1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 101 #include "timeout.h" 102 #include "poll.h" 103 #include "rw.h" 104 #include "alloc_cache.h" 105 #include "eventfd.h" 106 107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 108 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 109 110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 112 113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 115 REQ_F_ASYNC_DATA) 116 117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ 118 IO_REQ_CLEAN_FLAGS) 119 120 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 121 122 #define IO_COMPL_BATCH 32 123 #define IO_REQ_ALLOC_BATCH 8 124 #define IO_LOCAL_TW_DEFAULT_MAX 20 125 126 struct io_defer_entry { 127 struct list_head list; 128 struct io_kiocb *req; 129 u32 seq; 130 }; 131 132 /* requests with any of those set should undergo io_disarm_next() */ 133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 135 136 /* 137 * No waiters. It's larger than any valid value of the tw counter 138 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 139 */ 140 #define IO_CQ_WAKE_INIT (-1U) 141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 143 144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 145 struct io_uring_task *tctx, 146 bool cancel_all); 147 148 static void io_queue_sqe(struct io_kiocb *req); 149 150 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 151 152 struct kmem_cache *req_cachep; 153 static struct workqueue_struct *iou_wq __ro_after_init; 154 155 static int __read_mostly sysctl_io_uring_disabled; 156 static int __read_mostly sysctl_io_uring_group = -1; 157 158 #ifdef CONFIG_SYSCTL 159 static struct ctl_table kernel_io_uring_disabled_table[] = { 160 { 161 .procname = "io_uring_disabled", 162 .data = &sysctl_io_uring_disabled, 163 .maxlen = sizeof(sysctl_io_uring_disabled), 164 .mode = 0644, 165 .proc_handler = proc_dointvec_minmax, 166 .extra1 = SYSCTL_ZERO, 167 .extra2 = SYSCTL_TWO, 168 }, 169 { 170 .procname = "io_uring_group", 171 .data = &sysctl_io_uring_group, 172 .maxlen = sizeof(gid_t), 173 .mode = 0644, 174 .proc_handler = proc_dointvec, 175 }, 176 }; 177 #endif 178 179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 180 { 181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 182 } 183 184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 185 { 186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 187 } 188 189 static bool io_match_linked(struct io_kiocb *head) 190 { 191 struct io_kiocb *req; 192 193 io_for_each_link(req, head) { 194 if (req->flags & REQ_F_INFLIGHT) 195 return true; 196 } 197 return false; 198 } 199 200 /* 201 * As io_match_task() but protected against racing with linked timeouts. 202 * User must not hold timeout_lock. 203 */ 204 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 205 bool cancel_all) 206 { 207 bool matched; 208 209 if (tctx && head->tctx != tctx) 210 return false; 211 if (cancel_all) 212 return true; 213 214 if (head->flags & REQ_F_LINK_TIMEOUT) { 215 struct io_ring_ctx *ctx = head->ctx; 216 217 /* protect against races with linked timeouts */ 218 raw_spin_lock_irq(&ctx->timeout_lock); 219 matched = io_match_linked(head); 220 raw_spin_unlock_irq(&ctx->timeout_lock); 221 } else { 222 matched = io_match_linked(head); 223 } 224 return matched; 225 } 226 227 static inline void req_fail_link_node(struct io_kiocb *req, int res) 228 { 229 req_set_fail(req); 230 io_req_set_res(req, res, 0); 231 } 232 233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 234 { 235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 236 } 237 238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 239 { 240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 241 242 complete(&ctx->ref_comp); 243 } 244 245 static __cold void io_fallback_req_func(struct work_struct *work) 246 { 247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 248 fallback_work.work); 249 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 250 struct io_kiocb *req, *tmp; 251 struct io_tw_state ts = {}; 252 253 percpu_ref_get(&ctx->refs); 254 mutex_lock(&ctx->uring_lock); 255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 256 req->io_task_work.func(req, &ts); 257 io_submit_flush_completions(ctx); 258 mutex_unlock(&ctx->uring_lock); 259 percpu_ref_put(&ctx->refs); 260 } 261 262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 263 { 264 unsigned int hash_buckets; 265 int i; 266 267 do { 268 hash_buckets = 1U << bits; 269 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 270 GFP_KERNEL_ACCOUNT); 271 if (table->hbs) 272 break; 273 if (bits == 1) 274 return -ENOMEM; 275 bits--; 276 } while (1); 277 278 table->hash_bits = bits; 279 for (i = 0; i < hash_buckets; i++) 280 INIT_HLIST_HEAD(&table->hbs[i].list); 281 return 0; 282 } 283 284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 285 { 286 struct io_ring_ctx *ctx; 287 int hash_bits; 288 bool ret; 289 290 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 291 if (!ctx) 292 return NULL; 293 294 xa_init(&ctx->io_bl_xa); 295 296 /* 297 * Use 5 bits less than the max cq entries, that should give us around 298 * 32 entries per hash list if totally full and uniformly spread, but 299 * don't keep too many buckets to not overconsume memory. 300 */ 301 hash_bits = ilog2(p->cq_entries) - 5; 302 hash_bits = clamp(hash_bits, 1, 8); 303 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 304 goto err; 305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 306 0, GFP_KERNEL)) 307 goto err; 308 309 ctx->flags = p->flags; 310 ctx->hybrid_poll_time = LLONG_MAX; 311 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 312 init_waitqueue_head(&ctx->sqo_sq_wait); 313 INIT_LIST_HEAD(&ctx->sqd_list); 314 INIT_LIST_HEAD(&ctx->cq_overflow_list); 315 INIT_LIST_HEAD(&ctx->io_buffers_cache); 316 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 317 sizeof(struct async_poll)); 318 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 319 sizeof(struct io_async_msghdr)); 320 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 321 sizeof(struct io_async_rw)); 322 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX, 323 sizeof(struct io_uring_cmd_data)); 324 spin_lock_init(&ctx->msg_lock); 325 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 326 sizeof(struct io_kiocb)); 327 ret |= io_futex_cache_init(ctx); 328 if (ret) 329 goto free_ref; 330 init_completion(&ctx->ref_comp); 331 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 332 mutex_init(&ctx->uring_lock); 333 init_waitqueue_head(&ctx->cq_wait); 334 init_waitqueue_head(&ctx->poll_wq); 335 spin_lock_init(&ctx->completion_lock); 336 raw_spin_lock_init(&ctx->timeout_lock); 337 INIT_WQ_LIST(&ctx->iopoll_list); 338 INIT_LIST_HEAD(&ctx->io_buffers_comp); 339 INIT_LIST_HEAD(&ctx->defer_list); 340 INIT_LIST_HEAD(&ctx->timeout_list); 341 INIT_LIST_HEAD(&ctx->ltimeout_list); 342 init_llist_head(&ctx->work_llist); 343 INIT_LIST_HEAD(&ctx->tctx_list); 344 ctx->submit_state.free_list.next = NULL; 345 INIT_HLIST_HEAD(&ctx->waitid_list); 346 #ifdef CONFIG_FUTEX 347 INIT_HLIST_HEAD(&ctx->futex_list); 348 #endif 349 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 350 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 351 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 352 io_napi_init(ctx); 353 mutex_init(&ctx->resize_lock); 354 355 return ctx; 356 357 free_ref: 358 percpu_ref_exit(&ctx->refs); 359 err: 360 io_alloc_cache_free(&ctx->apoll_cache, kfree); 361 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 362 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 363 io_alloc_cache_free(&ctx->uring_cache, kfree); 364 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 365 io_futex_cache_free(ctx); 366 kvfree(ctx->cancel_table.hbs); 367 xa_destroy(&ctx->io_bl_xa); 368 kfree(ctx); 369 return NULL; 370 } 371 372 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 373 { 374 struct io_rings *r = ctx->rings; 375 376 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 377 ctx->cq_extra--; 378 } 379 380 static bool req_need_defer(struct io_kiocb *req, u32 seq) 381 { 382 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 383 struct io_ring_ctx *ctx = req->ctx; 384 385 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 386 } 387 388 return false; 389 } 390 391 static void io_clean_op(struct io_kiocb *req) 392 { 393 if (req->flags & REQ_F_BUFFER_SELECTED) { 394 spin_lock(&req->ctx->completion_lock); 395 io_kbuf_drop(req); 396 spin_unlock(&req->ctx->completion_lock); 397 } 398 399 if (req->flags & REQ_F_NEED_CLEANUP) { 400 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 401 402 if (def->cleanup) 403 def->cleanup(req); 404 } 405 if ((req->flags & REQ_F_POLLED) && req->apoll) { 406 kfree(req->apoll->double_poll); 407 kfree(req->apoll); 408 req->apoll = NULL; 409 } 410 if (req->flags & REQ_F_INFLIGHT) 411 atomic_dec(&req->tctx->inflight_tracked); 412 if (req->flags & REQ_F_CREDS) 413 put_cred(req->creds); 414 if (req->flags & REQ_F_ASYNC_DATA) { 415 kfree(req->async_data); 416 req->async_data = NULL; 417 } 418 req->flags &= ~IO_REQ_CLEAN_FLAGS; 419 } 420 421 static inline void io_req_track_inflight(struct io_kiocb *req) 422 { 423 if (!(req->flags & REQ_F_INFLIGHT)) { 424 req->flags |= REQ_F_INFLIGHT; 425 atomic_inc(&req->tctx->inflight_tracked); 426 } 427 } 428 429 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 430 { 431 if (WARN_ON_ONCE(!req->link)) 432 return NULL; 433 434 req->flags &= ~REQ_F_ARM_LTIMEOUT; 435 req->flags |= REQ_F_LINK_TIMEOUT; 436 437 /* linked timeouts should have two refs once prep'ed */ 438 io_req_set_refcount(req); 439 __io_req_set_refcount(req->link, 2); 440 return req->link; 441 } 442 443 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 444 { 445 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 446 return NULL; 447 return __io_prep_linked_timeout(req); 448 } 449 450 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 451 { 452 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 453 } 454 455 static inline void io_arm_ltimeout(struct io_kiocb *req) 456 { 457 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 458 __io_arm_ltimeout(req); 459 } 460 461 static void io_prep_async_work(struct io_kiocb *req) 462 { 463 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 464 struct io_ring_ctx *ctx = req->ctx; 465 466 if (!(req->flags & REQ_F_CREDS)) { 467 req->flags |= REQ_F_CREDS; 468 req->creds = get_current_cred(); 469 } 470 471 req->work.list.next = NULL; 472 atomic_set(&req->work.flags, 0); 473 if (req->flags & REQ_F_FORCE_ASYNC) 474 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 475 476 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 477 req->flags |= io_file_get_flags(req->file); 478 479 if (req->file && (req->flags & REQ_F_ISREG)) { 480 bool should_hash = def->hash_reg_file; 481 482 /* don't serialize this request if the fs doesn't need it */ 483 if (should_hash && (req->file->f_flags & O_DIRECT) && 484 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 485 should_hash = false; 486 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 487 io_wq_hash_work(&req->work, file_inode(req->file)); 488 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 489 if (def->unbound_nonreg_file) 490 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 491 } 492 } 493 494 static void io_prep_async_link(struct io_kiocb *req) 495 { 496 struct io_kiocb *cur; 497 498 if (req->flags & REQ_F_LINK_TIMEOUT) { 499 struct io_ring_ctx *ctx = req->ctx; 500 501 raw_spin_lock_irq(&ctx->timeout_lock); 502 io_for_each_link(cur, req) 503 io_prep_async_work(cur); 504 raw_spin_unlock_irq(&ctx->timeout_lock); 505 } else { 506 io_for_each_link(cur, req) 507 io_prep_async_work(cur); 508 } 509 } 510 511 static void io_queue_iowq(struct io_kiocb *req) 512 { 513 struct io_kiocb *link = io_prep_linked_timeout(req); 514 struct io_uring_task *tctx = req->tctx; 515 516 BUG_ON(!tctx); 517 518 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 519 io_req_task_queue_fail(req, -ECANCELED); 520 return; 521 } 522 523 /* init ->work of the whole link before punting */ 524 io_prep_async_link(req); 525 526 /* 527 * Not expected to happen, but if we do have a bug where this _can_ 528 * happen, catch it here and ensure the request is marked as 529 * canceled. That will make io-wq go through the usual work cancel 530 * procedure rather than attempt to run this request (or create a new 531 * worker for it). 