xref: /linux/io_uring/io_uring.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <linux/anon_inodes.h>
63 #include <linux/sched/mm.h>
64 #include <linux/uaccess.h>
65 #include <linux/nospec.h>
66 #include <linux/highmem.h>
67 #include <linux/fsnotify.h>
68 #include <linux/fadvise.h>
69 #include <linux/task_work.h>
70 #include <linux/io_uring.h>
71 #include <linux/io_uring/cmd.h>
72 #include <linux/audit.h>
73 #include <linux/security.h>
74 #include <asm/shmparam.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "register.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 #include "waitid.h"
96 #include "futex.h"
97 #include "napi.h"
98 
99 #include "timeout.h"
100 #include "poll.h"
101 #include "rw.h"
102 #include "alloc_cache.h"
103 
104 #define IORING_MAX_ENTRIES	32768
105 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 
125 struct io_defer_entry {
126 	struct list_head	list;
127 	struct io_kiocb		*req;
128 	u32			seq;
129 };
130 
131 /* requests with any of those set should undergo io_disarm_next() */
132 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
133 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
134 
135 /*
136  * No waiters. It's larger than any valid value of the tw counter
137  * so that tests against ->cq_wait_nr would fail and skip wake_up().
138  */
139 #define IO_CQ_WAKE_INIT		(-1U)
140 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
141 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
142 
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 					 struct task_struct *task,
145 					 bool cancel_all);
146 
147 static void io_queue_sqe(struct io_kiocb *req);
148 
149 struct kmem_cache *req_cachep;
150 static struct workqueue_struct *iou_wq __ro_after_init;
151 
152 static int __read_mostly sysctl_io_uring_disabled;
153 static int __read_mostly sysctl_io_uring_group = -1;
154 
155 #ifdef CONFIG_SYSCTL
156 static struct ctl_table kernel_io_uring_disabled_table[] = {
157 	{
158 		.procname	= "io_uring_disabled",
159 		.data		= &sysctl_io_uring_disabled,
160 		.maxlen		= sizeof(sysctl_io_uring_disabled),
161 		.mode		= 0644,
162 		.proc_handler	= proc_dointvec_minmax,
163 		.extra1		= SYSCTL_ZERO,
164 		.extra2		= SYSCTL_TWO,
165 	},
166 	{
167 		.procname	= "io_uring_group",
168 		.data		= &sysctl_io_uring_group,
169 		.maxlen		= sizeof(gid_t),
170 		.mode		= 0644,
171 		.proc_handler	= proc_dointvec,
172 	},
173 	{},
174 };
175 #endif
176 
177 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
178 {
179 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
180 	    ctx->submit_state.cqes_count)
181 		__io_submit_flush_completions(ctx);
182 }
183 
184 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
185 {
186 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
187 }
188 
189 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
190 {
191 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
192 }
193 
194 static bool io_match_linked(struct io_kiocb *head)
195 {
196 	struct io_kiocb *req;
197 
198 	io_for_each_link(req, head) {
199 		if (req->flags & REQ_F_INFLIGHT)
200 			return true;
201 	}
202 	return false;
203 }
204 
205 /*
206  * As io_match_task() but protected against racing with linked timeouts.
207  * User must not hold timeout_lock.
208  */
209 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
210 			bool cancel_all)
211 {
212 	bool matched;
213 
214 	if (task && head->task != task)
215 		return false;
216 	if (cancel_all)
217 		return true;
218 
219 	if (head->flags & REQ_F_LINK_TIMEOUT) {
220 		struct io_ring_ctx *ctx = head->ctx;
221 
222 		/* protect against races with linked timeouts */
223 		spin_lock_irq(&ctx->timeout_lock);
224 		matched = io_match_linked(head);
225 		spin_unlock_irq(&ctx->timeout_lock);
226 	} else {
227 		matched = io_match_linked(head);
228 	}
229 	return matched;
230 }
231 
232 static inline void req_fail_link_node(struct io_kiocb *req, int res)
233 {
234 	req_set_fail(req);
235 	io_req_set_res(req, res, 0);
236 }
237 
238 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
239 {
240 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
241 }
242 
243 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
244 {
245 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
246 
247 	complete(&ctx->ref_comp);
248 }
249 
250 static __cold void io_fallback_req_func(struct work_struct *work)
251 {
252 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
253 						fallback_work.work);
254 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
255 	struct io_kiocb *req, *tmp;
256 	struct io_tw_state ts = { .locked = true, };
257 
258 	percpu_ref_get(&ctx->refs);
259 	mutex_lock(&ctx->uring_lock);
260 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
261 		req->io_task_work.func(req, &ts);
262 	if (WARN_ON_ONCE(!ts.locked))
263 		return;
264 	io_submit_flush_completions(ctx);
265 	mutex_unlock(&ctx->uring_lock);
266 	percpu_ref_put(&ctx->refs);
267 }
268 
269 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
270 {
271 	unsigned hash_buckets = 1U << bits;
272 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
273 
274 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
275 	if (!table->hbs)
276 		return -ENOMEM;
277 
278 	table->hash_bits = bits;
279 	init_hash_table(table, hash_buckets);
280 	return 0;
281 }
282 
283 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
284 {
285 	struct io_ring_ctx *ctx;
286 	int hash_bits;
287 
288 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289 	if (!ctx)
290 		return NULL;
291 
292 	xa_init(&ctx->io_bl_xa);
293 
294 	/*
295 	 * Use 5 bits less than the max cq entries, that should give us around
296 	 * 32 entries per hash list if totally full and uniformly spread, but
297 	 * don't keep too many buckets to not overconsume memory.
298 	 */
299 	hash_bits = ilog2(p->cq_entries) - 5;
300 	hash_bits = clamp(hash_bits, 1, 8);
301 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
302 		goto err;
303 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
304 		goto err;
305 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306 			    0, GFP_KERNEL))
307 		goto err;
308 
309 	ctx->flags = p->flags;
310 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
311 	init_waitqueue_head(&ctx->sqo_sq_wait);
312 	INIT_LIST_HEAD(&ctx->sqd_list);
313 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
314 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
315 	INIT_HLIST_HEAD(&ctx->io_buf_list);
316 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
317 			    sizeof(struct io_rsrc_node));
318 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
319 			    sizeof(struct async_poll));
320 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
321 			    sizeof(struct io_async_msghdr));
322 	io_futex_cache_init(ctx);
323 	init_completion(&ctx->ref_comp);
324 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
325 	mutex_init(&ctx->uring_lock);
326 	init_waitqueue_head(&ctx->cq_wait);
327 	init_waitqueue_head(&ctx->poll_wq);
328 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
329 	spin_lock_init(&ctx->completion_lock);
330 	spin_lock_init(&ctx->timeout_lock);
331 	INIT_WQ_LIST(&ctx->iopoll_list);
332 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
333 	INIT_LIST_HEAD(&ctx->defer_list);
334 	INIT_LIST_HEAD(&ctx->timeout_list);
335 	INIT_LIST_HEAD(&ctx->ltimeout_list);
336 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
337 	init_llist_head(&ctx->work_llist);
338 	INIT_LIST_HEAD(&ctx->tctx_list);
339 	ctx->submit_state.free_list.next = NULL;
340 	INIT_WQ_LIST(&ctx->locked_free_list);
341 	INIT_HLIST_HEAD(&ctx->waitid_list);
342 #ifdef CONFIG_FUTEX
343 	INIT_HLIST_HEAD(&ctx->futex_list);
344 #endif
345 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
346 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
347 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
348 	io_napi_init(ctx);
349 
350 	return ctx;
351 err:
352 	kfree(ctx->cancel_table.hbs);
353 	kfree(ctx->cancel_table_locked.hbs);
354 	xa_destroy(&ctx->io_bl_xa);
355 	kfree(ctx);
356 	return NULL;
357 }
358 
359 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
360 {
361 	struct io_rings *r = ctx->rings;
362 
363 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
364 	ctx->cq_extra--;
365 }
366 
367 static bool req_need_defer(struct io_kiocb *req, u32 seq)
368 {
369 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
370 		struct io_ring_ctx *ctx = req->ctx;
371 
372 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
373 	}
374 
375 	return false;
376 }
377 
378 static void io_clean_op(struct io_kiocb *req)
379 {
380 	if (req->flags & REQ_F_BUFFER_SELECTED) {
381 		spin_lock(&req->ctx->completion_lock);
382 		io_put_kbuf_comp(req);
383 		spin_unlock(&req->ctx->completion_lock);
384 	}
385 
386 	if (req->flags & REQ_F_NEED_CLEANUP) {
387 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
388 
389 		if (def->cleanup)
390 			def->cleanup(req);
391 	}
392 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
393 		kfree(req->apoll->double_poll);
394 		kfree(req->apoll);
395 		req->apoll = NULL;
396 	}
397 	if (req->flags & REQ_F_INFLIGHT) {
398 		struct io_uring_task *tctx = req->task->io_uring;
399 
400 		atomic_dec(&tctx->inflight_tracked);
401 	}
402 	if (req->flags & REQ_F_CREDS)
403 		put_cred(req->creds);
404 	if (req->flags & REQ_F_ASYNC_DATA) {
405 		kfree(req->async_data);
406 		req->async_data = NULL;
407 	}
408 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
409 }
410 
411 static inline void io_req_track_inflight(struct io_kiocb *req)
412 {
413 	if (!(req->flags & REQ_F_INFLIGHT)) {
414 		req->flags |= REQ_F_INFLIGHT;
415 		atomic_inc(&req->task->io_uring->inflight_tracked);
416 	}
417 }
418 
419 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
420 {
421 	if (WARN_ON_ONCE(!req->link))
422 		return NULL;
423 
424 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
425 	req->flags |= REQ_F_LINK_TIMEOUT;
426 
427 	/* linked timeouts should have two refs once prep'ed */
428 	io_req_set_refcount(req);
429 	__io_req_set_refcount(req->link, 2);
430 	return req->link;
431 }
432 
433 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
434 {
435 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
436 		return NULL;
437 	return __io_prep_linked_timeout(req);
438 }
439 
440 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
441 {
442 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
443 }
444 
445 static inline void io_arm_ltimeout(struct io_kiocb *req)
446 {
447 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
448 		__io_arm_ltimeout(req);
449 }
450 
451 static void io_prep_async_work(struct io_kiocb *req)
452 {
453 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
454 	struct io_ring_ctx *ctx = req->ctx;
455 
456 	if (!(req->flags & REQ_F_CREDS)) {
457 		req->flags |= REQ_F_CREDS;
458 		req->creds = get_current_cred();
459 	}
460 
461 	req->work.list.next = NULL;
462 	req->work.flags = 0;
463 	if (req->flags & REQ_F_FORCE_ASYNC)
464 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
465 
466 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
467 		req->flags |= io_file_get_flags(req->file);
468 
469 	if (req->file && (req->flags & REQ_F_ISREG)) {
470 		bool should_hash = def->hash_reg_file;
471 
472 		/* don't serialize this request if the fs doesn't need it */
473 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
474 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
475 			should_hash = false;
476 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
477 			io_wq_hash_work(&req->work, file_inode(req->file));
478 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
479 		if (def->unbound_nonreg_file)
480 			req->work.flags |= IO_WQ_WORK_UNBOUND;
481 	}
482 }
483 
484 static void io_prep_async_link(struct io_kiocb *req)
485 {
486 	struct io_kiocb *cur;
487 
488 	if (req->flags & REQ_F_LINK_TIMEOUT) {
489 		struct io_ring_ctx *ctx = req->ctx;
490 
491 		spin_lock_irq(&ctx->timeout_lock);
492 		io_for_each_link(cur, req)
493 			io_prep_async_work(cur);
494 		spin_unlock_irq(&ctx->timeout_lock);
495 	} else {
496 		io_for_each_link(cur, req)
497 			io_prep_async_work(cur);
498 	}
499 }
500 
501 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
502 {
503 	struct io_kiocb *link = io_prep_linked_timeout(req);
504 	struct io_uring_task *tctx = req->task->io_uring;
505 
506 	BUG_ON(!tctx);
507 	BUG_ON(!tctx->io_wq);
508 
509 	/* init ->work of the whole link before punting */
510 	io_prep_async_link(req);
511 
512 	/*
513 	 * Not expected to happen, but if we do have a bug where this _can_
514 	 * happen, catch it here and ensure the request is marked as
515 	 * canceled. That will make io-wq go through the usual work cancel
516 	 * procedure rather than attempt to run this request (or create a new
517 	 * worker for it).
518 	 */
519 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
520 		req->work.flags |= IO_WQ_WORK_CANCEL;
521 
522 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
523 	io_wq_enqueue(tctx->io_wq, &req->work);
524 	if (link)
525 		io_queue_linked_timeout(link);
526 }
527 
528 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
529 {
530 	while (!list_empty(&ctx->defer_list)) {
531 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
532 						struct io_defer_entry, list);
533 
534 		if (req_need_defer(de->req, de->seq))
535 			break;
536 		list_del_init(&de->list);
537 		io_req_task_queue(de->req);
538 		kfree(de);
539 	}
540 }
541 
542 void io_eventfd_ops(struct rcu_head *rcu)
543 {
544 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
545 	int ops = atomic_xchg(&ev_fd->ops, 0);
546 
547 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
548 		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
549 
550 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
551 	 * ordering in a race but if references are 0 we know we have to free
552 	 * it regardless.
553 	 */
554 	if (atomic_dec_and_test(&ev_fd->refs)) {
555 		eventfd_ctx_put(ev_fd->cq_ev_fd);
556 		kfree(ev_fd);
557 	}
558 }
559 
560 static void io_eventfd_signal(struct io_ring_ctx *ctx)
561 {
562 	struct io_ev_fd *ev_fd = NULL;
563 
564 	rcu_read_lock();
565 	/*
566 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
567 	 * and eventfd_signal
568 	 */
569 	ev_fd = rcu_dereference(ctx->io_ev_fd);
570 
571 	/*
572 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
573 	 * completed between the NULL check of ctx->io_ev_fd at the start of
574 	 * the function and rcu_read_lock.
575 	 */
576 	if (unlikely(!ev_fd))
577 		goto out;
578 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
579 		goto out;
580 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
581 		goto out;
582 
583 	if (likely(eventfd_signal_allowed())) {
584 		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
585 	} else {
586 		atomic_inc(&ev_fd->refs);
587 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
588 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
589 		else
590 			atomic_dec(&ev_fd->refs);
591 	}
592 
593 out:
594 	rcu_read_unlock();
595 }
596 
597 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
598 {
599 	bool skip;
600 
601 	spin_lock(&ctx->completion_lock);
602 
603 	/*
604 	 * Eventfd should only get triggered when at least one event has been
605 	 * posted. Some applications rely on the eventfd notification count
606 	 * only changing IFF a new CQE has been added to the CQ ring. There's
607 	 * no depedency on 1:1 relationship between how many times this
608 	 * function is called (and hence the eventfd count) and number of CQEs
609 	 * posted to the CQ ring.
