1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/mm.h> 56 #include <linux/mman.h> 57 #include <linux/percpu.h> 58 #include <linux/slab.h> 59 #include <linux/bvec.h> 60 #include <linux/net.h> 61 #include <net/sock.h> 62 #include <linux/anon_inodes.h> 63 #include <linux/sched/mm.h> 64 #include <linux/uaccess.h> 65 #include <linux/nospec.h> 66 #include <linux/fsnotify.h> 67 #include <linux/fadvise.h> 68 #include <linux/task_work.h> 69 #include <linux/io_uring.h> 70 #include <linux/io_uring/cmd.h> 71 #include <linux/audit.h> 72 #include <linux/security.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 101 #include "timeout.h" 102 #include "poll.h" 103 #include "rw.h" 104 #include "alloc_cache.h" 105 #include "eventfd.h" 106 107 #define IORING_MAX_ENTRIES 32768 108 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 109 110 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 111 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 112 113 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 114 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 118 REQ_F_ASYNC_DATA) 119 120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 121 IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 128 struct io_defer_entry { 129 struct list_head list; 130 struct io_kiocb *req; 131 u32 seq; 132 }; 133 134 /* requests with any of those set should undergo io_disarm_next() */ 135 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 136 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 137 138 /* 139 * No waiters. It's larger than any valid value of the tw counter 140 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 141 */ 142 #define IO_CQ_WAKE_INIT (-1U) 143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 145 146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 147 struct task_struct *task, 148 bool cancel_all); 149 150 static void io_queue_sqe(struct io_kiocb *req); 151 152 struct kmem_cache *req_cachep; 153 static struct workqueue_struct *iou_wq __ro_after_init; 154 155 static int __read_mostly sysctl_io_uring_disabled; 156 static int __read_mostly sysctl_io_uring_group = -1; 157 158 #ifdef CONFIG_SYSCTL 159 static struct ctl_table kernel_io_uring_disabled_table[] = { 160 { 161 .procname = "io_uring_disabled", 162 .data = &sysctl_io_uring_disabled, 163 .maxlen = sizeof(sysctl_io_uring_disabled), 164 .mode = 0644, 165 .proc_handler = proc_dointvec_minmax, 166 .extra1 = SYSCTL_ZERO, 167 .extra2 = SYSCTL_TWO, 168 }, 169 { 170 .procname = "io_uring_group", 171 .data = &sysctl_io_uring_group, 172 .maxlen = sizeof(gid_t), 173 .mode = 0644, 174 .proc_handler = proc_dointvec, 175 }, 176 }; 177 #endif 178 179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 180 { 181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 182 } 183 184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 185 { 186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 187 } 188 189 static bool io_match_linked(struct io_kiocb *head) 190 { 191 struct io_kiocb *req; 192 193 io_for_each_link(req, head) { 194 if (req->flags & REQ_F_INFLIGHT) 195 return true; 196 } 197 return false; 198 } 199 200 /* 201 * As io_match_task() but protected against racing with linked timeouts. 202 * User must not hold timeout_lock. 203 */ 204 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 205 bool cancel_all) 206 { 207 bool matched; 208 209 if (task && head->task != task) 210 return false; 211 if (cancel_all) 212 return true; 213 214 if (head->flags & REQ_F_LINK_TIMEOUT) { 215 struct io_ring_ctx *ctx = head->ctx; 216 217 /* protect against races with linked timeouts */ 218 spin_lock_irq(&ctx->timeout_lock); 219 matched = io_match_linked(head); 220 spin_unlock_irq(&ctx->timeout_lock); 221 } else { 222 matched = io_match_linked(head); 223 } 224 return matched; 225 } 226 227 static inline void req_fail_link_node(struct io_kiocb *req, int res) 228 { 229 req_set_fail(req); 230 io_req_set_res(req, res, 0); 231 } 232 233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 234 { 235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 236 } 237 238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 239 { 240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 241 242 complete(&ctx->ref_comp); 243 } 244 245 static __cold void io_fallback_req_func(struct work_struct *work) 246 { 247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 248 fallback_work.work); 249 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 250 struct io_kiocb *req, *tmp; 251 struct io_tw_state ts = {}; 252 253 percpu_ref_get(&ctx->refs); 254 mutex_lock(&ctx->uring_lock); 255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 256 req->io_task_work.func(req, &ts); 257 io_submit_flush_completions(ctx); 258 mutex_unlock(&ctx->uring_lock); 259 percpu_ref_put(&ctx->refs); 260 } 261 262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 263 { 264 unsigned hash_buckets = 1U << bits; 265 size_t hash_size = hash_buckets * sizeof(table->hbs[0]); 266 267 table->hbs = kmalloc(hash_size, GFP_KERNEL); 268 if (!table->hbs) 269 return -ENOMEM; 270 271 table->hash_bits = bits; 272 init_hash_table(table, hash_buckets); 273 return 0; 274 } 275 276 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 277 { 278 struct io_ring_ctx *ctx; 279 int hash_bits; 280 bool ret; 281 282 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 283 if (!ctx) 284 return NULL; 285 286 xa_init(&ctx->io_bl_xa); 287 288 /* 289 * Use 5 bits less than the max cq entries, that should give us around 290 * 32 entries per hash list if totally full and uniformly spread, but 291 * don't keep too many buckets to not overconsume memory. 292 */ 293 hash_bits = ilog2(p->cq_entries) - 5; 294 hash_bits = clamp(hash_bits, 1, 8); 295 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 296 goto err; 297 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) 298 goto err; 299 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 300 0, GFP_KERNEL)) 301 goto err; 302 303 ctx->flags = p->flags; 304 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 305 init_waitqueue_head(&ctx->sqo_sq_wait); 306 INIT_LIST_HEAD(&ctx->sqd_list); 307 INIT_LIST_HEAD(&ctx->cq_overflow_list); 308 INIT_LIST_HEAD(&ctx->io_buffers_cache); 309 ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, 310 sizeof(struct io_rsrc_node)); 311 ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 312 sizeof(struct async_poll)); 313 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 314 sizeof(struct io_async_msghdr)); 315 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 316 sizeof(struct io_async_rw)); 317 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX, 318 sizeof(struct uring_cache)); 319 spin_lock_init(&ctx->msg_lock); 320 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 321 sizeof(struct io_kiocb)); 322 ret |= io_futex_cache_init(ctx); 323 if (ret) 324 goto err; 325 init_completion(&ctx->ref_comp); 326 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 327 mutex_init(&ctx->uring_lock); 328 init_waitqueue_head(&ctx->cq_wait); 329 init_waitqueue_head(&ctx->poll_wq); 330 init_waitqueue_head(&ctx->rsrc_quiesce_wq); 331 spin_lock_init(&ctx->completion_lock); 332 spin_lock_init(&ctx->timeout_lock); 333 INIT_WQ_LIST(&ctx->iopoll_list); 334 INIT_LIST_HEAD(&ctx->io_buffers_comp); 335 INIT_LIST_HEAD(&ctx->defer_list); 336 INIT_LIST_HEAD(&ctx->timeout_list); 337 INIT_LIST_HEAD(&ctx->ltimeout_list); 338 INIT_LIST_HEAD(&ctx->rsrc_ref_list); 339 init_llist_head(&ctx->work_llist); 340 INIT_LIST_HEAD(&ctx->tctx_list); 341 ctx->submit_state.free_list.next = NULL; 342 INIT_HLIST_HEAD(&ctx->waitid_list); 343 #ifdef CONFIG_FUTEX 344 INIT_HLIST_HEAD(&ctx->futex_list); 345 #endif 346 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 347 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 348 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 349 io_napi_init(ctx); 350 351 return ctx; 352 err: 353 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree); 354 io_alloc_cache_free(&ctx->apoll_cache, kfree); 355 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 356 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 357 io_alloc_cache_free(&ctx->uring_cache, kfree); 358 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 359 io_futex_cache_free(ctx); 360 kfree(ctx->cancel_table.hbs); 361 kfree(ctx->cancel_table_locked.hbs); 362 xa_destroy(&ctx->io_bl_xa); 363 kfree(ctx); 364 return NULL; 365 } 366 367 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 368 { 369 struct io_rings *r = ctx->rings; 370 371 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 372 ctx->cq_extra--; 373 } 374 375 static bool req_need_defer(struct io_kiocb *req, u32 seq) 376 { 377 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 378 struct io_ring_ctx *ctx = req->ctx; 379 380 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 381 } 382 383 return false; 384 } 385 386 static void io_clean_op(struct io_kiocb *req) 387 { 388 if (req->flags & REQ_F_BUFFER_SELECTED) { 389 spin_lock(&req->ctx->completion_lock); 390 io_kbuf_drop(req); 391 spin_unlock(&req->ctx->completion_lock); 392 } 393 394 if (req->flags & REQ_F_NEED_CLEANUP) { 395 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 396 397 if (def->cleanup) 398 def->cleanup(req); 399 } 400 if ((req->flags & REQ_F_POLLED) && req->apoll) { 401 kfree(req->apoll->double_poll); 402 kfree(req->apoll); 403 req->apoll = NULL; 404 } 405 if (req->flags & REQ_F_INFLIGHT) { 406 struct io_uring_task *tctx = req->task->io_uring; 407 408 atomic_dec(&tctx->inflight_tracked); 409 } 410 if (req->flags & REQ_F_CREDS) 411 put_cred(req->creds); 412 if (req->flags & REQ_F_ASYNC_DATA) { 413 kfree(req->async_data); 414 req->async_data = NULL; 415 } 416 req->flags &= ~IO_REQ_CLEAN_FLAGS; 417 } 418 419 static inline void io_req_track_inflight(struct io_kiocb *req) 420 { 421 if (!(req->flags & REQ_F_INFLIGHT)) { 422 req->flags |= REQ_F_INFLIGHT; 423 atomic_inc(&req->task->io_uring->inflight_tracked); 424 } 425 } 426 427 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 428 { 429 if (WARN_ON_ONCE(!req->link)) 430 return NULL; 431 432 req->flags &= ~REQ_F_ARM_LTIMEOUT; 433 req->flags |= REQ_F_LINK_TIMEOUT; 434 435 /* linked timeouts should have two refs once prep'ed */ 436 io_req_set_refcount(req); 437 __io_req_set_refcount(req->link, 2); 438 return req->link; 439 } 440 441 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 442 { 443 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 444 return NULL; 445 return __io_prep_linked_timeout(req); 446 } 447 448 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 449 { 450 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 451 } 452 453 static inline void io_arm_ltimeout(struct io_kiocb *req) 454 { 455 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 456 __io_arm_ltimeout(req); 457 } 458 459 static void io_prep_async_work(struct io_kiocb *req) 460 { 461 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 462 struct io_ring_ctx *ctx = req->ctx; 463 464 if (!(req->flags & REQ_F_CREDS)) { 465 req->flags |= REQ_F_CREDS; 466 req->creds = get_current_cred(); 467 } 468 469 req->work.list.next = NULL; 470 atomic_set(&req->work.flags, 0); 471 if (req->flags & REQ_F_FORCE_ASYNC) 472 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 473 474 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 475 req->flags |= io_file_get_flags(req->file); 476 477 if (req->file && (req->flags & REQ_F_ISREG)) { 478 bool should_hash = def->hash_reg_file; 479 480 /* don't serialize this request if the fs doesn't need it */ 481 if (should_hash && (req->file->f_flags & O_DIRECT) && 482 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 483 should_hash = false; 484 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 485 io_wq_hash_work(&req->work, file_inode(req->file)); 486 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 487 if (def->unbound_nonreg_file) 488 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 489 } 490 } 491 492 static void io_prep_async_link(struct io_kiocb *req) 493 { 494 struct io_kiocb *cur; 495 496 if (req->flags & REQ_F_LINK_TIMEOUT) { 497 struct io_ring_ctx *ctx = req->ctx; 498 499 spin_lock_irq(&ctx->timeout_lock); 500 io_for_each_link(cur, req) 501 io_prep_async_work(cur); 502 spin_unlock_irq(&ctx->timeout_lock); 503 } else { 504 io_for_each_link(cur, req) 505 io_prep_async_work(cur); 506 } 507 } 508 509 static void io_queue_iowq(struct io_kiocb *req) 510 { 511 struct io_kiocb *link = io_prep_linked_timeout(req); 512 struct io_uring_task *tctx = req->task->io_uring; 513 514 BUG_ON(!tctx); 515 BUG_ON(!tctx->io_wq); 516 517 /* init ->work of the whole link before punting */ 518 io_prep_async_link(req); 519 520 /* 521 * Not expected to happen, but if we do have a bug where this _can_ 522 * happen, catch it here and ensure the request is marked as 523 * canceled. That will make io-wq go through the usual work cancel 524 * procedure rather than attempt to run this request (or create a new 525 * worker for it). 