xref: /linux/io_uring/io_uring.c (revision 52a5a22d8afe3bd195f7b470c7535c63717f5ff7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 
101 #include "timeout.h"
102 #include "poll.h"
103 #include "rw.h"
104 #include "alloc_cache.h"
105 #include "eventfd.h"
106 
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 
110 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 				REQ_F_ASYNC_DATA)
116 
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 				 IO_REQ_CLEAN_FLAGS)
119 
120 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121 
122 #define IO_COMPL_BATCH			32
123 #define IO_REQ_ALLOC_BATCH		8
124 #define IO_LOCAL_TW_DEFAULT_MAX		20
125 
126 struct io_defer_entry {
127 	struct list_head	list;
128 	struct io_kiocb		*req;
129 	u32			seq;
130 };
131 
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
135 
136 /*
137  * No waiters. It's larger than any valid value of the tw counter
138  * so that tests against ->cq_wait_nr would fail and skip wake_up().
139  */
140 #define IO_CQ_WAKE_INIT		(-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct io_uring_task *tctx,
146 					 bool cancel_all);
147 
148 static void io_queue_sqe(struct io_kiocb *req);
149 
150 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
151 
152 struct kmem_cache *req_cachep;
153 static struct workqueue_struct *iou_wq __ro_after_init;
154 
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
157 
158 #ifdef CONFIG_SYSCTL
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
160 	{
161 		.procname	= "io_uring_disabled",
162 		.data		= &sysctl_io_uring_disabled,
163 		.maxlen		= sizeof(sysctl_io_uring_disabled),
164 		.mode		= 0644,
165 		.proc_handler	= proc_dointvec_minmax,
166 		.extra1		= SYSCTL_ZERO,
167 		.extra2		= SYSCTL_TWO,
168 	},
169 	{
170 		.procname	= "io_uring_group",
171 		.data		= &sysctl_io_uring_group,
172 		.maxlen		= sizeof(gid_t),
173 		.mode		= 0644,
174 		.proc_handler	= proc_dointvec,
175 	},
176 };
177 #endif
178 
179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
180 {
181 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
182 }
183 
184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
185 {
186 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
187 }
188 
189 static bool io_match_linked(struct io_kiocb *head)
190 {
191 	struct io_kiocb *req;
192 
193 	io_for_each_link(req, head) {
194 		if (req->flags & REQ_F_INFLIGHT)
195 			return true;
196 	}
197 	return false;
198 }
199 
200 /*
201  * As io_match_task() but protected against racing with linked timeouts.
202  * User must not hold timeout_lock.
203  */
204 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
205 			bool cancel_all)
206 {
207 	bool matched;
208 
209 	if (tctx && head->tctx != tctx)
210 		return false;
211 	if (cancel_all)
212 		return true;
213 
214 	if (head->flags & REQ_F_LINK_TIMEOUT) {
215 		struct io_ring_ctx *ctx = head->ctx;
216 
217 		/* protect against races with linked timeouts */
218 		raw_spin_lock_irq(&ctx->timeout_lock);
219 		matched = io_match_linked(head);
220 		raw_spin_unlock_irq(&ctx->timeout_lock);
221 	} else {
222 		matched = io_match_linked(head);
223 	}
224 	return matched;
225 }
226 
227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
228 {
229 	req_set_fail(req);
230 	io_req_set_res(req, res, 0);
231 }
232 
233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
234 {
235 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
236 }
237 
238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
239 {
240 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
241 
242 	complete(&ctx->ref_comp);
243 }
244 
245 static __cold void io_fallback_req_func(struct work_struct *work)
246 {
247 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 						fallback_work.work);
249 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 	struct io_kiocb *req, *tmp;
251 	struct io_tw_state ts = {};
252 
253 	percpu_ref_get(&ctx->refs);
254 	mutex_lock(&ctx->uring_lock);
255 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
256 		req->io_task_work.func(req, &ts);
257 	io_submit_flush_completions(ctx);
258 	mutex_unlock(&ctx->uring_lock);
259 	percpu_ref_put(&ctx->refs);
260 }
261 
262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263 {
264 	unsigned int hash_buckets;
265 	int i;
266 
267 	do {
268 		hash_buckets = 1U << bits;
269 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
270 						GFP_KERNEL_ACCOUNT);
271 		if (table->hbs)
272 			break;
273 		if (bits == 1)
274 			return -ENOMEM;
275 		bits--;
276 	} while (1);
277 
278 	table->hash_bits = bits;
279 	for (i = 0; i < hash_buckets; i++)
280 		INIT_HLIST_HEAD(&table->hbs[i].list);
281 	return 0;
282 }
283 
284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 	struct io_ring_ctx *ctx;
287 	int hash_bits;
288 	bool ret;
289 
290 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
291 	if (!ctx)
292 		return NULL;
293 
294 	xa_init(&ctx->io_bl_xa);
295 
296 	/*
297 	 * Use 5 bits less than the max cq entries, that should give us around
298 	 * 32 entries per hash list if totally full and uniformly spread, but
299 	 * don't keep too many buckets to not overconsume memory.
300 	 */
301 	hash_bits = ilog2(p->cq_entries) - 5;
302 	hash_bits = clamp(hash_bits, 1, 8);
303 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
304 		goto err;
305 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306 			    0, GFP_KERNEL))
307 		goto err;
308 
309 	ctx->flags = p->flags;
310 	ctx->hybrid_poll_time = LLONG_MAX;
311 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
312 	init_waitqueue_head(&ctx->sqo_sq_wait);
313 	INIT_LIST_HEAD(&ctx->sqd_list);
314 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
315 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
316 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
317 			    sizeof(struct async_poll));
318 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
319 			    sizeof(struct io_async_msghdr));
320 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
321 			    sizeof(struct io_async_rw));
322 	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
323 			    sizeof(struct io_uring_cmd_data));
324 	spin_lock_init(&ctx->msg_lock);
325 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
326 			    sizeof(struct io_kiocb));
327 	ret |= io_futex_cache_init(ctx);
328 	if (ret)
329 		goto free_ref;
330 	init_completion(&ctx->ref_comp);
331 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
332 	mutex_init(&ctx->uring_lock);
333 	init_waitqueue_head(&ctx->cq_wait);
334 	init_waitqueue_head(&ctx->poll_wq);
335 	spin_lock_init(&ctx->completion_lock);
336 	raw_spin_lock_init(&ctx->timeout_lock);
337 	INIT_WQ_LIST(&ctx->iopoll_list);
338 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
339 	INIT_LIST_HEAD(&ctx->defer_list);
340 	INIT_LIST_HEAD(&ctx->timeout_list);
341 	INIT_LIST_HEAD(&ctx->ltimeout_list);
342 	init_llist_head(&ctx->work_llist);
343 	INIT_LIST_HEAD(&ctx->tctx_list);
344 	ctx->submit_state.free_list.next = NULL;
345 	INIT_HLIST_HEAD(&ctx->waitid_list);
346 #ifdef CONFIG_FUTEX
347 	INIT_HLIST_HEAD(&ctx->futex_list);
348 #endif
349 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
350 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
351 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
352 	io_napi_init(ctx);
353 	mutex_init(&ctx->resize_lock);
354 
355 	return ctx;
356 
357 free_ref:
358 	percpu_ref_exit(&ctx->refs);
359 err:
360 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
361 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
362 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
363 	io_alloc_cache_free(&ctx->uring_cache, kfree);
364 	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
365 	io_futex_cache_free(ctx);
366 	kvfree(ctx->cancel_table.hbs);
367 	xa_destroy(&ctx->io_bl_xa);
368 	kfree(ctx);
369 	return NULL;
370 }
371 
372 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
373 {
374 	struct io_rings *r = ctx->rings;