610 	 */
611 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
612 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
613 	spin_unlock(&ctx->completion_lock);
614 	if (skip)
615 		return;
616 
617 	io_eventfd_signal(ctx);
618 }
619 
620 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
621 {
622 	if (ctx->poll_activated)
623 		io_poll_wq_wake(ctx);
624 	if (ctx->off_timeout_used)
625 		io_flush_timeouts(ctx);
626 	if (ctx->drain_active) {
627 		spin_lock(&ctx->completion_lock);
628 		io_queue_deferred(ctx);
629 		spin_unlock(&ctx->completion_lock);
630 	}
631 	if (ctx->has_evfd)
632 		io_eventfd_flush_signal(ctx);
633 }
634 
635 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
636 {
637 	if (!ctx->lockless_cq)
638 		spin_lock(&ctx->completion_lock);
639 }
640 
641 static inline void io_cq_lock(struct io_ring_ctx *ctx)
642 	__acquires(ctx->completion_lock)
643 {
644 	spin_lock(&ctx->completion_lock);
645 }
646 
647 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
648 {
649 	io_commit_cqring(ctx);
650 	if (!ctx->task_complete) {
651 		if (!ctx->lockless_cq)
652 			spin_unlock(&ctx->completion_lock);
653 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
654 		if (!ctx->syscall_iopoll)
655 			io_cqring_wake(ctx);
656 	}
657 	io_commit_cqring_flush(ctx);
658 }
659 
660 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
661 	__releases(ctx->completion_lock)
662 {
663 	io_commit_cqring(ctx);
664 	spin_unlock(&ctx->completion_lock);
665 	io_cqring_wake(ctx);
666 	io_commit_cqring_flush(ctx);
667 }
668 
669 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
670 {
671 	struct io_overflow_cqe *ocqe;
672 	LIST_HEAD(list);
673 
674 	spin_lock(&ctx->completion_lock);
675 	list_splice_init(&ctx->cq_overflow_list, &list);
676 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
677 	spin_unlock(&ctx->completion_lock);
678 
679 	while (!list_empty(&list)) {
680 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
681 		list_del(&ocqe->list);
682 		kfree(ocqe);
683 	}
684 }
685 
686 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
687 {
688 	size_t cqe_size = sizeof(struct io_uring_cqe);
689 
690 	if (__io_cqring_events(ctx) == ctx->cq_entries)
691 		return;
692 
693 	if (ctx->flags & IORING_SETUP_CQE32)
694 		cqe_size <<= 1;
695 
696 	io_cq_lock(ctx);
697 	while (!list_empty(&ctx->cq_overflow_list)) {
698 		struct io_uring_cqe *cqe;
699 		struct io_overflow_cqe *ocqe;
700 
701 		if (!io_get_cqe_overflow(ctx, &cqe, true))
702 			break;
703 		ocqe = list_first_entry(&ctx->cq_overflow_list,
704 					struct io_overflow_cqe, list);
705 		memcpy(cqe, &ocqe->cqe, cqe_size);
706 		list_del(&ocqe->list);
707 		kfree(ocqe);
708 	}
709 
710 	if (list_empty(&ctx->cq_overflow_list)) {
711 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
712 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
713 	}
714 	io_cq_unlock_post(ctx);
715 }
716 
717 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
718 {
719 	/* iopoll syncs against uring_lock, not completion_lock */
720 	if (ctx->flags & IORING_SETUP_IOPOLL)
721 		mutex_lock(&ctx->uring_lock);
722 	__io_cqring_overflow_flush(ctx);
723 	if (ctx->flags & IORING_SETUP_IOPOLL)
724 		mutex_unlock(&ctx->uring_lock);
725 }
726 
727 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
728 {
729 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
730 		io_cqring_do_overflow_flush(ctx);
731 }
732 
733 /* can be called by any task */
734 static void io_put_task_remote(struct task_struct *task)
735 {
736 	struct io_uring_task *tctx = task->io_uring;
737 
738 	percpu_counter_sub(&tctx->inflight, 1);
739 	if (unlikely(atomic_read(&tctx->in_cancel)))
740 		wake_up(&tctx->wait);
741 	put_task_struct(task);
742 }
743 
744 /* used by a task to put its own references */
745 static void io_put_task_local(struct task_struct *task)
746 {
747 	task->io_uring->cached_refs++;
748 }
749 
750 /* must to be called somewhat shortly after putting a request */
751 static inline void io_put_task(struct task_struct *task)
752 {
753 	if (likely(task == current))
754 		io_put_task_local(task);
755 	else
756 		io_put_task_remote(task);
757 }
758 
759 void io_task_refs_refill(struct io_uring_task *tctx)
760 {
761 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
762 
763 	percpu_counter_add(&tctx->inflight, refill);
764 	refcount_add(refill, &current->usage);
765 	tctx->cached_refs += refill;
766 }
767 
768 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
769 {
770 	struct io_uring_task *tctx = task->io_uring;
771 	unsigned int refs = tctx->cached_refs;
772 
773 	if (refs) {
774 		tctx->cached_refs = 0;
775 		percpu_counter_sub(&tctx->inflight, refs);
776 		put_task_struct_many(task, refs);
777 	}
778 }
779 
780 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
781 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
782 {
783 	struct io_overflow_cqe *ocqe;
784 	size_t ocq_size = sizeof(struct io_overflow_cqe);
785 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
786 
787 	lockdep_assert_held(&ctx->completion_lock);
788 
789 	if (is_cqe32)
790 		ocq_size += sizeof(struct io_uring_cqe);
791 
792 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
793 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
794 	if (!ocqe) {
795 		/*
796 		 * If we're in ring overflow flush mode, or in task cancel mode,
797 		 * or cannot allocate an overflow entry, then we need to drop it
798 		 * on the floor.
799 		 */
800 		io_account_cq_overflow(ctx);
801 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
802 		return false;
803 	}
804 	if (list_empty(&ctx->cq_overflow_list)) {
805 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
806 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
807 
808 	}
809 	ocqe->cqe.user_data = user_data;
810 	ocqe->cqe.res = res;
811 	ocqe->cqe.flags = cflags;
812 	if (is_cqe32) {
813 		ocqe->cqe.big_cqe[0] = extra1;
814 		ocqe->cqe.big_cqe[1] = extra2;
815 	}
816 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
817 	return true;
818 }
819 
820 void io_req_cqe_overflow(struct io_kiocb *req)
821 {
822 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
823 				req->cqe.res, req->cqe.flags,
824 				req->big_cqe.extra1, req->big_cqe.extra2);
825 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
826 }
827 
828 /*
829  * writes to the cq entry need to come after reading head; the
830  * control dependency is enough as we're using WRITE_ONCE to
831  * fill the cq entry
832  */
833 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
834 {
835 	struct io_rings *rings = ctx->rings;
836 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
837 	unsigned int free, queued, len;
838 
839 	/*
840 	 * Posting into the CQ when there are pending overflowed CQEs may break
841 	 * ordering guarantees, which will affect links, F_MORE users and more.
842 	 * Force overflow the completion.
843 	 */
844 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
845 		return false;
846 
847 	/* userspace may cheat modifying the tail, be safe and do min */
848 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
849 	free = ctx->cq_entries - queued;
850 	/* we need a contiguous range, limit based on the current array offset */
851 	len = min(free, ctx->cq_entries - off);
852 	if (!len)
853 		return false;
854 
855 	if (ctx->flags & IORING_SETUP_CQE32) {
856 		off <<= 1;
857 		len <<= 1;
858 	}
859 
860 	ctx->cqe_cached = &rings->cqes[off];
861 	ctx->cqe_sentinel = ctx->cqe_cached + len;
862 	return true;
863 }
864 
865 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
866 			      u32 cflags)
867 {
868 	struct io_uring_cqe *cqe;
869 
870 	ctx->cq_extra++;
871 
872 	/*
873 	 * If we can't get a cq entry, userspace overflowed the
874 	 * submission (by quite a lot). Increment the overflow count in
875 	 * the ring.
876 	 */
877 	if (likely(io_get_cqe(ctx, &cqe))) {
878 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
879 
880 		WRITE_ONCE(cqe->user_data, user_data);
881 		WRITE_ONCE(cqe->res, res);
882 		WRITE_ONCE(cqe->flags, cflags);
883 
884 		if (ctx->flags & IORING_SETUP_CQE32) {
885 			WRITE_ONCE(cqe->big_cqe[0], 0);
886 			WRITE_ONCE(cqe->big_cqe[1], 0);
887 		}
888 		return true;
889 	}
890 	return false;
891 }
892 
893 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
894 	__must_hold(&ctx->uring_lock)
895 {
896 	struct io_submit_state *state = &ctx->submit_state;
897 	unsigned int i;
898 
899 	lockdep_assert_held(&ctx->uring_lock);
900 	for (i = 0; i < state->cqes_count; i++) {
901 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
902 
903 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
904 			if (ctx->lockless_cq) {
905 				spin_lock(&ctx->completion_lock);
906 				io_cqring_event_overflow(ctx, cqe->user_data,
907 							cqe->res, cqe->flags, 0, 0);
908 				spin_unlock(&ctx->completion_lock);
909 			} else {
910 				io_cqring_event_overflow(ctx, cqe->user_data,
911 							cqe->res, cqe->flags, 0, 0);
912 			}
913 		}
914 	}
915 	state->cqes_count = 0;
916 }
917 
918 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
919 			      bool allow_overflow)
920 {
921 	bool filled;
922 
923 	io_cq_lock(ctx);
924 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
925 	if (!filled && allow_overflow)
926 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
927 
928 	io_cq_unlock_post(ctx);
929 	return filled;
930 }
931 
932 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
933 {
934 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
935 }
936 
937 /*
938  * A helper for multishot requests posting additional CQEs.
939  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
940  */
941 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
942 {
943 	struct io_ring_ctx *ctx = req->ctx;
944 	u64 user_data = req->cqe.user_data;
945 	struct io_uring_cqe *cqe;
946 
947 	lockdep_assert(!io_wq_current_is_worker());
948 
949 	if (!defer)
950 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
951 
952 	lockdep_assert_held(&ctx->uring_lock);
953 
954 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
955 		__io_cq_lock(ctx);
956 		__io_flush_post_cqes(ctx);
957 		/* no need to flush - flush is deferred */
958 		__io_cq_unlock_post(ctx);
959 	}
960 
961 	/* For defered completions this is not as strict as it is otherwise,
962 	 * however it's main job is to prevent unbounded posted completions,
963 	 * and in that it works just as well.
964 	 */
965 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
966 		return false;
967 
968 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
969 	cqe->user_data = user_data;
970 	cqe->res = res;
971 	cqe->flags = cflags;
972 	return true;
973 }
974 
975 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
976 {
977 	struct io_ring_ctx *ctx = req->ctx;
978 	struct io_rsrc_node *rsrc_node = NULL;
979 
980 	io_cq_lock(ctx);
981 	if (!(req->flags & REQ_F_CQE_SKIP)) {
982 		if (!io_fill_cqe_req(ctx, req))
983 			io_req_cqe_overflow(req);
984 	}
985 
986 	/*
987 	 * If we're the last reference to this request, add to our locked
988 	 * free_list cache.
989 	 */
990 	if (req_ref_put_and_test(req)) {
991 		if (req->flags & IO_REQ_LINK_FLAGS) {
992 			if (req->flags & IO_DISARM_MASK)
993 				io_disarm_next(req);
994 			if (req->link) {
995 				io_req_task_queue(req->link);
996 				req->link = NULL;
997 			}
998 		}
999 		io_put_kbuf_comp(req);
1000 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1001 			io_clean_op(req);
1002 		io_put_file(req);
1003 
1004 		rsrc_node = req->rsrc_node;
1005 		/*
1006 		 * Selected buffer deallocation in io_clean_op() assumes that
1007 		 * we don't hold ->completion_lock. Clean them here to avoid
1008 		 * deadlocks.
1009 		 */
1010 		io_put_task_remote(req->task);
1011 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1012 		ctx->locked_free_nr++;
1013 	}
1014 	io_cq_unlock_post(ctx);
1015 
1016 	if (rsrc_node) {
1017 		io_ring_submit_lock(ctx, issue_flags);
1018 		io_put_rsrc_node(ctx, rsrc_node);
1019 		io_ring_submit_unlock(ctx, issue_flags);
1020 	}
1021 }
1022 
1023 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1024 {
1025 	struct io_ring_ctx *ctx = req->ctx;
1026 
1027 	if (ctx->task_complete && ctx->submitter_task != current) {
1028 		req->io_task_work.func = io_req_task_complete;
1029 		io_req_task_work_add(req);
1030 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1031 		   !(ctx->flags & IORING_SETUP_IOPOLL)) {
1032 		__io_req_complete_post(req, issue_flags);
1033 	} else {
1034 		mutex_lock(&ctx->uring_lock);
1035 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1036 		mutex_unlock(&ctx->uring_lock);
1037 	}
1038 }
1039 
1040 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1041 	__must_hold(&ctx->uring_lock)
1042 {
1043 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1044 
1045 	lockdep_assert_held(&req->ctx->uring_lock);
1046 
1047 	req_set_fail(req);
1048 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1049 	if (def->fail)
1050 		def->fail(req);
1051 	io_req_complete_defer(req);
1052 }
1053 
1054 /*
1055  * Don't initialise the fields below on every allocation, but do that in
1056  * advance and keep them valid across allocations.
1057  */
1058 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1059 {
1060 	req->ctx = ctx;
1061 	req->link = NULL;
1062 	req->async_data = NULL;
1063 	/* not necessary, but safer to zero */
1064 	memset(&req->cqe, 0, sizeof(req->cqe));
1065 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1066 }
1067 
1068 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1069 					struct io_submit_state *state)
1070 {
1071 	spin_lock(&ctx->completion_lock);
1072 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1073 	ctx->locked_free_nr = 0;
1074 	spin_unlock(&ctx->completion_lock);
1075 }
1076 
1077 /*
1078  * A request might get retired back into the request caches even before opcode
1079  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1080  * Because of that, io_alloc_req() should be called only under ->uring_lock
1081  * and with extra caution to not get a request that is still worked on.
1082  */
1083 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1084 	__must_hold(&ctx->uring_lock)
1085 {
1086 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1087 	void *reqs[IO_REQ_ALLOC_BATCH];
1088 	int ret, i;
1089 
1090 	/*
1091 	 * If we have more than a batch's worth of requests in our IRQ side
1092 	 * locked cache, grab the lock and move them over to our submission
1093 	 * side cache.
1094 	 */
1095 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1096 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1097 		if (!io_req_cache_empty(ctx))
1098 			return true;
1099 	}
1100 
1101 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1102 
1103 	/*
1104 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1105 	 * retry single alloc to be on the safe side.
1106 	 */
1107 	if (unlikely(ret <= 0)) {
1108 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1109 		if (!reqs[0])
1110 			return false;
1111 		ret = 1;
1112 	}
1113 
1114 	percpu_ref_get_many(&ctx->refs, ret);
1115 	for (i = 0; i < ret; i++) {
1116 		struct io_kiocb *req = reqs[i];
1117 
1118 		io_preinit_req(req, ctx);
1119 		io_req_add_to_cache(req, ctx);
1120 	}
1121 	return true;
1122 }
1123 
1124 __cold void io_free_req(struct io_kiocb *req)
1125 {
1126 	/* refs were already put, restore them for io_req_task_complete() */
1127 	req->flags &= ~REQ_F_REFCOUNT;
1128 	/* we only want to free it, don't post CQEs */
1129 	req->flags |= REQ_F_CQE_SKIP;
1130 	req->io_task_work.func = io_req_task_complete;
1131 	io_req_task_work_add(req);
1132 }
1133 
1134 static void __io_req_find_next_prep(struct io_kiocb *req)
1135 {
1136 	struct io_ring_ctx *ctx = req->ctx;
1137 
1138 	spin_lock(&ctx->completion_lock);
1139 	io_disarm_next(req);
1140 	spin_unlock(&ctx->completion_lock);
1141 }
1142 
1143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1144 {
1145 	struct io_kiocb *nxt;
1146 
1147 	/*
1148 	 * If LINK is set, we have dependent requests in this chain. If we
1149 	 * didn't fail this request, queue the first one up, moving any other
1150 	 * dependencies to the next request. In case of failure, fail the rest
1151 	 * of the chain.