532 */ 533 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 534 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 535 536 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 537 io_wq_enqueue(tctx->io_wq, &req->work); 538 if (link) 539 io_queue_linked_timeout(link); 540 } 541 542 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts) 543 { 544 io_queue_iowq(req); 545 } 546 547 void io_req_queue_iowq(struct io_kiocb *req) 548 { 549 req->io_task_work.func = io_req_queue_iowq_tw; 550 io_req_task_work_add(req); 551 } 552 553 static __cold void io_queue_deferred(struct io_ring_ctx *ctx) 554 { 555 while (!list_empty(&ctx->defer_list)) { 556 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 557 struct io_defer_entry, list); 558 559 if (req_need_defer(de->req, de->seq)) 560 break; 561 list_del_init(&de->list); 562 io_req_task_queue(de->req); 563 kfree(de); 564 } 565 } 566 567 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 568 { 569 if (ctx->poll_activated) 570 io_poll_wq_wake(ctx); 571 if (ctx->off_timeout_used) 572 io_flush_timeouts(ctx); 573 if (ctx->drain_active) { 574 spin_lock(&ctx->completion_lock); 575 io_queue_deferred(ctx); 576 spin_unlock(&ctx->completion_lock); 577 } 578 if (ctx->has_evfd) 579 io_eventfd_flush_signal(ctx); 580 } 581 582 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 583 { 584 if (!ctx->lockless_cq) 585 spin_lock(&ctx->completion_lock); 586 } 587 588 static inline void io_cq_lock(struct io_ring_ctx *ctx) 589 __acquires(ctx->completion_lock) 590 { 591 spin_lock(&ctx->completion_lock); 592 } 593 594 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 595 { 596 io_commit_cqring(ctx); 597 if (!ctx->task_complete) { 598 if (!ctx->lockless_cq) 599 spin_unlock(&ctx->completion_lock); 600 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 601 if (!ctx->syscall_iopoll) 602 io_cqring_wake(ctx); 603 } 604 io_commit_cqring_flush(ctx); 605 } 606 607 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 608 __releases(ctx->completion_lock) 609 { 610 io_commit_cqring(ctx); 611 spin_unlock(&ctx->completion_lock); 612 io_cqring_wake(ctx); 613 io_commit_cqring_flush(ctx); 614 } 615 616 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 617 { 618 size_t cqe_size = sizeof(struct io_uring_cqe); 619 620 lockdep_assert_held(&ctx->uring_lock); 621 622 /* don't abort if we're dying, entries must get freed */ 623 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 624 return; 625 626 if (ctx->flags & IORING_SETUP_CQE32) 627 cqe_size <<= 1; 628 629 io_cq_lock(ctx); 630 while (!list_empty(&ctx->cq_overflow_list)) { 631 struct io_uring_cqe *cqe; 632 struct io_overflow_cqe *ocqe; 633 634 ocqe = list_first_entry(&ctx->cq_overflow_list, 635 struct io_overflow_cqe, list); 636 637 if (!dying) { 638 if (!io_get_cqe_overflow(ctx, &cqe, true)) 639 break; 640 memcpy(cqe, &ocqe->cqe, cqe_size); 641 } 642 list_del(&ocqe->list); 643 kfree(ocqe); 644 645 /* 646 * For silly syzbot cases that deliberately overflow by huge 647 * amounts, check if we need to resched and drop and 648 * reacquire the locks if so. Nothing real would ever hit this. 649 * Ideally we'd have a non-posting unlock for this, but hard 650 * to care for a non-real case. 651 */ 652 if (need_resched()) { 653 io_cq_unlock_post(ctx); 654 mutex_unlock(&ctx->uring_lock); 655 cond_resched(); 656 mutex_lock(&ctx->uring_lock); 657 io_cq_lock(ctx); 658 } 659 } 660 661 if (list_empty(&ctx->cq_overflow_list)) { 662 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 663 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 664 } 665 io_cq_unlock_post(ctx); 666 } 667 668 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 669 { 670 if (ctx->rings) 671 __io_cqring_overflow_flush(ctx, true); 672 } 673 674 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 675 { 676 mutex_lock(&ctx->uring_lock); 677 __io_cqring_overflow_flush(ctx, false); 678 mutex_unlock(&ctx->uring_lock); 679 } 680 681 /* must to be called somewhat shortly after putting a request */ 682 static inline void io_put_task(struct io_kiocb *req) 683 { 684 struct io_uring_task *tctx = req->tctx; 685 686 if (likely(tctx->task == current)) { 687 tctx->cached_refs++; 688 } else { 689 percpu_counter_sub(&tctx->inflight, 1); 690 if (unlikely(atomic_read(&tctx->in_cancel))) 691 wake_up(&tctx->wait); 692 put_task_struct(tctx->task); 693 } 694 } 695 696 void io_task_refs_refill(struct io_uring_task *tctx) 697 { 698 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 699 700 percpu_counter_add(&tctx->inflight, refill); 701 refcount_add(refill, ¤t->usage); 702 tctx->cached_refs += refill; 703 } 704 705 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 706 { 707 struct io_uring_task *tctx = task->io_uring; 708 unsigned int refs = tctx->cached_refs; 709 710 if (refs) { 711 tctx->cached_refs = 0; 712 percpu_counter_sub(&tctx->inflight, refs); 713 put_task_struct_many(task, refs); 714 } 715 } 716 717 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 718 s32 res, u32 cflags, u64 extra1, u64 extra2) 719 { 720 struct io_overflow_cqe *ocqe; 721 size_t ocq_size = sizeof(struct io_overflow_cqe); 722 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 723 724 lockdep_assert_held(&ctx->completion_lock); 725 726 if (is_cqe32) 727 ocq_size += sizeof(struct io_uring_cqe); 728 729 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 730 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 731 if (!ocqe) { 732 /* 733 * If we're in ring overflow flush mode, or in task cancel mode, 734 * or cannot allocate an overflow entry, then we need to drop it 735 * on the floor. 736 */ 737 io_account_cq_overflow(ctx); 738 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 739 return false; 740 } 741 if (list_empty(&ctx->cq_overflow_list)) { 742 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 743 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 744 745 } 746 ocqe->cqe.user_data = user_data; 747 ocqe->cqe.res = res; 748 ocqe->cqe.flags = cflags; 749 if (is_cqe32) { 750 ocqe->cqe.big_cqe[0] = extra1; 751 ocqe->cqe.big_cqe[1] = extra2; 752 } 753 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 754 return true; 755 } 756 757 static void io_req_cqe_overflow(struct io_kiocb *req) 758 { 759 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 760 req->cqe.res, req->cqe.flags, 761 req->big_cqe.extra1, req->big_cqe.extra2); 762 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 763 } 764 765 /* 766 * writes to the cq entry need to come after reading head; the 767 * control dependency is enough as we're using WRITE_ONCE to 768 * fill the cq entry 769 */ 770 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 771 { 772 struct io_rings *rings = ctx->rings; 773 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 774 unsigned int free, queued, len; 775 776 /* 777 * Posting into the CQ when there are pending overflowed CQEs may break 778 * ordering guarantees, which will affect links, F_MORE users and more. 779 * Force overflow the completion. 780 */ 781 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 782 return false; 783 784 /* userspace may cheat modifying the tail, be safe and do min */ 785 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 786 free = ctx->cq_entries - queued; 787 /* we need a contiguous range, limit based on the current array offset */ 788 len = min(free, ctx->cq_entries - off); 789 if (!len) 790 return false; 791 792 if (ctx->flags & IORING_SETUP_CQE32) { 793 off <<= 1; 794 len <<= 1; 795 } 796 797 ctx->cqe_cached = &rings->cqes[off]; 798 ctx->cqe_sentinel = ctx->cqe_cached + len; 799 return true; 800 } 801 802 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 803 u32 cflags) 804 { 805 struct io_uring_cqe *cqe; 806 807 ctx->cq_extra++; 808 809 /* 810 * If we can't get a cq entry, userspace overflowed the 811 * submission (by quite a lot). Increment the overflow count in 812 * the ring. 813 */ 814 if (likely(io_get_cqe(ctx, &cqe))) { 815 WRITE_ONCE(cqe->user_data, user_data); 816 WRITE_ONCE(cqe->res, res); 817 WRITE_ONCE(cqe->flags, cflags); 818 819 if (ctx->flags & IORING_SETUP_CQE32) { 820 WRITE_ONCE(cqe->big_cqe[0], 0); 821 WRITE_ONCE(cqe->big_cqe[1], 0); 822 } 823 824 trace_io_uring_complete(ctx, NULL, cqe); 825 return true; 826 } 827 return false; 828 } 829 830 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, 831 u32 cflags) 832 { 833 bool filled; 834 835 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 836 if (!filled) 837 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 838 839 return filled; 840 } 841 842 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 843 { 844 bool filled; 845 846 io_cq_lock(ctx); 847 filled = __io_post_aux_cqe(ctx, user_data, res, cflags); 848 io_cq_unlock_post(ctx); 849 return filled; 850 } 851 852 /* 853 * Must be called from inline task_work so we now a flush will happen later, 854 * and obviously with ctx->uring_lock held (tw always has that). 855 */ 856 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 857 { 858 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 859 spin_lock(&ctx->completion_lock); 860 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 861 spin_unlock(&ctx->completion_lock); 862 } 863 ctx->submit_state.cq_flush = true; 864 } 865 866 /* 867 * A helper for multishot requests posting additional CQEs. 868 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 869 */ 870 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 871 { 872 struct io_ring_ctx *ctx = req->ctx; 873 bool posted; 874 875 lockdep_assert(!io_wq_current_is_worker()); 876 lockdep_assert_held(&ctx->uring_lock); 877 878 __io_cq_lock(ctx); 879 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 880 ctx->submit_state.cq_flush = true; 881 __io_cq_unlock_post(ctx); 882 return posted; 883 } 884 885 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 886 { 887 struct io_ring_ctx *ctx = req->ctx; 888 889 /* 890 * All execution paths but io-wq use the deferred completions by 891 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 892 */ 893 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 894 return; 895 896 /* 897 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 898 * the submitter task context, IOPOLL protects with uring_lock. 899 */ 900 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) { 901 req->io_task_work.func = io_req_task_complete; 902 io_req_task_work_add(req); 903 return; 904 } 905 906 io_cq_lock(ctx); 907 if (!(req->flags & REQ_F_CQE_SKIP)) { 908 if (!io_fill_cqe_req(ctx, req)) 909 io_req_cqe_overflow(req); 910 } 911 io_cq_unlock_post(ctx); 912 913 /* 914 * We don't free the request here because we know it's called from 915 * io-wq only, which holds a reference, so it cannot be the last put. 916 */ 917 req_ref_put(req); 918 } 919 920 void io_req_defer_failed(struct io_kiocb *req, s32 res) 921 __must_hold(&ctx->uring_lock) 922 { 923 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 924 925 lockdep_assert_held(&req->ctx->uring_lock); 926 927 req_set_fail(req); 928 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 929 if (def->fail) 930 def->fail(req); 931 io_req_complete_defer(req); 932 } 933 934 /* 935 * Don't initialise the fields below on every allocation, but do that in 936 * advance and keep them valid across allocations. 937 */ 938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 939 { 940 req->ctx = ctx; 941 req->buf_node = NULL; 942 req->file_node = NULL; 943 req->link = NULL; 944 req->async_data = NULL; 945 /* not necessary, but safer to zero */ 946 memset(&req->cqe, 0, sizeof(req->cqe)); 947 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 948 } 949 950 /* 951 * A request might get retired back into the request caches even before opcode 952 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 953 * Because of that, io_alloc_req() should be called only under ->uring_lock 954 * and with extra caution to not get a request that is still worked on. 955 */ 956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 957 __must_hold(&ctx->uring_lock) 958 { 959 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 960 void *reqs[IO_REQ_ALLOC_BATCH]; 961 int ret; 962 963 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 964 965 /* 966 * Bulk alloc is all-or-nothing. If we fail to get a batch, 967 * retry single alloc to be on the safe side. 968 */ 969 if (unlikely(ret <= 0)) { 970 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 971 if (!reqs[0]) 972 return false; 973 ret = 1; 974 } 975 976 percpu_ref_get_many(&ctx->refs, ret); 977 while (ret--) { 978 struct io_kiocb *req = reqs[ret]; 979 980 io_preinit_req(req, ctx); 981 io_req_add_to_cache(req, ctx); 982 } 983 return true; 984 } 985 986 __cold void io_free_req(struct io_kiocb *req) 987 { 988 /* refs were already put, restore them for io_req_task_complete() */ 989 req->flags &= ~REQ_F_REFCOUNT; 990 /* we only want to free it, don't post CQEs */ 991 req->flags |= REQ_F_CQE_SKIP; 992 req->io_task_work.func = io_req_task_complete; 993 io_req_task_work_add(req); 994 } 995 996 static void __io_req_find_next_prep(struct io_kiocb *req) 997 { 998 struct io_ring_ctx *ctx = req->ctx; 999 1000 spin_lock(&ctx->completion_lock); 1001 io_disarm_next(req); 1002 spin_unlock(&ctx->completion_lock); 1003 } 1004 1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1006 { 1007 struct io_kiocb *nxt; 1008 1009 /* 1010 * If LINK is set, we have dependent requests in this chain. If we 1011 * didn't fail this request, queue the first one up, moving any other 1012 * dependencies to the next request. In case of failure, fail the rest 1013 * of the chain. 1014 */ 1015 if (unlikely(req->flags & IO_DISARM_MASK)) 1016 __io_req_find_next_prep(req); 1017 nxt = req->link; 1018 req->link = NULL; 1019 return nxt; 1020 } 1021 1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) 1023 { 1024 if (!ctx) 1025 return; 1026 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1027 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1028 1029 io_submit_flush_completions(ctx); 1030 mutex_unlock(&ctx->uring_lock); 1031 percpu_ref_put(&ctx->refs); 1032 } 1033 1034 /* 1035 * Run queued task_work, returning the number of entries processed in *count. 