io_req_defer_failed(req, ret); 1705 return; 1706 } 1707 1708 spin_lock(&ctx->completion_lock); 1709 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1710 spin_unlock(&ctx->completion_lock); 1711 kfree(de); 1712 goto queue; 1713 } 1714 1715 trace_io_uring_defer(req); 1716 de->req = req; 1717 de->seq = seq; 1718 list_add_tail(&de->list, &ctx->defer_list); 1719 spin_unlock(&ctx->completion_lock); 1720 } 1721 1722 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1723 unsigned int issue_flags) 1724 { 1725 if (req->file || !def->needs_file) 1726 return true; 1727 1728 if (req->flags & REQ_F_FIXED_FILE) 1729 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1730 else 1731 req->file = io_file_get_normal(req, req->cqe.fd); 1732 1733 return !!req->file; 1734 } 1735 1736 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1737 { 1738 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1739 const struct cred *creds = NULL; 1740 int ret; 1741 1742 if (unlikely(!io_assign_file(req, def, issue_flags))) 1743 return -EBADF; 1744 1745 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1746 creds = override_creds(req->creds); 1747 1748 if (!def->audit_skip) 1749 audit_uring_entry(req->opcode); 1750 1751 ret = def->issue(req, issue_flags); 1752 1753 if (!def->audit_skip) 1754 audit_uring_exit(!ret, ret); 1755 1756 if (creds) 1757 revert_creds(creds); 1758 1759 if (ret == IOU_OK) { 1760 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1761 io_req_complete_defer(req); 1762 else 1763 io_req_complete_post(req, issue_flags); 1764 1765 return 0; 1766 } 1767 1768 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1769 ret = 0; 1770 io_arm_ltimeout(req); 1771 1772 /* If the op doesn't have a file, we're not polling for it */ 1773 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1774 io_iopoll_req_issued(req, issue_flags); 1775 } 1776 return ret; 1777 } 1778 1779 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1780 { 1781 io_tw_lock(req->ctx, ts); 1782 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1783 IO_URING_F_COMPLETE_DEFER); 1784 } 1785 1786 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1787 { 1788 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1789 struct io_kiocb *nxt = NULL; 1790 1791 if (req_ref_put_and_test(req)) { 1792 if (req->flags & IO_REQ_LINK_FLAGS) 1793 nxt = io_req_find_next(req); 1794 io_free_req(req); 1795 } 1796 return nxt ? &nxt->work : NULL; 1797 } 1798 1799 void io_wq_submit_work(struct io_wq_work *work) 1800 { 1801 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1802 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1803 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1804 bool needs_poll = false; 1805 int ret = 0, err = -ECANCELED; 1806 1807 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1808 if (!(req->flags & REQ_F_REFCOUNT)) 1809 __io_req_set_refcount(req, 2); 1810 else 1811 req_ref_get(req); 1812 1813 io_arm_ltimeout(req); 1814 1815 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1816 if (work->flags & IO_WQ_WORK_CANCEL) { 1817 fail: 1818 io_req_task_queue_fail(req, err); 1819 return; 1820 } 1821 if (!io_assign_file(req, def, issue_flags)) { 1822 err = -EBADF; 1823 work->flags |= IO_WQ_WORK_CANCEL; 1824 goto fail; 1825 } 1826 1827 /* 1828 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1829 * submitter task context. Final request completions are handed to the 1830 * right context, however this is not the case of auxiliary CQEs, 1831 * which is the main mean of operation for multishot requests. 1832 * Don't allow any multishot execution from io-wq. It's more restrictive 1833 * than necessary and also cleaner. 1834 */ 1835 if (req->flags & REQ_F_APOLL_MULTISHOT) { 1836 err = -EBADFD; 1837 if (!io_file_can_poll(req)) 1838 goto fail; 1839 if (req->file->f_flags & O_NONBLOCK || 1840 req->file->f_mode & FMODE_NOWAIT) { 1841 err = -ECANCELED; 1842 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1843 goto fail; 1844 return; 1845 } else { 1846 req->flags &= ~REQ_F_APOLL_MULTISHOT; 1847 } 1848 } 1849 1850 if (req->flags & REQ_F_FORCE_ASYNC) { 1851 bool opcode_poll = def->pollin || def->pollout; 1852 1853 if (opcode_poll && io_file_can_poll(req)) { 1854 needs_poll = true; 1855 issue_flags |= IO_URING_F_NONBLOCK; 1856 } 1857 } 1858 1859 do { 1860 ret = io_issue_sqe(req, issue_flags); 1861 if (ret != -EAGAIN) 1862 break; 1863 1864 /* 1865 * If REQ_F_NOWAIT is set, then don't wait or retry with 1866 * poll. -EAGAIN is final for that case. 1867 */ 1868 if (req->flags & REQ_F_NOWAIT) 1869 break; 1870 1871 /* 1872 * We can get EAGAIN for iopolled IO even though we're 1873 * forcing a sync submission from here, since we can't 1874 * wait for request slots on the block side. 1875 */ 1876 if (!needs_poll) { 1877 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1878 break; 1879 if (io_wq_worker_stopped()) 1880 break; 1881 cond_resched(); 1882 continue; 1883 } 1884 1885 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1886 return; 1887 /* aborted or ready, in either case retry blocking */ 1888 needs_poll = false; 1889 issue_flags &= ~IO_URING_F_NONBLOCK; 1890 } while (1); 1891 1892 /* avoid locking problems by failing it from a clean context */ 1893 if (ret < 0) 1894 io_req_task_queue_fail(req, ret); 1895 } 1896 1897 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1898 unsigned int issue_flags) 1899 { 1900 struct io_ring_ctx *ctx = req->ctx; 1901 struct io_fixed_file *slot; 1902 struct file *file = NULL; 1903 1904 io_ring_submit_lock(ctx, issue_flags); 1905 1906 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1907 goto out; 1908 fd = array_index_nospec(fd, ctx->nr_user_files); 1909 slot = io_fixed_file_slot(&ctx->file_table, fd); 1910 if (!req->rsrc_node) 1911 __io_req_set_rsrc_node(req, ctx); 1912 req->flags |= io_slot_flags(slot); 1913 file = io_slot_file(slot); 1914 out: 1915 io_ring_submit_unlock(ctx, issue_flags); 1916 return file; 1917 } 1918 1919 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1920 { 1921 struct file *file = fget(fd); 1922 1923 trace_io_uring_file_get(req, fd); 1924 1925 /* we don't allow fixed io_uring files */ 1926 if (file && io_is_uring_fops(file)) 1927 io_req_track_inflight(req); 1928 return file; 1929 } 1930 1931 static void io_queue_async(struct io_kiocb *req, int ret) 1932 __must_hold(&req->ctx->uring_lock) 1933 { 1934 struct io_kiocb *linked_timeout; 1935 1936 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1937 io_req_defer_failed(req, ret); 1938 return; 1939 } 1940 1941 linked_timeout = io_prep_linked_timeout(req); 1942 1943 switch (io_arm_poll_handler(req, 0)) { 1944 case IO_APOLL_READY: 1945 io_kbuf_recycle(req, 0); 1946 io_req_task_queue(req); 1947 break; 1948 case IO_APOLL_ABORTED: 1949 io_kbuf_recycle(req, 0); 1950 io_queue_iowq(req); 1951 break; 1952 case IO_APOLL_OK: 1953 break; 1954 } 1955 1956 if (linked_timeout) 1957 io_queue_linked_timeout(linked_timeout); 1958 } 1959 1960 static inline void io_queue_sqe(struct io_kiocb *req) 1961 __must_hold(&req->ctx->uring_lock) 1962 { 1963 int ret; 1964 1965 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1966 1967 /* 1968 * We async punt it if the file wasn't marked NOWAIT, or if the file 1969 * doesn't support non-blocking read/write attempts 1970 */ 1971 if (unlikely(ret)) 1972 io_queue_async(req, ret); 1973 } 1974 1975 static void io_queue_sqe_fallback(struct io_kiocb *req) 1976 __must_hold(&req->ctx->uring_lock) 1977 { 1978 if (unlikely(req->flags & REQ_F_FAIL)) { 1979 /* 1980 * We don't submit, fail them all, for that replace hardlinks 1981 * with normal links. Extra REQ_F_LINK is tolerated. 1982 */ 1983 req->flags &= ~REQ_F_HARDLINK; 1984 req->flags |= REQ_F_LINK; 1985 io_req_defer_failed(req, req->cqe.res); 1986 } else { 1987 if (unlikely(req->ctx->drain_active)) 1988 io_drain_req(req); 1989 else 1990 io_queue_iowq(req); 1991 } 1992 } 1993 1994 /* 1995 * Check SQE restrictions (opcode and flags). 