375 
376 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
377 	ctx->cq_extra--;
378 }
379 
380 static bool req_need_defer(struct io_kiocb *req, u32 seq)
381 {
382 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
383 		struct io_ring_ctx *ctx = req->ctx;
384 
385 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
386 	}
387 
388 	return false;
389 }
390 
391 static void io_clean_op(struct io_kiocb *req)
392 {
393 	if (req->flags & REQ_F_BUFFER_SELECTED) {
394 		spin_lock(&req->ctx->completion_lock);
395 		io_kbuf_drop(req);
396 		spin_unlock(&req->ctx->completion_lock);
397 	}
398 
399 	if (req->flags & REQ_F_NEED_CLEANUP) {
400 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
401 
402 		if (def->cleanup)
403 			def->cleanup(req);
404 	}
405 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
406 		kfree(req->apoll->double_poll);
407 		kfree(req->apoll);
408 		req->apoll = NULL;
409 	}
410 	if (req->flags & REQ_F_INFLIGHT)
411 		atomic_dec(&req->tctx->inflight_tracked);
412 	if (req->flags & REQ_F_CREDS)
413 		put_cred(req->creds);
414 	if (req->flags & REQ_F_ASYNC_DATA) {
415 		kfree(req->async_data);
416 		req->async_data = NULL;
417 	}
418 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
419 }
420 
421 static inline void io_req_track_inflight(struct io_kiocb *req)
422 {
423 	if (!(req->flags & REQ_F_INFLIGHT)) {
424 		req->flags |= REQ_F_INFLIGHT;
425 		atomic_inc(&req->tctx->inflight_tracked);
426 	}
427 }
428 
429 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
430 {
431 	if (WARN_ON_ONCE(!req->link))
432 		return NULL;
433 
434 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
435 	req->flags |= REQ_F_LINK_TIMEOUT;
436 
437 	/* linked timeouts should have two refs once prep'ed */
438 	io_req_set_refcount(req);
439 	__io_req_set_refcount(req->link, 2);
440 	return req->link;
441 }
442 
443 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
444 {
445 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
446 		return NULL;
447 	return __io_prep_linked_timeout(req);
448 }
449 
450 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
451 {
452 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
453 }
454 
455 static inline void io_arm_ltimeout(struct io_kiocb *req)
456 {
457 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
458 		__io_arm_ltimeout(req);
459 }
460 
461 static void io_prep_async_work(struct io_kiocb *req)
462 {
463 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
464 	struct io_ring_ctx *ctx = req->ctx;
465 
466 	if (!(req->flags & REQ_F_CREDS)) {
467 		req->flags |= REQ_F_CREDS;
468 		req->creds = get_current_cred();
469 	}
470 
471 	req->work.list.next = NULL;
472 	atomic_set(&req->work.flags, 0);
473 	if (req->flags & REQ_F_FORCE_ASYNC)
474 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
475 
476 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
477 		req->flags |= io_file_get_flags(req->file);
478 
479 	if (req->file && (req->flags & REQ_F_ISREG)) {
480 		bool should_hash = def->hash_reg_file;
481 
482 		/* don't serialize this request if the fs doesn't need it */
483 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
484 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
485 			should_hash = false;
486 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
487 			io_wq_hash_work(&req->work, file_inode(req->file));
488 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
489 		if (def->unbound_nonreg_file)
490 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
491 	}
492 }
493 
494 static void io_prep_async_link(struct io_kiocb *req)
495 {
496 	struct io_kiocb *cur;
497 
498 	if (req->flags & REQ_F_LINK_TIMEOUT) {
499 		struct io_ring_ctx *ctx = req->ctx;
500 
501 		raw_spin_lock_irq(&ctx->timeout_lock);
502 		io_for_each_link(cur, req)
503 			io_prep_async_work(cur);
504 		raw_spin_unlock_irq(&ctx->timeout_lock);
505 	} else {
506 		io_for_each_link(cur, req)
507 			io_prep_async_work(cur);
508 	}
509 }
510 
511 static void io_queue_iowq(struct io_kiocb *req)
512 {
513 	struct io_kiocb *link = io_prep_linked_timeout(req);
514 	struct io_uring_task *tctx = req->tctx;
515 
516 	BUG_ON(!tctx);
517 
518 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
519 		io_req_task_queue_fail(req, -ECANCELED);
520 		return;
521 	}
522 
523 	/* init ->work of the whole link before punting */
524 	io_prep_async_link(req);
525 
526 	/*
527 	 * Not expected to happen, but if we do have a bug where this _can_
528 	 * happen, catch it here and ensure the request is marked as
529 	 * canceled. That will make io-wq go through the usual work cancel
530 	 * procedure rather than attempt to run this request (or create a new
531 	 * worker for it).
532 	 */
533 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
534 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
535 
536 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
537 	io_wq_enqueue(tctx->io_wq, &req->work);
538 	if (link)
539 		io_queue_linked_timeout(link);
540 }
541 
542 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
543 {
544 	io_queue_iowq(req);
545 }
546 
547 void io_req_queue_iowq(struct io_kiocb *req)
548 {
549 	req->io_task_work.func = io_req_queue_iowq_tw;
550 	io_req_task_work_add(req);
551 }
552 
553 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
554 {
555 	while (!list_empty(&ctx->defer_list)) {
556 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
557 						struct io_defer_entry, list);
558 
559 		if (req_need_defer(de->req, de->seq))
560 			break;
561 		list_del_init(&de->list);
562 		io_req_task_queue(de->req);
563 		kfree(de);
564 	}
565 }
566 
567 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
568 {
569 	if (ctx->poll_activated)
570 		io_poll_wq_wake(ctx);
571 	if (ctx->off_timeout_used)
572 		io_flush_timeouts(ctx);
573 	if (ctx->drain_active) {
574 		spin_lock(&ctx->completion_lock);
575 		io_queue_deferred(ctx);
576 		spin_unlock(&ctx->completion_lock);
577 	}
578 	if (ctx->has_evfd)
579 		io_eventfd_flush_signal(ctx);
580 }
581 
582 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
583 {
584 	if (!ctx->lockless_cq)
585 		spin_lock(&ctx->completion_lock);
586 }
587 
588 static inline void io_cq_lock(struct io_ring_ctx *ctx)
589 	__acquires(ctx->completion_lock)
590 {
591 	spin_lock(&ctx->completion_lock);
592 }
593 
594 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
595 {
596 	io_commit_cqring(ctx);
597 	if (!ctx->task_complete) {
598 		if (!ctx->lockless_cq)
599 			spin_unlock(&ctx->completion_lock);
600 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
601 		if (!ctx->syscall_iopoll)
602 			io_cqring_wake(ctx);
603 	}
604 	io_commit_cqring_flush(ctx);
605 }
606 
607 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
608 	__releases(ctx->completion_lock)
609 {
610 	io_commit_cqring(ctx);
611 	spin_unlock(&ctx->completion_lock);
612 	io_cqring_wake(ctx);
613 	io_commit_cqring_flush(ctx);
614 }
615 
616 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
617 {
618 	size_t cqe_size = sizeof(struct io_uring_cqe);
619 
620 	lockdep_assert_held(&ctx->uring_lock);
621 
622 	/* don't abort if we're dying, entries must get freed */
623 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
624 		return;
625 
626 	if (ctx->flags & IORING_SETUP_CQE32)
627 		cqe_size <<= 1;
628 
629 	io_cq_lock(ctx);
630 	while (!list_empty(&ctx->cq_overflow_list)) {
631 		struct io_uring_cqe *cqe;
632 		struct io_overflow_cqe *ocqe;
633 
634 		ocqe = list_first_entry(&ctx->cq_overflow_list,
635 					struct io_overflow_cqe, list);
636 
637 		if (!dying) {
638 			if (!io_get_cqe_overflow(ctx, &cqe, true))
639 				break;
640 			memcpy(cqe, &ocqe->cqe, cqe_size);
641 		}
642 		list_del(&ocqe->list);
643 		kfree(ocqe);
644 
645 		/*
646 		 * For silly syzbot cases that deliberately overflow by huge
647 		 * amounts, check if we need to resched and drop and
648 		 * reacquire the locks if so. Nothing real would ever hit this.
