1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <net/af_unix.h> 63 #include <net/scm.h> 64 #include <linux/anon_inodes.h> 65 #include <linux/sched/mm.h> 66 #include <linux/uaccess.h> 67 #include <linux/nospec.h> 68 #include <linux/highmem.h> 69 #include <linux/fsnotify.h> 70 #include <linux/fadvise.h> 71 #include <linux/task_work.h> 72 #include <linux/io_uring.h> 73 #include <linux/audit.h> 74 #include <linux/security.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/io_uring.h> 78 79 #include <uapi/linux/io_uring.h> 80 81 #include "io-wq.h" 82 83 #include "io_uring.h" 84 #include "opdef.h" 85 #include "refs.h" 86 #include "tctx.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 95 #include "timeout.h" 96 #include "poll.h" 97 #include "alloc_cache.h" 98 99 #define IORING_MAX_ENTRIES 32768 100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 101 102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ 103 IORING_REGISTER_LAST + IORING_OP_LAST) 104 105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 106 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 107 108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 110 111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 113 REQ_F_ASYNC_DATA) 114 115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 116 IO_REQ_CLEAN_FLAGS) 117 118 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 119 120 #define IO_COMPL_BATCH 32 121 #define IO_REQ_ALLOC_BATCH 8 122 123 enum { 124 IO_CHECK_CQ_OVERFLOW_BIT, 125 IO_CHECK_CQ_DROPPED_BIT, 126 }; 127 128 enum { 129 IO_EVENTFD_OP_SIGNAL_BIT, 130 IO_EVENTFD_OP_FREE_BIT, 131 }; 132 133 struct io_defer_entry { 134 struct list_head list; 135 struct io_kiocb *req; 136 u32 seq; 137 }; 138 139 /* requests with any of those set should undergo io_disarm_next() */ 140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 142 143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 144 struct task_struct *task, 145 bool cancel_all); 146 147 static void io_dismantle_req(struct io_kiocb *req); 148 static void io_clean_op(struct io_kiocb *req); 149 static void io_queue_sqe(struct io_kiocb *req); 150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx); 151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx); 152 static __cold void io_fallback_tw(struct io_uring_task *tctx); 153 154 struct kmem_cache *req_cachep; 155 156 struct sock *io_uring_get_socket(struct file *file) 157 { 158 #if defined(CONFIG_UNIX) 159 if (io_is_uring_fops(file)) { 160 struct io_ring_ctx *ctx = file->private_data; 161 162 return ctx->ring_sock->sk; 163 } 164 #endif 165 return NULL; 166 } 167 EXPORT_SYMBOL(io_uring_get_socket); 168 169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 170 { 171 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 172 ctx->submit_state.cqes_count) 173 __io_submit_flush_completions(ctx); 174 } 175 176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 177 { 178 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 179 } 180 181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 182 { 183 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 184 } 185 186 static bool io_match_linked(struct io_kiocb *head) 187 { 188 struct io_kiocb *req; 189 190 io_for_each_link(req, head) { 191 if (req->flags & REQ_F_INFLIGHT) 192 return true; 193 } 194 return false; 195 } 196 197 /* 198 * As io_match_task() but protected against racing with linked timeouts. 199 * User must not hold timeout_lock. 200 */ 201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 202 bool cancel_all) 203 { 204 bool matched; 205 206 if (task && head->task != task) 207 return false; 208 if (cancel_all) 209 return true; 210 211 if (head->flags & REQ_F_LINK_TIMEOUT) { 212 struct io_ring_ctx *ctx = head->ctx; 213 214 /* protect against races with linked timeouts */ 215 spin_lock_irq(&ctx->timeout_lock); 216 matched = io_match_linked(head); 217 spin_unlock_irq(&ctx->timeout_lock); 218 } else { 219 matched = io_match_linked(head); 220 } 221 return matched; 222 } 223 224 static inline void req_fail_link_node(struct io_kiocb *req, int res) 225 { 226 req_set_fail(req); 227 io_req_set_res(req, res, 0); 228 } 229 230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 231 { 232 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 233 kasan_poison_object_data(req_cachep, req); 234 } 235 236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 237 { 238 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 239 240 complete(&ctx->ref_comp); 241 } 242 243 static __cold void io_fallback_req_func(struct work_struct *work) 244 { 245 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 246 fallback_work.work); 247 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 248 struct io_kiocb *req, *tmp; 249 bool locked = true; 250 251 mutex_lock(&ctx->uring_lock); 252 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 253 req->io_task_work.func(req, &locked); 254 if (WARN_ON_ONCE(!locked)) 255 return; 256 io_submit_flush_completions(ctx); 257 mutex_unlock(&ctx->uring_lock); 258 } 259 260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 261 { 262 unsigned hash_buckets = 1U << bits; 263 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 264 265 table->hbs = kmalloc(hash_size, GFP_KERNEL); 266 if (!table->hbs) 267 return -ENOMEM; 268 269 table->hash_bits = bits; 270 init_hash_table(table, hash_buckets); 271 return 0; 272 } 273 274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 275 { 276 struct io_ring_ctx *ctx; 277 int hash_bits; 278 279 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 280 if (!ctx) 281 return NULL; 282 283 xa_init(&ctx->io_bl_xa); 284 285 /* 286 * Use 5 bits less than the max cq entries, that should give us around 287 * 32 entries per hash list if totally full and uniformly spread, but 288 * don't keep too many buckets to not overconsume memory. 289 */ 290 hash_bits = ilog2(p->cq_entries) - 5; 291 hash_bits = clamp(hash_bits, 1, 8); 292 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 293 goto err; 294 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 295 goto err; 296 297 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); 298 if (!ctx->dummy_ubuf) 299 goto err; 300 /* set invalid range, so io_import_fixed() fails meeting it */ 301 ctx->dummy_ubuf->ubuf = -1UL; 302 303 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 304 0, GFP_KERNEL)) 305 goto err; 306 307 ctx->flags = p->flags; 308 init_waitqueue_head(&ctx->sqo_sq_wait); 309 INIT_LIST_HEAD(&ctx->sqd_list); 310 INIT_LIST_HEAD(&ctx->cq_overflow_list); 311 INIT_LIST_HEAD(&ctx->io_buffers_cache); 312 io_alloc_cache_init(&ctx->apoll_cache); 313 io_alloc_cache_init(&ctx->netmsg_cache); 314 init_completion(&ctx->ref_comp); 315 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 316 mutex_init(&ctx->uring_lock); 317 init_waitqueue_head(&ctx->cq_wait); 318 init_waitqueue_head(&ctx->poll_wq); 319 spin_lock_init(&ctx->completion_lock); 320 spin_lock_init(&ctx->timeout_lock); 321 INIT_WQ_LIST(&ctx->iopoll_list); 322 INIT_LIST_HEAD(&ctx->io_buffers_pages); 323 INIT_LIST_HEAD(&ctx->io_buffers_comp); 324 INIT_LIST_HEAD(&ctx->defer_list); 325 INIT_LIST_HEAD(&ctx->timeout_list); 326 INIT_LIST_HEAD(&ctx->ltimeout_list); 327 spin_lock_init(&ctx->rsrc_ref_lock); 328 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 329 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); 330 init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw); 331 init_llist_head(&ctx->rsrc_put_llist); 332 init_llist_head(&ctx->work_llist); 333 INIT_LIST_HEAD(&ctx->tctx_list); 334 ctx->submit_state.free_list.next = NULL; 335 INIT_WQ_LIST(&ctx->locked_free_list); 336 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 337 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 338 return ctx; 339 err: 340 kfree(ctx->dummy_ubuf); 341 kfree(ctx->cancel_table.hbs); 342 kfree(ctx->cancel_table_locked.hbs); 343 kfree(ctx->io_bl); 344 xa_destroy(&ctx->io_bl_xa); 345 kfree(ctx); 346 return NULL; 347 } 348 349 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 350 { 351 struct io_rings *r = ctx->rings; 352 353 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 354 ctx->cq_extra--; 355 } 356 357 static bool req_need_defer(struct io_kiocb *req, u32 seq) 358 { 359 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 360 struct io_ring_ctx *ctx = req->ctx; 361 362 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 363 } 364 365 return false; 366 } 367 368 static inline void io_req_track_inflight(struct io_kiocb *req) 369 { 370 if (!(req->flags & REQ_F_INFLIGHT)) { 371 req->flags |= REQ_F_INFLIGHT; 372 atomic_inc(&req->task->io_uring->inflight_tracked); 373 } 374 } 375 376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 377 { 378 if (WARN_ON_ONCE(!req->link)) 379 return NULL; 380 381 req->flags &= ~REQ_F_ARM_LTIMEOUT; 382 req->flags |= REQ_F_LINK_TIMEOUT; 383 384 /* linked timeouts should have two refs once prep'ed */ 385 io_req_set_refcount(req); 386 __io_req_set_refcount(req->link, 2); 387 return req->link; 388 } 389 390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 391 { 392 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 393 return NULL; 394 return __io_prep_linked_timeout(req); 395 } 396 397 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 398 { 399 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 400 } 401 402 static inline void io_arm_ltimeout(struct io_kiocb *req) 403 { 404 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 405 __io_arm_ltimeout(req); 406 } 407 408 static void io_prep_async_work(struct io_kiocb *req) 409 { 410 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 411 struct io_ring_ctx *ctx = req->ctx; 412 413 if (!(req->flags & REQ_F_CREDS)) { 414 req->flags |= REQ_F_CREDS; 415 req->creds = get_current_cred(); 416 } 417 418 req->work.list.next = NULL; 419 req->work.flags = 0; 420 req->work.cancel_seq = atomic_read(&ctx->cancel_seq); 421 if (req->flags & REQ_F_FORCE_ASYNC) 422 req->work.flags |= IO_WQ_WORK_CONCURRENT; 423 424 if (req->file && !io_req_ffs_set(req)) 425 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT; 426 427 if (req->flags & REQ_F_ISREG) { 428 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) 429 io_wq_hash_work(&req->work, file_inode(req->file)); 430 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 431 if (def->unbound_nonreg_file) 432 req->work.flags |= IO_WQ_WORK_UNBOUND; 433 } 434 } 435 436 static void io_prep_async_link(struct io_kiocb *req) 437 { 438 struct io_kiocb *cur; 439 440 if (req->flags & REQ_F_LINK_TIMEOUT) { 441 struct io_ring_ctx *ctx = req->ctx; 442 443 spin_lock_irq(&ctx->timeout_lock); 444 io_for_each_link(cur, req) 445 io_prep_async_work(cur); 446 spin_unlock_irq(&ctx->timeout_lock); 447 } else { 448 io_for_each_link(cur, req) 449 io_prep_async_work(cur); 450 } 451 } 452 453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use) 454 { 455 struct io_kiocb *link = io_prep_linked_timeout(req); 456 struct io_uring_task *tctx = req->task->io_uring; 457 458 BUG_ON(!tctx); 459 BUG_ON(!tctx->io_wq); 460 461 /* init ->work of the whole link before punting */ 462 io_prep_async_link(req); 463 464 /* 465 * Not expected to happen, but if we do have a bug where this _can_ 466 * happen, catch it here and ensure the request is marked as 467 * canceled. That will make io-wq go through the usual work cancel 468 * procedure rather than attempt to run this request (or create a new 469 * worker for it). 470 */ 471 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 472 req->work.flags |= IO_WQ_WORK_CANCEL; 473 474 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 475 io_wq_enqueue(tctx->io_wq, &req->work); 476 if (link) 477 io_queue_linked_timeout(link); 478 } 479 480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 481 { 482 while (!list_empty(&ctx->defer_list)) { 483 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 484 struct io_defer_entry, list); 485 486 if (req_need_defer(de->req, de->seq)) 487 break; 488 list_del_init(&de->list); 489 io_req_task_queue(de->req); 490 kfree(de); 491 } 492 } 493 494 495 static void io_eventfd_ops(struct rcu_head *rcu) 496 { 497 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); 498 int ops = atomic_xchg(&ev_fd->ops, 0); 499 500 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) 501 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 502 503 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback 504 * ordering in a race but if references are 0 we know we have to free 505 * it regardless. 506 */ 507 if (atomic_dec_and_test(&ev_fd->refs)) { 508 eventfd_ctx_put(ev_fd->cq_ev_fd); 509 kfree(ev_fd); 510 } 511 } 512 513 static void io_eventfd_signal(struct io_ring_ctx *ctx) 514 { 515 struct io_ev_fd *ev_fd = NULL; 516 517 rcu_read_lock(); 518 /* 519 * rcu_dereference ctx->io_ev_fd once and use it for both for checking 520 * and eventfd_signal 521 */ 522 ev_fd = rcu_dereference(ctx->io_ev_fd); 523 524 /* 525 * Check again if ev_fd exists incase an io_eventfd_unregister call 526 * completed between the NULL check of ctx->io_ev_fd at the start of 527 * the function and rcu_read_lock. 528 */ 529 if (unlikely(!ev_fd)) 530 goto out; 531 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) 532 goto out; 533 if (ev_fd->eventfd_async && !io_wq_current_is_worker()) 534 goto out; 535 536 if (likely(eventfd_signal_allowed())) { 537 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); 538 } else { 539 atomic_inc(&ev_fd->refs); 540 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) 541 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); 542 else 543 atomic_dec(&ev_fd->refs); 544 } 545 546 out: 547 rcu_read_unlock(); 548 } 549 550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) 551 { 552 bool skip; 553 554 spin_lock(&ctx->completion_lock); 555 556 /* 557 * Eventfd should only get triggered when at least one event has been 558 * posted. Some applications rely on the eventfd notification count 559 * only changing IFF a new CQE has been added to the CQ ring. There's 560 * no depedency on 1:1 relationship between how many times this 561 * function is called (and hence the eventfd count) and number of CQEs 562 * posted to the CQ ring. 563 */ 564 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; 565 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 566 spin_unlock(&ctx->completion_lock); 567 if (skip) 568 return; 569 570 io_eventfd_signal(ctx); 571 } 572 573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 574 { 575 if (ctx->poll_activated) 576 io_poll_wq_wake(ctx); 577 if (ctx->off_timeout_used) 578 io_flush_timeouts(ctx); 579 if (ctx->drain_active) { 580 spin_lock(&ctx->completion_lock); 581 io_queue_deferred(ctx); 582 spin_unlock(&ctx->completion_lock); 583 } 584 if (ctx->has_evfd) 585 io_eventfd_flush_signal(ctx); 586 } 587 588 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 589 __acquires(ctx->completion_lock) 590 { 591 if (!ctx->task_complete) 592 spin_lock(&ctx->completion_lock); 593 } 594 595 static inline void __io_cq_unlock(struct io_ring_ctx *ctx) 596 { 597 if (!ctx->task_complete) 598 spin_unlock(&ctx->completion_lock); 599 } 600 601 static inline void io_cq_lock(struct io_ring_ctx *ctx) 602 __acquires(ctx->completion_lock) 603 { 604 spin_lock(&ctx->completion_lock); 605 } 606 607 static inline void io_cq_unlock(struct io_ring_ctx *ctx) 608 __releases(ctx->completion_lock) 609 { 610 spin_unlock(&ctx->completion_lock); 611 } 612 613 /* keep it inlined for io_submit_flush_completions() */ 614 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 615 __releases(ctx->completion_lock) 616 { 617 io_commit_cqring(ctx); 618 __io_cq_unlock(ctx); 619 io_commit_cqring_flush(ctx); 620 io_cqring_wake(ctx); 621 } 622 623 static inline void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx) 