1996 * 1997 * Returns 'true' if SQE is allowed, 'false' otherwise. 1998 */ 1999 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2000 struct io_kiocb *req, 2001 unsigned int sqe_flags) 2002 { 2003 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2004 return false; 2005 2006 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2007 ctx->restrictions.sqe_flags_required) 2008 return false; 2009 2010 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2011 ctx->restrictions.sqe_flags_required)) 2012 return false; 2013 2014 return true; 2015 } 2016 2017 static void io_init_req_drain(struct io_kiocb *req) 2018 { 2019 struct io_ring_ctx *ctx = req->ctx; 2020 struct io_kiocb *head = ctx->submit_state.link.head; 2021 2022 ctx->drain_active = true; 2023 if (head) { 2024 /* 2025 * If we need to drain a request in the middle of a link, drain 2026 * the head request and the next request/link after the current 2027 * link. Considering sequential execution of links, 2028 * REQ_F_IO_DRAIN will be maintained for every request of our 2029 * link. 2030 */ 2031 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2032 ctx->drain_next = true; 2033 } 2034 } 2035 2036 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2037 { 2038 /* ensure per-opcode data is cleared if we fail before prep */ 2039 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2040 return err; 2041 } 2042 2043 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2044 const struct io_uring_sqe *sqe) 2045 __must_hold(&ctx->uring_lock) 2046 { 2047 const struct io_issue_def *def; 2048 unsigned int sqe_flags; 2049 int personality; 2050 u8 opcode; 2051 2052 /* req is partially pre-initialised, see io_preinit_req() */ 2053 req->opcode = opcode = READ_ONCE(sqe->opcode); 2054 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2055 sqe_flags = READ_ONCE(sqe->flags); 2056 req->flags = (io_req_flags_t) sqe_flags; 2057 req->cqe.user_data = READ_ONCE(sqe->user_data); 2058 req->file = NULL; 2059 req->rsrc_node = NULL; 2060 req->task = current; 2061 2062 if (unlikely(opcode >= IORING_OP_LAST)) { 2063 req->opcode = 0; 2064 return io_init_fail_req(req, -EINVAL); 2065 } 2066 def = &io_issue_defs[opcode]; 2067 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2068 /* enforce forwards compatibility on users */ 2069 if (sqe_flags & ~SQE_VALID_FLAGS) 2070 return io_init_fail_req(req, -EINVAL); 2071 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2072 if (!def->buffer_select) 2073 return io_init_fail_req(req, -EOPNOTSUPP); 2074 req->buf_index = READ_ONCE(sqe->buf_group); 2075 } 2076 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2077 ctx->drain_disabled = true; 2078 if (sqe_flags & IOSQE_IO_DRAIN) { 2079 if (ctx->drain_disabled) 2080 return io_init_fail_req(req, -EOPNOTSUPP); 2081 io_init_req_drain(req); 2082 } 2083 } 2084 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2085 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2086 return io_init_fail_req(req, -EACCES); 2087 /* knock it to the slow queue path, will be drained there */ 2088 if (ctx->drain_active) 2089 req->flags |= REQ_F_FORCE_ASYNC; 2090 /* if there is no link, we're at "next" request and need to drain */ 2091 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2092 ctx->drain_next = false; 2093 ctx->drain_active = true; 2094 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2095 } 2096 } 2097 2098 if (!def->ioprio && sqe->ioprio) 2099 return io_init_fail_req(req, -EINVAL); 2100 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2101 return io_init_fail_req(req, -EINVAL); 2102 2103 if (def->needs_file) { 2104 struct io_submit_state *state = &ctx->submit_state; 2105 2106 req->cqe.fd = READ_ONCE(sqe->fd); 2107 2108 /* 2109 * Plug now if we have more than 2 IO left after this, and the 2110 * target is potentially a read/write to block based storage. 2111 */ 2112 if (state->need_plug && def->plug) { 2113 state->plug_started = true; 2114 state->need_plug = false; 2115 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2116 } 2117 } 2118 2119 personality = READ_ONCE(sqe->personality); 2120 if (personality) { 2121 int ret; 2122 2123 req->creds = xa_load(&ctx->personalities, personality); 2124 if (!req->creds) 2125 return io_init_fail_req(req, -EINVAL); 2126 get_cred(req->creds); 2127 ret = security_uring_override_creds(req->creds); 2128 if (ret) { 2129 put_cred(req->creds); 2130 return io_init_fail_req(req, ret); 2131 } 2132 req->flags |= REQ_F_CREDS; 2133 } 2134 2135 return def->prep(req, sqe); 2136 } 2137 2138 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2139 struct io_kiocb *req, int ret) 2140 { 2141 struct io_ring_ctx *ctx = req->ctx; 2142 struct io_submit_link *link = &ctx->submit_state.link; 2143 struct io_kiocb *head = link->head; 2144 2145 trace_io_uring_req_failed(sqe, req, ret); 2146 2147 /* 2148 * Avoid breaking links in the middle as it renders links with SQPOLL 2149 * unusable. Instead of failing eagerly, continue assembling the link if 2150 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2151 * should find the flag and handle the rest. 2152 */ 2153 req_fail_link_node(req, ret); 2154 if (head && !(head->flags & REQ_F_FAIL)) 2155 req_fail_link_node(head, -ECANCELED); 2156 2157 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2158 if (head) { 2159 link->last->link = req; 2160 link->head = NULL; 2161 req = head; 2162 } 2163 io_queue_sqe_fallback(req); 2164 return ret; 2165 } 2166 2167 if (head) 2168 link->last->link = req; 2169 else 2170 link->head = req; 2171 link->last = req; 2172 return 0; 2173 } 2174 2175 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2176 const struct io_uring_sqe *sqe) 2177 __must_hold(&ctx->uring_lock) 2178 { 2179 struct io_submit_link *link = &ctx->submit_state.link; 2180 int ret; 2181 2182 ret = io_init_req(ctx, req, sqe); 2183 if (unlikely(ret)) 2184 return io_submit_fail_init(sqe, req, ret); 2185 2186 trace_io_uring_submit_req(req); 2187 2188 /* 2189 * If we already have a head request, queue this one for async 2190 * submittal once the head completes. If we don't have a head but 2191 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2192 * submitted sync once the chain is complete. If none of those 2193 * conditions are true (normal request), then just queue it. 2194 */ 2195 if (unlikely(link->head)) { 2196 trace_io_uring_link(req, link->head); 2197 link->last->link = req; 2198 link->last = req; 2199 2200 if (req->flags & IO_REQ_LINK_FLAGS) 2201 return 0; 2202 /* last request of the link, flush it */ 2203 req = link->head; 2204 link->head = NULL; 2205 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2206 goto fallback; 2207 2208 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2209 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2210 if (req->flags & IO_REQ_LINK_FLAGS) { 2211 link->head = req; 2212 link->last = req; 2213 } else { 2214 fallback: 2215 io_queue_sqe_fallback(req); 2216 } 2217 return 0; 2218 } 2219 2220 io_queue_sqe(req); 2221 return 0; 2222 } 2223 2224 /* 2225 * Batched submission is done, ensure local IO is flushed out. 2226 */ 2227 static void io_submit_state_end(struct io_ring_ctx *ctx) 2228 { 2229 struct io_submit_state *state = &ctx->submit_state; 2230 2231 if (unlikely(state->link.head)) 2232 io_queue_sqe_fallback(state->link.head); 2233 /* flush only after queuing links as they can generate completions */ 2234 io_submit_flush_completions(ctx); 2235 if (state->plug_started) 2236 blk_finish_plug(&state->plug); 2237 } 2238 2239 /* 2240 * Start submission side cache. 