526 */ 527 if (WARN_ON_ONCE(!same_thread_group(req->task, current))) 528 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 529 530 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 531 io_wq_enqueue(tctx->io_wq, &req->work); 532 if (link) 533 io_queue_linked_timeout(link); 534 } 535 536 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts) 537 { 538 io_queue_iowq(req); 539 } 540 541 void io_req_queue_iowq(struct io_kiocb *req) 542 { 543 req->io_task_work.func = io_req_queue_iowq_tw; 544 io_req_task_work_add(req); 545 } 546 547 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 548 { 549 while (!list_empty(&ctx->defer_list)) { 550 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 551 struct io_defer_entry, list); 552 553 if (req_need_defer(de->req, de->seq)) 554 break; 555 list_del_init(&de->list); 556 io_req_task_queue(de->req); 557 kfree(de); 558 } 559 } 560 561 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 562 { 563 if (ctx->poll_activated) 564 io_poll_wq_wake(ctx); 565 if (ctx->off_timeout_used) 566 io_flush_timeouts(ctx); 567 if (ctx->drain_active) { 568 spin_lock(&ctx->completion_lock); 569 io_queue_deferred(ctx); 570 spin_unlock(&ctx->completion_lock); 571 } 572 if (ctx->has_evfd) 573 io_eventfd_flush_signal(ctx); 574 } 575 576 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 577 { 578 if (!ctx->lockless_cq) 579 spin_lock(&ctx->completion_lock); 580 } 581 582 static inline void io_cq_lock(struct io_ring_ctx *ctx) 583 __acquires(ctx->completion_lock) 584 { 585 spin_lock(&ctx->completion_lock); 586 } 587 588 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 589 { 590 io_commit_cqring(ctx); 591 if (!ctx->task_complete) { 592 if (!ctx->lockless_cq) 593 spin_unlock(&ctx->completion_lock); 594 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 595 if (!ctx->syscall_iopoll) 596 io_cqring_wake(ctx); 597 } 598 io_commit_cqring_flush(ctx); 599 } 600 601 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 602 __releases(ctx->completion_lock) 603 { 604 io_commit_cqring(ctx); 605 spin_unlock(&ctx->completion_lock); 606 io_cqring_wake(ctx); 607 io_commit_cqring_flush(ctx); 608 } 609 610 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 611 { 612 size_t cqe_size = sizeof(struct io_uring_cqe); 613 614 lockdep_assert_held(&ctx->uring_lock); 615 616 /* don't abort if we're dying, entries must get freed */ 617 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 618 return; 619 620 if (ctx->flags & IORING_SETUP_CQE32) 621 cqe_size <<= 1; 622 623 io_cq_lock(ctx); 624 while (!list_empty(&ctx->cq_overflow_list)) { 625 struct io_uring_cqe *cqe; 626 struct io_overflow_cqe *ocqe; 627 628 ocqe = list_first_entry(&ctx->cq_overflow_list, 629 struct io_overflow_cqe, list); 630 631 if (!dying) { 632 if (!io_get_cqe_overflow(ctx, &cqe, true)) 633 break; 634 memcpy(cqe, &ocqe->cqe, cqe_size); 635 } 636 list_del(&ocqe->list); 637 kfree(ocqe); 638 639 /* 640 * For silly syzbot cases that deliberately overflow by huge 641 * amounts, check if we need to resched and drop and 642 * reacquire the locks if so. Nothing real would ever hit this. 643 * Ideally we'd have a non-posting unlock for this, but hard 644 * to care for a non-real case. 645 */ 646 if (need_resched()) { 647 io_cq_unlock_post(ctx); 648 mutex_unlock(&ctx->uring_lock); 649 cond_resched(); 650 mutex_lock(&ctx->uring_lock); 651 io_cq_lock(ctx); 652 } 653 } 654 655 if (list_empty(&ctx->cq_overflow_list)) { 656 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 657 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 658 } 659 io_cq_unlock_post(ctx); 660 } 661 662 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 663 { 664 if (ctx->rings) 665 __io_cqring_overflow_flush(ctx, true); 666 } 667 668 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 669 { 670 mutex_lock(&ctx->uring_lock); 671 __io_cqring_overflow_flush(ctx, false); 672 mutex_unlock(&ctx->uring_lock); 673 } 674 675 /* can be called by any task */ 676 static void io_put_task_remote(struct task_struct *task) 677 { 678 struct io_uring_task *tctx = task->io_uring; 679 680 percpu_counter_sub(&tctx->inflight, 1); 681 if (unlikely(atomic_read(&tctx->in_cancel))) 682 wake_up(&tctx->wait); 683 put_task_struct(task); 684 } 685 686 /* used by a task to put its own references */ 687 static void io_put_task_local(struct task_struct *task) 688 { 689 task->io_uring->cached_refs++; 690 } 691 692 /* must to be called somewhat shortly after putting a request */ 693 static inline void io_put_task(struct task_struct *task) 694 { 695 if (likely(task == current)) 696 io_put_task_local(task); 697 else 698 io_put_task_remote(task); 699 } 700 701 void io_task_refs_refill(struct io_uring_task *tctx) 702 { 703 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 704 705 percpu_counter_add(&tctx->inflight, refill); 706 refcount_add(refill, ¤t->usage); 707 tctx->cached_refs += refill; 708 } 709 710 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 711 { 712 struct io_uring_task *tctx = task->io_uring; 713 unsigned int refs = tctx->cached_refs; 714 715 if (refs) { 716 tctx->cached_refs = 0; 717 percpu_counter_sub(&tctx->inflight, refs); 718 put_task_struct_many(task, refs); 719 } 720 } 721 722 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 723 s32 res, u32 cflags, u64 extra1, u64 extra2) 724 { 725 struct io_overflow_cqe *ocqe; 726 size_t ocq_size = sizeof(struct io_overflow_cqe); 727 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 728 729 lockdep_assert_held(&ctx->completion_lock); 730 731 if (is_cqe32) 732 ocq_size += sizeof(struct io_uring_cqe); 733 734 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 735 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 736 if (!ocqe) { 737 /* 738 * If we're in ring overflow flush mode, or in task cancel mode, 739 * or cannot allocate an overflow entry, then we need to drop it 740 * on the floor. 741 */ 742 io_account_cq_overflow(ctx); 743 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 744 return false; 745 } 746 if (list_empty(&ctx->cq_overflow_list)) { 747 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 748 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 749 750 } 751 ocqe->cqe.user_data = user_data; 752 ocqe->cqe.res = res; 753 ocqe->cqe.flags = cflags; 754 if (is_cqe32) { 755 ocqe->cqe.big_cqe[0] = extra1; 756 ocqe->cqe.big_cqe[1] = extra2; 757 } 758 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 759 return true; 760 } 761 762 static void io_req_cqe_overflow(struct io_kiocb *req) 763 { 764 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 765 req->cqe.res, req->cqe.flags, 766 req->big_cqe.extra1, req->big_cqe.extra2); 767 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 768 } 769 770 /* 771 * writes to the cq entry need to come after reading head; the 772 * control dependency is enough as we're using WRITE_ONCE to 773 * fill the cq entry 774 */ 775 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 776 { 777 struct io_rings *rings = ctx->rings; 778 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 779 unsigned int free, queued, len; 780 781 /* 782 * Posting into the CQ when there are pending overflowed CQEs may break 783 * ordering guarantees, which will affect links, F_MORE users and more. 784 * Force overflow the completion. 785 */ 786 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 787 return false; 788 789 /* userspace may cheat modifying the tail, be safe and do min */ 790 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 791 free = ctx->cq_entries - queued; 792 /* we need a contiguous range, limit based on the current array offset */ 793 len = min(free, ctx->cq_entries - off); 794 if (!len) 795 return false; 796 797 if (ctx->flags & IORING_SETUP_CQE32) { 798 off <<= 1; 799 len <<= 1; 800 } 801 802 ctx->cqe_cached = &rings->cqes[off]; 803 ctx->cqe_sentinel = ctx->cqe_cached + len; 804 return true; 805 } 806 807 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 808 u32 cflags) 809 { 810 struct io_uring_cqe *cqe; 811 812 ctx->cq_extra++; 813 814 /* 815 * If we can't get a cq entry, userspace overflowed the 816 * submission (by quite a lot). Increment the overflow count in 817 * the ring. 818 */ 819 if (likely(io_get_cqe(ctx, &cqe))) { 820 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); 821 822 WRITE_ONCE(cqe->user_data, user_data); 823 WRITE_ONCE(cqe->res, res); 824 WRITE_ONCE(cqe->flags, cflags); 825 826 if (ctx->flags & IORING_SETUP_CQE32) { 827 WRITE_ONCE(cqe->big_cqe[0], 0); 828 WRITE_ONCE(cqe->big_cqe[1], 0); 829 } 830 return true; 831 } 832 return false; 833 } 834 835 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, 836 u32 cflags) 837 { 838 bool filled; 839 840 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 841 if (!filled) 842 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 843 844 return filled; 845 } 846 847 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 848 { 849 bool filled; 850 851 io_cq_lock(ctx); 852 filled = __io_post_aux_cqe(ctx, user_data, res, cflags); 853 io_cq_unlock_post(ctx); 854 return filled; 855 } 856 857 /* 858 * Must be called from inline task_work so we now a flush will happen later, 859 * and obviously with ctx->uring_lock held (tw always has that). 860 */ 861 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 862 { 863 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 864 spin_lock(&ctx->completion_lock); 865 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 866 spin_unlock(&ctx->completion_lock); 867 } 868 ctx->submit_state.cq_flush = true; 869 } 870 871 /* 872 * A helper for multishot requests posting additional CQEs. 873 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 874 */ 875 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 876 { 877 struct io_ring_ctx *ctx = req->ctx; 878 bool posted; 879 880 lockdep_assert(!io_wq_current_is_worker()); 881 lockdep_assert_held(&ctx->uring_lock); 882 883 __io_cq_lock(ctx); 884 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 885 ctx->submit_state.cq_flush = true; 886 __io_cq_unlock_post(ctx); 887 return posted; 888 } 889 890 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 891 { 892 struct io_ring_ctx *ctx = req->ctx; 893 894 /* 895 * All execution paths but io-wq use the deferred completions by 896 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 897 */ 898 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 899 return; 900 901 /* 902 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 903 * the submitter task context, IOPOLL protects with uring_lock. 904 */ 905 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) { 906 req->io_task_work.func = io_req_task_complete; 907 io_req_task_work_add(req); 908 return; 909 } 910 911 io_cq_lock(ctx); 912 if (!(req->flags & REQ_F_CQE_SKIP)) { 913 if (!io_fill_cqe_req(ctx, req)) 914 io_req_cqe_overflow(req); 915 } 916 io_cq_unlock_post(ctx); 917 918 /* 919 * We don't free the request here because we know it's called from 920 * io-wq only, which holds a reference, so it cannot be the last put. 921 */ 922 req_ref_put(req); 923 } 924 925 void io_req_defer_failed(struct io_kiocb *req, s32 res) 926 __must_hold(&ctx->uring_lock) 927 { 928 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 929 930 lockdep_assert_held(&req->ctx->uring_lock); 931 932 req_set_fail(req); 933 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 934 if (def->fail) 935 def->fail(req); 936 io_req_complete_defer(req); 937 } 938 939 /* 940 * Don't initialise the fields below on every allocation, but do that in 941 * advance and keep them valid across allocations. 942 */ 943 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 944 { 945 req->ctx = ctx; 946 req->link = NULL; 947 req->async_data = NULL; 948 /* not necessary, but safer to zero */ 949 memset(&req->cqe, 0, sizeof(req->cqe)); 950 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 951 } 952 953 /* 954 * A request might get retired back into the request caches even before opcode 955 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 956 * Because of that, io_alloc_req() should be called only under ->uring_lock 957 * and with extra caution to not get a request that is still worked on. 958 */ 959 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 960 __must_hold(&ctx->uring_lock) 961 { 962 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 963 void *reqs[IO_REQ_ALLOC_BATCH]; 964 int ret; 965 966 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 967 968 /* 969 * Bulk alloc is all-or-nothing. If we fail to get a batch, 970 * retry single alloc to be on the safe side. 971 */ 972 if (unlikely(ret <= 0)) { 973 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 974 if (!reqs[0]) 975 return false; 976 ret = 1; 977 } 978 979 percpu_ref_get_many(&ctx->refs, ret); 980 while (ret--) { 981 struct io_kiocb *req = reqs[ret]; 982 983 io_preinit_req(req, ctx); 984 io_req_add_to_cache(req, ctx); 985 } 986 return true; 987 } 988 989 __cold void io_free_req(struct io_kiocb *req) 990 { 991 /* refs were already put, restore them for io_req_task_complete() */ 992 req->flags &= ~REQ_F_REFCOUNT; 993 /* we only want to free it, don't post CQEs */ 994 req->flags |= REQ_F_CQE_SKIP; 995 req->io_task_work.func = io_req_task_complete; 996 io_req_task_work_add(req); 997 } 998 999 static void __io_req_find_next_prep(struct io_kiocb *req) 1000 { 1001 struct io_ring_ctx *ctx = req->ctx; 1002 1003 spin_lock(&ctx->completion_lock); 1004 io_disarm_next(req); 1005 spin_unlock(&ctx->completion_lock); 1006 } 1007 1008 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1009 { 1010 struct io_kiocb *nxt; 1011 1012 /* 1013 * If LINK is set, we have dependent requests in this chain. If we 1014 * didn't fail this request, queue the first one up, moving any other 1015 * dependencies to the next request. In case of failure, fail the rest 1016 * of the chain. 1017 */ 1018 if (unlikely(req->flags & IO_DISARM_MASK)) 1019 __io_req_find_next_prep(req); 1020 nxt = req->link; 1021 req->link = NULL; 1022 return nxt; 1023 } 1024 1025 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1026 { 1027 if (!ctx) 1028 return; 1029 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1030 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1031 1032 io_submit_flush_completions(ctx); 1033 mutex_unlock(&ctx->uring_lock); 1034 percpu_ref_put(&ctx->refs); 1035 } 1036 1037 /* 1038 * Run queued task_work, returning the number of entries processed in *count. 1039 * If more entries than max_entries are available, stop processing once this 1040 * is reached and return the rest of the list. 1041 */ 1042 struct llist_node *io_handle_tw_list(struct llist_node *node, 1043 unsigned int *count, 1044 unsigned int max_entries) 1045 { 1046 struct io_ring_ctx *ctx = NULL; 1047 struct io_tw_state ts = { }; 1048 1049 do { 1050 struct llist_node *next = node->next; 1051 struct io_kiocb *req = container_of(node, struct io_kiocb, 1052 io_task_work.node); 1053 1054 if (req->ctx != ctx) { 1055 ctx_flush_and_put(ctx, &ts); 1056 ctx = req->ctx; 1057 mutex_lock(&ctx->uring_lock); 1058 percpu_ref_get(&ctx->refs); 1059 } 1060 INDIRECT_CALL_2(req->io_task_work.func, 1061 io_poll_task_func, io_req_rw_complete, 1062 req, &ts); 1063 node = next; 1064 (*count)++; 1065 if (unlikely(need_resched())) { 1066 ctx_flush_and_put(ctx, &ts); 1067 ctx = NULL; 1068 cond_resched(); 1069 } 1070 } while (node && *count < max_entries); 1071 1072 ctx_flush_and_put(ctx, &ts); 1073 return node; 1074 } 1075 1076 /** 1077 * io_llist_xchg - swap all entries in a lock-less list 1078 * @head: the head of lock-less list to delete all entries 1079 * @new: new entry as the head of the list 1080 * 1081 * If list is empty, return NULL, otherwise, return the pointer to the first entry. 