624 __releases(ctx->completion_lock) 625 { 626 io_commit_cqring(ctx); 627 __io_cq_unlock(ctx); 628 io_commit_cqring_flush(ctx); 629 630 /* 631 * As ->task_complete implies that the ring is single tasked, cq_wait 632 * may only be waited on by the current in io_cqring_wait(), but since 633 * it will re-check the wakeup conditions once we return we can safely 634 * skip waking it up. 635 */ 636 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) { 637 smp_mb(); 638 __io_cqring_wake(ctx); 639 } 640 } 641 642 void io_cq_unlock_post(struct io_ring_ctx *ctx) 643 __releases(ctx->completion_lock) 644 { 645 io_commit_cqring(ctx); 646 spin_unlock(&ctx->completion_lock); 647 io_commit_cqring_flush(ctx); 648 io_cqring_wake(ctx); 649 } 650 651 /* Returns true if there are no backlogged entries after the flush */ 652 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 653 { 654 struct io_overflow_cqe *ocqe; 655 LIST_HEAD(list); 656 657 io_cq_lock(ctx); 658 list_splice_init(&ctx->cq_overflow_list, &list); 659 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 660 io_cq_unlock(ctx); 661 662 while (!list_empty(&list)) { 663 ocqe = list_first_entry(&list, struct io_overflow_cqe, list); 664 list_del(&ocqe->list); 665 kfree(ocqe); 666 } 667 } 668 669 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) 670 { 671 size_t cqe_size = sizeof(struct io_uring_cqe); 672 673 if (__io_cqring_events(ctx) == ctx->cq_entries) 674 return; 675 676 if (ctx->flags & IORING_SETUP_CQE32) 677 cqe_size <<= 1; 678 679 io_cq_lock(ctx); 680 while (!list_empty(&ctx->cq_overflow_list)) { 681 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true); 682 struct io_overflow_cqe *ocqe; 683 684 if (!cqe) 685 break; 686 ocqe = list_first_entry(&ctx->cq_overflow_list, 687 struct io_overflow_cqe, list); 688 memcpy(cqe, &ocqe->cqe, cqe_size); 689 list_del(&ocqe->list); 690 kfree(ocqe); 691 } 692 693 if (list_empty(&ctx->cq_overflow_list)) { 694 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 695 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 696 } 697 io_cq_unlock_post(ctx); 698 } 699 700 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 701 { 702 /* iopoll syncs against uring_lock, not completion_lock */ 703 if (ctx->flags & IORING_SETUP_IOPOLL) 704 mutex_lock(&ctx->uring_lock); 705 __io_cqring_overflow_flush(ctx); 706 if (ctx->flags & IORING_SETUP_IOPOLL) 707 mutex_unlock(&ctx->uring_lock); 708 } 709 710 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) 711 { 712 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 713 io_cqring_do_overflow_flush(ctx); 714 } 715 716 /* can be called by any task */ 717 static void io_put_task_remote(struct task_struct *task, int nr) 718 { 719 struct io_uring_task *tctx = task->io_uring; 720 721 percpu_counter_sub(&tctx->inflight, nr); 722 if (unlikely(atomic_read(&tctx->in_cancel))) 723 wake_up(&tctx->wait); 724 put_task_struct_many(task, nr); 725 } 726 727 /* used by a task to put its own references */ 728 static void io_put_task_local(struct task_struct *task, int nr) 729 { 730 task->io_uring->cached_refs += nr; 731 } 732 733 /* must to be called somewhat shortly after putting a request */ 734 static inline void io_put_task(struct task_struct *task, int nr) 735 { 736 if (likely(task == current)) 737 io_put_task_local(task, nr); 738 else 739 io_put_task_remote(task, nr); 740 } 741 742 void io_task_refs_refill(struct io_uring_task *tctx) 743 { 744 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 745 746 percpu_counter_add(&tctx->inflight, refill); 747 refcount_add(refill, ¤t->usage); 748 tctx->cached_refs += refill; 749 } 750 751 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 752 { 753 struct io_uring_task *tctx = task->io_uring; 754 unsigned int refs = tctx->cached_refs; 755 756 if (refs) { 757 tctx->cached_refs = 0; 758 percpu_counter_sub(&tctx->inflight, refs); 759 put_task_struct_many(task, refs); 760 } 761 } 762 763 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 764 s32 res, u32 cflags, u64 extra1, u64 extra2) 765 { 766 struct io_overflow_cqe *ocqe; 767 size_t ocq_size = sizeof(struct io_overflow_cqe); 768 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 769 770 lockdep_assert_held(&ctx->completion_lock); 771 772 if (is_cqe32) 773 ocq_size += sizeof(struct io_uring_cqe); 774 775 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 776 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 777 if (!ocqe) { 778 /* 779 * If we're in ring overflow flush mode, or in task cancel mode, 780 * or cannot allocate an overflow entry, then we need to drop it 781 * on the floor. 782 */ 783 io_account_cq_overflow(ctx); 784 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 785 return false; 786 } 787 if (list_empty(&ctx->cq_overflow_list)) { 788 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 789 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 790 791 } 792 ocqe->cqe.user_data = user_data; 793 ocqe->cqe.res = res; 794 ocqe->cqe.flags = cflags; 795 if (is_cqe32) { 796 ocqe->cqe.big_cqe[0] = extra1; 797 ocqe->cqe.big_cqe[1] = extra2; 798 } 799 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 800 return true; 801 } 802 803 bool io_req_cqe_overflow(struct io_kiocb *req) 804 { 805 if (!(req->flags & REQ_F_CQE32_INIT)) { 806 req->extra1 = 0; 807 req->extra2 = 0; 808 } 809 return io_cqring_event_overflow(req->ctx, req->cqe.user_data, 810 req->cqe.res, req->cqe.flags, 811 req->extra1, req->extra2); 812 } 813 814 /* 815 * writes to the cq entry need to come after reading head; the 816 * control dependency is enough as we're using WRITE_ONCE to 817 * fill the cq entry 818 */ 819 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow) 820 { 821 struct io_rings *rings = ctx->rings; 822 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 823 unsigned int free, queued, len; 824 825 /* 826 * Posting into the CQ when there are pending overflowed CQEs may break 827 * ordering guarantees, which will affect links, F_MORE users and more. 828 * Force overflow the completion. 829 */ 830 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 831 return NULL; 832 833 /* userspace may cheat modifying the tail, be safe and do min */ 834 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 835 free = ctx->cq_entries - queued; 836 /* we need a contiguous range, limit based on the current array offset */ 837 len = min(free, ctx->cq_entries - off); 838 if (!len) 839 return NULL; 840 841 if (ctx->flags & IORING_SETUP_CQE32) { 842 off <<= 1; 843 len <<= 1; 844 } 845 846 ctx->cqe_cached = &rings->cqes[off]; 847 ctx->cqe_sentinel = ctx->cqe_cached + len; 848 849 ctx->cached_cq_tail++; 850 ctx->cqe_cached++; 851 if (ctx->flags & IORING_SETUP_CQE32) 852 ctx->cqe_cached++; 853 return &rings->cqes[off]; 854 } 855 856 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 857 u32 cflags) 858 { 859 struct io_uring_cqe *cqe; 860 861 ctx->cq_extra++; 862 863 /* 864 * If we can't get a cq entry, userspace overflowed the 865 * submission (by quite a lot). Increment the overflow count in 866 * the ring. 867 */ 868 cqe = io_get_cqe(ctx); 869 if (likely(cqe)) { 870 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 871 872 WRITE_ONCE(cqe->user_data, user_data); 873 WRITE_ONCE(cqe->res, res); 874 WRITE_ONCE(cqe->flags, cflags); 875 876 if (ctx->flags & IORING_SETUP_CQE32) { 877 WRITE_ONCE(cqe->big_cqe[0], 0); 878 WRITE_ONCE(cqe->big_cqe[1], 0); 879 } 880 return true; 881 } 882 return false; 883 } 884 885 static void __io_flush_post_cqes(struct io_ring_ctx *ctx) 886 __must_hold(&ctx->uring_lock) 887 { 888 struct io_submit_state *state = &ctx->submit_state; 889 unsigned int i; 890 891 lockdep_assert_held(&ctx->uring_lock); 892 for (i = 0; i < state->cqes_count; i++) { 893 struct io_uring_cqe *cqe = &state->cqes[i]; 894 895 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { 896 if (ctx->task_complete) { 897 spin_lock(&ctx->completion_lock); 898 io_cqring_event_overflow(ctx, cqe->user_data, 899 cqe->res, cqe->flags, 0, 0); 900 spin_unlock(&ctx->completion_lock); 901 } else { 902 io_cqring_event_overflow(ctx, cqe->user_data, 903 cqe->res, cqe->flags, 0, 0); 904 } 905 } 906 } 907 state->cqes_count = 0; 908 } 909 910 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, 911 bool allow_overflow) 912 { 913 bool filled; 914 915 io_cq_lock(ctx); 916 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 917 if (!filled && allow_overflow) 918 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 919 920 io_cq_unlock_post(ctx); 921 return filled; 922 } 923 924 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 925 { 926 return __io_post_aux_cqe(ctx, user_data, res, cflags, true); 927 } 928 929 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags, 930 bool allow_overflow) 931 { 932 struct io_uring_cqe *cqe; 933 unsigned int length; 934 935 if (!defer) 936 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow); 937 938 length = ARRAY_SIZE(ctx->submit_state.cqes); 939 940 lockdep_assert_held(&ctx->uring_lock); 941 942 if (ctx->submit_state.cqes_count == length) { 943 __io_cq_lock(ctx); 944 __io_flush_post_cqes(ctx); 945 /* no need to flush - flush is deferred */ 946 __io_cq_unlock_post(ctx); 947 } 948 949 /* For defered completions this is not as strict as it is otherwise, 950 * however it's main job is to prevent unbounded posted completions, 951 * and in that it works just as well. 952 */ 953 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) 954 return false; 955 956 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++]; 957 cqe->user_data = user_data; 958 cqe->res = res; 959 cqe->flags = cflags; 960 return true; 961 } 962 963 static void __io_req_complete_post(struct io_kiocb *req) 964 { 965 struct io_ring_ctx *ctx = req->ctx; 966 967 io_cq_lock(ctx); 968 if (!(req->flags & REQ_F_CQE_SKIP)) 969 io_fill_cqe_req(ctx, req); 970 971 /* 972 * If we're the last reference to this request, add to our locked 973 * free_list cache. 974 */ 975 if (req_ref_put_and_test(req)) { 976 if (req->flags & IO_REQ_LINK_FLAGS) { 977 if (req->flags & IO_DISARM_MASK) 978 io_disarm_next(req); 979 if (req->link) { 980 io_req_task_queue(req->link); 981 req->link = NULL; 982 } 983 } 984 io_put_kbuf_comp(req); 985 io_dismantle_req(req); 986 io_req_put_rsrc(req); 987 /* 988 * Selected buffer deallocation in io_clean_op() assumes that 989 * we don't hold ->completion_lock. Clean them here to avoid 990 * deadlocks. 991 */ 992 io_put_task_remote(req->task, 1); 993 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 994 ctx->locked_free_nr++; 995 } 996 io_cq_unlock_post(ctx); 997 } 998 999 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 1000 { 1001 if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) { 1002 req->io_task_work.func = io_req_task_complete; 1003 io_req_task_work_add(req); 1004 } else if (!(issue_flags & IO_URING_F_UNLOCKED) || 1005 !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 1006 __io_req_complete_post(req); 1007 } else { 1008 struct io_ring_ctx *ctx = req->ctx; 1009 1010 mutex_lock(&ctx->uring_lock); 1011 __io_req_complete_post(req); 1012 mutex_unlock(&ctx->uring_lock); 1013 } 1014 } 1015 1016 void io_req_defer_failed(struct io_kiocb *req, s32 res) 1017 __must_hold(&ctx->uring_lock) 1018 { 1019 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1020 1021 lockdep_assert_held(&req->ctx->uring_lock); 1022 1023 req_set_fail(req); 1024 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); 1025 if (def->fail) 1026 def->fail(req); 1027 io_req_complete_defer(req); 1028 } 1029 1030 /* 1031 * Don't initialise the fields below on every allocation, but do that in 1032 * advance and keep them valid across allocations. 1033 */ 1034 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 1035 { 1036 req->ctx = ctx; 1037 req->link = NULL; 1038 req->async_data = NULL; 1039 /* not necessary, but safer to zero */ 1040 req->cqe.res = 0; 1041 } 1042 1043 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, 1044 struct io_submit_state *state) 1045 { 1046 spin_lock(&ctx->completion_lock); 1047 wq_list_splice(&ctx->locked_free_list, &state->free_list); 1048 ctx->locked_free_nr = 0; 1049 spin_unlock(&ctx->completion_lock); 1050 } 1051 1052 /* 1053 * A request might get retired back into the request caches even before opcode 1054 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 1055 * Because of that, io_alloc_req() should be called only under ->uring_lock 1056 * and with extra caution to not get a request that is still worked on. 1057 */ 1058 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 1059 __must_hold(&ctx->uring_lock) 1060 { 1061 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 1062 void *reqs[IO_REQ_ALLOC_BATCH]; 1063 int ret, i; 1064 1065 /* 1066 * If we have more than a batch's worth of requests in our IRQ side 1067 * locked cache, grab the lock and move them over to our submission 1068 * side cache. 1069 */ 1070 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { 1071 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 1072 if (!io_req_cache_empty(ctx)) 1073 return true; 1074 } 1075 1076 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 1077 1078 /* 1079 * Bulk alloc is all-or-nothing. If we fail to get a batch, 1080 * retry single alloc to be on the safe side. 1081 */ 1082 if (unlikely(ret <= 0)) { 1083 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 1084 if (!reqs[0]) 1085 return false; 1086 ret = 1; 1087 } 1088 1089 percpu_ref_get_many(&ctx->refs, ret); 1090 for (i = 0; i < ret; i++) { 1091 struct io_kiocb *req = reqs[i]; 1092 1093 io_preinit_req(req, ctx); 1094 io_req_add_to_cache(req, ctx); 1095 } 1096 return true; 1097 } 1098 1099 static inline void io_dismantle_req(struct io_kiocb *req) 1100 { 1101 unsigned int flags = req->flags; 1102 1103 if (unlikely(flags & IO_REQ_CLEAN_FLAGS)) 1104 io_clean_op(req); 1105 if (!(flags & REQ_F_FIXED_FILE)) 1106 io_put_file(req->file); 1107 } 1108 1109 __cold void io_free_req(struct io_kiocb *req) 1110 { 1111 struct io_ring_ctx *ctx = req->ctx; 1112 1113 io_req_put_rsrc(req); 1114 io_dismantle_req(req); 1115 io_put_task_remote(req->task, 1); 1116 1117 spin_lock(&ctx->completion_lock); 1118 wq_list_add_head(&req->comp_list, &ctx->locked_free_list); 1119 ctx->locked_free_nr++; 1120 spin_unlock(&ctx->completion_lock); 1121 } 1122 1123 static void __io_req_find_next_prep(struct io_kiocb *req) 1124 { 1125 struct io_ring_ctx *ctx = req->ctx; 1126 1127 spin_lock(&ctx->completion_lock); 1128 io_disarm_next(req); 1129 spin_unlock(&ctx->completion_lock); 1130 } 1131 1132 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1133 { 1134 struct io_kiocb *nxt; 1135 1136 /* 1137 * If LINK is set, we have dependent requests in this chain. If we 1138 * didn't fail this request, queue the first one up, moving any other 1139 * dependencies to the next request. In case of failure, fail the rest 1140 * of the chain. 1141 */ 1142 if (unlikely(req->flags & IO_DISARM_MASK)) 1143 __io_req_find_next_prep(req); 1144 nxt = req->link; 1145 req->link = NULL; 1146 return nxt; 1147 } 1148 1149 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) 1150 { 1151 if (!ctx) 1152 return; 1153 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1154 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1155 if (*locked) { 1156 io_submit_flush_completions(ctx); 1157 mutex_unlock(&ctx->uring_lock); 1158 *locked = false; 1159 } 1160 percpu_ref_put(&ctx->refs); 1161 } 1162 1163 static unsigned int handle_tw_list(struct llist_node *node, 1164 struct io_ring_ctx **ctx, bool *locked, 1165 struct llist_node *last) 1166 { 1167 unsigned int count = 0; 1168 1169 while (node && node != last) { 1170 struct llist_node *next = node->next; 1171 struct io_kiocb *req = container_of(node, struct io_kiocb, 1172 io_task_work.node); 1173 1174 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1175 1176 if (req->ctx != *ctx) { 1177 ctx_flush_and_put(*ctx, locked); 1178 *ctx = req->ctx; 1179 /* if not contended, grab and improve batching */ 1180 *locked = mutex_trylock(&(*ctx)->uring_lock); 1181 percpu_ref_get(&(*ctx)->refs); 1182 } else if (!