1036 * If more entries than max_entries are available, stop processing once this 1037 * is reached and return the rest of the list. 1038 */ 1039 struct llist_node *io_handle_tw_list(struct llist_node *node, 1040 unsigned int *count, 1041 unsigned int max_entries) 1042 { 1043 struct io_ring_ctx *ctx = NULL; 1044 struct io_tw_state ts = { }; 1045 1046 do { 1047 struct llist_node *next = node->next; 1048 struct io_kiocb *req = container_of(node, struct io_kiocb, 1049 io_task_work.node); 1050 1051 if (req->ctx != ctx) { 1052 ctx_flush_and_put(ctx, &ts); 1053 ctx = req->ctx; 1054 mutex_lock(&ctx->uring_lock); 1055 percpu_ref_get(&ctx->refs); 1056 } 1057 INDIRECT_CALL_2(req->io_task_work.func, 1058 io_poll_task_func, io_req_rw_complete, 1059 req, &ts); 1060 node = next; 1061 (*count)++; 1062 if (unlikely(need_resched())) { 1063 ctx_flush_and_put(ctx, &ts); 1064 ctx = NULL; 1065 cond_resched(); 1066 } 1067 } while (node && *count < max_entries); 1068 1069 ctx_flush_and_put(ctx, &ts); 1070 return node; 1071 } 1072 1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1074 { 1075 struct io_ring_ctx *last_ctx = NULL; 1076 struct io_kiocb *req; 1077 1078 while (node) { 1079 req = container_of(node, struct io_kiocb, io_task_work.node); 1080 node = node->next; 1081 if (sync && last_ctx != req->ctx) { 1082 if (last_ctx) { 1083 flush_delayed_work(&last_ctx->fallback_work); 1084 percpu_ref_put(&last_ctx->refs); 1085 } 1086 last_ctx = req->ctx; 1087 percpu_ref_get(&last_ctx->refs); 1088 } 1089 if (llist_add(&req->io_task_work.node, 1090 &req->ctx->fallback_llist)) 1091 schedule_delayed_work(&req->ctx->fallback_work, 1); 1092 } 1093 1094 if (last_ctx) { 1095 flush_delayed_work(&last_ctx->fallback_work); 1096 percpu_ref_put(&last_ctx->refs); 1097 } 1098 } 1099 1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1101 { 1102 struct llist_node *node = llist_del_all(&tctx->task_list); 1103 1104 __io_fallback_tw(node, sync); 1105 } 1106 1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1108 unsigned int max_entries, 1109 unsigned int *count) 1110 { 1111 struct llist_node *node; 1112 1113 if (unlikely(current->flags & PF_EXITING)) { 1114 io_fallback_tw(tctx, true); 1115 return NULL; 1116 } 1117 1118 node = llist_del_all(&tctx->task_list); 1119 if (node) { 1120 node = llist_reverse_order(node); 1121 node = io_handle_tw_list(node, count, max_entries); 1122 } 1123 1124 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1125 if (unlikely(atomic_read(&tctx->in_cancel))) 1126 io_uring_drop_tctx_refs(current); 1127 1128 trace_io_uring_task_work_run(tctx, *count); 1129 return node; 1130 } 1131 1132 void tctx_task_work(struct callback_head *cb) 1133 { 1134 struct io_uring_task *tctx; 1135 struct llist_node *ret; 1136 unsigned int count = 0; 1137 1138 tctx = container_of(cb, struct io_uring_task, task_work); 1139 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1140 /* can't happen */ 1141 WARN_ON_ONCE(ret); 1142 } 1143 1144 static inline void io_req_local_work_add(struct io_kiocb *req, 1145 struct io_ring_ctx *ctx, 1146 unsigned flags) 1147 { 1148 unsigned nr_wait, nr_tw, nr_tw_prev; 1149 struct llist_node *head; 1150 1151 /* See comment above IO_CQ_WAKE_INIT */ 1152 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1153 1154 /* 1155 * We don't know how many reuqests is there in the link and whether 1156 * they can even be queued lazily, fall back to non-lazy. 1157 */ 1158 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) 1159 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1160 1161 guard(rcu)(); 1162 1163 head = READ_ONCE(ctx->work_llist.first); 1164 do { 1165 nr_tw_prev = 0; 1166 if (head) { 1167 struct io_kiocb *first_req = container_of(head, 1168 struct io_kiocb, 1169 io_task_work.node); 1170 /* 1171 * Might be executed at any moment, rely on 1172 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1173 */ 1174 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1175 } 1176 1177 /* 1178 * Theoretically, it can overflow, but that's fine as one of 1179 * previous adds should've tried to wake the task. 1180 */ 1181 nr_tw = nr_tw_prev + 1; 1182 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1183 nr_tw = IO_CQ_WAKE_FORCE; 1184 1185 req->nr_tw = nr_tw; 1186 req->io_task_work.node.next = head; 1187 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1188 &req->io_task_work.node)); 1189 1190 /* 1191 * cmpxchg implies a full barrier, which pairs with the barrier 1192 * in set_current_state() on the io_cqring_wait() side. It's used 1193 * to ensure that either we see updated ->cq_wait_nr, or waiters 1194 * going to sleep will observe the work added to the list, which 1195 * is similar to the wait/wawke task state sync. 1196 */ 1197 1198 if (!head) { 1199 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1200 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1201 if (ctx->has_evfd) 1202 io_eventfd_signal(ctx); 1203 } 1204 1205 nr_wait = atomic_read(&ctx->cq_wait_nr); 1206 /* not enough or no one is waiting */ 1207 if (nr_tw < nr_wait) 1208 return; 1209 /* the previous add has already woken it up */ 1210 if (nr_tw_prev >= nr_wait) 1211 return; 1212 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1213 } 1214 1215 static void io_req_normal_work_add(struct io_kiocb *req) 1216 { 1217 struct io_uring_task *tctx = req->tctx; 1218 struct io_ring_ctx *ctx = req->ctx; 1219 1220 /* task_work already pending, we're done */ 1221 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1222 return; 1223 1224 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1225 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1226 1227 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1228 if (ctx->flags & IORING_SETUP_SQPOLL) { 1229 __set_notify_signal(tctx->task); 1230 return; 1231 } 1232 1233 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1234 return; 1235 1236 io_fallback_tw(tctx, false); 1237 } 1238 1239 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1240 { 1241 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1242 io_req_local_work_add(req, req->ctx, flags); 1243 else 1244 io_req_normal_work_add(req); 1245 } 1246 1247 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 1248 unsigned flags) 1249 { 1250 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1251 return; 1252 io_req_local_work_add(req, ctx, flags); 1253 } 1254 1255 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1256 { 1257 struct llist_node *node = llist_del_all(&ctx->work_llist); 1258 1259 __io_fallback_tw(node, false); 1260 node = llist_del_all(&ctx->retry_llist); 1261 __io_fallback_tw(node, false); 1262 } 1263 1264 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1265 int min_events) 1266 { 1267 if (!io_local_work_pending(ctx)) 1268 return false; 1269 if (events < min_events) 1270 return true; 1271 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1272 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1273 return false; 1274 } 1275 1276 static int __io_run_local_work_loop(struct llist_node **node, 1277 struct io_tw_state *ts, 1278 int events) 1279 { 1280 int ret = 0; 1281 1282 while (*node) { 1283 struct llist_node *next = (*node)->next; 1284 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1285 io_task_work.node); 1286 INDIRECT_CALL_2(req->io_task_work.func, 1287 io_poll_task_func, io_req_rw_complete, 1288 req, ts); 1289 *node = next; 1290 if (++ret >= events) 1291 break; 1292 } 1293 1294 return ret; 1295 } 1296 1297 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts, 1298 int min_events, int max_events) 1299 { 1300 struct llist_node *node; 1301 unsigned int loops = 0; 1302 int ret = 0; 1303 1304 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1305 return -EEXIST; 1306 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1307 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1308 again: 1309 min_events -= ret; 1310 ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events); 1311 if (ctx->retry_llist.first) 1312 goto retry_done; 1313 1314 /* 1315 * llists are in reverse order, flip it back the right way before 1316 * running the pending items. 1317 */ 1318 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1319 ret += __io_run_local_work_loop(&node, ts, max_events - ret); 1320 ctx->retry_llist.first = node; 1321 loops++; 1322 1323 if (io_run_local_work_continue(ctx, ret, min_events)) 1324 goto again; 1325 retry_done: 1326 io_submit_flush_completions(ctx); 1327 if (io_run_local_work_continue(ctx, ret, min_events)) 1328 goto again; 1329 1330 trace_io_uring_local_work_run(ctx, ret, loops); 1331 return ret; 1332 } 1333 1334 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1335 int min_events) 1336 { 1337 struct io_tw_state ts = {}; 1338 1339 if (!io_local_work_pending(ctx)) 1340 return 0; 1341 return __io_run_local_work(ctx, &ts, min_events, 1342 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1343 } 1344 1345 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1346 int max_events) 1347 { 1348 struct io_tw_state ts = {}; 1349 int ret; 1350 1351 mutex_lock(&ctx->uring_lock); 1352 ret = __io_run_local_work(ctx, &ts, min_events, max_events); 1353 mutex_unlock(&ctx->uring_lock); 1354 return ret; 1355 } 1356 1357 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) 1358 { 1359 io_tw_lock(req->ctx, ts); 1360 io_req_defer_failed(req, req->cqe.res); 1361 } 1362 1363 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) 1364 { 1365 io_tw_lock(req->ctx, ts); 1366 if (unlikely(io_should_terminate_tw())) 1367 io_req_defer_failed(req, -EFAULT); 1368 else if (req->flags & REQ_F_FORCE_ASYNC) 1369 io_queue_iowq(req); 1370 else 1371 io_queue_sqe(req); 1372 } 1373 1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1375 { 1376 io_req_set_res(req, ret, 0); 1377 req->io_task_work.func = io_req_task_cancel; 1378 io_req_task_work_add(req); 1379 } 1380 1381 void io_req_task_queue(struct io_kiocb *req) 1382 { 1383 req->io_task_work.func = io_req_task_submit; 1384 io_req_task_work_add(req); 1385 } 1386 1387 void io_queue_next(struct io_kiocb *req) 1388 { 1389 struct io_kiocb *nxt = io_req_find_next(req); 1390 1391 if (nxt) 1392 io_req_task_queue(nxt); 1393 } 1394 1395 static void io_free_batch_list(struct io_ring_ctx *ctx, 1396 struct io_wq_work_node *node) 1397 __must_hold(&ctx->uring_lock) 1398 { 1399 do { 1400 struct io_kiocb *req = container_of(node, struct io_kiocb, 1401 comp_list); 1402 1403 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1404 if (req->flags & REQ_F_REFCOUNT) { 1405 node = req->comp_list.next; 1406 if (!req_ref_put_and_test(req)) 1407 continue; 1408 } 1409 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1410 struct async_poll *apoll = req->apoll; 1411 1412 if (apoll->double_poll) 1413 kfree(apoll->double_poll); 1414 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll)) 1415 kfree(apoll); 1416 req->flags &= ~REQ_F_POLLED; 1417 } 1418 if (req->flags & IO_REQ_LINK_FLAGS) 1419 io_queue_next(req); 1420 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1421 io_clean_op(req); 1422 } 1423 io_put_file(req); 1424 io_req_put_rsrc_nodes(req); 1425 io_put_task(req); 1426 1427 node = req->comp_list.next; 1428 io_req_add_to_cache(req, ctx); 1429 } while (node); 1430 } 1431 1432 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1433 __must_hold(&ctx->uring_lock) 1434 { 1435 struct io_submit_state *state = &ctx->submit_state; 1436 struct io_wq_work_node *node; 1437 1438 __io_cq_lock(ctx); 1439 __wq_list_for_each(node, &state->compl_reqs) { 1440 struct io_kiocb *req = container_of(node, struct io_kiocb, 1441 comp_list); 1442 1443 if (!(req->flags & REQ_F_CQE_SKIP) && 1444 unlikely(!io_fill_cqe_req(ctx, req))) { 1445 if (ctx->lockless_cq) { 1446 spin_lock(&ctx->completion_lock); 1447 io_req_cqe_overflow(req); 1448 spin_unlock(&ctx->completion_lock); 1449 } else { 1450 io_req_cqe_overflow(req); 1451 } 1452 } 1453 } 1454 __io_cq_unlock_post(ctx); 1455 1456 if (!wq_list_empty(&state->compl_reqs)) { 1457 io_free_batch_list(ctx, state->compl_reqs.first); 1458 INIT_WQ_LIST(&state->compl_reqs); 1459 } 1460 ctx->submit_state.cq_flush = false; 1461 } 1462 1463 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1464 { 1465 /* See comment at the top of this file */ 1466 smp_rmb(); 1467 return __io_cqring_events(ctx); 1468 } 1469 1470 /* 1471 * We can't just wait for polled events to come to us, we have to actively 1472 * find and complete them. 1473 */ 1474 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1475 { 1476 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1477 return; 1478 1479 mutex_lock(&ctx->uring_lock); 1480 while (!wq_list_empty(&ctx->iopoll_list)) { 1481 /* let it sleep and repeat later if can't complete a request */ 1482 if (io_do_iopoll(ctx, true) == 0) 1483 break; 1484 /* 1485 * Ensure we allow local-to-the-cpu processing to take place, 1486 * in this case we need to ensure that we reap all events. 1487 * Also let task_work, etc. to progress by releasing the mutex 1488 */ 1489 if (need_resched()) { 1490 mutex_unlock(&ctx->uring_lock); 1491 cond_resched(); 1492 mutex_lock(&ctx->uring_lock); 1493 } 1494 } 1495 mutex_unlock(&ctx->uring_lock); 1496 } 1497 1498 static int io_iopoll_check(struct io_ring_ctx *ctx, long min) 1499 { 1500 unsigned int nr_events = 0; 1501 unsigned long check_cq; 1502 1503 lockdep_assert_held(&ctx->uring_lock); 1504 1505 if (!io_allowed_run_tw(ctx)) 1506 return -EEXIST; 1507 1508 check_cq = READ_ONCE(ctx->check_cq); 1509 if (unlikely(check_cq)) { 1510 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1511 __io_cqring_overflow_flush(ctx, false); 1512 /* 1513 * Similarly do not spin if we have not informed the user of any 1514 * dropped CQE. 1515 */ 1516 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1517 return -EBADR; 1518 } 1519 /* 1520 * Don't enter poll loop if we already have events pending. 1521 * If we do, we can potentially be spinning for commands that 1522 * already triggered a CQE (eg in error). 1523 */ 1524 if (io_cqring_events(ctx)) 1525 return 0; 1526 1527 do { 1528 int ret = 0; 1529 1530 /* 1531 * If a submit got punted to a workqueue, we can have the 1532 * application entering polling for a command before it gets 1533 * issued. That app will hold the uring_lock for the duration 1534 * of the poll right here, so we need to take a breather every 1535 * now and then to ensure that the issue has a chance to add 1536 * the poll to the issued list. Otherwise we can spin here 1537 * forever, while the workqueue is stuck trying to acquire the 1538 * very same mutex. 1539 */ 1540 if (wq_list_empty(&ctx->iopoll_list) || 1541 io_task_work_pending(ctx)) { 1542 u32 tail = ctx->cached_cq_tail; 1543 1544 (void) io_run_local_work_locked(ctx, min); 1545 1546 if (task_work_pending(current) || 1547 wq_list_empty(&ctx->iopoll_list)) { 1548 mutex_unlock(&ctx->uring_lock); 1549 io_run_task_work(); 1550 mutex_lock(&ctx->uring_lock); 1551 } 1552 /* some requests don't go through iopoll_list */ 1553 if (tail != ctx->cached_cq_tail || 1554 wq_list_empty(&ctx->iopoll_list)) 1555 break; 1556 } 1557 ret = io_do_iopoll(ctx, !min); 1558 if (unlikely(ret < 0)) 1559 return ret; 1560 1561 if (task_sigpending(current)) 1562 return -EINTR; 1563 if (need_resched()) 1564 break; 1565 1566 nr_events += ret; 1567 } while (nr_events < min); 1568 1569 return 0; 1570 } 1571 1572 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) 1573 { 1574 io_req_complete_defer(req); 1575 } 1576 1577 /* 1578 * After the iocb has been issued, it's safe to be found on the poll list. 1579 * Adding the kiocb to the list AFTER submission ensures that we don't 1580 * find it from a io_do_iopoll() thread before the issuer is done 1581 * accessing the kiocb cookie. 1582 */ 1583 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1584 { 1585 struct io_ring_ctx *ctx = req->ctx; 1586 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1587 1588 /* workqueue context doesn't hold uring_lock, grab it now */ 1589 if (unlikely(needs_lock)) 1590 mutex_lock(&ctx->uring_lock); 1591 1592 /* 1593 * Track whether we have multiple files in our lists. This will impact 1594 * how we do polling eventually, not spinning if we're on potentially 1595 * different devices. 1596 */ 1597 if (wq_list_empty(&ctx->iopoll_list)) { 1598 ctx->poll_multi_queue = false; 1599 } else if (!ctx->poll_multi_queue) { 1600 struct io_kiocb *list_req; 1601 1602 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1603 comp_list); 1604 if (list_req->file != req->file) 1605 ctx->poll_multi_queue = true; 1606 } 1607 1608 /* 1609 * For fast devices, IO may have already completed. If it has, add 1610 * it to the front so we find it first. 