1082 * The order of entries returned is from the newest to the oldest added one. 1083 */ 1084 static inline struct llist_node *io_llist_xchg(struct llist_head *head, 1085 struct llist_node *new) 1086 { 1087 return xchg(&head->first, new); 1088 } 1089 1090 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1091 { 1092 struct llist_node *node = llist_del_all(&tctx->task_list); 1093 struct io_ring_ctx *last_ctx = NULL; 1094 struct io_kiocb *req; 1095 1096 while (node) { 1097 req = container_of(node, struct io_kiocb, io_task_work.node); 1098 node = node->next; 1099 if (sync && last_ctx != req->ctx) { 1100 if (last_ctx) { 1101 flush_delayed_work(&last_ctx->fallback_work); 1102 percpu_ref_put(&last_ctx->refs); 1103 } 1104 last_ctx = req->ctx; 1105 percpu_ref_get(&last_ctx->refs); 1106 } 1107 if (llist_add(&req->io_task_work.node, 1108 &req->ctx->fallback_llist)) 1109 schedule_delayed_work(&req->ctx->fallback_work, 1); 1110 } 1111 1112 if (last_ctx) { 1113 flush_delayed_work(&last_ctx->fallback_work); 1114 percpu_ref_put(&last_ctx->refs); 1115 } 1116 } 1117 1118 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1119 unsigned int max_entries, 1120 unsigned int *count) 1121 { 1122 struct llist_node *node; 1123 1124 if (unlikely(current->flags & PF_EXITING)) { 1125 io_fallback_tw(tctx, true); 1126 return NULL; 1127 } 1128 1129 node = llist_del_all(&tctx->task_list); 1130 if (node) { 1131 node = llist_reverse_order(node); 1132 node = io_handle_tw_list(node, count, max_entries); 1133 } 1134 1135 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1136 if (unlikely(atomic_read(&tctx->in_cancel))) 1137 io_uring_drop_tctx_refs(current); 1138 1139 trace_io_uring_task_work_run(tctx, *count); 1140 return node; 1141 } 1142 1143 void tctx_task_work(struct callback_head *cb) 1144 { 1145 struct io_uring_task *tctx; 1146 struct llist_node *ret; 1147 unsigned int count = 0; 1148 1149 tctx = container_of(cb, struct io_uring_task, task_work); 1150 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1151 /* can't happen */ 1152 WARN_ON_ONCE(ret); 1153 } 1154 1155 static inline void io_req_local_work_add(struct io_kiocb *req, 1156 struct io_ring_ctx *ctx, 1157 unsigned flags) 1158 { 1159 unsigned nr_wait, nr_tw, nr_tw_prev; 1160 struct llist_node *head; 1161 1162 /* See comment above IO_CQ_WAKE_INIT */ 1163 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1164 1165 /* 1166 * We don't know how many reuqests is there in the link and whether 1167 * they can even be queued lazily, fall back to non-lazy. 1168 */ 1169 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1170 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1171 1172 guard(rcu)(); 1173 1174 head = READ_ONCE(ctx->work_llist.first); 1175 do { 1176 nr_tw_prev = 0; 1177 if (head) { 1178 struct io_kiocb *first_req = container_of(head, 1179 struct io_kiocb, 1180 io_task_work.node); 1181 /* 1182 * Might be executed at any moment, rely on 1183 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1184 */ 1185 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1186 } 1187 1188 /* 1189 * Theoretically, it can overflow, but that's fine as one of 1190 * previous adds should've tried to wake the task. 1191 */ 1192 nr_tw = nr_tw_prev + 1; 1193 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1194 nr_tw = IO_CQ_WAKE_FORCE; 1195 1196 req->nr_tw = nr_tw; 1197 req->io_task_work.node.next = head; 1198 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1199 &req->io_task_work.node)); 1200 1201 /* 1202 * cmpxchg implies a full barrier, which pairs with the barrier 1203 * in set_current_state() on the io_cqring_wait() side. It's used 1204 * to ensure that either we see updated ->cq_wait_nr, or waiters 1205 * going to sleep will observe the work added to the list, which 1206 * is similar to the wait/wawke task state sync. 1207 */ 1208 1209 if (!head) { 1210 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1211 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1212 if (ctx->has_evfd) 1213 io_eventfd_signal(ctx); 1214 } 1215 1216 nr_wait = atomic_read(&ctx->cq_wait_nr); 1217 /* not enough or no one is waiting */ 1218 if (nr_tw < nr_wait) 1219 return; 1220 /* the previous add has already woken it up */ 1221 if (nr_tw_prev >= nr_wait) 1222 return; 1223 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1224 } 1225 1226 static void io_req_normal_work_add(struct io_kiocb *req) 1227 { 1228 struct io_uring_task *tctx = req->task->io_uring; 1229 struct io_ring_ctx *ctx = req->ctx; 1230 1231 /* task_work already pending, we're done */ 1232 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1233 return; 1234 1235 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1236 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1237 1238 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1239 if (ctx->flags & IORING_SETUP_SQPOLL) { 1240 struct io_sq_data *sqd = ctx->sq_data; 1241 1242 if (sqd->thread) 1243 __set_notify_signal(sqd->thread); 1244 return; 1245 } 1246 1247 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) 1248 return; 1249 1250 io_fallback_tw(tctx, false); 1251 } 1252 1253 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1254 { 1255 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1256 io_req_local_work_add(req, req->ctx, flags); 1257 else 1258 io_req_normal_work_add(req); 1259 } 1260 1261 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 1262 unsigned flags) 1263 { 1264 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1265 return; 1266 io_req_local_work_add(req, ctx, flags); 1267 } 1268 1269 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1270 { 1271 struct llist_node *node; 1272 1273 node = llist_del_all(&ctx->work_llist); 1274 while (node) { 1275 struct io_kiocb *req = container_of(node, struct io_kiocb, 1276 io_task_work.node); 1277 1278 node = node->next; 1279 io_req_normal_work_add(req); 1280 } 1281 } 1282 1283 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1284 int min_events) 1285 { 1286 if (llist_empty(&ctx->work_llist)) 1287 return false; 1288 if (events < min_events) 1289 return true; 1290 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1291 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1292 return false; 1293 } 1294 1295 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1296 int min_events) 1297 { 1298 struct llist_node *node; 1299 unsigned int loops = 0; 1300 int ret = 0; 1301 1302 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1303 return -EEXIST; 1304 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1305 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1306 again: 1307 /* 1308 * llists are in reverse order, flip it back the right way before 1309 * running the pending items. 1310 */ 1311 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); 1312 while (node) { 1313 struct llist_node *next = node->next; 1314 struct io_kiocb *req = container_of(node, struct io_kiocb, 1315 io_task_work.node); 1316 INDIRECT_CALL_2(req->io_task_work.func, 1317 io_poll_task_func, io_req_rw_complete, 1318 req, ts); 1319 ret++; 1320 node = next; 1321 } 1322 loops++; 1323 1324 if (io_run_local_work_continue(ctx, ret, min_events)) 1325 goto again; 1326 io_submit_flush_completions(ctx); 1327 if (io_run_local_work_continue(ctx, ret, min_events)) 1328 goto again; 1329 1330 trace_io_uring_local_work_run(ctx, ret, loops); 1331 return ret; 1332 } 1333 1334 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1335 int min_events) 1336 { 1337 struct io_tw_state ts = {}; 1338 1339 if (llist_empty(&ctx->work_llist)) 1340 return 0; 1341 return __io_run_local_work(ctx, &ts, min_events); 1342 } 1343 1344 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events) 1345 { 1346 struct io_tw_state ts = {}; 1347 int ret; 1348 1349 mutex_lock(&ctx->uring_lock); 1350 ret = __io_run_local_work(ctx, &ts, min_events); 1351 mutex_unlock(&ctx->uring_lock); 1352 return ret; 1353 } 1354 1355 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1356 { 1357 io_tw_lock(req->ctx, ts); 1358 io_req_defer_failed(req, req->cqe.res); 1359 } 1360 1361 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1362 { 1363 io_tw_lock(req->ctx, ts); 1364 /* req->task == current here, checking PF_EXITING is safe */ 1365 if (unlikely(req->task->flags & PF_EXITING)) 1366 io_req_defer_failed(req, -EFAULT); 1367 else if (req->flags & REQ_F_FORCE_ASYNC) 1368 io_queue_iowq(req); 1369 else 1370 io_queue_sqe(req); 1371 } 1372 1373 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1374 { 1375 io_req_set_res(req, ret, 0); 1376 req->io_task_work.func = io_req_task_cancel; 1377 io_req_task_work_add(req); 1378 } 1379 1380 void io_req_task_queue(struct io_kiocb *req) 1381 { 1382 req->io_task_work.func = io_req_task_submit; 1383 io_req_task_work_add(req); 1384 } 1385 1386 void io_queue_next(struct io_kiocb *req) 1387 { 1388 struct io_kiocb *nxt = io_req_find_next(req); 1389 1390 if (nxt) 1391 io_req_task_queue(nxt); 1392 } 1393 1394 static void io_free_batch_list(struct io_ring_ctx *ctx, 1395 struct io_wq_work_node *node) 1396 __must_hold(&ctx->uring_lock) 1397 { 1398 do { 1399 struct io_kiocb *req = container_of(node, struct io_kiocb, 1400 comp_list); 1401 1402 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1403 if (req->flags & REQ_F_REFCOUNT) { 1404 node = req->comp_list.next; 1405 if (!req_ref_put_and_test(req)) 1406 continue; 1407 } 1408 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1409 struct async_poll *apoll = req->apoll; 1410 1411 if (apoll->double_poll) 1412 kfree(apoll->double_poll); 1413 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll)) 1414 kfree(apoll); 1415 req->flags &= ~REQ_F_POLLED; 1416 } 1417 if (req->flags & IO_REQ_LINK_FLAGS) 1418 io_queue_next(req); 1419 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1420 io_clean_op(req); 1421 } 1422 io_put_file(req); 1423 io_put_rsrc_node(ctx, req->rsrc_node); 1424 io_put_task(req->task); 1425 1426 node = req->comp_list.next; 1427 io_req_add_to_cache(req, ctx); 1428 } while (node); 1429 } 1430 1431 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1432 __must_hold(&ctx->uring_lock) 1433 { 1434 struct io_submit_state *state = &ctx->submit_state; 1435 struct io_wq_work_node *node; 1436 1437 __io_cq_lock(ctx); 1438 __wq_list_for_each(node, &state->compl_reqs) { 1439 struct io_kiocb *req = container_of(node, struct io_kiocb, 1440 comp_list); 1441 1442 if (!(req->flags & REQ_F_CQE_SKIP) && 1443 unlikely(!io_fill_cqe_req(ctx, req))) { 1444 if (ctx->lockless_cq) { 1445 spin_lock(&ctx->completion_lock); 1446 io_req_cqe_overflow(req); 1447 spin_unlock(&ctx->completion_lock); 1448 } else { 1449 io_req_cqe_overflow(req); 1450 } 1451 } 1452 } 1453 __io_cq_unlock_post(ctx); 1454 1455 if (!wq_list_empty(&state->compl_reqs)) { 1456 io_free_batch_list(ctx, state->compl_reqs.first); 1457 INIT_WQ_LIST(&state->compl_reqs); 1458 } 1459 ctx->submit_state.cq_flush = false; 1460 } 1461 1462 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1463 { 1464 /* See comment at the top of this file */ 1465 smp_rmb(); 1466 return __io_cqring_events(ctx); 1467 } 1468 1469 /* 1470 * We can't just wait for polled events to come to us, we have to actively 1471 * find and complete them. 1472 */ 1473 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1474 { 1475 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1476 return; 1477 1478 mutex_lock(&ctx->uring_lock); 1479 while (!wq_list_empty(&ctx->iopoll_list)) { 1480 /* let it sleep and repeat later if can't complete a request */ 1481 if (io_do_iopoll(ctx, true) == 0) 1482 break; 1483 /* 1484 * Ensure we allow local-to-the-cpu processing to take place, 1485 * in this case we need to ensure that we reap all events. 1486 * Also let task_work, etc. to progress by releasing the mutex 1487 */ 1488 if (need_resched()) { 1489 mutex_unlock(&ctx->uring_lock); 1490 cond_resched(); 1491 mutex_lock(&ctx->uring_lock); 1492 } 1493 } 1494 mutex_unlock(&ctx->uring_lock); 1495 } 1496 1497 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1498 { 1499 unsigned int nr_events = 0; 1500 unsigned long check_cq; 1501 1502 lockdep_assert_held(&ctx->uring_lock); 1503 1504 if (!io_allowed_run_tw(ctx)) 1505 return -EEXIST; 1506 1507 check_cq = READ_ONCE(ctx->check_cq); 1508 if (unlikely(check_cq)) { 1509 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1510 __io_cqring_overflow_flush(ctx, false); 1511 /* 1512 * Similarly do not spin if we have not informed the user of any 1513 * dropped CQE. 1514 */ 1515 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1516 return -EBADR; 1517 } 1518 /* 1519 * Don't enter poll loop if we already have events pending. 1520 * If we do, we can potentially be spinning for commands that 1521 * already triggered a CQE (eg in error). 1522 */ 1523 if (io_cqring_events(ctx)) 1524 return 0; 1525 1526 do { 1527 int ret = 0; 1528 1529 /* 1530 * If a submit got punted to a workqueue, we can have the 1531 * application entering polling for a command before it gets 1532 * issued. That app will hold the uring_lock for the duration 1533 * of the poll right here, so we need to take a breather every 1534 * now and then to ensure that the issue has a chance to add 1535 * the poll to the issued list. Otherwise we can spin here 1536 * forever, while the workqueue is stuck trying to acquire the 1537 * very same mutex. 