*locked) 1183 *locked = mutex_trylock(&(*ctx)->uring_lock); 1184 req->io_task_work.func(req, locked); 1185 node = next; 1186 count++; 1187 if (unlikely(need_resched())) { 1188 ctx_flush_and_put(*ctx, locked); 1189 *ctx = NULL; 1190 cond_resched(); 1191 } 1192 } 1193 1194 return count; 1195 } 1196 1197 /** 1198 * io_llist_xchg - swap all entries in a lock-less list 1199 * @head: the head of lock-less list to delete all entries 1200 * @new: new entry as the head of the list 1201 * 1202 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1203 * The order of entries returned is from the newest to the oldest added one. 1204 */ 1205 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1206 struct llist_node *new) 1207 { 1208 return xchg(&head->first, new); 1209 } 1210 1211 /** 1212 * io_llist_cmpxchg - possibly swap all entries in a lock-less list 1213 * @head: the head of lock-less list to delete all entries 1214 * @old: expected old value of the first entry of the list 1215 * @new: new entry as the head of the list 1216 * 1217 * perform a cmpxchg on the first entry of the list. 1218 */ 1219 1220 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, 1221 struct llist_node *old, 1222 struct llist_node *new) 1223 { 1224 return cmpxchg(&head->first, old, new); 1225 } 1226 1227 void tctx_task_work(struct callback_head *cb) 1228 { 1229 bool uring_locked = false; 1230 struct io_ring_ctx *ctx = NULL; 1231 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, 1232 task_work); 1233 struct llist_node fake = {}; 1234 struct llist_node *node; 1235 unsigned int loops = 0; 1236 unsigned int count = 0; 1237 1238 if (unlikely(current->flags & PF_EXITING)) { 1239 io_fallback_tw(tctx); 1240 return; 1241 } 1242 1243 do { 1244 loops++; 1245 node = io_llist_xchg(&tctx->task_list, &fake); 1246 count += handle_tw_list(node, &ctx, &uring_locked, &fake); 1247 1248 /* skip expensive cmpxchg if there are items in the list */ 1249 if (READ_ONCE(tctx->task_list.first) != &fake) 1250 continue; 1251 if (uring_locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { 1252 io_submit_flush_completions(ctx); 1253 if (READ_ONCE(tctx->task_list.first) != &fake) 1254 continue; 1255 } 1256 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); 1257 } while (node != &fake); 1258 1259 ctx_flush_and_put(ctx, &uring_locked); 1260 1261 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1262 if (unlikely(atomic_read(&tctx->in_cancel))) 1263 io_uring_drop_tctx_refs(current); 1264 1265 trace_io_uring_task_work_run(tctx, count, loops); 1266 } 1267 1268 static __cold void io_fallback_tw(struct io_uring_task *tctx) 1269 { 1270 struct llist_node *node = llist_del_all(&tctx->task_list); 1271 struct io_kiocb *req; 1272 1273 while (node) { 1274 req = container_of(node, struct io_kiocb, io_task_work.node); 1275 node = node->next; 1276 if (llist_add(&req->io_task_work.node, 1277 &req->ctx->fallback_llist)) 1278 schedule_delayed_work(&req->ctx->fallback_work, 1); 1279 } 1280 } 1281 1282 static void io_req_local_work_add(struct io_kiocb *req) 1283 { 1284 struct io_ring_ctx *ctx = req->ctx; 1285 1286 percpu_ref_get(&ctx->refs); 1287 1288 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) 1289 goto put_ref; 1290 1291 /* needed for the following wake up */ 1292 smp_mb__after_atomic(); 1293 1294 if (unlikely(atomic_read(&req->task->io_uring->in_cancel))) { 1295 io_move_task_work_from_local(ctx); 1296 goto put_ref; 1297 } 1298 1299 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1300 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1301 if (ctx->has_evfd) 1302 io_eventfd_signal(ctx); 1303 1304 if (READ_ONCE(ctx->cq_waiting)) 1305 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1306 1307 put_ref: 1308 percpu_ref_put(&ctx->refs); 1309 } 1310 1311 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local) 1312 { 1313 struct io_uring_task *tctx = req->task->io_uring; 1314 struct io_ring_ctx *ctx = req->ctx; 1315 1316 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 1317 io_req_local_work_add(req); 1318 return; 1319 } 1320 1321 /* task_work already pending, we're done */ 1322 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1323 return; 1324 1325 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1326 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1327 1328 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1329 return; 1330 1331 io_fallback_tw(tctx); 1332 } 1333 1334 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1335 { 1336 struct llist_node *node; 1337 1338 node = llist_del_all(&ctx->work_llist); 1339 while (node) { 1340 struct io_kiocb *req = container_of(node, struct io_kiocb, 1341 io_task_work.node); 1342 1343 node = node->next; 1344 __io_req_task_work_add(req, false); 1345 } 1346 } 1347 1348 static int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked) 1349 { 1350 struct llist_node *node; 1351 unsigned int loops = 0; 1352 int ret = 0; 1353 1354 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1355 return -EEXIST; 1356 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1357 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1358 again: 1359 node = io_llist_xchg(&ctx->work_llist, NULL); 1360 while (node) { 1361 struct llist_node *next = node->next; 1362 struct io_kiocb *req = container_of(node, struct io_kiocb, 1363 io_task_work.node); 1364 prefetch(container_of(next, struct io_kiocb, io_task_work.node)); 1365 req->io_task_work.func(req, locked); 1366 ret++; 1367 node = next; 1368 } 1369 loops++; 1370 1371 if (!llist_empty(&ctx->work_llist)) 1372 goto again; 1373 if (*locked) { 1374 io_submit_flush_completions(ctx); 1375 if (!llist_empty(&ctx->work_llist)) 1376 goto again; 1377 } 1378 trace_io_uring_local_work_run(ctx, ret, loops); 1379 return ret; 1380 } 1381 1382 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) 1383 { 1384 bool locked; 1385 int ret; 1386 1387 if (llist_empty(&ctx->work_llist)) 1388 return 0; 1389 1390 locked = true; 1391 ret = __io_run_local_work(ctx, &locked); 1392 /* shouldn't happen! */ 1393 if (WARN_ON_ONCE(!locked)) 1394 mutex_lock(&ctx->uring_lock); 1395 return ret; 1396 } 1397 1398 static int io_run_local_work(struct io_ring_ctx *ctx) 1399 { 1400 bool locked = mutex_trylock(&ctx->uring_lock); 1401 int ret; 1402 1403 ret = __io_run_local_work(ctx, &locked); 1404 if (locked) 1405 mutex_unlock(&ctx->uring_lock); 1406 1407 return ret; 1408 } 1409 1410 static void io_req_task_cancel(struct io_kiocb *req, bool *locked) 1411 { 1412 io_tw_lock(req->ctx, locked); 1413 io_req_defer_failed(req, req->cqe.res); 1414 } 1415 1416 void io_req_task_submit(struct io_kiocb *req, bool *locked) 1417 { 1418 io_tw_lock(req->ctx, locked); 1419 /* req->task == current here, checking PF_EXITING is safe */ 1420 if (unlikely(req->task->flags & PF_EXITING)) 1421 io_req_defer_failed(req, -EFAULT); 1422 else if (req->flags & REQ_F_FORCE_ASYNC) 1423 io_queue_iowq(req, locked); 1424 else 1425 io_queue_sqe(req); 1426 } 1427 1428 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1429 { 1430 io_req_set_res(req, ret, 0); 1431 req->io_task_work.func = io_req_task_cancel; 1432 io_req_task_work_add(req); 1433 } 1434 1435 void io_req_task_queue(struct io_kiocb *req) 1436 { 1437 req->io_task_work.func = io_req_task_submit; 1438 io_req_task_work_add(req); 1439 } 1440 1441 void io_queue_next(struct io_kiocb *req) 1442 { 1443 struct io_kiocb *nxt = io_req_find_next(req); 1444 1445 if (nxt) 1446 io_req_task_queue(nxt); 1447 } 1448 1449 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node) 1450 __must_hold(&ctx->uring_lock) 1451 { 1452 struct task_struct *task = NULL; 1453 int task_refs = 0; 1454 1455 do { 1456 struct io_kiocb *req = container_of(node, struct io_kiocb, 1457 comp_list); 1458 1459 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1460 if (req->flags & REQ_F_REFCOUNT) { 1461 node = req->comp_list.next; 1462 if (!req_ref_put_and_test(req)) 1463 continue; 1464 } 1465 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1466 struct async_poll *apoll = req->apoll; 1467 1468 if (apoll->double_poll) 1469 kfree(apoll->double_poll); 1470 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) 1471 kfree(apoll); 1472 req->flags &= ~REQ_F_POLLED; 1473 } 1474 if (req->flags & IO_REQ_LINK_FLAGS) 1475 io_queue_next(req); 1476 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1477 io_clean_op(req); 1478 } 1479 if (!(req->flags & REQ_F_FIXED_FILE)) 1480 io_put_file(req->file); 1481 1482 io_req_put_rsrc_locked(req, ctx); 1483 1484 if (req->task != task) { 1485 if (task) 1486 io_put_task(task, task_refs); 1487 task = req->task; 1488 task_refs = 0; 1489 } 1490 task_refs++; 1491 node = req->comp_list.next; 1492 io_req_add_to_cache(req, ctx); 1493 } while (node); 1494 1495 if (task) 1496 io_put_task(task, task_refs); 1497 } 1498 1499 static void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1500 __must_hold(&ctx->uring_lock) 1501 { 1502 struct io_submit_state *state = &ctx->submit_state; 1503 struct io_wq_work_node *node; 1504 1505 __io_cq_lock(ctx); 1506 /* must come first to preserve CQE ordering in failure cases */ 1507 if (state->cqes_count) 1508 __io_flush_post_cqes(ctx); 1509 __wq_list_for_each(node, &state->compl_reqs) { 1510 struct io_kiocb *req = container_of(node, struct io_kiocb, 1511 comp_list); 1512 1513 if (!(req->flags & REQ_F_CQE_SKIP) && 1514 unlikely(!__io_fill_cqe_req(ctx, req))) { 1515 if (ctx->task_complete) { 1516 spin_lock(&ctx->completion_lock); 1517 io_req_cqe_overflow(req); 1518 spin_unlock(&ctx->completion_lock); 1519 } else { 1520 io_req_cqe_overflow(req); 1521 } 1522 } 1523 } 1524 __io_cq_unlock_post_flush(ctx); 1525 1526 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { 1527 io_free_batch_list(ctx, state->compl_reqs.first); 1528 INIT_WQ_LIST(&state->compl_reqs); 1529 } 1530 } 1531 1532 /* 1533 * Drop reference to request, return next in chain (if there is one) if this 1534 * was the last reference to this request. 1535 */ 1536 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) 1537 { 1538 struct io_kiocb *nxt = NULL; 1539 1540 if (req_ref_put_and_test(req)) { 1541 if (unlikely(req->flags & IO_REQ_LINK_FLAGS)) 1542 nxt = io_req_find_next(req); 1543 io_free_req(req); 1544 } 1545 return nxt; 1546 } 1547 1548 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1549 { 1550 /* See comment at the top of this file */ 1551 smp_rmb(); 1552 return __io_cqring_events(ctx); 1553 } 1554 1555 /* 1556 * We can't just wait for polled events to come to us, we have to actively 1557 * find and complete them. 1558 */ 1559 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1560 { 1561 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1562 return; 1563 1564 mutex_lock(&ctx->uring_lock); 1565 while (!wq_list_empty(&ctx->iopoll_list)) { 1566 /* let it sleep and repeat later if can't complete a request */ 1567 if (io_do_iopoll(ctx, true) == 0) 1568 break; 1569 /* 1570 * Ensure we allow local-to-the-cpu processing to take place, 1571 * in this case we need to ensure that we reap all events. 1572 * Also let task_work, etc. to progress by releasing the mutex 1573 */ 1574 if (need_resched()) { 1575 mutex_unlock(&ctx->uring_lock); 1576 cond_resched(); 1577 mutex_lock(&ctx->uring_lock); 1578 } 1579 } 1580 mutex_unlock(&ctx->uring_lock); 1581 } 1582 1583 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1584 { 1585 unsigned int nr_events = 0; 1586 int ret = 0; 1587 unsigned long check_cq; 1588 1589 if (!io_allowed_run_tw(ctx)) 1590 return -EEXIST; 1591 1592 check_cq = READ_ONCE(ctx->check_cq); 1593 if (unlikely(check_cq)) { 1594 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1595 __io_cqring_overflow_flush(ctx); 1596 /* 1597 * Similarly do not spin if we have not informed the user of any 1598 * dropped CQE. 1599 */ 1600 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1601 return -EBADR; 1602 } 1603 /* 1604 * Don't enter poll loop if we already have events pending. 1605 * If we do, we can potentially be spinning for commands that 1606 * already triggered a CQE (eg in error). 1607 */ 1608 if (io_cqring_events(ctx)) 1609 return 0; 1610 1611 do { 1612 /* 1613 * If a submit got punted to a workqueue, we can have the 1614 * application entering polling for a command before it gets 1615 * issued. That app will hold the uring_lock for the duration 1616 * of the poll right here, so we need to take a breather every 1617 * now and then to ensure that the issue has a chance to add 1618 * the poll to the issued list. Otherwise we can spin here 1619 * forever, while the workqueue is stuck trying to acquire the 1620 * very same mutex. 1621 */ 1622 if (wq_list_empty(&ctx->iopoll_list) || 1623 io_task_work_pending(ctx)) { 1624 u32 tail = ctx->cached_cq_tail; 1625 1626 (void) io_run_local_work_locked(ctx); 1627 1628 if (task_work_pending(current) || 1629 wq_list_empty(&ctx->iopoll_list)) { 1630 mutex_unlock(&ctx->uring_lock); 1631 io_run_task_work(); 1632 mutex_lock(&ctx->uring_lock); 1633 } 1634 /* some requests don't go through iopoll_list */ 1635 if (tail != ctx->cached_cq_tail || 1636 wq_list_empty(&ctx->iopoll_list)) 1637 break; 1638 } 1639 ret = io_do_iopoll(ctx, !min); 1640 if (ret < 0) 1641 break; 1642 nr_events += ret; 1643 ret = 0; 1644 } while (nr_events < min && !need_resched()); 1645 1646 return ret; 1647 } 1648 1649 void io_req_task_complete(struct io_kiocb *req, bool *locked) 1650 { 1651 if (*locked) 1652 io_req_complete_defer(req); 1653 else 1654 io_req_complete_post(req, IO_URING_F_UNLOCKED); 1655 } 1656 1657 /* 1658 * After the iocb has been issued, it's safe to be found on the poll list. 1659 * Adding the kiocb to the list AFTER submission ensures that we don't 1660 * find it from a io_do_iopoll() thread before the issuer is done 1661 * accessing the kiocb cookie. 1662 */ 1663 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1664 { 1665 struct io_ring_ctx *ctx = req->ctx; 1666 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1667 1668 /* workqueue context doesn't hold uring_lock, grab it now */ 1669 if (unlikely(needs_lock)) 1670 mutex_lock(&ctx->uring_lock); 1671 1672 /* 1673 * Track whether we have multiple files in our lists. This will impact 1674 * how we do polling eventually, not spinning if we're on potentially 1675 * different devices. 1676 */ 1677 if (wq_list_empty(&ctx->iopoll_list)) { 1678 ctx->poll_multi_queue = false; 1679 } else if (!ctx->poll_multi_queue) { 1680 struct io_kiocb *list_req; 1681 1682 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1683 comp_list); 1684 if (list_req->file != req->file) 1685 ctx->poll_multi_queue = true; 1686 } 1687 1688 /* 1689 * For fast devices, IO may have already completed. If it has, add 1690 * it to the front so we find it first. 1691 */ 1692 if (READ_ONCE(req->iopoll_completed)) 1693 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1694 else 1695 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1696 1697 if (unlikely(needs_lock)) { 1698 /* 1699 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1700 * in sq thread task context or in io worker task context. If 1701 * current task context is sq thread, we don't need to check 1702 * whether should wake up sq thread. 1703 */ 1704 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1705 wq_has_sleeper(&ctx->sq_data->wait)) 1706 wake_up(&ctx->sq_data->wait); 1707 1708 mutex_unlock(&ctx->uring_lock); 1709 } 1710 } 1711 1712 static bool io_bdev_nowait(struct block_device *bdev) 1713 { 1714 return !bdev || bdev_nowait(bdev); 1715 } 1716 1717 /* 1718 * If we tracked the file through the SCM inflight mechanism, we could support 1719 * any file. For now, just ensure that anything potentially problematic is done 1720 * inline. 