649 		 * Ideally we'd have a non-posting unlock for this, but hard
650 		 * to care for a non-real case.
651 		 */
652 		if (need_resched()) {
653 			io_cq_unlock_post(ctx);
654 			mutex_unlock(&ctx->uring_lock);
655 			cond_resched();
656 			mutex_lock(&ctx->uring_lock);
657 			io_cq_lock(ctx);
658 		}
659 	}
660 
661 	if (list_empty(&ctx->cq_overflow_list)) {
662 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
663 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
664 	}
665 	io_cq_unlock_post(ctx);
666 }
667 
668 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
669 {
670 	if (ctx->rings)
671 		__io_cqring_overflow_flush(ctx, true);
672 }
673 
674 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
675 {
676 	mutex_lock(&ctx->uring_lock);
677 	__io_cqring_overflow_flush(ctx, false);
678 	mutex_unlock(&ctx->uring_lock);
679 }
680 
681 /* must to be called somewhat shortly after putting a request */
682 static inline void io_put_task(struct io_kiocb *req)
683 {
684 	struct io_uring_task *tctx = req->tctx;
685 
686 	if (likely(tctx->task == current)) {
687 		tctx->cached_refs++;
688 	} else {
689 		percpu_counter_sub(&tctx->inflight, 1);
690 		if (unlikely(atomic_read(&tctx->in_cancel)))
691 			wake_up(&tctx->wait);
692 		put_task_struct(tctx->task);
693 	}
694 }
695 
696 void io_task_refs_refill(struct io_uring_task *tctx)
697 {
698 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
699 
700 	percpu_counter_add(&tctx->inflight, refill);
701 	refcount_add(refill, &current->usage);
702 	tctx->cached_refs += refill;
703 }
704 
705 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
706 {
707 	struct io_uring_task *tctx = task->io_uring;
708 	unsigned int refs = tctx->cached_refs;
709 
710 	if (refs) {
711 		tctx->cached_refs = 0;
712 		percpu_counter_sub(&tctx->inflight, refs);
713 		put_task_struct_many(task, refs);
714 	}
715 }
716 
717 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
718 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
719 {
720 	struct io_overflow_cqe *ocqe;
721 	size_t ocq_size = sizeof(struct io_overflow_cqe);
722 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
723 
724 	lockdep_assert_held(&ctx->completion_lock);
725 
726 	if (is_cqe32)
727 		ocq_size += sizeof(struct io_uring_cqe);
728 
729 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
730 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
731 	if (!ocqe) {
732 		/*
733 		 * If we're in ring overflow flush mode, or in task cancel mode,
734 		 * or cannot allocate an overflow entry, then we need to drop it
735 		 * on the floor.
736 		 */
737 		io_account_cq_overflow(ctx);
738 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
739 		return false;
740 	}
741 	if (list_empty(&ctx->cq_overflow_list)) {
742 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
743 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
744 
745 	}
746 	ocqe->cqe.user_data = user_data;
747 	ocqe->cqe.res = res;
748 	ocqe->cqe.flags = cflags;
749 	if (is_cqe32) {
750 		ocqe->cqe.big_cqe[0] = extra1;
751 		ocqe->cqe.big_cqe[1] = extra2;
752 	}
753 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
754 	return true;
755 }
756 
757 static void io_req_cqe_overflow(struct io_kiocb *req)
758 {
759 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
760 				req->cqe.res, req->cqe.flags,
761 				req->big_cqe.extra1, req->big_cqe.extra2);
762 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
763 }
764 
765 /*
766  * writes to the cq entry need to come after reading head; the
767  * control dependency is enough as we're using WRITE_ONCE to
768  * fill the cq entry
769  */
770 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
771 {
772 	struct io_rings *rings = ctx->rings;
773 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
774 	unsigned int free, queued, len;
775 
776 	/*
777 	 * Posting into the CQ when there are pending overflowed CQEs may break
778 	 * ordering guarantees, which will affect links, F_MORE users and more.
779 	 * Force overflow the completion.
780 	 */
781 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
782 		return false;
783 
784 	/* userspace may cheat modifying the tail, be safe and do min */
785 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
786 	free = ctx->cq_entries - queued;
787 	/* we need a contiguous range, limit based on the current array offset */
788 	len = min(free, ctx->cq_entries - off);
789 	if (!len)
790 		return false;
791 
792 	if (ctx->flags & IORING_SETUP_CQE32) {
793 		off <<= 1;
794 		len <<= 1;
795 	}
796 
797 	ctx->cqe_cached = &rings->cqes[off];
798 	ctx->cqe_sentinel = ctx->cqe_cached + len;
799 	return true;
800 }
801 
802 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
803 			      u32 cflags)
804 {
805 	struct io_uring_cqe *cqe;
806 
807 	ctx->cq_extra++;
808 
809 	/*
810 	 * If we can't get a cq entry, userspace overflowed the
811 	 * submission (by quite a lot). Increment the overflow count in
812 	 * the ring.
813 	 */
814 	if (likely(io_get_cqe(ctx, &cqe))) {
815 		WRITE_ONCE(cqe->user_data, user_data);
816 		WRITE_ONCE(cqe->res, res);
817 		WRITE_ONCE(cqe->flags, cflags);
818 
819 		if (ctx->flags & IORING_SETUP_CQE32) {
820 			WRITE_ONCE(cqe->big_cqe[0], 0);
821 			WRITE_ONCE(cqe->big_cqe[1], 0);
822 		}
823 
824 		trace_io_uring_complete(ctx, NULL, cqe);
825 		return true;
826 	}
827 	return false;
828 }
829 
830 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
831 			      u32 cflags)
832 {
833 	bool filled;
834 
835 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
836 	if (!filled)
837 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
838 
839 	return filled;
840 }
841 
842 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
843 {
844 	bool filled;
845 
846 	io_cq_lock(ctx);
847 	filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
848 	io_cq_unlock_post(ctx);
849 	return filled;
850 }
851 
852 /*
853  * Must be called from inline task_work so we now a flush will happen later,
854  * and obviously with ctx->uring_lock held (tw always has that).
855  */
856 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
857 {
858 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
859 		spin_lock(&ctx->completion_lock);
860 		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
861 		spin_unlock(&ctx->completion_lock);
862 	}
863 	ctx->submit_state.cq_flush = true;
864 }
865 
866 /*
867  * A helper for multishot requests posting additional CQEs.
868  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
869  */
870 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
871 {
872 	struct io_ring_ctx *ctx = req->ctx;
873 	bool posted;
874 
875 	lockdep_assert(!io_wq_current_is_worker());
876 	lockdep_assert_held(&ctx->uring_lock);
877 
878 	__io_cq_lock(ctx);
879 	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
880 	ctx->submit_state.cq_flush = true;
881 	__io_cq_unlock_post(ctx);
882 	return posted;
883 }
884 
885 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
886 {
887 	struct io_ring_ctx *ctx = req->ctx;
888 
889 	/*
890 	 * All execution paths but io-wq use the deferred completions by
891 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
892 	 */
893 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
894 		return;
895 
896 	/*
897 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
898 	 * the submitter task context, IOPOLL protects with uring_lock.
