1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 #include "zcrx.h" 101 102 #include "timeout.h" 103 #include "poll.h" 104 #include "rw.h" 105 #include "alloc_cache.h" 106 #include "eventfd.h" 107 108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 109 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 110 111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 113 114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 118 REQ_F_ASYNC_DATA) 119 120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \ 121 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 #define IO_LOCAL_TW_DEFAULT_MAX 20 128 129 struct io_defer_entry { 130 struct list_head list; 131 struct io_kiocb *req; 132 u32 seq; 133 }; 134 135 /* requests with any of those set should undergo io_disarm_next() */ 136 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 137 138 /* 139 * No waiters. It's larger than any valid value of the tw counter 140 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 141 */ 142 #define IO_CQ_WAKE_INIT (-1U) 143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 145 146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 147 struct io_uring_task *tctx, 148 bool cancel_all, 149 bool is_sqpoll_thread); 150 151 static void io_queue_sqe(struct io_kiocb *req); 152 153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 154 155 struct kmem_cache *req_cachep; 156 static struct workqueue_struct *iou_wq __ro_after_init; 157 158 static int __read_mostly sysctl_io_uring_disabled; 159 static int __read_mostly sysctl_io_uring_group = -1; 160 161 #ifdef CONFIG_SYSCTL 162 static const struct ctl_table kernel_io_uring_disabled_table[] = { 163 { 164 .procname = "io_uring_disabled", 165 .data = &sysctl_io_uring_disabled, 166 .maxlen = sizeof(sysctl_io_uring_disabled), 167 .mode = 0644, 168 .proc_handler = proc_dointvec_minmax, 169 .extra1 = SYSCTL_ZERO, 170 .extra2 = SYSCTL_TWO, 171 }, 172 { 173 .procname = "io_uring_group", 174 .data = &sysctl_io_uring_group, 175 .maxlen = sizeof(gid_t), 176 .mode = 0644, 177 .proc_handler = proc_dointvec, 178 }, 179 }; 180 #endif 181 182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 183 { 184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 185 } 186 187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 188 { 189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 190 } 191 192 static bool io_match_linked(struct io_kiocb *head) 193 { 194 struct io_kiocb *req; 195 196 io_for_each_link(req, head) { 197 if (req->flags & REQ_F_INFLIGHT) 198 return true; 199 } 200 return false; 201 } 202 203 /* 204 * As io_match_task() but protected against racing with linked timeouts. 205 * User must not hold timeout_lock. 206 */ 207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 208 bool cancel_all) 209 { 210 bool matched; 211 212 if (tctx && head->tctx != tctx) 213 return false; 214 if (cancel_all) 215 return true; 216 217 if (head->flags & REQ_F_LINK_TIMEOUT) { 218 struct io_ring_ctx *ctx = head->ctx; 219 220 /* protect against races with linked timeouts */ 221 raw_spin_lock_irq(&ctx->timeout_lock); 222 matched = io_match_linked(head); 223 raw_spin_unlock_irq(&ctx->timeout_lock); 224 } else { 225 matched = io_match_linked(head); 226 } 227 return matched; 228 } 229 230 static inline void req_fail_link_node(struct io_kiocb *req, int res) 231 { 232 req_set_fail(req); 233 io_req_set_res(req, res, 0); 234 } 235 236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 237 { 238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 239 } 240 241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 242 { 243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 244 245 complete(&ctx->ref_comp); 246 } 247 248 static __cold void io_fallback_req_func(struct work_struct *work) 249 { 250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 251 fallback_work.work); 252 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 253 struct io_kiocb *req, *tmp; 254 struct io_tw_state ts = {}; 255 256 percpu_ref_get(&ctx->refs); 257 mutex_lock(&ctx->uring_lock); 258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 259 req->io_task_work.func(req, ts); 260 io_submit_flush_completions(ctx); 261 mutex_unlock(&ctx->uring_lock); 262 percpu_ref_put(&ctx->refs); 263 } 264 265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 266 { 267 unsigned int hash_buckets; 268 int i; 269 270 do { 271 hash_buckets = 1U << bits; 272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 273 GFP_KERNEL_ACCOUNT); 274 if (table->hbs) 275 break; 276 if (bits == 1) 277 return -ENOMEM; 278 bits--; 279 } while (1); 280 281 table->hash_bits = bits; 282 for (i = 0; i < hash_buckets; i++) 283 INIT_HLIST_HEAD(&table->hbs[i].list); 284 return 0; 285 } 286 287 static void io_free_alloc_caches(struct io_ring_ctx *ctx) 288 { 289 io_alloc_cache_free(&ctx->apoll_cache, kfree); 290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free); 293 io_alloc_cache_free(&ctx->msg_cache, kfree); 294 io_futex_cache_free(ctx); 295 io_rsrc_cache_free(ctx); 296 } 297 298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 299 { 300 struct io_ring_ctx *ctx; 301 int hash_bits; 302 bool ret; 303 304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 305 if (!ctx) 306 return NULL; 307 308 xa_init(&ctx->io_bl_xa); 309 310 /* 311 * Use 5 bits less than the max cq entries, that should give us around 312 * 32 entries per hash list if totally full and uniformly spread, but 313 * don't keep too many buckets to not overconsume memory. 314 */ 315 hash_bits = ilog2(p->cq_entries) - 5; 316 hash_bits = clamp(hash_bits, 1, 8); 317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 ctx->hybrid_poll_time = LLONG_MAX; 325 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 326 init_waitqueue_head(&ctx->sqo_sq_wait); 327 INIT_LIST_HEAD(&ctx->sqd_list); 328 INIT_LIST_HEAD(&ctx->cq_overflow_list); 329 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 330 sizeof(struct async_poll), 0); 331 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct io_async_msghdr), 333 offsetof(struct io_async_msghdr, clear)); 334 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 335 sizeof(struct io_async_rw), 336 offsetof(struct io_async_rw, clear)); 337 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX, 338 sizeof(struct io_async_cmd), 339 sizeof(struct io_async_cmd)); 340 spin_lock_init(&ctx->msg_lock); 341 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 342 sizeof(struct io_kiocb), 0); 343 ret |= io_futex_cache_init(ctx); 344 ret |= io_rsrc_cache_init(ctx); 345 if (ret) 346 goto free_ref; 347 init_completion(&ctx->ref_comp); 348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 349 mutex_init(&ctx->uring_lock); 350 init_waitqueue_head(&ctx->cq_wait); 351 init_waitqueue_head(&ctx->poll_wq); 352 spin_lock_init(&ctx->completion_lock); 353 raw_spin_lock_init(&ctx->timeout_lock); 354 INIT_WQ_LIST(&ctx->iopoll_list); 355 INIT_LIST_HEAD(&ctx->defer_list); 356 INIT_LIST_HEAD(&ctx->timeout_list); 357 INIT_LIST_HEAD(&ctx->ltimeout_list); 358 init_llist_head(&ctx->work_llist); 359 INIT_LIST_HEAD(&ctx->tctx_list); 360 ctx->submit_state.free_list.next = NULL; 361 INIT_HLIST_HEAD(&ctx->waitid_list); 362 #ifdef CONFIG_FUTEX 363 INIT_HLIST_HEAD(&ctx->futex_list); 364 #endif 365 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 366 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 367 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 368 io_napi_init(ctx); 369 mutex_init(&ctx->mmap_lock); 370 371 return ctx; 372 373 free_ref: 374 percpu_ref_exit(&ctx->refs); 375 err: 376 io_free_alloc_caches(ctx); 377 kvfree(ctx->cancel_table.hbs); 378 xa_destroy(&ctx->io_bl_xa); 379 kfree(ctx); 380 return NULL; 381 } 382 383 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 384 { 385 struct io_rings *r = ctx->rings; 386 387 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 388 ctx->cq_extra--; 389 } 390 391 static bool req_need_defer(struct io_kiocb *req, u32 seq) 392 { 393 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 394 struct io_ring_ctx *ctx = req->ctx; 395 396 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 397 } 398 399 return false; 400 } 401 402 static void io_clean_op(struct io_kiocb *req) 403 { 404 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED)) 405 io_kbuf_drop_legacy(req); 406 407 if (req->flags & REQ_F_NEED_CLEANUP) { 408 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 409 410 if (def->cleanup) 411 def->cleanup(req); 412 } 413 if ((req->flags & REQ_F_POLLED) && req->apoll) { 414 kfree(req->apoll->double_poll); 415 kfree(req->apoll); 416 req->apoll = NULL; 417 } 418 if (req->flags & REQ_F_INFLIGHT) 419 atomic_dec(&req->tctx->inflight_tracked); 420 if (req->flags & REQ_F_CREDS) 421 put_cred(req->creds); 422 if (req->flags & REQ_F_ASYNC_DATA) { 423 kfree(req->async_data); 424 req->async_data = NULL; 425 } 426 req->flags &= ~IO_REQ_CLEAN_FLAGS; 427 } 428 429 static inline void io_req_track_inflight(struct io_kiocb *req) 430 { 431 if (!(req->flags & REQ_F_INFLIGHT)) { 432 req->flags |= REQ_F_INFLIGHT; 433 atomic_inc(&req->tctx->inflight_tracked); 434 } 435 } 436 437 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 438 { 439 if (WARN_ON_ONCE(!req->link)) 440 return NULL; 441 442 req->flags &= ~REQ_F_ARM_LTIMEOUT; 443 req->flags |= REQ_F_LINK_TIMEOUT; 444 445 /* linked timeouts should have two refs once prep'ed */ 446 io_req_set_refcount(req); 447 __io_req_set_refcount(req->link, 2); 448 return req->link; 449 } 450 451 static void io_prep_async_work(struct io_kiocb *req) 452 { 453 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 454 struct io_ring_ctx *ctx = req->ctx; 455 456 if (!(req->flags & REQ_F_CREDS)) { 457 req->flags |= REQ_F_CREDS; 458 req->creds = get_current_cred(); 459 } 460 461 req->work.list.next = NULL; 462 atomic_set(&req->work.flags, 0); 463 if (req->flags & REQ_F_FORCE_ASYNC) 464 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 465 466 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 467 req->flags |= io_file_get_flags(req->file); 468 469 if (req->file && (req->flags & REQ_F_ISREG)) { 470 bool should_hash = def->hash_reg_file; 471 472 /* don't serialize this request if the fs doesn't need it */ 473 if (should_hash && (req->file->f_flags & O_DIRECT) && 474 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 475 should_hash = false; 476 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 477 io_wq_hash_work(&req->work, file_inode(req->file)); 478 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 479 if (def->unbound_nonreg_file) 480 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 481 } 482 } 483 484 static void io_prep_async_link(struct io_kiocb *req) 485 { 486 struct io_kiocb *cur; 487 488 if (req->flags & REQ_F_LINK_TIMEOUT) { 489 struct io_ring_ctx *ctx = req->ctx; 490 491 raw_spin_lock_irq(&ctx->timeout_lock); 492 io_for_each_link(cur, req) 493 io_prep_async_work(cur); 494 raw_spin_unlock_irq(&ctx->timeout_lock); 495 } else { 496 io_for_each_link(cur, req) 497 io_prep_async_work(cur); 498 } 499 } 500 501 static void io_queue_iowq(struct io_kiocb *req) 502 { 503 struct io_uring_task *tctx = req->tctx; 504 505 BUG_ON(!tctx); 506 507 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 508 io_req_task_queue_fail(req, -ECANCELED); 509 return; 510 } 511 512 /* init ->work of the whole link before punting */ 513 io_prep_async_link(req); 514 515 /* 516 * Not expected to happen, but if we do have a bug where this _can_ 517 * happen, catch it here and ensure the request is marked as 518 * canceled. That will make io-wq go through the usual work cancel 519 * procedure rather than attempt to run this request (or create a new 520 * worker for it). 521 */ 522 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 523 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 524 525 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 526 io_wq_enqueue(tctx->io_wq, &req->work); 527 } 528 529 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw) 530 { 531 io_queue_iowq(req); 532 } 533 534 void io_req_queue_iowq(struct io_kiocb *req) 535 { 536 req->io_task_work.func = io_req_queue_iowq_tw; 537 io_req_task_work_add(req); 538 } 539 540 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) 541 { 542 spin_lock(&ctx->completion_lock); 543 while (!list_empty(&ctx->defer_list)) { 544 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 545 struct io_defer_entry, list); 546 547 if (req_need_defer(de->req, de->seq)) 548 break; 549 list_del_init(&de->list); 550 io_req_task_queue(de->req); 551 kfree(de); 552 } 553 spin_unlock(&ctx->completion_lock); 554 } 555 556 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 557 { 558 if (ctx->poll_activated) 559 io_poll_wq_wake(ctx); 560 if (ctx->off_timeout_used) 561 io_flush_timeouts(ctx); 562 if (ctx->drain_active) 563 io_queue_deferred(ctx); 564 if (ctx->has_evfd) 565 io_eventfd_flush_signal(ctx); 566 } 567 568 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 569 { 570 if (!ctx->lockless_cq) 571 spin_lock(&ctx->completion_lock); 572 } 573 574 static inline void io_cq_lock(struct io_ring_ctx *ctx) 575 __acquires(ctx->completion_lock) 576 { 577 spin_lock(&ctx->completion_lock); 578 } 579 580 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 581 { 582 io_commit_cqring(ctx); 583 if (!ctx->task_complete) { 584 if (!ctx->lockless_cq) 585 spin_unlock(&ctx->completion_lock); 586 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 587 if (!ctx->syscall_iopoll) 588 io_cqring_wake(ctx); 589 } 590 io_commit_cqring_flush(ctx); 591 } 592 593 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 594 __releases(ctx->completion_lock) 595 { 596 io_commit_cqring(ctx); 597 spin_unlock(&ctx->completion_lock); 598 io_cqring_wake(ctx); 599 io_commit_cqring_flush(ctx); 600 } 601 602 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 603 { 604 size_t cqe_size = sizeof(struct io_uring_cqe); 605 606 lockdep_assert_held(&ctx->uring_lock); 607 608 /* don't abort if we're dying, entries must get freed */ 609 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 610 return; 611 612 if (ctx->flags & IORING_SETUP_CQE32) 613 cqe_size <<= 1; 614 615 io_cq_lock(ctx); 616 while (!list_empty(&ctx->cq_overflow_list)) { 617 struct io_uring_cqe *cqe; 618 struct io_overflow_cqe *ocqe; 619 620 ocqe = list_first_entry(&ctx->cq_overflow_list, 621 struct io_overflow_cqe, list); 622 623 if (!dying) { 624 if (!io_get_cqe_overflow(ctx, &cqe, true)) 625 break; 626 memcpy(cqe, &ocqe->cqe, cqe_size); 627 } 628 list_del(&ocqe->list); 629 kfree(ocqe); 630 631 /* 632 * For silly syzbot cases that deliberately overflow by huge 633 * amounts, check if we need to resched and drop and 634 * reacquire the locks if so. Nothing real would ever hit this. 635 * Ideally we'd have a non-posting unlock for this, but hard 636 * to care for a non-real case. 637 */ 638 if (need_resched()) { 639 io_cq_unlock_post(ctx); 640 mutex_unlock(&ctx->uring_lock); 641 cond_resched(); 642 mutex_lock(&ctx->uring_lock); 643 io_cq_lock(ctx); 644 } 645 } 646 647 if (list_empty(&ctx->cq_overflow_list)) { 648 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 649 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 650 } 651 io_cq_unlock_post(ctx); 652 } 653 654 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 655 { 656 if (ctx->rings) 657 __io_cqring_overflow_flush(ctx, true); 658 } 659 660 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 661 { 662 mutex_lock(&ctx->uring_lock); 663 __io_cqring_overflow_flush(ctx, false); 664 mutex_unlock(&ctx->uring_lock); 665 } 666 667 /* must to be called somewhat shortly after putting a request */ 668 static inline void io_put_task(struct io_kiocb *req) 669 { 670 struct io_uring_task *tctx = req->tctx; 671 672 if (likely(tctx->task == current)) { 673 tctx->cached_refs++; 674 } else { 675 percpu_counter_sub(&tctx->inflight, 1); 676 if (unlikely(atomic_read(&tctx->in_cancel))) 677 wake_up(&tctx->wait); 678 put_task_struct(tctx->task); 679 } 680 } 681 682 void io_task_refs_refill(struct io_uring_task *tctx) 683 { 684 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 685 686 percpu_counter_add(&tctx->inflight, refill); 687 refcount_add(refill, ¤t->usage); 688 tctx->cached_refs += refill; 689 } 690 691 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 692 { 693 struct io_uring_task *tctx = task->io_uring; 694 unsigned int refs = tctx->cached_refs; 695 696 if (refs) { 697 tctx->cached_refs = 0; 698 percpu_counter_sub(&tctx->inflight, refs); 699 put_task_struct_many(task, refs); 700 } 701 } 702 703 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 704 s32 res, u32 cflags, u64 extra1, u64 extra2) 705 { 706 struct io_overflow_cqe *ocqe; 707 size_t ocq_size = sizeof(struct io_overflow_cqe); 708 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 709 710 lockdep_assert_held(&ctx->completion_lock); 711 712 if (is_cqe32) 713 ocq_size += sizeof(struct io_uring_cqe); 714 715 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 716 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 717 if (!ocqe) { 718 /* 719 * If we're in ring overflow flush mode, or in task cancel mode, 720 * or cannot allocate an overflow entry, then we need to drop it 721 * on the floor. 722 */ 723 io_account_cq_overflow(ctx); 724 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 725 return false; 726 } 727 if (list_empty(&ctx->cq_overflow_list)) { 728 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 729 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 730 731 } 732 ocqe->cqe.user_data = user_data; 733 ocqe->cqe.res = res; 734 ocqe->cqe.flags = cflags; 735 if (is_cqe32) { 736 ocqe->cqe.big_cqe[0] = extra1; 737 ocqe->cqe.big_cqe[1] = extra2; 738 } 739 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 740 return true; 741 } 742 743 static void io_req_cqe_overflow(struct io_kiocb *req) 744 { 745 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 746 req->cqe.res, req->cqe.flags, 747 req->big_cqe.extra1, req->big_cqe.extra2); 748 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 749 } 750 751 /* 752 * writes to the cq entry need to come after reading head; the 753 * control dependency is enough as we're using WRITE_ONCE to 754 * fill the cq entry 755 */ 756 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 757 { 758 struct io_rings *rings = ctx->rings; 759 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 760 unsigned int free, queued, len; 761 762 /* 763 * Posting into the CQ when there are pending overflowed CQEs may break 764 * ordering guarantees, which will affect links, F_MORE users and more. 765 * Force overflow the completion. 766 */ 767 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 768 return false; 769 770 /* userspace may cheat modifying the tail, be safe and do min */ 771 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 772 free = ctx->cq_entries - queued; 773 /* we need a contiguous range, limit based on the current array offset */ 774 len = min(free, ctx->cq_entries - off); 775 if (!len) 776 return false; 777 778 if (ctx->flags & IORING_SETUP_CQE32) { 779 off <<= 1; 780 len <<= 1; 781 } 782 783 ctx->cqe_cached = &rings->cqes[off]; 784 ctx->cqe_sentinel = ctx->cqe_cached + len; 785 return true; 786 } 787 788 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 789 u32 cflags) 790 { 791 struct io_uring_cqe *cqe; 792 793 ctx->cq_extra++; 794 795 /* 796 * If we can't get a cq entry, userspace overflowed the 797 * submission (by quite a lot). Increment the overflow count in 798 * the ring. 799 */ 800 if (likely(io_get_cqe(ctx, &cqe))) { 801 WRITE_ONCE(cqe->user_data, user_data); 802 WRITE_ONCE(cqe->res, res); 803 WRITE_ONCE(cqe->flags, cflags); 804 805 if (ctx->flags & IORING_SETUP_CQE32) { 806 WRITE_ONCE(cqe->big_cqe[0], 0); 807 WRITE_ONCE(cqe->big_cqe[1], 0); 808 } 809 810 trace_io_uring_complete(ctx, NULL, cqe); 811 return true; 812 } 813 return false; 814 } 815 816 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 817 { 818 bool filled; 819 820 io_cq_lock(ctx); 821 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 822 if (!filled) 823 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 824 io_cq_unlock_post(ctx); 825 return filled; 826 } 827 828 /* 829 * Must be called from inline task_work so we now a flush will happen later, 830 * and obviously with ctx->uring_lock held (tw always has that). 831 */ 832 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 833 { 834 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 835 spin_lock(&ctx->completion_lock); 836 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 837 spin_unlock(&ctx->completion_lock); 838 } 839 ctx->submit_state.cq_flush = true; 840 } 841 842 /* 843 * A helper for multishot requests posting additional CQEs. 844 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 845 */ 846 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 847 { 848 struct io_ring_ctx *ctx = req->ctx; 849 bool posted; 850 851 /* 852 * If multishot has already posted deferred completions, ensure that 853 * those are flushed first before posting this one. If not, CQEs 854 * could get reordered. 855 */ 856 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) 857 __io_submit_flush_completions(ctx); 858 859 lockdep_assert(!io_wq_current_is_worker()); 860 lockdep_assert_held(&ctx->uring_lock); 861 862 if (!ctx->lockless_cq) { 863 spin_lock(&ctx->completion_lock); 864 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 865 spin_unlock(&ctx->completion_lock); 866 } else { 867 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 868 } 869 870 ctx->submit_state.cq_flush = true; 871 return posted; 872 } 873 874 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 875 { 876 struct io_ring_ctx *ctx = req->ctx; 877 bool completed = true; 878 879 /* 880 * All execution paths but io-wq use the deferred completions by 881 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 882 */ 883 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 884 return; 885 886 /* 887 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 888 * the submitter task context, IOPOLL protects with uring_lock. 889 */ 890 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) { 891 defer_complete: 892 req->io_task_work.func = io_req_task_complete; 893 io_req_task_work_add(req); 894 return; 895 } 896 897 io_cq_lock(ctx); 898 if (!(req->flags & REQ_F_CQE_SKIP)) 899 completed = io_fill_cqe_req(ctx, req); 900 io_cq_unlock_post(ctx); 901 902 if (!completed) 903 goto defer_complete; 904 905 /* 906 * We don't free the request here because we know it's called from 907 * io-wq only, which holds a reference, so it cannot be the last put. 908 */ 909 req_ref_put(req); 910 } 911 912 void io_req_defer_failed(struct io_kiocb *req, s32 res) 913 __must_hold(&ctx->uring_lock) 914 { 915 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 916 917 lockdep_assert_held(&req->ctx->uring_lock); 918 919 req_set_fail(req); 920 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 921 if (def->fail) 922 def->fail(req); 923 io_req_complete_defer(req); 924 } 925 926 /* 927 * Don't initialise the fields below on every allocation, but do that in 928 * advance and keep them valid across allocations. 929 */ 930 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 931 { 932 req->ctx = ctx; 933 req->buf_node = NULL; 934 req->file_node = NULL; 935 req->link = NULL; 936 req->async_data = NULL; 937 /* not necessary, but safer to zero */ 938 memset(&req->cqe, 0, sizeof(req->cqe)); 939 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 940 } 941 942 /* 943 * A request might get retired back into the request caches even before opcode 944 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 945 * Because of that, io_alloc_req() should be called only under ->uring_lock 946 * and with extra caution to not get a request that is still worked on. 947 */ 948 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 949 __must_hold(&ctx->uring_lock) 950 { 951 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 952 void *reqs[IO_REQ_ALLOC_BATCH]; 953 int ret; 954 955 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 956 957 /* 958 * Bulk alloc is all-or-nothing. If we fail to get a batch, 959 * retry single alloc to be on the safe side. 960 */ 961 if (unlikely(ret <= 0)) { 962 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 963 if (!reqs[0]) 964 return false; 965 ret = 1; 966 } 967 968 percpu_ref_get_many(&ctx->refs, ret); 969 while (ret--) { 970 struct io_kiocb *req = reqs[ret]; 971 972 io_preinit_req(req, ctx); 973 io_req_add_to_cache(req, ctx); 974 } 975 return true; 976 } 977 978 __cold void io_free_req(struct io_kiocb *req) 979 { 980 /* refs were already put, restore them for io_req_task_complete() */ 981 req->flags &= ~REQ_F_REFCOUNT; 982 /* we only want to free it, don't post CQEs */ 983 req->flags |= REQ_F_CQE_SKIP; 984 req->io_task_work.func = io_req_task_complete; 985 io_req_task_work_add(req); 986 } 987 988 static void __io_req_find_next_prep(struct io_kiocb *req) 989 { 990 struct io_ring_ctx *ctx = req->ctx; 991 992 spin_lock(&ctx->completion_lock); 993 io_disarm_next(req); 994 spin_unlock(&ctx->completion_lock); 995 } 996 997 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 998 { 999 struct io_kiocb *nxt; 1000 1001 /* 1002 * If LINK is set, we have dependent requests in this chain. If we 1003 * didn't fail this request, queue the first one up, moving any other 1004 * dependencies to the next request. In case of failure, fail the rest 1005 * of the chain. 1006 */ 1007 if (unlikely(req->flags & IO_DISARM_MASK)) 1008 __io_req_find_next_prep(req); 1009 nxt = req->link; 1010 req->link = NULL; 1011 return nxt; 1012 } 1013 1014 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw) 1015 { 1016 if (!ctx) 1017 return; 1018 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1019 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1020 1021 io_submit_flush_completions(ctx); 1022 mutex_unlock(&ctx->uring_lock); 1023 percpu_ref_put(&ctx->refs); 1024 } 1025 1026 /* 1027 * Run queued task_work, returning the number of entries processed in *count. 1028 * If more entries than max_entries are available, stop processing once this 1029 * is reached and return the rest of the list. 1030 */ 1031 struct llist_node *io_handle_tw_list(struct llist_node *node, 1032 unsigned int *count, 1033 unsigned int max_entries) 1034 { 1035 struct io_ring_ctx *ctx = NULL; 1036 struct io_tw_state ts = { }; 1037 1038 do { 1039 struct llist_node *next = node->next; 1040 struct io_kiocb *req = container_of(node, struct io_kiocb, 1041 io_task_work.node); 1042 1043 if (req->ctx != ctx) { 1044 ctx_flush_and_put(ctx, ts); 1045 ctx = req->ctx; 1046 mutex_lock(&ctx->uring_lock); 1047 percpu_ref_get(&ctx->refs); 1048 } 1049 INDIRECT_CALL_2(req->io_task_work.func, 1050 io_poll_task_func, io_req_rw_complete, 1051 req, ts); 1052 node = next; 1053 (*count)++; 1054 if (unlikely(need_resched())) { 1055 ctx_flush_and_put(ctx, ts); 1056 ctx = NULL; 1057 cond_resched(); 1058 } 1059 } while (node && *count < max_entries); 1060 1061 ctx_flush_and_put(ctx, ts); 1062 return node; 1063 } 1064 1065 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1066 { 1067 struct io_ring_ctx *last_ctx = NULL; 1068 struct io_kiocb *req; 1069 1070 while (node) { 1071 req = container_of(node, struct io_kiocb, io_task_work.node); 1072 node = node->next; 1073 if (last_ctx != req->ctx) { 1074 if (last_ctx) { 1075 if (sync) 1076 flush_delayed_work(&last_ctx->fallback_work); 1077 percpu_ref_put(&last_ctx->refs); 1078 } 1079 last_ctx = req->ctx; 1080 percpu_ref_get(&last_ctx->refs); 1081 } 1082 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist)) 1083 schedule_delayed_work(&last_ctx->fallback_work, 1); 1084 } 1085 1086 if (last_ctx) { 1087 if (sync) 1088 flush_delayed_work(&last_ctx->fallback_work); 1089 percpu_ref_put(&last_ctx->refs); 1090 } 1091 } 1092 1093 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1094 { 1095 struct llist_node *node = llist_del_all(&tctx->task_list); 1096 1097 __io_fallback_tw(node, sync); 1098 } 1099 1100 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1101 unsigned int max_entries, 1102 unsigned int *count) 1103 { 1104 struct llist_node *node; 1105 1106 if (unlikely(current->flags & PF_EXITING)) { 1107 io_fallback_tw(tctx, true); 1108 return NULL; 1109 } 1110 1111 node = llist_del_all(&tctx->task_list); 1112 if (node) { 1113 node = llist_reverse_order(node); 1114 node = io_handle_tw_list(node, count, max_entries); 1115 } 1116 1117 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1118 if (unlikely(atomic_read(&tctx->in_cancel))) 1119 io_uring_drop_tctx_refs(current); 1120 1121 trace_io_uring_task_work_run(tctx, *count); 1122 return node; 1123 } 1124 1125 void tctx_task_work(struct callback_head *cb) 1126 { 1127 struct io_uring_task *tctx; 1128 struct llist_node *ret; 1129 unsigned int count = 0; 1130 1131 tctx = container_of(cb, struct io_uring_task, task_work); 1132 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1133 /* can't happen */ 1134 WARN_ON_ONCE(ret); 1135 } 1136 1137 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) 1138 { 1139 struct io_ring_ctx *ctx = req->ctx; 1140 unsigned nr_wait, nr_tw, nr_tw_prev; 1141 struct llist_node *head; 1142 1143 /* See comment above IO_CQ_WAKE_INIT */ 1144 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1145 1146 /* 1147 * We don't know how many reuqests is there in the link and whether 1148 * they can even be queued lazily, fall back to non-lazy. 1149 */ 1150 if (req->flags & IO_REQ_LINK_FLAGS) 1151 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1152 1153 guard(rcu)(); 1154 1155 head = READ_ONCE(ctx->work_llist.first); 1156 do { 1157 nr_tw_prev = 0; 1158 if (head) { 1159 struct io_kiocb *first_req = container_of(head, 1160 struct io_kiocb, 1161 io_task_work.node); 1162 /* 1163 * Might be executed at any moment, rely on 1164 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1165 */ 1166 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1167 } 1168 1169 /* 1170 * Theoretically, it can overflow, but that's fine as one of 1171 * previous adds should've tried to wake the task. 1172 */ 1173 nr_tw = nr_tw_prev + 1; 1174 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1175 nr_tw = IO_CQ_WAKE_FORCE; 1176 1177 req->nr_tw = nr_tw; 1178 req->io_task_work.node.next = head; 1179 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1180 &req->io_task_work.node)); 1181 1182 /* 1183 * cmpxchg implies a full barrier, which pairs with the barrier 1184 * in set_current_state() on the io_cqring_wait() side. It's used 1185 * to ensure that either we see updated ->cq_wait_nr, or waiters 1186 * going to sleep will observe the work added to the list, which 1187 * is similar to the wait/wawke task state sync. 1188 */ 1189 1190 if (!head) { 1191 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1192 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1193 if (ctx->has_evfd) 1194 io_eventfd_signal(ctx); 1195 } 1196 1197 nr_wait = atomic_read(&ctx->cq_wait_nr); 1198 /* not enough or no one is waiting */ 1199 if (nr_tw < nr_wait) 1200 return; 1201 /* the previous add has already woken it up */ 1202 if (nr_tw_prev >= nr_wait) 1203 return; 1204 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1205 } 1206 1207 static void io_req_normal_work_add(struct io_kiocb *req) 1208 { 1209 struct io_uring_task *tctx = req->tctx; 1210 struct io_ring_ctx *ctx = req->ctx; 1211 1212 /* task_work already pending, we're done */ 1213 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1214 return; 1215 1216 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1217 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1218 1219 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1220 if (ctx->flags & IORING_SETUP_SQPOLL) { 1221 __set_notify_signal(tctx->task); 1222 return; 1223 } 1224 1225 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1226 return; 1227 1228 io_fallback_tw(tctx, false); 1229 } 1230 1231 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1232 { 1233 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1234 io_req_local_work_add(req, flags); 1235 else 1236 io_req_normal_work_add(req); 1237 } 1238 1239 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags) 1240 { 1241 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1242 return; 1243 __io_req_task_work_add(req, flags); 1244 } 1245 1246 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1247 { 1248 struct llist_node *node = llist_del_all(&ctx->work_llist); 1249 1250 __io_fallback_tw(node, false); 1251 node = llist_del_all(&ctx->retry_llist); 1252 __io_fallback_tw(node, false); 1253 } 1254 1255 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1256 int min_events) 1257 { 1258 if (!io_local_work_pending(ctx)) 1259 return false; 1260 if (events < min_events) 1261 return true; 1262 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1263 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1264 return false; 1265 } 1266 1267 static int __io_run_local_work_loop(struct llist_node **node, 1268 io_tw_token_t tw, 1269 int events) 1270 { 1271 int ret = 0; 1272 1273 while (*node) { 1274 struct llist_node *next = (*node)->next; 1275 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1276 io_task_work.node); 1277 INDIRECT_CALL_2(req->io_task_work.func, 1278 io_poll_task_func, io_req_rw_complete, 1279 req, tw); 1280 *node = next; 1281 if (++ret >= events) 1282 break; 1283 } 1284 1285 return ret; 1286 } 1287 1288 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw, 1289 int min_events, int max_events) 1290 { 1291 struct llist_node *node; 1292 unsigned int loops = 0; 1293 int ret = 0; 1294 1295 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1296 return -EEXIST; 1297 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1298 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1299 again: 1300 min_events -= ret; 1301 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events); 1302 if (ctx->retry_llist.first) 1303 goto retry_done; 1304 1305 /* 1306 * llists are in reverse order, flip it back the right way before 1307 * running the pending items. 1308 */ 1309 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1310 ret += __io_run_local_work_loop(&node, tw, max_events - ret); 1311 ctx->retry_llist.first = node; 1312 loops++; 1313 1314 if (io_run_local_work_continue(ctx, ret, min_events)) 1315 goto again; 1316 retry_done: 1317 io_submit_flush_completions(ctx); 1318 if (io_run_local_work_continue(ctx, ret, min_events)) 1319 goto again; 1320 1321 trace_io_uring_local_work_run(ctx, ret, loops); 1322 return ret; 1323 } 1324 1325 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1326 int min_events) 1327 { 1328 struct io_tw_state ts = {}; 1329 1330 if (!io_local_work_pending(ctx)) 1331 return 0; 1332 return __io_run_local_work(ctx, ts, min_events, 1333 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1334 } 1335 1336 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1337 int max_events) 1338 { 1339 struct io_tw_state ts = {}; 1340 int ret; 1341 1342 mutex_lock(&ctx->uring_lock); 1343 ret = __io_run_local_work(ctx, ts, min_events, max_events); 1344 mutex_unlock(&ctx->uring_lock); 1345 return ret; 1346 } 1347 1348 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw) 1349 { 1350 io_tw_lock(req->ctx, tw); 1351 io_req_defer_failed(req, req->cqe.res); 1352 } 1353 1354 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw) 1355 { 1356 io_tw_lock(req->ctx, tw); 1357 if (unlikely(io_should_terminate_tw())) 1358 io_req_defer_failed(req, -EFAULT); 1359 else if (req->flags & REQ_F_FORCE_ASYNC) 1360 io_queue_iowq(req); 1361 else 1362 io_queue_sqe(req); 1363 } 1364 1365 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1366 { 1367 io_req_set_res(req, ret, 0); 1368 req->io_task_work.func = io_req_task_cancel; 1369 io_req_task_work_add(req); 1370 } 1371 1372 void io_req_task_queue(struct io_kiocb *req) 1373 { 1374 req->io_task_work.func = io_req_task_submit; 1375 io_req_task_work_add(req); 1376 } 1377 1378 void io_queue_next(struct io_kiocb *req) 1379 { 1380 struct io_kiocb *nxt = io_req_find_next(req); 1381 1382 if (nxt) 1383 io_req_task_queue(nxt); 1384 } 1385 1386 static void io_free_batch_list(struct io_ring_ctx *ctx, 1387 struct io_wq_work_node *node) 1388 __must_hold(&ctx->uring_lock) 1389 { 1390 do { 1391 struct io_kiocb *req = container_of(node, struct io_kiocb, 1392 comp_list); 1393 1394 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1395 if (req->flags & REQ_F_REISSUE) { 1396 node = req->comp_list.next; 1397 req->flags &= ~REQ_F_REISSUE; 1398 io_queue_iowq(req); 1399 continue; 1400 } 1401 if (req->flags & REQ_F_REFCOUNT) { 1402 node = req->comp_list.next; 1403 if (!req_ref_put_and_test(req)) 1404 continue; 1405 } 1406 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1407 struct async_poll *apoll = req->apoll; 1408 1409 if (apoll->double_poll) 1410 kfree(apoll->double_poll); 1411 io_cache_free(&ctx->apoll_cache, apoll); 1412 req->flags &= ~REQ_F_POLLED; 1413 } 1414 if (req->flags & IO_REQ_LINK_FLAGS) 1415 io_queue_next(req); 1416 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1417 io_clean_op(req); 1418 } 1419 io_put_file(req); 1420 io_req_put_rsrc_nodes(req); 1421 io_put_task(req); 1422 1423 node = req->comp_list.next; 1424 io_req_add_to_cache(req, ctx); 1425 } while (node); 1426 } 1427 1428 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1429 __must_hold(&ctx->uring_lock) 1430 { 1431 struct io_submit_state *state = &ctx->submit_state; 1432 struct io_wq_work_node *node; 1433 1434 __io_cq_lock(ctx); 1435 __wq_list_for_each(node, &state->compl_reqs) { 1436 struct io_kiocb *req = container_of(node, struct io_kiocb, 1437 comp_list); 1438 1439 /* 1440 * Requests marked with REQUEUE should not post a CQE, they 1441 * will go through the io-wq retry machinery and post one 1442 * later. 1443 */ 1444 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && 1445 unlikely(!io_fill_cqe_req(ctx, req))) { 1446 if (ctx->lockless_cq) { 1447 spin_lock(&ctx->completion_lock); 1448 io_req_cqe_overflow(req); 1449 spin_unlock(&ctx->completion_lock); 1450 } else { 1451 io_req_cqe_overflow(req); 1452 } 1453 } 1454 } 1455 __io_cq_unlock_post(ctx); 1456 1457 if (!wq_list_empty(&state->compl_reqs)) { 1458 io_free_batch_list(ctx, state->compl_reqs.first); 1459 INIT_WQ_LIST(&state->compl_reqs); 1460 } 1461 ctx->submit_state.cq_flush = false; 1462 } 1463 1464 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1465 { 1466 /* See comment at the top of this file */ 1467 smp_rmb(); 1468 return __io_cqring_events(ctx); 1469 } 1470 1471 /* 1472 * We can't just wait for polled events to come to us, we have to actively 1473 * find and complete them. 1474 */ 1475 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1476 { 1477 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1478 return; 1479 1480 mutex_lock(&ctx->uring_lock); 1481 while (!wq_list_empty(&ctx->iopoll_list)) { 1482 /* let it sleep and repeat later if can't complete a request */ 1483 if (io_do_iopoll(ctx, true) == 0) 1484 break; 1485 /* 1486 * Ensure we allow local-to-the-cpu processing to take place, 1487 * in this case we need to ensure that we reap all events. 1488 * Also let task_work, etc. to progress by releasing the mutex 1489 */ 1490 if (need_resched()) { 1491 mutex_unlock(&ctx->uring_lock); 1492 cond_resched(); 1493 mutex_lock(&ctx->uring_lock); 1494 } 1495 } 1496 mutex_unlock(&ctx->uring_lock); 1497 } 1498 1499 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events) 1500 { 1501 unsigned int nr_events = 0; 1502 unsigned long check_cq; 1503 1504 min_events = min(min_events, ctx->cq_entries); 1505 1506 lockdep_assert_held(&ctx->uring_lock); 1507 1508 if (!io_allowed_run_tw(ctx)) 1509 return -EEXIST; 1510 1511 check_cq = READ_ONCE(ctx->check_cq); 1512 if (unlikely(check_cq)) { 1513 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1514 __io_cqring_overflow_flush(ctx, false); 1515 /* 1516 * Similarly do not spin if we have not informed the user of any 1517 * dropped CQE. 1518 */ 1519 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1520 return -EBADR; 1521 } 1522 /* 1523 * Don't enter poll loop if we already have events pending. 1524 * If we do, we can potentially be spinning for commands that 1525 * already triggered a CQE (eg in error). 1526 */ 1527 if (io_cqring_events(ctx)) 1528 return 0; 1529 1530 do { 1531 int ret = 0; 1532 1533 /* 1534 * If a submit got punted to a workqueue, we can have the 1535 * application entering polling for a command before it gets 1536 * issued. That app will hold the uring_lock for the duration 1537 * of the poll right here, so we need to take a breather every 1538 * now and then to ensure that the issue has a chance to add 1539 * the poll to the issued list. Otherwise we can spin here 1540 * forever, while the workqueue is stuck trying to acquire the 1541 * very same mutex. 1542 */ 1543 if (wq_list_empty(&ctx->iopoll_list) || 1544 io_task_work_pending(ctx)) { 1545 u32 tail = ctx->cached_cq_tail; 1546 1547 (void) io_run_local_work_locked(ctx, min_events); 1548 1549 if (task_work_pending(current) || 1550 wq_list_empty(&ctx->iopoll_list)) { 1551 mutex_unlock(&ctx->uring_lock); 1552 io_run_task_work(); 1553 mutex_lock(&ctx->uring_lock); 1554 } 1555 /* some requests don't go through iopoll_list */ 1556 if (tail != ctx->cached_cq_tail || 1557 wq_list_empty(&ctx->iopoll_list)) 1558 break; 1559 } 1560 ret = io_do_iopoll(ctx, !min_events); 1561 if (unlikely(ret < 0)) 1562 return ret; 1563 1564 if (task_sigpending(current)) 1565 return -EINTR; 1566 if (need_resched()) 1567 break; 1568 1569 nr_events += ret; 1570 } while (nr_events < min_events); 1571 1572 return 0; 1573 } 1574 1575 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw) 1576 { 1577 io_req_complete_defer(req); 1578 } 1579 1580 /* 1581 * After the iocb has been issued, it's safe to be found on the poll list. 1582 * Adding the kiocb to the list AFTER submission ensures that we don't 1583 * find it from a io_do_iopoll() thread before the issuer is done 1584 * accessing the kiocb cookie. 1585 */ 1586 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1587 { 1588 struct io_ring_ctx *ctx = req->ctx; 1589 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1590 1591 /* workqueue context doesn't hold uring_lock, grab it now */ 1592 if (unlikely(needs_lock)) 1593 mutex_lock(&ctx->uring_lock); 1594 1595 /* 1596 * Track whether we have multiple files in our lists. This will impact 1597 * how we do polling eventually, not spinning if we're on potentially 1598 * different devices. 1599 */ 1600 if (wq_list_empty(&ctx->iopoll_list)) { 1601 ctx->poll_multi_queue = false; 1602 } else if (!ctx->poll_multi_queue) { 1603 struct io_kiocb *list_req; 1604 1605 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1606 comp_list); 1607 if (list_req->file != req->file) 1608 ctx->poll_multi_queue = true; 1609 } 1610 1611 /* 1612 * For fast devices, IO may have already completed. If it has, add 1613 * it to the front so we find it first. 