1721 */ 1722 static bool __io_file_supports_nowait(struct file *file, umode_t mode) 1723 { 1724 if (S_ISBLK(mode)) { 1725 if (IS_ENABLED(CONFIG_BLOCK) && 1726 io_bdev_nowait(I_BDEV(file->f_mapping->host))) 1727 return true; 1728 return false; 1729 } 1730 if (S_ISSOCK(mode)) 1731 return true; 1732 if (S_ISREG(mode)) { 1733 if (IS_ENABLED(CONFIG_BLOCK) && 1734 io_bdev_nowait(file->f_inode->i_sb->s_bdev) && 1735 !io_is_uring_fops(file)) 1736 return true; 1737 return false; 1738 } 1739 1740 /* any ->read/write should understand O_NONBLOCK */ 1741 if (file->f_flags & O_NONBLOCK) 1742 return true; 1743 return file->f_mode & FMODE_NOWAIT; 1744 } 1745 1746 /* 1747 * If we tracked the file through the SCM inflight mechanism, we could support 1748 * any file. For now, just ensure that anything potentially problematic is done 1749 * inline. 1750 */ 1751 unsigned int io_file_get_flags(struct file *file) 1752 { 1753 umode_t mode = file_inode(file)->i_mode; 1754 unsigned int res = 0; 1755 1756 if (S_ISREG(mode)) 1757 res |= FFS_ISREG; 1758 if (__io_file_supports_nowait(file, mode)) 1759 res |= FFS_NOWAIT; 1760 return res; 1761 } 1762 1763 bool io_alloc_async_data(struct io_kiocb *req) 1764 { 1765 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); 1766 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); 1767 if (req->async_data) { 1768 req->flags |= REQ_F_ASYNC_DATA; 1769 return false; 1770 } 1771 return true; 1772 } 1773 1774 int io_req_prep_async(struct io_kiocb *req) 1775 { 1776 const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; 1777 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1778 1779 /* assign early for deferred execution for non-fixed file */ 1780 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) 1781 req->file = io_file_get_normal(req, req->cqe.fd); 1782 if (!cdef->prep_async) 1783 return 0; 1784 if (WARN_ON_ONCE(req_has_async_data(req))) 1785 return -EFAULT; 1786 if (!def->manual_alloc) { 1787 if (io_alloc_async_data(req)) 1788 return -EAGAIN; 1789 } 1790 return cdef->prep_async(req); 1791 } 1792 1793 static u32 io_get_sequence(struct io_kiocb *req) 1794 { 1795 u32 seq = req->ctx->cached_sq_head; 1796 struct io_kiocb *cur; 1797 1798 /* need original cached_sq_head, but it was increased for each req */ 1799 io_for_each_link(cur, req) 1800 seq--; 1801 return seq; 1802 } 1803 1804 static __cold void io_drain_req(struct io_kiocb *req) 1805 __must_hold(&ctx->uring_lock) 1806 { 1807 struct io_ring_ctx *ctx = req->ctx; 1808 struct io_defer_entry *de; 1809 int ret; 1810 u32 seq = io_get_sequence(req); 1811 1812 /* Still need defer if there is pending req in defer list. */ 1813 spin_lock(&ctx->completion_lock); 1814 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1815 spin_unlock(&ctx->completion_lock); 1816 queue: 1817 ctx->drain_active = false; 1818 io_req_task_queue(req); 1819 return; 1820 } 1821 spin_unlock(&ctx->completion_lock); 1822 1823 io_prep_async_link(req); 1824 de = kmalloc(sizeof(*de), GFP_KERNEL); 1825 if (!de) { 1826 ret = -ENOMEM; 1827 io_req_defer_failed(req, ret); 1828 return; 1829 } 1830 1831 spin_lock(&ctx->completion_lock); 1832 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1833 spin_unlock(&ctx->completion_lock); 1834 kfree(de); 1835 goto queue; 1836 } 1837 1838 trace_io_uring_defer(req); 1839 de->req = req; 1840 de->seq = seq; 1841 list_add_tail(&de->list, &ctx->defer_list); 1842 spin_unlock(&ctx->completion_lock); 1843 } 1844 1845 static void io_clean_op(struct io_kiocb *req) 1846 { 1847 if (req->flags & REQ_F_BUFFER_SELECTED) { 1848 spin_lock(&req->ctx->completion_lock); 1849 io_put_kbuf_comp(req); 1850 spin_unlock(&req->ctx->completion_lock); 1851 } 1852 1853 if (req->flags & REQ_F_NEED_CLEANUP) { 1854 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 1855 1856 if (def->cleanup) 1857 def->cleanup(req); 1858 } 1859 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1860 kfree(req->apoll->double_poll); 1861 kfree(req->apoll); 1862 req->apoll = NULL; 1863 } 1864 if (req->flags & REQ_F_INFLIGHT) { 1865 struct io_uring_task *tctx = req->task->io_uring; 1866 1867 atomic_dec(&tctx->inflight_tracked); 1868 } 1869 if (req->flags & REQ_F_CREDS) 1870 put_cred(req->creds); 1871 if (req->flags & REQ_F_ASYNC_DATA) { 1872 kfree(req->async_data); 1873 req->async_data = NULL; 1874 } 1875 req->flags &= ~IO_REQ_CLEAN_FLAGS; 1876 } 1877 1878 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1879 unsigned int issue_flags) 1880 { 1881 if (req->file || !def->needs_file) 1882 return true; 1883 1884 if (req->flags & REQ_F_FIXED_FILE) 1885 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1886 else 1887 req->file = io_file_get_normal(req, req->cqe.fd); 1888 1889 return !!req->file; 1890 } 1891 1892 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1893 { 1894 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1895 const struct cred *creds = NULL; 1896 int ret; 1897 1898 if (unlikely(!io_assign_file(req, def, issue_flags))) 1899 return -EBADF; 1900 1901 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1902 creds = override_creds(req->creds); 1903 1904 if (!def->audit_skip) 1905 audit_uring_entry(req->opcode); 1906 1907 ret = def->issue(req, issue_flags); 1908 1909 if (!def->audit_skip) 1910 audit_uring_exit(!ret, ret); 1911 1912 if (creds) 1913 revert_creds(creds); 1914 1915 if (ret == IOU_OK) { 1916 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1917 io_req_complete_defer(req); 1918 else 1919 io_req_complete_post(req, issue_flags); 1920 } else if (ret != IOU_ISSUE_SKIP_COMPLETE) 1921 return ret; 1922 1923 /* If the op doesn't have a file, we're not polling for it */ 1924 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1925 io_iopoll_req_issued(req, issue_flags); 1926 1927 return 0; 1928 } 1929 1930 int io_poll_issue(struct io_kiocb *req, bool *locked) 1931 { 1932 io_tw_lock(req->ctx, locked); 1933 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1934 IO_URING_F_COMPLETE_DEFER); 1935 } 1936 1937 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1938 { 1939 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1940 1941 req = io_put_req_find_next(req); 1942 return req ? &req->work : NULL; 1943 } 1944 1945 void io_wq_submit_work(struct io_wq_work *work) 1946 { 1947 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1948 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1949 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1950 bool needs_poll = false; 1951 int ret = 0, err = -ECANCELED; 1952 1953 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1954 if (!(req->flags & REQ_F_REFCOUNT)) 1955 __io_req_set_refcount(req, 2); 1956 else 1957 req_ref_get(req); 1958 1959 io_arm_ltimeout(req); 1960 1961 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1962 if (work->flags & IO_WQ_WORK_CANCEL) { 1963 fail: 1964 io_req_task_queue_fail(req, err); 1965 return; 1966 } 1967 if (!io_assign_file(req, def, issue_flags)) { 1968 err = -EBADF; 1969 work->flags |= IO_WQ_WORK_CANCEL; 1970 goto fail; 1971 } 1972 1973 if (req->flags & REQ_F_FORCE_ASYNC) { 1974 bool opcode_poll = def->pollin || def->pollout; 1975 1976 if (opcode_poll && file_can_poll(req->file)) { 1977 needs_poll = true; 1978 issue_flags |= IO_URING_F_NONBLOCK; 1979 } 1980 } 1981 1982 do { 1983 ret = io_issue_sqe(req, issue_flags); 1984 if (ret != -EAGAIN) 1985 break; 1986 /* 1987 * We can get EAGAIN for iopolled IO even though we're 1988 * forcing a sync submission from here, since we can't 1989 * wait for request slots on the block side. 1990 */ 1991 if (!needs_poll) { 1992 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1993 break; 1994 cond_resched(); 1995 continue; 1996 } 1997 1998 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1999 return; 2000 /* aborted or ready, in either case retry blocking */ 2001 needs_poll = false; 2002 issue_flags &= ~IO_URING_F_NONBLOCK; 2003 } while (1); 2004 2005 /* avoid locking problems by failing it from a clean context */ 2006 if (ret < 0) 2007 io_req_task_queue_fail(req, ret); 2008 } 2009 2010 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 2011 unsigned int issue_flags) 2012 { 2013 struct io_ring_ctx *ctx = req->ctx; 2014 struct file *file = NULL; 2015 unsigned long file_ptr; 2016 2017 io_ring_submit_lock(ctx, issue_flags); 2018 2019 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 2020 goto out; 2021 fd = array_index_nospec(fd, ctx->nr_user_files); 2022 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; 2023 file = (struct file *) (file_ptr & FFS_MASK); 2024 file_ptr &= ~FFS_MASK; 2025 /* mask in overlapping REQ_F and FFS bits */ 2026 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT); 2027 io_req_set_rsrc_node(req, ctx, 0); 2028 out: 2029 io_ring_submit_unlock(ctx, issue_flags); 2030 return file; 2031 } 2032 2033 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 2034 { 2035 struct file *file = fget(fd); 2036 2037 trace_io_uring_file_get(req, fd); 2038 2039 /* we don't allow fixed io_uring files */ 2040 if (file && io_is_uring_fops(file)) 2041 io_req_track_inflight(req); 2042 return file; 2043 } 2044 2045 static void io_queue_async(struct io_kiocb *req, int ret) 2046 __must_hold(&req->ctx->uring_lock) 2047 { 2048 struct io_kiocb *linked_timeout; 2049 2050 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 2051 io_req_defer_failed(req, ret); 2052 return; 2053 } 2054 2055 linked_timeout = io_prep_linked_timeout(req); 2056 2057 switch (io_arm_poll_handler(req, 0)) { 2058 case IO_APOLL_READY: 2059 io_kbuf_recycle(req, 0); 2060 io_req_task_queue(req); 2061 break; 2062 case IO_APOLL_ABORTED: 2063 io_kbuf_recycle(req, 0); 2064 io_queue_iowq(req, NULL); 2065 break; 2066 case IO_APOLL_OK: 2067 break; 2068 } 2069 2070 if (linked_timeout) 2071 io_queue_linked_timeout(linked_timeout); 2072 } 2073 2074 static inline void io_queue_sqe(struct io_kiocb *req) 2075 __must_hold(&req->ctx->uring_lock) 2076 { 2077 int ret; 2078 2079 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 2080 2081 /* 2082 * We async punt it if the file wasn't marked NOWAIT, or if the file 2083 * doesn't support non-blocking read/write attempts 2084 */ 2085 if (likely(!ret)) 2086 io_arm_ltimeout(req); 2087 else 2088 io_queue_async(req, ret); 2089 } 2090 2091 static void io_queue_sqe_fallback(struct io_kiocb *req) 2092 __must_hold(&req->ctx->uring_lock) 2093 { 2094 if (unlikely(req->flags & REQ_F_FAIL)) { 2095 /* 2096 * We don't submit, fail them all, for that replace hardlinks 2097 * with normal links. Extra REQ_F_LINK is tolerated. 2098 */ 2099 req->flags &= ~REQ_F_HARDLINK; 2100 req->flags |= REQ_F_LINK; 2101 io_req_defer_failed(req, req->cqe.res); 2102 } else { 2103 int ret = io_req_prep_async(req); 2104 2105 if (unlikely(ret)) { 2106 io_req_defer_failed(req, ret); 2107 return; 2108 } 2109 2110 if (unlikely(req->ctx->drain_active)) 2111 io_drain_req(req); 2112 else 2113 io_queue_iowq(req, NULL); 2114 } 2115 } 2116 2117 /* 2118 * Check SQE restrictions (opcode and flags). 2119 * 2120 * Returns 'true' if SQE is allowed, 'false' otherwise. 2121 */ 2122 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2123 struct io_kiocb *req, 2124 unsigned int sqe_flags) 2125 { 2126 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2127 return false; 2128 2129 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2130 ctx->restrictions.sqe_flags_required) 2131 return false; 2132 2133 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2134 ctx->restrictions.sqe_flags_required)) 2135 return false; 2136 2137 return true; 2138 } 2139 2140 static void io_init_req_drain(struct io_kiocb *req) 2141 { 2142 struct io_ring_ctx *ctx = req->ctx; 2143 struct io_kiocb *head = ctx->submit_state.link.head; 2144 2145 ctx->drain_active = true; 2146 if (head) { 2147 /* 2148 * If we need to drain a request in the middle of a link, drain 2149 * the head request and the next request/link after the current 2150 * link. Considering sequential execution of links, 2151 * REQ_F_IO_DRAIN will be maintained for every request of our 2152 * link. 2153 */ 2154 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2155 ctx->drain_next = true; 2156 } 2157 } 2158 2159 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2160 const struct io_uring_sqe *sqe) 2161 __must_hold(&ctx->uring_lock) 2162 { 2163 const struct io_issue_def *def; 2164 unsigned int sqe_flags; 2165 int personality; 2166 u8 opcode; 2167 2168 /* req is partially pre-initialised, see io_preinit_req() */ 2169 req->opcode = opcode = READ_ONCE(sqe->opcode); 2170 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2171 req->flags = sqe_flags = READ_ONCE(sqe->flags); 2172 req->cqe.user_data = READ_ONCE(sqe->user_data); 2173 req->file = NULL; 2174 req->rsrc_node = NULL; 2175 req->task = current; 2176 2177 if (unlikely(opcode >= IORING_OP_LAST)) { 2178 req->opcode = 0; 2179 return -EINVAL; 2180 } 2181 def = &io_issue_defs[opcode]; 2182 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2183 /* enforce forwards compatibility on users */ 2184 if (sqe_flags & ~SQE_VALID_FLAGS) 2185 return -EINVAL; 2186 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2187 if (!def->buffer_select) 2188 return -EOPNOTSUPP; 2189 req->buf_index = READ_ONCE(sqe->buf_group); 2190 } 2191 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2192 ctx->drain_disabled = true; 2193 if (sqe_flags & IOSQE_IO_DRAIN) { 2194 if (ctx->drain_disabled) 2195 return -EOPNOTSUPP; 2196 io_init_req_drain(req); 2197 } 2198 } 2199 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2200 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2201 return -EACCES; 2202 /* knock it to the slow queue path, will be drained there */ 2203 if (ctx->drain_active) 2204 req->flags |= REQ_F_FORCE_ASYNC; 2205 /* if there is no link, we're at "next" request and need to drain */ 2206 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2207 ctx->drain_next = false; 2208 ctx->drain_active = true; 2209 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2210 } 2211 } 2212 2213 if (!def->ioprio && sqe->ioprio) 2214 return -EINVAL; 2215 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2216 return -EINVAL; 2217 2218 if (def->needs_file) { 2219 struct io_submit_state *state = &ctx->submit_state; 2220 2221 req->cqe.fd = READ_ONCE(sqe->fd); 2222 2223 /* 2224 * Plug now if we have more than 2 IO left after this, and the 2225 * target is potentially a read/write to block based storage. 2226 */ 2227 if (state->need_plug && def->plug) { 2228 state->plug_started = true; 2229 state->need_plug = false; 2230 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2231 } 2232 } 2233 2234 personality = READ_ONCE(sqe->personality); 2235 if (personality) { 2236 int ret; 2237 2238 req->creds = xa_load(&ctx->personalities, personality); 2239 if (!req->creds) 2240 return -EINVAL; 2241 get_cred(req->creds); 2242 ret = security_uring_override_creds(req->creds); 2243 if (ret) { 2244 put_cred(req->creds); 2245 return ret; 2246 } 2247 req->flags |= REQ_F_CREDS; 2248 } 2249 2250 return def->prep(req, sqe); 2251 } 2252 2253 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2254 struct io_kiocb *req, int ret) 2255 { 2256 struct io_ring_ctx *ctx = req->ctx; 2257 struct io_submit_link *link = &ctx->submit_state.link; 2258 struct io_kiocb *head = link->head; 2259 2260 trace_io_uring_req_failed(sqe, req, ret); 2261 2262 /* 2263 * Avoid breaking links in the middle as it renders links with SQPOLL 2264 * unusable. Instead of failing eagerly, continue assembling the link if 2265 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2266 * should find the flag and handle the rest. 2267 */ 2268 req_fail_link_node(req, ret); 2269 if (head && !