2241 */ 2242 static void io_submit_state_start(struct io_submit_state *state, 2243 unsigned int max_ios) 2244 { 2245 state->plug_started = false; 2246 state->need_plug = max_ios > 2; 2247 state->submit_nr = max_ios; 2248 /* set only head, no need to init link_last in advance */ 2249 state->link.head = NULL; 2250 } 2251 2252 static void io_commit_sqring(struct io_ring_ctx *ctx) 2253 { 2254 struct io_rings *rings = ctx->rings; 2255 2256 /* 2257 * Ensure any loads from the SQEs are done at this point, 2258 * since once we write the new head, the application could 2259 * write new data to them. 2260 */ 2261 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2262 } 2263 2264 /* 2265 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2266 * that is mapped by userspace. This means that care needs to be taken to 2267 * ensure that reads are stable, as we cannot rely on userspace always 2268 * being a good citizen. If members of the sqe are validated and then later 2269 * used, it's important that those reads are done through READ_ONCE() to 2270 * prevent a re-load down the line. 2271 */ 2272 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2273 { 2274 unsigned mask = ctx->sq_entries - 1; 2275 unsigned head = ctx->cached_sq_head++ & mask; 2276 2277 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2278 head = READ_ONCE(ctx->sq_array[head]); 2279 if (unlikely(head >= ctx->sq_entries)) { 2280 /* drop invalid entries */ 2281 spin_lock(&ctx->completion_lock); 2282 ctx->cq_extra--; 2283 spin_unlock(&ctx->completion_lock); 2284 WRITE_ONCE(ctx->rings->sq_dropped, 2285 READ_ONCE(ctx->rings->sq_dropped) + 1); 2286 return false; 2287 } 2288 } 2289 2290 /* 2291 * The cached sq head (or cq tail) serves two purposes: 2292 * 2293 * 1) allows us to batch the cost of updating the user visible 2294 * head updates. 2295 * 2) allows the kernel side to track the head on its own, even 2296 * though the application is the one updating it. 2297 */ 2298 2299 /* double index for 128-byte SQEs, twice as long */ 2300 if (ctx->flags & IORING_SETUP_SQE128) 2301 head <<= 1; 2302 *sqe = &ctx->sq_sqes[head]; 2303 return true; 2304 } 2305 2306 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2307 __must_hold(&ctx->uring_lock) 2308 { 2309 unsigned int entries = io_sqring_entries(ctx); 2310 unsigned int left; 2311 int ret; 2312 2313 if (unlikely(!entries)) 2314 return 0; 2315 /* make sure SQ entry isn't read before tail */ 2316 ret = left = min(nr, entries); 2317 io_get_task_refs(left); 2318 io_submit_state_start(&ctx->submit_state, left); 2319 2320 do { 2321 const struct io_uring_sqe *sqe; 2322 struct io_kiocb *req; 2323 2324 if (unlikely(!io_alloc_req(ctx, &req))) 2325 break; 2326 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2327 io_req_add_to_cache(req, ctx); 2328 break; 2329 } 2330 2331 /* 2332 * Continue submitting even for sqe failure if the 2333 * ring was setup with IORING_SETUP_SUBMIT_ALL 2334 */ 2335 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2336 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2337 left--; 2338 break; 2339 } 2340 } while (--left); 2341 2342 if (unlikely(left)) { 2343 ret -= left; 2344 /* try again if it submitted nothing and can't allocate a req */ 2345 if (!ret && io_req_cache_empty(ctx)) 2346 ret = -EAGAIN; 2347 current->io_uring->cached_refs += left; 2348 } 2349 2350 io_submit_state_end(ctx); 2351 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2352 io_commit_sqring(ctx); 2353 return ret; 2354 } 2355 2356 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2357 int wake_flags, void *key) 2358 { 2359 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2360 2361 /* 2362 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2363 * the task, and the next invocation will do it. 2364 */ 2365 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2366 return autoremove_wake_function(curr, mode, wake_flags, key); 2367 return -1; 2368 } 2369 2370 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2371 { 2372 if (!llist_empty(&ctx->work_llist)) { 2373 __set_current_state(TASK_RUNNING); 2374 if (io_run_local_work(ctx, INT_MAX) > 0) 2375 return 0; 2376 } 2377 if (io_run_task_work() > 0) 2378 return 0; 2379 if (task_sigpending(current)) 2380 return -EINTR; 2381 return 0; 2382 } 2383 2384 static bool current_pending_io(void) 2385 { 2386 struct io_uring_task *tctx = current->io_uring; 2387 2388 if (!tctx) 2389 return false; 2390 return percpu_counter_read_positive(&tctx->inflight); 2391 } 2392 2393 /* when returns >0, the caller should retry */ 2394 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2395 struct io_wait_queue *iowq) 2396 { 2397 int ret; 2398 2399 if (unlikely(READ_ONCE(ctx->check_cq))) 2400 return 1; 2401 if (unlikely(!llist_empty(&ctx->work_llist))) 2402 return 1; 2403 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2404 return 1; 2405 if (unlikely(task_sigpending(current))) 2406 return -EINTR; 2407 if (unlikely(io_should_wake(iowq))) 2408 return 0; 2409 2410 /* 2411 * Mark us as being in io_wait if we have pending requests, so cpufreq 2412 * can take into account that the task is waiting for IO - turns out 2413 * to be important for low QD IO. 2414 */ 2415 if (current_pending_io()) 2416 current->in_iowait = 1; 2417 ret = 0; 2418 if (iowq->timeout == KTIME_MAX) 2419 schedule(); 2420 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2421 ret = -ETIME; 2422 current->in_iowait = 0; 2423 return ret; 2424 } 2425 2426 /* 2427 * Wait until events become available, if we don't already have some. The 2428 * application must reap them itself, as they reside on the shared cq ring. 2429 */ 2430 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2431 const sigset_t __user *sig, size_t sigsz, 2432 struct __kernel_timespec __user *uts) 2433 { 2434 struct io_wait_queue iowq; 2435 struct io_rings *rings = ctx->rings; 2436 int ret; 2437 2438 if (!io_allowed_run_tw(ctx)) 2439 return -EEXIST; 2440 if (!llist_empty(&ctx->work_llist)) 2441 io_run_local_work(ctx, min_events); 2442 io_run_task_work(); 2443 2444 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2445 io_cqring_do_overflow_flush(ctx); 2446 if (__io_cqring_events_user(ctx) >= min_events) 2447 return 0; 2448 2449 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2450 iowq.wq.private = current; 2451 INIT_LIST_HEAD(&iowq.wq.entry); 2452 iowq.ctx = ctx; 2453 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2454 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2455 iowq.timeout = KTIME_MAX; 2456 2457 if (uts) { 2458 struct timespec64 ts; 2459 2460 if (get_timespec64(&ts, uts)) 2461 return -EFAULT; 2462 2463 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2464 io_napi_adjust_timeout(ctx, &iowq, &ts); 2465 } 2466 2467 if (sig) { 2468 #ifdef CONFIG_COMPAT 2469 if (in_compat_syscall()) 2470 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2471 sigsz); 2472 else 2473 #endif 2474 ret = set_user_sigmask(sig, sigsz); 2475 2476 if (ret) 2477 return ret; 2478 } 2479 2480 io_napi_busy_loop(ctx, &iowq); 2481 2482 trace_io_uring_cqring_wait(ctx, min_events); 2483 do { 2484 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); 2485 unsigned long check_cq; 2486 2487 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2488 atomic_set(&ctx->cq_wait_nr, nr_wait); 2489 set_current_state(TASK_INTERRUPTIBLE); 2490 } else { 2491 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2492 TASK_INTERRUPTIBLE); 2493 } 2494 2495 ret = io_cqring_wait_schedule(ctx, &iowq); 2496 __set_current_state(TASK_RUNNING); 2497 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2498 2499 /* 2500 * Run task_work after scheduling and before io_should_wake(). 2501 * If we got woken because of task_work being processed, run it 2502 * now rather than let the caller do another wait loop. 2503 */ 2504 io_run_task_work(); 2505 if (!llist_empty(&ctx->work_llist)) 2506 io_run_local_work(ctx, nr_wait); 2507 2508 /* 2509 * Non-local task_work will be run on exit to userspace, but 2510 * if we're using DEFER_TASKRUN, then we could have waited 2511 * with a timeout for a number of requests. If the timeout 2512 * hits, we could have some requests ready to process. Ensure 2513 * this break is _after_ we have run task_work, to avoid 2514 * deferring running potentially pending requests until the 2515 * next time we wait for events. 