1611 */ 1612 if (READ_ONCE(req->iopoll_completed)) 1613 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1614 else 1615 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1616 1617 if (unlikely(needs_lock)) { 1618 /* 1619 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1620 * in sq thread task context or in io worker task context. If 1621 * current task context is sq thread, we don't need to check 1622 * whether should wake up sq thread. 1623 */ 1624 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1625 wq_has_sleeper(&ctx->sq_data->wait)) 1626 wake_up(&ctx->sq_data->wait); 1627 1628 mutex_unlock(&ctx->uring_lock); 1629 } 1630 } 1631 1632 io_req_flags_t io_file_get_flags(struct file *file) 1633 { 1634 io_req_flags_t res = 0; 1635 1636 if (S_ISREG(file_inode(file)->i_mode)) 1637 res |= REQ_F_ISREG; 1638 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1639 res |= REQ_F_SUPPORT_NOWAIT; 1640 return res; 1641 } 1642 1643 bool io_alloc_async_data(struct io_kiocb *req) 1644 { 1645 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1646 1647 WARN_ON_ONCE(!def->async_size); 1648 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 1649 if (req->async_data) { 1650 req->flags |= REQ_F_ASYNC_DATA; 1651 return false; 1652 } 1653 return true; 1654 } 1655 1656 static u32 io_get_sequence(struct io_kiocb *req) 1657 { 1658 u32 seq = req->ctx->cached_sq_head; 1659 struct io_kiocb *cur; 1660 1661 /* need original cached_sq_head, but it was increased for each req */ 1662 io_for_each_link(cur, req) 1663 seq--; 1664 return seq; 1665 } 1666 1667 static __cold void io_drain_req(struct io_kiocb *req) 1668 __must_hold(&ctx->uring_lock) 1669 { 1670 struct io_ring_ctx *ctx = req->ctx; 1671 struct io_defer_entry *de; 1672 int ret; 1673 u32 seq = io_get_sequence(req); 1674 1675 /* Still need defer if there is pending req in defer list. */ 1676 spin_lock(&ctx->completion_lock); 1677 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1678 spin_unlock(&ctx->completion_lock); 1679 queue: 1680 ctx->drain_active = false; 1681 io_req_task_queue(req); 1682 return; 1683 } 1684 spin_unlock(&ctx->completion_lock); 1685 1686 io_prep_async_link(req); 1687 de = kmalloc(sizeof(*de), GFP_KERNEL); 1688 if (!de) { 1689 ret = -ENOMEM; 1690 io_req_defer_failed(req, ret); 1691 return; 1692 } 1693 1694 spin_lock(&ctx->completion_lock); 1695 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1696 spin_unlock(&ctx->completion_lock); 1697 kfree(de); 1698 goto queue; 1699 } 1700 1701 trace_io_uring_defer(req); 1702 de->req = req; 1703 de->seq = seq; 1704 list_add_tail(&de->list, &ctx->defer_list); 1705 spin_unlock(&ctx->completion_lock); 1706 } 1707 1708 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1709 unsigned int issue_flags) 1710 { 1711 if (req->file || !def->needs_file) 1712 return true; 1713 1714 if (req->flags & REQ_F_FIXED_FILE) 1715 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1716 else 1717 req->file = io_file_get_normal(req, req->cqe.fd); 1718 1719 return !!req->file; 1720 } 1721 1722 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1723 { 1724 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1725 const struct cred *creds = NULL; 1726 int ret; 1727 1728 if (unlikely(!io_assign_file(req, def, issue_flags))) 1729 return -EBADF; 1730 1731 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1732 creds = override_creds(req->creds); 1733 1734 if (!def->audit_skip) 1735 audit_uring_entry(req->opcode); 1736 1737 ret = def->issue(req, issue_flags); 1738 1739 if (!def->audit_skip) 1740 audit_uring_exit(!ret, ret); 1741 1742 if (creds) 1743 revert_creds(creds); 1744 1745 if (ret == IOU_OK) { 1746 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1747 io_req_complete_defer(req); 1748 else 1749 io_req_complete_post(req, issue_flags); 1750 1751 return 0; 1752 } 1753 1754 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1755 ret = 0; 1756 io_arm_ltimeout(req); 1757 1758 /* If the op doesn't have a file, we're not polling for it */ 1759 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1760 io_iopoll_req_issued(req, issue_flags); 1761 } 1762 return ret; 1763 } 1764 1765 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) 1766 { 1767 io_tw_lock(req->ctx, ts); 1768 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| 1769 IO_URING_F_COMPLETE_DEFER); 1770 } 1771 1772 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1773 { 1774 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1775 struct io_kiocb *nxt = NULL; 1776 1777 if (req_ref_put_and_test(req)) { 1778 if (req->flags & IO_REQ_LINK_FLAGS) 1779 nxt = io_req_find_next(req); 1780 io_free_req(req); 1781 } 1782 return nxt ? &nxt->work : NULL; 1783 } 1784 1785 void io_wq_submit_work(struct io_wq_work *work) 1786 { 1787 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1788 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1789 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1790 bool needs_poll = false; 1791 int ret = 0, err = -ECANCELED; 1792 1793 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1794 if (!(req->flags & REQ_F_REFCOUNT)) 1795 __io_req_set_refcount(req, 2); 1796 else 1797 req_ref_get(req); 1798 1799 io_arm_ltimeout(req); 1800 1801 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1802 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1803 fail: 1804 io_req_task_queue_fail(req, err); 1805 return; 1806 } 1807 if (!io_assign_file(req, def, issue_flags)) { 1808 err = -EBADF; 1809 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1810 goto fail; 1811 } 1812 1813 /* 1814 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1815 * submitter task context. Final request completions are handed to the 1816 * right context, however this is not the case of auxiliary CQEs, 1817 * which is the main mean of operation for multishot requests. 1818 * Don't allow any multishot execution from io-wq. It's more restrictive 1819 * than necessary and also cleaner. 1820 */ 1821 if (req->flags & REQ_F_APOLL_MULTISHOT) { 1822 err = -EBADFD; 1823 if (!io_file_can_poll(req)) 1824 goto fail; 1825 if (req->file->f_flags & O_NONBLOCK || 1826 req->file->f_mode & FMODE_NOWAIT) { 1827 err = -ECANCELED; 1828 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1829 goto fail; 1830 return; 1831 } else { 1832 req->flags &= ~REQ_F_APOLL_MULTISHOT; 1833 } 1834 } 1835 1836 if (req->flags & REQ_F_FORCE_ASYNC) { 1837 bool opcode_poll = def->pollin || def->pollout; 1838 1839 if (opcode_poll && io_file_can_poll(req)) { 1840 needs_poll = true; 1841 issue_flags |= IO_URING_F_NONBLOCK; 1842 } 1843 } 1844 1845 do { 1846 ret = io_issue_sqe(req, issue_flags); 1847 if (ret != -EAGAIN) 1848 break; 1849 1850 /* 1851 * If REQ_F_NOWAIT is set, then don't wait or retry with 1852 * poll. -EAGAIN is final for that case. 1853 */ 1854 if (req->flags & REQ_F_NOWAIT) 1855 break; 1856 1857 /* 1858 * We can get EAGAIN for iopolled IO even though we're 1859 * forcing a sync submission from here, since we can't 1860 * wait for request slots on the block side. 1861 */ 1862 if (!needs_poll) { 1863 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1864 break; 1865 if (io_wq_worker_stopped()) 1866 break; 1867 cond_resched(); 1868 continue; 1869 } 1870 1871 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1872 return; 1873 /* aborted or ready, in either case retry blocking */ 1874 needs_poll = false; 1875 issue_flags &= ~IO_URING_F_NONBLOCK; 1876 } while (1); 1877 1878 /* avoid locking problems by failing it from a clean context */ 1879 if (ret) 1880 io_req_task_queue_fail(req, ret); 1881 } 1882 1883 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1884 unsigned int issue_flags) 1885 { 1886 struct io_ring_ctx *ctx = req->ctx; 1887 struct io_rsrc_node *node; 1888 struct file *file = NULL; 1889 1890 io_ring_submit_lock(ctx, issue_flags); 1891 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1892 if (node) { 1893 io_req_assign_rsrc_node(&req->file_node, node); 1894 req->flags |= io_slot_flags(node); 1895 file = io_slot_file(node); 1896 } 1897 io_ring_submit_unlock(ctx, issue_flags); 1898 return file; 1899 } 1900 1901 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1902 { 1903 struct file *file = fget(fd); 1904 1905 trace_io_uring_file_get(req, fd); 1906 1907 /* we don't allow fixed io_uring files */ 1908 if (file && io_is_uring_fops(file)) 1909 io_req_track_inflight(req); 1910 return file; 1911 } 1912 1913 static void io_queue_async(struct io_kiocb *req, int ret) 1914 __must_hold(&req->ctx->uring_lock) 1915 { 1916 struct io_kiocb *linked_timeout; 1917 1918 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1919 io_req_defer_failed(req, ret); 1920 return; 1921 } 1922 1923 linked_timeout = io_prep_linked_timeout(req); 1924 1925 switch (io_arm_poll_handler(req, 0)) { 1926 case IO_APOLL_READY: 1927 io_kbuf_recycle(req, 0); 1928 io_req_task_queue(req); 1929 break; 1930 case IO_APOLL_ABORTED: 1931 io_kbuf_recycle(req, 0); 1932 io_queue_iowq(req); 1933 break; 1934 case IO_APOLL_OK: 1935 break; 1936 } 1937 1938 if (linked_timeout) 1939 io_queue_linked_timeout(linked_timeout); 1940 } 1941 1942 static inline void io_queue_sqe(struct io_kiocb *req) 1943 __must_hold(&req->ctx->uring_lock) 1944 { 1945 int ret; 1946 1947 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1948 1949 /* 1950 * We async punt it if the file wasn't marked NOWAIT, or if the file 1951 * doesn't support non-blocking read/write attempts 1952 */ 1953 if (unlikely(ret)) 1954 io_queue_async(req, ret); 1955 } 1956 1957 static void io_queue_sqe_fallback(struct io_kiocb *req) 1958 __must_hold(&req->ctx->uring_lock) 1959 { 1960 if (unlikely(req->flags & REQ_F_FAIL)) { 1961 /* 1962 * We don't submit, fail them all, for that replace hardlinks 1963 * with normal links. Extra REQ_F_LINK is tolerated. 1964 */ 1965 req->flags &= ~REQ_F_HARDLINK; 1966 req->flags |= REQ_F_LINK; 1967 io_req_defer_failed(req, req->cqe.res); 1968 } else { 1969 if (unlikely(req->ctx->drain_active)) 1970 io_drain_req(req); 1971 else 1972 io_queue_iowq(req); 1973 } 1974 } 1975 1976 /* 1977 * Check SQE restrictions (opcode and flags). 1978 * 1979 * Returns 'true' if SQE is allowed, 'false' otherwise. 1980 */ 1981 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 1982 struct io_kiocb *req, 1983 unsigned int sqe_flags) 1984 { 1985 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 1986 return false; 1987 1988 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 1989 ctx->restrictions.sqe_flags_required) 1990 return false; 1991 1992 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 1993 ctx->restrictions.sqe_flags_required)) 1994 return false; 1995 1996 return true; 1997 } 1998 1999 static void io_init_req_drain(struct io_kiocb *req) 2000 { 2001 struct io_ring_ctx *ctx = req->ctx; 2002 struct io_kiocb *head = ctx->submit_state.link.head; 2003 2004 ctx->drain_active = true; 2005 if (head) { 2006 /* 2007 * If we need to drain a request in the middle of a link, drain 2008 * the head request and the next request/link after the current 2009 * link. Considering sequential execution of links, 2010 * REQ_F_IO_DRAIN will be maintained for every request of our 2011 * link. 2012 */ 2013 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2014 ctx->drain_next = true; 2015 } 2016 } 2017 2018 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2019 { 2020 /* ensure per-opcode data is cleared if we fail before prep */ 2021 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2022 return err; 2023 } 2024 2025 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2026 const struct io_uring_sqe *sqe) 2027 __must_hold(&ctx->uring_lock) 2028 { 2029 const struct io_issue_def *def; 2030 unsigned int sqe_flags; 2031 int personality; 2032 u8 opcode; 2033 2034 /* req is partially pre-initialised, see io_preinit_req() */ 2035 req->opcode = opcode = READ_ONCE(sqe->opcode); 2036 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2037 sqe_flags = READ_ONCE(sqe->flags); 2038 req->flags = (__force io_req_flags_t) sqe_flags; 2039 req->cqe.user_data = READ_ONCE(sqe->user_data); 2040 req->file = NULL; 2041 req->tctx = current->io_uring; 2042 req->cancel_seq_set = false; 2043 2044 if (unlikely(opcode >= IORING_OP_LAST)) { 2045 req->opcode = 0; 2046 return io_init_fail_req(req, -EINVAL); 2047 } 2048 def = &io_issue_defs[opcode]; 2049 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2050 /* enforce forwards compatibility on users */ 2051 if (sqe_flags & ~SQE_VALID_FLAGS) 2052 return io_init_fail_req(req, -EINVAL); 2053 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2054 if (!def->buffer_select) 2055 return io_init_fail_req(req, -EOPNOTSUPP); 2056 req->buf_index = READ_ONCE(sqe->buf_group); 2057 } 2058 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2059 ctx->drain_disabled = true; 2060 if (sqe_flags & IOSQE_IO_DRAIN) { 2061 if (ctx->drain_disabled) 2062 return io_init_fail_req(req, -EOPNOTSUPP); 2063 io_init_req_drain(req); 2064 } 2065 } 2066 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2067 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2068 return io_init_fail_req(req, -EACCES); 2069 /* knock it to the slow queue path, will be drained there */ 2070 if (ctx->drain_active) 2071 req->flags |= REQ_F_FORCE_ASYNC; 2072 /* if there is no link, we're at "next" request and need to drain */ 2073 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2074 ctx->drain_next = false; 2075 ctx->drain_active = true; 2076 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2077 } 2078 } 2079 2080 if (!def->ioprio && sqe->ioprio) 2081 return io_init_fail_req(req, -EINVAL); 2082 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2083 return io_init_fail_req(req, -EINVAL); 2084 2085 if (def->needs_file) { 2086 struct io_submit_state *state = &ctx->submit_state; 2087 2088 req->cqe.fd = READ_ONCE(sqe->fd); 2089 2090 /* 2091 * Plug now if we have more than 2 IO left after this, and the 2092 * target is potentially a read/write to block based storage. 