1538 */ 1539 if (wq_list_empty(&ctx->iopoll_list) || 1540 io_task_work_pending(ctx)) { 1541 u32 tail = ctx->cached_cq_tail; 1542 1543 (void) io_run_local_work_locked(ctx, min); 1544 1545 if (task_work_pending(current) || 1546 wq_list_empty(&ctx->iopoll_list)) { 1547 mutex_unlock(&ctx->uring_lock); 1548 io_run_task_work(); 1549 mutex_lock(&ctx->uring_lock); 1550 } 1551 /* some requests don't go through iopoll_list */ 1552 if (tail != ctx->cached_cq_tail || 1553 wq_list_empty(&ctx->iopoll_list)) 1554 break; 1555 } 1556 ret = io_do_iopoll(ctx, !min); 1557 if (unlikely(ret < 0)) 1558 return ret; 1559 1560 if (task_sigpending(current)) 1561 return -EINTR; 1562 if (need_resched()) 1563 break; 1564 1565 nr_events += ret; 1566 } while (nr_events < min); 1567 1568 return 0; 1569 } 1570 1571 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1572 { 1573 io_req_complete_defer(req); 1574 } 1575 1576 /* 1577 * After the iocb has been issued, it's safe to be found on the poll list. 1578 * Adding the kiocb to the list AFTER submission ensures that we don't 1579 * find it from a io_do_iopoll() thread before the issuer is done 1580 * accessing the kiocb cookie. 1581 */ 1582 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1583 { 1584 struct io_ring_ctx *ctx = req->ctx; 1585 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1586 1587 /* workqueue context doesn't hold uring_lock, grab it now */ 1588 if (unlikely(needs_lock)) 1589 mutex_lock(&ctx->uring_lock); 1590 1591 /* 1592 * Track whether we have multiple files in our lists. This will impact 1593 * how we do polling eventually, not spinning if we're on potentially 1594 * different devices. 1595 */ 1596 if (wq_list_empty(&ctx->iopoll_list)) { 1597 ctx->poll_multi_queue = false; 1598 } else if (!ctx->poll_multi_queue) { 1599 struct io_kiocb *list_req; 1600 1601 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1602 comp_list); 1603 if (list_req->file != req->file) 1604 ctx->poll_multi_queue = true; 1605 } 1606 1607 /* 1608 * For fast devices, IO may have already completed. If it has, add 1609 * it to the front so we find it first. 1610 */ 1611 if (READ_ONCE(req->iopoll_completed)) 1612 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1613 else 1614 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1615 1616 if (unlikely(needs_lock)) { 1617 /* 1618 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1619 * in sq thread task context or in io worker task context. If 1620 * current task context is sq thread, we don't need to check 1621 * whether should wake up sq thread. 1622 */ 1623 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1624 wq_has_sleeper(&ctx->sq_data->wait)) 1625 wake_up(&ctx->sq_data->wait); 1626 1627 mutex_unlock(&ctx->uring_lock); 1628 } 1629 } 1630 1631 io_req_flags_t io_file_get_flags(struct file *file) 1632 { 1633 io_req_flags_t res = 0; 1634 1635 if (S_ISREG(file_inode(file)->i_mode)) 1636 res |= REQ_F_ISREG; 1637 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1638 res |= REQ_F_SUPPORT_NOWAIT; 1639 return res; 1640 } 1641 1642 bool io_alloc_async_data(struct io_kiocb *req) 1643 { 1644 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1645 1646 WARN_ON_ONCE(!def->async_size); 1647 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 1648 if (req->async_data) { 1649 req->flags |= REQ_F_ASYNC_DATA; 1650 return false; 1651 } 1652 return true; 1653 } 1654 1655 static u32 io_get_sequence(struct io_kiocb *req) 1656 { 1657 u32 seq = req->ctx->cached_sq_head; 1658 struct io_kiocb *cur; 1659 1660 /* need original cached_sq_head, but it was increased for each req */ 1661 io_for_each_link(cur, req) 1662 seq--; 1663 return seq; 1664 } 1665 1666 static __cold void io_drain_req(struct io_kiocb *req) 1667 __must_hold(&ctx->uring_lock) 1668 { 1669 struct io_ring_ctx *ctx = req->ctx; 1670 struct io_defer_entry *de; 1671 int ret; 1672 u32 seq = io_get_sequence(req); 1673 1674 /* Still need defer if there is pending req in defer list. */ 1675 spin_lock(&ctx->completion_lock); 1676 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1677 spin_unlock(&ctx->completion_lock); 1678 queue: 1679 ctx->drain_active = false; 1680 io_req_task_queue(req); 1681 return; 1682 } 1683 spin_unlock(&ctx->completion_lock); 1684 1685 io_prep_async_link(req); 1686 de = kmalloc(sizeof(*de), GFP_KERNEL); 1687 if (!de) { 1688 ret = -ENOMEM; 1689 io_req_defer_failed(req, ret); 1690 return; 1691 } 1692 1693 spin_lock(&ctx->completion_lock); 1694 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1695 spin_unlock(&ctx->completion_lock); 1696 kfree(de); 1697 goto queue; 1698 } 1699 1700 trace_io_uring_defer(req); 1701 de->req = req; 1702 de->seq = seq; 1703 list_add_tail(&de->list, &ctx->defer_list); 1704 spin_unlock(&ctx->completion_lock); 1705 } 1706 1707 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1708 unsigned int issue_flags) 1709 { 1710 if (req->file || !def->needs_file) 1711 return true; 1712 1713 if (req->flags & REQ_F_FIXED_FILE) 1714 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1715 else 1716 req->file = io_file_get_normal(req, req->cqe.fd); 1717 1718 return !!req->file; 1719 } 1720 1721 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1722 { 1723 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1724 const struct cred *creds = NULL; 1725 int ret; 1726 1727 if (unlikely(!io_assign_file(req, def, issue_flags))) 1728 return -EBADF; 1729 1730 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1731 creds = override_creds(req->creds); 1732 1733 if (!def->audit_skip) 1734 audit_uring_entry(req->opcode); 1735 1736 ret = def->issue(req, issue_flags); 1737 1738 if (!def->audit_skip) 1739 audit_uring_exit(!ret, ret); 1740 1741 if (creds) 1742 revert_creds(creds); 1743 1744 if (ret == IOU_OK) { 1745 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1746 io_req_complete_defer(req); 1747 else 1748 io_req_complete_post(req, issue_flags); 1749 1750 return 0; 1751 } 1752 1753 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1754 ret = 0; 1755 io_arm_ltimeout(req); 1756 1757 /* If the op doesn't have a file, we're not polling for it */ 1758 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1759 io_iopoll_req_issued(req, issue_flags); 1760 } 1761 return ret; 1762 } 1763 1764 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1765 { 1766 io_tw_lock(req->ctx, ts); 1767 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1768 IO_URING_F_COMPLETE_DEFER); 1769 } 1770 1771 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1772 { 1773 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1774 struct io_kiocb *nxt = NULL; 1775 1776 if (req_ref_put_and_test(req)) { 1777 if (req->flags & IO_REQ_LINK_FLAGS) 1778 nxt = io_req_find_next(req); 1779 io_free_req(req); 1780 } 1781 return nxt ? &nxt->work : NULL; 1782 } 1783 1784 void io_wq_submit_work(struct io_wq_work *work) 1785 { 1786 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1787 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1788 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1789 bool needs_poll = false; 1790 int ret = 0, err = -ECANCELED; 1791 1792 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1793 if (!(req->flags & REQ_F_REFCOUNT)) 1794 __io_req_set_refcount(req, 2); 1795 else 1796 req_ref_get(req); 1797 1798 io_arm_ltimeout(req); 1799 1800 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1801 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1802 fail: 1803 io_req_task_queue_fail(req, err); 1804 return; 1805 } 1806 if (!io_assign_file(req, def, issue_flags)) { 1807 err = -EBADF; 1808 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1809 goto fail; 1810 } 1811 1812 /* 1813 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1814 * submitter task context. Final request completions are handed to the 1815 * right context, however this is not the case of auxiliary CQEs, 1816 * which is the main mean of operation for multishot requests. 1817 * Don't allow any multishot execution from io-wq. It's more restrictive 1818 * than necessary and also cleaner. 1819 */ 1820 if (req->flags & REQ_F_APOLL_MULTISHOT) { 1821 err = -EBADFD; 1822 if (!io_file_can_poll(req)) 1823 goto fail; 1824 if (req->file->f_flags & O_NONBLOCK || 1825 req->file->f_mode & FMODE_NOWAIT) { 1826 err = -ECANCELED; 1827 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1828 goto fail; 1829 return; 1830 } else { 1831 req->flags &= ~REQ_F_APOLL_MULTISHOT; 1832 } 1833 } 1834 1835 if (req->flags & REQ_F_FORCE_ASYNC) { 1836 bool opcode_poll = def->pollin || def->pollout; 1837 1838 if (opcode_poll && io_file_can_poll(req)) { 1839 needs_poll = true; 1840 issue_flags |= IO_URING_F_NONBLOCK; 1841 } 1842 } 1843 1844 do { 1845 ret = io_issue_sqe(req, issue_flags); 1846 if (ret != -EAGAIN) 1847 break; 1848 1849 /* 1850 * If REQ_F_NOWAIT is set, then don't wait or retry with 1851 * poll. -EAGAIN is final for that case. 1852 */ 1853 if (req->flags & REQ_F_NOWAIT) 1854 break; 1855 1856 /* 1857 * We can get EAGAIN for iopolled IO even though we're 1858 * forcing a sync submission from here, since we can't 1859 * wait for request slots on the block side. 1860 */ 1861 if (!needs_poll) { 1862 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1863 break; 1864 if (io_wq_worker_stopped()) 1865 break; 1866 cond_resched(); 1867 continue; 1868 } 1869 1870 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1871 return; 1872 /* aborted or ready, in either case retry blocking */ 1873 needs_poll = false; 1874 issue_flags &= ~IO_URING_F_NONBLOCK; 1875 } while (1); 1876 1877 /* avoid locking problems by failing it from a clean context */ 1878 if (ret) 1879 io_req_task_queue_fail(req, ret); 1880 } 1881 1882 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1883 unsigned int issue_flags) 1884 { 1885 struct io_ring_ctx *ctx = req->ctx; 1886 struct io_fixed_file *slot; 1887 struct file *file = NULL; 1888 1889 io_ring_submit_lock(ctx, issue_flags); 1890 1891 if (unlikely((unsigned int)fd >= ctx->nr_user_files)) 1892 goto out; 1893 fd = array_index_nospec(fd, ctx->nr_user_files); 1894 slot = io_fixed_file_slot(&ctx->file_table, fd); 1895 if (!req->rsrc_node) 1896 __io_req_set_rsrc_node(req, ctx); 1897 req->flags |= io_slot_flags(slot); 1898 file = io_slot_file(slot); 1899 out: 1900 io_ring_submit_unlock(ctx, issue_flags); 1901 return file; 1902 } 1903 1904 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1905 { 1906 struct file *file = fget(fd); 1907 1908 trace_io_uring_file_get(req, fd); 1909 1910 /* we don't allow fixed io_uring files */ 1911 if (file && io_is_uring_fops(file)) 1912 io_req_track_inflight(req); 1913 return file; 1914 } 1915 1916 static void io_queue_async(struct io_kiocb *req, int ret) 1917 __must_hold(&req->ctx->uring_lock) 1918 { 1919 struct io_kiocb *linked_timeout; 1920 1921 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1922 io_req_defer_failed(req, ret); 1923 return; 1924 } 1925 1926 linked_timeout = io_prep_linked_timeout(req); 1927 1928 switch (io_arm_poll_handler(req, 0)) { 1929 case IO_APOLL_READY: 1930 io_kbuf_recycle(req, 0); 1931 io_req_task_queue(req); 1932 break; 1933 case IO_APOLL_ABORTED: 1934 io_kbuf_recycle(req, 0); 1935 io_queue_iowq(req); 1936 break; 1937 case IO_APOLL_OK: 1938 break; 1939 } 1940 1941 if (linked_timeout) 1942 io_queue_linked_timeout(linked_timeout); 1943 } 1944 1945 static inline void io_queue_sqe(struct io_kiocb *req) 1946 __must_hold(&req->ctx->uring_lock) 1947 { 1948 int ret; 1949 1950 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1951 1952 /* 1953 * We async punt it if the file wasn't marked NOWAIT, or if the file 1954 * doesn't support non-blocking read/write attempts 1955 */ 1956 if (unlikely(ret)) 1957 io_queue_async(req, ret); 1958 } 1959 1960 static void io_queue_sqe_fallback(struct io_kiocb *req) 1961 __must_hold(&req->ctx->uring_lock) 1962 { 1963 if (unlikely(req->flags & REQ_F_FAIL)) { 1964 /* 1965 * We don't submit, fail them all, for that replace hardlinks 1966 * with normal links. Extra REQ_F_LINK is tolerated. 1967 */ 1968 req->flags &= ~REQ_F_HARDLINK; 1969 req->flags |= REQ_F_LINK; 1970 io_req_defer_failed(req, req->cqe.res); 1971 } else { 1972 if (unlikely(req->ctx->drain_active)) 1973 io_drain_req(req); 1974 else 1975 io_queue_iowq(req); 1976 } 1977 } 1978 1979 /* 1980 * Check SQE restrictions (opcode and flags). 1981 * 1982 * Returns 'true' if SQE is allowed, 'false' otherwise. 1983 */ 1984 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1985 struct io_kiocb *req, 1986 unsigned int sqe_flags) 1987 { 1988 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1989 return false; 1990 1991 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1992 ctx->restrictions.sqe_flags_required) 1993 return false; 1994 1995 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1996 ctx->restrictions.sqe_flags_required)) 1997 return false; 1998 1999 return true; 2000 } 2001 2002 static void io_init_req_drain(struct io_kiocb *req) 2003 { 2004 struct io_ring_ctx *ctx = req->ctx; 2005 struct io_kiocb *head = ctx->submit_state.link.head; 2006 2007 ctx->drain_active = true; 2008 if (head) { 2009 /* 2010 * If we need to drain a request in the middle of a link, drain 2011 * the head request and the next request/link after the current 2012 * link. Considering sequential execution of links, 2013 * REQ_F_IO_DRAIN will be maintained for every request of our 2014 * link. 2015 */ 2016 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2017 ctx->drain_next = true; 2018 } 2019 } 2020 2021 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2022 { 2023 /* ensure per-opcode data is cleared if we fail before prep */ 2024 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2025 return err; 2026 } 2027 2028 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2029 const struct io_uring_sqe *sqe) 2030 __must_hold(&ctx->uring_lock) 2031 { 2032 const struct io_issue_def *def; 2033 unsigned int sqe_flags; 2034 int personality; 2035 u8 opcode; 2036 2037 /* req is partially pre-initialised, see io_preinit_req() */ 2038 req->opcode = opcode = READ_ONCE(sqe->opcode); 2039 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2040 sqe_flags = READ_ONCE(sqe->flags); 2041 req->flags = (io_req_flags_t) sqe_flags; 2042 req->cqe.user_data = READ_ONCE(sqe->user_data); 2043 req->file = NULL; 2044 req->rsrc_node = NULL; 2045 req->task = current; 2046 req->cancel_seq_set = false; 2047 2048 if (unlikely(opcode >= IORING_OP_LAST)) { 2049 req->opcode = 0; 2050 return io_init_fail_req(req, -EINVAL); 2051 } 2052 def = &io_issue_defs[opcode]; 2053 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2054 /* enforce forwards compatibility on users */ 2055 if (sqe_flags & ~SQE_VALID_FLAGS) 2056 return io_init_fail_req(req, -EINVAL); 2057 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2058 if (!def->buffer_select) 2059 return io_init_fail_req(req, -EOPNOTSUPP); 2060 req->buf_index = READ_ONCE(sqe->buf_group); 2061 } 2062 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2063 ctx->drain_disabled = true; 2064 if (sqe_flags & IOSQE_IO_DRAIN) { 2065 if (ctx->drain_disabled) 2066 return io_init_fail_req(req, -EOPNOTSUPP); 2067 io_init_req_drain(req); 2068 } 2069 } 2070 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2071 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2072 return io_init_fail_req(req, -EACCES); 2073 /* knock it to the slow queue path, will be drained there */ 2074 if (ctx->drain_active) 2075 req->flags |= REQ_F_FORCE_ASYNC; 2076 /* if there is no link, we're at "next" request and need to drain */ 2077 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2078 ctx->drain_next = false; 2079 ctx->drain_active = true; 2080 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2081 } 2082 } 2083 2084 if (!def->ioprio && sqe->ioprio) 2085 return io_init_fail_req(req, -EINVAL); 2086 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2087 return io_init_fail_req(req, -EINVAL); 2088 2089 if (def->needs_file) { 2090 struct io_submit_state *state = &ctx->submit_state; 2091 2092 req->cqe.fd = READ_ONCE(sqe->fd); 2093 2094 /* 2095 * Plug now if we have more than 2 IO left after this, and the 2096 * target is potentially a read/write to block based storage. 