2516 */ 2517 if (ret < 0) 2518 break; 2519 2520 check_cq = READ_ONCE(ctx->check_cq); 2521 if (unlikely(check_cq)) { 2522 /* let the caller flush overflows, retry */ 2523 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2524 io_cqring_do_overflow_flush(ctx); 2525 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2526 ret = -EBADR; 2527 break; 2528 } 2529 } 2530 2531 if (io_should_wake(&iowq)) { 2532 ret = 0; 2533 break; 2534 } 2535 cond_resched(); 2536 } while (1); 2537 2538 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2539 finish_wait(&ctx->cq_wait, &iowq.wq); 2540 restore_saved_sigmask_unless(ret == -EINTR); 2541 2542 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2543 } 2544 2545 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2546 size_t size) 2547 { 2548 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2549 size); 2550 } 2551 2552 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2553 size_t size) 2554 { 2555 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2556 size); 2557 } 2558 2559 static void io_rings_free(struct io_ring_ctx *ctx) 2560 { 2561 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2562 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages, 2563 true); 2564 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages, 2565 true); 2566 } else { 2567 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2568 ctx->n_ring_pages = 0; 2569 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2570 ctx->n_sqe_pages = 0; 2571 vunmap(ctx->rings); 2572 vunmap(ctx->sq_sqes); 2573 } 2574 2575 ctx->rings = NULL; 2576 ctx->sq_sqes = NULL; 2577 } 2578 2579 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2580 unsigned int cq_entries, size_t *sq_offset) 2581 { 2582 struct io_rings *rings; 2583 size_t off, sq_array_size; 2584 2585 off = struct_size(rings, cqes, cq_entries); 2586 if (off == SIZE_MAX) 2587 return SIZE_MAX; 2588 if (ctx->flags & IORING_SETUP_CQE32) { 2589 if (check_shl_overflow(off, 1, &off)) 2590 return SIZE_MAX; 2591 } 2592 2593 #ifdef CONFIG_SMP 2594 off = ALIGN(off, SMP_CACHE_BYTES); 2595 if (off == 0) 2596 return SIZE_MAX; 2597 #endif 2598 2599 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2600 *sq_offset = SIZE_MAX; 2601 return off; 2602 } 2603 2604 *sq_offset = off; 2605 2606 sq_array_size = array_size(sizeof(u32), sq_entries); 2607 if (sq_array_size == SIZE_MAX) 2608 return SIZE_MAX; 2609 2610 if (check_add_overflow(off, sq_array_size, &off)) 2611 return SIZE_MAX; 2612 2613 return off; 2614 } 2615 2616 static void io_req_caches_free(struct io_ring_ctx *ctx) 2617 { 2618 struct io_kiocb *req; 2619 int nr = 0; 2620 2621 mutex_lock(&ctx->uring_lock); 2622 2623 while (!io_req_cache_empty(ctx)) { 2624 req = io_extract_req(ctx); 2625 kmem_cache_free(req_cachep, req); 2626 nr++; 2627 } 2628 if (nr) 2629 percpu_ref_put_many(&ctx->refs, nr); 2630 mutex_unlock(&ctx->uring_lock); 2631 } 2632 2633 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2634 { 2635 io_sq_thread_finish(ctx); 2636 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2637 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2638 return; 2639 2640 mutex_lock(&ctx->uring_lock); 2641 if (ctx->buf_data) 2642 __io_sqe_buffers_unregister(ctx); 2643 if (ctx->file_data) 2644 __io_sqe_files_unregister(ctx); 2645 io_cqring_overflow_kill(ctx); 2646 io_eventfd_unregister(ctx); 2647 io_alloc_cache_free(&ctx->apoll_cache, kfree); 2648 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2649 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 2650 io_alloc_cache_free(&ctx->uring_cache, kfree); 2651 io_futex_cache_free(ctx); 2652 io_destroy_buffers(ctx); 2653 mutex_unlock(&ctx->uring_lock); 2654 if (ctx->sq_creds) 2655 put_cred(ctx->sq_creds); 2656 if (ctx->submitter_task) 2657 put_task_struct(ctx->submitter_task); 2658 2659 /* there are no registered resources left, nobody uses it */ 2660 if (ctx->rsrc_node) 2661 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2662 2663 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2664 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2665 2666 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree); 2667 if (ctx->mm_account) { 2668 mmdrop(ctx->mm_account); 2669 ctx->mm_account = NULL; 2670 } 2671 io_rings_free(ctx); 2672 2673 percpu_ref_exit(&ctx->refs); 2674 free_uid(ctx->user); 2675 io_req_caches_free(ctx); 2676 if (ctx->hash_map) 2677 io_wq_put_hash(ctx->hash_map); 2678 io_napi_free(ctx); 2679 kfree(ctx->cancel_table.hbs); 2680 kfree(ctx->cancel_table_locked.hbs); 2681 xa_destroy(&ctx->io_bl_xa); 2682 kfree(ctx); 2683 } 2684 2685 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2686 { 2687 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2688 poll_wq_task_work); 2689 2690 mutex_lock(&ctx->uring_lock); 2691 ctx->poll_activated = true; 2692 mutex_unlock(&ctx->uring_lock); 2693 2694 /* 2695 * Wake ups for some events between start of polling and activation 2696 * might've been lost due to loose synchronisation. 2697 */ 2698 wake_up_all(&ctx->poll_wq); 2699 percpu_ref_put(&ctx->refs); 2700 } 2701 2702 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2703 { 2704 spin_lock(&ctx->completion_lock); 2705 /* already activated or in progress */ 2706 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2707 goto out; 2708 if (WARN_ON_ONCE(!ctx->task_complete)) 2709 goto out; 2710 if (!ctx->submitter_task) 2711 goto out; 2712 /* 2713 * with ->submitter_task only the submitter task completes requests, we 2714 * only need to sync with it, which is done by injecting a tw 2715 */ 2716 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2717 percpu_ref_get(&ctx->refs); 2718 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2719 percpu_ref_put(&ctx->refs); 2720 out: 2721 spin_unlock(&ctx->completion_lock); 2722 } 2723 2724 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2725 { 2726 struct io_ring_ctx *ctx = file->private_data; 2727 __poll_t mask = 0; 2728 2729 if (unlikely(!ctx->poll_activated)) 2730 io_activate_pollwq(ctx); 2731 2732 poll_wait(file, &ctx->poll_wq, wait); 2733 /* 2734 * synchronizes with barrier from wq_has_sleeper call in 2735 * io_commit_cqring 2736 */ 2737 smp_rmb(); 2738 if (!io_sqring_full(ctx)) 2739 mask |= EPOLLOUT | EPOLLWRNORM; 2740 2741 /* 2742 * Don't flush cqring overflow list here, just do a simple check. 2743 * Otherwise there could possible be ABBA deadlock: 2744 * CPU0 CPU1 2745 * ---- ---- 2746 * lock(&ctx->uring_lock); 2747 * lock(&ep->mtx); 2748 * lock(&ctx->uring_lock); 2749 * lock(&ep->mtx); 2750 * 2751 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2752 * pushes them to do the flush. 2753 */ 2754 2755 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2756 mask |= EPOLLIN | EPOLLRDNORM; 2757 2758 return mask; 2759 } 2760 2761 struct io_tctx_exit { 2762 struct callback_head task_work; 2763 struct completion completion; 2764 struct io_ring_ctx *ctx; 2765 }; 2766 2767 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2768 { 2769 struct io_uring_task *tctx = current->io_uring; 2770 struct io_tctx_exit *work; 2771 2772 work = container_of(cb, struct io_tctx_exit, task_work); 2773 /* 2774 * When @in_cancel, we're in cancellation and it's racy to remove the 2775 * node. It'll be removed by the end of cancellation, just ignore it. 2776 * tctx can be NULL if the queueing of this task_work raced with 2777 * work cancelation off the exec path. 2778 */ 2779 if (tctx && !atomic_read(&tctx->in_cancel)) 2780 io_uring_del_tctx_node((unsigned long)work->ctx); 2781 complete(&work->completion); 2782 } 2783 2784 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2785 { 2786 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2787 2788 return req->ctx == data; 2789 } 2790 2791 static __cold void io_ring_exit_work(struct work_struct *work) 2792 { 2793 