1614 */ 1615 if (READ_ONCE(req->iopoll_completed)) 1616 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1617 else 1618 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1619 1620 if (unlikely(needs_lock)) { 1621 /* 1622 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1623 * in sq thread task context or in io worker task context. If 1624 * current task context is sq thread, we don't need to check 1625 * whether should wake up sq thread. 1626 */ 1627 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1628 wq_has_sleeper(&ctx->sq_data->wait)) 1629 wake_up(&ctx->sq_data->wait); 1630 1631 mutex_unlock(&ctx->uring_lock); 1632 } 1633 } 1634 1635 io_req_flags_t io_file_get_flags(struct file *file) 1636 { 1637 io_req_flags_t res = 0; 1638 1639 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1); 1640 1641 if (S_ISREG(file_inode(file)->i_mode)) 1642 res |= REQ_F_ISREG; 1643 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1644 res |= REQ_F_SUPPORT_NOWAIT; 1645 return res; 1646 } 1647 1648 static u32 io_get_sequence(struct io_kiocb *req) 1649 { 1650 u32 seq = req->ctx->cached_sq_head; 1651 struct io_kiocb *cur; 1652 1653 /* need original cached_sq_head, but it was increased for each req */ 1654 io_for_each_link(cur, req) 1655 seq--; 1656 return seq; 1657 } 1658 1659 static __cold void io_drain_req(struct io_kiocb *req) 1660 __must_hold(&ctx->uring_lock) 1661 { 1662 struct io_ring_ctx *ctx = req->ctx; 1663 struct io_defer_entry *de; 1664 int ret; 1665 u32 seq = io_get_sequence(req); 1666 1667 /* Still need defer if there is pending req in defer list. */ 1668 spin_lock(&ctx->completion_lock); 1669 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1670 spin_unlock(&ctx->completion_lock); 1671 queue: 1672 ctx->drain_active = false; 1673 io_req_task_queue(req); 1674 return; 1675 } 1676 spin_unlock(&ctx->completion_lock); 1677 1678 io_prep_async_link(req); 1679 de = kmalloc(sizeof(*de), GFP_KERNEL); 1680 if (!de) { 1681 ret = -ENOMEM; 1682 io_req_defer_failed(req, ret); 1683 return; 1684 } 1685 1686 spin_lock(&ctx->completion_lock); 1687 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1688 spin_unlock(&ctx->completion_lock); 1689 kfree(de); 1690 goto queue; 1691 } 1692 1693 trace_io_uring_defer(req); 1694 de->req = req; 1695 de->seq = seq; 1696 list_add_tail(&de->list, &ctx->defer_list); 1697 spin_unlock(&ctx->completion_lock); 1698 } 1699 1700 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1701 unsigned int issue_flags) 1702 { 1703 if (req->file || !def->needs_file) 1704 return true; 1705 1706 if (req->flags & REQ_F_FIXED_FILE) 1707 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1708 else 1709 req->file = io_file_get_normal(req, req->cqe.fd); 1710 1711 return !!req->file; 1712 } 1713 1714 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT) 1715 1716 static inline int __io_issue_sqe(struct io_kiocb *req, 1717 unsigned int issue_flags, 1718 const struct io_issue_def *def) 1719 { 1720 const struct cred *creds = NULL; 1721 struct io_kiocb *link = NULL; 1722 int ret; 1723 1724 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) { 1725 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred()) 1726 creds = override_creds(req->creds); 1727 if (req->flags & REQ_F_ARM_LTIMEOUT) 1728 link = __io_prep_linked_timeout(req); 1729 } 1730 1731 if (!def->audit_skip) 1732 audit_uring_entry(req->opcode); 1733 1734 ret = def->issue(req, issue_flags); 1735 1736 if (!def->audit_skip) 1737 audit_uring_exit(!ret, ret); 1738 1739 if (unlikely(creds || link)) { 1740 if (creds) 1741 revert_creds(creds); 1742 if (link) 1743 io_queue_linked_timeout(link); 1744 } 1745 1746 return ret; 1747 } 1748 1749 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1750 { 1751 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1752 int ret; 1753 1754 if (unlikely(!io_assign_file(req, def, issue_flags))) 1755 return -EBADF; 1756 1757 ret = __io_issue_sqe(req, issue_flags, def); 1758 1759 if (ret == IOU_OK) { 1760 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1761 io_req_complete_defer(req); 1762 else 1763 io_req_complete_post(req, issue_flags); 1764 1765 return 0; 1766 } 1767 1768 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1769 ret = 0; 1770 1771 /* If the op doesn't have a file, we're not polling for it */ 1772 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1773 io_iopoll_req_issued(req, issue_flags); 1774 } 1775 return ret; 1776 } 1777 1778 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw) 1779 { 1780 const unsigned int issue_flags = IO_URING_F_NONBLOCK | 1781 IO_URING_F_MULTISHOT | 1782 IO_URING_F_COMPLETE_DEFER; 1783 int ret; 1784 1785 io_tw_lock(req->ctx, tw); 1786 1787 WARN_ON_ONCE(!req->file); 1788 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL)) 1789 return -EFAULT; 1790 1791 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]); 1792 1793 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE); 1794 return ret; 1795 } 1796 1797 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1798 { 1799 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1800 struct io_kiocb *nxt = NULL; 1801 1802 if (req_ref_put_and_test_atomic(req)) { 1803 if (req->flags & IO_REQ_LINK_FLAGS) 1804 nxt = io_req_find_next(req); 1805 io_free_req(req); 1806 } 1807 return nxt ? &nxt->work : NULL; 1808 } 1809 1810 void io_wq_submit_work(struct io_wq_work *work) 1811 { 1812 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1813 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1814 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1815 bool needs_poll = false; 1816 int ret = 0, err = -ECANCELED; 1817 1818 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1819 if (!(req->flags & REQ_F_REFCOUNT)) 1820 __io_req_set_refcount(req, 2); 1821 else 1822 req_ref_get(req); 1823 1824 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1825 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1826 fail: 1827 io_req_task_queue_fail(req, err); 1828 return; 1829 } 1830 if (!io_assign_file(req, def, issue_flags)) { 1831 err = -EBADF; 1832 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1833 goto fail; 1834 } 1835 1836 /* 1837 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1838 * submitter task context. Final request completions are handed to the 1839 * right context, however this is not the case of auxiliary CQEs, 1840 * which is the main mean of operation for multishot requests. 1841 * Don't allow any multishot execution from io-wq. It's more restrictive 1842 * than necessary and also cleaner. 1843 */ 1844 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) { 1845 err = -EBADFD; 1846 if (!io_file_can_poll(req)) 1847 goto fail; 1848 if (req->file->f_flags & O_NONBLOCK || 1849 req->file->f_mode & FMODE_NOWAIT) { 1850 err = -ECANCELED; 1851 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1852 goto fail; 1853 return; 1854 } else { 1855 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT); 1856 } 1857 } 1858 1859 if (req->flags & REQ_F_FORCE_ASYNC) { 1860 bool opcode_poll = def->pollin || def->pollout; 1861 1862 if (opcode_poll && io_file_can_poll(req)) { 1863 needs_poll = true; 1864 issue_flags |= IO_URING_F_NONBLOCK; 1865 } 1866 } 1867 1868 do { 1869 ret = io_issue_sqe(req, issue_flags); 1870 if (ret != -EAGAIN) 1871 break; 1872 1873 /* 1874 * If REQ_F_NOWAIT is set, then don't wait or retry with 1875 * poll. -EAGAIN is final for that case. 1876 */ 1877 if (req->flags & REQ_F_NOWAIT) 1878 break; 1879 1880 /* 1881 * We can get EAGAIN for iopolled IO even though we're 1882 * forcing a sync submission from here, since we can't 1883 * wait for request slots on the block side. 1884 */ 1885 if (!needs_poll) { 1886 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1887 break; 1888 if (io_wq_worker_stopped()) 1889 break; 1890 cond_resched(); 1891 continue; 1892 } 1893 1894 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1895 return; 1896 /* aborted or ready, in either case retry blocking */ 1897 needs_poll = false; 1898 issue_flags &= ~IO_URING_F_NONBLOCK; 1899 } while (1); 1900 1901 /* avoid locking problems by failing it from a clean context */ 1902 if (ret) 1903 io_req_task_queue_fail(req, ret); 1904 } 1905 1906 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1907 unsigned int issue_flags) 1908 { 1909 struct io_ring_ctx *ctx = req->ctx; 1910 struct io_rsrc_node *node; 1911 struct file *file = NULL; 1912 1913 io_ring_submit_lock(ctx, issue_flags); 1914 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1915 if (node) { 1916 io_req_assign_rsrc_node(&req->file_node, node); 1917 req->flags |= io_slot_flags(node); 1918 file = io_slot_file(node); 1919 } 1920 io_ring_submit_unlock(ctx, issue_flags); 1921 return file; 1922 } 1923 1924 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1925 { 1926 struct file *file = fget(fd); 1927 1928 trace_io_uring_file_get(req, fd); 1929 1930 /* we don't allow fixed io_uring files */ 1931 if (file && io_is_uring_fops(file)) 1932 io_req_track_inflight(req); 1933 return file; 1934 } 1935 1936 static void io_queue_async(struct io_kiocb *req, int ret) 1937 __must_hold(&req->ctx->uring_lock) 1938 { 1939 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1940 io_req_defer_failed(req, ret); 1941 return; 1942 } 1943 1944 switch (io_arm_poll_handler(req, 0)) { 1945 case IO_APOLL_READY: 1946 io_kbuf_recycle(req, 0); 1947 io_req_task_queue(req); 1948 break; 1949 case IO_APOLL_ABORTED: 1950 io_kbuf_recycle(req, 0); 1951 io_queue_iowq(req); 1952 break; 1953 case IO_APOLL_OK: 1954 break; 1955 } 1956 } 1957 1958 static inline void io_queue_sqe(struct io_kiocb *req) 1959 __must_hold(&req->ctx->uring_lock) 1960 { 1961 int ret; 1962 1963 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1964 1965 /* 1966 * We async punt it if the file wasn't marked NOWAIT, or if the file 1967 * doesn't support non-blocking read/write attempts 1968 */ 1969 if (unlikely(ret)) 1970 io_queue_async(req, ret); 1971 } 1972 1973 static void io_queue_sqe_fallback(struct io_kiocb *req) 1974 __must_hold(&req->ctx->uring_lock) 1975 { 1976 if (unlikely(req->flags & REQ_F_FAIL)) { 1977 /* 1978 * We don't submit, fail them all, for that replace hardlinks 1979 * with normal links. Extra REQ_F_LINK is tolerated. 1980 */ 1981 req->flags &= ~REQ_F_HARDLINK; 1982 req->flags |= REQ_F_LINK; 1983 io_req_defer_failed(req, req->cqe.res); 1984 } else { 1985 if (unlikely(req->ctx->drain_active)) 1986 io_drain_req(req); 1987 else 1988 io_queue_iowq(req); 1989 } 1990 } 1991 1992 /* 1993 * Check SQE restrictions (opcode and flags). 1994 * 1995 * Returns 'true' if SQE is allowed, 'false' otherwise. 1996 */ 1997 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1998 struct io_kiocb *req, 1999 unsigned int sqe_flags) 2000 { 2001 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2002 return false; 2003 2004 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2005 ctx->restrictions.sqe_flags_required) 2006 return false; 2007 2008 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2009 ctx->restrictions.sqe_flags_required)) 2010 return false; 2011 2012 return true; 2013 } 2014 2015 static void io_init_drain(struct io_ring_ctx *ctx) 2016 { 2017 struct io_kiocb *head = ctx->submit_state.link.head; 2018 2019 ctx->drain_active = true; 2020 if (head) { 2021 /* 2022 * If we need to drain a request in the middle of a link, drain 2023 * the head request and the next request/link after the current 2024 * link. Considering sequential execution of links, 2025 * REQ_F_IO_DRAIN will be maintained for every request of our 2026 * link. 2027 */ 2028 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2029 ctx->drain_next = true; 2030 } 2031 } 2032 2033 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2034 { 2035 /* ensure per-opcode data is cleared if we fail before prep */ 2036 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2037 return err; 2038 } 2039 2040 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2041 const struct io_uring_sqe *sqe) 2042 __must_hold(&ctx->uring_lock) 2043 { 2044 const struct io_issue_def *def; 2045 unsigned int sqe_flags; 2046 int personality; 2047 u8 opcode; 2048 2049 /* req is partially pre-initialised, see io_preinit_req() */ 2050 req->opcode = opcode = READ_ONCE(sqe->opcode); 2051 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2052 sqe_flags = READ_ONCE(sqe->flags); 2053 req->flags = (__force io_req_flags_t) sqe_flags; 2054 req->cqe.user_data = READ_ONCE(sqe->user_data); 2055 req->file = NULL; 2056 req->tctx = current->io_uring; 2057 req->cancel_seq_set = false; 2058 2059 if (unlikely(opcode >= IORING_OP_LAST)) { 2060 req->opcode = 0; 2061 return io_init_fail_req(req, -EINVAL); 2062 } 2063 opcode = array_index_nospec(opcode, IORING_OP_LAST); 2064 2065 def = &io_issue_defs[opcode]; 2066 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2067 /* enforce forwards compatibility on users */ 2068 if (sqe_flags & ~SQE_VALID_FLAGS) 2069 return io_init_fail_req(req, -EINVAL); 2070 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2071 if (!def->buffer_select) 2072 return io_init_fail_req(req, -EOPNOTSUPP); 2073 req->buf_index = READ_ONCE(sqe->buf_group); 2074 } 2075 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2076 ctx->drain_disabled = true; 2077 if (sqe_flags & IOSQE_IO_DRAIN) { 2078 if (ctx->drain_disabled) 2079 return io_init_fail_req(req, -EOPNOTSUPP); 2080 io_init_drain(ctx); 2081 } 2082 } 2083 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2084 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2085 return io_init_fail_req(req, -EACCES); 2086 /* knock it to the slow queue path, will be drained there */ 2087 if (ctx->drain_active) 2088 req->flags |= REQ_F_FORCE_ASYNC; 2089 /* if there is no link, we're at "next" request and need to drain */ 2090 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2091 ctx->drain_next = false; 2092 ctx->drain_active = true; 2093 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2094 } 2095 } 2096 2097 if (!def->ioprio && sqe->ioprio) 2098 return io_init_fail_req(req, -EINVAL); 2099 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2100 return io_init_fail_req(req, -EINVAL); 2101 2102 if (def->needs_file) { 2103 struct io_submit_state *state = &ctx->submit_state; 2104 2105 req->cqe.fd = READ_ONCE(sqe->fd); 2106 2107 /* 2108 * Plug now if we have more than 2 IO left after this, and the 2109 * target is potentially a read/write to block based storage. 