899 	 */
900 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
901 		req->io_task_work.func = io_req_task_complete;
902 		io_req_task_work_add(req);
903 		return;
904 	}
905 
906 	io_cq_lock(ctx);
907 	if (!(req->flags & REQ_F_CQE_SKIP)) {
908 		if (!io_fill_cqe_req(ctx, req))
909 			io_req_cqe_overflow(req);
910 	}
911 	io_cq_unlock_post(ctx);
912 
913 	/*
914 	 * We don't free the request here because we know it's called from
915 	 * io-wq only, which holds a reference, so it cannot be the last put.
916 	 */
917 	req_ref_put(req);
918 }
919 
920 void io_req_defer_failed(struct io_kiocb *req, s32 res)
921 	__must_hold(&ctx->uring_lock)
922 {
923 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
924 
925 	lockdep_assert_held(&req->ctx->uring_lock);
926 
927 	req_set_fail(req);
928 	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
929 	if (def->fail)
930 		def->fail(req);
931 	io_req_complete_defer(req);
932 }
933 
934 /*
935  * Don't initialise the fields below on every allocation, but do that in
936  * advance and keep them valid across allocations.
937  */
938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
939 {
940 	req->ctx = ctx;
941 	req->buf_node = NULL;
942 	req->file_node = NULL;
943 	req->link = NULL;
944 	req->async_data = NULL;
945 	/* not necessary, but safer to zero */
946 	memset(&req->cqe, 0, sizeof(req->cqe));
947 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
948 }
949 
950 /*
951  * A request might get retired back into the request caches even before opcode
952  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
953  * Because of that, io_alloc_req() should be called only under ->uring_lock
954  * and with extra caution to not get a request that is still worked on.
955  */
956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
957 	__must_hold(&ctx->uring_lock)
958 {
959 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
960 	void *reqs[IO_REQ_ALLOC_BATCH];
961 	int ret;
962 
963 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
964 
965 	/*
966 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
967 	 * retry single alloc to be on the safe side.
968 	 */
969 	if (unlikely(ret <= 0)) {
970 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
971 		if (!reqs[0])
972 			return false;
973 		ret = 1;
974 	}
975 
976 	percpu_ref_get_many(&ctx->refs, ret);
977 	while (ret--) {
978 		struct io_kiocb *req = reqs[ret];
979 
980 		io_preinit_req(req, ctx);
981 		io_req_add_to_cache(req, ctx);
982 	}
983 	return true;
984 }
985 
986 __cold void io_free_req(struct io_kiocb *req)
987 {
988 	/* refs were already put, restore them for io_req_task_complete() */
989 	req->flags &= ~REQ_F_REFCOUNT;
990 	/* we only want to free it, don't post CQEs */
991 	req->flags |= REQ_F_CQE_SKIP;
992 	req->io_task_work.func = io_req_task_complete;
993 	io_req_task_work_add(req);
994 }
995 
996 static void __io_req_find_next_prep(struct io_kiocb *req)
997 {
998 	struct io_ring_ctx *ctx = req->ctx;
999 
1000 	spin_lock(&ctx->completion_lock);
1001 	io_disarm_next(req);
1002 	spin_unlock(&ctx->completion_lock);
1003 }
1004 
1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1006 {
1007 	struct io_kiocb *nxt;
1008 
1009 	/*
1010 	 * If LINK is set, we have dependent requests in this chain. If we
1011 	 * didn't fail this request, queue the first one up, moving any other
1012 	 * dependencies to the next request. In case of failure, fail the rest
1013 	 * of the chain.
1014 	 */
1015 	if (unlikely(req->flags & IO_DISARM_MASK))
1016 		__io_req_find_next_prep(req);
1017 	nxt = req->link;
1018 	req->link = NULL;
1019 	return nxt;
1020 }
1021 
1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1023 {
1024 	if (!ctx)
1025 		return;
1026 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1027 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1028 
1029 	io_submit_flush_completions(ctx);
1030 	mutex_unlock(&ctx->uring_lock);
1031 	percpu_ref_put(&ctx->refs);
1032 }
1033 
1034 /*
1035  * Run queued task_work, returning the number of entries processed in *count.
1036  * If more entries than max_entries are available, stop processing once this
1037  * is reached and return the rest of the list.
1038  */
1039 struct llist_node *io_handle_tw_list(struct llist_node *node,
1040 				     unsigned int *count,
1041 				     unsigned int max_entries)
1042 {
1043 	struct io_ring_ctx *ctx = NULL;
1044 	struct io_tw_state ts = { };
1045 
1046 	do {
1047 		struct llist_node *next = node->next;
1048 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1049 						    io_task_work.node);
1050 
1051 		if (req->ctx != ctx) {
1052 			ctx_flush_and_put(ctx, &ts);
1053 			ctx = req->ctx;
1054 			mutex_lock(&ctx->uring_lock);
1055 			percpu_ref_get(&ctx->refs);
1056 		}
1057 		INDIRECT_CALL_2(req->io_task_work.func,
1058 				io_poll_task_func, io_req_rw_complete,
1059 				req, &ts);
1060 		node = next;
1061 		(*count)++;
1062 		if (unlikely(need_resched())) {
1063 			ctx_flush_and_put(ctx, &ts);
1064 			ctx = NULL;
1065 			cond_resched();
1066 		}
1067 	} while (node && *count < max_entries);
1068 
1069 	ctx_flush_and_put(ctx, &ts);
1070 	return node;
1071 }
1072 
1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1074 {
1075 	struct io_ring_ctx *last_ctx = NULL;
1076 	struct io_kiocb *req;
1077 
1078 	while (node) {
1079 		req = container_of(node, struct io_kiocb, io_task_work.node);
1080 		node = node->next;
1081 		if (sync && last_ctx != req->ctx) {
1082 			if (last_ctx) {
1083 				flush_delayed_work(&last_ctx->fallback_work);
1084 				percpu_ref_put(&last_ctx->refs);
1085 			}
1086 			last_ctx = req->ctx;
1087 			percpu_ref_get(&last_ctx->refs);
1088 		}
1089 		if (llist_add(&req->io_task_work.node,
1090 			      &req->ctx->fallback_llist))
1091 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1092 	}
1093 
1094 	if (last_ctx) {
1095 		flush_delayed_work(&last_ctx->fallback_work);
1096 		percpu_ref_put(&last_ctx->refs);
1097 	}
1098 }
1099 
1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1101 {
1102 	struct llist_node *node = llist_del_all(&tctx->task_list);
1103 
1104 	__io_fallback_tw(node, sync);
1105 }
1106 
1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1108 				      unsigned int max_entries,
1109 				      unsigned int *count)
1110 {
1111 	struct llist_node *node;
1112 
1113 	if (unlikely(current->flags & PF_EXITING)) {
1114 		io_fallback_tw(tctx, true);
1115 		return NULL;
1116 	}
1117 
1118 	node = llist_del_all(&tctx->task_list);
1119 	if (node) {
1120 		node = llist_reverse_order(node);
1121 		node = io_handle_tw_list(node, count, max_entries);
1122 	}
1123 
1124 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1125 	if (unlikely(atomic_read(&tctx->in_cancel)))
1126 		io_uring_drop_tctx_refs(current);
1127 
1128 	trace_io_uring_task_work_run(tctx, *count);
1129 	return node;
1130 }
1131 
1132 void tctx_task_work(struct callback_head *cb)
1133 {
1134 	struct io_uring_task *tctx;
1135 	struct llist_node *ret;
1136 	unsigned int count = 0;
1137 
1138 	tctx = container_of(cb, struct io_uring_task, task_work);
1139 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1140 	/* can't happen */
1141 	WARN_ON_ONCE(ret);
1142 }
1143 
1144 static inline void io_req_local_work_add(struct io_kiocb *req,
1145 					 struct io_ring_ctx *ctx,
1146 					 unsigned flags)
1147 {
1148 	unsigned nr_wait, nr_tw, nr_tw_prev;
1149 	struct llist_node *head;
1150 
1151 	/* See comment above IO_CQ_WAKE_INIT */
1152 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1153 
1154 	/*
1155 	 * We don't know how many reuqests is there in the link and whether
1156 	 * they can even be queued lazily, fall back to non-lazy.