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2794 unsigned long timeout = jiffies + HZ * 60 * 5; 2795 unsigned long interval = HZ / 20; 2796 struct io_tctx_exit exit; 2797 struct io_tctx_node *node; 2798 int ret; 2799 2800 /* 2801 * If we're doing polled IO and end up having requests being 2802 * submitted async (out-of-line), then completions can come in while 2803 * we're waiting for refs to drop. We need to reap these manually, 2804 * as nobody else will be looking for them. 2805 */ 2806 do { 2807 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2808 mutex_lock(&ctx->uring_lock); 2809 io_cqring_overflow_kill(ctx); 2810 mutex_unlock(&ctx->uring_lock); 2811 } 2812 2813 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2814 io_move_task_work_from_local(ctx); 2815 2816 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2817 cond_resched(); 2818 2819 if (ctx->sq_data) { 2820 struct io_sq_data *sqd = ctx->sq_data; 2821 struct task_struct *tsk; 2822 2823 io_sq_thread_park(sqd); 2824 tsk = sqd->thread; 2825 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2826 io_wq_cancel_cb(tsk->io_uring->io_wq, 2827 io_cancel_ctx_cb, ctx, true); 2828 io_sq_thread_unpark(sqd); 2829 } 2830 2831 io_req_caches_free(ctx); 2832 2833 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2834 /* there is little hope left, don't run it too often */ 2835 interval = HZ * 60; 2836 } 2837 /* 2838 * This is really an uninterruptible wait, as it has to be 2839 * complete. But it's also run from a kworker, which doesn't 2840 * take signals, so it's fine to make it interruptible. This 2841 * avoids scenarios where we knowingly can wait much longer 2842 * on completions, for example if someone does a SIGSTOP on 2843 * a task that needs to finish task_work to make this loop 2844 * complete. That's a synthetic situation that should not 2845 * cause a stuck task backtrace, and hence a potential panic 2846 * on stuck tasks if that is enabled. 2847 */ 2848 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2849 2850 init_completion(&exit.completion); 2851 init_task_work(&exit.task_work, io_tctx_exit_cb); 2852 exit.ctx = ctx; 2853 2854 mutex_lock(&ctx->uring_lock); 2855 while (!list_empty(&ctx->tctx_list)) { 2856 WARN_ON_ONCE(time_after(jiffies, timeout)); 2857 2858 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2859 ctx_node); 2860 /* don't spin on a single task if cancellation failed */ 2861 list_rotate_left(&ctx->tctx_list); 2862 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2863 if (WARN_ON_ONCE(ret)) 2864 continue; 2865 2866 mutex_unlock(&ctx->uring_lock); 2867 /* 2868 * See comment above for 2869 * wait_for_completion_interruptible_timeout() on why this 2870 * wait is marked as interruptible. 2871 */ 2872 wait_for_completion_interruptible(&exit.completion); 2873 mutex_lock(&ctx->uring_lock); 2874 } 2875 mutex_unlock(&ctx->uring_lock); 2876 spin_lock(&ctx->completion_lock); 2877 spin_unlock(&ctx->completion_lock); 2878 2879 /* pairs with RCU read section in io_req_local_work_add() */ 2880 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2881 synchronize_rcu(); 2882 2883 io_ring_ctx_free(ctx); 2884 } 2885 2886 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2887 { 2888 unsigned long index; 2889 struct creds *creds; 2890 2891 mutex_lock(&ctx->uring_lock); 2892 percpu_ref_kill(&ctx->refs); 2893 xa_for_each(&ctx->personalities, index, creds) 2894 io_unregister_personality(ctx, index); 2895 mutex_unlock(&ctx->uring_lock); 2896 2897 flush_delayed_work(&ctx->fallback_work); 2898 2899 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2900 /* 2901 * Use system_unbound_wq to avoid spawning tons of event kworkers 2902 * if we're exiting a ton of rings at the same time. It just adds 2903 * noise and overhead, there's no discernable change in runtime 2904 * over using system_wq. 2905 */ 2906 queue_work(iou_wq, &ctx->exit_work); 2907 } 2908 2909 static int io_uring_release(struct inode *inode, struct file *file) 2910 { 2911 struct io_ring_ctx *ctx = file->private_data; 2912 2913 file->private_data = NULL; 2914 io_ring_ctx_wait_and_kill(ctx); 2915 return 0; 2916 } 2917 2918 struct io_task_cancel { 2919 struct task_struct *task; 2920 bool all; 2921 }; 2922 2923 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 2924 { 2925 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2926 struct io_task_cancel *cancel = data; 2927 2928 return io_match_task_safe(req, cancel->task, cancel->all); 2929 } 2930 2931 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 2932 struct task_struct *task, 2933 bool cancel_all) 2934 { 2935 struct io_defer_entry *de; 2936 LIST_HEAD(list); 2937 2938 spin_lock(&ctx->completion_lock); 2939 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 2940 if (io_match_task_safe(de->req, task, cancel_all)) { 2941 list_cut_position(&list, &ctx->defer_list, &de->list); 2942 break; 2943 } 2944 } 2945 spin_unlock(&ctx->completion_lock); 2946 if (list_empty(&list)) 2947 return false; 2948 2949 while (!list_empty(&list)) { 2950 de = list_first_entry(&list, struct io_defer_entry, list); 2951 list_del_init(&de->list); 2952 io_req_task_queue_fail(de->req, -ECANCELED); 2953 kfree(de); 2954 } 2955 return true; 2956 } 2957 2958 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 2959 { 2960 struct io_tctx_node *node; 2961 enum io_wq_cancel cret; 2962 bool ret = false; 2963 2964 mutex_lock(&ctx->uring_lock); 2965 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 2966 struct io_uring_task *tctx = node->task->io_uring; 2967 2968 /* 2969 * io_wq will stay alive while we hold uring_lock, because it's 2970 * killed after ctx nodes, which requires to take the lock. 2971 */ 2972 if (!tctx || !tctx->io_wq) 2973 continue; 2974 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 2975 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 2976 } 2977 mutex_unlock(&ctx->uring_lock); 2978 2979 return ret; 2980 } 2981 2982 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 2983 struct task_struct *task, 2984 bool cancel_all) 2985 { 2986 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 2987 struct io_uring_task *tctx = task ? task->io_uring : NULL; 2988 enum io_wq_cancel cret; 2989 bool ret = false; 2990 2991 /* set it so io_req_local_work_add() would wake us up */ 2992 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2993 atomic_set(&ctx->cq_wait_nr, 1); 2994 smp_mb(); 2995 } 2996 2997 /* failed during ring init, it couldn't have issued any requests */ 2998 if (!ctx->rings) 2999 return false; 3000 3001 if (!task) { 3002 ret |= io_uring_try_cancel_iowq(ctx); 3003 } else if (tctx && tctx->io_wq) { 3004 /* 3005 * Cancels requests of all rings, not only @ctx, but 3006 * it's fine as the task is in exit/exec. 3007 */ 3008 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3009 &cancel, true); 3010 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3011 } 3012 3013 /* SQPOLL thread does its own polling */ 3014 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3015 (ctx->sq_data && ctx->sq_data->thread == current)) { 3016 while (!wq_list_empty(&ctx->iopoll_list)) { 3017 io_iopoll_try_reap_events(ctx); 3018 ret = true; 3019 cond_resched(); 3020 } 3021 } 3022 3023 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3024 io_allowed_defer_tw_run(ctx)) 3025 ret |= io_run_local_work(ctx, INT_MAX) > 0; 3026 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3027 mutex_lock(&ctx->uring_lock); 3028 ret |= io_poll_remove_all(ctx, task, cancel_all); 3029 ret |= io_waitid_remove_all(ctx, task, cancel_all); 3030 ret |= io_futex_remove_all(ctx, task, cancel_all); 3031 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); 3032 mutex_unlock(&ctx->uring_lock); 3033 ret |= io_kill_timeouts(ctx, task, cancel_all); 3034 if (task) 3035 ret |= io_run_task_work() > 0; 3036 else 3037 ret |= flush_delayed_work(&ctx->fallback_work); 3038 return ret; 3039 } 3040 3041 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3042 { 3043 if (tracked) 3044 return atomic_read(&tctx->inflight_tracked); 3045 return percpu_counter_sum(&tctx->inflight); 3046 } 3047 3048 /* 3049 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3050 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3051 */ 3052 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3053 { 3054 struct io_uring_task *tctx = current->io_uring; 3055 struct io_ring_ctx *ctx; 3056 struct io_tctx_node *node; 3057 unsigned long index; 3058 s64 inflight; 3059 DEFINE_WAIT(wait); 3060 3061 WARN_ON_ONCE(sqd && sqd->thread != current); 3062 3063 if (!current->io_uring) 3064 return; 3065 if (tctx->io_wq) 3066 io_wq_exit_start(tctx->io_wq); 3067 3068 atomic_inc(&tctx->in_cancel); 3069 do { 3070 bool loop = false; 3071 3072 io_uring_drop_tctx_refs(current); 3073 /* read completions before cancelations */ 3074 inflight = tctx_inflight(tctx, !cancel_all); 3075 if (!inflight) 3076 break; 3077 3078 if (!sqd) { 3079 xa_for_each(&tctx->xa, index, node) { 3080 /* sqpoll task will cancel all its requests */ 3081 if (node->ctx->sq_data) 3082 continue; 3083 loop |= io_uring_try_cancel_requests(node->ctx, 3084 current, cancel_all); 3085 } 3086 } else { 3087 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3088 loop |= io_uring_try_cancel_requests(ctx, 3089 current, 3090 cancel_all); 3091 } 3092 3093 if (loop) { 3094 cond_resched(); 3095 continue; 3096 } 3097 3098 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3099 io_run_task_work(); 3100 io_uring_drop_tctx_refs(current); 3101 xa_for_each(&tctx->xa, index, node) { 3102 if (!llist_empty(&node->ctx->work_llist)) { 3103 WARN_ON_ONCE(node->ctx->submitter_task && 3104 node->ctx->submitter_task != current); 3105 goto end_wait; 3106 } 3107 } 3108 /* 3109 * If we've seen completions, retry without waiting. This 3110 * avoids a race where a completion comes in before we did 3111 * prepare_to_wait(). 3112 */ 3113 if (inflight == tctx_inflight(tctx, !cancel_all)) 3114 schedule(); 3115 end_wait: 3116 finish_wait(&tctx->wait, &wait); 3117 } while (1); 3118 3119 io_uring_clean_tctx(tctx); 3120 if (cancel_all) { 3121 /* 3122 * We shouldn't run task_works after cancel, so just leave 3123 * ->in_cancel set for normal exit. 3124 */ 3125 atomic_dec(&tctx->in_cancel); 3126 /* for exec all current's requests should be gone, kill tctx */ 3127 __io_uring_free(current); 3128 } 3129 } 3130 3131 void __io_uring_cancel(bool cancel_all) 3132 { 3133 io_uring_cancel_generic(cancel_all, NULL); 3134 } 3135 3136 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3137 { 3138 if (flags & IORING_ENTER_EXT_ARG) { 3139 struct io_uring_getevents_arg arg; 3140 3141 if (argsz != sizeof(arg)) 3142 return -EINVAL; 3143 if (copy_from_user(&arg, argp, sizeof(arg))) 3144 return -EFAULT; 3145 } 3146 return 0; 3147 } 3148 3149 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3150 struct __kernel_timespec __user **ts, 3151 const sigset_t __user **sig) 3152 { 3153 struct io_uring_getevents_arg arg; 3154 3155 /* 3156 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3157 * is just a pointer to the sigset_t. 3158 */ 3159 if (!(flags & IORING_ENTER_EXT_ARG)) { 3160 *sig = (const sigset_t __user *) argp; 3161 *ts = NULL; 3162 return 0; 3163 } 3164 3165 /* 3166 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3167 * timespec and sigset_t pointers if good. 3168 */ 3169 if (*argsz != sizeof(arg)) 3170 return -EINVAL; 3171 if (copy_from_user(&arg, argp, sizeof(arg))) 3172 return -EFAULT; 3173 if (arg.pad) 3174 return -EINVAL; 3175 *sig = u64_to_user_ptr(arg.sigmask); 3176 *argsz = arg.sigmask_sz; 3177 *ts = u64_to_user_ptr(arg.ts); 3178 return 0; 3179 } 3180 3181 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3182 u32, min_complete, u32, flags, const void __user *, argp, 3183 size_t, argsz) 3184 { 3185 struct io_ring_ctx *ctx; 3186 struct file *file; 3187 long ret; 3188 3189 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3190 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3191 IORING_ENTER_REGISTERED_RING))) 3192 return -EINVAL; 3193 3194 /* 3195 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3196 * need only dereference our task private array to find it. 3197 */ 3198 if (flags & IORING_ENTER_REGISTERED_RING) { 3199 struct io_uring_task *tctx = current->io_uring; 3200 3201 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3202 return -EINVAL; 3203 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3204 file = tctx->registered_rings[fd]; 3205 if (unlikely(!file)) 3206 return -EBADF; 3207 } else { 3208 file = fget(fd); 3209 if (unlikely(!file)) 3210 return -EBADF; 3211 ret = -EOPNOTSUPP; 3212 if (unlikely(!io_is_uring_fops(file))) 3213 goto out; 3214 } 3215 3216 ctx = file->private_data; 3217 ret = -EBADFD; 3218 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3219 goto out; 3220 3221 /* 3222 * For SQ polling, the thread will do all submissions and completions. 3223 * Just return the requested submit count, and wake the thread if 3224 * we were asked to. 3225 */ 3226 ret = 0; 3227 if (ctx->flags & IORING_SETUP_SQPOLL) { 3228 if (unlikely(ctx->sq_data->thread == NULL)) { 3229 ret = -EOWNERDEAD; 3230 goto out; 3231 } 3232 if (flags & IORING_ENTER_SQ_WAKEUP) 3233 wake_up(&ctx->sq_data->wait); 3234 if (flags & IORING_ENTER_SQ_WAIT) 3235 io_sqpoll_wait_sq(ctx); 3236 3237 ret = to_submit; 3238 } else if (to_submit) { 3239 ret = io_uring_add_tctx_node(ctx); 3240 if (unlikely(ret)) 3241 goto out; 3242 3243 mutex_lock(&ctx->uring_lock); 3244 ret = io_submit_sqes(ctx, to_submit); 3245 if (ret != to_submit) { 3246 mutex_unlock(&ctx->uring_lock); 3247 goto out; 3248 } 3249 if (flags & IORING_ENTER_GETEVENTS) { 3250 if (ctx->syscall_iopoll) 3251 goto iopoll_locked; 3252 /* 3253 * Ignore errors, we'll soon call io_cqring_wait() and 3254 * it should handle ownership problems if any. 3255 */ 3256 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3257 (void)io_run_local_work_locked(ctx, min_complete); 3258 } 3259 mutex_unlock(&ctx->uring_lock); 3260 } 3261 3262 if (flags & IORING_ENTER_GETEVENTS) { 3263 int ret2; 3264 3265 if (ctx->syscall_iopoll) { 3266 /* 3267 * We disallow the app entering submit/complete with 3268 * polling, but we still need to lock the ring to 3269 * prevent racing with polled issue that got punted to 3270 * a workqueue. 3271 */ 3272 mutex_lock(&ctx->uring_lock); 3273 iopoll_locked: 3274 ret2 = io_validate_ext_arg(flags, argp, argsz); 3275 if (likely(!ret2)) { 3276 min_complete = min(min_complete, 3277 ctx->cq_entries); 3278 ret2 = io_iopoll_check(ctx, min_complete); 3279 } 3280 mutex_unlock(&ctx->uring_lock); 3281 } else { 3282 const sigset_t __user *sig; 3283 struct __kernel_timespec __user *ts; 3284 3285 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3286 if (likely(!ret2)) { 3287 min_complete = min(min_complete, 3288 ctx->cq_entries); 3289 ret2 = io_cqring_wait(ctx, min_complete, sig, 3290 argsz, ts); 3291 } 3292 } 3293 3294 if (!ret) { 3295 ret = ret2; 3296 3297 /* 3298 * EBADR indicates that one or more CQE were dropped. 3299 * Once the user has been informed we can clear the bit 3300 * as they are obviously ok with those drops. 