(head->flags & REQ_F_FAIL)) 2270 req_fail_link_node(head, -ECANCELED); 2271 2272 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2273 if (head) { 2274 link->last->link = req; 2275 link->head = NULL; 2276 req = head; 2277 } 2278 io_queue_sqe_fallback(req); 2279 return ret; 2280 } 2281 2282 if (head) 2283 link->last->link = req; 2284 else 2285 link->head = req; 2286 link->last = req; 2287 return 0; 2288 } 2289 2290 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2291 const struct io_uring_sqe *sqe) 2292 __must_hold(&ctx->uring_lock) 2293 { 2294 struct io_submit_link *link = &ctx->submit_state.link; 2295 int ret; 2296 2297 ret = io_init_req(ctx, req, sqe); 2298 if (unlikely(ret)) 2299 return io_submit_fail_init(sqe, req, ret); 2300 2301 /* don't need @sqe from now on */ 2302 trace_io_uring_submit_sqe(req, true); 2303 2304 /* 2305 * If we already have a head request, queue this one for async 2306 * submittal once the head completes. If we don't have a head but 2307 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2308 * submitted sync once the chain is complete. If none of those 2309 * conditions are true (normal request), then just queue it. 2310 */ 2311 if (unlikely(link->head)) { 2312 ret = io_req_prep_async(req); 2313 if (unlikely(ret)) 2314 return io_submit_fail_init(sqe, req, ret); 2315 2316 trace_io_uring_link(req, link->head); 2317 link->last->link = req; 2318 link->last = req; 2319 2320 if (req->flags & IO_REQ_LINK_FLAGS) 2321 return 0; 2322 /* last request of the link, flush it */ 2323 req = link->head; 2324 link->head = NULL; 2325 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2326 goto fallback; 2327 2328 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2329 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2330 if (req->flags & IO_REQ_LINK_FLAGS) { 2331 link->head = req; 2332 link->last = req; 2333 } else { 2334 fallback: 2335 io_queue_sqe_fallback(req); 2336 } 2337 return 0; 2338 } 2339 2340 io_queue_sqe(req); 2341 return 0; 2342 } 2343 2344 /* 2345 * Batched submission is done, ensure local IO is flushed out. 2346 */ 2347 static void io_submit_state_end(struct io_ring_ctx *ctx) 2348 { 2349 struct io_submit_state *state = &ctx->submit_state; 2350 2351 if (unlikely(state->link.head)) 2352 io_queue_sqe_fallback(state->link.head); 2353 /* flush only after queuing links as they can generate completions */ 2354 io_submit_flush_completions(ctx); 2355 if (state->plug_started) 2356 blk_finish_plug(&state->plug); 2357 } 2358 2359 /* 2360 * Start submission side cache. 2361 */ 2362 static void io_submit_state_start(struct io_submit_state *state, 2363 unsigned int max_ios) 2364 { 2365 state->plug_started = false; 2366 state->need_plug = max_ios > 2; 2367 state->submit_nr = max_ios; 2368 /* set only head, no need to init link_last in advance */ 2369 state->link.head = NULL; 2370 } 2371 2372 static void io_commit_sqring(struct io_ring_ctx *ctx) 2373 { 2374 struct io_rings *rings = ctx->rings; 2375 2376 /* 2377 * Ensure any loads from the SQEs are done at this point, 2378 * since once we write the new head, the application could 2379 * write new data to them. 2380 */ 2381 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2382 } 2383 2384 /* 2385 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2386 * that is mapped by userspace. This means that care needs to be taken to 2387 * ensure that reads are stable, as we cannot rely on userspace always 2388 * being a good citizen. If members of the sqe are validated and then later 2389 * used, it's important that those reads are done through READ_ONCE() to 2390 * prevent a re-load down the line. 2391 */ 2392 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2393 { 2394 unsigned head, mask = ctx->sq_entries - 1; 2395 unsigned sq_idx = ctx->cached_sq_head++ & mask; 2396 2397 /* 2398 * The cached sq head (or cq tail) serves two purposes: 2399 * 2400 * 1) allows us to batch the cost of updating the user visible 2401 * head updates. 2402 * 2) allows the kernel side to track the head on its own, even 2403 * though the application is the one updating it. 2404 */ 2405 head = READ_ONCE(ctx->sq_array[sq_idx]); 2406 if (likely(head < ctx->sq_entries)) { 2407 /* double index for 128-byte SQEs, twice as long */ 2408 if (ctx->flags & IORING_SETUP_SQE128) 2409 head <<= 1; 2410 *sqe = &ctx->sq_sqes[head]; 2411 return true; 2412 } 2413 2414 /* drop invalid entries */ 2415 ctx->cq_extra--; 2416 WRITE_ONCE(ctx->rings->sq_dropped, 2417 READ_ONCE(ctx->rings->sq_dropped) + 1); 2418 return false; 2419 } 2420 2421 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2422 __must_hold(&ctx->uring_lock) 2423 { 2424 unsigned int entries = io_sqring_entries(ctx); 2425 unsigned int left; 2426 int ret; 2427 2428 if (unlikely(!entries)) 2429 return 0; 2430 /* make sure SQ entry isn't read before tail */ 2431 ret = left = min3(nr, ctx->sq_entries, entries); 2432 io_get_task_refs(left); 2433 io_submit_state_start(&ctx->submit_state, left); 2434 2435 do { 2436 const struct io_uring_sqe *sqe; 2437 struct io_kiocb *req; 2438 2439 if (unlikely(!io_alloc_req(ctx, &req))) 2440 break; 2441 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2442 io_req_add_to_cache(req, ctx); 2443 break; 2444 } 2445 2446 /* 2447 * Continue submitting even for sqe failure if the 2448 * ring was setup with IORING_SETUP_SUBMIT_ALL 2449 */ 2450 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2451 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2452 left--; 2453 break; 2454 } 2455 } while (--left); 2456 2457 if (unlikely(left)) { 2458 ret -= left; 2459 /* try again if it submitted nothing and can't allocate a req */ 2460 if (!ret && io_req_cache_empty(ctx)) 2461 ret = -EAGAIN; 2462 current->io_uring->cached_refs += left; 2463 } 2464 2465 io_submit_state_end(ctx); 2466 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2467 io_commit_sqring(ctx); 2468 return ret; 2469 } 2470 2471 struct io_wait_queue { 2472 struct wait_queue_entry wq; 2473 struct io_ring_ctx *ctx; 2474 unsigned cq_tail; 2475 unsigned nr_timeouts; 2476 ktime_t timeout; 2477 }; 2478 2479 static inline bool io_has_work(struct io_ring_ctx *ctx) 2480 { 2481 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 2482 !llist_empty(&ctx->work_llist); 2483 } 2484 2485 static inline bool io_should_wake(struct io_wait_queue *iowq) 2486 { 2487 struct io_ring_ctx *ctx = iowq->ctx; 2488 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 2489 2490 /* 2491 * Wake up if we have enough events, or if a timeout occurred since we 2492 * started waiting. For timeouts, we always want to return to userspace, 2493 * regardless of event count. 2494 */ 2495 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 2496 } 2497 2498 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2499 int wake_flags, void *key) 2500 { 2501 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2502 2503 /* 2504 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2505 * the task, and the next invocation will do it. 2506 */ 2507 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2508 return autoremove_wake_function(curr, mode, wake_flags, key); 2509 return -1; 2510 } 2511 2512 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2513 { 2514 if (!llist_empty(&ctx->work_llist)) { 2515 __set_current_state(TASK_RUNNING); 2516 if (io_run_local_work(ctx) > 0) 2517 return 1; 2518 } 2519 if (io_run_task_work() > 0) 2520 return 1; 2521 if (task_sigpending(current)) 2522 return -EINTR; 2523 return 0; 2524 } 2525 2526 /* when returns >0, the caller should retry */ 2527 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2528 struct io_wait_queue *iowq) 2529 { 2530 if (unlikely(READ_ONCE(ctx->check_cq))) 2531 return 1; 2532 if (unlikely(!llist_empty(&ctx->work_llist))) 2533 return 1; 2534 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) 2535 return 1; 2536 if (unlikely(task_sigpending(current))) 2537 return -EINTR; 2538 if (unlikely(io_should_wake(iowq))) 2539 return 0; 2540 if (iowq->timeout == KTIME_MAX) 2541 schedule(); 2542 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) 2543 return -ETIME; 2544 return 0; 2545 } 2546 2547 /* 2548 * Wait until events become available, if we don't already have some. The 2549 * application must reap them itself, as they reside on the shared cq ring. 2550 */ 2551 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, 2552 const sigset_t __user *sig, size_t sigsz, 2553 struct __kernel_timespec __user *uts) 2554 { 2555 struct io_wait_queue iowq; 2556 struct io_rings *rings = ctx->rings; 2557 int ret; 2558 2559 if (!io_allowed_run_tw(ctx)) 2560 return -EEXIST; 2561 if (!llist_empty(&ctx->work_llist)) 2562 io_run_local_work(ctx); 2563 io_run_task_work(); 2564 io_cqring_overflow_flush(ctx); 2565 /* if user messes with these they will just get an early return */ 2566 if (__io_cqring_events_user(ctx) >= min_events) 2567 return 0; 2568 2569 if (sig) { 2570 #ifdef CONFIG_COMPAT 2571 if (in_compat_syscall()) 2572 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, 2573 sigsz); 2574 else 2575 #endif 2576 ret = set_user_sigmask(sig, sigsz); 2577 2578 if (ret) 2579 return ret; 2580 } 2581 2582 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2583 iowq.wq.private = current; 2584 INIT_LIST_HEAD(&iowq.wq.entry); 2585 iowq.ctx = ctx; 2586 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2587 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2588 iowq.timeout = KTIME_MAX; 2589 2590 if (uts) { 2591 struct timespec64 ts; 2592 2593 if (get_timespec64(&ts, uts)) 2594 return -EFAULT; 2595 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); 2596 } 2597 2598 trace_io_uring_cqring_wait(ctx, min_events); 2599 do { 2600 unsigned long check_cq; 2601 2602 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2603 WRITE_ONCE(ctx->cq_waiting, 1); 2604 set_current_state(TASK_INTERRUPTIBLE); 2605 } else { 2606 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2607 TASK_INTERRUPTIBLE); 2608 } 2609 2610 ret = io_cqring_wait_schedule(ctx, &iowq); 2611 __set_current_state(TASK_RUNNING); 2612 WRITE_ONCE(ctx->cq_waiting, 0); 2613 2614 if (ret < 0) 2615 break; 2616 /* 2617 * Run task_work after scheduling and before io_should_wake(). 2618 * If we got woken because of task_work being processed, run it 2619 * now rather than let the caller do another wait loop. 2620 */ 2621 io_run_task_work(); 2622 if (!llist_empty(&ctx->work_llist)) 2623 io_run_local_work(ctx); 2624 2625 check_cq = READ_ONCE(ctx->check_cq); 2626 if (unlikely(check_cq)) { 2627 /* let the caller flush overflows, retry */ 2628 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2629 io_cqring_do_overflow_flush(ctx); 2630 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2631 ret = -EBADR; 2632 break; 2633 } 2634 } 2635 2636 if (io_should_wake(&iowq)) { 2637 ret = 0; 2638 break; 2639 } 2640 cond_resched(); 2641 } while (1); 2642 2643 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2644 finish_wait(&ctx->cq_wait, &iowq.wq); 2645 restore_saved_sigmask_unless(ret == -EINTR); 2646 2647 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2648 } 2649 2650 static void io_mem_free(void *ptr) 2651 { 2652 struct page *page; 2653 2654 if (!ptr) 2655 return; 2656 2657 page = virt_to_head_page(ptr); 2658 if (put_page_testzero(page)) 2659 free_compound_page(page); 2660 } 2661 2662 static void *io_mem_alloc(size_t size) 2663 { 2664 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; 2665 2666 return (void *) __get_free_pages(gfp, get_order(size)); 2667 } 2668 2669 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2670 unsigned int cq_entries, size_t *sq_offset) 2671 { 2672 struct io_rings *rings; 2673 size_t off, sq_array_size; 2674 2675 off = struct_size(rings, cqes, cq_entries); 2676 if (off == SIZE_MAX) 2677 return SIZE_MAX; 2678 if (ctx->flags & IORING_SETUP_CQE32) { 2679 if (check_shl_overflow(off, 1, &off)) 2680 return SIZE_MAX; 2681 } 2682 2683 #ifdef CONFIG_SMP 2684 off = ALIGN(off, SMP_CACHE_BYTES); 2685 if (off == 0) 2686 return SIZE_MAX; 2687 #endif 2688 2689 if (sq_offset) 2690 *sq_offset = off; 2691 2692 sq_array_size = array_size(sizeof(u32), sq_entries); 2693 if (sq_array_size == SIZE_MAX) 2694 return SIZE_MAX; 2695 2696 if (check_add_overflow(off, sq_array_size, &off)) 2697 return SIZE_MAX; 2698 2699 return off; 2700 } 2701 2702 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, 2703 unsigned int eventfd_async) 2704 { 2705 struct io_ev_fd *ev_fd; 2706 __s32 __user *fds = arg; 2707 int fd; 2708 2709 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2710 lockdep_is_held(&ctx->uring_lock)); 2711 if (ev_fd) 2712 return -EBUSY; 2713 2714 if (copy_from_user(&fd, fds, sizeof(*fds))) 2715 return -EFAULT; 2716 2717 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); 2718 if (!ev_fd) 2719 return -ENOMEM; 2720 2721 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); 2722 if (IS_ERR(ev_fd->cq_ev_fd)) { 2723 int ret = PTR_ERR(ev_fd->cq_ev_fd); 2724 kfree(ev_fd); 2725 return ret; 2726 } 2727 2728 spin_lock(&ctx->completion_lock); 2729 ctx->evfd_last_cq_tail = ctx->cached_cq_tail; 2730 spin_unlock(&ctx->completion_lock); 2731 2732 ev_fd->eventfd_async = eventfd_async; 2733 ctx->has_evfd = true; 2734 rcu_assign_pointer(ctx->io_ev_fd, ev_fd); 2735 atomic_set(&ev_fd->refs, 1); 2736 atomic_set(&ev_fd->ops, 0); 2737 return 0; 2738 } 2739 2740 static int io_eventfd_unregister(struct io_ring_ctx *ctx) 2741 { 2742 struct io_ev_fd *ev_fd; 2743 2744 ev_fd = rcu_dereference_protected(ctx->io_ev_fd, 2745 lockdep_is_held(&ctx->uring_lock)); 2746 if (ev_fd) { 2747 ctx->has_evfd = false; 2748 rcu_assign_pointer(ctx->io_ev_fd, NULL); 2749 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) 2750 call_rcu(&ev_fd->rcu, io_eventfd_ops); 2751 return 0; 2752 } 2753 2754 return -ENXIO; 2755 } 2756 2757 static void io_req_caches_free(struct io_ring_ctx *ctx) 2758 { 2759 struct io_kiocb *req; 2760 int nr = 0; 2761 2762 mutex_lock(&ctx->uring_lock); 2763 io_flush_cached_locked_reqs(ctx, &ctx->submit_state); 2764 2765 while (!io_req_cache_empty(ctx)) { 2766 req = io_extract_req(ctx); 2767 kmem_cache_free(req_cachep, req); 2768 nr++; 2769 } 2770 if (nr) 2771 percpu_ref_put_many(&ctx->refs, nr); 2772 mutex_unlock(&ctx->uring_lock); 2773 } 2774 2775 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2776 { 2777 io_sq_thread_finish(ctx); 2778 io_rsrc_refs_drop(ctx); 2779 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2780 io_wait_rsrc_data(ctx->buf_data); 2781 io_wait_rsrc_data(ctx->file_data); 2782 2783 mutex_lock(&ctx->uring_lock); 2784 if (ctx->buf_data) 2785 __io_sqe_buffers_unregister(ctx); 2786 if (ctx->file_data) 2787 __io_sqe_files_unregister(ctx); 2788 io_cqring_overflow_kill(ctx); 2789 io_eventfd_unregister(ctx); 2790 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); 2791 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2792 mutex_unlock(&ctx->uring_lock); 2793 io_destroy_buffers(ctx); 2794 if (ctx->sq_creds) 2795 put_cred(ctx->sq_creds); 2796 if (ctx->submitter_task) 2797 put_task_struct(ctx->submitter_task); 2798 2799 /* there are no registered resources left, nobody uses it */ 2800 if (ctx->rsrc_node) 2801 io_rsrc_node_destroy(ctx->rsrc_node); 2802 if (ctx->rsrc_backup_node) 2803 io_rsrc_node_destroy(ctx->rsrc_backup_node); 2804 flush_delayed_work(&ctx->rsrc_put_work); 2805 flush_delayed_work(&ctx->fallback_work); 2806 2807 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2808 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); 2809 2810 #if defined(CONFIG_UNIX) 2811 if (ctx->ring_sock) { 2812 ctx->ring_sock->file = NULL; /* so that iput() is called */ 2813 sock_release(ctx->ring_sock); 2814 } 2815 #endif 2816 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2817 2818 if (ctx->mm_account) { 2819 mmdrop(ctx->mm_account); 2820 ctx->mm_account = NULL; 2821 } 2822 io_mem_free(ctx->rings); 2823 io_mem_free(ctx->sq_sqes); 2824 2825 percpu_ref_exit(&ctx->refs); 2826 free_uid(ctx->user); 2827 io_req_caches_free(ctx); 2828 if (ctx->hash_map) 2829 io_wq_put_hash(ctx->hash_map); 2830 kfree(ctx->cancel_table.hbs); 2831 kfree(ctx->cancel_table_locked.hbs); 2832 kfree(ctx->dummy_ubuf); 2833 kfree(ctx->io_bl); 2834 xa_destroy(&ctx->io_bl_xa); 2835 kfree(ctx); 2836 } 2837 2838 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2839 { 2840 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2841 poll_wq_task_work); 2842 2843 mutex_lock(&ctx->uring_lock); 2844 ctx->poll_activated = true; 2845 mutex_unlock(&ctx->uring_lock); 2846 2847 /* 2848 * Wake ups for some events between start of polling and activation 2849 * might've been lost due to loose synchronisation. 