1157 	 */
1158 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1159 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1160 
1161 	guard(rcu)();
1162 
1163 	head = READ_ONCE(ctx->work_llist.first);
1164 	do {
1165 		nr_tw_prev = 0;
1166 		if (head) {
1167 			struct io_kiocb *first_req = container_of(head,
1168 							struct io_kiocb,
1169 							io_task_work.node);
1170 			/*
1171 			 * Might be executed at any moment, rely on
1172 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1173 			 */
1174 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1175 		}
1176 
1177 		/*
1178 		 * Theoretically, it can overflow, but that's fine as one of
1179 		 * previous adds should've tried to wake the task.
1180 		 */
1181 		nr_tw = nr_tw_prev + 1;
1182 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1183 			nr_tw = IO_CQ_WAKE_FORCE;
1184 
1185 		req->nr_tw = nr_tw;
1186 		req->io_task_work.node.next = head;
1187 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1188 			      &req->io_task_work.node));
1189 
1190 	/*
1191 	 * cmpxchg implies a full barrier, which pairs with the barrier
1192 	 * in set_current_state() on the io_cqring_wait() side. It's used
1193 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1194 	 * going to sleep will observe the work added to the list, which
1195 	 * is similar to the wait/wawke task state sync.
1196 	 */
1197 
1198 	if (!head) {
1199 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1200 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1201 		if (ctx->has_evfd)
1202 			io_eventfd_signal(ctx);
1203 	}
1204 
1205 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1206 	/* not enough or no one is waiting */
1207 	if (nr_tw < nr_wait)
1208 		return;
1209 	/* the previous add has already woken it up */
1210 	if (nr_tw_prev >= nr_wait)
1211 		return;
1212 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1213 }
1214 
1215 static void io_req_normal_work_add(struct io_kiocb *req)
1216 {
1217 	struct io_uring_task *tctx = req->tctx;
1218 	struct io_ring_ctx *ctx = req->ctx;
1219 
1220 	/* task_work already pending, we're done */
1221 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1222 		return;
1223 
1224 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1225 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1226 
1227 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1228 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1229 		__set_notify_signal(tctx->task);
1230 		return;
1231 	}
1232 
1233 	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1234 		return;
1235 
1236 	io_fallback_tw(tctx, false);
1237 }
1238 
1239 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1240 {
1241 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1242 		io_req_local_work_add(req, req->ctx, flags);
1243 	else
1244 		io_req_normal_work_add(req);
1245 }
1246 
1247 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1248 				 unsigned flags)
1249 {
1250 	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1251 		return;
1252 	io_req_local_work_add(req, ctx, flags);
1253 }
1254 
1255 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1256 {
1257 	struct llist_node *node = llist_del_all(&ctx->work_llist);
1258 
1259 	__io_fallback_tw(node, false);
1260 	node = llist_del_all(&ctx->retry_llist);
1261 	__io_fallback_tw(node, false);
1262 }
1263 
1264 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1265 				       int min_events)
1266 {
1267 	if (!io_local_work_pending(ctx))
1268 		return false;
1269 	if (events < min_events)
1270 		return true;
1271 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1272 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1273 	return false;
1274 }
1275 
1276 static int __io_run_local_work_loop(struct llist_node **node,
1277 				    struct io_tw_state *ts,
1278 				    int events)
1279 {
1280 	int ret = 0;
1281 
1282 	while (*node) {
1283 		struct llist_node *next = (*node)->next;
1284 		struct io_kiocb *req = container_of(*node, struct io_kiocb,
1285 						    io_task_work.node);
1286 		INDIRECT_CALL_2(req->io_task_work.func,
1287 				io_poll_task_func, io_req_rw_complete,
1288 				req, ts);
1289 		*node = next;
1290 		if (++ret >= events)
1291 			break;
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1298 			       int min_events, int max_events)
1299 {
1300 	struct llist_node *node;
1301 	unsigned int loops = 0;
1302 	int ret = 0;
1303 
1304 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1305 		return -EEXIST;
1306 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1307 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1308 again:
1309 	min_events -= ret;
1310 	ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events);
1311 	if (ctx->retry_llist.first)
1312 		goto retry_done;
1313 
1314 	/*
1315 	 * llists are in reverse order, flip it back the right way before
1316 	 * running the pending items.
1317 	 */
1318 	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1319 	ret += __io_run_local_work_loop(&node, ts, max_events - ret);
1320 	ctx->retry_llist.first = node;
1321 	loops++;
1322 
1323 	if (io_run_local_work_continue(ctx, ret, min_events))
1324 		goto again;
1325 retry_done:
1326 	io_submit_flush_completions(ctx);
1327 	if (io_run_local_work_continue(ctx, ret, min_events))
1328 		goto again;
1329 
1330 	trace_io_uring_local_work_run(ctx, ret, loops);
1331 	return ret;
1332 }
1333 
1334 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1335 					   int min_events)
1336 {
1337 	struct io_tw_state ts = {};
1338 
1339 	if (!io_local_work_pending(ctx))
1340 		return 0;
1341 	return __io_run_local_work(ctx, &ts, min_events,
1342 					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1343 }
1344 
1345 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1346 			     int max_events)
1347 {
1348 	struct io_tw_state ts = {};
1349 	int ret;
1350 
1351 	mutex_lock(&ctx->uring_lock);
1352 	ret = __io_run_local_work(ctx, &ts, min_events, max_events);
1353 	mutex_unlock(&ctx->uring_lock);
1354 	return ret;
1355 }
1356 
1357 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1358 {
1359 	io_tw_lock(req->ctx, ts);
1360 	io_req_defer_failed(req, req->cqe.res);
1361 }
1362 
1363 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1364 {
1365 	io_tw_lock(req->ctx, ts);
1366 	if (unlikely(io_should_terminate_tw()))
1367 		io_req_defer_failed(req, -EFAULT);
1368 	else if (req->flags & REQ_F_FORCE_ASYNC)
1369 		io_queue_iowq(req);
1370 	else
1371 		io_queue_sqe(req);
1372 }
1373 
1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1375 {
1376 	io_req_set_res(req, ret, 0);
1377 	req->io_task_work.func = io_req_task_cancel;
1378 	io_req_task_work_add(req);
1379 }
1380 
1381 void io_req_task_queue(struct io_kiocb *req)
1382 {
1383 	req->io_task_work.func = io_req_task_submit;
1384 	io_req_task_work_add(req);
1385 }
1386 
1387 void io_queue_next(struct io_kiocb *req)
1388 {
1389 	struct io_kiocb *nxt = io_req_find_next(req);
1390 
1391 	if (nxt)
1392 		io_req_task_queue(nxt);
1393 }
1394 
1395 static void io_free_batch_list(struct io_ring_ctx *ctx,
1396 			       struct io_wq_work_node *node)
1397 	__must_hold(&ctx->uring_lock)
1398 {
1399 	do {
1400 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1401 						    comp_list);
1402 
1403 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1404 			if (req->flags & REQ_F_REFCOUNT) {
1405 				node = req->comp_list.next;
1406 				if (!req_ref_put_and_test(req))
1407 					continue;
1408 			}
1409 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1410 				struct async_poll *apoll = req->apoll;
1411 
1412 				if (apoll->double_poll)
1413 					kfree(apoll->double_poll);
1414 				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1415 					kfree(apoll);
1416 				req->flags &= ~REQ_F_POLLED;
1417 			}
1418 			if (req->flags & IO_REQ_LINK_FLAGS)
1419 				io_queue_next(req);
1420 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1421 				io_clean_op(req);
1422 		}
1423 		io_put_file(req);
1424 		io_req_put_rsrc_nodes(req);
1425 		io_put_task(req);
1426 
1427 		node = req->comp_list.next;
1428 		io_req_add_to_cache(req, ctx);
1429 	} while (node);
1430 }
1431 
1432 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1433 	__must_hold(&ctx->uring_lock)
1434 {
1435 	struct io_submit_state *state = &ctx->submit_state;
1436 	struct io_wq_work_node *node;
1437 
1438 	__io_cq_lock(ctx);
1439 	__wq_list_for_each(node, &state->compl_reqs) {
1440 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1441 					    comp_list);
1442 
1443 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1444 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1445 			if (ctx->lockless_cq) {
1446 				spin_lock(&ctx->completion_lock);
1447 				io_req_cqe_overflow(req);
1448 				spin_unlock(&ctx->completion_lock);
1449 			} else {
1450 				io_req_cqe_overflow(req);
1451 			}
1452 		}
1453 	}
1454 	__io_cq_unlock_post(ctx);
1455 
1456 	if (!wq_list_empty(&state->compl_reqs)) {
1457 		io_free_batch_list(ctx, state->compl_reqs.first);
1458 		INIT_WQ_LIST(&state->compl_reqs);
1459 	}
1460 	ctx->submit_state.cq_flush = false;
1461 }
1462 
1463 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1464 {
1465 	/* See comment at the top of this file */
1466 	smp_rmb();
1467 	return __io_cqring_events(ctx);
1468 }
1469 
1470 /*
1471  * We can't just wait for polled events to come to us, we have to actively
1472  * find and complete them.