2110 */ 2111 if (state->need_plug && def->plug) { 2112 state->plug_started = true; 2113 state->need_plug = false; 2114 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2115 } 2116 } 2117 2118 personality = READ_ONCE(sqe->personality); 2119 if (personality) { 2120 int ret; 2121 2122 req->creds = xa_load(&ctx->personalities, personality); 2123 if (!req->creds) 2124 return io_init_fail_req(req, -EINVAL); 2125 get_cred(req->creds); 2126 ret = security_uring_override_creds(req->creds); 2127 if (ret) { 2128 put_cred(req->creds); 2129 return io_init_fail_req(req, ret); 2130 } 2131 req->flags |= REQ_F_CREDS; 2132 } 2133 2134 return def->prep(req, sqe); 2135 } 2136 2137 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2138 struct io_kiocb *req, int ret) 2139 { 2140 struct io_ring_ctx *ctx = req->ctx; 2141 struct io_submit_link *link = &ctx->submit_state.link; 2142 struct io_kiocb *head = link->head; 2143 2144 trace_io_uring_req_failed(sqe, req, ret); 2145 2146 /* 2147 * Avoid breaking links in the middle as it renders links with SQPOLL 2148 * unusable. Instead of failing eagerly, continue assembling the link if 2149 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2150 * should find the flag and handle the rest. 2151 */ 2152 req_fail_link_node(req, ret); 2153 if (head && !(head->flags & REQ_F_FAIL)) 2154 req_fail_link_node(head, -ECANCELED); 2155 2156 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2157 if (head) { 2158 link->last->link = req; 2159 link->head = NULL; 2160 req = head; 2161 } 2162 io_queue_sqe_fallback(req); 2163 return ret; 2164 } 2165 2166 if (head) 2167 link->last->link = req; 2168 else 2169 link->head = req; 2170 link->last = req; 2171 return 0; 2172 } 2173 2174 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2175 const struct io_uring_sqe *sqe) 2176 __must_hold(&ctx->uring_lock) 2177 { 2178 struct io_submit_link *link = &ctx->submit_state.link; 2179 int ret; 2180 2181 ret = io_init_req(ctx, req, sqe); 2182 if (unlikely(ret)) 2183 return io_submit_fail_init(sqe, req, ret); 2184 2185 trace_io_uring_submit_req(req); 2186 2187 /* 2188 * If we already have a head request, queue this one for async 2189 * submittal once the head completes. If we don't have a head but 2190 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2191 * submitted sync once the chain is complete. If none of those 2192 * conditions are true (normal request), then just queue it. 2193 */ 2194 if (unlikely(link->head)) { 2195 trace_io_uring_link(req, link->last); 2196 link->last->link = req; 2197 link->last = req; 2198 2199 if (req->flags & IO_REQ_LINK_FLAGS) 2200 return 0; 2201 /* last request of the link, flush it */ 2202 req = link->head; 2203 link->head = NULL; 2204 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2205 goto fallback; 2206 2207 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2208 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2209 if (req->flags & IO_REQ_LINK_FLAGS) { 2210 link->head = req; 2211 link->last = req; 2212 } else { 2213 fallback: 2214 io_queue_sqe_fallback(req); 2215 } 2216 return 0; 2217 } 2218 2219 io_queue_sqe(req); 2220 return 0; 2221 } 2222 2223 /* 2224 * Batched submission is done, ensure local IO is flushed out. 2225 */ 2226 static void io_submit_state_end(struct io_ring_ctx *ctx) 2227 { 2228 struct io_submit_state *state = &ctx->submit_state; 2229 2230 if (unlikely(state->link.head)) 2231 io_queue_sqe_fallback(state->link.head); 2232 /* flush only after queuing links as they can generate completions */ 2233 io_submit_flush_completions(ctx); 2234 if (state->plug_started) 2235 blk_finish_plug(&state->plug); 2236 } 2237 2238 /* 2239 * Start submission side cache. 2240 */ 2241 static void io_submit_state_start(struct io_submit_state *state, 2242 unsigned int max_ios) 2243 { 2244 state->plug_started = false; 2245 state->need_plug = max_ios > 2; 2246 state->submit_nr = max_ios; 2247 /* set only head, no need to init link_last in advance */ 2248 state->link.head = NULL; 2249 } 2250 2251 static void io_commit_sqring(struct io_ring_ctx *ctx) 2252 { 2253 struct io_rings *rings = ctx->rings; 2254 2255 /* 2256 * Ensure any loads from the SQEs are done at this point, 2257 * since once we write the new head, the application could 2258 * write new data to them. 2259 */ 2260 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2261 } 2262 2263 /* 2264 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2265 * that is mapped by userspace. This means that care needs to be taken to 2266 * ensure that reads are stable, as we cannot rely on userspace always 2267 * being a good citizen. If members of the sqe are validated and then later 2268 * used, it's important that those reads are done through READ_ONCE() to 2269 * prevent a re-load down the line. 2270 */ 2271 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2272 { 2273 unsigned mask = ctx->sq_entries - 1; 2274 unsigned head = ctx->cached_sq_head++ & mask; 2275 2276 if (static_branch_unlikely(&io_key_has_sqarray) && 2277 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2278 head = READ_ONCE(ctx->sq_array[head]); 2279 if (unlikely(head >= ctx->sq_entries)) { 2280 /* drop invalid entries */ 2281 spin_lock(&ctx->completion_lock); 2282 ctx->cq_extra--; 2283 spin_unlock(&ctx->completion_lock); 2284 WRITE_ONCE(ctx->rings->sq_dropped, 2285 READ_ONCE(ctx->rings->sq_dropped) + 1); 2286 return false; 2287 } 2288 head = array_index_nospec(head, ctx->sq_entries); 2289 } 2290 2291 /* 2292 * The cached sq head (or cq tail) serves two purposes: 2293 * 2294 * 1) allows us to batch the cost of updating the user visible 2295 * head updates. 2296 * 2) allows the kernel side to track the head on its own, even 2297 * though the application is the one updating it. 2298 */ 2299 2300 /* double index for 128-byte SQEs, twice as long */ 2301 if (ctx->flags & IORING_SETUP_SQE128) 2302 head <<= 1; 2303 *sqe = &ctx->sq_sqes[head]; 2304 return true; 2305 } 2306 2307 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2308 __must_hold(&ctx->uring_lock) 2309 { 2310 unsigned int entries = io_sqring_entries(ctx); 2311 unsigned int left; 2312 int ret; 2313 2314 if (unlikely(!entries)) 2315 return 0; 2316 /* make sure SQ entry isn't read before tail */ 2317 ret = left = min(nr, entries); 2318 io_get_task_refs(left); 2319 io_submit_state_start(&ctx->submit_state, left); 2320 2321 do { 2322 const struct io_uring_sqe *sqe; 2323 struct io_kiocb *req; 2324 2325 if (unlikely(!io_alloc_req(ctx, &req))) 2326 break; 2327 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2328 io_req_add_to_cache(req, ctx); 2329 break; 2330 } 2331 2332 /* 2333 * Continue submitting even for sqe failure if the 2334 * ring was setup with IORING_SETUP_SUBMIT_ALL 2335 */ 2336 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2337 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2338 left--; 2339 break; 2340 } 2341 } while (--left); 2342 2343 if (unlikely(left)) { 2344 ret -= left; 2345 /* try again if it submitted nothing and can't allocate a req */ 2346 if (!ret && io_req_cache_empty(ctx)) 2347 ret = -EAGAIN; 2348 current->io_uring->cached_refs += left; 2349 } 2350 2351 io_submit_state_end(ctx); 2352 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2353 io_commit_sqring(ctx); 2354 return ret; 2355 } 2356 2357 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2358 int wake_flags, void *key) 2359 { 2360 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2361 2362 /* 2363 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2364 * the task, and the next invocation will do it. 2365 */ 2366 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2367 return autoremove_wake_function(curr, mode, wake_flags, key); 2368 return -1; 2369 } 2370 2371 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2372 { 2373 if (io_local_work_pending(ctx)) { 2374 __set_current_state(TASK_RUNNING); 2375 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2376 return 0; 2377 } 2378 if (io_run_task_work() > 0) 2379 return 0; 2380 if (task_sigpending(current)) 2381 return -EINTR; 2382 return 0; 2383 } 2384 2385 static bool current_pending_io(void) 2386 { 2387 struct io_uring_task *tctx = current->io_uring; 2388 2389 if (!tctx) 2390 return false; 2391 return percpu_counter_read_positive(&tctx->inflight); 2392 } 2393 2394 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2395 { 2396 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2397 2398 WRITE_ONCE(iowq->hit_timeout, 1); 2399 iowq->min_timeout = 0; 2400 wake_up_process(iowq->wq.private); 2401 return HRTIMER_NORESTART; 2402 } 2403 2404 /* 2405 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2406 * wake up. If not, and we have a normal timeout, switch to that and keep 2407 * sleeping. 2408 */ 2409 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2410 { 2411 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2412 struct io_ring_ctx *ctx = iowq->ctx; 2413 2414 /* no general timeout, or shorter (or equal), we are done */ 2415 if (iowq->timeout == KTIME_MAX || 2416 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2417 goto out_wake; 2418 /* work we may need to run, wake function will see if we need to wake */ 2419 if (io_has_work(ctx)) 2420 goto out_wake; 2421 /* got events since we started waiting, min timeout is done */ 2422 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2423 goto out_wake; 2424 /* if we have any events and min timeout expired, we're done */ 2425 if (io_cqring_events(ctx)) 2426 goto out_wake; 2427 2428 /* 2429 * If using deferred task_work running and application is waiting on 2430 * more than one request, ensure we reset it now where we are switching 2431 * to normal sleeps. Any request completion post min_wait should wake 2432 * the task and return. 2433 */ 2434 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2435 atomic_set(&ctx->cq_wait_nr, 1); 2436 smp_mb(); 2437 if (!llist_empty(&ctx->work_llist)) 2438 goto out_wake; 2439 } 2440 2441 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup); 2442 hrtimer_set_expires(timer, iowq->timeout); 2443 return HRTIMER_RESTART; 2444 out_wake: 2445 return io_cqring_timer_wakeup(timer); 2446 } 2447 2448 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2449 clockid_t clock_id, ktime_t start_time) 2450 { 2451 ktime_t timeout; 2452 2453 if (iowq->min_timeout) { 2454 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2455 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2456 HRTIMER_MODE_ABS); 2457 } else { 2458 timeout = iowq->timeout; 2459 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2460 HRTIMER_MODE_ABS); 2461 } 2462 2463 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2464 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2465 2466 if (!READ_ONCE(iowq->hit_timeout)) 2467 schedule(); 2468 2469 hrtimer_cancel(&iowq->t); 2470 destroy_hrtimer_on_stack(&iowq->t); 2471 __set_current_state(TASK_RUNNING); 2472 2473 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2474 } 2475 2476 struct ext_arg { 2477 size_t argsz; 2478 struct timespec64 ts; 2479 const sigset_t __user *sig; 2480 ktime_t min_time; 2481 bool ts_set; 2482 bool iowait; 2483 }; 2484 2485 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2486 struct io_wait_queue *iowq, 2487 struct ext_arg *ext_arg, 2488 ktime_t start_time) 2489 { 2490 int ret = 0; 2491 2492 /* 2493 * Mark us as being in io_wait if we have pending requests, so cpufreq 2494 * can take into account that the task is waiting for IO - turns out 2495 * to be important for low QD IO. 2496 */ 2497 if (ext_arg->iowait && current_pending_io()) 2498 current->in_iowait = 1; 2499 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2500 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2501 else 2502 schedule(); 2503 current->in_iowait = 0; 2504 return ret; 2505 } 2506 2507 /* If this returns > 0, the caller should retry */ 2508 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2509 struct io_wait_queue *iowq, 2510 struct ext_arg *ext_arg, 2511 ktime_t start_time) 2512 { 2513 if (unlikely(READ_ONCE(ctx->check_cq))) 2514 return 1; 2515 if (unlikely(io_local_work_pending(ctx))) 2516 return 1; 2517 if (unlikely(task_work_pending(current))) 2518 return 1; 2519 if (unlikely(task_sigpending(current))) 2520 return -EINTR; 2521 if (unlikely(io_should_wake(iowq))) 2522 return 0; 2523 2524 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time); 2525 } 2526 2527 /* 2528 * Wait until events become available, if we don't already have some. The 2529 * application must reap them itself, as they reside on the shared cq ring. 2530 */ 2531 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2532 struct ext_arg *ext_arg) 2533 { 2534 struct io_wait_queue iowq; 2535 struct io_rings *rings = ctx->rings; 2536 ktime_t start_time; 2537 int ret; 2538 2539 min_events = min_t(int, min_events, ctx->cq_entries); 2540 2541 if (!io_allowed_run_tw(ctx)) 2542 return -EEXIST; 2543 if (io_local_work_pending(ctx)) 2544 io_run_local_work(ctx, min_events, 2545 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2546 io_run_task_work(); 2547 2548 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2549 io_cqring_do_overflow_flush(ctx); 2550 if (__io_cqring_events_user(ctx) >= min_events) 2551 return 0; 2552 2553 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2554 iowq.wq.private = current; 2555 INIT_LIST_HEAD(&iowq.wq.entry); 2556 iowq.ctx = ctx; 2557 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2558 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2559 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2560 iowq.hit_timeout = 0; 2561 iowq.min_timeout = ext_arg->min_time; 2562 iowq.timeout = KTIME_MAX; 2563 start_time = io_get_time(ctx); 2564 2565 if (ext_arg->ts_set) { 2566 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2567 if (!(flags & IORING_ENTER_ABS_TIMER)) 2568 iowq.timeout = ktime_add(iowq.timeout, start_time); 2569 } 2570 2571 if (ext_arg->sig) { 2572 #ifdef CONFIG_COMPAT 2573 if (in_compat_syscall()) 2574 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2575 ext_arg->argsz); 2576 else 2577 #endif 2578 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2579 2580 if (ret) 2581 return ret; 2582 } 2583 2584 io_napi_busy_loop(ctx, &iowq); 2585 2586 trace_io_uring_cqring_wait(ctx, min_events); 2587 do { 2588 unsigned long check_cq; 2589 int nr_wait; 2590 2591 /* if min timeout has been hit, don't reset wait count */ 2592 if (!iowq.hit_timeout) 2593 nr_wait = (int) iowq.cq_tail - 2594 READ_ONCE(ctx->rings->cq.tail); 2595 else 2596 nr_wait = 1; 2597 2598 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2599 atomic_set(&ctx->cq_wait_nr, nr_wait); 2600 set_current_state(TASK_INTERRUPTIBLE); 2601 } else { 2602 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2603 TASK_INTERRUPTIBLE); 2604 } 2605 2606 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time); 2607 __set_current_state(TASK_RUNNING); 2608 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2609 2610 /* 2611 * Run task_work after scheduling and before io_should_wake(). 