2850 */ 2851 wake_up_all(&ctx->poll_wq); 2852 percpu_ref_put(&ctx->refs); 2853 } 2854 2855 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2856 { 2857 spin_lock(&ctx->completion_lock); 2858 /* already activated or in progress */ 2859 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2860 goto out; 2861 if (WARN_ON_ONCE(!ctx->task_complete)) 2862 goto out; 2863 if (!ctx->submitter_task) 2864 goto out; 2865 /* 2866 * with ->submitter_task only the submitter task completes requests, we 2867 * only need to sync with it, which is done by injecting a tw 2868 */ 2869 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2870 percpu_ref_get(&ctx->refs); 2871 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2872 percpu_ref_put(&ctx->refs); 2873 out: 2874 spin_unlock(&ctx->completion_lock); 2875 } 2876 2877 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2878 { 2879 struct io_ring_ctx *ctx = file->private_data; 2880 __poll_t mask = 0; 2881 2882 if (unlikely(!ctx->poll_activated)) 2883 io_activate_pollwq(ctx); 2884 2885 poll_wait(file, &ctx->poll_wq, wait); 2886 /* 2887 * synchronizes with barrier from wq_has_sleeper call in 2888 * io_commit_cqring 2889 */ 2890 smp_rmb(); 2891 if (!io_sqring_full(ctx)) 2892 mask |= EPOLLOUT | EPOLLWRNORM; 2893 2894 /* 2895 * Don't flush cqring overflow list here, just do a simple check. 2896 * Otherwise there could possible be ABBA deadlock: 2897 * CPU0 CPU1 2898 * ---- ---- 2899 * lock(&ctx->uring_lock); 2900 * lock(&ep->mtx); 2901 * lock(&ctx->uring_lock); 2902 * lock(&ep->mtx); 2903 * 2904 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2905 * pushes them to do the flush. 2906 */ 2907 2908 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2909 mask |= EPOLLIN | EPOLLRDNORM; 2910 2911 return mask; 2912 } 2913 2914 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) 2915 { 2916 const struct cred *creds; 2917 2918 creds = xa_erase(&ctx->personalities, id); 2919 if (creds) { 2920 put_cred(creds); 2921 return 0; 2922 } 2923 2924 return -EINVAL; 2925 } 2926 2927 struct io_tctx_exit { 2928 struct callback_head task_work; 2929 struct completion completion; 2930 struct io_ring_ctx *ctx; 2931 }; 2932 2933 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2934 { 2935 struct io_uring_task *tctx = current->io_uring; 2936 struct io_tctx_exit *work; 2937 2938 work = container_of(cb, struct io_tctx_exit, task_work); 2939 /* 2940 * When @in_cancel, we're in cancellation and it's racy to remove the 2941 * node. It'll be removed by the end of cancellation, just ignore it. 2942 * tctx can be NULL if the queueing of this task_work raced with 2943 * work cancelation off the exec path. 2944 */ 2945 if (tctx && !atomic_read(&tctx->in_cancel)) 2946 io_uring_del_tctx_node((unsigned long)work->ctx); 2947 complete(&work->completion); 2948 } 2949 2950 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2951 { 2952 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2953 2954 return req->ctx == data; 2955 } 2956 2957 static __cold void io_ring_exit_work(struct work_struct *work) 2958 { 2959 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2960 unsigned long timeout = jiffies + HZ * 60 * 5; 2961 unsigned long interval = HZ / 20; 2962 struct io_tctx_exit exit; 2963 struct io_tctx_node *node; 2964 int ret; 2965 2966 /* 2967 * If we're doing polled IO and end up having requests being 2968 * submitted async (out-of-line), then completions can come in while 2969 * we're waiting for refs to drop. We need to reap these manually, 2970 * as nobody else will be looking for them. 2971 */ 2972 do { 2973 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2974 mutex_lock(&ctx->uring_lock); 2975 io_cqring_overflow_kill(ctx); 2976 mutex_unlock(&ctx->uring_lock); 2977 } 2978 2979 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2980 io_move_task_work_from_local(ctx); 2981 2982 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2983 cond_resched(); 2984 2985 if (ctx->sq_data) { 2986 struct io_sq_data *sqd = ctx->sq_data; 2987 struct task_struct *tsk; 2988 2989 io_sq_thread_park(sqd); 2990 tsk = sqd->thread; 2991 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2992 io_wq_cancel_cb(tsk->io_uring->io_wq, 2993 io_cancel_ctx_cb, ctx, true); 2994 io_sq_thread_unpark(sqd); 2995 } 2996 2997 io_req_caches_free(ctx); 2998 2999 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 3000 /* there is little hope left, don't run it too often */ 3001 interval = HZ * 60; 3002 } 3003 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval)); 3004 3005 init_completion(&exit.completion); 3006 init_task_work(&exit.task_work, io_tctx_exit_cb); 3007 exit.ctx = ctx; 3008 /* 3009 * Some may use context even when all refs and requests have been put, 3010 * and they are free to do so while still holding uring_lock or 3011 * completion_lock, see io_req_task_submit(). Apart from other work, 3012 * this lock/unlock section also waits them to finish. 3013 */ 3014 mutex_lock(&ctx->uring_lock); 3015 while (!list_empty(&ctx->tctx_list)) { 3016 WARN_ON_ONCE(time_after(jiffies, timeout)); 3017 3018 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 3019 ctx_node); 3020 /* don't spin on a single task if cancellation failed */ 3021 list_rotate_left(&ctx->tctx_list); 3022 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 3023 if (WARN_ON_ONCE(ret)) 3024 continue; 3025 3026 mutex_unlock(&ctx->uring_lock); 3027 wait_for_completion(&exit.completion); 3028 mutex_lock(&ctx->uring_lock); 3029 } 3030 mutex_unlock(&ctx->uring_lock); 3031 spin_lock(&ctx->completion_lock); 3032 spin_unlock(&ctx->completion_lock); 3033 3034 io_ring_ctx_free(ctx); 3035 } 3036 3037 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 3038 { 3039 unsigned long index; 3040 struct creds *creds; 3041 3042 mutex_lock(&ctx->uring_lock); 3043 percpu_ref_kill(&ctx->refs); 3044 xa_for_each(&ctx->personalities, index, creds) 3045 io_unregister_personality(ctx, index); 3046 if (ctx->rings) 3047 io_poll_remove_all(ctx, NULL, true); 3048 mutex_unlock(&ctx->uring_lock); 3049 3050 /* 3051 * If we failed setting up the ctx, we might not have any rings 3052 * and therefore did not submit any requests 3053 */ 3054 if (ctx->rings) 3055 io_kill_timeouts(ctx, NULL, true); 3056 3057 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 3058 /* 3059 * Use system_unbound_wq to avoid spawning tons of event kworkers 3060 * if we're exiting a ton of rings at the same time. It just adds 3061 * noise and overhead, there's no discernable change in runtime 3062 * over using system_wq. 3063 */ 3064 queue_work(system_unbound_wq, &ctx->exit_work); 3065 } 3066 3067 static int io_uring_release(struct inode *inode, struct file *file) 3068 { 3069 struct io_ring_ctx *ctx = file->private_data; 3070 3071 file->private_data = NULL; 3072 io_ring_ctx_wait_and_kill(ctx); 3073 return 0; 3074 } 3075 3076 struct io_task_cancel { 3077 struct task_struct *task; 3078 bool all; 3079 }; 3080 3081 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3082 { 3083 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3084 struct io_task_cancel *cancel = data; 3085 3086 return io_match_task_safe(req, cancel->task, cancel->all); 3087 } 3088 3089 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3090 struct task_struct *task, 3091 bool cancel_all) 3092 { 3093 struct io_defer_entry *de; 3094 LIST_HEAD(list); 3095 3096 spin_lock(&ctx->completion_lock); 3097 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3098 if (io_match_task_safe(de->req, task, cancel_all)) { 3099 list_cut_position(&list, &ctx->defer_list, &de->list); 3100 break; 3101 } 3102 } 3103 spin_unlock(&ctx->completion_lock); 3104 if (list_empty(&list)) 3105 return false; 3106 3107 while (!list_empty(&list)) { 3108 de = list_first_entry(&list, struct io_defer_entry, list); 3109 list_del_init(&de->list); 3110 io_req_task_queue_fail(de->req, -ECANCELED); 3111 kfree(de); 3112 } 3113 return true; 3114 } 3115 3116 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3117 { 3118 struct io_tctx_node *node; 3119 enum io_wq_cancel cret; 3120 bool ret = false; 3121 3122 mutex_lock(&ctx->uring_lock); 3123 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3124 struct io_uring_task *tctx = node->task->io_uring; 3125 3126 /* 3127 * io_wq will stay alive while we hold uring_lock, because it's 3128 * killed after ctx nodes, which requires to take the lock. 3129 */ 3130 if (!tctx || !tctx->io_wq) 3131 continue; 3132 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3133 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3134 } 3135 mutex_unlock(&ctx->uring_lock); 3136 3137 return ret; 3138 } 3139 3140 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3141 struct task_struct *task, 3142 bool cancel_all) 3143 { 3144 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3145 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3146 enum io_wq_cancel cret; 3147 bool ret = false; 3148 3149 /* failed during ring init, it couldn't have issued any requests */ 3150 if (!ctx->rings) 3151 return false; 3152 3153 if (!task) { 3154 ret |= io_uring_try_cancel_iowq(ctx); 3155 } else if (tctx && tctx->io_wq) { 3156 /* 3157 * Cancels requests of all rings, not only @ctx, but 3158 * it's fine as the task is in exit/exec. 3159 */ 3160 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3161 &cancel, true); 3162 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3163 } 3164 3165 /* SQPOLL thread does its own polling */ 3166 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3167 (ctx->sq_data && ctx->sq_data->thread == current)) { 3168 while (!wq_list_empty(&ctx->iopoll_list)) { 3169 io_iopoll_try_reap_events(ctx); 3170 ret = true; 3171 cond_resched(); 3172 } 3173 } 3174 3175 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3176 io_allowed_defer_tw_run(ctx)) 3177 ret |= io_run_local_work(ctx) > 0; 3178 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3179 mutex_lock(&ctx->uring_lock); 3180 ret |= io_poll_remove_all(ctx, task, cancel_all); 3181 mutex_unlock(&ctx->uring_lock); 3182 ret |= io_kill_timeouts(ctx, task, cancel_all); 3183 if (task) 3184 ret |= io_run_task_work() > 0; 3185 return ret; 3186 } 3187 3188 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3189 { 3190 if (tracked) 3191 return atomic_read(&tctx->inflight_tracked); 3192 return percpu_counter_sum(&tctx->inflight); 3193 } 3194 3195 /* 3196 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3197 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3198 */ 3199 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3200 { 3201 struct io_uring_task *tctx = current->io_uring; 3202 struct io_ring_ctx *ctx; 3203 s64 inflight; 3204 DEFINE_WAIT(wait); 3205 3206 WARN_ON_ONCE(sqd && sqd->thread != current); 3207 3208 if (!current->io_uring) 3209 return; 3210 if (tctx->io_wq) 3211 io_wq_exit_start(tctx->io_wq); 3212 3213 atomic_inc(&tctx->in_cancel); 3214 do { 3215 bool loop = false; 3216 3217 io_uring_drop_tctx_refs(current); 3218 /* read completions before cancelations */ 3219 inflight = tctx_inflight(tctx, !cancel_all); 3220 if (!inflight) 3221 break; 3222 3223 if (!sqd) { 3224 struct io_tctx_node *node; 3225 unsigned long index; 3226 3227 xa_for_each(&tctx->xa, index, node) { 3228 /* sqpoll task will cancel all its requests */ 3229 if (node->ctx->sq_data) 3230 continue; 3231 loop |= io_uring_try_cancel_requests(node->ctx, 3232 current, cancel_all); 3233 } 3234 } else { 3235 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3236 loop |= io_uring_try_cancel_requests(ctx, 3237 current, 3238 cancel_all); 3239 } 3240 3241 if (loop) { 3242 cond_resched(); 3243 continue; 3244 } 3245 3246 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3247 io_run_task_work(); 3248 io_uring_drop_tctx_refs(current); 3249 3250 /* 3251 * If we've seen completions, retry without waiting. This 3252 * avoids a race where a completion comes in before we did 3253 * prepare_to_wait(). 3254 */ 3255 if (inflight == tctx_inflight(tctx, !cancel_all)) 3256 schedule(); 3257 finish_wait(&tctx->wait, &wait); 3258 } while (1); 3259 3260 io_uring_clean_tctx(tctx); 3261 if (cancel_all) { 3262 /* 3263 * We shouldn't run task_works after cancel, so just leave 3264 * ->in_cancel set for normal exit. 3265 */ 3266 atomic_dec(&tctx->in_cancel); 3267 /* for exec all current's requests should be gone, kill tctx */ 3268 __io_uring_free(current); 3269 } 3270 } 3271 3272 void __io_uring_cancel(bool cancel_all) 3273 { 3274 io_uring_cancel_generic(cancel_all, NULL); 3275 } 3276 3277 static void *io_uring_validate_mmap_request(struct file *file, 3278 loff_t pgoff, size_t sz) 3279 { 3280 struct io_ring_ctx *ctx = file->private_data; 3281 loff_t offset = pgoff << PAGE_SHIFT; 3282 struct page *page; 3283 void *ptr; 3284 3285 switch (offset) { 3286 case IORING_OFF_SQ_RING: 3287 case IORING_OFF_CQ_RING: 3288 ptr = ctx->rings; 3289 break; 3290 case IORING_OFF_SQES: 3291 ptr = ctx->sq_sqes; 3292 break; 3293 default: 3294 return ERR_PTR(-EINVAL); 3295 } 3296 3297 page = virt_to_head_page(ptr); 3298 if (sz > page_size(page)) 3299 return ERR_PTR(-EINVAL); 3300 3301 return ptr; 3302 } 3303 3304 #ifdef CONFIG_MMU 3305 3306 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3307 { 3308 size_t sz = vma->vm_end - vma->vm_start; 3309 unsigned long pfn; 3310 void *ptr; 3311 3312 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); 3313 if (IS_ERR(ptr)) 3314 return PTR_ERR(ptr); 3315 3316 pfn = virt_to_phys(ptr) >> PAGE_SHIFT; 3317 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); 3318 } 3319 3320 #else /* !CONFIG_MMU */ 3321 3322 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) 3323 { 3324 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; 3325 } 3326 3327 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) 3328 { 3329 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; 3330 } 3331 3332 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, 3333 unsigned long addr, unsigned long len, 3334 unsigned long pgoff, unsigned long flags) 3335 { 3336 void *ptr; 3337 3338 ptr = io_uring_validate_mmap_request(file, pgoff, len); 3339 if (IS_ERR(ptr)) 3340 return PTR_ERR(ptr); 3341 3342 return (unsigned long) ptr; 3343 } 3344 3345 #endif /* !CONFIG_MMU */ 3346 3347 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3348 { 3349 if (flags & IORING_ENTER_EXT_ARG) { 3350 struct io_uring_getevents_arg arg; 3351 3352 if (argsz != sizeof(arg)) 3353 return -EINVAL; 3354 if (copy_from_user(&arg, argp, sizeof(arg))) 3355 return -EFAULT; 3356 } 3357 return 0; 3358 } 3359 3360 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, 3361 struct __kernel_timespec __user **ts, 3362 const sigset_t __user **sig) 3363 { 3364 struct io_uring_getevents_arg arg; 3365 3366 /* 3367 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3368 * is just a pointer to the sigset_t. 3369 */ 3370 if (!