1473  */
1474 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1475 {
1476 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1477 		return;
1478 
1479 	mutex_lock(&ctx->uring_lock);
1480 	while (!wq_list_empty(&ctx->iopoll_list)) {
1481 		/* let it sleep and repeat later if can't complete a request */
1482 		if (io_do_iopoll(ctx, true) == 0)
1483 			break;
1484 		/*
1485 		 * Ensure we allow local-to-the-cpu processing to take place,
1486 		 * in this case we need to ensure that we reap all events.
1487 		 * Also let task_work, etc. to progress by releasing the mutex
1488 		 */
1489 		if (need_resched()) {
1490 			mutex_unlock(&ctx->uring_lock);
1491 			cond_resched();
1492 			mutex_lock(&ctx->uring_lock);
1493 		}
1494 	}
1495 	mutex_unlock(&ctx->uring_lock);
1496 }
1497 
1498 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1499 {
1500 	unsigned int nr_events = 0;
1501 	unsigned long check_cq;
1502 
1503 	lockdep_assert_held(&ctx->uring_lock);
1504 
1505 	if (!io_allowed_run_tw(ctx))
1506 		return -EEXIST;
1507 
1508 	check_cq = READ_ONCE(ctx->check_cq);
1509 	if (unlikely(check_cq)) {
1510 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1511 			__io_cqring_overflow_flush(ctx, false);
1512 		/*
1513 		 * Similarly do not spin if we have not informed the user of any
1514 		 * dropped CQE.
1515 		 */
1516 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1517 			return -EBADR;
1518 	}
1519 	/*
1520 	 * Don't enter poll loop if we already have events pending.
1521 	 * If we do, we can potentially be spinning for commands that
1522 	 * already triggered a CQE (eg in error).
1523 	 */
1524 	if (io_cqring_events(ctx))
1525 		return 0;
1526 
1527 	do {
1528 		int ret = 0;
1529 
1530 		/*
1531 		 * If a submit got punted to a workqueue, we can have the
1532 		 * application entering polling for a command before it gets
1533 		 * issued. That app will hold the uring_lock for the duration
1534 		 * of the poll right here, so we need to take a breather every
1535 		 * now and then to ensure that the issue has a chance to add
1536 		 * the poll to the issued list. Otherwise we can spin here
1537 		 * forever, while the workqueue is stuck trying to acquire the
1538 		 * very same mutex.
1539 		 */
1540 		if (wq_list_empty(&ctx->iopoll_list) ||
1541 		    io_task_work_pending(ctx)) {
1542 			u32 tail = ctx->cached_cq_tail;
1543 
1544 			(void) io_run_local_work_locked(ctx, min);
1545 
1546 			if (task_work_pending(current) ||
1547 			    wq_list_empty(&ctx->iopoll_list)) {
1548 				mutex_unlock(&ctx->uring_lock);
1549 				io_run_task_work();
1550 				mutex_lock(&ctx->uring_lock);
1551 			}
1552 			/* some requests don't go through iopoll_list */
1553 			if (tail != ctx->cached_cq_tail ||
1554 			    wq_list_empty(&ctx->iopoll_list))
1555 				break;
1556 		}
1557 		ret = io_do_iopoll(ctx, !min);
1558 		if (unlikely(ret < 0))
1559 			return ret;
1560 
1561 		if (task_sigpending(current))
1562 			return -EINTR;
1563 		if (need_resched())
1564 			break;
1565 
1566 		nr_events += ret;
1567 	} while (nr_events < min);
1568 
1569 	return 0;
1570 }
1571 
1572 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1573 {
1574 	io_req_complete_defer(req);
1575 }
1576 
1577 /*
1578  * After the iocb has been issued, it's safe to be found on the poll list.
1579  * Adding the kiocb to the list AFTER submission ensures that we don't
1580  * find it from a io_do_iopoll() thread before the issuer is done
1581  * accessing the kiocb cookie.
1582  */
1583 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1584 {
1585 	struct io_ring_ctx *ctx = req->ctx;
1586 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1587 
1588 	/* workqueue context doesn't hold uring_lock, grab it now */
1589 	if (unlikely(needs_lock))
1590 		mutex_lock(&ctx->uring_lock);
1591 
1592 	/*
1593 	 * Track whether we have multiple files in our lists. This will impact
1594 	 * how we do polling eventually, not spinning if we're on potentially
1595 	 * different devices.
1596 	 */
1597 	if (wq_list_empty(&ctx->iopoll_list)) {
1598 		ctx->poll_multi_queue = false;
1599 	} else if (!ctx->poll_multi_queue) {
1600 		struct io_kiocb *list_req;
1601 
1602 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1603 					comp_list);
1604 		if (list_req->file != req->file)
1605 			ctx->poll_multi_queue = true;
1606 	}
1607 
1608 	/*
1609 	 * For fast devices, IO may have already completed. If it has, add
1610 	 * it to the front so we find it first.
1611 	 */
1612 	if (READ_ONCE(req->iopoll_completed))
1613 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1614 	else
1615 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1616 
1617 	if (unlikely(needs_lock)) {
1618 		/*
1619 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1620 		 * in sq thread task context or in io worker task context. If
1621 		 * current task context is sq thread, we don't need to check
1622 		 * whether should wake up sq thread.