1152 	 */
1153 	if (unlikely(req->flags & IO_DISARM_MASK))
1154 		__io_req_find_next_prep(req);
1155 	nxt = req->link;
1156 	req->link = NULL;
1157 	return nxt;
1158 }
1159 
1160 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1161 {
1162 	if (!ctx)
1163 		return;
1164 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1165 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1166 	if (ts->locked) {
1167 		io_submit_flush_completions(ctx);
1168 		mutex_unlock(&ctx->uring_lock);
1169 		ts->locked = false;
1170 	}
1171 	percpu_ref_put(&ctx->refs);
1172 }
1173 
1174 /*
1175  * Run queued task_work, returning the number of entries processed in *count.
1176  * If more entries than max_entries are available, stop processing once this
1177  * is reached and return the rest of the list.
1178  */
1179 struct llist_node *io_handle_tw_list(struct llist_node *node,
1180 				     unsigned int *count,
1181 				     unsigned int max_entries)
1182 {
1183 	struct io_ring_ctx *ctx = NULL;
1184 	struct io_tw_state ts = { };
1185 
1186 	do {
1187 		struct llist_node *next = node->next;
1188 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1189 						    io_task_work.node);
1190 
1191 		if (req->ctx != ctx) {
1192 			ctx_flush_and_put(ctx, &ts);
1193 			ctx = req->ctx;
1194 			/* if not contended, grab and improve batching */
1195 			ts.locked = mutex_trylock(&ctx->uring_lock);
1196 			percpu_ref_get(&ctx->refs);
1197 		}
1198 		INDIRECT_CALL_2(req->io_task_work.func,
1199 				io_poll_task_func, io_req_rw_complete,
1200 				req, &ts);
1201 		node = next;
1202 		(*count)++;
1203 		if (unlikely(need_resched())) {
1204 			ctx_flush_and_put(ctx, &ts);
1205 			ctx = NULL;
1206 			cond_resched();
1207 		}
1208 	} while (node && *count < max_entries);
1209 
1210 	ctx_flush_and_put(ctx, &ts);
1211 	return node;
1212 }
1213 
1214 /**
1215  * io_llist_xchg - swap all entries in a lock-less list
1216  * @head:	the head of lock-less list to delete all entries
1217  * @new:	new entry as the head of the list
1218  *
1219  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1220  * The order of entries returned is from the newest to the oldest added one.
1221  */
1222 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1223 					       struct llist_node *new)
1224 {
1225 	return xchg(&head->first, new);
1226 }
1227 
1228 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1229 {
1230 	struct llist_node *node = llist_del_all(&tctx->task_list);
1231 	struct io_ring_ctx *last_ctx = NULL;
1232 	struct io_kiocb *req;
1233 
1234 	while (node) {
1235 		req = container_of(node, struct io_kiocb, io_task_work.node);
1236 		node = node->next;
1237 		if (sync && last_ctx != req->ctx) {
1238 			if (last_ctx) {
1239 				flush_delayed_work(&last_ctx->fallback_work);
1240 				percpu_ref_put(&last_ctx->refs);
1241 			}
1242 			last_ctx = req->ctx;
1243 			percpu_ref_get(&last_ctx->refs);
1244 		}
1245 		if (llist_add(&req->io_task_work.node,
1246 			      &req->ctx->fallback_llist))
1247 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1248 	}
1249 
1250 	if (last_ctx) {
1251 		flush_delayed_work(&last_ctx->fallback_work);
1252 		percpu_ref_put(&last_ctx->refs);
1253 	}
1254 }
1255 
1256 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1257 				      unsigned int max_entries,
1258 				      unsigned int *count)
1259 {
1260 	struct llist_node *node;
1261 
1262 	if (unlikely(current->flags & PF_EXITING)) {
1263 		io_fallback_tw(tctx, true);
1264 		return NULL;
1265 	}
1266 
1267 	node = llist_del_all(&tctx->task_list);
1268 	if (node) {
1269 		node = llist_reverse_order(node);
1270 		node = io_handle_tw_list(node, count, max_entries);
1271 	}
1272 
1273 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1274 	if (unlikely(atomic_read(&tctx->in_cancel)))
1275 		io_uring_drop_tctx_refs(current);
1276 
1277 	trace_io_uring_task_work_run(tctx, *count);
1278 	return node;
1279 }
1280 
1281 void tctx_task_work(struct callback_head *cb)
1282 {
1283 	struct io_uring_task *tctx;
1284 	struct llist_node *ret;
1285 	unsigned int count = 0;
1286 
1287 	tctx = container_of(cb, struct io_uring_task, task_work);
1288 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1289 	/* can't happen */
1290 	WARN_ON_ONCE(ret);
1291 }
1292 
1293 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1294 {
1295 	struct io_ring_ctx *ctx = req->ctx;
1296 	unsigned nr_wait, nr_tw, nr_tw_prev;
1297 	struct llist_node *head;
1298 
1299 	/* See comment above IO_CQ_WAKE_INIT */
1300 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1301 
1302 	/*
1303 	 * We don't know how many reuqests is there in the link and whether
1304 	 * they can even be queued lazily, fall back to non-lazy.
1305 	 */
1306 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1307 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1308 
1309 	head = READ_ONCE(ctx->work_llist.first);
1310 	do {
1311 		nr_tw_prev = 0;
1312 		if (head) {
1313 			struct io_kiocb *first_req = container_of(head,
1314 							struct io_kiocb,
1315 							io_task_work.node);
1316 			/*
1317 			 * Might be executed at any moment, rely on
1318 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1319 			 */
1320 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1321 		}
1322 
1323 		/*
1324 		 * Theoretically, it can overflow, but that's fine as one of
1325 		 * previous adds should've tried to wake the task.
1326 		 */
1327 		nr_tw = nr_tw_prev + 1;
1328 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1329 			nr_tw = IO_CQ_WAKE_FORCE;
1330 
1331 		req->nr_tw = nr_tw;
1332 		req->io_task_work.node.next = head;
1333 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1334 			      &req->io_task_work.node));
1335 
1336 	/*
1337 	 * cmpxchg implies a full barrier, which pairs with the barrier
1338 	 * in set_current_state() on the io_cqring_wait() side. It's used
1339 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1340 	 * going to sleep will observe the work added to the list, which
1341 	 * is similar to the wait/wawke task state sync.
1342 	 */
1343 
1344 	if (!head) {
1345 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1346 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1347 		if (ctx->has_evfd)
1348 			io_eventfd_signal(ctx);
1349 	}
1350 
1351 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1352 	/* not enough or no one is waiting */
1353 	if (nr_tw < nr_wait)
1354 		return;
1355 	/* the previous add has already woken it up */
1356 	if (nr_tw_prev >= nr_wait)
1357 		return;
1358 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1359 }
1360 
1361 static void io_req_normal_work_add(struct io_kiocb *req)
1362 {
1363 	struct io_uring_task *tctx = req->task->io_uring;
1364 	struct io_ring_ctx *ctx = req->ctx;
1365 
1366 	/* task_work already pending, we're done */
1367 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1368 		return;
1369 
1370 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1371 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1372 
1373 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1374 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1375 		struct io_sq_data *sqd = ctx->sq_data;
1376 
1377 		if (wq_has_sleeper(&sqd->wait))
1378 			wake_up(&sqd->wait);
1379 		return;
1380 	}
1381 
1382 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1383 		return;
1384 
1385 	io_fallback_tw(tctx, false);
1386 }
1387 
1388 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1389 {
1390 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1391 		rcu_read_lock();
1392 		io_req_local_work_add(req, flags);
1393 		rcu_read_unlock();
1394 	} else {
1395 		io_req_normal_work_add(req);
1396 	}
1397 }
1398 
1399 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1400 {
1401 	struct llist_node *node;
1402 
1403 	node = llist_del_all(&ctx->work_llist);
1404 	while (node) {
1405 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1406 						    io_task_work.node);
1407 
1408 		node = node->next;
1409 		io_req_normal_work_add(req);
1410 	}
1411 }
1412 
1413 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1414 				       int min_events)
1415 {
1416 	if (llist_empty(&ctx->work_llist))
1417 		return false;
1418 	if (events < min_events)
1419 		return true;
1420 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1421 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1422 	return false;
1423 }
1424 
1425 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1426 			       int min_events)
1427 {
1428 	struct llist_node *node;
1429 	unsigned int loops = 0;
1430 	int ret = 0;
1431 
1432 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1433 		return -EEXIST;
1434 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1435 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1436 again:
1437 	/*
1438 	 * llists are in reverse order, flip it back the right way before
1439 	 * running the pending items.
1440 	 */
1441 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1442 	while (node) {
1443 		struct llist_node *next = node->next;
1444 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1445 						    io_task_work.node);
1446 		INDIRECT_CALL_2(req->io_task_work.func,
1447 				io_poll_task_func, io_req_rw_complete,
1448 				req, ts);
1449 		ret++;
1450 		node = next;
1451 	}
1452 	loops++;
1453 
1454 	if (io_run_local_work_continue(ctx, ret, min_events))
1455 		goto again;
1456 	if (ts->locked) {
1457 		io_submit_flush_completions(ctx);
1458 		if (io_run_local_work_continue(ctx, ret, min_events))
1459 			goto again;
1460 	}
1461 
1462 	trace_io_uring_local_work_run(ctx, ret, loops);
1463 	return ret;
1464 }
1465 
1466 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1467 					   int min_events)
1468 {
1469 	struct io_tw_state ts = { .locked = true, };
1470 	int ret;
1471 
1472 	if (llist_empty(&ctx->work_llist))
1473 		return 0;
1474 
1475 	ret = __io_run_local_work(ctx, &ts, min_events);
1476 	/* shouldn't happen! */
1477 	if (WARN_ON_ONCE(!ts.locked))
1478 		mutex_lock(&ctx->uring_lock);
1479 	return ret;
1480 }
1481 
1482 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1483 {
1484 	struct io_tw_state ts = {};
1485 	int ret;
1486 
1487 	ts.locked = mutex_trylock(&ctx->uring_lock);
1488 	ret = __io_run_local_work(ctx, &ts, min_events);
1489 	if (ts.locked)
1490 		mutex_unlock(&ctx->uring_lock);
1491 
1492 	return ret;
1493 }
1494 
1495 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1496 {
1497 	io_tw_lock(req->ctx, ts);
1498 	io_req_defer_failed(req, req->cqe.res);
1499 }
1500 
1501 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1502 {
1503 	io_tw_lock(req->ctx, ts);
1504 	/* req->task == current here, checking PF_EXITING is safe */
1505 	if (unlikely(req->task->flags & PF_EXITING))
1506 		io_req_defer_failed(req, -EFAULT);
1507 	else if (req->flags & REQ_F_FORCE_ASYNC)
1508 		io_queue_iowq(req, ts);
1509 	else
1510 		io_queue_sqe(req);
1511 }
1512 
1513 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1514 {
1515 	io_req_set_res(req, ret, 0);
1516 	req->io_task_work.func = io_req_task_cancel;
1517 	io_req_task_work_add(req);
1518 }
1519 
1520 void io_req_task_queue(struct io_kiocb *req)
1521 {
1522 	req->io_task_work.func = io_req_task_submit;
1523 	io_req_task_work_add(req);
1524 }
1525 
1526 void io_queue_next(struct io_kiocb *req)
1527 {
1528 	struct io_kiocb *nxt = io_req_find_next(req);
1529 
1530 	if (nxt)
1531 		io_req_task_queue(nxt);
1532 }
1533 
1534 static void io_free_batch_list(struct io_ring_ctx *ctx,
1535 			       struct io_wq_work_node *node)
1536 	__must_hold(&ctx->uring_lock)
1537 {
1538 	do {
1539 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1540 						    comp_list);
1541 
1542 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1543 			if (req->flags & REQ_F_REFCOUNT) {
1544 				node = req->comp_list.next;
1545 				if (!req_ref_put_and_test(req))
1546 					continue;
1547 			}
1548 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1549 				struct async_poll *apoll = req->apoll;
1550 
1551 				if (apoll->double_poll)
1552 					kfree(apoll->double_poll);
1553 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1554 					kfree(apoll);
1555 				req->flags &= ~REQ_F_POLLED;
1556 			}
1557 			if (req->flags & IO_REQ_LINK_FLAGS)
1558 				io_queue_next(req);
1559 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1560 				io_clean_op(req);
1561 		}
1562 		io_put_file(req);
1563 
1564 		io_req_put_rsrc_locked(req, ctx);
1565 
1566 		io_put_task(req->task);
1567 		node = req->comp_list.next;
1568 		io_req_add_to_cache(req, ctx);
1569 	} while (node);
1570 }
1571 
1572 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1573 	__must_hold(&ctx->uring_lock)
1574 {
1575 	struct io_submit_state *state = &ctx->submit_state;
1576 	struct io_wq_work_node *node;
1577 
1578 	__io_cq_lock(ctx);
1579 	/* must come first to preserve CQE ordering in failure cases */
1580 	if (state->cqes_count)
1581 		__io_flush_post_cqes(ctx);
1582 	__wq_list_for_each(node, &state->compl_reqs) {
1583 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1584 					    comp_list);
1585 
1586 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1587 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1588 			if (ctx->lockless_cq) {
1589 				spin_lock(&ctx->completion_lock);
1590 				io_req_cqe_overflow(req);
1591 				spin_unlock(&ctx->completion_lock);
1592 			} else {
1593 				io_req_cqe_overflow(req);
1594 			}
1595 		}
1596 	}
1597 	__io_cq_unlock_post(ctx);
1598 
1599 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1600 		io_free_batch_list(ctx, state->compl_reqs.first);
1601 		INIT_WQ_LIST(&state->compl_reqs);
1602 	}
1603 }
1604 
1605 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1606 {
1607 	/* See comment at the top of this file */
1608 	smp_rmb();
1609 	return __io_cqring_events(ctx);
1610 }
1611 
1612 /*
1613  * We can't just wait for polled events to come to us, we have to actively
1614  * find and complete them.
1615  */
1616 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1617 {
1618 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1619 		return;
1620 
1621 	mutex_lock(&ctx->uring_lock);
1622 	while (!wq_list_empty(&ctx->iopoll_list)) {
1623 		/* let it sleep and repeat later if can't complete a request */
1624 		if (io_do_iopoll(ctx, true) == 0)
1625 			break;
1626 		/*
1627 		 * Ensure we allow local-to-the-cpu processing to take place,
1628 		 * in this case we need to ensure that we reap all events.
1629 		 * Also let task_work, etc. to progress by releasing the mutex
1630 		 */
1631 		if (need_resched()) {
1632 			mutex_unlock(&ctx->uring_lock);
1633 			cond_resched();
1634 			mutex_lock(&ctx->uring_lock);
1635 		}
1636 	}
1637 	mutex_unlock(&ctx->uring_lock);
1638 }
1639 
1640 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1641 {
1642 	unsigned int nr_events = 0;
1643 	unsigned long check_cq;
1644 
1645 	if (!io_allowed_run_tw(ctx))
1646 		return -EEXIST;
1647 
1648 	check_cq = READ_ONCE(ctx->check_cq);
1649 	if (unlikely(check_cq)) {
1650 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1651 			__io_cqring_overflow_flush(ctx);
1652 		/*
1653 		 * Similarly do not spin if we have not informed the user of any
1654 		 * dropped CQE.