3301 */ 3302 if (unlikely(ret2 == -EBADR)) 3303 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3304 &ctx->check_cq); 3305 } 3306 } 3307 out: 3308 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3309 fput(file); 3310 return ret; 3311 } 3312 3313 static const struct file_operations io_uring_fops = { 3314 .release = io_uring_release, 3315 .mmap = io_uring_mmap, 3316 .get_unmapped_area = io_uring_get_unmapped_area, 3317 #ifndef CONFIG_MMU 3318 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3319 #endif 3320 .poll = io_uring_poll, 3321 #ifdef CONFIG_PROC_FS 3322 .show_fdinfo = io_uring_show_fdinfo, 3323 #endif 3324 }; 3325 3326 bool io_is_uring_fops(struct file *file) 3327 { 3328 return file->f_op == &io_uring_fops; 3329 } 3330 3331 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3332 struct io_uring_params *p) 3333 { 3334 struct io_rings *rings; 3335 size_t size, sq_array_offset; 3336 void *ptr; 3337 3338 /* make sure these are sane, as we already accounted them */ 3339 ctx->sq_entries = p->sq_entries; 3340 ctx->cq_entries = p->cq_entries; 3341 3342 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3343 if (size == SIZE_MAX) 3344 return -EOVERFLOW; 3345 3346 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3347 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size); 3348 else 3349 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3350 3351 if (IS_ERR(rings)) 3352 return PTR_ERR(rings); 3353 3354 ctx->rings = rings; 3355 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3356 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3357 rings->sq_ring_mask = p->sq_entries - 1; 3358 rings->cq_ring_mask = p->cq_entries - 1; 3359 rings->sq_ring_entries = p->sq_entries; 3360 rings->cq_ring_entries = p->cq_entries; 3361 3362 if (p->flags & IORING_SETUP_SQE128) 3363 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3364 else 3365 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3366 if (size == SIZE_MAX) { 3367 io_rings_free(ctx); 3368 return -EOVERFLOW; 3369 } 3370 3371 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3372 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size); 3373 else 3374 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3375 3376 if (IS_ERR(ptr)) { 3377 io_rings_free(ctx); 3378 return PTR_ERR(ptr); 3379 } 3380 3381 ctx->sq_sqes = ptr; 3382 return 0; 3383 } 3384 3385 static int io_uring_install_fd(struct file *file) 3386 { 3387 int fd; 3388 3389 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3390 if (fd < 0) 3391 return fd; 3392 fd_install(fd, file); 3393 return fd; 3394 } 3395 3396 /* 3397 * Allocate an anonymous fd, this is what constitutes the application 3398 * visible backing of an io_uring instance. The application mmaps this 3399 * fd to gain access to the SQ/CQ ring details. 3400 */ 3401 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3402 { 3403 /* Create a new inode so that the LSM can block the creation. */ 3404 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3405 O_RDWR | O_CLOEXEC, NULL); 3406 } 3407 3408 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3409 struct io_uring_params __user *params) 3410 { 3411 struct io_ring_ctx *ctx; 3412 struct io_uring_task *tctx; 3413 struct file *file; 3414 int ret; 3415 3416 if (!entries) 3417 return -EINVAL; 3418 if (entries > IORING_MAX_ENTRIES) { 3419 if (!(p->flags & IORING_SETUP_CLAMP)) 3420 return -EINVAL; 3421 entries = IORING_MAX_ENTRIES; 3422 } 3423 3424 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3425 && !(p->flags & IORING_SETUP_NO_MMAP)) 3426 return -EINVAL; 3427 3428 /* 3429 * Use twice as many entries for the CQ ring. It's possible for the 3430 * application to drive a higher depth than the size of the SQ ring, 3431 * since the sqes are only used at submission time. This allows for 3432 * some flexibility in overcommitting a bit. If the application has 3433 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3434 * of CQ ring entries manually. 3435 */ 3436 p->sq_entries = roundup_pow_of_two(entries); 3437 if (p->flags & IORING_SETUP_CQSIZE) { 3438 /* 3439 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3440 * to a power-of-two, if it isn't already. We do NOT impose 3441 * any cq vs sq ring sizing. 3442 */ 3443 if (!p->cq_entries) 3444 return -EINVAL; 3445 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3446 if (!(p->flags & IORING_SETUP_CLAMP)) 3447 return -EINVAL; 3448 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3449 } 3450 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3451 if (p->cq_entries < p->sq_entries) 3452 return -EINVAL; 3453 } else { 3454 p->cq_entries = 2 * p->sq_entries; 3455 } 3456 3457 ctx = io_ring_ctx_alloc(p); 3458 if (!ctx) 3459 return -ENOMEM; 3460 3461 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3462 !(ctx->flags & IORING_SETUP_IOPOLL) && 3463 !(ctx->flags & IORING_SETUP_SQPOLL)) 3464 ctx->task_complete = true; 3465 3466 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3467 ctx->lockless_cq = true; 3468 3469 /* 3470 * lazy poll_wq activation relies on ->task_complete for synchronisation 3471 * purposes, see io_activate_pollwq() 3472 */ 3473 if (!ctx->task_complete) 3474 ctx->poll_activated = true; 3475 3476 /* 3477 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3478 * space applications don't need to do io completion events 3479 * polling again, they can rely on io_sq_thread to do polling 3480 * work, which can reduce cpu usage and uring_lock contention. 3481 */ 3482 if (ctx->flags & IORING_SETUP_IOPOLL && 3483 !(ctx->flags & IORING_SETUP_SQPOLL)) 3484 ctx->syscall_iopoll = 1; 3485 3486 ctx->compat = in_compat_syscall(); 3487 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3488 ctx->user = get_uid(current_user()); 3489 3490 /* 3491 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3492 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3493 */ 3494 ret = -EINVAL; 3495 if (ctx->flags & IORING_SETUP_SQPOLL) { 3496 /* IPI related flags don't make sense with SQPOLL */ 3497 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3498 IORING_SETUP_TASKRUN_FLAG | 3499 IORING_SETUP_DEFER_TASKRUN)) 3500 goto err; 3501 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3502 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3503 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3504 } else { 3505 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3506 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3507 goto err; 3508 ctx->notify_method = TWA_SIGNAL; 3509 } 3510 3511 /* 3512 * For DEFER_TASKRUN we require the completion task to be the same as the 3513 * submission task. This implies that there is only one submitter, so enforce 3514 * that. 3515 */ 3516 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3517 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3518 goto err; 3519 } 3520 3521 /* 3522 * This is just grabbed for accounting purposes. When a process exits, 3523 * the mm is exited and dropped before the files, hence we need to hang 3524 * on to this mm purely for the purposes of being able to unaccount 3525 * memory (locked/pinned vm). It's not used for anything else. 3526 */ 3527 mmgrab(current->mm); 3528 ctx->mm_account = current->mm; 3529 3530 ret = io_allocate_scq_urings(ctx, p); 3531 if (ret) 3532 goto err; 3533 3534 ret = io_sq_offload_create(ctx, p); 3535 if (ret) 3536 goto err; 3537 3538 ret = io_rsrc_init(ctx); 3539 if (ret) 3540 goto err; 3541 3542 p->sq_off.head = offsetof(struct io_rings, sq.head); 3543 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3544 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3545 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3546 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3547 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3548 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3549 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3550 p->sq_off.resv1 = 0; 3551 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3552 p->sq_off.user_addr = 0; 3553 3554 p->cq_off.head = offsetof(struct io_rings, cq.head); 3555 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3556 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3557 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3558 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3559 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3560 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3561 p->cq_off.resv1 = 0; 3562 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3563 p->cq_off.user_addr = 0; 3564 3565 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3566 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3567 