1623 		 */
1624 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1625 		    wq_has_sleeper(&ctx->sq_data->wait))
1626 			wake_up(&ctx->sq_data->wait);
1627 
1628 		mutex_unlock(&ctx->uring_lock);
1629 	}
1630 }
1631 
1632 io_req_flags_t io_file_get_flags(struct file *file)
1633 {
1634 	io_req_flags_t res = 0;
1635 
1636 	if (S_ISREG(file_inode(file)->i_mode))
1637 		res |= REQ_F_ISREG;
1638 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1639 		res |= REQ_F_SUPPORT_NOWAIT;
1640 	return res;
1641 }
1642 
1643 bool io_alloc_async_data(struct io_kiocb *req)
1644 {
1645 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1646 
1647 	WARN_ON_ONCE(!def->async_size);
1648 	req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1649 	if (req->async_data) {
1650 		req->flags |= REQ_F_ASYNC_DATA;
1651 		return false;
1652 	}
1653 	return true;
1654 }
1655 
1656 static u32 io_get_sequence(struct io_kiocb *req)
1657 {
1658 	u32 seq = req->ctx->cached_sq_head;
1659 	struct io_kiocb *cur;
1660 
1661 	/* need original cached_sq_head, but it was increased for each req */
1662 	io_for_each_link(cur, req)
1663 		seq--;
1664 	return seq;
1665 }
1666 
1667 static __cold void io_drain_req(struct io_kiocb *req)
1668 	__must_hold(&ctx->uring_lock)
1669 {
1670 	struct io_ring_ctx *ctx = req->ctx;
1671 	struct io_defer_entry *de;
1672 	int ret;
1673 	u32 seq = io_get_sequence(req);
1674 
1675 	/* Still need defer if there is pending req in defer list. */
1676 	spin_lock(&ctx->completion_lock);
1677 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1678 		spin_unlock(&ctx->completion_lock);
1679 queue:
1680 		ctx->drain_active = false;
1681 		io_req_task_queue(req);
1682 		return;
1683 	}
1684 	spin_unlock(&ctx->completion_lock);
1685 
1686 	io_prep_async_link(req);
1687 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1688 	if (!de) {
1689 		ret = -ENOMEM;
1690 		io_req_defer_failed(req, ret);
1691 		return;
1692 	}
1693 
1694 	spin_lock(&ctx->completion_lock);
1695 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1696 		spin_unlock(&ctx->completion_lock);
1697 		kfree(de);
1698 		goto queue;
1699 	}
1700 
1701 	trace_io_uring_defer(req);
1702 	de->req = req;
1703 	de->seq = seq;
1704 	list_add_tail(&de->list, &ctx->defer_list);
1705 	spin_unlock(&ctx->completion_lock);
1706 }
1707 
1708 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1709 			   unsigned int issue_flags)
1710 {
1711 	if (req->file || !def->needs_file)
1712 		return true;
1713 
1714 	if (req->flags & REQ_F_FIXED_FILE)
1715 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1716 	else
1717 		req->file = io_file_get_normal(req, req->cqe.fd);
1718 
1719 	return !!req->file;
1720 }
1721 
1722 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1723 {
1724 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1725 	const struct cred *creds = NULL;
1726 	int ret;
1727 
1728 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1729 		return -EBADF;
1730 
1731 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1732 		creds = override_creds(req->creds);
1733 
1734 	if (!def->audit_skip)
1735 		audit_uring_entry(req->opcode);
1736 
1737 	ret = def->issue(req, issue_flags);
1738 
1739 	if (!def->audit_skip)
1740 		audit_uring_exit(!ret, ret);
1741 
1742 	if (creds)
1743 		revert_creds(creds);
1744 
1745 	if (ret == IOU_OK) {
1746 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1747 			io_req_complete_defer(req);
1748 		else
1749 			io_req_complete_post(req, issue_flags);
1750 
1751 		return 0;
1752 	}
1753 
1754 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1755 		ret = 0;
1756 		io_arm_ltimeout(req);
1757 
1758 		/* If the op doesn't have a file, we're not polling for it */
1759 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1760 			io_iopoll_req_issued(req, issue_flags);
1761 	}
1762 	return ret;
1763 }
1764 
1765 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1766 {
1767 	io_tw_lock(req->ctx, ts);
1768 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1769 				 IO_URING_F_COMPLETE_DEFER);
1770 }
1771 
1772 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1773 {
1774 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1775 	struct io_kiocb *nxt = NULL;
1776 
1777 	if (req_ref_put_and_test(req)) {
1778 		if (req->flags & IO_REQ_LINK_FLAGS)
1779 			nxt = io_req_find_next(req);
1780 		io_free_req(req);
1781 	}
1782 	return nxt ? &nxt->work : NULL;
1783 }
1784 
1785 void io_wq_submit_work(struct io_wq_work *work)
1786 {
1787 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1788 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1789 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1790 	bool needs_poll = false;
1791 	int ret = 0, err = -ECANCELED;
1792 
1793 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1794 	if (!(req->flags & REQ_F_REFCOUNT))
1795 		__io_req_set_refcount(req, 2);
1796 	else
1797 		req_ref_get(req);
1798 
1799 	io_arm_ltimeout(req);
1800 
1801 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1802 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1803 fail:
1804 		io_req_task_queue_fail(req, err);
1805 		return;
1806 	}
1807 	if (!io_assign_file(req, def, issue_flags)) {
1808 		err = -EBADF;
1809 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1810 		goto fail;
1811 	}
1812 
1813 	/*
1814 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1815 	 * submitter task context. Final request completions are handed to the
1816 	 * right context, however this is not the case of auxiliary CQEs,
1817 	 * which is the main mean of operation for multishot requests.
1818 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1819 	 * than necessary and also cleaner.
1820 	 */
1821 	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1822 		err = -EBADFD;
1823 		if (!io_file_can_poll(req))
1824 			goto fail;
1825 		if (req->file->f_flags & O_NONBLOCK ||
1826 		    req->file->f_mode & FMODE_NOWAIT) {
1827 			err = -ECANCELED;
1828 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1829 				goto fail;
1830 			return;
1831 		} else {
1832 			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1833 		}
1834 	}
1835 
1836 	if (req->flags & REQ_F_FORCE_ASYNC) {
1837 		bool opcode_poll = def->pollin || def->pollout;
1838 
1839 		if (opcode_poll && io_file_can_poll(req)) {
1840 			needs_poll = true;
1841 			issue_flags |= IO_URING_F_NONBLOCK;
1842 		}
1843 	}
1844 
1845 	do {
1846 		ret = io_issue_sqe(req, issue_flags);
1847 		if (ret != -EAGAIN)
1848 			break;
1849 
1850 		/*
1851 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1852 		 * poll. -EAGAIN is final for that case.
1853 		 */
1854 		if (req->flags & REQ_F_NOWAIT)
1855 			break;
1856 
1857 		/*
1858 		 * We can get EAGAIN for iopolled IO even though we're
1859 		 * forcing a sync submission from here, since we can't
1860 		 * wait for request slots on the block side.