1655 		 */
1656 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1657 			return -EBADR;
1658 	}
1659 	/*
1660 	 * Don't enter poll loop if we already have events pending.
1661 	 * If we do, we can potentially be spinning for commands that
1662 	 * already triggered a CQE (eg in error).
1663 	 */
1664 	if (io_cqring_events(ctx))
1665 		return 0;
1666 
1667 	do {
1668 		int ret = 0;
1669 
1670 		/*
1671 		 * If a submit got punted to a workqueue, we can have the
1672 		 * application entering polling for a command before it gets
1673 		 * issued. That app will hold the uring_lock for the duration
1674 		 * of the poll right here, so we need to take a breather every
1675 		 * now and then to ensure that the issue has a chance to add
1676 		 * the poll to the issued list. Otherwise we can spin here
1677 		 * forever, while the workqueue is stuck trying to acquire the
1678 		 * very same mutex.
1679 		 */
1680 		if (wq_list_empty(&ctx->iopoll_list) ||
1681 		    io_task_work_pending(ctx)) {
1682 			u32 tail = ctx->cached_cq_tail;
1683 
1684 			(void) io_run_local_work_locked(ctx, min);
1685 
1686 			if (task_work_pending(current) ||
1687 			    wq_list_empty(&ctx->iopoll_list)) {
1688 				mutex_unlock(&ctx->uring_lock);
1689 				io_run_task_work();
1690 				mutex_lock(&ctx->uring_lock);
1691 			}
1692 			/* some requests don't go through iopoll_list */
1693 			if (tail != ctx->cached_cq_tail ||
1694 			    wq_list_empty(&ctx->iopoll_list))
1695 				break;
1696 		}
1697 		ret = io_do_iopoll(ctx, !min);
1698 		if (unlikely(ret < 0))
1699 			return ret;
1700 
1701 		if (task_sigpending(current))
1702 			return -EINTR;
1703 		if (need_resched())
1704 			break;
1705 
1706 		nr_events += ret;
1707 	} while (nr_events < min);
1708 
1709 	return 0;
1710 }
1711 
1712 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1713 {
1714 	if (ts->locked)
1715 		io_req_complete_defer(req);
1716 	else
1717 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1718 }
1719 
1720 /*
1721  * After the iocb has been issued, it's safe to be found on the poll list.
1722  * Adding the kiocb to the list AFTER submission ensures that we don't
1723  * find it from a io_do_iopoll() thread before the issuer is done
1724  * accessing the kiocb cookie.
1725  */
1726 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1727 {
1728 	struct io_ring_ctx *ctx = req->ctx;
1729 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1730 
1731 	/* workqueue context doesn't hold uring_lock, grab it now */
1732 	if (unlikely(needs_lock))
1733 		mutex_lock(&ctx->uring_lock);
1734 
1735 	/*
1736 	 * Track whether we have multiple files in our lists. This will impact
1737 	 * how we do polling eventually, not spinning if we're on potentially
1738 	 * different devices.
1739 	 */
1740 	if (wq_list_empty(&ctx->iopoll_list)) {
1741 		ctx->poll_multi_queue = false;
1742 	} else if (!ctx->poll_multi_queue) {
1743 		struct io_kiocb *list_req;
1744 
1745 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1746 					comp_list);
1747 		if (list_req->file != req->file)
1748 			ctx->poll_multi_queue = true;
1749 	}
1750 
1751 	/*
1752 	 * For fast devices, IO may have already completed. If it has, add
1753 	 * it to the front so we find it first.
1754 	 */
1755 	if (READ_ONCE(req->iopoll_completed))
1756 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1757 	else
1758 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1759 
1760 	if (unlikely(needs_lock)) {
1761 		/*
1762 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1763 		 * in sq thread task context or in io worker task context. If
1764 		 * current task context is sq thread, we don't need to check
1765 		 * whether should wake up sq thread.
1766 		 */
1767 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1768 		    wq_has_sleeper(&ctx->sq_data->wait))
1769 			wake_up(&ctx->sq_data->wait);
1770 
1771 		mutex_unlock(&ctx->uring_lock);
1772 	}
1773 }
1774 
1775 io_req_flags_t io_file_get_flags(struct file *file)
1776 {
1777 	io_req_flags_t res = 0;
1778 
1779 	if (S_ISREG(file_inode(file)->i_mode))
1780 		res |= REQ_F_ISREG;
1781 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1782 		res |= REQ_F_SUPPORT_NOWAIT;
1783 	return res;
1784 }
1785 
1786 bool io_alloc_async_data(struct io_kiocb *req)
1787 {
1788 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1789 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1790 	if (req->async_data) {
1791 		req->flags |= REQ_F_ASYNC_DATA;
1792 		return false;
1793 	}
1794 	return true;
1795 }
1796 
1797 int io_req_prep_async(struct io_kiocb *req)
1798 {
1799 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1800 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1801 
1802 	/* assign early for deferred execution for non-fixed file */
1803 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1804 		req->file = io_file_get_normal(req, req->cqe.fd);
1805 	if (!cdef->prep_async)
1806 		return 0;
1807 	if (WARN_ON_ONCE(req_has_async_data(req)))
1808 		return -EFAULT;
1809 	if (!def->manual_alloc) {
1810 		if (io_alloc_async_data(req))
1811 			return -EAGAIN;
1812 	}
1813 	return cdef->prep_async(req);
1814 }
1815 
1816 static u32 io_get_sequence(struct io_kiocb *req)
1817 {
1818 	u32 seq = req->ctx->cached_sq_head;
1819 	struct io_kiocb *cur;
1820 
1821 	/* need original cached_sq_head, but it was increased for each req */
1822 	io_for_each_link(cur, req)
1823 		seq--;
1824 	return seq;
1825 }
1826 
1827 static __cold void io_drain_req(struct io_kiocb *req)
1828 	__must_hold(&ctx->uring_lock)
1829 {
1830 	struct io_ring_ctx *ctx = req->ctx;
1831 	struct io_defer_entry *de;
1832 	int ret;
1833 	u32 seq = io_get_sequence(req);
1834 
1835 	/* Still need defer if there is pending req in defer list. */
1836 	spin_lock(&ctx->completion_lock);
1837 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1838 		spin_unlock(&ctx->completion_lock);
1839 queue:
1840 		ctx->drain_active = false;
1841 		io_req_task_queue(req);
1842 		return;
1843 	}
1844 	spin_unlock(&ctx->completion_lock);
1845 
1846 	io_prep_async_link(req);
1847 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1848 	if (!de) {
1849 		ret = -ENOMEM;
1850 		io_req_defer_failed(req, ret);
1851 		return;
1852 	}
1853 
1854 	spin_lock(&ctx->completion_lock);
1855 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1856 		spin_unlock(&ctx->completion_lock);
1857 		kfree(de);
1858 		goto queue;
1859 	}
1860 
1861 	trace_io_uring_defer(req);
1862 	de->req = req;
1863 	de->seq = seq;
1864 	list_add_tail(&de->list, &ctx->defer_list);
1865 	spin_unlock(&ctx->completion_lock);
1866 }
1867 
1868 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1869 			   unsigned int issue_flags)
1870 {
1871 	if (req->file || !def->needs_file)
1872 		return true;
1873 
1874 	if (req->flags & REQ_F_FIXED_FILE)
1875 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1876 	else
1877 		req->file = io_file_get_normal(req, req->cqe.fd);
1878 
1879 	return !!req->file;
1880 }
1881 
1882 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1883 {
1884 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1885 	const struct cred *creds = NULL;
1886 	int ret;
1887 
1888 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1889 		return -EBADF;
1890 
1891 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1892 		creds = override_creds(req->creds);
1893 
1894 	if (!def->audit_skip)
1895 		audit_uring_entry(req->opcode);
1896 
1897 	ret = def->issue(req, issue_flags);
1898 
1899 	if (!def->audit_skip)
1900 		audit_uring_exit(!ret, ret);
1901 
1902 	if (creds)
1903 		revert_creds(creds);
1904 
1905 	if (ret == IOU_OK) {
1906 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1907 			io_req_complete_defer(req);
1908 		else
1909 			io_req_complete_post(req, issue_flags);
1910 
1911 		return 0;
1912 	}
1913 
1914 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1915 		ret = 0;
1916 		io_arm_ltimeout(req);
1917 
1918 		/* If the op doesn't have a file, we're not polling for it */
1919 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1920 			io_iopoll_req_issued(req, issue_flags);
1921 	}
1922 	return ret;
1923 }
1924 
1925 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1926 {
1927 	io_tw_lock(req->ctx, ts);
1928 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1929 				 IO_URING_F_COMPLETE_DEFER);
1930 }
1931 
1932 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1933 {
1934 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1935 	struct io_kiocb *nxt = NULL;
1936 
1937 	if (req_ref_put_and_test(req)) {
1938 		if (req->flags & IO_REQ_LINK_FLAGS)
1939 			nxt = io_req_find_next(req);
1940 		io_free_req(req);
1941 	}
1942 	return nxt ? &nxt->work : NULL;
1943 }
1944 
1945 void io_wq_submit_work(struct io_wq_work *work)
1946 {
1947 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1948 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1949 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1950 	bool needs_poll = false;
1951 	int ret = 0, err = -ECANCELED;
1952 
1953 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1954 	if (!(req->flags & REQ_F_REFCOUNT))
1955 		__io_req_set_refcount(req, 2);
1956 	else
1957 		req_ref_get(req);
1958 
1959 	io_arm_ltimeout(req);
1960 
1961 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1962 	if (work->flags & IO_WQ_WORK_CANCEL) {
1963 fail:
1964 		io_req_task_queue_fail(req, err);
1965 		return;
1966 	}
1967 	if (!io_assign_file(req, def, issue_flags)) {
1968 		err = -EBADF;
1969 		work->flags |= IO_WQ_WORK_CANCEL;
1970 		goto fail;
1971 	}
1972 
1973 	/*
1974 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1975 	 * submitter task context. Final request completions are handed to the
1976 	 * right context, however this is not the case of auxiliary CQEs,
1977 	 * which is the main mean of operation for multishot requests.
1978 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1979 	 * than necessary and also cleaner.
1980 	 */
1981 	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1982 		err = -EBADFD;
1983 		if (!io_file_can_poll(req))
1984 			goto fail;
1985 		if (req->file->f_flags & O_NONBLOCK ||
1986 		    req->file->f_mode & FMODE_NOWAIT) {
1987 			err = -ECANCELED;
1988 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1989 				goto fail;
1990 			return;
1991 		} else {
1992 			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1993 		}
1994 	}
1995 
1996 	if (req->flags & REQ_F_FORCE_ASYNC) {
1997 		bool opcode_poll = def->pollin || def->pollout;
1998 
1999 		if (opcode_poll && io_file_can_poll(req)) {
2000 			needs_poll = true;
2001 			issue_flags |= IO_URING_F_NONBLOCK;
2002 		}
2003 	}
2004 
2005 	do {
2006 		ret = io_issue_sqe(req, issue_flags);
2007 		if (ret != -EAGAIN)
2008 			break;
2009 
2010 		/*
2011 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
2012 		 * poll. -EAGAIN is final for that case.
2013 		 */
2014 		if (req->flags & REQ_F_NOWAIT)
2015 			break;
2016 
2017 		/*
2018 		 * We can get EAGAIN for iopolled IO even though we're
2019 		 * forcing a sync submission from here, since we can't
2020 		 * wait for request slots on the block side.
2021 		 */
2022 		if (!needs_poll) {
2023 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
2024 				break;
2025 			if (io_wq_worker_stopped())
2026 				break;
2027 			cond_resched();
2028 			continue;
2029 		}
2030 
2031 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
2032 			return;
2033 		/* aborted or ready, in either case retry blocking */
2034 		needs_poll = false;
2035 		issue_flags &= ~IO_URING_F_NONBLOCK;
2036 	} while (1);
2037 
2038 	/* avoid locking problems by failing it from a clean context */
2039 	if (ret < 0)
2040 		io_req_task_queue_fail(req, ret);
2041 }
2042 
2043 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2044 				      unsigned int issue_flags)
2045 {
2046 	struct io_ring_ctx *ctx = req->ctx;
2047 	struct io_fixed_file *slot;
2048 	struct file *file = NULL;
2049 
2050 	io_ring_submit_lock(ctx, issue_flags);
2051 
2052 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2053 		goto out;
2054 	fd = array_index_nospec(fd, ctx->nr_user_files);
2055 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2056 	if (!req->rsrc_node)
2057 		__io_req_set_rsrc_node(req, ctx);
2058 	req->flags |= io_slot_flags(slot);
2059 	file = io_slot_file(slot);
2060 out:
2061 	io_ring_submit_unlock(ctx, issue_flags);
2062 	return file;
2063 }
2064 
2065 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2066 {
2067 	struct file *file = fget(fd);
2068 
2069 	trace_io_uring_file_get(req, fd);
2070 
2071 	/* we don't allow fixed io_uring files */
2072 	if (file && io_is_uring_fops(file))
2073 		io_req_track_inflight(req);
2074 	return file;
2075 }
2076 
2077 static void io_queue_async(struct io_kiocb *req, int ret)
2078 	__must_hold(&req->ctx->uring_lock)
2079 {
2080 	struct io_kiocb *linked_timeout;
2081 
2082 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2083 		io_req_defer_failed(req, ret);
2084 		return;
2085 	}
2086 
2087 	linked_timeout = io_prep_linked_timeout(req);
2088 
2089 	switch (io_arm_poll_handler(req, 0)) {
2090 	case IO_APOLL_READY:
2091 		io_kbuf_recycle(req, 0);
2092 		io_req_task_queue(req);
2093 		break;
2094 	case IO_APOLL_ABORTED:
2095 		io_kbuf_recycle(req, 0);
2096 		io_queue_iowq(req, NULL);
2097 		break;
2098 	case IO_APOLL_OK:
2099 		break;
2100 	}
2101 
2102 	if (linked_timeout)
2103 		io_queue_linked_timeout(linked_timeout);
2104 }
2105 
2106 static inline void io_queue_sqe(struct io_kiocb *req)
2107 	__must_hold(&req->ctx->uring_lock)
2108 {
2109 	int ret;
2110 
2111 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2112 
2113 	/*
2114 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2115 	 * doesn't support non-blocking read/write attempts
2116 	 */
2117 	if (unlikely(ret))
2118 		io_queue_async(req, ret);
2119 }
2120 
2121 static void io_queue_sqe_fallback(struct io_kiocb *req)
2122 	__must_hold(&req->ctx->uring_lock)
2123 {
2124 	if (unlikely(req->flags & REQ_F_FAIL)) {
2125 		/*
2126 		 * We don't submit, fail them all, for that replace hardlinks
2127 		 * with normal links. Extra REQ_F_LINK is tolerated.
2128 		 */
2129 		req->flags &= ~REQ_F_HARDLINK;
2130 		req->flags |= REQ_F_LINK;
2131 		io_req_defer_failed(req, req->cqe.res);
2132 	} else {
2133 		int ret = io_req_prep_async(req);
2134 
2135 		if (unlikely(ret)) {
2136 			io_req_defer_failed(req, ret);
2137 			return;
2138 		}
2139 
2140 		if (unlikely(req->ctx->drain_active))
2141 			io_drain_req(req);
2142 		else
2143 			io_queue_iowq(req, NULL);
2144 	}
2145 }
2146 
2147 /*
2148  * Check SQE restrictions (opcode and flags).