2093 */ 2094 if (state->need_plug && def->plug) { 2095 state->plug_started = true; 2096 state->need_plug = false; 2097 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2098 } 2099 } 2100 2101 personality = READ_ONCE(sqe->personality); 2102 if (personality) { 2103 int ret; 2104 2105 req->creds = xa_load(&ctx->personalities, personality); 2106 if (!req->creds) 2107 return io_init_fail_req(req, -EINVAL); 2108 get_cred(req->creds); 2109 ret = security_uring_override_creds(req->creds); 2110 if (ret) { 2111 put_cred(req->creds); 2112 return io_init_fail_req(req, ret); 2113 } 2114 req->flags |= REQ_F_CREDS; 2115 } 2116 2117 return def->prep(req, sqe); 2118 } 2119 2120 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2121 struct io_kiocb *req, int ret) 2122 { 2123 struct io_ring_ctx *ctx = req->ctx; 2124 struct io_submit_link *link = &ctx->submit_state.link; 2125 struct io_kiocb *head = link->head; 2126 2127 trace_io_uring_req_failed(sqe, req, ret); 2128 2129 /* 2130 * Avoid breaking links in the middle as it renders links with SQPOLL 2131 * unusable. Instead of failing eagerly, continue assembling the link if 2132 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2133 * should find the flag and handle the rest. 2134 */ 2135 req_fail_link_node(req, ret); 2136 if (head && !(head->flags & REQ_F_FAIL)) 2137 req_fail_link_node(head, -ECANCELED); 2138 2139 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2140 if (head) { 2141 link->last->link = req; 2142 link->head = NULL; 2143 req = head; 2144 } 2145 io_queue_sqe_fallback(req); 2146 return ret; 2147 } 2148 2149 if (head) 2150 link->last->link = req; 2151 else 2152 link->head = req; 2153 link->last = req; 2154 return 0; 2155 } 2156 2157 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2158 const struct io_uring_sqe *sqe) 2159 __must_hold(&ctx->uring_lock) 2160 { 2161 struct io_submit_link *link = &ctx->submit_state.link; 2162 int ret; 2163 2164 ret = io_init_req(ctx, req, sqe); 2165 if (unlikely(ret)) 2166 return io_submit_fail_init(sqe, req, ret); 2167 2168 trace_io_uring_submit_req(req); 2169 2170 /* 2171 * If we already have a head request, queue this one for async 2172 * submittal once the head completes. If we don't have a head but 2173 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2174 * submitted sync once the chain is complete. If none of those 2175 * conditions are true (normal request), then just queue it. 2176 */ 2177 if (unlikely(link->head)) { 2178 trace_io_uring_link(req, link->last); 2179 link->last->link = req; 2180 link->last = req; 2181 2182 if (req->flags & IO_REQ_LINK_FLAGS) 2183 return 0; 2184 /* last request of the link, flush it */ 2185 req = link->head; 2186 link->head = NULL; 2187 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2188 goto fallback; 2189 2190 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2191 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2192 if (req->flags & IO_REQ_LINK_FLAGS) { 2193 link->head = req; 2194 link->last = req; 2195 } else { 2196 fallback: 2197 io_queue_sqe_fallback(req); 2198 } 2199 return 0; 2200 } 2201 2202 io_queue_sqe(req); 2203 return 0; 2204 } 2205 2206 /* 2207 * Batched submission is done, ensure local IO is flushed out. 2208 */ 2209 static void io_submit_state_end(struct io_ring_ctx *ctx) 2210 { 2211 struct io_submit_state *state = &ctx->submit_state; 2212 2213 if (unlikely(state->link.head)) 2214 io_queue_sqe_fallback(state->link.head); 2215 /* flush only after queuing links as they can generate completions */ 2216 io_submit_flush_completions(ctx); 2217 if (state->plug_started) 2218 blk_finish_plug(&state->plug); 2219 } 2220 2221 /* 2222 * Start submission side cache. 2223 */ 2224 static void io_submit_state_start(struct io_submit_state *state, 2225 unsigned int max_ios) 2226 { 2227 state->plug_started = false; 2228 state->need_plug = max_ios > 2; 2229 state->submit_nr = max_ios; 2230 /* set only head, no need to init link_last in advance */ 2231 state->link.head = NULL; 2232 } 2233 2234 static void io_commit_sqring(struct io_ring_ctx *ctx) 2235 { 2236 struct io_rings *rings = ctx->rings; 2237 2238 /* 2239 * Ensure any loads from the SQEs are done at this point, 2240 * since once we write the new head, the application could 2241 * write new data to them. 2242 */ 2243 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2244 } 2245 2246 /* 2247 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2248 * that is mapped by userspace. This means that care needs to be taken to 2249 * ensure that reads are stable, as we cannot rely on userspace always 2250 * being a good citizen. If members of the sqe are validated and then later 2251 * used, it's important that those reads are done through READ_ONCE() to 2252 * prevent a re-load down the line. 2253 */ 2254 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2255 { 2256 unsigned mask = ctx->sq_entries - 1; 2257 unsigned head = ctx->cached_sq_head++ & mask; 2258 2259 if (static_branch_unlikely(&io_key_has_sqarray) && 2260 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2261 head = READ_ONCE(ctx->sq_array[head]); 2262 if (unlikely(head >= ctx->sq_entries)) { 2263 /* drop invalid entries */ 2264 spin_lock(&ctx->completion_lock); 2265 ctx->cq_extra--; 2266 spin_unlock(&ctx->completion_lock); 2267 WRITE_ONCE(ctx->rings->sq_dropped, 2268 READ_ONCE(ctx->rings->sq_dropped) + 1); 2269 return false; 2270 } 2271 head = array_index_nospec(head, ctx->sq_entries); 2272 } 2273 2274 /* 2275 * The cached sq head (or cq tail) serves two purposes: 2276 * 2277 * 1) allows us to batch the cost of updating the user visible 2278 * head updates. 2279 * 2) allows the kernel side to track the head on its own, even 2280 * though the application is the one updating it. 2281 */ 2282 2283 /* double index for 128-byte SQEs, twice as long */ 2284 if (ctx->flags & IORING_SETUP_SQE128) 2285 head <<= 1; 2286 *sqe = &ctx->sq_sqes[head]; 2287 return true; 2288 } 2289 2290 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2291 __must_hold(&ctx->uring_lock) 2292 { 2293 unsigned int entries = io_sqring_entries(ctx); 2294 unsigned int left; 2295 int ret; 2296 2297 if (unlikely(!entries)) 2298 return 0; 2299 /* make sure SQ entry isn't read before tail */ 2300 ret = left = min(nr, entries); 2301 io_get_task_refs(left); 2302 io_submit_state_start(&ctx->submit_state, left); 2303 2304 do { 2305 const struct io_uring_sqe *sqe; 2306 struct io_kiocb *req; 2307 2308 if (unlikely(!io_alloc_req(ctx, &req))) 2309 break; 2310 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2311 io_req_add_to_cache(req, ctx); 2312 break; 2313 } 2314 2315 /* 2316 * Continue submitting even for sqe failure if the 2317 * ring was setup with IORING_SETUP_SUBMIT_ALL 2318 */ 2319 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2320 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2321 left--; 2322 break; 2323 } 2324 } while (--left); 2325 2326 if (unlikely(left)) { 2327 ret -= left; 2328 /* try again if it submitted nothing and can't allocate a req */ 2329 if (!ret && io_req_cache_empty(ctx)) 2330 ret = -EAGAIN; 2331 current->io_uring->cached_refs += left; 2332 } 2333 2334 io_submit_state_end(ctx); 2335 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2336 io_commit_sqring(ctx); 2337 return ret; 2338 } 2339 2340 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2341 int wake_flags, void *key) 2342 { 2343 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2344 2345 /* 2346 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2347 * the task, and the next invocation will do it. 2348 */ 2349 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2350 return autoremove_wake_function(curr, mode, wake_flags, key); 2351 return -1; 2352 } 2353 2354 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2355 { 2356 if (io_local_work_pending(ctx)) { 2357 __set_current_state(TASK_RUNNING); 2358 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2359 return 0; 2360 } 2361 if (io_run_task_work() > 0) 2362 return 0; 2363 if (task_sigpending(current)) 2364 return -EINTR; 2365 return 0; 2366 } 2367 2368 static bool current_pending_io(void) 2369 { 2370 struct io_uring_task *tctx = current->io_uring; 2371 2372 if (!tctx) 2373 return false; 2374 return percpu_counter_read_positive(&tctx->inflight); 2375 } 2376 2377 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2378 { 2379 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2380 2381 WRITE_ONCE(iowq->hit_timeout, 1); 2382 iowq->min_timeout = 0; 2383 wake_up_process(iowq->wq.private); 2384 return HRTIMER_NORESTART; 2385 } 2386 2387 /* 2388 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2389 * wake up. If not, and we have a normal timeout, switch to that and keep 2390 * sleeping. 2391 */ 2392 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2393 { 2394 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2395 struct io_ring_ctx *ctx = iowq->ctx; 2396 2397 /* no general timeout, or shorter (or equal), we are done */ 2398 if (iowq->timeout == KTIME_MAX || 2399 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2400 goto out_wake; 2401 /* work we may need to run, wake function will see if we need to wake */ 2402 if (io_has_work(ctx)) 2403 goto out_wake; 2404 /* got events since we started waiting, min timeout is done */ 2405 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2406 goto out_wake; 2407 /* if we have any events and min timeout expired, we're done */ 2408 if (io_cqring_events(ctx)) 2409 goto out_wake; 2410 2411 /* 2412 * If using deferred task_work running and application is waiting on 2413 * more than one request, ensure we reset it now where we are switching 2414 * to normal sleeps. Any request completion post min_wait should wake 2415 * the task and return. 2416 */ 2417 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2418 atomic_set(&ctx->cq_wait_nr, 1); 2419 smp_mb(); 2420 if (!llist_empty(&ctx->work_llist)) 2421 goto out_wake; 2422 } 2423 2424 iowq->t.function = io_cqring_timer_wakeup; 2425 hrtimer_set_expires(timer, iowq->timeout); 2426 return HRTIMER_RESTART; 2427 out_wake: 2428 return io_cqring_timer_wakeup(timer); 2429 } 2430 2431 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2432 clockid_t clock_id, ktime_t start_time) 2433 { 2434 ktime_t timeout; 2435 2436 if (iowq->min_timeout) { 2437 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2438 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2439 HRTIMER_MODE_ABS); 2440 } else { 2441 timeout = iowq->timeout; 2442 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2443 HRTIMER_MODE_ABS); 2444 } 2445 2446 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2447 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2448 2449 if (!READ_ONCE(iowq->hit_timeout)) 2450 schedule(); 2451 2452 hrtimer_cancel(&iowq->t); 2453 destroy_hrtimer_on_stack(&iowq->t); 2454 __set_current_state(TASK_RUNNING); 2455 2456 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2457 } 2458 2459 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2460 struct io_wait_queue *iowq, 2461 ktime_t start_time) 2462 { 2463 int ret = 0; 2464 2465 /* 2466 * Mark us as being in io_wait if we have pending requests, so cpufreq 2467 * can take into account that the task is waiting for IO - turns out 2468 * to be important for low QD IO. 2469 */ 2470 if (current_pending_io()) 2471 current->in_iowait = 1; 2472 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2473 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2474 else 2475 schedule(); 2476 current->in_iowait = 0; 2477 return ret; 2478 } 2479 2480 /* If this returns > 0, the caller should retry */ 2481 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2482 struct io_wait_queue *iowq, 2483 ktime_t start_time) 2484 { 2485 if (unlikely(READ_ONCE(ctx->check_cq))) 2486 return 1; 2487 if (unlikely(io_local_work_pending(ctx))) 2488 return 1; 2489 if (unlikely(task_work_pending(current))) 2490 return 1; 2491 if (unlikely(task_sigpending(current))) 2492 return -EINTR; 2493 if (unlikely(io_should_wake(iowq))) 2494 return 0; 2495 2496 return __io_cqring_wait_schedule(ctx, iowq, start_time); 2497 } 2498 2499 struct ext_arg { 2500 size_t argsz; 2501 struct timespec64 ts; 2502 const sigset_t __user *sig; 2503 ktime_t min_time; 2504 bool ts_set; 2505 }; 2506 2507 /* 2508 * Wait until events become available, if we don't already have some. The 2509 * application must reap them itself, as they reside on the shared cq ring. 2510 */ 2511 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2512 struct ext_arg *ext_arg) 2513 { 2514 struct io_wait_queue iowq; 2515 struct io_rings *rings = ctx->rings; 2516 ktime_t start_time; 2517 int ret; 2518 2519 if (!io_allowed_run_tw(ctx)) 2520 return -EEXIST; 2521 if (io_local_work_pending(ctx)) 2522 io_run_local_work(ctx, min_events, 2523 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2524 io_run_task_work(); 2525 2526 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2527 io_cqring_do_overflow_flush(ctx); 2528 if (__io_cqring_events_user(ctx) >= min_events) 2529 return 0; 2530 2531 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2532 iowq.wq.private = current; 2533 INIT_LIST_HEAD(&iowq.wq.entry); 2534 iowq.ctx = ctx; 2535 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2536 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2537 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2538 iowq.hit_timeout = 0; 2539 iowq.min_timeout = ext_arg->min_time; 2540 iowq.timeout = KTIME_MAX; 2541 start_time = io_get_time(ctx); 2542 2543 if (ext_arg->ts_set) { 2544 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2545 if (!(flags & IORING_ENTER_ABS_TIMER)) 2546 iowq.timeout = ktime_add(iowq.timeout, start_time); 2547 } 2548 2549 if (ext_arg->sig) { 2550 #ifdef CONFIG_COMPAT 2551 if (in_compat_syscall()) 2552 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2553 ext_arg->argsz); 2554 else 2555 #endif 2556 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2557 2558 if (ret) 2559 return ret; 2560 } 2561 2562 io_napi_busy_loop(ctx, &iowq); 2563 2564 trace_io_uring_cqring_wait(ctx, min_events); 2565 do { 2566 unsigned long check_cq; 2567 int nr_wait; 2568 2569 /* if min timeout has been hit, don't reset wait count */ 2570 if (!iowq.hit_timeout) 2571 nr_wait = (int) iowq.cq_tail - 2572 READ_ONCE(ctx->rings->cq.tail); 2573 else 2574 nr_wait = 1; 2575 2576 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2577 atomic_set(&ctx->cq_wait_nr, nr_wait); 2578 set_current_state(TASK_INTERRUPTIBLE); 2579 } else { 2580 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2581 TASK_INTERRUPTIBLE); 2582 } 2583 2584 ret = io_cqring_wait_schedule(ctx, &iowq, start_time); 2585 __set_current_state(TASK_RUNNING); 2586 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2587 2588 /* 2589 * Run task_work after scheduling and before io_should_wake(). 