2097 */ 2098 if (state->need_plug && def->plug) { 2099 state->plug_started = true; 2100 state->need_plug = false; 2101 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2102 } 2103 } 2104 2105 personality = READ_ONCE(sqe->personality); 2106 if (personality) { 2107 int ret; 2108 2109 req->creds = xa_load(&ctx->personalities, personality); 2110 if (!req->creds) 2111 return io_init_fail_req(req, -EINVAL); 2112 get_cred(req->creds); 2113 ret = security_uring_override_creds(req->creds); 2114 if (ret) { 2115 put_cred(req->creds); 2116 return io_init_fail_req(req, ret); 2117 } 2118 req->flags |= REQ_F_CREDS; 2119 } 2120 2121 return def->prep(req, sqe); 2122 } 2123 2124 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2125 struct io_kiocb *req, int ret) 2126 { 2127 struct io_ring_ctx *ctx = req->ctx; 2128 struct io_submit_link *link = &ctx->submit_state.link; 2129 struct io_kiocb *head = link->head; 2130 2131 trace_io_uring_req_failed(sqe, req, ret); 2132 2133 /* 2134 * Avoid breaking links in the middle as it renders links with SQPOLL 2135 * unusable. Instead of failing eagerly, continue assembling the link if 2136 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2137 * should find the flag and handle the rest. 2138 */ 2139 req_fail_link_node(req, ret); 2140 if (head && !(head->flags & REQ_F_FAIL)) 2141 req_fail_link_node(head, -ECANCELED); 2142 2143 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2144 if (head) { 2145 link->last->link = req; 2146 link->head = NULL; 2147 req = head; 2148 } 2149 io_queue_sqe_fallback(req); 2150 return ret; 2151 } 2152 2153 if (head) 2154 link->last->link = req; 2155 else 2156 link->head = req; 2157 link->last = req; 2158 return 0; 2159 } 2160 2161 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2162 const struct io_uring_sqe *sqe) 2163 __must_hold(&ctx->uring_lock) 2164 { 2165 struct io_submit_link *link = &ctx->submit_state.link; 2166 int ret; 2167 2168 ret = io_init_req(ctx, req, sqe); 2169 if (unlikely(ret)) 2170 return io_submit_fail_init(sqe, req, ret); 2171 2172 trace_io_uring_submit_req(req); 2173 2174 /* 2175 * If we already have a head request, queue this one for async 2176 * submittal once the head completes. If we don't have a head but 2177 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2178 * submitted sync once the chain is complete. If none of those 2179 * conditions are true (normal request), then just queue it. 2180 */ 2181 if (unlikely(link->head)) { 2182 trace_io_uring_link(req, link->last); 2183 link->last->link = req; 2184 link->last = req; 2185 2186 if (req->flags & IO_REQ_LINK_FLAGS) 2187 return 0; 2188 /* last request of the link, flush it */ 2189 req = link->head; 2190 link->head = NULL; 2191 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2192 goto fallback; 2193 2194 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2195 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2196 if (req->flags & IO_REQ_LINK_FLAGS) { 2197 link->head = req; 2198 link->last = req; 2199 } else { 2200 fallback: 2201 io_queue_sqe_fallback(req); 2202 } 2203 return 0; 2204 } 2205 2206 io_queue_sqe(req); 2207 return 0; 2208 } 2209 2210 /* 2211 * Batched submission is done, ensure local IO is flushed out. 2212 */ 2213 static void io_submit_state_end(struct io_ring_ctx *ctx) 2214 { 2215 struct io_submit_state *state = &ctx->submit_state; 2216 2217 if (unlikely(state->link.head)) 2218 io_queue_sqe_fallback(state->link.head); 2219 /* flush only after queuing links as they can generate completions */ 2220 io_submit_flush_completions(ctx); 2221 if (state->plug_started) 2222 blk_finish_plug(&state->plug); 2223 } 2224 2225 /* 2226 * Start submission side cache. 2227 */ 2228 static void io_submit_state_start(struct io_submit_state *state, 2229 unsigned int max_ios) 2230 { 2231 state->plug_started = false; 2232 state->need_plug = max_ios > 2; 2233 state->submit_nr = max_ios; 2234 /* set only head, no need to init link_last in advance */ 2235 state->link.head = NULL; 2236 } 2237 2238 static void io_commit_sqring(struct io_ring_ctx *ctx) 2239 { 2240 struct io_rings *rings = ctx->rings; 2241 2242 /* 2243 * Ensure any loads from the SQEs are done at this point, 2244 * since once we write the new head, the application could 2245 * write new data to them. 2246 */ 2247 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2248 } 2249 2250 /* 2251 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2252 * that is mapped by userspace. This means that care needs to be taken to 2253 * ensure that reads are stable, as we cannot rely on userspace always 2254 * being a good citizen. If members of the sqe are validated and then later 2255 * used, it's important that those reads are done through READ_ONCE() to 2256 * prevent a re-load down the line. 2257 */ 2258 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2259 { 2260 unsigned mask = ctx->sq_entries - 1; 2261 unsigned head = ctx->cached_sq_head++ & mask; 2262 2263 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { 2264 head = READ_ONCE(ctx->sq_array[head]); 2265 if (unlikely(head >= ctx->sq_entries)) { 2266 /* drop invalid entries */ 2267 spin_lock(&ctx->completion_lock); 2268 ctx->cq_extra--; 2269 spin_unlock(&ctx->completion_lock); 2270 WRITE_ONCE(ctx->rings->sq_dropped, 2271 READ_ONCE(ctx->rings->sq_dropped) + 1); 2272 return false; 2273 } 2274 } 2275 2276 /* 2277 * The cached sq head (or cq tail) serves two purposes: 2278 * 2279 * 1) allows us to batch the cost of updating the user visible 2280 * head updates. 2281 * 2) allows the kernel side to track the head on its own, even 2282 * though the application is the one updating it. 2283 */ 2284 2285 /* double index for 128-byte SQEs, twice as long */ 2286 if (ctx->flags & IORING_SETUP_SQE128) 2287 head <<= 1; 2288 *sqe = &ctx->sq_sqes[head]; 2289 return true; 2290 } 2291 2292 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2293 __must_hold(&ctx->uring_lock) 2294 { 2295 unsigned int entries = io_sqring_entries(ctx); 2296 unsigned int left; 2297 int ret; 2298 2299 if (unlikely(!entries)) 2300 return 0; 2301 /* make sure SQ entry isn't read before tail */ 2302 ret = left = min(nr, entries); 2303 io_get_task_refs(left); 2304 io_submit_state_start(&ctx->submit_state, left); 2305 2306 do { 2307 const struct io_uring_sqe *sqe; 2308 struct io_kiocb *req; 2309 2310 if (unlikely(!io_alloc_req(ctx, &req))) 2311 break; 2312 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2313 io_req_add_to_cache(req, ctx); 2314 break; 2315 } 2316 2317 /* 2318 * Continue submitting even for sqe failure if the 2319 * ring was setup with IORING_SETUP_SUBMIT_ALL 2320 */ 2321 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2322 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2323 left--; 2324 break; 2325 } 2326 } while (--left); 2327 2328 if (unlikely(left)) { 2329 ret -= left; 2330 /* try again if it submitted nothing and can't allocate a req */ 2331 if (!ret && io_req_cache_empty(ctx)) 2332 ret = -EAGAIN; 2333 current->io_uring->cached_refs += left; 2334 } 2335 2336 io_submit_state_end(ctx); 2337 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2338 io_commit_sqring(ctx); 2339 return ret; 2340 } 2341 2342 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2343 int wake_flags, void *key) 2344 { 2345 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2346 2347 /* 2348 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2349 * the task, and the next invocation will do it. 2350 */ 2351 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2352 return autoremove_wake_function(curr, mode, wake_flags, key); 2353 return -1; 2354 } 2355 2356 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2357 { 2358 if (!llist_empty(&ctx->work_llist)) { 2359 __set_current_state(TASK_RUNNING); 2360 if (io_run_local_work(ctx, INT_MAX) > 0) 2361 return 0; 2362 } 2363 if (io_run_task_work() > 0) 2364 return 0; 2365 if (task_sigpending(current)) 2366 return -EINTR; 2367 return 0; 2368 } 2369 2370 static bool current_pending_io(void) 2371 { 2372 struct io_uring_task *tctx = current->io_uring; 2373 2374 if (!tctx) 2375 return false; 2376 return percpu_counter_read_positive(&tctx->inflight); 2377 } 2378 2379 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2380 { 2381 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2382 2383 WRITE_ONCE(iowq->hit_timeout, 1); 2384 iowq->min_timeout = 0; 2385 wake_up_process(iowq->wq.private); 2386 return HRTIMER_NORESTART; 2387 } 2388 2389 /* 2390 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2391 * wake up. If not, and we have a normal timeout, switch to that and keep 2392 * sleeping. 2393 */ 2394 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2395 { 2396 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2397 struct io_ring_ctx *ctx = iowq->ctx; 2398 2399 /* no general timeout, or shorter (or equal), we are done */ 2400 if (iowq->timeout == KTIME_MAX || 2401 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2402 goto out_wake; 2403 /* work we may need to run, wake function will see if we need to wake */ 2404 if (io_has_work(ctx)) 2405 goto out_wake; 2406 /* got events since we started waiting, min timeout is done */ 2407 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2408 goto out_wake; 2409 /* if we have any events and min timeout expired, we're done */ 2410 if (io_cqring_events(ctx)) 2411 goto out_wake; 2412 2413 /* 2414 * If using deferred task_work running and application is waiting on 2415 * more than one request, ensure we reset it now where we are switching 2416 * to normal sleeps. Any request completion post min_wait should wake 2417 * the task and return. 2418 */ 2419 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2420 atomic_set(&ctx->cq_wait_nr, 1); 2421 smp_mb(); 2422 if (!llist_empty(&ctx->work_llist)) 2423 goto out_wake; 2424 } 2425 2426 iowq->t.function = io_cqring_timer_wakeup; 2427 hrtimer_set_expires(timer, iowq->timeout); 2428 return HRTIMER_RESTART; 2429 out_wake: 2430 return io_cqring_timer_wakeup(timer); 2431 } 2432 2433 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2434 clockid_t clock_id, ktime_t start_time) 2435 { 2436 ktime_t timeout; 2437 2438 hrtimer_init_on_stack(&iowq->t, clock_id, HRTIMER_MODE_ABS); 2439 if (iowq->min_timeout) { 2440 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2441 iowq->t.function = io_cqring_min_timer_wakeup; 2442 } else { 2443 timeout = iowq->timeout; 2444 iowq->t.function = io_cqring_timer_wakeup; 2445 } 2446 2447 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2448 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2449 2450 if (!READ_ONCE(iowq->hit_timeout)) 2451 schedule(); 2452 2453 hrtimer_cancel(&iowq->t); 2454 destroy_hrtimer_on_stack(&iowq->t); 2455 __set_current_state(TASK_RUNNING); 2456 2457 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2458 } 2459 2460 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2461 struct io_wait_queue *iowq, 2462 ktime_t start_time) 2463 { 2464 int ret = 0; 2465 2466 /* 2467 * Mark us as being in io_wait if we have pending requests, so cpufreq 2468 * can take into account that the task is waiting for IO - turns out 2469 * to be important for low QD IO. 2470 */ 2471 if (current_pending_io()) 2472 current->in_iowait = 1; 2473 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2474 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2475 else 2476 schedule(); 2477 current->in_iowait = 0; 2478 return ret; 2479 } 2480 2481 /* If this returns > 0, the caller should retry */ 2482 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2483 struct io_wait_queue *iowq, 2484 ktime_t start_time) 2485 { 2486 if (unlikely(READ_ONCE(ctx->check_cq))) 2487 return 1; 2488 if (unlikely(!llist_empty(&ctx->work_llist))) 2489 return 1; 2490 if (unlikely(task_work_pending(current))) 2491 return 1; 2492 if (unlikely(task_sigpending(current))) 2493 return -EINTR; 2494 if (unlikely(io_should_wake(iowq))) 2495 return 0; 2496 2497 return __io_cqring_wait_schedule(ctx, iowq, start_time); 2498 } 2499 2500 struct ext_arg { 2501 size_t argsz; 2502 struct __kernel_timespec __user *ts; 2503 const sigset_t __user *sig; 2504 ktime_t min_time; 2505 }; 2506 2507 /* 2508 * Wait until events become available, if we don't already have some. The 2509 * application must reap them itself, as they reside on the shared cq ring. 2510 */ 2511 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2512 struct ext_arg *ext_arg) 2513 { 2514 struct io_wait_queue iowq; 2515 struct io_rings *rings = ctx->rings; 2516 ktime_t start_time; 2517 int ret; 2518 2519 if (!io_allowed_run_tw(ctx)) 2520 return -EEXIST; 2521 if (!llist_empty(&ctx->work_llist)) 2522 io_run_local_work(ctx, min_events); 2523 io_run_task_work(); 2524 2525 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2526 io_cqring_do_overflow_flush(ctx); 2527 if (__io_cqring_events_user(ctx) >= min_events) 2528 return 0; 2529 2530 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2531 iowq.wq.private = current; 2532 INIT_LIST_HEAD(&iowq.wq.entry); 2533 iowq.ctx = ctx; 2534 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2535 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2536 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2537 iowq.hit_timeout = 0; 2538 iowq.min_timeout = ext_arg->min_time; 2539 iowq.timeout = KTIME_MAX; 2540 start_time = io_get_time(ctx); 2541 2542 if (ext_arg->ts) { 2543 struct timespec64 ts; 2544 2545 if (get_timespec64(&ts, ext_arg->ts)) 2546 return -EFAULT; 2547 2548 iowq.timeout = timespec64_to_ktime(ts); 2549 if (!