2149  *
2150  * Returns 'true' if SQE is allowed, 'false' otherwise.
2151  */
2152 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2153 					struct io_kiocb *req,
2154 					unsigned int sqe_flags)
2155 {
2156 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2157 		return false;
2158 
2159 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2160 	    ctx->restrictions.sqe_flags_required)
2161 		return false;
2162 
2163 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2164 			  ctx->restrictions.sqe_flags_required))
2165 		return false;
2166 
2167 	return true;
2168 }
2169 
2170 static void io_init_req_drain(struct io_kiocb *req)
2171 {
2172 	struct io_ring_ctx *ctx = req->ctx;
2173 	struct io_kiocb *head = ctx->submit_state.link.head;
2174 
2175 	ctx->drain_active = true;
2176 	if (head) {
2177 		/*
2178 		 * If we need to drain a request in the middle of a link, drain
2179 		 * the head request and the next request/link after the current
2180 		 * link. Considering sequential execution of links,
2181 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2182 		 * link.
2183 		 */
2184 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2185 		ctx->drain_next = true;
2186 	}
2187 }
2188 
2189 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2190 {
2191 	/* ensure per-opcode data is cleared if we fail before prep */
2192 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2193 	return err;
2194 }
2195 
2196 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2197 		       const struct io_uring_sqe *sqe)
2198 	__must_hold(&ctx->uring_lock)
2199 {
2200 	const struct io_issue_def *def;
2201 	unsigned int sqe_flags;
2202 	int personality;
2203 	u8 opcode;
2204 
2205 	/* req is partially pre-initialised, see io_preinit_req() */
2206 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2207 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2208 	sqe_flags = READ_ONCE(sqe->flags);
2209 	req->flags = (io_req_flags_t) sqe_flags;
2210 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2211 	req->file = NULL;
2212 	req->rsrc_node = NULL;
2213 	req->task = current;
2214 
2215 	if (unlikely(opcode >= IORING_OP_LAST)) {
2216 		req->opcode = 0;
2217 		return io_init_fail_req(req, -EINVAL);
2218 	}
2219 	def = &io_issue_defs[opcode];
2220 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2221 		/* enforce forwards compatibility on users */
2222 		if (sqe_flags & ~SQE_VALID_FLAGS)
2223 			return io_init_fail_req(req, -EINVAL);
2224 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2225 			if (!def->buffer_select)
2226 				return io_init_fail_req(req, -EOPNOTSUPP);
2227 			req->buf_index = READ_ONCE(sqe->buf_group);
2228 		}
2229 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2230 			ctx->drain_disabled = true;
2231 		if (sqe_flags & IOSQE_IO_DRAIN) {
2232 			if (ctx->drain_disabled)
2233 				return io_init_fail_req(req, -EOPNOTSUPP);
2234 			io_init_req_drain(req);
2235 		}
2236 	}
2237 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2238 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2239 			return io_init_fail_req(req, -EACCES);
2240 		/* knock it to the slow queue path, will be drained there */
2241 		if (ctx->drain_active)
2242 			req->flags |= REQ_F_FORCE_ASYNC;
2243 		/* if there is no link, we're at "next" request and need to drain */
2244 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2245 			ctx->drain_next = false;
2246 			ctx->drain_active = true;
2247 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2248 		}
2249 	}
2250 
2251 	if (!def->ioprio && sqe->ioprio)
2252 		return io_init_fail_req(req, -EINVAL);
2253 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2254 		return io_init_fail_req(req, -EINVAL);
2255 
2256 	if (def->needs_file) {
2257 		struct io_submit_state *state = &ctx->submit_state;
2258 
2259 		req->cqe.fd = READ_ONCE(sqe->fd);
2260 
2261 		/*
2262 		 * Plug now if we have more than 2 IO left after this, and the
2263 		 * target is potentially a read/write to block based storage.
2264 		 */
2265 		if (state->need_plug && def->plug) {
2266 			state->plug_started = true;
2267 			state->need_plug = false;
2268 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2269 		}
2270 	}
2271 
2272 	personality = READ_ONCE(sqe->personality);
2273 	if (personality) {
2274 		int ret;
2275 
2276 		req->creds = xa_load(&ctx->personalities, personality);
2277 		if (!req->creds)
2278 			return io_init_fail_req(req, -EINVAL);
2279 		get_cred(req->creds);
2280 		ret = security_uring_override_creds(req->creds);
2281 		if (ret) {
2282 			put_cred(req->creds);
2283 			return io_init_fail_req(req, ret);
2284 		}
2285 		req->flags |= REQ_F_CREDS;
2286 	}
2287 
2288 	return def->prep(req, sqe);
2289 }
2290 
2291 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2292 				      struct io_kiocb *req, int ret)
2293 {
2294 	struct io_ring_ctx *ctx = req->ctx;
2295 	struct io_submit_link *link = &ctx->submit_state.link;
2296 	struct io_kiocb *head = link->head;
2297 
2298 	trace_io_uring_req_failed(sqe, req, ret);
2299 
2300 	/*
2301 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2302 	 * unusable. Instead of failing eagerly, continue assembling the link if
2303 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2304 	 * should find the flag and handle the rest.
2305 	 */
2306 	req_fail_link_node(req, ret);
2307 	if (head && !(head->flags & REQ_F_FAIL))
2308 		req_fail_link_node(head, -ECANCELED);
2309 
2310 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2311 		if (head) {
2312 			link->last->link = req;
2313 			link->head = NULL;
2314 			req = head;
2315 		}
2316 		io_queue_sqe_fallback(req);
2317 		return ret;
2318 	}
2319 
2320 	if (head)
2321 		link->last->link = req;
2322 	else
2323 		link->head = req;
2324 	link->last = req;
2325 	return 0;
2326 }
2327 
2328 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2329 			 const struct io_uring_sqe *sqe)
2330 	__must_hold(&ctx->uring_lock)
2331 {
2332 	struct io_submit_link *link = &ctx->submit_state.link;
2333 	int ret;
2334 
2335 	ret = io_init_req(ctx, req, sqe);
2336 	if (unlikely(ret))
2337 		return io_submit_fail_init(sqe, req, ret);
2338 
2339 	trace_io_uring_submit_req(req);
2340 
2341 	/*
2342 	 * If we already have a head request, queue this one for async
2343 	 * submittal once the head completes. If we don't have a head but
2344 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2345 	 * submitted sync once the chain is complete. If none of those
2346 	 * conditions are true (normal request), then just queue it.
2347 	 */
2348 	if (unlikely(link->head)) {
2349 		ret = io_req_prep_async(req);
2350 		if (unlikely(ret))
2351 			return io_submit_fail_init(sqe, req, ret);
2352 
2353 		trace_io_uring_link(req, link->head);
2354 		link->last->link = req;
2355 		link->last = req;
2356 
2357 		if (req->flags & IO_REQ_LINK_FLAGS)
2358 			return 0;
2359 		/* last request of the link, flush it */
2360 		req = link->head;
2361 		link->head = NULL;
2362 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2363 			goto fallback;
2364 
2365 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2366 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2367 		if (req->flags & IO_REQ_LINK_FLAGS) {
2368 			link->head = req;
2369 			link->last = req;
2370 		} else {
2371 fallback:
2372 			io_queue_sqe_fallback(req);
2373 		}
2374 		return 0;
2375 	}
2376 
2377 	io_queue_sqe(req);
2378 	return 0;
2379 }
2380 
2381 /*
2382  * Batched submission is done, ensure local IO is flushed out.
2383  */
2384 static void io_submit_state_end(struct io_ring_ctx *ctx)
2385 {
2386 	struct io_submit_state *state = &ctx->submit_state;
2387 
2388 	if (unlikely(state->link.head))
2389 		io_queue_sqe_fallback(state->link.head);
2390 	/* flush only after queuing links as they can generate completions */
2391 	io_submit_flush_completions(ctx);
2392 	if (state->plug_started)
2393 		blk_finish_plug(&state->plug);
2394 }
2395 
2396 /*
2397  * Start submission side cache.
2398  */
2399 static void io_submit_state_start(struct io_submit_state *state,
2400 				  unsigned int max_ios)
2401 {
2402 	state->plug_started = false;
2403 	state->need_plug = max_ios > 2;
2404 	state->submit_nr = max_ios;
2405 	/* set only head, no need to init link_last in advance */
2406 	state->link.head = NULL;
2407 }
2408 
2409 static void io_commit_sqring(struct io_ring_ctx *ctx)
2410 {
2411 	struct io_rings *rings = ctx->rings;
2412 
2413 	/*
2414 	 * Ensure any loads from the SQEs are done at this point,
2415 	 * since once we write the new head, the application could
2416 	 * write new data to them.
2417 	 */
2418 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2419 }
2420 
2421 /*
2422  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2423  * that is mapped by userspace. This means that care needs to be taken to
2424  * ensure that reads are stable, as we cannot rely on userspace always
2425  * being a good citizen. If members of the sqe are validated and then later
2426  * used, it's important that those reads are done through READ_ONCE() to
2427  * prevent a re-load down the line.
2428  */
2429 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2430 {
2431 	unsigned mask = ctx->sq_entries - 1;
2432 	unsigned head = ctx->cached_sq_head++ & mask;
2433 
2434 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2435 		head = READ_ONCE(ctx->sq_array[head]);
2436 		if (unlikely(head >= ctx->sq_entries)) {
2437 			/* drop invalid entries */
2438 			spin_lock(&ctx->completion_lock);
2439 			ctx->cq_extra--;
2440 			spin_unlock(&ctx->completion_lock);
2441 			WRITE_ONCE(ctx->rings->sq_dropped,
2442 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2443 			return false;
2444 		}
2445 	}
2446 
2447 	/*
2448 	 * The cached sq head (or cq tail) serves two purposes:
2449 	 *
2450 	 * 1) allows us to batch the cost of updating the user visible
2451 	 *    head updates.
2452 	 * 2) allows the kernel side to track the head on its own, even
2453 	 *    though the application is the one updating it.
2454 	 */
2455 
2456 	/* double index for 128-byte SQEs, twice as long */
2457 	if (ctx->flags & IORING_SETUP_SQE128)
2458 		head <<= 1;
2459 	*sqe = &ctx->sq_sqes[head];
2460 	return true;
2461 }
2462 
2463 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2464 	__must_hold(&ctx->uring_lock)
2465 {
2466 	unsigned int entries = io_sqring_entries(ctx);
2467 	unsigned int left;
2468 	int ret;
2469 
2470 	if (unlikely(!entries))
2471 		return 0;
2472 	/* make sure SQ entry isn't read before tail */
2473 	ret = left = min(nr, entries);
2474 	io_get_task_refs(left);
2475 	io_submit_state_start(&ctx->submit_state, left);
2476 
2477 	do {
2478 		const struct io_uring_sqe *sqe;
2479 		struct io_kiocb *req;
2480 
2481 		if (unlikely(!io_alloc_req(ctx, &req)))
2482 			break;
2483 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2484 			io_req_add_to_cache(req, ctx);
2485 			break;
2486 		}
2487 
2488 		/*
2489 		 * Continue submitting even for sqe failure if the
2490 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2491 		 */
2492 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2493 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2494 			left--;
2495 			break;
2496 		}
2497 	} while (--left);
2498 
2499 	if (unlikely(left)) {
2500 		ret -= left;
2501 		/* try again if it submitted nothing and can't allocate a req */
2502 		if (!ret && io_req_cache_empty(ctx))
2503 			ret = -EAGAIN;
2504 		current->io_uring->cached_refs += left;
2505 	}
2506 
2507 	io_submit_state_end(ctx);
2508 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2509 	io_commit_sqring(ctx);
2510 	return ret;
2511 }
2512 
2513 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2514 			    int wake_flags, void *key)
2515 {
2516 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2517 
2518 	/*
2519 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2520 	 * the task, and the next invocation will do it.
2521 	 */
2522 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2523 		return autoremove_wake_function(curr, mode, wake_flags, key);
2524 	return -1;
2525 }
2526 
2527 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2528 {
2529 	if (!llist_empty(&ctx->work_llist)) {
2530 		__set_current_state(TASK_RUNNING);
2531 		if (io_run_local_work(ctx, INT_MAX) > 0)
2532 			return 0;
2533 	}
2534 	if (io_run_task_work() > 0)
2535 		return 0;
2536 	if (task_sigpending(current))
2537 		return -EINTR;
2538 	return 0;
2539 }
2540 
2541 static bool current_pending_io(void)
2542 {
2543 	struct io_uring_task *tctx = current->io_uring;
2544 
2545 	if (!tctx)
2546 		return false;
2547 	return percpu_counter_read_positive(&tctx->inflight);
2548 }
2549 
2550 /* when returns >0, the caller should retry */
2551 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2552 					  struct io_wait_queue *iowq)
2553 {
2554 	int ret;
2555 
2556 	if (unlikely(READ_ONCE(ctx->check_cq)))
2557 		return 1;
2558 	if (unlikely(!llist_empty(&ctx->work_llist)))
2559 		return 1;
2560 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2561 		return 1;
2562 	if (unlikely(task_sigpending(current)))
2563 		return -EINTR;
2564 	if (unlikely(io_should_wake(iowq)))
2565 		return 0;
2566 
2567 	/*
2568 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2569 	 * can take into account that the task is waiting for IO - turns out
2570 	 * to be important for low QD IO.
2571 	 */
2572 	if (current_pending_io())
2573 		current->in_iowait = 1;
2574 	ret = 0;
2575 	if (iowq->timeout == KTIME_MAX)
2576 		schedule();
2577 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2578 		ret = -ETIME;
2579 	current->in_iowait = 0;
2580 	return ret;
2581 }
2582 
2583 /*
2584  * Wait until events become available, if we don't already have some. The
2585  * application must reap them itself, as they reside on the shared cq ring.
2586  */
2587 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2588 			  const sigset_t __user *sig, size_t sigsz,
2589 			  struct __kernel_timespec __user *uts)
2590 {
2591 	struct io_wait_queue iowq;
2592 	struct io_rings *rings = ctx->rings;
2593 	int ret;
2594 
2595 	if (!io_allowed_run_tw(ctx))
2596 		return -EEXIST;
2597 	if (!llist_empty(&ctx->work_llist))
2598 		io_run_local_work(ctx, min_events);
2599 	io_run_task_work();
2600 	io_cqring_overflow_flush(ctx);
2601 	/* if user messes with these they will just get an early return */
2602 	if (__io_cqring_events_user(ctx) >= min_events)
2603 		return 0;
2604 
2605 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2606 	iowq.wq.private = current;
2607 	INIT_LIST_HEAD(&iowq.wq.entry);
2608 	iowq.ctx = ctx;
2609 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2610 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2611 	iowq.timeout = KTIME_MAX;
2612 
2613 	if (uts) {
2614 		struct timespec64 ts;
2615 
2616 		if (get_timespec64(&ts, uts))
2617 			return -EFAULT;
2618 
2619 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2620 		io_napi_adjust_timeout(ctx, &iowq, &ts);
2621 	}
2622 
2623 	if (sig) {
2624 #ifdef CONFIG_COMPAT
2625 		if (in_compat_syscall())
2626 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2627 						      sigsz);
2628 		else
2629 #endif
2630 			ret = set_user_sigmask(sig, sigsz);
2631 
2632 		if (ret)
2633 			return ret;
2634 	}
2635 
2636 	io_napi_busy_loop(ctx, &iowq);
2637 
2638 	trace_io_uring_cqring_wait(ctx, min_events);
2639 	do {
2640 		int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2641 		unsigned long check_cq;
2642 
2643 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2644 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2645 			set_current_state(TASK_INTERRUPTIBLE);
2646 		} else {
2647 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2648 							TASK_INTERRUPTIBLE);
2649 		}
2650 
2651 		ret = io_cqring_wait_schedule(ctx, &iowq);
2652 		__set_current_state(TASK_RUNNING);
2653 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2654 
2655 		/*
2656 		 * Run task_work after scheduling and before io_should_wake().