2612 * If we got woken because of task_work being processed, run it 2613 * now rather than let the caller do another wait loop. 2614 */ 2615 if (io_local_work_pending(ctx)) 2616 io_run_local_work(ctx, nr_wait, nr_wait); 2617 io_run_task_work(); 2618 2619 /* 2620 * Non-local task_work will be run on exit to userspace, but 2621 * if we're using DEFER_TASKRUN, then we could have waited 2622 * with a timeout for a number of requests. If the timeout 2623 * hits, we could have some requests ready to process. Ensure 2624 * this break is _after_ we have run task_work, to avoid 2625 * deferring running potentially pending requests until the 2626 * next time we wait for events. 2627 */ 2628 if (ret < 0) 2629 break; 2630 2631 check_cq = READ_ONCE(ctx->check_cq); 2632 if (unlikely(check_cq)) { 2633 /* let the caller flush overflows, retry */ 2634 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2635 io_cqring_do_overflow_flush(ctx); 2636 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2637 ret = -EBADR; 2638 break; 2639 } 2640 } 2641 2642 if (io_should_wake(&iowq)) { 2643 ret = 0; 2644 break; 2645 } 2646 cond_resched(); 2647 } while (1); 2648 2649 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2650 finish_wait(&ctx->cq_wait, &iowq.wq); 2651 restore_saved_sigmask_unless(ret == -EINTR); 2652 2653 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2654 } 2655 2656 static void io_rings_free(struct io_ring_ctx *ctx) 2657 { 2658 io_free_region(ctx, &ctx->sq_region); 2659 io_free_region(ctx, &ctx->ring_region); 2660 ctx->rings = NULL; 2661 ctx->sq_sqes = NULL; 2662 } 2663 2664 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2665 unsigned int cq_entries, size_t *sq_offset) 2666 { 2667 struct io_rings *rings; 2668 size_t off, sq_array_size; 2669 2670 off = struct_size(rings, cqes, cq_entries); 2671 if (off == SIZE_MAX) 2672 return SIZE_MAX; 2673 if (flags & IORING_SETUP_CQE32) { 2674 if (check_shl_overflow(off, 1, &off)) 2675 return SIZE_MAX; 2676 } 2677 2678 #ifdef CONFIG_SMP 2679 off = ALIGN(off, SMP_CACHE_BYTES); 2680 if (off == 0) 2681 return SIZE_MAX; 2682 #endif 2683 2684 if (flags & IORING_SETUP_NO_SQARRAY) { 2685 *sq_offset = SIZE_MAX; 2686 return off; 2687 } 2688 2689 *sq_offset = off; 2690 2691 sq_array_size = array_size(sizeof(u32), sq_entries); 2692 if (sq_array_size == SIZE_MAX) 2693 return SIZE_MAX; 2694 2695 if (check_add_overflow(off, sq_array_size, &off)) 2696 return SIZE_MAX; 2697 2698 return off; 2699 } 2700 2701 static void io_req_caches_free(struct io_ring_ctx *ctx) 2702 { 2703 struct io_kiocb *req; 2704 int nr = 0; 2705 2706 mutex_lock(&ctx->uring_lock); 2707 2708 while (!io_req_cache_empty(ctx)) { 2709 req = io_extract_req(ctx); 2710 kmem_cache_free(req_cachep, req); 2711 nr++; 2712 } 2713 if (nr) 2714 percpu_ref_put_many(&ctx->refs, nr); 2715 mutex_unlock(&ctx->uring_lock); 2716 } 2717 2718 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2719 { 2720 io_sq_thread_finish(ctx); 2721 2722 mutex_lock(&ctx->uring_lock); 2723 io_sqe_buffers_unregister(ctx); 2724 io_sqe_files_unregister(ctx); 2725 io_unregister_zcrx_ifqs(ctx); 2726 io_cqring_overflow_kill(ctx); 2727 io_eventfd_unregister(ctx); 2728 io_free_alloc_caches(ctx); 2729 io_destroy_buffers(ctx); 2730 io_free_region(ctx, &ctx->param_region); 2731 mutex_unlock(&ctx->uring_lock); 2732 if (ctx->sq_creds) 2733 put_cred(ctx->sq_creds); 2734 if (ctx->submitter_task) 2735 put_task_struct(ctx->submitter_task); 2736 2737 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2738 2739 if (ctx->mm_account) { 2740 mmdrop(ctx->mm_account); 2741 ctx->mm_account = NULL; 2742 } 2743 io_rings_free(ctx); 2744 2745 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2746 static_branch_dec(&io_key_has_sqarray); 2747 2748 percpu_ref_exit(&ctx->refs); 2749 free_uid(ctx->user); 2750 io_req_caches_free(ctx); 2751 if (ctx->hash_map) 2752 io_wq_put_hash(ctx->hash_map); 2753 io_napi_free(ctx); 2754 kvfree(ctx->cancel_table.hbs); 2755 xa_destroy(&ctx->io_bl_xa); 2756 kfree(ctx); 2757 } 2758 2759 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2760 { 2761 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2762 poll_wq_task_work); 2763 2764 mutex_lock(&ctx->uring_lock); 2765 ctx->poll_activated = true; 2766 mutex_unlock(&ctx->uring_lock); 2767 2768 /* 2769 * Wake ups for some events between start of polling and activation 2770 * might've been lost due to loose synchronisation. 2771 */ 2772 wake_up_all(&ctx->poll_wq); 2773 percpu_ref_put(&ctx->refs); 2774 } 2775 2776 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2777 { 2778 spin_lock(&ctx->completion_lock); 2779 /* already activated or in progress */ 2780 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2781 goto out; 2782 if (WARN_ON_ONCE(!ctx->task_complete)) 2783 goto out; 2784 if (!ctx->submitter_task) 2785 goto out; 2786 /* 2787 * with ->submitter_task only the submitter task completes requests, we 2788 * only need to sync with it, which is done by injecting a tw 2789 */ 2790 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2791 percpu_ref_get(&ctx->refs); 2792 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2793 percpu_ref_put(&ctx->refs); 2794 out: 2795 spin_unlock(&ctx->completion_lock); 2796 } 2797 2798 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2799 { 2800 struct io_ring_ctx *ctx = file->private_data; 2801 __poll_t mask = 0; 2802 2803 if (unlikely(!ctx->poll_activated)) 2804 io_activate_pollwq(ctx); 2805 /* 2806 * provides mb() which pairs with barrier from wq_has_sleeper 2807 * call in io_commit_cqring 2808 */ 2809 poll_wait(file, &ctx->poll_wq, wait); 2810 2811 if (!io_sqring_full(ctx)) 2812 mask |= EPOLLOUT | EPOLLWRNORM; 2813 2814 /* 2815 * Don't flush cqring overflow list here, just do a simple check. 2816 * Otherwise there could possible be ABBA deadlock: 2817 * CPU0 CPU1 2818 * ---- ---- 2819 * lock(&ctx->uring_lock); 2820 * lock(&ep->mtx); 2821 * lock(&ctx->uring_lock); 2822 * lock(&ep->mtx); 2823 * 2824 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2825 * pushes them to do the flush. 2826 */ 2827 2828 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2829 mask |= EPOLLIN | EPOLLRDNORM; 2830 2831 return mask; 2832 } 2833 2834 struct io_tctx_exit { 2835 struct callback_head task_work; 2836 struct completion completion; 2837 struct io_ring_ctx *ctx; 2838 }; 2839 2840 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2841 { 2842 struct io_uring_task *tctx = current->io_uring; 2843 struct io_tctx_exit *work; 2844 2845 work = container_of(cb, struct io_tctx_exit, task_work); 2846 /* 2847 * When @in_cancel, we're in cancellation and it's racy to remove the 2848 * node. It'll be removed by the end of cancellation, just ignore it. 2849 * tctx can be NULL if the queueing of this task_work raced with 2850 * work cancelation off the exec path. 2851 */ 2852 if (tctx && !atomic_read(&tctx->in_cancel)) 2853 io_uring_del_tctx_node((unsigned long)work->ctx); 2854 complete(&work->completion); 2855 } 2856 2857 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2858 { 2859 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2860 2861 return req->ctx == data; 2862 } 2863 2864 static __cold void io_ring_exit_work(struct work_struct *work) 2865 { 2866 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2867 unsigned long timeout = jiffies + HZ * 60 * 5; 2868 unsigned long interval = HZ / 20; 2869 struct io_tctx_exit exit; 2870 struct io_tctx_node *node; 2871 int ret; 2872 2873 /* 2874 * If we're doing polled IO and end up having requests being 2875 * submitted async (out-of-line), then completions can come in while 2876 * we're waiting for refs to drop. We need to reap these manually, 2877 * as nobody else will be looking for them. 2878 */ 2879 do { 2880 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2881 mutex_lock(&ctx->uring_lock); 2882 io_cqring_overflow_kill(ctx); 2883 mutex_unlock(&ctx->uring_lock); 2884 } 2885 if (ctx->ifq) { 2886 mutex_lock(&ctx->uring_lock); 2887 io_shutdown_zcrx_ifqs(ctx); 2888 mutex_unlock(&ctx->uring_lock); 2889 } 2890 2891 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2892 io_move_task_work_from_local(ctx); 2893 2894 /* The SQPOLL thread never reaches this path */ 2895 while (io_uring_try_cancel_requests(ctx, NULL, true, false)) 2896 cond_resched(); 2897 2898 if (ctx->sq_data) { 2899 struct io_sq_data *sqd = ctx->sq_data; 2900 struct task_struct *tsk; 2901 2902 io_sq_thread_park(sqd); 2903 tsk = sqd->thread; 2904 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2905 io_wq_cancel_cb(tsk->io_uring->io_wq, 2906 io_cancel_ctx_cb, ctx, true); 2907 io_sq_thread_unpark(sqd); 2908 } 2909 2910 io_req_caches_free(ctx); 2911 2912 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2913 /* there is little hope left, don't run it too often */ 2914 interval = HZ * 60; 2915 } 2916 /* 2917 * This is really an uninterruptible wait, as it has to be 2918 * complete. But it's also run from a kworker, which doesn't 2919 * take signals, so it's fine to make it interruptible. This 2920 * avoids scenarios where we knowingly can wait much longer 2921 * on completions, for example if someone does a SIGSTOP on 2922 * a task that needs to finish task_work to make this loop 2923 * complete. That's a synthetic situation that should not 2924 * cause a stuck task backtrace, and hence a potential panic 2925 * on stuck tasks if that is enabled. 2926 */ 2927 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2928 2929 init_completion(&exit.completion); 2930 init_task_work(&exit.task_work, io_tctx_exit_cb); 2931 exit.ctx = ctx; 2932 2933 mutex_lock(&ctx->uring_lock); 2934 while (!list_empty(&ctx->tctx_list)) { 2935 WARN_ON_ONCE(time_after(jiffies, timeout)); 2936 2937 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2938 ctx_node); 2939 /* don't spin on a single task if cancellation failed */ 2940 list_rotate_left(&ctx->tctx_list); 2941 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2942 if (WARN_ON_ONCE(ret)) 2943 continue; 2944 2945 mutex_unlock(&ctx->uring_lock); 2946 /* 2947 * See comment above for 2948 * wait_for_completion_interruptible_timeout() on why this 2949 * wait is marked as interruptible. 2950 */ 2951 wait_for_completion_interruptible(&exit.completion); 2952 mutex_lock(&ctx->uring_lock); 2953 } 2954 mutex_unlock(&ctx->uring_lock); 2955 spin_lock(&ctx->completion_lock); 2956 spin_unlock(&ctx->completion_lock); 2957 2958 /* pairs with RCU read section in io_req_local_work_add() */ 2959 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2960 synchronize_rcu(); 2961 2962 io_ring_ctx_free(ctx); 2963 } 2964 2965 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2966 { 2967 unsigned long index; 2968 struct creds *creds; 2969 2970 mutex_lock(&ctx->uring_lock); 2971 percpu_ref_kill(&ctx->refs); 2972 xa_for_each(&ctx->personalities, index, creds) 2973 io_unregister_personality(ctx, index); 2974 mutex_unlock(&ctx->uring_lock); 2975 2976 flush_delayed_work(&ctx->fallback_work); 2977 2978 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2979 /* 2980 * Use system_unbound_wq to avoid spawning tons of event kworkers 2981 * if we're exiting a ton of rings at the same time. It just adds 2982 * noise and overhead, there's no discernable change in runtime 2983 * over using system_wq. 2984 */ 2985 queue_work(iou_wq, &ctx->exit_work); 2986 } 2987 2988 static int io_uring_release(struct inode *inode, struct file *file) 2989 { 2990 struct io_ring_ctx *ctx = file->private_data; 2991 2992 file->private_data = NULL; 2993 io_ring_ctx_wait_and_kill(ctx); 2994 return 0; 2995 } 2996 2997 struct io_task_cancel { 2998 struct io_uring_task *tctx; 2999 bool all; 3000 }; 3001 3002 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3003 { 3004 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3005 struct io_task_cancel *cancel = data; 3006 3007 return io_match_task_safe(req, cancel->tctx, cancel->all); 3008 } 3009 3010 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3011 struct io_uring_task *tctx, 3012 bool cancel_all) 3013 { 3014 struct io_defer_entry *de; 3015 LIST_HEAD(list); 3016 3017 spin_lock(&ctx->completion_lock); 3018 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3019 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3020 list_cut_position(&list, &ctx->defer_list, &de->list); 3021 break; 3022 } 3023 } 3024 spin_unlock(&ctx->completion_lock); 3025 if (list_empty(&list)) 3026 return false; 3027 3028 while (!list_empty(&list)) { 3029 de = list_first_entry(&list, struct io_defer_entry, list); 3030 list_del_init(&de->list); 3031 io_req_task_queue_fail(de->req, -ECANCELED); 3032 kfree(de); 3033 } 3034 return true; 3035 } 3036 3037 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3038 { 3039 struct io_tctx_node *node; 3040 enum io_wq_cancel cret; 3041 bool ret = false; 3042 3043 mutex_lock(&ctx->uring_lock); 3044 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3045 struct io_uring_task *tctx = node->task->io_uring; 3046 3047 /* 3048 * io_wq will stay alive while we hold uring_lock, because it's 3049 * killed after ctx nodes, which requires to take the lock. 3050 */ 3051 if (!tctx || !tctx->io_wq) 3052 continue; 3053 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3054 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3055 } 3056 mutex_unlock(&ctx->uring_lock); 3057 3058 return ret; 3059 } 3060 3061 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3062 struct io_uring_task *tctx, 3063 bool cancel_all, 3064 bool is_sqpoll_thread) 3065 { 3066 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3067 enum io_wq_cancel cret; 3068 bool ret = false; 3069 3070 /* set it so io_req_local_work_add() would wake us up */ 3071 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3072 atomic_set(&ctx->cq_wait_nr, 1); 3073 smp_mb(); 3074 } 3075 3076 /* failed during ring init, it couldn't