(flags & IORING_ENTER_ABS_TIMER)) 2550 iowq.timeout = ktime_add(iowq.timeout, start_time); 2551 } 2552 2553 if (ext_arg->sig) { 2554 #ifdef CONFIG_COMPAT 2555 if (in_compat_syscall()) 2556 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2557 ext_arg->argsz); 2558 else 2559 #endif 2560 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2561 2562 if (ret) 2563 return ret; 2564 } 2565 2566 io_napi_busy_loop(ctx, &iowq); 2567 2568 trace_io_uring_cqring_wait(ctx, min_events); 2569 do { 2570 unsigned long check_cq; 2571 int nr_wait; 2572 2573 /* if min timeout has been hit, don't reset wait count */ 2574 if (!iowq.hit_timeout) 2575 nr_wait = (int) iowq.cq_tail - 2576 READ_ONCE(ctx->rings->cq.tail); 2577 else 2578 nr_wait = 1; 2579 2580 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2581 atomic_set(&ctx->cq_wait_nr, nr_wait); 2582 set_current_state(TASK_INTERRUPTIBLE); 2583 } else { 2584 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2585 TASK_INTERRUPTIBLE); 2586 } 2587 2588 ret = io_cqring_wait_schedule(ctx, &iowq, start_time); 2589 __set_current_state(TASK_RUNNING); 2590 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2591 2592 /* 2593 * Run task_work after scheduling and before io_should_wake(). 2594 * If we got woken because of task_work being processed, run it 2595 * now rather than let the caller do another wait loop. 2596 */ 2597 if (!llist_empty(&ctx->work_llist)) 2598 io_run_local_work(ctx, nr_wait); 2599 io_run_task_work(); 2600 2601 /* 2602 * Non-local task_work will be run on exit to userspace, but 2603 * if we're using DEFER_TASKRUN, then we could have waited 2604 * with a timeout for a number of requests. If the timeout 2605 * hits, we could have some requests ready to process. Ensure 2606 * this break is _after_ we have run task_work, to avoid 2607 * deferring running potentially pending requests until the 2608 * next time we wait for events. 2609 */ 2610 if (ret < 0) 2611 break; 2612 2613 check_cq = READ_ONCE(ctx->check_cq); 2614 if (unlikely(check_cq)) { 2615 /* let the caller flush overflows, retry */ 2616 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2617 io_cqring_do_overflow_flush(ctx); 2618 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2619 ret = -EBADR; 2620 break; 2621 } 2622 } 2623 2624 if (io_should_wake(&iowq)) { 2625 ret = 0; 2626 break; 2627 } 2628 cond_resched(); 2629 } while (1); 2630 2631 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2632 finish_wait(&ctx->cq_wait, &iowq.wq); 2633 restore_saved_sigmask_unless(ret == -EINTR); 2634 2635 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2636 } 2637 2638 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2639 size_t size) 2640 { 2641 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2642 size); 2643 } 2644 2645 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2646 size_t size) 2647 { 2648 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2649 size); 2650 } 2651 2652 static void io_rings_free(struct io_ring_ctx *ctx) 2653 { 2654 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2655 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages, 2656 true); 2657 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages, 2658 true); 2659 } else { 2660 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2661 ctx->n_ring_pages = 0; 2662 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2663 ctx->n_sqe_pages = 0; 2664 vunmap(ctx->rings); 2665 vunmap(ctx->sq_sqes); 2666 } 2667 2668 ctx->rings = NULL; 2669 ctx->sq_sqes = NULL; 2670 } 2671 2672 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, 2673 unsigned int cq_entries, size_t *sq_offset) 2674 { 2675 struct io_rings *rings; 2676 size_t off, sq_array_size; 2677 2678 off = struct_size(rings, cqes, cq_entries); 2679 if (off == SIZE_MAX) 2680 return SIZE_MAX; 2681 if (ctx->flags & IORING_SETUP_CQE32) { 2682 if (check_shl_overflow(off, 1, &off)) 2683 return SIZE_MAX; 2684 } 2685 2686 #ifdef CONFIG_SMP 2687 off = ALIGN(off, SMP_CACHE_BYTES); 2688 if (off == 0) 2689 return SIZE_MAX; 2690 #endif 2691 2692 if (ctx->flags & IORING_SETUP_NO_SQARRAY) { 2693 *sq_offset = SIZE_MAX; 2694 return off; 2695 } 2696 2697 *sq_offset = off; 2698 2699 sq_array_size = array_size(sizeof(u32), sq_entries); 2700 if (sq_array_size == SIZE_MAX) 2701 return SIZE_MAX; 2702 2703 if (check_add_overflow(off, sq_array_size, &off)) 2704 return SIZE_MAX; 2705 2706 return off; 2707 } 2708 2709 static void io_req_caches_free(struct io_ring_ctx *ctx) 2710 { 2711 struct io_kiocb *req; 2712 int nr = 0; 2713 2714 mutex_lock(&ctx->uring_lock); 2715 2716 while (!io_req_cache_empty(ctx)) { 2717 req = io_extract_req(ctx); 2718 kmem_cache_free(req_cachep, req); 2719 nr++; 2720 } 2721 if (nr) 2722 percpu_ref_put_many(&ctx->refs, nr); 2723 mutex_unlock(&ctx->uring_lock); 2724 } 2725 2726 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2727 { 2728 io_sq_thread_finish(ctx); 2729 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ 2730 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) 2731 return; 2732 2733 mutex_lock(&ctx->uring_lock); 2734 if (ctx->buf_data) 2735 __io_sqe_buffers_unregister(ctx); 2736 if (ctx->file_data) 2737 __io_sqe_files_unregister(ctx); 2738 io_cqring_overflow_kill(ctx); 2739 io_eventfd_unregister(ctx); 2740 io_alloc_cache_free(&ctx->apoll_cache, kfree); 2741 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2742 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 2743 io_alloc_cache_free(&ctx->uring_cache, kfree); 2744 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 2745 io_futex_cache_free(ctx); 2746 io_destroy_buffers(ctx); 2747 mutex_unlock(&ctx->uring_lock); 2748 if (ctx->sq_creds) 2749 put_cred(ctx->sq_creds); 2750 if (ctx->submitter_task) 2751 put_task_struct(ctx->submitter_task); 2752 2753 /* there are no registered resources left, nobody uses it */ 2754 if (ctx->rsrc_node) 2755 io_rsrc_node_destroy(ctx, ctx->rsrc_node); 2756 2757 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); 2758 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2759 2760 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree); 2761 if (ctx->mm_account) { 2762 mmdrop(ctx->mm_account); 2763 ctx->mm_account = NULL; 2764 } 2765 io_rings_free(ctx); 2766 2767 percpu_ref_exit(&ctx->refs); 2768 free_uid(ctx->user); 2769 io_req_caches_free(ctx); 2770 if (ctx->hash_map) 2771 io_wq_put_hash(ctx->hash_map); 2772 io_napi_free(ctx); 2773 kfree(ctx->cancel_table.hbs); 2774 kfree(ctx->cancel_table_locked.hbs); 2775 xa_destroy(&ctx->io_bl_xa); 2776 kfree(ctx); 2777 } 2778 2779 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2780 { 2781 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2782 poll_wq_task_work); 2783 2784 mutex_lock(&ctx->uring_lock); 2785 ctx->poll_activated = true; 2786 mutex_unlock(&ctx->uring_lock); 2787 2788 /* 2789 * Wake ups for some events between start of polling and activation 2790 * might've been lost due to loose synchronisation. 2791 */ 2792 wake_up_all(&ctx->poll_wq); 2793 percpu_ref_put(&ctx->refs); 2794 } 2795 2796 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2797 { 2798 spin_lock(&ctx->completion_lock); 2799 /* already activated or in progress */ 2800 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2801 goto out; 2802 if (WARN_ON_ONCE(!ctx->task_complete)) 2803 goto out; 2804 if (!ctx->submitter_task) 2805 goto out; 2806 /* 2807 * with ->submitter_task only the submitter task completes requests, we 2808 * only need to sync with it, which is done by injecting a tw 2809 */ 2810 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2811 percpu_ref_get(&ctx->refs); 2812 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2813 percpu_ref_put(&ctx->refs); 2814 out: 2815 spin_unlock(&ctx->completion_lock); 2816 } 2817 2818 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2819 { 2820 struct io_ring_ctx *ctx = file->private_data; 2821 __poll_t mask = 0; 2822 2823 if (unlikely(!ctx->poll_activated)) 2824 io_activate_pollwq(ctx); 2825 2826 poll_wait(file, &ctx->poll_wq, wait); 2827 /* 2828 * synchronizes with barrier from wq_has_sleeper call in 2829 * io_commit_cqring 2830 */ 2831 smp_rmb(); 2832 if (!io_sqring_full(ctx)) 2833 mask |= EPOLLOUT | EPOLLWRNORM; 2834 2835 /* 2836 * Don't flush cqring overflow list here, just do a simple check. 2837 * Otherwise there could possible be ABBA deadlock: 2838 * CPU0 CPU1 2839 * ---- ---- 2840 * lock(&ctx->uring_lock); 2841 * lock(&ep->mtx); 2842 * lock(&ctx->uring_lock); 2843 * lock(&ep->mtx); 2844 * 2845 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2846 * pushes them to do the flush. 2847 */ 2848 2849 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2850 mask |= EPOLLIN | EPOLLRDNORM; 2851 2852 return mask; 2853 } 2854 2855 struct io_tctx_exit { 2856 struct callback_head task_work; 2857 struct completion completion; 2858 struct io_ring_ctx *ctx; 2859 }; 2860 2861 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2862 { 2863 struct io_uring_task *tctx = current->io_uring; 2864 struct io_tctx_exit *work; 2865 2866 work = container_of(cb, struct io_tctx_exit, task_work); 2867 /* 2868 * When @in_cancel, we're in cancellation and it's racy to remove the 2869 * node. It'll be removed by the end of cancellation, just ignore it. 2870 * tctx can be NULL if the queueing of this task_work raced with 2871 * work cancelation off the exec path. 2872 */ 2873 if (tctx && !atomic_read(&tctx->in_cancel)) 2874 io_uring_del_tctx_node((unsigned long)work->ctx); 2875 complete(&work->completion); 2876 } 2877 2878 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2879 { 2880 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2881 2882 return req->ctx == data; 2883 } 2884 2885 static __cold void io_ring_exit_work(struct work_struct *work) 2886 { 2887 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2888 unsigned long timeout = jiffies + HZ * 60 * 5; 2889 unsigned long interval = HZ / 20; 2890 struct io_tctx_exit exit; 2891 struct io_tctx_node *node; 2892 int ret; 2893 2894 /* 2895 * If we're doing polled IO and end up having requests being 2896 * submitted async (out-of-line), then completions can come in while 2897 * we're waiting for refs to drop. We need to reap these manually, 2898 * as nobody else will be looking for them. 2899 */ 2900 do { 2901 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2902 mutex_lock(&ctx->uring_lock); 2903 io_cqring_overflow_kill(ctx); 2904 mutex_unlock(&ctx->uring_lock); 2905 } 2906 2907 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2908 io_move_task_work_from_local(ctx); 2909 2910 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2911 cond_resched(); 2912 2913 if (ctx->sq_data) { 2914 struct io_sq_data *sqd = ctx->sq_data; 2915 struct task_struct *tsk; 2916 2917 io_sq_thread_park(sqd); 2918 tsk = sqd->thread; 2919 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2920 io_wq_cancel_cb(tsk->io_uring->io_wq, 2921 io_cancel_ctx_cb, ctx, true); 2922 io_sq_thread_unpark(sqd); 2923 } 2924 2925 io_req_caches_free(ctx); 2926 2927 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2928 /* there is little hope left, don't run it too often */ 2929 interval = HZ * 60; 2930 } 2931 /* 2932 * This is really an uninterruptible wait, as it has to be 2933 * complete. But it's also run from a kworker, which doesn't 2934 * take signals, so it's fine to make it interruptible. This 2935 * avoids scenarios where we knowingly can wait much longer 2936 * on completions, for example if someone does a SIGSTOP on 2937 * a task that needs to finish task_work to make this loop 2938 * complete. That's a synthetic situation that should not 2939 * cause a stuck task backtrace, and hence a potential panic 2940 * on stuck tasks if that is enabled. 2941 */ 2942 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2943 2944 init_completion(&exit.completion); 2945 init_task_work(&exit.task_work, io_tctx_exit_cb); 2946 exit.ctx = ctx; 2947 2948 mutex_lock(&ctx->uring_lock); 2949 while (!list_empty(&ctx->tctx_list)) { 2950 WARN_ON_ONCE(time_after(jiffies, timeout)); 2951 2952 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2953 ctx_node); 2954 /* don't spin on a single task if cancellation failed */ 2955 list_rotate_left(&ctx->tctx_list); 2956 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2957 if (WARN_ON_ONCE(ret)) 2958 continue; 2959 2960 mutex_unlock(&ctx->uring_lock); 2961 /* 2962 * See comment above for 2963 * wait_for_completion_interruptible_timeout() on why this 2964 * wait is marked as interruptible. 