2657 		 * If we got woken because of task_work being processed, run it
2658 		 * now rather than let the caller do another wait loop.
2659 		 */
2660 		io_run_task_work();
2661 		if (!llist_empty(&ctx->work_llist))
2662 			io_run_local_work(ctx, nr_wait);
2663 
2664 		/*
2665 		 * Non-local task_work will be run on exit to userspace, but
2666 		 * if we're using DEFER_TASKRUN, then we could have waited
2667 		 * with a timeout for a number of requests. If the timeout
2668 		 * hits, we could have some requests ready to process. Ensure
2669 		 * this break is _after_ we have run task_work, to avoid
2670 		 * deferring running potentially pending requests until the
2671 		 * next time we wait for events.
2672 		 */
2673 		if (ret < 0)
2674 			break;
2675 
2676 		check_cq = READ_ONCE(ctx->check_cq);
2677 		if (unlikely(check_cq)) {
2678 			/* let the caller flush overflows, retry */
2679 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2680 				io_cqring_do_overflow_flush(ctx);
2681 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2682 				ret = -EBADR;
2683 				break;
2684 			}
2685 		}
2686 
2687 		if (io_should_wake(&iowq)) {
2688 			ret = 0;
2689 			break;
2690 		}
2691 		cond_resched();
2692 	} while (1);
2693 
2694 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2695 		finish_wait(&ctx->cq_wait, &iowq.wq);
2696 	restore_saved_sigmask_unless(ret == -EINTR);
2697 
2698 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2699 }
2700 
2701 void io_mem_free(void *ptr)
2702 {
2703 	if (!ptr)
2704 		return;
2705 
2706 	folio_put(virt_to_folio(ptr));
2707 }
2708 
2709 static void io_pages_free(struct page ***pages, int npages)
2710 {
2711 	struct page **page_array = *pages;
2712 	int i;
2713 
2714 	if (!page_array)
2715 		return;
2716 
2717 	for (i = 0; i < npages; i++)
2718 		unpin_user_page(page_array[i]);
2719 	kvfree(page_array);
2720 	*pages = NULL;
2721 }
2722 
2723 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2724 			    unsigned long uaddr, size_t size)
2725 {
2726 	struct page **page_array;
2727 	unsigned int nr_pages;
2728 	void *page_addr;
2729 	int ret, i, pinned;
2730 
2731 	*npages = 0;
2732 
2733 	if (uaddr & (PAGE_SIZE - 1) || !size)
2734 		return ERR_PTR(-EINVAL);
2735 
2736 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2737 	if (nr_pages > USHRT_MAX)
2738 		return ERR_PTR(-EINVAL);
2739 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2740 	if (!page_array)
2741 		return ERR_PTR(-ENOMEM);
2742 
2743 
2744 	pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2745 				     page_array);
2746 	if (pinned != nr_pages) {
2747 		ret = (pinned < 0) ? pinned : -EFAULT;
2748 		goto free_pages;
2749 	}
2750 
2751 	page_addr = page_address(page_array[0]);
2752 	for (i = 0; i < nr_pages; i++) {
2753 		ret = -EINVAL;
2754 
2755 		/*
2756 		 * Can't support mapping user allocated ring memory on 32-bit
2757 		 * archs where it could potentially reside in highmem. Just
2758 		 * fail those with -EINVAL, just like we did on kernels that
2759 		 * didn't support this feature.
2760 		 */
2761 		if (PageHighMem(page_array[i]))
2762 			goto free_pages;
2763 
2764 		/*
2765 		 * No support for discontig pages for now, should either be a
2766 		 * single normal page, or a huge page. Later on we can add
2767 		 * support for remapping discontig pages, for now we will
2768 		 * just fail them with EINVAL.
2769 		 */
2770 		if (page_address(page_array[i]) != page_addr)
2771 			goto free_pages;
2772 		page_addr += PAGE_SIZE;
2773 	}
2774 
2775 	*pages = page_array;
2776 	*npages = nr_pages;
2777 	return page_to_virt(page_array[0]);
2778 
2779 free_pages:
2780 	io_pages_free(&page_array, pinned > 0 ? pinned : 0);
2781 	return ERR_PTR(ret);
2782 }
2783 
2784 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2785 			  size_t size)
2786 {
2787 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2788 				size);
2789 }
2790 
2791 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2792 			 size_t size)
2793 {
2794 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2795 				size);
2796 }
2797 
2798 static void io_rings_free(struct io_ring_ctx *ctx)
2799 {
2800 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2801 		io_mem_free(ctx->rings);
2802 		io_mem_free(ctx->sq_sqes);
2803 	} else {
2804 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2805 		ctx->n_ring_pages = 0;
2806 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2807 		ctx->n_sqe_pages = 0;
2808 	}
2809 
2810 	ctx->rings = NULL;
2811 	ctx->sq_sqes = NULL;
2812 }
2813 
2814 void *io_mem_alloc(size_t size)
2815 {
2816 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2817 	void *ret;
2818 
2819 	ret = (void *) __get_free_pages(gfp, get_order(size));
2820 	if (ret)
2821 		return ret;
2822 	return ERR_PTR(-ENOMEM);
2823 }
2824 
2825 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2826 				unsigned int cq_entries, size_t *sq_offset)
2827 {
2828 	struct io_rings *rings;
2829 	size_t off, sq_array_size;
2830 
2831 	off = struct_size(rings, cqes, cq_entries);
2832 	if (off == SIZE_MAX)
2833 		return SIZE_MAX;
2834 	if (ctx->flags & IORING_SETUP_CQE32) {
2835 		if (check_shl_overflow(off, 1, &off))
2836 			return SIZE_MAX;
2837 	}
2838 
2839 #ifdef CONFIG_SMP
2840 	off = ALIGN(off, SMP_CACHE_BYTES);
2841 	if (off == 0)
2842 		return SIZE_MAX;
2843 #endif
2844 
2845 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2846 		if (sq_offset)
2847 			*sq_offset = SIZE_MAX;
2848 		return off;
2849 	}
2850 
2851 	if (sq_offset)
2852 		*sq_offset = off;
2853 
2854 	sq_array_size = array_size(sizeof(u32), sq_entries);
2855 	if (sq_array_size == SIZE_MAX)
2856 		return SIZE_MAX;
2857 
2858 	if (check_add_overflow(off, sq_array_size, &off))
2859 		return SIZE_MAX;
2860 
2861 	return off;
2862 }
2863 
2864 static void io_req_caches_free(struct io_ring_ctx *ctx)
2865 {
2866 	struct io_kiocb *req;
2867 	int nr = 0;
2868 
2869 	mutex_lock(&ctx->uring_lock);
2870 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2871 
2872 	while (!io_req_cache_empty(ctx)) {
2873 		req = io_extract_req(ctx);
2874 		kmem_cache_free(req_cachep, req);
2875 		nr++;
2876 	}
2877 	if (nr)
2878 		percpu_ref_put_many(&ctx->refs, nr);
2879 	mutex_unlock(&ctx->uring_lock);
2880 }
2881 
2882 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2883 {
2884 	kfree(container_of(entry, struct io_rsrc_node, cache));
2885 }
2886 
2887 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2888 {
2889 	io_sq_thread_finish(ctx);
2890 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2891 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2892 		return;
2893 
2894 	mutex_lock(&ctx->uring_lock);
2895 	if (ctx->buf_data)
2896 		__io_sqe_buffers_unregister(ctx);
2897 	if (ctx->file_data)
2898 		__io_sqe_files_unregister(ctx);
2899 	io_cqring_overflow_kill(ctx);
2900 	io_eventfd_unregister(ctx);
2901 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2902 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2903 	io_futex_cache_free(ctx);
2904 	io_destroy_buffers(ctx);
2905 	mutex_unlock(&ctx->uring_lock);
2906 	if (ctx->sq_creds)
2907 		put_cred(ctx->sq_creds);
2908 	if (ctx->submitter_task)
2909 		put_task_struct(ctx->submitter_task);
2910 
2911 	/* there are no registered resources left, nobody uses it */
2912 	if (ctx->rsrc_node)
2913 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2914 
2915 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2916 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2917 
2918 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2919 	if (ctx->mm_account) {
2920 		mmdrop(ctx->mm_account);
2921 		ctx->mm_account = NULL;
2922 	}
2923 	io_rings_free(ctx);
2924 	io_kbuf_mmap_list_free(ctx);
2925 
2926 	percpu_ref_exit(&ctx->refs);
2927 	free_uid(ctx->user);
2928 	io_req_caches_free(ctx);
2929 	if (ctx->hash_map)
2930 		io_wq_put_hash(ctx->hash_map);
2931 	io_napi_free(ctx);
2932 	kfree(ctx->cancel_table.hbs);
2933 	kfree(ctx->cancel_table_locked.hbs);
2934 	xa_destroy(&ctx->io_bl_xa);
2935 	kfree(ctx);
2936 }
2937 
2938 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2939 {
2940 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2941 					       poll_wq_task_work);
2942 
2943 	mutex_lock(&ctx->uring_lock);
2944 	ctx->poll_activated = true;
2945 	mutex_unlock(&ctx->uring_lock);
2946 
2947 	/*
2948 	 * Wake ups for some events between start of polling and activation
2949 	 * might've been lost due to loose synchronisation.
2950 	 */
2951 	wake_up_all(&ctx->poll_wq);
2952 	percpu_ref_put(&ctx->refs);
2953 }
2954 
2955 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2956 {
2957 	spin_lock(&ctx->completion_lock);
2958 	/* already activated or in progress */
2959 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2960 		goto out;
2961 	if (WARN_ON_ONCE(!ctx->task_complete))
2962 		goto out;
2963 	if (!ctx->submitter_task)
2964 		goto out;
2965 	/*
2966 	 * with ->submitter_task only the submitter task completes requests, we
2967 	 * only need to sync with it, which is done by injecting a tw
2968 	 */
2969 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2970 	percpu_ref_get(&ctx->refs);
2971 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2972 		percpu_ref_put(&ctx->refs);
2973 out:
2974 	spin_unlock(&ctx->completion_lock);
2975 }
2976 
2977 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2978 {
2979 	struct io_ring_ctx *ctx = file->private_data;
2980 	__poll_t mask = 0;
2981 
2982 	if (unlikely(!ctx->poll_activated))
2983 		io_activate_pollwq(ctx);
2984 
2985 	poll_wait(file, &ctx->poll_wq, wait);
2986 	/*
2987 	 * synchronizes with barrier from wq_has_sleeper call in
2988 	 * io_commit_cqring
2989 	 */
2990 	smp_rmb();
2991 	if (!io_sqring_full(ctx))
2992 		mask |= EPOLLOUT | EPOLLWRNORM;
2993 
2994 	/*
2995 	 * Don't flush cqring overflow list here, just do a simple check.
2996 	 * Otherwise there could possible be ABBA deadlock:
2997 	 *      CPU0                    CPU1
2998 	 *      ----                    ----
2999 	 * lock(&ctx->uring_lock);
3000 	 *                              lock(&ep->mtx);
3001 	 *                              lock(&ctx->uring_lock);
3002 	 * lock(&ep->mtx);
3003 	 *
3004 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3005 	 * pushes them to do the flush.
3006 	 */
3007 
3008 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3009 		mask |= EPOLLIN | EPOLLRDNORM;
3010 
3011 	return mask;
3012 }
3013 
3014 struct io_tctx_exit {
3015 	struct callback_head		task_work;
3016 	struct completion		completion;
3017 	struct io_ring_ctx		*ctx;
3018 };
3019 
3020 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3021 {
3022 	struct io_uring_task *tctx = current->io_uring;
3023 	struct io_tctx_exit *work;
3024 
3025 	work = container_of(cb, struct io_tctx_exit, task_work);
3026 	/*
3027 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3028 	 * node. It'll be removed by the end of cancellation, just ignore it.
3029 	 * tctx can be NULL if the queueing of this task_work raced with
3030 	 * work cancelation off the exec path.
3031 	 */
3032 	if (tctx && !atomic_read(&tctx->in_cancel))
3033 		io_uring_del_tctx_node((unsigned long)work->ctx);
3034 	complete(&work->completion);
3035 }
3036 
3037 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3038 {
3039 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3040 
3041 	return req->ctx == data;
3042 }
3043 
3044 static __cold void io_ring_exit_work(struct work_struct *work)
3045 {
3046 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3047 	unsigned long timeout = jiffies + HZ * 60 * 5;
3048 	unsigned long interval = HZ / 20;
3049 	struct io_tctx_exit exit;
3050 	struct io_tctx_node *node;
3051 	int ret;
3052 
3053 	/*
3054 	 * If we're doing polled IO and end up having requests being
3055 	 * submitted async (out-of-line), then completions can come in while
3056 	 * we're waiting for refs to drop. We need to reap these manually,
3057 	 * as nobody else will be looking for them.
3058 	 */
3059 	do {
3060 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3061 			mutex_lock(&ctx->uring_lock);
3062 			io_cqring_overflow_kill(ctx);
3063 			mutex_unlock(&ctx->uring_lock);
3064 		}
3065 
3066 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3067 			io_move_task_work_from_local(ctx);
3068 
3069 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3070 			cond_resched();
3071 
3072 		if (ctx->sq_data) {
3073 			struct io_sq_data *sqd = ctx->sq_data;
3074 			struct task_struct *tsk;
3075 
3076 			io_sq_thread_park(sqd);
3077 			tsk = sqd->thread;
3078 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3079 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3080 						io_cancel_ctx_cb, ctx, true);
3081 			io_sq_thread_unpark(sqd);
3082 		}
3083 
3084 		io_req_caches_free(ctx);
3085 
3086 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3087 			/* there is little hope left, don't run it too often */
3088 			interval = HZ * 60;
3089 		}
3090 		/*
3091 		 * This is really an uninterruptible wait, as it has to be
3092 		 * complete. But it's also run from a kworker, which doesn't
3093 		 * take signals, so it's fine to make it interruptible. This
3094 		 * avoids scenarios where we knowingly can wait much longer
3095 		 * on completions, for example if someone does a SIGSTOP on
3096 		 * a task that needs to finish task_work to make this loop
3097 		 * complete. That's a synthetic situation that should not
3098 		 * cause a stuck task backtrace, and hence a potential panic
3099 		 * on stuck tasks if that is enabled.
3100 		 */
3101 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3102 
3103 	init_completion(&exit.completion);
3104 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3105 	exit.ctx = ctx;
3106 
3107 	mutex_lock(&ctx->uring_lock);
3108 	while (!list_empty(&ctx->tctx_list)) {
3109 		WARN_ON_ONCE(time_after(jiffies, timeout));
3110 
3111 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3112 					ctx_node);
3113 		/* don't spin on a single task if cancellation failed */
3114 		list_rotate_left(&ctx->tctx_list);
3115 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3116 		if (WARN_ON_ONCE(ret))
3117 			continue;
3118 
3119 		mutex_unlock(&ctx->uring_lock);
3120 		/*
3121 		 * See comment above for
3122 		 * wait_for_completion_interruptible_timeout() on why this
3123 		 * wait is marked as interruptible.