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3568 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3569 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3570 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3571 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3572 IORING_FEAT_RECVSEND_BUNDLE; 3573 3574 if (copy_to_user(params, p, sizeof(*p))) { 3575 ret = -EFAULT; 3576 goto err; 3577 } 3578 3579 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3580 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3581 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3582 3583 file = io_uring_get_file(ctx); 3584 if (IS_ERR(file)) { 3585 ret = PTR_ERR(file); 3586 goto err; 3587 } 3588 3589 ret = __io_uring_add_tctx_node(ctx); 3590 if (ret) 3591 goto err_fput; 3592 tctx = current->io_uring; 3593 3594 /* 3595 * Install ring fd as the very last thing, so we don't risk someone 3596 * having closed it before we finish setup 3597 */ 3598 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3599 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3600 else 3601 ret = io_uring_install_fd(file); 3602 if (ret < 0) 3603 goto err_fput; 3604 3605 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3606 return ret; 3607 err: 3608 io_ring_ctx_wait_and_kill(ctx); 3609 return ret; 3610 err_fput: 3611 fput(file); 3612 return ret; 3613 } 3614 3615 /* 3616 * Sets up an aio uring context, and returns the fd. Applications asks for a 3617 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3618 * params structure passed in. 3619 */ 3620 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3621 { 3622 struct io_uring_params p; 3623 int i; 3624 3625 if (copy_from_user(&p, params, sizeof(p))) 3626 return -EFAULT; 3627 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3628 if (p.resv[i]) 3629 return -EINVAL; 3630 } 3631 3632 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3633 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3634 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3635 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3636 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3637 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3638 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3639 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3640 IORING_SETUP_NO_SQARRAY)) 3641 return -EINVAL; 3642 3643 return io_uring_create(entries, &p, params); 3644 } 3645 3646 static inline bool io_uring_allowed(void) 3647 { 3648 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3649 kgid_t io_uring_group; 3650 3651 if (disabled == 2) 3652 return false; 3653 3654 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3655 return true; 3656 3657 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3658 if (!gid_valid(io_uring_group)) 3659 return false; 3660 3661 return in_group_p(io_uring_group); 3662 } 3663 3664 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3665 struct io_uring_params __user *, params) 3666 { 3667 if (!io_uring_allowed()) 3668 return -EPERM; 3669 3670 return io_uring_setup(entries, params); 3671 } 3672 3673 static int __init io_uring_init(void) 3674 { 3675 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3676 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3677 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3678 } while (0) 3679 3680 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3681 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3682 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3683 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3684 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3685 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3686 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3687 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3688 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3689 BUILD_BUG_SQE_ELEM(8, __u64, off); 3690 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3691 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3692 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3693 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3694 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3695 BUILD_BUG_SQE_ELEM(24, __u32, len); 3696 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3697 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3698 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3699 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3700 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3701 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3702 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3703 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3704 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3705 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3706 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3707 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3708 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3709 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3710 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3711 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3712 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3713 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3714 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3715 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3716 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3717 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3718 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3719 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3720 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3721 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3722 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3723 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3724 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3725 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3726 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3727 3728 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3729 sizeof(struct io_uring_rsrc_update)); 3730 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3731 sizeof(struct io_uring_rsrc_update2)); 3732 3733 /* ->buf_index is u16 */ 3734 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3735 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3736 offsetof(struct io_uring_buf_ring, tail)); 3737 3738 /* should fit into one byte */ 3739 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3740 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3741 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3742 3743 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3744 3745 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3746 3747 /* top 8bits are for internal use */ 3748 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3749 3750 io_uring_optable_init(); 3751 3752 /* 3753 * Allow user copy in the per-command field, which starts after the 3754 * file in io_kiocb and until the opcode field. The openat2 handling 3755 * requires copying in user memory into the io_kiocb object in that 3756 * range, and HARDENED_USERCOPY will complain if we haven't 3757 * correctly annotated this range. 3758 */ 3759 req_cachep = kmem_cache_create_usercopy("io_kiocb", 3760 sizeof(struct io_kiocb), 0, 3761 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 3762 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, 3763 offsetof(struct io_kiocb, cmd.data), 3764 sizeof_field(struct io_kiocb, cmd.data), NULL); 3765 io_buf_cachep = KMEM_CACHE(io_buffer, 3766 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 3767 3768 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3769 3770 #ifdef CONFIG_SYSCTL 3771 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3772 #endif 3773 3774 return 0; 3775 }; 3776 __initcall(io_uring_init); 3777