2590 * If we got woken because of task_work being processed, run it 2591 * now rather than let the caller do another wait loop. 2592 */ 2593 if (io_local_work_pending(ctx)) 2594 io_run_local_work(ctx, nr_wait, nr_wait); 2595 io_run_task_work(); 2596 2597 /* 2598 * Non-local task_work will be run on exit to userspace, but 2599 * if we're using DEFER_TASKRUN, then we could have waited 2600 * with a timeout for a number of requests. If the timeout 2601 * hits, we could have some requests ready to process. Ensure 2602 * this break is _after_ we have run task_work, to avoid 2603 * deferring running potentially pending requests until the 2604 * next time we wait for events. 2605 */ 2606 if (ret < 0) 2607 break; 2608 2609 check_cq = READ_ONCE(ctx->check_cq); 2610 if (unlikely(check_cq)) { 2611 /* let the caller flush overflows, retry */ 2612 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2613 io_cqring_do_overflow_flush(ctx); 2614 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2615 ret = -EBADR; 2616 break; 2617 } 2618 } 2619 2620 if (io_should_wake(&iowq)) { 2621 ret = 0; 2622 break; 2623 } 2624 cond_resched(); 2625 } while (1); 2626 2627 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2628 finish_wait(&ctx->cq_wait, &iowq.wq); 2629 restore_saved_sigmask_unless(ret == -EINTR); 2630 2631 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2632 } 2633 2634 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2635 size_t size) 2636 { 2637 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, 2638 size); 2639 } 2640 2641 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, 2642 size_t size) 2643 { 2644 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, 2645 size); 2646 } 2647 2648 static void io_rings_free(struct io_ring_ctx *ctx) 2649 { 2650 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { 2651 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages, 2652 true); 2653 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages, 2654 true); 2655 } else { 2656 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); 2657 ctx->n_ring_pages = 0; 2658 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); 2659 ctx->n_sqe_pages = 0; 2660 vunmap(ctx->rings); 2661 vunmap(ctx->sq_sqes); 2662 } 2663 2664 ctx->rings = NULL; 2665 ctx->sq_sqes = NULL; 2666 } 2667 2668 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2669 unsigned int cq_entries, size_t *sq_offset) 2670 { 2671 struct io_rings *rings; 2672 size_t off, sq_array_size; 2673 2674 off = struct_size(rings, cqes, cq_entries); 2675 if (off == SIZE_MAX) 2676 return SIZE_MAX; 2677 if (flags & IORING_SETUP_CQE32) { 2678 if (check_shl_overflow(off, 1, &off)) 2679 return SIZE_MAX; 2680 } 2681 2682 #ifdef CONFIG_SMP 2683 off = ALIGN(off, SMP_CACHE_BYTES); 2684 if (off == 0) 2685 return SIZE_MAX; 2686 #endif 2687 2688 if (flags & IORING_SETUP_NO_SQARRAY) { 2689 *sq_offset = SIZE_MAX; 2690 return off; 2691 } 2692 2693 *sq_offset = off; 2694 2695 sq_array_size = array_size(sizeof(u32), sq_entries); 2696 if (sq_array_size == SIZE_MAX) 2697 return SIZE_MAX; 2698 2699 if (check_add_overflow(off, sq_array_size, &off)) 2700 return SIZE_MAX; 2701 2702 return off; 2703 } 2704 2705 static void io_req_caches_free(struct io_ring_ctx *ctx) 2706 { 2707 struct io_kiocb *req; 2708 int nr = 0; 2709 2710 mutex_lock(&ctx->uring_lock); 2711 2712 while (!io_req_cache_empty(ctx)) { 2713 req = io_extract_req(ctx); 2714 kmem_cache_free(req_cachep, req); 2715 nr++; 2716 } 2717 if (nr) 2718 percpu_ref_put_many(&ctx->refs, nr); 2719 mutex_unlock(&ctx->uring_lock); 2720 } 2721 2722 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2723 { 2724 io_sq_thread_finish(ctx); 2725 2726 mutex_lock(&ctx->uring_lock); 2727 io_sqe_buffers_unregister(ctx); 2728 io_sqe_files_unregister(ctx); 2729 io_cqring_overflow_kill(ctx); 2730 io_eventfd_unregister(ctx); 2731 io_alloc_cache_free(&ctx->apoll_cache, kfree); 2732 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 2733 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 2734 io_alloc_cache_free(&ctx->uring_cache, kfree); 2735 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free); 2736 io_futex_cache_free(ctx); 2737 io_destroy_buffers(ctx); 2738 io_free_region(ctx, &ctx->param_region); 2739 mutex_unlock(&ctx->uring_lock); 2740 if (ctx->sq_creds) 2741 put_cred(ctx->sq_creds); 2742 if (ctx->submitter_task) 2743 put_task_struct(ctx->submitter_task); 2744 2745 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2746 2747 if (ctx->mm_account) { 2748 mmdrop(ctx->mm_account); 2749 ctx->mm_account = NULL; 2750 } 2751 io_rings_free(ctx); 2752 2753 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2754 static_branch_dec(&io_key_has_sqarray); 2755 2756 percpu_ref_exit(&ctx->refs); 2757 free_uid(ctx->user); 2758 io_req_caches_free(ctx); 2759 if (ctx->hash_map) 2760 io_wq_put_hash(ctx->hash_map); 2761 io_napi_free(ctx); 2762 kvfree(ctx->cancel_table.hbs); 2763 xa_destroy(&ctx->io_bl_xa); 2764 kfree(ctx); 2765 } 2766 2767 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2768 { 2769 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2770 poll_wq_task_work); 2771 2772 mutex_lock(&ctx->uring_lock); 2773 ctx->poll_activated = true; 2774 mutex_unlock(&ctx->uring_lock); 2775 2776 /* 2777 * Wake ups for some events between start of polling and activation 2778 * might've been lost due to loose synchronisation. 2779 */ 2780 wake_up_all(&ctx->poll_wq); 2781 percpu_ref_put(&ctx->refs); 2782 } 2783 2784 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2785 { 2786 spin_lock(&ctx->completion_lock); 2787 /* already activated or in progress */ 2788 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2789 goto out; 2790 if (WARN_ON_ONCE(!ctx->task_complete)) 2791 goto out; 2792 if (!ctx->submitter_task) 2793 goto out; 2794 /* 2795 * with ->submitter_task only the submitter task completes requests, we 2796 * only need to sync with it, which is done by injecting a tw 2797 */ 2798 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2799 percpu_ref_get(&ctx->refs); 2800 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2801 percpu_ref_put(&ctx->refs); 2802 out: 2803 spin_unlock(&ctx->completion_lock); 2804 } 2805 2806 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2807 { 2808 struct io_ring_ctx *ctx = file->private_data; 2809 __poll_t mask = 0; 2810 2811 if (unlikely(!ctx->poll_activated)) 2812 io_activate_pollwq(ctx); 2813 /* 2814 * provides mb() which pairs with barrier from wq_has_sleeper 2815 * call in io_commit_cqring 2816 */ 2817 poll_wait(file, &ctx->poll_wq, wait); 2818 2819 if (!io_sqring_full(ctx)) 2820 mask |= EPOLLOUT | EPOLLWRNORM; 2821 2822 /* 2823 * Don't flush cqring overflow list here, just do a simple check. 2824 * Otherwise there could possible be ABBA deadlock: 2825 * CPU0 CPU1 2826 * ---- ---- 2827 * lock(&ctx->uring_lock); 2828 * lock(&ep->mtx); 2829 * lock(&ctx->uring_lock); 2830 * lock(&ep->mtx); 2831 * 2832 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2833 * pushes them to do the flush. 2834 */ 2835 2836 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2837 mask |= EPOLLIN | EPOLLRDNORM; 2838 2839 return mask; 2840 } 2841 2842 struct io_tctx_exit { 2843 struct callback_head task_work; 2844 struct completion completion; 2845 struct io_ring_ctx *ctx; 2846 }; 2847 2848 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2849 { 2850 struct io_uring_task *tctx = current->io_uring; 2851 struct io_tctx_exit *work; 2852 2853 work = container_of(cb, struct io_tctx_exit, task_work); 2854 /* 2855 * When @in_cancel, we're in cancellation and it's racy to remove the 2856 * node. It'll be removed by the end of cancellation, just ignore it. 2857 * tctx can be NULL if the queueing of this task_work raced with 2858 * work cancelation off the exec path. 2859 */ 2860 if (tctx && !atomic_read(&tctx->in_cancel)) 2861 io_uring_del_tctx_node((unsigned long)work->ctx); 2862 complete(&work->completion); 2863 } 2864 2865 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2866 { 2867 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2868 2869 return req->ctx == data; 2870 } 2871 2872 static __cold void io_ring_exit_work(struct work_struct *work) 2873 { 2874 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2875 unsigned long timeout = jiffies + HZ * 60 * 5; 2876 unsigned long interval = HZ / 20; 2877 struct io_tctx_exit exit; 2878 struct io_tctx_node *node; 2879 int ret; 2880 2881 /* 2882 * If we're doing polled IO and end up having requests being 2883 * submitted async (out-of-line), then completions can come in while 2884 * we're waiting for refs to drop. We need to reap these manually, 2885 * as nobody else will be looking for them. 2886 */ 2887 do { 2888 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2889 mutex_lock(&ctx->uring_lock); 2890 io_cqring_overflow_kill(ctx); 2891 mutex_unlock(&ctx->uring_lock); 2892 } 2893 2894 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2895 io_move_task_work_from_local(ctx); 2896 2897 while (io_uring_try_cancel_requests(ctx, NULL, true)) 2898 cond_resched(); 2899 2900 if (ctx->sq_data) { 2901 struct io_sq_data *sqd = ctx->sq_data; 2902 struct task_struct *tsk; 2903 2904 io_sq_thread_park(sqd); 2905 tsk = sqd->thread; 2906 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2907 io_wq_cancel_cb(tsk->io_uring->io_wq, 2908 io_cancel_ctx_cb, ctx, true); 2909 io_sq_thread_unpark(sqd); 2910 } 2911 2912 io_req_caches_free(ctx); 2913 2914 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2915 /* there is little hope left, don't run it too often */ 2916 interval = HZ * 60; 2917 } 2918 /* 2919 * This is really an uninterruptible wait, as it has to be 2920 * complete. But it's also run from a kworker, which doesn't 2921 * take signals, so it's fine to make it interruptible. This 2922 * avoids scenarios where we knowingly can wait much longer 2923 * on completions, for example if someone does a SIGSTOP on 2924 * a task that needs to finish task_work to make this loop 2925 * complete. That's a synthetic situation that should not 2926 * cause a stuck task backtrace, and hence a potential panic 2927 * on stuck tasks if that is enabled. 2928 */ 2929 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2930 2931 init_completion(&exit.completion); 2932 init_task_work(&exit.task_work, io_tctx_exit_cb); 2933 exit.ctx = ctx; 2934 2935 mutex_lock(&ctx->uring_lock); 2936 while (!list_empty(&ctx->tctx_list)) { 2937 WARN_ON_ONCE(time_after(jiffies, timeout)); 2938 2939 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2940 ctx_node); 2941 /* don't spin on a single task if cancellation failed */ 2942 list_rotate_left(&ctx->tctx_list); 2943 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2944 if (WARN_ON_ONCE(ret)) 2945 continue; 2946 2947 mutex_unlock(&ctx->uring_lock); 2948 /* 2949 * See comment above for 2950 * wait_for_completion_interruptible_timeout() on why this 2951 * wait is marked as interruptible. 2952 */ 2953 wait_for_completion_interruptible(&exit.completion); 2954 mutex_lock(&ctx->uring_lock); 2955 } 2956 mutex_unlock(&ctx->uring_lock); 2957 spin_lock(&ctx->completion_lock); 2958 spin_unlock(&ctx->completion_lock); 2959 2960 /* pairs with RCU read section in io_req_local_work_add() */ 2961 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2962 synchronize_rcu(); 2963 2964 io_ring_ctx_free(ctx); 2965 } 2966 2967 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2968 { 2969 unsigned long index; 2970 struct creds *creds; 2971 2972 mutex_lock(&ctx->uring_lock); 2973 percpu_ref_kill(&ctx->refs); 2974 xa_for_each(&ctx->personalities, index, creds) 2975 io_unregister_personality(ctx, index); 2976 mutex_unlock(&ctx->uring_lock); 2977 2978 flush_delayed_work(&ctx->fallback_work); 2979 2980 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2981 /* 2982 * Use system_unbound_wq to avoid spawning tons of event kworkers 2983 * if we're exiting a ton of rings at the same time. It just adds 2984 * noise and overhead, there's no discernable change in runtime 2985 * over using system_wq. 2986 */ 2987 queue_work(iou_wq, &ctx->exit_work); 2988 } 2989 2990 static int io_uring_release(struct inode *inode, struct file *file) 2991 { 2992 struct io_ring_ctx *ctx = file->private_data; 2993 2994 file->private_data = NULL; 2995 io_ring_ctx_wait_and_kill(ctx); 2996 return 0; 2997 } 2998 2999 struct io_task_cancel { 3000 struct io_uring_task *tctx; 3001 bool all; 3002 }; 3003 3004 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3005 { 3006 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3007 struct io_task_cancel *cancel = data; 3008 3009 return io_match_task_safe(req, cancel->tctx, cancel->all); 3010 } 3011 3012 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3013 struct io_uring_task *tctx, 3014 bool cancel_all) 3015 { 3016 struct io_defer_entry *de; 3017 LIST_HEAD(list); 3018 3019 spin_lock(&ctx->completion_lock); 3020 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3021 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3022 list_cut_position(&list, &ctx->defer_list, &de->list); 3023 break; 3024 } 3025 } 3026 spin_unlock(&ctx->completion_lock); 3027 if (list_empty(&list)) 3028 return false; 3029 3030 while (!list_empty(&list)) { 3031 de = list_first_entry(&list, struct io_defer_entry, list); 3032 list_del_init(&de->list); 3033 io_req_task_queue_fail(de->req, -ECANCELED); 3034 kfree(de); 3035 } 3036 return true; 3037 } 3038 3039 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3040 { 3041 struct io_tctx_node *node; 3042 enum io_wq_cancel cret; 3043 bool ret = false; 3044 3045 mutex_lock(&ctx->uring_lock); 3046 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3047 struct io_uring_task *tctx = node->task->io_uring; 3048 3049 /* 3050 * io_wq will stay alive while we hold uring_lock, because it's 3051 * killed after ctx nodes, which requires to take the lock. 3052 */ 3053 if (!tctx || !tctx->io_wq) 3054 continue; 3055 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3056 