3124 		 */
3125 		wait_for_completion_interruptible(&exit.completion);
3126 		mutex_lock(&ctx->uring_lock);
3127 	}
3128 	mutex_unlock(&ctx->uring_lock);
3129 	spin_lock(&ctx->completion_lock);
3130 	spin_unlock(&ctx->completion_lock);
3131 
3132 	/* pairs with RCU read section in io_req_local_work_add() */
3133 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3134 		synchronize_rcu();
3135 
3136 	io_ring_ctx_free(ctx);
3137 }
3138 
3139 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3140 {
3141 	unsigned long index;
3142 	struct creds *creds;
3143 
3144 	mutex_lock(&ctx->uring_lock);
3145 	percpu_ref_kill(&ctx->refs);
3146 	xa_for_each(&ctx->personalities, index, creds)
3147 		io_unregister_personality(ctx, index);
3148 	if (ctx->rings)
3149 		io_poll_remove_all(ctx, NULL, true);
3150 	mutex_unlock(&ctx->uring_lock);
3151 
3152 	/*
3153 	 * If we failed setting up the ctx, we might not have any rings
3154 	 * and therefore did not submit any requests
3155 	 */
3156 	if (ctx->rings)
3157 		io_kill_timeouts(ctx, NULL, true);
3158 
3159 	flush_delayed_work(&ctx->fallback_work);
3160 
3161 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3162 	/*
3163 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3164 	 * if we're exiting a ton of rings at the same time. It just adds
3165 	 * noise and overhead, there's no discernable change in runtime
3166 	 * over using system_wq.
3167 	 */
3168 	queue_work(iou_wq, &ctx->exit_work);
3169 }
3170 
3171 static int io_uring_release(struct inode *inode, struct file *file)
3172 {
3173 	struct io_ring_ctx *ctx = file->private_data;
3174 
3175 	file->private_data = NULL;
3176 	io_ring_ctx_wait_and_kill(ctx);
3177 	return 0;
3178 }
3179 
3180 struct io_task_cancel {
3181 	struct task_struct *task;
3182 	bool all;
3183 };
3184 
3185 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3186 {
3187 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3188 	struct io_task_cancel *cancel = data;
3189 
3190 	return io_match_task_safe(req, cancel->task, cancel->all);
3191 }
3192 
3193 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3194 					 struct task_struct *task,
3195 					 bool cancel_all)
3196 {
3197 	struct io_defer_entry *de;
3198 	LIST_HEAD(list);
3199 
3200 	spin_lock(&ctx->completion_lock);
3201 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3202 		if (io_match_task_safe(de->req, task, cancel_all)) {
3203 			list_cut_position(&list, &ctx->defer_list, &de->list);
3204 			break;
3205 		}
3206 	}
3207 	spin_unlock(&ctx->completion_lock);
3208 	if (list_empty(&list))
3209 		return false;
3210 
3211 	while (!list_empty(&list)) {
3212 		de = list_first_entry(&list, struct io_defer_entry, list);
3213 		list_del_init(&de->list);
3214 		io_req_task_queue_fail(de->req, -ECANCELED);
3215 		kfree(de);
3216 	}
3217 	return true;
3218 }
3219 
3220 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3221 {
3222 	struct io_tctx_node *node;
3223 	enum io_wq_cancel cret;
3224 	bool ret = false;
3225 
3226 	mutex_lock(&ctx->uring_lock);
3227 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3228 		struct io_uring_task *tctx = node->task->io_uring;
3229 
3230 		/*
3231 		 * io_wq will stay alive while we hold uring_lock, because it's
3232 		 * killed after ctx nodes, which requires to take the lock.
3233 		 */
3234 		if (!tctx || !tctx->io_wq)
3235 			continue;
3236 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3237 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3238 	}
3239 	mutex_unlock(&ctx->uring_lock);
3240 
3241 	return ret;
3242 }
3243 
3244 static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx,
3245 		struct task_struct *task, bool cancel_all)
3246 {
3247 	struct hlist_node *tmp;
3248 	struct io_kiocb *req;
3249 	bool ret = false;
3250 
3251 	lockdep_assert_held(&ctx->uring_lock);
3252 
3253 	hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd,
3254 			hash_node) {
3255 		struct io_uring_cmd *cmd = io_kiocb_to_cmd(req,
3256 				struct io_uring_cmd);
3257 		struct file *file = req->file;
3258 
3259 		if (!cancel_all && req->task != task)
3260 			continue;
3261 
3262 		if (cmd->flags & IORING_URING_CMD_CANCELABLE) {
3263 			/* ->sqe isn't available if no async data */
3264 			if (!req_has_async_data(req))
3265 				cmd->sqe = NULL;
3266 			file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL);
3267 			ret = true;
3268 		}
3269 	}
3270 	io_submit_flush_completions(ctx);
3271 
3272 	return ret;
3273 }
3274 
3275 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3276 						struct task_struct *task,
3277 						bool cancel_all)
3278 {
3279 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3280 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3281 	enum io_wq_cancel cret;
3282 	bool ret = false;
3283 
3284 	/* set it so io_req_local_work_add() would wake us up */
3285 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3286 		atomic_set(&ctx->cq_wait_nr, 1);
3287 		smp_mb();
3288 	}
3289 
3290 	/* failed during ring init, it couldn't have issued any requests */
3291 	if (!ctx->rings)
3292 		return false;
3293 
3294 	if (!task) {
3295 		ret |= io_uring_try_cancel_iowq(ctx);
3296 	} else if (tctx && tctx->io_wq) {
3297 		/*
3298 		 * Cancels requests of all rings, not only @ctx, but
3299 		 * it's fine as the task is in exit/exec.
3300 		 */
3301 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3302 				       &cancel, true);
3303 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3304 	}
3305 
3306 	/* SQPOLL thread does its own polling */
3307 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3308 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3309 		while (!wq_list_empty(&ctx->iopoll_list)) {
3310 			io_iopoll_try_reap_events(ctx);
3311 			ret = true;
3312 			cond_resched();
3313 		}
3314 	}
3315 
3316 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3317 	    io_allowed_defer_tw_run(ctx))
3318 		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3319 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3320 	mutex_lock(&ctx->uring_lock);
3321 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3322 	ret |= io_waitid_remove_all(ctx, task, cancel_all);
3323 	ret |= io_futex_remove_all(ctx, task, cancel_all);
3324 	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3325 	mutex_unlock(&ctx->uring_lock);
3326 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3327 	if (task)
3328 		ret |= io_run_task_work() > 0;
3329 	return ret;
3330 }
3331 
3332 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3333 {
3334 	if (tracked)
3335 		return atomic_read(&tctx->inflight_tracked);
3336 	return percpu_counter_sum(&tctx->inflight);
3337 }
3338 
3339 /*
3340  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3341  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3342  */
3343 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3344 {
3345 	struct io_uring_task *tctx = current->io_uring;
3346 	struct io_ring_ctx *ctx;
3347 	struct io_tctx_node *node;
3348 	unsigned long index;
3349 	s64 inflight;
3350 	DEFINE_WAIT(wait);
3351 
3352 	WARN_ON_ONCE(sqd && sqd->thread != current);
3353 
3354 	if (!current->io_uring)
3355 		return;
3356 	if (tctx->io_wq)
3357 		io_wq_exit_start(tctx->io_wq);
3358 
3359 	atomic_inc(&tctx->in_cancel);
3360 	do {
3361 		bool loop = false;
3362 
3363 		io_uring_drop_tctx_refs(current);
3364 		/* read completions before cancelations */
3365 		inflight = tctx_inflight(tctx, !cancel_all);
3366 		if (!inflight)
3367 			break;
3368 
3369 		if (!sqd) {
3370 			xa_for_each(&tctx->xa, index, node) {
3371 				/* sqpoll task will cancel all its requests */
3372 				if (node->ctx->sq_data)
3373 					continue;
3374 				loop |= io_uring_try_cancel_requests(node->ctx,
3375 							current, cancel_all);
3376 			}
3377 		} else {
3378 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3379 				loop |= io_uring_try_cancel_requests(ctx,
3380 								     current,
3381 								     cancel_all);
3382 		}
3383 
3384 		if (loop) {
3385 			cond_resched();
3386 			continue;
3387 		}
3388 
3389 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3390 		io_run_task_work();
3391 		io_uring_drop_tctx_refs(current);
3392 		xa_for_each(&tctx->xa, index, node) {
3393 			if (!llist_empty(&node->ctx->work_llist)) {
3394 				WARN_ON_ONCE(node->ctx->submitter_task &&
3395 					     node->ctx->submitter_task != current);
3396 				goto end_wait;
3397 			}
3398 		}
3399 		/*
3400 		 * If we've seen completions, retry without waiting. This
3401 		 * avoids a race where a completion comes in before we did
3402 		 * prepare_to_wait().
3403 		 */
3404 		if (inflight == tctx_inflight(tctx, !cancel_all))
3405 			schedule();
3406 end_wait:
3407 		finish_wait(&tctx->wait, &wait);
3408 	} while (1);
3409 
3410 	io_uring_clean_tctx(tctx);
3411 	if (cancel_all) {
3412 		/*
3413 		 * We shouldn't run task_works after cancel, so just leave
3414 		 * ->in_cancel set for normal exit.
3415 		 */
3416 		atomic_dec(&tctx->in_cancel);
3417 		/* for exec all current's requests should be gone, kill tctx */
3418 		__io_uring_free(current);
3419 	}
3420 }
3421 
3422 void __io_uring_cancel(bool cancel_all)
3423 {
3424 	io_uring_cancel_generic(cancel_all, NULL);
3425 }
3426 
3427 static void *io_uring_validate_mmap_request(struct file *file,
3428 					    loff_t pgoff, size_t sz)
3429 {
3430 	struct io_ring_ctx *ctx = file->private_data;
3431 	loff_t offset = pgoff << PAGE_SHIFT;
3432 	struct page *page;
3433 	void *ptr;
3434 
3435 	switch (offset & IORING_OFF_MMAP_MASK) {
3436 	case IORING_OFF_SQ_RING:
3437 	case IORING_OFF_CQ_RING:
3438 		/* Don't allow mmap if the ring was setup without it */
3439 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3440 			return ERR_PTR(-EINVAL);
3441 		ptr = ctx->rings;
3442 		break;
3443 	case IORING_OFF_SQES:
3444 		/* Don't allow mmap if the ring was setup without it */
3445 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3446 			return ERR_PTR(-EINVAL);
3447 		ptr = ctx->sq_sqes;
3448 		break;
3449 	case IORING_OFF_PBUF_RING: {
3450 		struct io_buffer_list *bl;
3451 		unsigned int bgid;
3452 
3453 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3454 		bl = io_pbuf_get_bl(ctx, bgid);
3455 		if (IS_ERR(bl))
3456 			return bl;
3457 		ptr = bl->buf_ring;
3458 		io_put_bl(ctx, bl);
3459 		break;
3460 		}
3461 	default:
3462 		return ERR_PTR(-EINVAL);
3463 	}
3464 
3465 	page = virt_to_head_page(ptr);
3466 	if (sz > page_size(page))
3467 		return ERR_PTR(-EINVAL);
3468 
3469 	return ptr;
3470 }
3471 
3472 #ifdef CONFIG_MMU
3473 
3474 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3475 {
3476 	size_t sz = vma->vm_end - vma->vm_start;
3477 	unsigned long pfn;
3478 	void *ptr;
3479 
3480 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3481 	if (IS_ERR(ptr))
3482 		return PTR_ERR(ptr);
3483 
3484 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3485 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3486 }
3487 
3488 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3489 			unsigned long addr, unsigned long len,
3490 			unsigned long pgoff, unsigned long flags)
3491 {
3492 	void *ptr;
3493 
3494 	/*
3495 	 * Do not allow to map to user-provided address to avoid breaking the
3496 	 * aliasing rules. Userspace is not able to guess the offset address of
3497 	 * kernel kmalloc()ed memory area.
3498 	 */
3499 	if (addr)
3500 		return -EINVAL;
3501 
3502 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3503 	if (IS_ERR(ptr))
3504 		return -ENOMEM;
3505 
3506 	/*
3507 	 * Some architectures have strong cache aliasing requirements.
3508 	 * For such architectures we need a coherent mapping which aliases
3509 	 * kernel memory *and* userspace memory. To achieve that:
3510 	 * - use a NULL file pointer to reference physical memory, and
3511 	 * - use the kernel virtual address of the shared io_uring context
3512 	 *   (instead of the userspace-provided address, which has to be 0UL
3513 	 *   anyway).
3514 	 * - use the same pgoff which the get_unmapped_area() uses to
3515 	 *   calculate the page colouring.
3516 	 * For architectures without such aliasing requirements, the
3517 	 * architecture will return any suitable mapping because addr is 0.
3518 	 */
3519 	filp = NULL;
3520 	flags |= MAP_SHARED;
3521 	pgoff = 0;	/* has been translated to ptr above */
3522 #ifdef SHM_COLOUR
3523 	addr = (uintptr_t) ptr;
3524 	pgoff = addr >> PAGE_SHIFT;
3525 #else
3526 	addr = 0UL;
3527 #endif
3528 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3529 }
3530 
3531 #else /* !CONFIG_MMU */
3532 
3533 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3534 {
3535 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3536 }
3537 
3538 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3539 {
3540 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3541 }
3542 
3543 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3544 	unsigned long addr, unsigned long len,
3545 	unsigned long pgoff, unsigned long flags)
3546 {
3547 	void *ptr;
3548 
3549 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3550 	if (IS_ERR(ptr))
3551 		return PTR_ERR(ptr);
3552 
3553 	return (unsigned long) ptr;
3554 }
3555 
3556 #endif /* !CONFIG_MMU */
3557 
3558 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3559 {
3560 	if (flags & IORING_ENTER_EXT_ARG) {
3561 		struct io_uring_getevents_arg arg;
3562 
3563 		if (argsz != sizeof(arg))
3564 			return -EINVAL;
3565 		if (copy_from_user(&arg, argp, sizeof(arg)))
3566 			return -EFAULT;
3567 	}
3568 	return 0;
3569 }
3570 
3571 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3572 			  struct __kernel_timespec __user **ts,
3573 			  const sigset_t __user **sig)
3574 {
3575 	struct io_uring_getevents_arg arg;
3576 
3577 	/*
3578 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3579 	 * is just a pointer to the sigset_t.
3580 	 */
3581 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3582 		*sig = (const sigset_t __user *) argp;
3583 		*ts = NULL;
3584 		return 0;
3585 	}
3586 
3587 	/*
3588 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3589 	 * timespec and sigset_t pointers if good.
3590 	 */
3591 	if (*argsz != sizeof(arg))
3592 		return -EINVAL;
3593 	if (copy_from_user(&arg, argp, sizeof(arg)))
3594 		return -EFAULT;
3595 	if (arg.pad)
3596 		return -EINVAL;
3597 	*sig = u64_to_user_ptr(arg.sigmask);
3598 	*argsz = arg.sigmask_sz;
3599 	*ts = u64_to_user_ptr(arg.ts);
3600 	return 0;
3601 }
3602 
3603 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3604 		u32, min_complete, u32, flags, const void __user *, argp,
3605 		size_t, argsz)
3606 {
3607 	struct io_ring_ctx *ctx;
3608 	struct file *file;
3609 	long ret;
3610 
3611 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3612 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3613 			       IORING_ENTER_REGISTERED_RING)))
3614 		return -EINVAL;
3615 
3616 	/*
3617 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3618 	 * need only dereference our task private array to find it.