(flags & IORING_ENTER_EXT_ARG)) { 3371 *sig = (const sigset_t __user *) argp; 3372 *ts = NULL; 3373 return 0; 3374 } 3375 3376 /* 3377 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3378 * timespec and sigset_t pointers if good. 3379 */ 3380 if (*argsz != sizeof(arg)) 3381 return -EINVAL; 3382 if (copy_from_user(&arg, argp, sizeof(arg))) 3383 return -EFAULT; 3384 if (arg.pad) 3385 return -EINVAL; 3386 *sig = u64_to_user_ptr(arg.sigmask); 3387 *argsz = arg.sigmask_sz; 3388 *ts = u64_to_user_ptr(arg.ts); 3389 return 0; 3390 } 3391 3392 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3393 u32, min_complete, u32, flags, const void __user *, argp, 3394 size_t, argsz) 3395 { 3396 struct io_ring_ctx *ctx; 3397 struct fd f; 3398 long ret; 3399 3400 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3401 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3402 IORING_ENTER_REGISTERED_RING))) 3403 return -EINVAL; 3404 3405 /* 3406 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3407 * need only dereference our task private array to find it. 3408 */ 3409 if (flags & IORING_ENTER_REGISTERED_RING) { 3410 struct io_uring_task *tctx = current->io_uring; 3411 3412 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3413 return -EINVAL; 3414 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3415 f.file = tctx->registered_rings[fd]; 3416 f.flags = 0; 3417 if (unlikely(!f.file)) 3418 return -EBADF; 3419 } else { 3420 f = fdget(fd); 3421 if (unlikely(!f.file)) 3422 return -EBADF; 3423 ret = -EOPNOTSUPP; 3424 if (unlikely(!io_is_uring_fops(f.file))) 3425 goto out; 3426 } 3427 3428 ctx = f.file->private_data; 3429 ret = -EBADFD; 3430 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3431 goto out; 3432 3433 /* 3434 * For SQ polling, the thread will do all submissions and completions. 3435 * Just return the requested submit count, and wake the thread if 3436 * we were asked to. 3437 */ 3438 ret = 0; 3439 if (ctx->flags & IORING_SETUP_SQPOLL) { 3440 io_cqring_overflow_flush(ctx); 3441 3442 if (unlikely(ctx->sq_data->thread == NULL)) { 3443 ret = -EOWNERDEAD; 3444 goto out; 3445 } 3446 if (flags & IORING_ENTER_SQ_WAKEUP) 3447 wake_up(&ctx->sq_data->wait); 3448 if (flags & IORING_ENTER_SQ_WAIT) 3449 io_sqpoll_wait_sq(ctx); 3450 3451 ret = to_submit; 3452 } else if (to_submit) { 3453 ret = io_uring_add_tctx_node(ctx); 3454 if (unlikely(ret)) 3455 goto out; 3456 3457 mutex_lock(&ctx->uring_lock); 3458 ret = io_submit_sqes(ctx, to_submit); 3459 if (ret != to_submit) { 3460 mutex_unlock(&ctx->uring_lock); 3461 goto out; 3462 } 3463 if (flags & IORING_ENTER_GETEVENTS) { 3464 if (ctx->syscall_iopoll) 3465 goto iopoll_locked; 3466 /* 3467 * Ignore errors, we'll soon call io_cqring_wait() and 3468 * it should handle ownership problems if any. 3469 */ 3470 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3471 (void)io_run_local_work_locked(ctx); 3472 } 3473 mutex_unlock(&ctx->uring_lock); 3474 } 3475 3476 if (flags & IORING_ENTER_GETEVENTS) { 3477 int ret2; 3478 3479 if (ctx->syscall_iopoll) { 3480 /* 3481 * We disallow the app entering submit/complete with 3482 * polling, but we still need to lock the ring to 3483 * prevent racing with polled issue that got punted to 3484 * a workqueue. 3485 */ 3486 mutex_lock(&ctx->uring_lock); 3487 iopoll_locked: 3488 ret2 = io_validate_ext_arg(flags, argp, argsz); 3489 if (likely(!ret2)) { 3490 min_complete = min(min_complete, 3491 ctx->cq_entries); 3492 ret2 = io_iopoll_check(ctx, min_complete); 3493 } 3494 mutex_unlock(&ctx->uring_lock); 3495 } else { 3496 const sigset_t __user *sig; 3497 struct __kernel_timespec __user *ts; 3498 3499 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); 3500 if (likely(!ret2)) { 3501 min_complete = min(min_complete, 3502 ctx->cq_entries); 3503 ret2 = io_cqring_wait(ctx, min_complete, sig, 3504 argsz, ts); 3505 } 3506 } 3507 3508 if (!ret) { 3509 ret = ret2; 3510 3511 /* 3512 * EBADR indicates that one or more CQE were dropped. 3513 * Once the user has been informed we can clear the bit 3514 * as they are obviously ok with those drops. 3515 */ 3516 if (unlikely(ret2 == -EBADR)) 3517 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3518 &ctx->check_cq); 3519 } 3520 } 3521 out: 3522 fdput(f); 3523 return ret; 3524 } 3525 3526 static const struct file_operations io_uring_fops = { 3527 .release = io_uring_release, 3528 .mmap = io_uring_mmap, 3529 #ifndef CONFIG_MMU 3530 .get_unmapped_area = io_uring_nommu_get_unmapped_area, 3531 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3532 #endif 3533 .poll = io_uring_poll, 3534 #ifdef CONFIG_PROC_FS 3535 .show_fdinfo = io_uring_show_fdinfo, 3536 #endif 3537 }; 3538 3539 bool io_is_uring_fops(struct file *file) 3540 { 3541 return file->f_op == &io_uring_fops; 3542 } 3543 3544 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3545 struct io_uring_params *p) 3546 { 3547 struct io_rings *rings; 3548 size_t size, sq_array_offset; 3549 3550 /* make sure these are sane, as we already accounted them */ 3551 ctx->sq_entries = p->sq_entries; 3552 ctx->cq_entries = p->cq_entries; 3553 3554 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3555 if (size == SIZE_MAX) 3556 return -EOVERFLOW; 3557 3558 rings = io_mem_alloc(size); 3559 if (!rings) 3560 return -ENOMEM; 3561 3562 ctx->rings = rings; 3563 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3564 rings->sq_ring_mask = p->sq_entries - 1; 3565 rings->cq_ring_mask = p->cq_entries - 1; 3566 rings->sq_ring_entries = p->sq_entries; 3567 rings->cq_ring_entries = p->cq_entries; 3568 3569 if (p->flags & IORING_SETUP_SQE128) 3570 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3571 else 3572 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3573 if (size == SIZE_MAX) { 3574 io_mem_free(ctx->rings); 3575 ctx->rings = NULL; 3576 return -EOVERFLOW; 3577 } 3578 3579 ctx->sq_sqes = io_mem_alloc(size); 3580 if (!ctx->sq_sqes) { 3581 io_mem_free(ctx->rings); 3582 ctx->rings = NULL; 3583 return -ENOMEM; 3584 } 3585 3586 return 0; 3587 } 3588 3589 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) 3590 { 3591 int ret, fd; 3592 3593 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3594 if (fd < 0) 3595 return fd; 3596 3597 ret = __io_uring_add_tctx_node(ctx); 3598 if (ret) { 3599 put_unused_fd(fd); 3600 return ret; 3601 } 3602 fd_install(fd, file); 3603 return fd; 3604 } 3605 3606 /* 3607 * Allocate an anonymous fd, this is what constitutes the application 3608 * visible backing of an io_uring instance. The application mmaps this 3609 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, 3610 * we have to tie this fd to a socket for file garbage collection purposes. 3611 */ 3612 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3613 { 3614 struct file *file; 3615 #if defined(CONFIG_UNIX) 3616 int ret; 3617 3618 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, 3619 &ctx->ring_sock); 3620 if (ret) 3621 return ERR_PTR(ret); 3622 #endif 3623 3624 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, 3625 O_RDWR | O_CLOEXEC, NULL); 3626 #if defined(CONFIG_UNIX) 3627 if (IS_ERR(file)) { 3628 sock_release(ctx->ring_sock); 3629 ctx->ring_sock = NULL; 3630 } else { 3631 ctx->ring_sock->file = file; 3632 } 3633 #endif 3634 return file; 3635 } 3636 3637 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3638 struct io_uring_params __user *params) 3639 { 3640 struct io_ring_ctx *ctx; 3641 struct file *file; 3642 int ret; 3643 3644 if (!entries) 3645 return -EINVAL; 3646 if (entries > IORING_MAX_ENTRIES) { 3647 if (!(p->flags & IORING_SETUP_CLAMP)) 3648 return -EINVAL; 3649 entries = IORING_MAX_ENTRIES; 3650 } 3651 3652 /* 3653 * Use twice as many entries for the CQ ring. It's possible for the 3654 * application to drive a higher depth than the size of the SQ ring, 3655 * since the sqes are only used at submission time. This allows for 3656 * some flexibility in overcommitting a bit. If the application has 3657 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3658 * of CQ ring entries manually. 3659 */ 3660 p->sq_entries = roundup_pow_of_two(entries); 3661 if (p->flags & IORING_SETUP_CQSIZE) { 3662 /* 3663 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3664 * to a power-of-two, if it isn't already. We do NOT impose 3665 * any cq vs sq ring sizing. 3666 */ 3667 if (!p->cq_entries) 3668 return -EINVAL; 3669 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3670 if (!(p->flags & IORING_SETUP_CLAMP)) 3671 return -EINVAL; 3672 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3673 } 3674 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3675 if (p->cq_entries < p->sq_entries) 3676 return -EINVAL; 3677 } else { 3678 p->cq_entries = 2 * p->sq_entries; 3679 } 3680 3681 ctx = io_ring_ctx_alloc(p); 3682 if (!ctx) 3683 return -ENOMEM; 3684 3685 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3686 !(ctx->flags & IORING_SETUP_IOPOLL) && 3687 !(ctx->flags & IORING_SETUP_SQPOLL)) 3688 ctx->task_complete = true; 3689 3690 /* 3691 * lazy poll_wq activation relies on ->task_complete for synchronisation 3692 * purposes, see io_activate_pollwq() 3693 */ 3694 if (!ctx->task_complete) 3695 ctx->poll_activated = true; 3696 3697 /* 3698 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3699 * space applications don't need to do io completion events 3700 * polling again, they can rely on io_sq_thread to do polling 3701 * work, which can reduce cpu usage and uring_lock contention. 3702 */ 3703 if (ctx->flags & IORING_SETUP_IOPOLL && 3704 !(ctx->flags & IORING_SETUP_SQPOLL)) 3705 ctx->syscall_iopoll = 1; 3706 3707 ctx->compat = in_compat_syscall(); 3708 if (!capable(CAP_IPC_LOCK)) 3709 ctx->user = get_uid(current_user()); 3710 3711 /* 3712 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3713 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3714 */ 3715 ret = -EINVAL; 3716 if (ctx->flags & IORING_SETUP_SQPOLL) { 3717 /* IPI related flags don't make sense with SQPOLL */ 3718 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3719 IORING_SETUP_TASKRUN_FLAG | 3720 IORING_SETUP_DEFER_TASKRUN)) 3721 goto err; 3722 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3723 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3724 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3725 } else { 3726 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3727 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3728 goto err; 3729 ctx->notify_method = TWA_SIGNAL; 3730 } 3731 3732 /* 3733 * For DEFER_TASKRUN we require the completion task to be the same as the 3734 * submission task. This implies that there is only one submitter, so enforce 3735 * that. 3736 */ 3737 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3738 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3739 goto err; 3740 } 3741 3742 /* 3743 * This is just grabbed for accounting purposes. When a process exits, 3744 * the mm is exited and dropped before the files, hence we need to hang 3745 * on to this mm purely for the purposes of being able to unaccount 3746 * memory (locked/pinned vm). It's not used for anything else. 3747 */ 3748 mmgrab(current->mm); 3749 ctx->mm_account = current->mm; 3750 3751 ret = io_allocate_scq_urings(ctx, p); 3752 if (ret) 3753 goto err; 3754 3755 ret = io_sq_offload_create(ctx, p); 3756 if (ret) 3757 goto err; 3758 /* always set a rsrc node */ 3759 ret = io_rsrc_node_switch_start(ctx); 3760 if (ret) 3761 goto err; 3762 io_rsrc_node_switch(ctx, NULL); 3763 3764 memset(&p->sq_off, 0, sizeof(p->sq_off)); 3765 p->sq_off.head = offsetof(struct io_rings, sq.head); 3766 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3767 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3768 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3769 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3770 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3771 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3772 3773 memset(&p->cq_off, 0, sizeof(p->cq_off)); 3774 p->cq_off.head = offsetof(struct io_rings, cq.head); 3775 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3776 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3777 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3778 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3779 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3780 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3781 3782 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3783 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3784 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3785 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3786 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3787 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3788 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; 3789 3790 if (copy_to_user(params, p, sizeof(*p))) { 3791 ret = -EFAULT; 3792 goto err; 3793 } 3794 3795 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3796 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3797 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3798 3799 file = io_uring_get_file(ctx); 3800 if (IS_ERR(file)) { 3801 ret = PTR_ERR(file); 3802 goto err; 3803 } 3804 3805 /* 3806 * Install ring fd as the very last thing, so we don't risk someone 3807 * having closed it before we finish setup 3808 */ 3809 ret = io_uring_install_fd(ctx, file); 3810 if (ret < 0) { 3811 /* fput will clean it up */ 3812 fput(file); 3813 return ret; 3814 } 3815 3816 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3817 return ret; 3818 err: 3819 io_ring_ctx_wait_and_kill(ctx); 3820 return ret; 3821 } 3822 3823 /* 3824 * Sets up an aio uring context, and returns the fd. Applications asks for a 3825 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3826 * params structure passed in. 3827 */ 3828 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3829 { 3830 struct io_uring_params p; 3831 int i; 3832 3833 if (copy_from_user(&p, params, sizeof(p))) 3834 return -EFAULT; 3835 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3836 if (p.resv[i]) 3837 return -EINVAL; 3838 } 3839 3840 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3841 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3842 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3843 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3844 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3845 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3846 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN)) 3847 return -EINVAL; 3848 3849 return io_uring_create(entries, &p, params); 3850 } 3851 3852 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3853 struct io_uring_params __user *, params) 3854 { 3855 return io_uring_setup(entries, params); 3856 } 3857 3858 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, 3859 unsigned nr_args) 3860 { 3861 struct io_uring_probe *p; 3862 size_t size; 3863 int i, ret; 3864 3865 size = struct_size(p, ops, nr_args); 3866 if (size == SIZE_MAX) 3867 return -EOVERFLOW; 3868 p = kzalloc(size, GFP_KERNEL); 3869 if (!p) 3870 return -ENOMEM; 3871 3872 ret = -EFAULT; 3873 if (copy_from_user(p, arg, size)) 3874 goto out; 3875 ret = -EINVAL; 3876 if (memchr_inv(p, 0, size)) 3877 goto out; 3878 3879 p->last_op = IORING_OP_LAST - 1; 3880 if (nr_args > IORING_OP_LAST) 3881 nr_args = IORING_OP_LAST; 3882 3883 for (i = 0; i < nr_args; i++) { 3884 p->ops[i].op = i; 3885 if (!io_issue_defs[i].not_supported) 3886 p->ops[i].flags = IO_URING_OP_SUPPORTED; 3887 } 3888 p->ops_len = i; 3889 3890 ret = 0; 3891 if (copy_to_user(arg, p, size)) 3892 ret = -EFAULT; 3893 out: 3894 kfree(p); 3895 return ret; 3896 } 3897 3898 static int io_register_personality(struct io_ring_ctx *ctx) 3899 { 3900 const struct cred *creds; 3901 u32 id; 3902 int ret; 3903 3904 creds = get_current_cred(); 3905 3906 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, 3907 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); 3908 if (ret < 0) { 3909 put_cred(creds); 3910 return ret; 3911 } 3912 return id; 3913 } 3914 3915 static __cold int io_register_restrictions(struct io_ring_ctx *ctx, 3916 void __user *arg, unsigned int nr_args) 3917 { 3918 struct io_uring_restriction *res; 3919 size_t size; 3920 int i, ret; 3921 3922 /* Restrictions allowed only if rings started disabled */ 3923 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3924 return -EBADFD; 3925 3926 /* We allow only a single restrictions registration */ 3927 if (ctx->restrictions.registered) 3928 return -EBUSY; 3929 3930 if (!arg || nr_args > IORING_MAX_RESTRICTIONS) 3931 return -EINVAL; 3932 3933 size = array_size(nr_args, sizeof(*res)); 3934 if (size == SIZE_MAX) 3935 return -EOVERFLOW; 3936 3937 res = memdup_user(arg, size); 3938 if (IS_ERR(res)) 3939 return PTR_ERR(res); 3940 3941 ret = 0; 3942 3943 for (i = 0; i < nr_args; i++) { 3944 switch (res[i].opcode) { 3945 case IORING_RESTRICTION_REGISTER_OP: 3946 if (res[i].register_op >= IORING_REGISTER_LAST) { 3947 ret = -EINVAL; 3948 goto out; 3949 } 3950 3951 __set_bit(res[i].register_op, 3952 ctx->restrictions.register_op); 3953 break; 3954 case IORING_RESTRICTION_SQE_OP: 3955 if (res[i].sqe_op >= IORING_OP_LAST) { 3956 ret = -EINVAL; 3957 goto out; 3958 } 3959 3960 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); 3961 break; 3962 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: 3963 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; 3964 break; 3965 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: 3966 ctx->restrictions.sqe_flags_required = res[i].sqe_flags; 3967 break; 3968 default: 3969 ret = -EINVAL; 3970 goto out; 3971 } 3972 } 3973 3974 out: 3975 /* Reset all restrictions if an error happened */ 3976 if (ret != 0) 3977 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); 3978 else 3979 ctx->restrictions.registered = true; 3980 3981 kfree(res); 3982 return ret; 3983 } 3984 3985 static int io_register_enable_rings(struct io_ring_ctx *ctx) 3986 { 3987 if (!