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3057 } 3058 mutex_unlock(&ctx->uring_lock); 3059 3060 return ret; 3061 } 3062 3063 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3064 struct io_uring_task *tctx, 3065 bool cancel_all) 3066 { 3067 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3068 enum io_wq_cancel cret; 3069 bool ret = false; 3070 3071 /* set it so io_req_local_work_add() would wake us up */ 3072 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3073 atomic_set(&ctx->cq_wait_nr, 1); 3074 smp_mb(); 3075 } 3076 3077 /* failed during ring init, it couldn't have issued any requests */ 3078 if (!ctx->rings) 3079 return false; 3080 3081 if (!tctx) { 3082 ret |= io_uring_try_cancel_iowq(ctx); 3083 } else if (tctx->io_wq) { 3084 /* 3085 * Cancels requests of all rings, not only @ctx, but 3086 * it's fine as the task is in exit/exec. 3087 */ 3088 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3089 &cancel, true); 3090 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3091 } 3092 3093 /* SQPOLL thread does its own polling */ 3094 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3095 (ctx->sq_data && ctx->sq_data->thread == current)) { 3096 while (!wq_list_empty(&ctx->iopoll_list)) { 3097 io_iopoll_try_reap_events(ctx); 3098 ret = true; 3099 cond_resched(); 3100 } 3101 } 3102 3103 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3104 io_allowed_defer_tw_run(ctx)) 3105 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3106 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3107 mutex_lock(&ctx->uring_lock); 3108 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3109 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3110 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3111 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3112 mutex_unlock(&ctx->uring_lock); 3113 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3114 if (tctx) 3115 ret |= io_run_task_work() > 0; 3116 else 3117 ret |= flush_delayed_work(&ctx->fallback_work); 3118 return ret; 3119 } 3120 3121 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3122 { 3123 if (tracked) 3124 return atomic_read(&tctx->inflight_tracked); 3125 return percpu_counter_sum(&tctx->inflight); 3126 } 3127 3128 /* 3129 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3130 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3131 */ 3132 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3133 { 3134 struct io_uring_task *tctx = current->io_uring; 3135 struct io_ring_ctx *ctx; 3136 struct io_tctx_node *node; 3137 unsigned long index; 3138 s64 inflight; 3139 DEFINE_WAIT(wait); 3140 3141 WARN_ON_ONCE(sqd && sqd->thread != current); 3142 3143 if (!current->io_uring) 3144 return; 3145 if (tctx->io_wq) 3146 io_wq_exit_start(tctx->io_wq); 3147 3148 atomic_inc(&tctx->in_cancel); 3149 do { 3150 bool loop = false; 3151 3152 io_uring_drop_tctx_refs(current); 3153 if (!tctx_inflight(tctx, !cancel_all)) 3154 break; 3155 3156 /* read completions before cancelations */ 3157 inflight = tctx_inflight(tctx, false); 3158 if (!inflight) 3159 break; 3160 3161 if (!sqd) { 3162 xa_for_each(&tctx->xa, index, node) { 3163 /* sqpoll task will cancel all its requests */ 3164 if (node->ctx->sq_data) 3165 continue; 3166 loop |= io_uring_try_cancel_requests(node->ctx, 3167 current->io_uring, 3168 cancel_all); 3169 } 3170 } else { 3171 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3172 loop |= io_uring_try_cancel_requests(ctx, 3173 current->io_uring, 3174 cancel_all); 3175 } 3176 3177 if (loop) { 3178 cond_resched(); 3179 continue; 3180 } 3181 3182 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3183 io_run_task_work(); 3184 io_uring_drop_tctx_refs(current); 3185 xa_for_each(&tctx->xa, index, node) { 3186 if (io_local_work_pending(node->ctx)) { 3187 WARN_ON_ONCE(node->ctx->submitter_task && 3188 node->ctx->submitter_task != current); 3189 goto end_wait; 3190 } 3191 } 3192 /* 3193 * If we've seen completions, retry without waiting. This 3194 * avoids a race where a completion comes in before we did 3195 * prepare_to_wait(). 3196 */ 3197 if (inflight == tctx_inflight(tctx, !cancel_all)) 3198 schedule(); 3199 end_wait: 3200 finish_wait(&tctx->wait, &wait); 3201 } while (1); 3202 3203 io_uring_clean_tctx(tctx); 3204 if (cancel_all) { 3205 /* 3206 * We shouldn't run task_works after cancel, so just leave 3207 * ->in_cancel set for normal exit. 3208 */ 3209 atomic_dec(&tctx->in_cancel); 3210 /* for exec all current's requests should be gone, kill tctx */ 3211 __io_uring_free(current); 3212 } 3213 } 3214 3215 void __io_uring_cancel(bool cancel_all) 3216 { 3217 io_uring_unreg_ringfd(); 3218 io_uring_cancel_generic(cancel_all, NULL); 3219 } 3220 3221 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3222 const struct io_uring_getevents_arg __user *uarg) 3223 { 3224 unsigned long size = sizeof(struct io_uring_reg_wait); 3225 unsigned long offset = (uintptr_t)uarg; 3226 unsigned long end; 3227 3228 if (unlikely(offset % sizeof(long))) 3229 return ERR_PTR(-EFAULT); 3230 3231 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3232 if (unlikely(check_add_overflow(offset, size, &end) || 3233 end > ctx->cq_wait_size)) 3234 return ERR_PTR(-EFAULT); 3235 3236 return ctx->cq_wait_arg + offset; 3237 } 3238 3239 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3240 const void __user *argp, size_t argsz) 3241 { 3242 struct io_uring_getevents_arg arg; 3243 3244 if (!(flags & IORING_ENTER_EXT_ARG)) 3245 return 0; 3246 if (flags & IORING_ENTER_EXT_ARG_REG) 3247 return -EINVAL; 3248 if (argsz != sizeof(arg)) 3249 return -EINVAL; 3250 if (copy_from_user(&arg, argp, sizeof(arg))) 3251 return -EFAULT; 3252 return 0; 3253 } 3254 3255 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3256 const void __user *argp, struct ext_arg *ext_arg) 3257 { 3258 const struct io_uring_getevents_arg __user *uarg = argp; 3259 struct io_uring_getevents_arg arg; 3260 3261 /* 3262 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3263 * is just a pointer to the sigset_t. 3264 */ 3265 if (!(flags & IORING_ENTER_EXT_ARG)) { 3266 ext_arg->sig = (const sigset_t __user *) argp; 3267 return 0; 3268 } 3269 3270 if (flags & IORING_ENTER_EXT_ARG_REG) { 3271 struct io_uring_reg_wait *w; 3272 3273 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3274 return -EINVAL; 3275 w = io_get_ext_arg_reg(ctx, argp); 3276 if (IS_ERR(w)) 3277 return PTR_ERR(w); 3278 3279 if (w->flags & ~IORING_REG_WAIT_TS) 3280 return -EINVAL; 3281 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3282 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3283 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3284 if (w->flags & IORING_REG_WAIT_TS) { 3285 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3286 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3287 ext_arg->ts_set = true; 3288 } 3289 return 0; 3290 } 3291 3292 /* 3293 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3294 * timespec and sigset_t pointers if good. 3295 */ 3296 if (ext_arg->argsz != sizeof(arg)) 3297 return -EINVAL; 3298 #ifdef CONFIG_64BIT 3299 if (!user_access_begin(uarg, sizeof(*uarg))) 3300 return -EFAULT; 3301 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3302 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3303 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3304 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3305 user_access_end(); 3306 #else 3307 if (copy_from_user(&arg, uarg, sizeof(arg))) 3308 return -EFAULT; 3309 #endif 3310 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3311 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3312 ext_arg->argsz = arg.sigmask_sz; 3313 if (arg.ts) { 3314 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3315 return -EFAULT; 3316 ext_arg->ts_set = true; 3317 } 3318 return 0; 3319 #ifdef CONFIG_64BIT 3320 uaccess_end: 3321 user_access_end(); 3322 return -EFAULT; 3323 #endif 3324 } 3325 3326 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3327 u32, min_complete, u32, flags, const void __user *, argp, 3328 size_t, argsz) 3329 { 3330 struct io_ring_ctx *ctx; 3331 struct file *file; 3332 long ret; 3333 3334 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3335 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3336 IORING_ENTER_REGISTERED_RING | 3337 IORING_ENTER_ABS_TIMER | 3338 IORING_ENTER_EXT_ARG_REG))) 3339 return -EINVAL; 3340 3341 /* 3342 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3343 * need only dereference our task private array to find it. 3344 */ 3345 if (flags & IORING_ENTER_REGISTERED_RING) { 3346 struct io_uring_task *tctx = current->io_uring; 3347 3348 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3349 return -EINVAL; 3350 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3351 file = tctx->registered_rings[fd]; 3352 if (unlikely(!file)) 3353 return -EBADF; 3354 } else { 3355 file = fget(fd); 3356 if (unlikely(!file)) 3357 return -EBADF; 3358 ret = -EOPNOTSUPP; 3359 if (unlikely(!io_is_uring_fops(file))) 3360 goto out; 3361 } 3362 3363 ctx = file->private_data; 3364 ret = -EBADFD; 3365 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3366 goto out; 3367 3368 /* 3369 * For SQ polling, the thread will do all submissions and completions. 3370 * Just return the requested submit count, and wake the thread if 3371 * we were asked to. 3372 */ 3373 ret = 0; 3374 if (ctx->flags & IORING_SETUP_SQPOLL) { 3375 if (unlikely(ctx->sq_data->thread == NULL)) { 3376 ret = -EOWNERDEAD; 3377 goto out; 3378 } 3379 if (flags & IORING_ENTER_SQ_WAKEUP) 3380 wake_up(&ctx->sq_data->wait); 3381 if (flags & IORING_ENTER_SQ_WAIT) 3382 io_sqpoll_wait_sq(ctx); 3383 3384 ret = to_submit; 3385 } else if (to_submit) { 3386 ret = io_uring_add_tctx_node(ctx); 3387 if (unlikely(ret)) 3388 goto out; 3389 3390 mutex_lock(&ctx->uring_lock); 3391 ret = io_submit_sqes(ctx, to_submit); 3392 if (ret != to_submit) { 3393 mutex_unlock(&ctx->uring_lock); 3394 goto out; 3395 } 3396 if (flags & IORING_ENTER_GETEVENTS) { 3397 if (ctx->syscall_iopoll) 3398 goto iopoll_locked; 3399 /* 3400 * Ignore errors, we'll soon call io_cqring_wait() and 3401 * it should handle ownership problems if any. 3402 */ 3403 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3404 (void)io_run_local_work_locked(ctx, min_complete); 3405 } 3406 mutex_unlock(&ctx->uring_lock); 3407 } 3408 3409 if (flags & IORING_ENTER_GETEVENTS) { 3410 int ret2; 3411 3412 if (ctx->syscall_iopoll) { 3413 /* 3414 * We disallow the app entering submit/complete with 3415 * polling, but we still need to lock the ring to 3416 * prevent racing with polled issue that got punted to 3417 * a workqueue. 3418 */ 3419 mutex_lock(&ctx->uring_lock); 3420 iopoll_locked: 3421 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3422 if (likely(!ret2)) { 3423 min_complete = min(min_complete, 3424 ctx->cq_entries); 3425 ret2 = io_iopoll_check(ctx, min_complete); 3426 } 3427 mutex_unlock(&ctx->uring_lock); 3428 } else { 3429 struct ext_arg ext_arg = { .argsz = argsz }; 3430 3431 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3432 if (likely(!ret2)) { 3433 min_complete = min(min_complete, 3434 ctx->cq_entries); 3435 ret2 = io_cqring_wait(ctx, min_complete, flags, 3436 &ext_arg); 3437 } 3438 } 3439 3440 if (!ret) { 3441 ret = ret2; 3442 3443 /* 3444 * EBADR indicates that one or more CQE were dropped. 3445 * Once the user has been informed we can clear the bit 3446 * as they are obviously ok with those drops. 3447 */ 3448 if (unlikely(ret2 == -EBADR)) 3449 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3450 &ctx->check_cq); 3451 } 3452 } 3453 out: 3454 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3455 fput(file); 3456 return ret; 3457 } 3458 3459 static const struct file_operations io_uring_fops = { 3460 .release = io_uring_release, 3461 .mmap = io_uring_mmap, 3462 .get_unmapped_area = io_uring_get_unmapped_area, 3463 #ifndef CONFIG_MMU 3464 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3465 #endif 3466 .poll = io_uring_poll, 3467 #ifdef CONFIG_PROC_FS 3468 .show_fdinfo = io_uring_show_fdinfo, 3469 #endif 3470 }; 3471 3472 bool io_is_uring_fops(struct file *file) 3473 { 3474 return file->f_op == &io_uring_fops; 3475 } 3476 3477 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3478 struct io_uring_params *p) 3479 { 3480 struct io_rings *rings; 3481 size_t size, sq_array_offset; 3482 void *ptr; 3483 3484 /* make sure these are sane, as we already accounted them */ 3485 ctx->sq_entries = p->sq_entries; 3486 ctx->cq_entries = p->cq_entries; 3487 3488 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3489 &sq_array_offset); 3490 if (size == SIZE_MAX) 3491 return -EOVERFLOW; 3492 3493 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3494 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size); 3495 else 3496 rings = io_rings_map(ctx, p->cq_off.user_addr, size); 3497 3498 if (IS_ERR(rings)) 3499 return PTR_ERR(rings); 3500 3501 ctx->rings = rings; 3502 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3503 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3504 rings->sq_ring_mask = p->sq_entries - 1; 3505 rings->cq_ring_mask = p->cq_entries - 1; 3506 rings->sq_ring_entries = p->sq_entries; 3507 rings->cq_ring_entries = p->cq_entries; 3508 3509 if (p->flags & IORING_SETUP_SQE128) 3510 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3511 else 3512 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3513 if (size == SIZE_MAX) { 3514 io_rings_free(ctx); 3515 return -EOVERFLOW; 3516 } 3517 3518 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) 3519 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size); 3520 else 3521 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); 3522 3523 if (IS_ERR(ptr)) { 3524 io_rings_free(ctx); 3525 return PTR_ERR(ptr); 3526 } 3527 3528 ctx->sq_sqes = ptr; 3529 return 0; 3530 } 3531 3532 static int io_uring_install_fd(struct file *file) 3533 { 3534 int fd; 3535 3536 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3537 if (fd < 0) 3538 return fd; 3539 fd_install(fd, file); 3540 return fd; 3541 } 3542 3543 /* 3544 * Allocate an anonymous fd, this is what constitutes the application 3545 * visible backing of an io_uring instance. The application mmaps this 3546 * fd to gain access to the SQ/CQ ring details. 