3619 	 */
3620 	if (flags & IORING_ENTER_REGISTERED_RING) {
3621 		struct io_uring_task *tctx = current->io_uring;
3622 
3623 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3624 			return -EINVAL;
3625 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3626 		file = tctx->registered_rings[fd];
3627 		if (unlikely(!file))
3628 			return -EBADF;
3629 	} else {
3630 		file = fget(fd);
3631 		if (unlikely(!file))
3632 			return -EBADF;
3633 		ret = -EOPNOTSUPP;
3634 		if (unlikely(!io_is_uring_fops(file)))
3635 			goto out;
3636 	}
3637 
3638 	ctx = file->private_data;
3639 	ret = -EBADFD;
3640 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3641 		goto out;
3642 
3643 	/*
3644 	 * For SQ polling, the thread will do all submissions and completions.
3645 	 * Just return the requested submit count, and wake the thread if
3646 	 * we were asked to.
3647 	 */
3648 	ret = 0;
3649 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3650 		io_cqring_overflow_flush(ctx);
3651 
3652 		if (unlikely(ctx->sq_data->thread == NULL)) {
3653 			ret = -EOWNERDEAD;
3654 			goto out;
3655 		}
3656 		if (flags & IORING_ENTER_SQ_WAKEUP)
3657 			wake_up(&ctx->sq_data->wait);
3658 		if (flags & IORING_ENTER_SQ_WAIT)
3659 			io_sqpoll_wait_sq(ctx);
3660 
3661 		ret = to_submit;
3662 	} else if (to_submit) {
3663 		ret = io_uring_add_tctx_node(ctx);
3664 		if (unlikely(ret))
3665 			goto out;
3666 
3667 		mutex_lock(&ctx->uring_lock);
3668 		ret = io_submit_sqes(ctx, to_submit);
3669 		if (ret != to_submit) {
3670 			mutex_unlock(&ctx->uring_lock);
3671 			goto out;
3672 		}
3673 		if (flags & IORING_ENTER_GETEVENTS) {
3674 			if (ctx->syscall_iopoll)
3675 				goto iopoll_locked;
3676 			/*
3677 			 * Ignore errors, we'll soon call io_cqring_wait() and
3678 			 * it should handle ownership problems if any.
3679 			 */
3680 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3681 				(void)io_run_local_work_locked(ctx, min_complete);
3682 		}
3683 		mutex_unlock(&ctx->uring_lock);
3684 	}
3685 
3686 	if (flags & IORING_ENTER_GETEVENTS) {
3687 		int ret2;
3688 
3689 		if (ctx->syscall_iopoll) {
3690 			/*
3691 			 * We disallow the app entering submit/complete with
3692 			 * polling, but we still need to lock the ring to
3693 			 * prevent racing with polled issue that got punted to
3694 			 * a workqueue.
3695 			 */
3696 			mutex_lock(&ctx->uring_lock);
3697 iopoll_locked:
3698 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3699 			if (likely(!ret2)) {
3700 				min_complete = min(min_complete,
3701 						   ctx->cq_entries);
3702 				ret2 = io_iopoll_check(ctx, min_complete);
3703 			}
3704 			mutex_unlock(&ctx->uring_lock);
3705 		} else {
3706 			const sigset_t __user *sig;
3707 			struct __kernel_timespec __user *ts;
3708 
3709 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3710 			if (likely(!ret2)) {
3711 				min_complete = min(min_complete,
3712 						   ctx->cq_entries);
3713 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3714 						      argsz, ts);
3715 			}
3716 		}
3717 
3718 		if (!ret) {
3719 			ret = ret2;
3720 
3721 			/*
3722 			 * EBADR indicates that one or more CQE were dropped.
3723 			 * Once the user has been informed we can clear the bit
3724 			 * as they are obviously ok with those drops.
3725 			 */
3726 			if (unlikely(ret2 == -EBADR))
3727 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3728 					  &ctx->check_cq);
3729 		}
3730 	}
3731 out:
3732 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3733 		fput(file);
3734 	return ret;
3735 }
3736 
3737 static const struct file_operations io_uring_fops = {
3738 	.release	= io_uring_release,
3739 	.mmap		= io_uring_mmap,
3740 #ifndef CONFIG_MMU
3741 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3742 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3743 #else
3744 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3745 #endif
3746 	.poll		= io_uring_poll,
3747 #ifdef CONFIG_PROC_FS
3748 	.show_fdinfo	= io_uring_show_fdinfo,
3749 #endif
3750 };
3751 
3752 bool io_is_uring_fops(struct file *file)
3753 {
3754 	return file->f_op == &io_uring_fops;
3755 }
3756 
3757 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3758 					 struct io_uring_params *p)
3759 {
3760 	struct io_rings *rings;
3761 	size_t size, sq_array_offset;
3762 	void *ptr;
3763 
3764 	/* make sure these are sane, as we already accounted them */
3765 	ctx->sq_entries = p->sq_entries;
3766 	ctx->cq_entries = p->cq_entries;
3767 
3768 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3769 	if (size == SIZE_MAX)
3770 		return -EOVERFLOW;
3771 
3772 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3773 		rings = io_mem_alloc(size);
3774 	else
3775 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3776 
3777 	if (IS_ERR(rings))
3778 		return PTR_ERR(rings);
3779 
3780 	ctx->rings = rings;
3781 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3782 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3783 	rings->sq_ring_mask = p->sq_entries - 1;
3784 	rings->cq_ring_mask = p->cq_entries - 1;
3785 	rings->sq_ring_entries = p->sq_entries;
3786 	rings->cq_ring_entries = p->cq_entries;
3787 
3788 	if (p->flags & IORING_SETUP_SQE128)
3789 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3790 	else
3791 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3792 	if (size == SIZE_MAX) {
3793 		io_rings_free(ctx);
3794 		return -EOVERFLOW;
3795 	}
3796 
3797 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3798 		ptr = io_mem_alloc(size);
3799 	else
3800 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3801 
3802 	if (IS_ERR(ptr)) {
3803 		io_rings_free(ctx);
3804 		return PTR_ERR(ptr);
3805 	}
3806 
3807 	ctx->sq_sqes = ptr;
3808 	return 0;
3809 }
3810 
3811 static int io_uring_install_fd(struct file *file)
3812 {
3813 	int fd;
3814 
3815 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3816 	if (fd < 0)
3817 		return fd;
3818 	fd_install(fd, file);
3819 	return fd;
3820 }
3821 
3822 /*
3823  * Allocate an anonymous fd, this is what constitutes the application
3824  * visible backing of an io_uring instance. The application mmaps this
3825  * fd to gain access to the SQ/CQ ring details.
3826  */
3827 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3828 {
3829 	/* Create a new inode so that the LSM can block the creation.  */
3830 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3831 					 O_RDWR | O_CLOEXEC, NULL);
3832 }
3833 
3834 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3835 				  struct io_uring_params __user *params)
3836 {
3837 	struct io_ring_ctx *ctx;
3838 	struct io_uring_task *tctx;
3839 	struct file *file;
3840 	int ret;
3841 
3842 	if (!entries)
3843 		return -EINVAL;
3844 	if (entries > IORING_MAX_ENTRIES) {
3845 		if (!(p->flags & IORING_SETUP_CLAMP))
3846 			return -EINVAL;
3847 		entries = IORING_MAX_ENTRIES;
3848 	}
3849 
3850 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3851 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3852 		return -EINVAL;
3853 
3854 	/*
3855 	 * Use twice as many entries for the CQ ring. It's possible for the
3856 	 * application to drive a higher depth than the size of the SQ ring,
3857 	 * since the sqes are only used at submission time. This allows for
3858 	 * some flexibility in overcommitting a bit. If the application has
3859 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3860 	 * of CQ ring entries manually.
3861 	 */
3862 	p->sq_entries = roundup_pow_of_two(entries);
3863 	if (p->flags & IORING_SETUP_CQSIZE) {
3864 		/*
3865 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3866 		 * to a power-of-two, if it isn't already. We do NOT impose
3867 		 * any cq vs sq ring sizing.
3868 		 */
3869 		if (!p->cq_entries)
3870 			return -EINVAL;
3871 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3872 			if (!(p->flags & IORING_SETUP_CLAMP))
3873 				return -EINVAL;
3874 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3875 		}
3876 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3877 		if (p->cq_entries < p->sq_entries)
3878 			return -EINVAL;
3879 	} else {
3880 		p->cq_entries = 2 * p->sq_entries;
3881 	}
3882 
3883 	ctx = io_ring_ctx_alloc(p);
3884 	if (!ctx)
3885 		return -ENOMEM;
3886 
3887 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3888 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3889 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3890 		ctx->task_complete = true;
3891 
3892 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3893 		ctx->lockless_cq = true;
3894 
3895 	/*
3896 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3897 	 * purposes, see io_activate_pollwq()
3898 	 */
3899 	if (!ctx->task_complete)
3900 		ctx->poll_activated = true;
3901 
3902 	/*
3903 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3904 	 * space applications don't need to do io completion events
3905 	 * polling again, they can rely on io_sq_thread to do polling
3906 	 * work, which can reduce cpu usage and uring_lock contention.
3907 	 */
3908 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3909 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3910 		ctx->syscall_iopoll = 1;
3911 
3912 	ctx->compat = in_compat_syscall();
3913 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3914 		ctx->user = get_uid(current_user());
3915 
3916 	/*
3917 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3918 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3919 	 */
3920 	ret = -EINVAL;
3921 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3922 		/* IPI related flags don't make sense with SQPOLL */
3923 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3924 				  IORING_SETUP_TASKRUN_FLAG |
3925 				  IORING_SETUP_DEFER_TASKRUN))
3926 			goto err;
3927 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3928 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3929 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3930 	} else {
3931 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3932 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3933 			goto err;
3934 		ctx->notify_method = TWA_SIGNAL;
3935 	}
3936 
3937 	/*
3938 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3939 	 * submission task. This implies that there is only one submitter, so enforce
3940 	 * that.
3941 	 */
3942 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3943 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3944 		goto err;
3945 	}
3946 
3947 	/*
3948 	 * This is just grabbed for accounting purposes. When a process exits,
3949 	 * the mm is exited and dropped before the files, hence we need to hang
3950 	 * on to this mm purely for the purposes of being able to unaccount
3951 	 * memory (locked/pinned vm). It's not used for anything else.
3952 	 */
3953 	mmgrab(current->mm);
3954 	ctx->mm_account = current->mm;
3955 
3956 	ret = io_allocate_scq_urings(ctx, p);
3957 	if (ret)
3958 		goto err;
3959 
3960 	ret = io_sq_offload_create(ctx, p);
3961 	if (ret)
3962 		goto err;
3963 
3964 	ret = io_rsrc_init(ctx);
3965 	if (ret)
3966 		goto err;
3967 
3968 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3969 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3970 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3971 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3972 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3973 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3974 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3975 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3976 	p->sq_off.resv1 = 0;
3977 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3978 		p->sq_off.user_addr = 0;
3979 
3980 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3981 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3982 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3983 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3984 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3985 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3986 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3987 	p->cq_off.resv1 = 0;
3988 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3989 		p->cq_off.user_addr = 0;
3990 
3991 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3992 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3993 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3994 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3995 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3996 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3997 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3998 
3999 	if (copy_to_user(params, p, sizeof(*p))) {
4000 		ret = -EFAULT;
4001 		goto err;
4002 	}
4003 
4004 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4005 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4006 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4007 
4008 	file = io_uring_get_file(ctx);
4009 	if (IS_ERR(file)) {
4010 		ret = PTR_ERR(file);
4011 		goto err;
4012 	}
4013 
4014 	ret = __io_uring_add_tctx_node(ctx);
4015 	if (ret)
4016 		goto err_fput;
4017 	tctx = current->io_uring;
4018 
4019 	/*
4020 	 * Install ring fd as the very last thing, so we don't risk someone
4021 	 * having closed it before we finish setup
4022 	 */
4023 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4024 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4025 	else
4026 		ret = io_uring_install_fd(file);
4027 	if (ret < 0)
4028 		goto err_fput;
4029 
4030 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4031 	return ret;
4032 err:
4033 	io_ring_ctx_wait_and_kill(ctx);
4034 	return ret;
4035 err_fput:
4036 	fput(file);
4037 	return ret;
4038 }
4039 
4040 /*
4041  * Sets up an aio uring context, and returns the fd. Applications asks for a
4042  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4043  * params structure passed in.
4044  */
4045 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4046 {
4047 	struct io_uring_params p;
4048 	int i;
4049 
4050 	if (copy_from_user(&p, params, sizeof(p)))
4051 		return -EFAULT;
4052 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4053 		if (p.resv[i])
4054 			return -EINVAL;
4055 	}
4056 
4057 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4058 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4059 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4060 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4061 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4062 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4063 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4064 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4065 			IORING_SETUP_NO_SQARRAY))
4066 		return -EINVAL;
4067 
4068 	return io_uring_create(entries, &p, params);
4069 }
4070 
4071 static inline bool io_uring_allowed(void)
4072 {
4073 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4074 	kgid_t io_uring_group;
4075 
4076 	if (disabled == 2)
4077 		return false;
4078 
4079 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4080 		return true;
4081 
4082 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4083 	if (!gid_valid(io_uring_group))
4084 		return false;
4085 
4086 	return in_group_p(io_uring_group);
4087 }
4088 
4089 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4090 		struct io_uring_params __user *, params)
4091 {
4092 	if (!io_uring_allowed())
4093 		return -EPERM;
4094 
4095 	return io_uring_setup(entries, params);
4096 }
4097 
4098 static int __init io_uring_init(void)
4099 {
4100 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4101 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4102 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4103 } while (0)
4104 
4105 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4106 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4107 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4108 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4109 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4110 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4111 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4112 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4113 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4114 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4115 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4116 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4117 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4118 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4119 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4120 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4121 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4122 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4123 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4124 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4125 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4126 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4127 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4128 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4129 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4130 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4131 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4132 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4133 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4134 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4135 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4136 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4137 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4138 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4139 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4140 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4141 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4142 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4143 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4144 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4145 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4146 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4147 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4148 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4149 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4150 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4151 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4152 
4153 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4154 		     sizeof(struct io_uring_rsrc_update));
4155 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4156 		     sizeof(struct io_uring_rsrc_update2));
4157 
4158 	/* ->buf_index is u16 */
4159 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4160 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4161 		     offsetof(struct io_uring_buf_ring, tail));
4162 
4163 	/* should fit into one byte */
4164 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4165 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4166 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4167 
4168 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
4169 
4170 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4171 
4172 	/* top 8bits are for internal use */
4173 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4174 
4175 	io_uring_optable_init();
4176 
4177 	/*
4178 	 * Allow user copy in the per-command field, which starts after the
4179 	 * file in io_kiocb and until the opcode field. The openat2 handling
4180 	 * requires copying in user memory into the io_kiocb object in that
4181 	 * range, and HARDENED_USERCOPY will complain if we haven't
4182 	 * correctly annotated this range.
4183 	 */
4184 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4185 				sizeof(struct io_kiocb), 0,
4186 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4187 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4188 				offsetof(struct io_kiocb, cmd.data),
4189 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4190 	io_buf_cachep = KMEM_CACHE(io_buffer,
4191 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
4192 
4193 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4194 
4195 #ifdef CONFIG_SYSCTL
4196 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4197 #endif
4198 
4199 	return 0;
4200 };
4201 __initcall(io_uring_init);
4202