2965 */ 2966 wait_for_completion_interruptible(&exit.completion); 2967 mutex_lock(&ctx->uring_lock); 2968 } 2969 mutex_unlock(&ctx->uring_lock); 2970 spin_lock(&ctx->completion_lock); 2971 spin_unlock(&ctx->completion_lock); 2972 2973 /* pairs with RCU read section in io_req_local_work_add() */ 2974 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2975 synchronize_rcu(); 2976 2977 io_ring_ctx_free(ctx); 2978 } 2979 2980 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2981 { 2982 unsigned long index; 2983 struct creds *creds; 2984 2985 mutex_lock(&ctx->uring_lock); 2986 percpu_ref_kill(&ctx->refs); 2987 xa_for_each(&ctx->personalities, index, creds) 2988 io_unregister_personality(ctx, index); 2989 mutex_unlock(&ctx->uring_lock); 2990 2991 flush_delayed_work(&ctx->fallback_work); 2992 2993 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2994 /* 2995 * Use system_unbound_wq to avoid spawning tons of event kworkers 2996 * if we're exiting a ton of rings at the same time. It just adds 2997 * noise and overhead, there's no discernable change in runtime 2998 * over using system_wq. 2999 */ 3000 queue_work(iou_wq, &ctx->exit_work); 3001 } 3002 3003 static int io_uring_release(struct inode *inode, struct file *file) 3004 { 3005 struct io_ring_ctx *ctx = file->private_data; 3006 3007 file->private_data = NULL; 3008 io_ring_ctx_wait_and_kill(ctx); 3009 return 0; 3010 } 3011 3012 struct io_task_cancel { 3013 struct task_struct *task; 3014 bool all; 3015 }; 3016 3017 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3018 { 3019 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3020 struct io_task_cancel *cancel = data; 3021 3022 return io_match_task_safe(req, cancel->task, cancel->all); 3023 } 3024 3025 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3026 struct task_struct *task, 3027 bool cancel_all) 3028 { 3029 struct io_defer_entry *de; 3030 LIST_HEAD(list); 3031 3032 spin_lock(&ctx->completion_lock); 3033 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3034 if (io_match_task_safe(de->req, task, cancel_all)) { 3035 list_cut_position(&list, &ctx->defer_list, &de->list); 3036 break; 3037 } 3038 } 3039 spin_unlock(&ctx->completion_lock); 3040 if (list_empty(&list)) 3041 return false; 3042 3043 while (!list_empty(&list)) { 3044 de = list_first_entry(&list, struct io_defer_entry, list); 3045 list_del_init(&de->list); 3046 io_req_task_queue_fail(de->req, -ECANCELED); 3047 kfree(de); 3048 } 3049 return true; 3050 } 3051 3052 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3053 { 3054 struct io_tctx_node *node; 3055 enum io_wq_cancel cret; 3056 bool ret = false; 3057 3058 mutex_lock(&ctx->uring_lock); 3059 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3060 struct io_uring_task *tctx = node->task->io_uring; 3061 3062 /* 3063 * io_wq will stay alive while we hold uring_lock, because it's 3064 * killed after ctx nodes, which requires to take the lock. 3065 */ 3066 if (!tctx || !tctx->io_wq) 3067 continue; 3068 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3069 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3070 } 3071 mutex_unlock(&ctx->uring_lock); 3072 3073 return ret; 3074 } 3075 3076 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3077 struct task_struct *task, 3078 bool cancel_all) 3079 { 3080 struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; 3081 struct io_uring_task *tctx = task ? task->io_uring : NULL; 3082 enum io_wq_cancel cret; 3083 bool ret = false; 3084 3085 /* set it so io_req_local_work_add() would wake us up */ 3086 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3087 atomic_set(&ctx->cq_wait_nr, 1); 3088 smp_mb(); 3089 } 3090 3091 /* failed during ring init, it couldn't have issued any requests */ 3092 if (!ctx->rings) 3093 return false; 3094 3095 if (!task) { 3096 ret |= io_uring_try_cancel_iowq(ctx); 3097 } else if (tctx && tctx->io_wq) { 3098 /* 3099 * Cancels requests of all rings, not only @ctx, but 3100 * it's fine as the task is in exit/exec. 3101 */ 3102 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3103 &cancel, true); 3104 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3105 } 3106 3107 /* SQPOLL thread does its own polling */ 3108 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3109 (ctx->sq_data && ctx->sq_data->thread == current)) { 3110 while (!wq_list_empty(&ctx->iopoll_list)) { 3111 io_iopoll_try_reap_events(ctx); 3112 ret = true; 3113 cond_resched(); 3114 } 3115 } 3116 3117 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3118 io_allowed_defer_tw_run(ctx)) 3119 ret |= io_run_local_work(ctx, INT_MAX) > 0; 3120 ret |= io_cancel_defer_files(ctx, task, cancel_all); 3121 mutex_lock(&ctx->uring_lock); 3122 ret |= io_poll_remove_all(ctx, task, cancel_all); 3123 ret |= io_waitid_remove_all(ctx, task, cancel_all); 3124 ret |= io_futex_remove_all(ctx, task, cancel_all); 3125 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all); 3126 mutex_unlock(&ctx->uring_lock); 3127 ret |= io_kill_timeouts(ctx, task, cancel_all); 3128 if (task) 3129 ret |= io_run_task_work() > 0; 3130 else 3131 ret |= flush_delayed_work(&ctx->fallback_work); 3132 return ret; 3133 } 3134 3135 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3136 { 3137 if (tracked) 3138 return atomic_read(&tctx->inflight_tracked); 3139 return percpu_counter_sum(&tctx->inflight); 3140 } 3141 3142 /* 3143 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3144 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3145 */ 3146 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3147 { 3148 struct io_uring_task *tctx = current->io_uring; 3149 struct io_ring_ctx *ctx; 3150 struct io_tctx_node *node; 3151 unsigned long index; 3152 s64 inflight; 3153 DEFINE_WAIT(wait); 3154 3155 WARN_ON_ONCE(sqd && sqd->thread != current); 3156 3157 if (!current->io_uring) 3158 return; 3159 if (tctx->io_wq) 3160 io_wq_exit_start(tctx->io_wq); 3161 3162 atomic_inc(&tctx->in_cancel); 3163 do { 3164 bool loop = false; 3165 3166 io_uring_drop_tctx_refs(current); 3167 if (!tctx_inflight(tctx, !cancel_all)) 3168 break; 3169 3170 /* read completions before cancelations */ 3171 inflight = tctx_inflight(tctx, false); 3172 if (!inflight) 3173 break; 3174 3175 if (!sqd) { 3176 xa_for_each(&tctx->xa, index, node) { 3177 /* sqpoll task will cancel all its requests */ 3178 if (node->ctx->sq_data) 3179 continue; 3180 loop |= io_uring_try_cancel_requests(node->ctx, 3181 current, cancel_all); 3182 } 3183 } else { 3184 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3185 loop |= io_uring_try_cancel_requests(ctx, 3186 current, 3187 cancel_all); 3188 } 3189 3190 if (loop) { 3191 cond_resched(); 3192 continue; 3193 } 3194 3195 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3196 io_run_task_work(); 3197 io_uring_drop_tctx_refs(current); 3198 xa_for_each(&tctx->xa, index, node) { 3199 if (!llist_empty(&node->ctx->work_llist)) { 3200 WARN_ON_ONCE(node->ctx->submitter_task && 3201 node->ctx->submitter_task != current); 3202 goto end_wait; 3203 } 3204 } 3205 /* 3206 * If we've seen completions, retry without waiting. This 3207 * avoids a race where a completion comes in before we did 3208 * prepare_to_wait(). 3209 */ 3210 if (inflight == tctx_inflight(tctx, !cancel_all)) 3211 schedule(); 3212 end_wait: 3213 finish_wait(&tctx->wait, &wait); 3214 } while (1); 3215 3216 io_uring_clean_tctx(tctx); 3217 if (cancel_all) { 3218 /* 3219 * We shouldn't run task_works after cancel, so just leave 3220 * ->in_cancel set for normal exit. 3221 */ 3222 atomic_dec(&tctx->in_cancel); 3223 /* for exec all current's requests should be gone, kill tctx */ 3224 __io_uring_free(current); 3225 } 3226 } 3227 3228 void __io_uring_cancel(bool cancel_all) 3229 { 3230 io_uring_cancel_generic(cancel_all, NULL); 3231 } 3232 3233 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) 3234 { 3235 if (flags & IORING_ENTER_EXT_ARG) { 3236 struct io_uring_getevents_arg arg; 3237 3238 if (argsz != sizeof(arg)) 3239 return -EINVAL; 3240 if (copy_from_user(&arg, argp, sizeof(arg))) 3241 return -EFAULT; 3242 } 3243 return 0; 3244 } 3245 3246 static int io_get_ext_arg(unsigned flags, const void __user *argp, 3247 struct ext_arg *ext_arg) 3248 { 3249 struct io_uring_getevents_arg arg; 3250 3251 /* 3252 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3253 * is just a pointer to the sigset_t. 3254 */ 3255 if (!(flags & IORING_ENTER_EXT_ARG)) { 3256 ext_arg->sig = (const sigset_t __user *) argp; 3257 ext_arg->ts = NULL; 3258 return 0; 3259 } 3260 3261 /* 3262 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3263 * timespec and sigset_t pointers if good. 3264 */ 3265 if (ext_arg->argsz != sizeof(arg)) 3266 return -EINVAL; 3267 if (copy_from_user(&arg, argp, sizeof(arg))) 3268 return -EFAULT; 3269 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3270 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3271 ext_arg->argsz = arg.sigmask_sz; 3272 ext_arg->ts = u64_to_user_ptr(arg.ts); 3273 return 0; 3274 } 3275 3276 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3277 u32, min_complete, u32, flags, const void __user *, argp, 3278 size_t, argsz) 3279 { 3280 struct io_ring_ctx *ctx; 3281 struct file *file; 3282 long ret; 3283 3284 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3285 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3286 IORING_ENTER_REGISTERED_RING | 3287 IORING_ENTER_ABS_TIMER))) 3288 return -EINVAL; 3289 3290 /* 3291 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3292 * need only dereference our task private array to find it. 3293 */ 3294 if (flags & IORING_ENTER_REGISTERED_RING) { 3295 struct io_uring_task *tctx = current->io_uring; 3296 3297 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3298 return -EINVAL; 3299 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3300 file = tctx->registered_rings[fd]; 3301 if (unlikely(!file)) 3302 return -EBADF; 3303 } else { 3304 file = fget(fd); 3305 if (unlikely(!file)) 3306 return -EBADF; 3307 ret = -EOPNOTSUPP; 3308 if (unlikely(!io_is_uring_fops(file))) 3309 goto out; 3310 } 3311 3312 ctx = file->private_data; 3313 ret = -EBADFD; 3314 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3315 goto out; 3316 3317 /* 3318 * For SQ polling, the thread will do all submissions and completions. 3319 * Just return the requested submit count, and wake the thread if 3320 * we were asked to. 3321 */ 3322 ret = 0; 3323 if (ctx->flags & IORING_SETUP_SQPOLL) { 3324 if (unlikely(ctx->sq_data->thread == NULL)) { 3325 ret = -EOWNERDEAD; 3326 goto out; 3327 } 3328 if (flags & IORING_ENTER_SQ_WAKEUP) 3329 wake_up(&ctx->sq_data->wait); 3330 if (flags & IORING_ENTER_SQ_WAIT) 3331 io_sqpoll_wait_sq(ctx); 3332 3333 ret = to_submit; 3334 } else if (to_submit) { 3335 ret = io_uring_add_tctx_node(ctx); 3336 if (unlikely(ret)) 3337 goto out; 3338 3339 mutex_lock(&ctx->uring_lock); 3340 ret = io_submit_sqes(ctx, to_submit); 3341 if (ret != to_submit) { 3342 mutex_unlock(&ctx->uring_lock); 3343 goto out; 3344 } 3345 if (flags & IORING_ENTER_GETEVENTS) { 3346 if (ctx->syscall_iopoll) 3347 goto iopoll_locked; 3348 /* 3349 * Ignore errors, we'll soon call io_cqring_wait() and 3350 * it should handle ownership problems if any. 3351 */ 3352 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3353 (void)io_run_local_work_locked(ctx, min_complete); 3354 } 3355 mutex_unlock(&ctx->uring_lock); 3356 } 3357 3358 if (flags & IORING_ENTER_GETEVENTS) { 3359 int ret2; 3360 3361 if (ctx->syscall_iopoll) { 3362 /* 3363 * We disallow the app entering submit/complete with 3364 * polling, but we still need to lock the ring to 3365 * prevent racing with polled issue that got punted to 3366 * a workqueue. 3367 */ 3368 mutex_lock(&ctx->uring_lock); 3369 iopoll_locked: 3370 ret2 = io_validate_ext_arg(flags, argp, argsz); 3371 if (likely(!ret2)) { 3372 min_complete = min(min_complete, 3373 ctx->cq_entries); 3374 ret2 = io_iopoll_check(ctx, min_complete); 3375 } 3376 mutex_unlock(&ctx->uring_lock); 3377 } else { 3378 struct ext_arg ext_arg = { .argsz = argsz }; 3379 3380 ret2 = io_get_ext_arg(flags, argp, &ext_arg); 3381 if (likely(!ret2)) { 3382 min_complete = min(min_complete, 3383 ctx->cq_entries); 3384 ret2 = io_cqring_wait(ctx, min_complete, flags, 3385 &ext_arg); 3386 } 3387 } 3388 3389 if (!ret) { 3390 ret = ret2; 3391 3392 /* 3393 * EBADR indicates that one or more CQE were dropped. 3394 * Once the user has been informed we can clear the bit 3395 * as they are obviously ok with those drops. 3396 */ 3397 if (unlikely(ret2 == -EBADR)) 3398 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3399 &ctx->check_cq); 3400 } 3401 } 3402 out: 3403 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3404 fput(file); 3405 return ret; 3406 } 3407 3408 static const struct file_operations io_uring_fops = { 3409 .release = io_uring_release, 3410 .mmap = io_uring_mmap, 3411 .get_unmapped_area = io_uring_get_unmapped_area, 3412 #ifndef CONFIG_MMU 3413 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3414 #endif 3415 .poll = io_uring_poll, 3416 #ifdef CONFIG_PROC_FS 3417 .show_fdinfo = io_uring_show_fdinfo, 3418 #endif 3419 }; 3420 3421 bool io_is_uring_fops(struct file *file) 3422 { 3423 return file->f_op == &io_uring_fops; 3424 } 3425 3426 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3427 struct io_uring_params *p) 3428 { 3429 struct io_rings *rings; 3430 size_t size, sq_array_offset; 3431 void *ptr; 3432 3433 /* make sure these are sane, as we already accounted them */ 3434 ctx->sq_entries = p->sq_entries; 3435 ctx->cq_entries = p->cq_entries; 3436 3437 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); 3438 if (size == SIZE_MAX) 3439 return -EOVERFLOW; 3440 3441 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3442 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size); 3443 else 3444 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3445 3446 if (IS_ERR(rings)) 3447 return PTR_ERR(rings); 3448 3449 ctx->rings = rings; 3450 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3451 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3452 rings->sq_ring_mask = p->sq_entries - 1; 3453 rings->cq_ring_mask = p->cq_entries - 1; 3454 rings->sq_ring_entries = p->sq_entries; 3455 rings->cq_ring_entries = p->cq_entries; 3456 3457 if (p->flags & IORING_SETUP_SQE128) 3458 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3459 else 3460 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3461 if (size == SIZE_MAX) { 3462 io_rings_free(ctx); 3463 return -EOVERFLOW; 3464 } 3465 3466 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3467 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size); 3468 else 3469 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3470 3471 if (IS_ERR(ptr)) { 3472 io_rings_free(ctx); 3473 return PTR_ERR(ptr); 3474 } 3475 3476 ctx->sq_sqes = ptr; 3477 return 0; 3478 } 3479 3480 static int io_uring_install_fd(struct file *file) 3481 { 3482 int fd; 3483 3484 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3485 if (fd < 0) 3486 return fd; 3487 fd_install(fd, file); 3488 return fd; 3489 } 3490 3491 /* 3492 * Allocate an anonymous fd, this is what constitutes the application 3493 * visible backing of an io_uring instance. The application mmaps this 3494 * fd to gain access to the SQ/CQ ring details. 