(ctx->flags & IORING_SETUP_R_DISABLED)) 3988 return -EBADFD; 3989 3990 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { 3991 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3992 /* 3993 * Lazy activation attempts would fail if it was polled before 3994 * submitter_task is set. 3995 */ 3996 if (wq_has_sleeper(&ctx->poll_wq)) 3997 io_activate_pollwq(ctx); 3998 } 3999 4000 if (ctx->restrictions.registered) 4001 ctx->restricted = 1; 4002 4003 ctx->flags &= ~IORING_SETUP_R_DISABLED; 4004 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) 4005 wake_up(&ctx->sq_data->wait); 4006 return 0; 4007 } 4008 4009 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, 4010 void __user *arg, unsigned len) 4011 { 4012 struct io_uring_task *tctx = current->io_uring; 4013 cpumask_var_t new_mask; 4014 int ret; 4015 4016 if (!tctx || !tctx->io_wq) 4017 return -EINVAL; 4018 4019 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4020 return -ENOMEM; 4021 4022 cpumask_clear(new_mask); 4023 if (len > cpumask_size()) 4024 len = cpumask_size(); 4025 4026 if (in_compat_syscall()) { 4027 ret = compat_get_bitmap(cpumask_bits(new_mask), 4028 (const compat_ulong_t __user *)arg, 4029 len * 8 /* CHAR_BIT */); 4030 } else { 4031 ret = copy_from_user(new_mask, arg, len); 4032 } 4033 4034 if (ret) { 4035 free_cpumask_var(new_mask); 4036 return -EFAULT; 4037 } 4038 4039 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); 4040 free_cpumask_var(new_mask); 4041 return ret; 4042 } 4043 4044 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) 4045 { 4046 struct io_uring_task *tctx = current->io_uring; 4047 4048 if (!tctx || !tctx->io_wq) 4049 return -EINVAL; 4050 4051 return io_wq_cpu_affinity(tctx->io_wq, NULL); 4052 } 4053 4054 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, 4055 void __user *arg) 4056 __must_hold(&ctx->uring_lock) 4057 { 4058 struct io_tctx_node *node; 4059 struct io_uring_task *tctx = NULL; 4060 struct io_sq_data *sqd = NULL; 4061 __u32 new_count[2]; 4062 int i, ret; 4063 4064 if (copy_from_user(new_count, arg, sizeof(new_count))) 4065 return -EFAULT; 4066 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4067 if (new_count[i] > INT_MAX) 4068 return -EINVAL; 4069 4070 if (ctx->flags & IORING_SETUP_SQPOLL) { 4071 sqd = ctx->sq_data; 4072 if (sqd) { 4073 /* 4074 * Observe the correct sqd->lock -> ctx->uring_lock 4075 * ordering. Fine to drop uring_lock here, we hold 4076 * a ref to the ctx. 4077 */ 4078 refcount_inc(&sqd->refs); 4079 mutex_unlock(&ctx->uring_lock); 4080 mutex_lock(&sqd->lock); 4081 mutex_lock(&ctx->uring_lock); 4082 if (sqd->thread) 4083 tctx = sqd->thread->io_uring; 4084 } 4085 } else { 4086 tctx = current->io_uring; 4087 } 4088 4089 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); 4090 4091 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4092 if (new_count[i]) 4093 ctx->iowq_limits[i] = new_count[i]; 4094 ctx->iowq_limits_set = true; 4095 4096 if (tctx && tctx->io_wq) { 4097 ret = io_wq_max_workers(tctx->io_wq, new_count); 4098 if (ret) 4099 goto err; 4100 } else { 4101 memset(new_count, 0, sizeof(new_count)); 4102 } 4103 4104 if (sqd) { 4105 mutex_unlock(&sqd->lock); 4106 io_put_sq_data(sqd); 4107 } 4108 4109 if (copy_to_user(arg, new_count, sizeof(new_count))) 4110 return -EFAULT; 4111 4112 /* that's it for SQPOLL, only the SQPOLL task creates requests */ 4113 if (sqd) 4114 return 0; 4115 4116 /* now propagate the restriction to all registered users */ 4117 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 4118 struct io_uring_task *tctx = node->task->io_uring; 4119 4120 if (WARN_ON_ONCE(!tctx->io_wq)) 4121 continue; 4122 4123 for (i = 0; i < ARRAY_SIZE(new_count); i++) 4124 new_count[i] = ctx->iowq_limits[i]; 4125 /* ignore errors, it always returns zero anyway */ 4126 (void)io_wq_max_workers(tctx->io_wq, new_count); 4127 } 4128 return 0; 4129 err: 4130 if (sqd) { 4131 mutex_unlock(&sqd->lock); 4132 io_put_sq_data(sqd); 4133 } 4134 return ret; 4135 } 4136 4137 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, 4138 void __user *arg, unsigned nr_args) 4139 __releases(ctx->uring_lock) 4140 __acquires(ctx->uring_lock) 4141 { 4142 int ret; 4143 4144 /* 4145 * We don't quiesce the refs for register anymore and so it can't be 4146 * dying as we're holding a file ref here. 4147 */ 4148 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) 4149 return -ENXIO; 4150 4151 if (ctx->submitter_task && ctx->submitter_task != current) 4152 return -EEXIST; 4153 4154 if (ctx->restricted) { 4155 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); 4156 if (!test_bit(opcode, ctx->restrictions.register_op)) 4157 return -EACCES; 4158 } 4159 4160 switch (opcode) { 4161 case IORING_REGISTER_BUFFERS: 4162 ret = -EFAULT; 4163 if (!arg) 4164 break; 4165 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); 4166 break; 4167 case IORING_UNREGISTER_BUFFERS: 4168 ret = -EINVAL; 4169 if (arg || nr_args) 4170 break; 4171 ret = io_sqe_buffers_unregister(ctx); 4172 break; 4173 case IORING_REGISTER_FILES: 4174 ret = -EFAULT; 4175 if (!arg) 4176 break; 4177 ret = io_sqe_files_register(ctx, arg, nr_args, NULL); 4178 break; 4179 case IORING_UNREGISTER_FILES: 4180 ret = -EINVAL; 4181 if (arg || nr_args) 4182 break; 4183 ret = io_sqe_files_unregister(ctx); 4184 break; 4185 case IORING_REGISTER_FILES_UPDATE: 4186 ret = io_register_files_update(ctx, arg, nr_args); 4187 break; 4188 case IORING_REGISTER_EVENTFD: 4189 ret = -EINVAL; 4190 if (nr_args != 1) 4191 break; 4192 ret = io_eventfd_register(ctx, arg, 0); 4193 break; 4194 case IORING_REGISTER_EVENTFD_ASYNC: 4195 ret = -EINVAL; 4196 if (nr_args != 1) 4197 break; 4198 ret = io_eventfd_register(ctx, arg, 1); 4199 break; 4200 case IORING_UNREGISTER_EVENTFD: 4201 ret = -EINVAL; 4202 if (arg || nr_args) 4203 break; 4204 ret = io_eventfd_unregister(ctx); 4205 break; 4206 case IORING_REGISTER_PROBE: 4207 ret = -EINVAL; 4208 if (!arg || nr_args > 256) 4209 break; 4210 ret = io_probe(ctx, arg, nr_args); 4211 break; 4212 case IORING_REGISTER_PERSONALITY: 4213 ret = -EINVAL; 4214 if (arg || nr_args) 4215 break; 4216 ret = io_register_personality(ctx); 4217 break; 4218 case IORING_UNREGISTER_PERSONALITY: 4219 ret = -EINVAL; 4220 if (arg) 4221 break; 4222 ret = io_unregister_personality(ctx, nr_args); 4223 break; 4224 case IORING_REGISTER_ENABLE_RINGS: 4225 ret = -EINVAL; 4226 if (arg || nr_args) 4227 break; 4228 ret = io_register_enable_rings(ctx); 4229 break; 4230 case IORING_REGISTER_RESTRICTIONS: 4231 ret = io_register_restrictions(ctx, arg, nr_args); 4232 break; 4233 case IORING_REGISTER_FILES2: 4234 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); 4235 break; 4236 case IORING_REGISTER_FILES_UPDATE2: 4237 ret = io_register_rsrc_update(ctx, arg, nr_args, 4238 IORING_RSRC_FILE); 4239 break; 4240 case IORING_REGISTER_BUFFERS2: 4241 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); 4242 break; 4243 case IORING_REGISTER_BUFFERS_UPDATE: 4244 ret = io_register_rsrc_update(ctx, arg, nr_args, 4245 IORING_RSRC_BUFFER); 4246 break; 4247 case IORING_REGISTER_IOWQ_AFF: 4248 ret = -EINVAL; 4249 if (!arg || !nr_args) 4250 break; 4251 ret = io_register_iowq_aff(ctx, arg, nr_args); 4252 break; 4253 case IORING_UNREGISTER_IOWQ_AFF: 4254 ret = -EINVAL; 4255 if (arg || nr_args) 4256 break; 4257 ret = io_unregister_iowq_aff(ctx); 4258 break; 4259 case IORING_REGISTER_IOWQ_MAX_WORKERS: 4260 ret = -EINVAL; 4261 if (!arg || nr_args != 2) 4262 break; 4263 ret = io_register_iowq_max_workers(ctx, arg); 4264 break; 4265 case IORING_REGISTER_RING_FDS: 4266 ret = io_ringfd_register(ctx, arg, nr_args); 4267 break; 4268 case IORING_UNREGISTER_RING_FDS: 4269 ret = io_ringfd_unregister(ctx, arg, nr_args); 4270 break; 4271 case IORING_REGISTER_PBUF_RING: 4272 ret = -EINVAL; 4273 if (!arg || nr_args != 1) 4274 break; 4275 ret = io_register_pbuf_ring(ctx, arg); 4276 break; 4277 case IORING_UNREGISTER_PBUF_RING: 4278 ret = -EINVAL; 4279 if (!arg || nr_args != 1) 4280 break; 4281 ret = io_unregister_pbuf_ring(ctx, arg); 4282 break; 4283 case IORING_REGISTER_SYNC_CANCEL: 4284 ret = -EINVAL; 4285 if (!arg || nr_args != 1) 4286 break; 4287 ret = io_sync_cancel(ctx, arg); 4288 break; 4289 case IORING_REGISTER_FILE_ALLOC_RANGE: 4290 ret = -EINVAL; 4291 if (!arg || nr_args) 4292 break; 4293 ret = io_register_file_alloc_range(ctx, arg); 4294 break; 4295 default: 4296 ret = -EINVAL; 4297 break; 4298 } 4299 4300 return ret; 4301 } 4302 4303 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, 4304 void __user *, arg, unsigned int, nr_args) 4305 { 4306 struct io_ring_ctx *ctx; 4307 long ret = -EBADF; 4308 struct fd f; 4309 bool use_registered_ring; 4310 4311 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); 4312 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; 4313 4314 if (opcode >= IORING_REGISTER_LAST) 4315 return -EINVAL; 4316 4317 if (use_registered_ring) { 4318 /* 4319 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 4320 * need only dereference our task private array to find it. 4321 */ 4322 struct io_uring_task *tctx = current->io_uring; 4323 4324 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 4325 return -EINVAL; 4326 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 4327 f.file = tctx->registered_rings[fd]; 4328 f.flags = 0; 4329 if (unlikely(!f.file)) 4330 return -EBADF; 4331 } else { 4332 f = fdget(fd); 4333 if (unlikely(!f.file)) 4334 return -EBADF; 4335 ret = -EOPNOTSUPP; 4336 if (!io_is_uring_fops(f.file)) 4337 goto out_fput; 4338 } 4339 4340 ctx = f.file->private_data; 4341 4342 mutex_lock(&ctx->uring_lock); 4343 ret = __io_uring_register(ctx, opcode, arg, nr_args); 4344 mutex_unlock(&ctx->uring_lock); 4345 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); 4346 out_fput: 4347 fdput(f); 4348 return ret; 4349 } 4350 4351 static int __init io_uring_init(void) 4352 { 4353 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 4354 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 4355 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 4356 } while (0) 4357 4358 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 4359 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 4360 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 4361 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 4362 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 4363 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 4364 BUILD_BUG_SQE_ELEM(1, __u8, flags); 4365 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 4366 BUILD_BUG_SQE_ELEM(4, __s32, fd); 4367 BUILD_BUG_SQE_ELEM(8, __u64, off); 4368 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 4369 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 4370 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 4371 BUILD_BUG_SQE_ELEM(16, __u64, addr); 4372 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 4373 BUILD_BUG_SQE_ELEM(24, __u32, len); 4374 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 4375 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 4376 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 4377 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 4378 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 4379 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 4380 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 4381 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 4382 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 4383 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 4384 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 4385 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 4386 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 4387 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 4388 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 4389 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 4390 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 4391 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 4392 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 4393 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 4394 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 4395 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 4396 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 4397 BUILD_BUG_SQE_ELEM(42, __u16, personality); 4398 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 4399 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 4400 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 4401 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 4402 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 4403 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 4404 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 4405 4406 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 4407 sizeof(struct io_uring_rsrc_update)); 4408 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 4409 sizeof(struct io_uring_rsrc_update2)); 4410 4411 /* ->buf_index is u16 */ 4412 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 4413 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 4414 offsetof(struct io_uring_buf_ring, tail)); 4415 4416 /* should fit into one byte */ 4417 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 4418 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 4419 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 4420 4421 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); 4422 4423 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 4424 4425 io_uring_optable_init(); 4426 4427 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4428 SLAB_ACCOUNT); 4429 return 0; 4430 }; 4431 __initcall(io_uring_init); 4432