have issued any requests */ 3077 if (!ctx->rings) 3078 return false; 3079 3080 if (!tctx) { 3081 ret |= io_uring_try_cancel_iowq(ctx); 3082 } else if (tctx->io_wq) { 3083 /* 3084 * Cancels requests of all rings, not only @ctx, but 3085 * it's fine as the task is in exit/exec. 3086 */ 3087 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3088 &cancel, true); 3089 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3090 } 3091 3092 /* SQPOLL thread does its own polling */ 3093 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3094 is_sqpoll_thread) { 3095 while (!wq_list_empty(&ctx->iopoll_list)) { 3096 io_iopoll_try_reap_events(ctx); 3097 ret = true; 3098 cond_resched(); 3099 } 3100 } 3101 3102 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3103 io_allowed_defer_tw_run(ctx)) 3104 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3105 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3106 mutex_lock(&ctx->uring_lock); 3107 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3108 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3109 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3110 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3111 mutex_unlock(&ctx->uring_lock); 3112 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3113 if (tctx) 3114 ret |= io_run_task_work() > 0; 3115 else 3116 ret |= flush_delayed_work(&ctx->fallback_work); 3117 return ret; 3118 } 3119 3120 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3121 { 3122 if (tracked) 3123 return atomic_read(&tctx->inflight_tracked); 3124 return percpu_counter_sum(&tctx->inflight); 3125 } 3126 3127 /* 3128 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3129 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3130 */ 3131 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3132 { 3133 struct io_uring_task *tctx = current->io_uring; 3134 struct io_ring_ctx *ctx; 3135 struct io_tctx_node *node; 3136 unsigned long index; 3137 s64 inflight; 3138 DEFINE_WAIT(wait); 3139 3140 WARN_ON_ONCE(sqd && sqd->thread != current); 3141 3142 if (!current->io_uring) 3143 return; 3144 if (tctx->io_wq) 3145 io_wq_exit_start(tctx->io_wq); 3146 3147 atomic_inc(&tctx->in_cancel); 3148 do { 3149 bool loop = false; 3150 3151 io_uring_drop_tctx_refs(current); 3152 if (!tctx_inflight(tctx, !cancel_all)) 3153 break; 3154 3155 /* read completions before cancelations */ 3156 inflight = tctx_inflight(tctx, false); 3157 if (!inflight) 3158 break; 3159 3160 if (!sqd) { 3161 xa_for_each(&tctx->xa, index, node) { 3162 /* sqpoll task will cancel all its requests */ 3163 if (node->ctx->sq_data) 3164 continue; 3165 loop |= io_uring_try_cancel_requests(node->ctx, 3166 current->io_uring, 3167 cancel_all, 3168 false); 3169 } 3170 } else { 3171 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3172 loop |= io_uring_try_cancel_requests(ctx, 3173 current->io_uring, 3174 cancel_all, 3175 true); 3176 } 3177 3178 if (loop) { 3179 cond_resched(); 3180 continue; 3181 } 3182 3183 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3184 io_run_task_work(); 3185 io_uring_drop_tctx_refs(current); 3186 xa_for_each(&tctx->xa, index, node) { 3187 if (io_local_work_pending(node->ctx)) { 3188 WARN_ON_ONCE(node->ctx->submitter_task && 3189 node->ctx->submitter_task != current); 3190 goto end_wait; 3191 } 3192 } 3193 /* 3194 * If we've seen completions, retry without waiting. This 3195 * avoids a race where a completion comes in before we did 3196 * prepare_to_wait(). 3197 */ 3198 if (inflight == tctx_inflight(tctx, !cancel_all)) 3199 schedule(); 3200 end_wait: 3201 finish_wait(&tctx->wait, &wait); 3202 } while (1); 3203 3204 io_uring_clean_tctx(tctx); 3205 if (cancel_all) { 3206 /* 3207 * We shouldn't run task_works after cancel, so just leave 3208 * ->in_cancel set for normal exit. 3209 */ 3210 atomic_dec(&tctx->in_cancel); 3211 /* for exec all current's requests should be gone, kill tctx */ 3212 __io_uring_free(current); 3213 } 3214 } 3215 3216 void __io_uring_cancel(bool cancel_all) 3217 { 3218 io_uring_unreg_ringfd(); 3219 io_uring_cancel_generic(cancel_all, NULL); 3220 } 3221 3222 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3223 const struct io_uring_getevents_arg __user *uarg) 3224 { 3225 unsigned long size = sizeof(struct io_uring_reg_wait); 3226 unsigned long offset = (uintptr_t)uarg; 3227 unsigned long end; 3228 3229 if (unlikely(offset % sizeof(long))) 3230 return ERR_PTR(-EFAULT); 3231 3232 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3233 if (unlikely(check_add_overflow(offset, size, &end) || 3234 end > ctx->cq_wait_size)) 3235 return ERR_PTR(-EFAULT); 3236 3237 offset = array_index_nospec(offset, ctx->cq_wait_size - size); 3238 return ctx->cq_wait_arg + offset; 3239 } 3240 3241 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3242 const void __user *argp, size_t argsz) 3243 { 3244 struct io_uring_getevents_arg arg; 3245 3246 if (!(flags & IORING_ENTER_EXT_ARG)) 3247 return 0; 3248 if (flags & IORING_ENTER_EXT_ARG_REG) 3249 return -EINVAL; 3250 if (argsz != sizeof(arg)) 3251 return -EINVAL; 3252 if (copy_from_user(&arg, argp, sizeof(arg))) 3253 return -EFAULT; 3254 return 0; 3255 } 3256 3257 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3258 const void __user *argp, struct ext_arg *ext_arg) 3259 { 3260 const struct io_uring_getevents_arg __user *uarg = argp; 3261 struct io_uring_getevents_arg arg; 3262 3263 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT); 3264 3265 /* 3266 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3267 * is just a pointer to the sigset_t. 3268 */ 3269 if (!(flags & IORING_ENTER_EXT_ARG)) { 3270 ext_arg->sig = (const sigset_t __user *) argp; 3271 return 0; 3272 } 3273 3274 if (flags & IORING_ENTER_EXT_ARG_REG) { 3275 struct io_uring_reg_wait *w; 3276 3277 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3278 return -EINVAL; 3279 w = io_get_ext_arg_reg(ctx, argp); 3280 if (IS_ERR(w)) 3281 return PTR_ERR(w); 3282 3283 if (w->flags & ~IORING_REG_WAIT_TS) 3284 return -EINVAL; 3285 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3286 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3287 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3288 if (w->flags & IORING_REG_WAIT_TS) { 3289 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3290 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3291 ext_arg->ts_set = true; 3292 } 3293 return 0; 3294 } 3295 3296 /* 3297 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3298 * timespec and sigset_t pointers if good. 3299 */ 3300 if (ext_arg->argsz != sizeof(arg)) 3301 return -EINVAL; 3302 #ifdef CONFIG_64BIT 3303 if (!user_access_begin(uarg, sizeof(*uarg))) 3304 return -EFAULT; 3305 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3306 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3307 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3308 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3309 user_access_end(); 3310 #else 3311 if (copy_from_user(&arg, uarg, sizeof(arg))) 3312 return -EFAULT; 3313 #endif 3314 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3315 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3316 ext_arg->argsz = arg.sigmask_sz; 3317 if (arg.ts) { 3318 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3319 return -EFAULT; 3320 ext_arg->ts_set = true; 3321 } 3322 return 0; 3323 #ifdef CONFIG_64BIT 3324 uaccess_end: 3325 user_access_end(); 3326 return -EFAULT; 3327 #endif 3328 } 3329 3330 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3331 u32, min_complete, u32, flags, const void __user *, argp, 3332 size_t, argsz) 3333 { 3334 struct io_ring_ctx *ctx; 3335 struct file *file; 3336 long ret; 3337 3338 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3339 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3340 IORING_ENTER_REGISTERED_RING | 3341 IORING_ENTER_ABS_TIMER | 3342 IORING_ENTER_EXT_ARG_REG | 3343 IORING_ENTER_NO_IOWAIT))) 3344 return -EINVAL; 3345 3346 /* 3347 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3348 * need only dereference our task private array to find it. 3349 */ 3350 if (flags & IORING_ENTER_REGISTERED_RING) { 3351 struct io_uring_task *tctx = current->io_uring; 3352 3353 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3354 return -EINVAL; 3355 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3356 file = tctx->registered_rings[fd]; 3357 if (unlikely(!file)) 3358 return -EBADF; 3359 } else { 3360 file = fget(fd); 3361 if (unlikely(!file)) 3362 return -EBADF; 3363 ret = -EOPNOTSUPP; 3364 if (unlikely(!io_is_uring_fops(file))) 3365 goto out; 3366 } 3367 3368 ctx = file->private_data; 3369 ret = -EBADFD; 3370 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3371 goto out; 3372 3373 /* 3374 * For SQ polling, the thread will do all submissions and completions. 3375 * Just return the requested submit count, and wake the thread if 3376 * we were asked to. 3377 */ 3378 ret = 0; 3379 if (ctx->flags & IORING_SETUP_SQPOLL) { 3380 if (unlikely(ctx->sq_data->thread == NULL)) { 3381 ret = -EOWNERDEAD; 3382 goto out; 3383 } 3384 if (flags & IORING_ENTER_SQ_WAKEUP) 3385 wake_up(&ctx->sq_data->wait); 3386 if (flags & IORING_ENTER_SQ_WAIT) 3387 io_sqpoll_wait_sq(ctx); 3388 3389 ret = to_submit; 3390 } else if (to_submit) { 3391 ret = io_uring_add_tctx_node(ctx); 3392 if (unlikely(ret)) 3393 goto out; 3394 3395 mutex_lock(&ctx->uring_lock); 3396 ret = io_submit_sqes(ctx, to_submit); 3397 if (ret != to_submit) { 3398 mutex_unlock(&ctx->uring_lock); 3399 goto out; 3400 } 3401 if (flags & IORING_ENTER_GETEVENTS) { 3402 if (ctx->syscall_iopoll) 3403 goto iopoll_locked; 3404 /* 3405 * Ignore errors, we'll soon call io_cqring_wait() and 3406 * it should handle ownership problems if any. 3407 */ 3408 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3409 (void)io_run_local_work_locked(ctx, min_complete); 3410 } 3411 mutex_unlock(&ctx->uring_lock); 3412 } 3413 3414 if (flags & IORING_ENTER_GETEVENTS) { 3415 int ret2; 3416 3417 if (ctx->syscall_iopoll) { 3418 /* 3419 * We disallow the app entering submit/complete with 3420 * polling, but we still need to lock the ring to 3421 * prevent racing with polled issue that got punted to 3422 * a workqueue. 3423 */ 3424 mutex_lock(&ctx->uring_lock); 3425 iopoll_locked: 3426 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3427 if (likely(!ret2)) 3428 ret2 = io_iopoll_check(ctx, min_complete); 3429 mutex_unlock(&ctx->uring_lock); 3430 } else { 3431 struct ext_arg ext_arg = { .argsz = argsz }; 3432 3433 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3434 if (likely(!ret2)) 3435 ret2 = io_cqring_wait(ctx, min_complete, flags, 3436 &ext_arg); 3437 } 3438 3439 if (!ret) { 3440 ret = ret2; 3441 3442 /* 3443 * EBADR indicates that one or more CQE were dropped. 3444 * Once the user has been informed we can clear the bit 3445 * as they are obviously ok with those drops. 3446 */ 3447 if (unlikely(ret2 == -EBADR)) 3448 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3449 &ctx->check_cq); 3450 } 3451 } 3452 out: 3453 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3454 fput(file); 3455 return ret; 3456 } 3457 3458 static const struct file_operations io_uring_fops = { 3459 .release = io_uring_release, 3460 .mmap = io_uring_mmap, 3461 .get_unmapped_area = io_uring_get_unmapped_area, 3462 #ifndef CONFIG_MMU 3463 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3464 #endif 3465 .poll = io_uring_poll, 3466 #ifdef CONFIG_PROC_FS 3467 .show_fdinfo = io_uring_show_fdinfo, 3468 #endif 3469 }; 3470 3471 bool io_is_uring_fops(struct file *file) 3472 { 3473 return file->f_op == &io_uring_fops; 3474 } 3475 3476 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3477 struct io_uring_params *p) 3478 { 3479 struct io_uring_region_desc rd; 3480 struct io_rings *rings; 3481 size_t size, sq_array_offset; 3482 int ret; 3483 3484 /* make sure these are sane, as we already accounted them */ 3485 ctx->sq_entries = p->sq_entries; 3486 ctx->cq_entries = p->cq_entries; 3487 3488 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3489 &sq_array_offset); 3490 if (size == SIZE_MAX) 3491 return -EOVERFLOW; 3492 3493 memset(&rd, 0, sizeof(rd)); 3494 rd.size = PAGE_ALIGN(size); 3495 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3496 rd.user_addr = p->cq_off.user_addr; 3497 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3498 } 3499 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); 3500 if (ret) 3501 return ret; 3502 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); 3503 3504 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3505 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3506 rings->sq_ring_mask = p->sq_entries - 1; 3507 rings->cq_ring_mask = p->cq_entries - 1; 3508 rings->sq_ring_entries = p->sq_entries; 3509 rings->cq_ring_entries = p->cq_entries; 3510 3511 if (p->flags & IORING_SETUP_SQE128) 3512 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3513 else 3514 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3515 if (size == SIZE_MAX) { 3516 io_rings_free(ctx); 3517 return -EOVERFLOW; 3518 } 3519 3520 memset(&rd, 0, sizeof(rd)); 3521 rd.size = PAGE_ALIGN(size); 3522 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3523 rd.user_addr = p->sq_off.user_addr; 3524 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3525 } 3526 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); 3527 if (ret) { 3528 io_rings_free(ctx); 3529 return ret; 3530 } 3531 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); 3532 return 0; 3533 } 3534 3535 static int io_uring_install_fd(struct file *file) 3536 { 3537 int fd; 3538 3539 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3540 if (fd < 0) 3541 return fd; 3542 fd_install(fd, file); 3543 return fd; 3544 } 3545 3546 /* 3547 * Allocate an anonymous fd, this is what constitutes the application 3548 * visible backing of an io_uring instance. The application mmaps this 3549 * fd to gain access to the SQ/CQ ring details. 3550 */ 3551 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3552 { 3553 /* Create a new inode so that the LSM can block the creation. */ 3554 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3555 O_RDWR | O_CLOEXEC, NULL); 3556 } 3557 3558 static int io_uring_sanitise_params(struct io_uring_params *p) 3559 { 3560 unsigned flags = p->flags; 3561 3562 /* There is no way to mmap rings without a real fd */ 3563 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) && 3564 !