3547 */ 3548 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3549 { 3550 /* Create a new inode so that the LSM can block the creation. */ 3551 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3552 O_RDWR | O_CLOEXEC, NULL); 3553 } 3554 3555 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3556 { 3557 if (!entries) 3558 return -EINVAL; 3559 if (entries > IORING_MAX_ENTRIES) { 3560 if (!(p->flags & IORING_SETUP_CLAMP)) 3561 return -EINVAL; 3562 entries = IORING_MAX_ENTRIES; 3563 } 3564 3565 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3566 && !(p->flags & IORING_SETUP_NO_MMAP)) 3567 return -EINVAL; 3568 3569 /* 3570 * Use twice as many entries for the CQ ring. It's possible for the 3571 * application to drive a higher depth than the size of the SQ ring, 3572 * since the sqes are only used at submission time. This allows for 3573 * some flexibility in overcommitting a bit. If the application has 3574 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3575 * of CQ ring entries manually. 3576 */ 3577 p->sq_entries = roundup_pow_of_two(entries); 3578 if (p->flags & IORING_SETUP_CQSIZE) { 3579 /* 3580 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3581 * to a power-of-two, if it isn't already. We do NOT impose 3582 * any cq vs sq ring sizing. 3583 */ 3584 if (!p->cq_entries) 3585 return -EINVAL; 3586 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3587 if (!(p->flags & IORING_SETUP_CLAMP)) 3588 return -EINVAL; 3589 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3590 } 3591 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3592 if (p->cq_entries < p->sq_entries) 3593 return -EINVAL; 3594 } else { 3595 p->cq_entries = 2 * p->sq_entries; 3596 } 3597 3598 p->sq_off.head = offsetof(struct io_rings, sq.head); 3599 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3600 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3601 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3602 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3603 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3604 p->sq_off.resv1 = 0; 3605 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3606 p->sq_off.user_addr = 0; 3607 3608 p->cq_off.head = offsetof(struct io_rings, cq.head); 3609 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3610 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3611 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3612 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3613 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3614 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3615 p->cq_off.resv1 = 0; 3616 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3617 p->cq_off.user_addr = 0; 3618 3619 return 0; 3620 } 3621 3622 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3623 struct io_uring_params __user *params) 3624 { 3625 struct io_ring_ctx *ctx; 3626 struct io_uring_task *tctx; 3627 struct file *file; 3628 int ret; 3629 3630 ret = io_uring_fill_params(entries, p); 3631 if (unlikely(ret)) 3632 return ret; 3633 3634 ctx = io_ring_ctx_alloc(p); 3635 if (!ctx) 3636 return -ENOMEM; 3637 3638 ctx->clockid = CLOCK_MONOTONIC; 3639 ctx->clock_offset = 0; 3640 3641 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3642 static_branch_inc(&io_key_has_sqarray); 3643 3644 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3645 !(ctx->flags & IORING_SETUP_IOPOLL) && 3646 !(ctx->flags & IORING_SETUP_SQPOLL)) 3647 ctx->task_complete = true; 3648 3649 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3650 ctx->lockless_cq = true; 3651 3652 /* 3653 * lazy poll_wq activation relies on ->task_complete for synchronisation 3654 * purposes, see io_activate_pollwq() 3655 */ 3656 if (!ctx->task_complete) 3657 ctx->poll_activated = true; 3658 3659 /* 3660 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3661 * space applications don't need to do io completion events 3662 * polling again, they can rely on io_sq_thread to do polling 3663 * work, which can reduce cpu usage and uring_lock contention. 3664 */ 3665 if (ctx->flags & IORING_SETUP_IOPOLL && 3666 !(ctx->flags & IORING_SETUP_SQPOLL)) 3667 ctx->syscall_iopoll = 1; 3668 3669 ctx->compat = in_compat_syscall(); 3670 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3671 ctx->user = get_uid(current_user()); 3672 3673 /* 3674 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3675 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3676 */ 3677 ret = -EINVAL; 3678 if (ctx->flags & IORING_SETUP_SQPOLL) { 3679 /* IPI related flags don't make sense with SQPOLL */ 3680 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | 3681 IORING_SETUP_TASKRUN_FLAG | 3682 IORING_SETUP_DEFER_TASKRUN)) 3683 goto err; 3684 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3685 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { 3686 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3687 } else { 3688 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && 3689 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 3690 goto err; 3691 ctx->notify_method = TWA_SIGNAL; 3692 } 3693 3694 /* HYBRID_IOPOLL only valid with IOPOLL */ 3695 if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) == 3696 IORING_SETUP_HYBRID_IOPOLL) 3697 goto err; 3698 3699 /* 3700 * For DEFER_TASKRUN we require the completion task to be the same as the 3701 * submission task. This implies that there is only one submitter, so enforce 3702 * that. 3703 */ 3704 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && 3705 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { 3706 goto err; 3707 } 3708 3709 /* 3710 * This is just grabbed for accounting purposes. When a process exits, 3711 * the mm is exited and dropped before the files, hence we need to hang 3712 * on to this mm purely for the purposes of being able to unaccount 3713 * memory (locked/pinned vm). It's not used for anything else. 3714 */ 3715 mmgrab(current->mm); 3716 ctx->mm_account = current->mm; 3717 3718 ret = io_allocate_scq_urings(ctx, p); 3719 if (ret) 3720 goto err; 3721 3722 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3723 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3724 3725 ret = io_sq_offload_create(ctx, p); 3726 if (ret) 3727 goto err; 3728 3729 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3730 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3731 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3732 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3733 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3734 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3735 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3736 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT; 3737 3738 if (copy_to_user(params, p, sizeof(*p))) { 3739 ret = -EFAULT; 3740 goto err; 3741 } 3742 3743 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3744 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3745 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3746 3747 file = io_uring_get_file(ctx); 3748 if (IS_ERR(file)) { 3749 ret = PTR_ERR(file); 3750 goto err; 3751 } 3752 3753 ret = __io_uring_add_tctx_node(ctx); 3754 if (ret) 3755 goto err_fput; 3756 tctx = current->io_uring; 3757 3758 /* 3759 * Install ring fd as the very last thing, so we don't risk someone 3760 * having closed it before we finish setup 3761 */ 3762 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3763 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3764 else 3765 ret = io_uring_install_fd(file); 3766 if (ret < 0) 3767 goto err_fput; 3768 3769 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3770 return ret; 3771 err: 3772 io_ring_ctx_wait_and_kill(ctx); 3773 return ret; 3774 err_fput: 3775 fput(file); 3776 return ret; 3777 } 3778 3779 /* 3780 * Sets up an aio uring context, and returns the fd. Applications asks for a 3781 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3782 * params structure passed in. 3783 */ 3784 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3785 { 3786 struct io_uring_params p; 3787 int i; 3788 3789 if (copy_from_user(&p, params, sizeof(p))) 3790 return -EFAULT; 3791 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3792 if (p.resv[i]) 3793 return -EINVAL; 3794 } 3795 3796 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3797 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3798 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3799 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3800 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3801 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3802 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3803 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3804 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3805 return -EINVAL; 3806 3807 return io_uring_create(entries, &p, params); 3808 } 3809 3810 static inline bool io_uring_allowed(void) 3811 { 3812 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3813 kgid_t io_uring_group; 3814 3815 if (disabled == 2) 3816 return false; 3817 3818 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3819 return true; 3820 3821 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3822 if (!gid_valid(io_uring_group)) 3823 return false; 3824 3825 return in_group_p(io_uring_group); 3826 } 3827 3828 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3829 struct io_uring_params __user *, params) 3830 { 3831 if (!io_uring_allowed()) 3832 return -EPERM; 3833 3834 return io_uring_setup(entries, params); 3835 } 3836 3837 static int __init io_uring_init(void) 3838 { 3839 struct kmem_cache_args kmem_args = { 3840 .useroffset = offsetof(struct io_kiocb, cmd.data), 3841 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3842 .freeptr_offset = offsetof(struct io_kiocb, work), 3843 .use_freeptr_offset = true, 3844 }; 3845 3846 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3847 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3848 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3849 } while (0) 3850 3851 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3852 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3853 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3854 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3855 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3856 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3857 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3858 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3859 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3860 BUILD_BUG_SQE_ELEM(8, __u64, off); 3861 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3862 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3863 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3864 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3865 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3866 BUILD_BUG_SQE_ELEM(24, __u32, len); 3867 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3868 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3869 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3870 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3871 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3872 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3873 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3874 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3875 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3876 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3877 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3878 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3879 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3880 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3881 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3882 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3883 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3884 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3885 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3886 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3887 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3888 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3889 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3890 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3891 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3892 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3893 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3894 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3895 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3896 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3897 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3898 3899 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3900 sizeof(struct io_uring_rsrc_update)); 3901 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3902 sizeof(struct io_uring_rsrc_update2)); 3903 3904 /* ->buf_index is u16 */ 3905 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3906 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3907 offsetof(struct io_uring_buf_ring, tail)); 3908 3909 /* should fit into one byte */ 3910 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3911 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3912 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3913 3914 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3915 3916 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3917 3918 /* top 8bits are for internal use */ 3919 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3920 3921 io_uring_optable_init(); 3922 3923 /* 3924 * Allow user copy in the per-command field, which starts after the 3925 * file in io_kiocb and until the opcode field. The openat2 handling 3926 * requires copying in user memory into the io_kiocb object in that 3927 * range, and HARDENED_USERCOPY will complain if we haven't 3928 * correctly annotated this range. 3929 */ 3930 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3931 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3932 SLAB_TYPESAFE_BY_RCU); 3933 io_buf_cachep = KMEM_CACHE(io_buffer, 3934 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 3935 3936 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3937 3938 #ifdef CONFIG_SYSCTL 3939 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3940 #endif 3941 3942 return 0; 3943 }; 3944 __initcall(io_uring_init); 3945