3495 */ 3496 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3497 { 3498 /* Create a new inode so that the LSM can block the creation. */ 3499 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3500 O_RDWR | O_CLOEXEC, NULL); 3501 } 3502 3503 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3504 struct io_uring_params __user *params) 3505 { 3506 struct io_ring_ctx *ctx; 3507 struct io_uring_task *tctx; 3508 struct file *file; 3509 int ret; 3510 3511 if (!entries) 3512 return -EINVAL; 3513 if (entries > IORING_MAX_ENTRIES) { 3514 if (!(p->flags & IORING_SETUP_CLAMP)) 3515 return -EINVAL; 3516 entries = IORING_MAX_ENTRIES; 3517 } 3518 3519 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3520 && !(p->flags & IORING_SETUP_NO_MMAP)) 3521 return -EINVAL; 3522 3523 /* 3524 * Use twice as many entries for the CQ ring. It's possible for the 3525 * application to drive a higher depth than the size of the SQ ring, 3526 * since the sqes are only used at submission time. This allows for 3527 * some flexibility in overcommitting a bit. If the application has 3528 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3529 * of CQ ring entries manually. 3530 */ 3531 p->sq_entries = roundup_pow_of_two(entries); 3532 if (p->flags & IORING_SETUP_CQSIZE) { 3533 /* 3534 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3535 * to a power-of-two, if it isn't already. We do NOT impose 3536 * any cq vs sq ring sizing. 3537 */ 3538 if (!p->cq_entries) 3539 return -EINVAL; 3540 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3541 if (!(p->flags & IORING_SETUP_CLAMP)) 3542 return -EINVAL; 3543 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3544 } 3545 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3546 if (p->cq_entries < p->sq_entries) 3547 return -EINVAL; 3548 } else { 3549 p->cq_entries = 2 * p->sq_entries; 3550 } 3551 3552 ctx = io_ring_ctx_alloc(p); 3553 if (!ctx) 3554 return -ENOMEM; 3555 3556 ctx->clockid = CLOCK_MONOTONIC; 3557 ctx->clock_offset = 0; 3558 3559 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3560 !(ctx->flags & IORING_SETUP_IOPOLL) && 3561 !(ctx->flags & IORING_SETUP_SQPOLL)) 3562 ctx->task_complete = true; 3563 3564 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3565 ctx->lockless_cq = true; 3566 3567 /* 3568 * lazy poll_wq activation relies on ->task_complete for synchronisation 3569 * purposes, see io_activate_pollwq() 3570 */ 3571 if (!ctx->task_complete) 3572 ctx->poll_activated = true; 3573 3574 /* 3575 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3576 * space applications don't need to do io completion events 3577 * polling again, they can rely on io_sq_thread to do polling 3578 * work, which can reduce cpu usage and uring_lock contention. 3579 */ 3580 if (ctx->flags & IORING_SETUP_IOPOLL && 3581 !(ctx->flags & IORING_SETUP_SQPOLL)) 3582 ctx->syscall_iopoll = 1; 3583 3584 ctx->compat = in_compat_syscall(); 3585 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3586 ctx->user = get_uid(current_user()); 3587 3588 /* 3589 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3590 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3591 */ 3592 ret = -EINVAL; 3593 if (ctx->flags & IORING_SETUP_SQPOLL) { 3594 /* IPI related flags don't make sense with SQPOLL */ 3595 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3596 IORING_SETUP_TASKRUN_FLAG | 3597 IORING_SETUP_DEFER_TASKRUN)) 3598 goto err; 3599 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3600 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3601 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3602 } else { 3603 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3604 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3605 goto err; 3606 ctx->notify_method = TWA_SIGNAL; 3607 } 3608 3609 /* 3610 * For DEFER_TASKRUN we require the completion task to be the same as the 3611 * submission task. This implies that there is only one submitter, so enforce 3612 * that. 3613 */ 3614 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3615 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3616 goto err; 3617 } 3618 3619 /* 3620 * This is just grabbed for accounting purposes. When a process exits, 3621 * the mm is exited and dropped before the files, hence we need to hang 3622 * on to this mm purely for the purposes of being able to unaccount 3623 * memory (locked/pinned vm). It's not used for anything else. 3624 */ 3625 mmgrab(current->mm); 3626 ctx->mm_account = current->mm; 3627 3628 ret = io_allocate_scq_urings(ctx, p); 3629 if (ret) 3630 goto err; 3631 3632 ret = io_sq_offload_create(ctx, p); 3633 if (ret) 3634 goto err; 3635 3636 ret = io_rsrc_init(ctx); 3637 if (ret) 3638 goto err; 3639 3640 p->sq_off.head = offsetof(struct io_rings, sq.head); 3641 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3642 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3643 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3644 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3645 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3646 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3647 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3648 p->sq_off.resv1 = 0; 3649 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3650 p->sq_off.user_addr = 0; 3651 3652 p->cq_off.head = offsetof(struct io_rings, cq.head); 3653 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3654 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3655 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3656 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3657 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3658 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3659 p->cq_off.resv1 = 0; 3660 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3661 p->cq_off.user_addr = 0; 3662 3663 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3664 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3665 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3666 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3667 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3668 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3669 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3670 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT; 3671 3672 if (copy_to_user(params, p, sizeof(*p))) { 3673 ret = -EFAULT; 3674 goto err; 3675 } 3676 3677 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3678 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3679 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3680 3681 file = io_uring_get_file(ctx); 3682 if (IS_ERR(file)) { 3683 ret = PTR_ERR(file); 3684 goto err; 3685 } 3686 3687 ret = __io_uring_add_tctx_node(ctx); 3688 if (ret) 3689 goto err_fput; 3690 tctx = current->io_uring; 3691 3692 /* 3693 * Install ring fd as the very last thing, so we don't risk someone 3694 * having closed it before we finish setup 3695 */ 3696 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3697 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3698 else 3699 ret = io_uring_install_fd(file); 3700 if (ret < 0) 3701 goto err_fput; 3702 3703 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3704 return ret; 3705 err: 3706 io_ring_ctx_wait_and_kill(ctx); 3707 return ret; 3708 err_fput: 3709 fput(file); 3710 return ret; 3711 } 3712 3713 /* 3714 * Sets up an aio uring context, and returns the fd. Applications asks for a 3715 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3716 * params structure passed in. 3717 */ 3718 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3719 { 3720 struct io_uring_params p; 3721 int i; 3722 3723 if (copy_from_user(&p, params, sizeof(p))) 3724 return -EFAULT; 3725 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3726 if (p.resv[i]) 3727 return -EINVAL; 3728 } 3729 3730 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3731 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3732 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3733 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3734 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3735 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3736 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3737 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3738 IORING_SETUP_NO_SQARRAY)) 3739 return -EINVAL; 3740 3741 return io_uring_create(entries, &p, params); 3742 } 3743 3744 static inline bool io_uring_allowed(void) 3745 { 3746 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3747 kgid_t io_uring_group; 3748 3749 if (disabled == 2) 3750 return false; 3751 3752 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3753 return true; 3754 3755 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3756 if (!gid_valid(io_uring_group)) 3757 return false; 3758 3759 return in_group_p(io_uring_group); 3760 } 3761 3762 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3763 struct io_uring_params __user *, params) 3764 { 3765 if (!io_uring_allowed()) 3766 return -EPERM; 3767 3768 return io_uring_setup(entries, params); 3769 } 3770 3771 static int __init io_uring_init(void) 3772 { 3773 struct kmem_cache_args kmem_args = { 3774 .useroffset = offsetof(struct io_kiocb, cmd.data), 3775 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3776 }; 3777 3778 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3779 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3780 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3781 } while (0) 3782 3783 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3784 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3785 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3786 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3787 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3788 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3789 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3790 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3791 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3792 BUILD_BUG_SQE_ELEM(8, __u64, off); 3793 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3794 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3795 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3796 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3797 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3798 BUILD_BUG_SQE_ELEM(24, __u32, len); 3799 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3800 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3801 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3802 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3803 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3804 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3805 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3806 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3807 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3808 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3809 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3810 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3811 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3812 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3813 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3814 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3815 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3816 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3817 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3818 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3819 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3820 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3821 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3822 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3823 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3824 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3825 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3826 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3827 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3828 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3829 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3830 3831 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3832 sizeof(struct io_uring_rsrc_update)); 3833 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3834 sizeof(struct io_uring_rsrc_update2)); 3835 3836 /* ->buf_index is u16 */ 3837 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3838 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3839 offsetof(struct io_uring_buf_ring, tail)); 3840 3841 /* should fit into one byte */ 3842 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3843 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3844 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3845 3846 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3847 3848 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3849 3850 /* top 8bits are for internal use */ 3851 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3852 3853 io_uring_optable_init(); 3854 3855 /* 3856 * Allow user copy in the per-command field, which starts after the 3857 * file in io_kiocb and until the opcode field. The openat2 handling 3858 * requires copying in user memory into the io_kiocb object in that 3859 * range, and HARDENED_USERCOPY will complain if we haven't 3860 * correctly annotated this range. 3861 */ 3862 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3863 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3864 SLAB_TYPESAFE_BY_RCU); 3865 io_buf_cachep = KMEM_CACHE(io_buffer, 3866 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 3867 3868 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3869 3870 #ifdef CONFIG_SYSCTL 3871 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3872 #endif 3873 3874 return 0; 3875 }; 3876 __initcall(io_uring_init); 3877