(flags & IORING_SETUP_NO_MMAP)) 3565 return -EINVAL; 3566 3567 if (flags & IORING_SETUP_SQPOLL) { 3568 /* IPI related flags don't make sense with SQPOLL */ 3569 if (flags & (IORING_SETUP_COOP_TASKRUN | 3570 IORING_SETUP_TASKRUN_FLAG | 3571 IORING_SETUP_DEFER_TASKRUN)) 3572 return -EINVAL; 3573 } 3574 3575 if (flags & IORING_SETUP_TASKRUN_FLAG) { 3576 if (!(flags & (IORING_SETUP_COOP_TASKRUN | 3577 IORING_SETUP_DEFER_TASKRUN))) 3578 return -EINVAL; 3579 } 3580 3581 /* HYBRID_IOPOLL only valid with IOPOLL */ 3582 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL)) 3583 return -EINVAL; 3584 3585 /* 3586 * For DEFER_TASKRUN we require the completion task to be the same as 3587 * the submission task. This implies that there is only one submitter. 3588 */ 3589 if ((flags & IORING_SETUP_DEFER_TASKRUN) && 3590 !(flags & IORING_SETUP_SINGLE_ISSUER)) 3591 return -EINVAL; 3592 3593 return 0; 3594 } 3595 3596 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3597 { 3598 if (!entries) 3599 return -EINVAL; 3600 if (entries > IORING_MAX_ENTRIES) { 3601 if (!(p->flags & IORING_SETUP_CLAMP)) 3602 return -EINVAL; 3603 entries = IORING_MAX_ENTRIES; 3604 } 3605 3606 /* 3607 * Use twice as many entries for the CQ ring. It's possible for the 3608 * application to drive a higher depth than the size of the SQ ring, 3609 * since the sqes are only used at submission time. This allows for 3610 * some flexibility in overcommitting a bit. If the application has 3611 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3612 * of CQ ring entries manually. 3613 */ 3614 p->sq_entries = roundup_pow_of_two(entries); 3615 if (p->flags & IORING_SETUP_CQSIZE) { 3616 /* 3617 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3618 * to a power-of-two, if it isn't already. We do NOT impose 3619 * any cq vs sq ring sizing. 3620 */ 3621 if (!p->cq_entries) 3622 return -EINVAL; 3623 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3624 if (!(p->flags & IORING_SETUP_CLAMP)) 3625 return -EINVAL; 3626 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3627 } 3628 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3629 if (p->cq_entries < p->sq_entries) 3630 return -EINVAL; 3631 } else { 3632 p->cq_entries = 2 * p->sq_entries; 3633 } 3634 3635 p->sq_off.head = offsetof(struct io_rings, sq.head); 3636 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3637 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3638 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3639 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3640 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3641 p->sq_off.resv1 = 0; 3642 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3643 p->sq_off.user_addr = 0; 3644 3645 p->cq_off.head = offsetof(struct io_rings, cq.head); 3646 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3647 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3648 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3649 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3650 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3651 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3652 p->cq_off.resv1 = 0; 3653 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3654 p->cq_off.user_addr = 0; 3655 3656 return 0; 3657 } 3658 3659 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3660 struct io_uring_params __user *params) 3661 { 3662 struct io_ring_ctx *ctx; 3663 struct io_uring_task *tctx; 3664 struct file *file; 3665 int ret; 3666 3667 ret = io_uring_sanitise_params(p); 3668 if (ret) 3669 return ret; 3670 3671 ret = io_uring_fill_params(entries, p); 3672 if (unlikely(ret)) 3673 return ret; 3674 3675 ctx = io_ring_ctx_alloc(p); 3676 if (!ctx) 3677 return -ENOMEM; 3678 3679 ctx->clockid = CLOCK_MONOTONIC; 3680 ctx->clock_offset = 0; 3681 3682 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3683 static_branch_inc(&io_key_has_sqarray); 3684 3685 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3686 !(ctx->flags & IORING_SETUP_IOPOLL) && 3687 !(ctx->flags & IORING_SETUP_SQPOLL)) 3688 ctx->task_complete = true; 3689 3690 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3691 ctx->lockless_cq = true; 3692 3693 /* 3694 * lazy poll_wq activation relies on ->task_complete for synchronisation 3695 * purposes, see io_activate_pollwq() 3696 */ 3697 if (!ctx->task_complete) 3698 ctx->poll_activated = true; 3699 3700 /* 3701 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3702 * space applications don't need to do io completion events 3703 * polling again, they can rely on io_sq_thread to do polling 3704 * work, which can reduce cpu usage and uring_lock contention. 3705 */ 3706 if (ctx->flags & IORING_SETUP_IOPOLL && 3707 !(ctx->flags & IORING_SETUP_SQPOLL)) 3708 ctx->syscall_iopoll = 1; 3709 3710 ctx->compat = in_compat_syscall(); 3711 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3712 ctx->user = get_uid(current_user()); 3713 3714 /* 3715 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3716 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3717 */ 3718 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN)) 3719 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3720 else 3721 ctx->notify_method = TWA_SIGNAL; 3722 3723 /* 3724 * This is just grabbed for accounting purposes. When a process exits, 3725 * the mm is exited and dropped before the files, hence we need to hang 3726 * on to this mm purely for the purposes of being able to unaccount 3727 * memory (locked/pinned vm). It's not used for anything else. 3728 */ 3729 mmgrab(current->mm); 3730 ctx->mm_account = current->mm; 3731 3732 ret = io_allocate_scq_urings(ctx, p); 3733 if (ret) 3734 goto err; 3735 3736 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3737 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3738 3739 ret = io_sq_offload_create(ctx, p); 3740 if (ret) 3741 goto err; 3742 3743 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3744 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3745 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3746 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3747 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3748 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3749 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3750 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT | 3751 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT; 3752 3753 if (copy_to_user(params, p, sizeof(*p))) { 3754 ret = -EFAULT; 3755 goto err; 3756 } 3757 3758 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3759 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3760 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3761 3762 file = io_uring_get_file(ctx); 3763 if (IS_ERR(file)) { 3764 ret = PTR_ERR(file); 3765 goto err; 3766 } 3767 3768 ret = __io_uring_add_tctx_node(ctx); 3769 if (ret) 3770 goto err_fput; 3771 tctx = current->io_uring; 3772 3773 /* 3774 * Install ring fd as the very last thing, so we don't risk someone 3775 * having closed it before we finish setup 3776 */ 3777 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3778 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3779 else 3780 ret = io_uring_install_fd(file); 3781 if (ret < 0) 3782 goto err_fput; 3783 3784 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3785 return ret; 3786 err: 3787 io_ring_ctx_wait_and_kill(ctx); 3788 return ret; 3789 err_fput: 3790 fput(file); 3791 return ret; 3792 } 3793 3794 /* 3795 * Sets up an aio uring context, and returns the fd. Applications asks for a 3796 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3797 * params structure passed in. 3798 */ 3799 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3800 { 3801 struct io_uring_params p; 3802 int i; 3803 3804 if (copy_from_user(&p, params, sizeof(p))) 3805 return -EFAULT; 3806 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3807 if (p.resv[i]) 3808 return -EINVAL; 3809 } 3810 3811 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3812 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3813 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3814 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3815 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3816 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3817 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3818 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3819 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3820 return -EINVAL; 3821 3822 return io_uring_create(entries, &p, params); 3823 } 3824 3825 static inline int io_uring_allowed(void) 3826 { 3827 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3828 kgid_t io_uring_group; 3829 3830 if (disabled == 2) 3831 return -EPERM; 3832 3833 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3834 goto allowed_lsm; 3835 3836 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3837 if (!gid_valid(io_uring_group)) 3838 return -EPERM; 3839 3840 if (!in_group_p(io_uring_group)) 3841 return -EPERM; 3842 3843 allowed_lsm: 3844 return security_uring_allowed(); 3845 } 3846 3847 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3848 struct io_uring_params __user *, params) 3849 { 3850 int ret; 3851 3852 ret = io_uring_allowed(); 3853 if (ret) 3854 return ret; 3855 3856 return io_uring_setup(entries, params); 3857 } 3858 3859 static int __init io_uring_init(void) 3860 { 3861 struct kmem_cache_args kmem_args = { 3862 .useroffset = offsetof(struct io_kiocb, cmd.data), 3863 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3864 .freeptr_offset = offsetof(struct io_kiocb, work), 3865 .use_freeptr_offset = true, 3866 }; 3867 3868 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3869 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3870 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3871 } while (0) 3872 3873 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3874 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3875 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3876 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3877 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3878 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3879 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3880 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3881 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3882 BUILD_BUG_SQE_ELEM(8, __u64, off); 3883 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3884 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3885 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3886 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3887 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3888 BUILD_BUG_SQE_ELEM(24, __u32, len); 3889 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3890 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3891 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3892 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3893 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3894 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3895 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3896 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3897 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3898 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3899 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3900 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3901 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3902 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3903 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3904 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3905 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3906 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3907 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3908 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3909 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3910 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3911 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3912 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3913 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3914 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3915 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3916 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3917 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3918 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3919 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); 3920 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); 3921 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3922 3923 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3924 sizeof(struct io_uring_rsrc_update)); 3925 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3926 sizeof(struct io_uring_rsrc_update2)); 3927 3928 /* ->buf_index is u16 */ 3929 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3930 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3931 offsetof(struct io_uring_buf_ring, tail)); 3932 3933 /* should fit into one byte */ 3934 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3935 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3936 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3937 3938 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3939 3940 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3941 3942 /* top 8bits are for internal use */ 3943 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3944 3945 io_uring_optable_init(); 3946 3947 /* imu->dir is u8 */ 3948 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX); 3949 3950 /* 3951 * Allow user copy in the per-command field, which starts after the 3952 * file in io_kiocb and until the opcode field. The openat2 handling 3953 * requires copying in user memory into the io_kiocb object in that 3954 * range, and HARDENED_USERCOPY will complain if we haven't 3955 * correctly annotated this range. 3956 */ 3957 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3958 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3959 SLAB_TYPESAFE_BY_RCU); 3960 3961 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3962 BUG_ON(!iou_wq); 3963 3964 #ifdef CONFIG_SYSCTL 3965 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3966 #endif 3967 3968 return 0; 3969 }; 3970 __initcall(io_uring_init); 3971