1861 		 */
1862 		if (!needs_poll) {
1863 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1864 				break;
1865 			if (io_wq_worker_stopped())
1866 				break;
1867 			cond_resched();
1868 			continue;
1869 		}
1870 
1871 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1872 			return;
1873 		/* aborted or ready, in either case retry blocking */
1874 		needs_poll = false;
1875 		issue_flags &= ~IO_URING_F_NONBLOCK;
1876 	} while (1);
1877 
1878 	/* avoid locking problems by failing it from a clean context */
1879 	if (ret)
1880 		io_req_task_queue_fail(req, ret);
1881 }
1882 
1883 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1884 				      unsigned int issue_flags)
1885 {
1886 	struct io_ring_ctx *ctx = req->ctx;
1887 	struct io_rsrc_node *node;
1888 	struct file *file = NULL;
1889 
1890 	io_ring_submit_lock(ctx, issue_flags);
1891 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1892 	if (node) {
1893 		io_req_assign_rsrc_node(&req->file_node, node);
1894 		req->flags |= io_slot_flags(node);
1895 		file = io_slot_file(node);
1896 	}
1897 	io_ring_submit_unlock(ctx, issue_flags);
1898 	return file;
1899 }
1900 
1901 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1902 {
1903 	struct file *file = fget(fd);
1904 
1905 	trace_io_uring_file_get(req, fd);
1906 
1907 	/* we don't allow fixed io_uring files */
1908 	if (file && io_is_uring_fops(file))
1909 		io_req_track_inflight(req);
1910 	return file;
1911 }
1912 
1913 static void io_queue_async(struct io_kiocb *req, int ret)
1914 	__must_hold(&req->ctx->uring_lock)
1915 {
1916 	struct io_kiocb *linked_timeout;
1917 
1918 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1919 		io_req_defer_failed(req, ret);
1920 		return;
1921 	}
1922 
1923 	linked_timeout = io_prep_linked_timeout(req);
1924 
1925 	switch (io_arm_poll_handler(req, 0)) {
1926 	case IO_APOLL_READY:
1927 		io_kbuf_recycle(req, 0);
1928 		io_req_task_queue(req);
1929 		break;
1930 	case IO_APOLL_ABORTED:
1931 		io_kbuf_recycle(req, 0);
1932 		io_queue_iowq(req);
1933 		break;
1934 	case IO_APOLL_OK:
1935 		break;
1936 	}
1937 
1938 	if (linked_timeout)
1939 		io_queue_linked_timeout(linked_timeout);
1940 }
1941 
1942 static inline void io_queue_sqe(struct io_kiocb *req)
1943 	__must_hold(&req->ctx->uring_lock)
1944 {
1945 	int ret;
1946 
1947 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1948 
1949 	/*
1950 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1951 	 * doesn't support non-blocking read/write attempts
1952 	 */
1953 	if (unlikely(ret))
1954 		io_queue_async(req, ret);
1955 }
1956 
1957 static void io_queue_sqe_fallback(struct io_kiocb *req)
1958 	__must_hold(&req->ctx->uring_lock)
1959 {
1960 	if (unlikely(req->flags & REQ_F_FAIL)) {
1961 		/*
1962 		 * We don't submit, fail them all, for that replace hardlinks
1963 		 * with normal links. Extra REQ_F_LINK is tolerated.
1964 		 */
1965 		req->flags &= ~REQ_F_HARDLINK;
1966 		req->flags |= REQ_F_LINK;
1967 		io_req_defer_failed(req, req->cqe.res);
1968 	} else {
1969 		if (unlikely(req->ctx->drain_active))
1970 			io_drain_req(req);
1971 		else
1972 			io_queue_iowq(req);
1973 	}
1974 }
1975 
1976 /*
1977  * Check SQE restrictions (opcode and flags).
1978  *
1979  * Returns 'true' if SQE is allowed, 'false' otherwise.
1980  */
1981 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1982 					struct io_kiocb *req,
1983 					unsigned int sqe_flags)
1984 {
1985 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1986 		return false;
1987 
1988 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1989 	    ctx->restrictions.sqe_flags_required)
1990 		return false;
1991 
1992 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1993 			  ctx->restrictions.sqe_flags_required))
1994 		return false;
1995 
1996 	return true;
1997 }
1998 
1999 static void io_init_req_drain(struct io_kiocb *req)
2000 {
2001 	struct io_ring_ctx *ctx = req->ctx;
2002 	struct io_kiocb *head = ctx->submit_state.link.head;
2003 
2004 	ctx->drain_active = true;
2005 	if (head) {
2006 		/*
2007 		 * If we need to drain a request in the middle of a link, drain
2008 		 * the head request and the next request/link after the current
2009 		 * link. Considering sequential execution of links,
2010 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2011 		 * link.
2012 		 */
2013 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2014 		ctx->drain_next = true;
2015 	}
2016 }
2017 
2018 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2019 {
2020 	/* ensure per-opcode data is cleared if we fail before prep */
2021 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2022 	return err;
2023 }
2024 
2025 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2026 		       const struct io_uring_sqe *sqe)
2027 	__must_hold(&ctx->uring_lock)
2028 {
2029 	const struct io_issue_def *def;
2030 	unsigned int sqe_flags;
2031 	int personality;
2032 	u8 opcode;
2033 
2034 	/* req is partially pre-initialised, see io_preinit_req() */
2035 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2036 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2037 	sqe_flags = READ_ONCE(sqe->flags);
2038 	req->flags = (__force io_req_flags_t) sqe_flags;
2039 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2040 	req->file = NULL;
2041 	req->tctx = current->io_uring;
2042 	req->cancel_seq_set = false;
2043 
2044 	if (unlikely(opcode >= IORING_OP_LAST)) {
2045 		req->opcode = 0;
2046 		return io_init_fail_req(req, -EINVAL);
2047 	}
2048 	def = &io_issue_defs[opcode];
2049 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2050 		/* enforce forwards compatibility on users */
2051 		if (sqe_flags & ~SQE_VALID_FLAGS)
2052 			return io_init_fail_req(req, -EINVAL);
2053 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2054 			if (!def->buffer_select)
2055 				return io_init_fail_req(req, -EOPNOTSUPP);
2056 			req->buf_index = READ_ONCE(sqe->buf_group);
2057 		}
2058 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2059 			ctx->drain_disabled = true;
2060 		if (sqe_flags & IOSQE_IO_DRAIN) {
2061 			if (ctx->drain_disabled)
2062 				return io_init_fail_req(req, -EOPNOTSUPP);
2063 			io_init_req_drain(req);
2064 		}
2065 	}
2066 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2067 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2068 			return io_init_fail_req(req, -EACCES);
2069 		/* knock it to the slow queue path, will be drained there */
2070 		if (ctx->drain_active)
2071 			req->flags |= REQ_F_FORCE_ASYNC;
2072 		/* if there is no link, we're at "next" request and need to drain */
2073 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2074 			ctx->drain_next = false;
2075 			ctx->drain_active = true;
2076 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2077 		}
2078 	}
2079 
2080 	if (!def->ioprio && sqe->ioprio)
2081 		return io_init_fail_req(req, -EINVAL);
2082 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2083 		return io_init_fail_req(req, -EINVAL);
2084 
2085 	if (def->needs_file) {
2086 		struct io_submit_state *state = &ctx->submit_state;
2087 
2088 		req->cqe.fd = READ_ONCE(sqe->fd);
2089 
2090 		/*
2091 		 * Plug now if we have more than 2 IO left after this, and the
2092 		 * target is potentially a read/write to block based storage.
2093 		 */
2094 		if (state->need_plug && def->plug) {
2095 			state->plug_started = true;
2096 			state->need_plug = false;
2097 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2098 		}
2099 	}
2100 
2101 	personality = READ_ONCE(sqe->personality);
2102 	if (personality) {
2103 		int ret;
2104 
2105 		req->creds = xa_load(&ctx->personalities, personality);
2106 		if (!req->creds)
2107 			return io_init_fail_req(req, -EINVAL);
2108 		get_cred(req->creds);
2109 		ret = security_uring_override_creds(req->creds);
2110 		if (ret) {
2111 			put_cred(req->creds);
2112 			return io_init_fail_req(req, ret);
2113 		}
2114 		req->flags |= REQ_F_CREDS;
2115 	}
2116 
2117 	return def->prep(req, sqe);
2118 }
2119 
2120 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2121 				      struct io_kiocb *req, int ret)
2122 {
2123 	struct io_ring_ctx *ctx = req->ctx;
2124 	struct io_submit_link *link = &ctx->submit_state.link;
2125 	struct io_kiocb *head = link->head;
2126 
2127 	trace_io_uring_req_failed(sqe, req, ret);
2128 
2129 	/*
2130 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2131 	 * unusable. Instead of failing eagerly, continue assembling the link if
2132 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2133 	 * should find the flag and handle the rest.
2134 	 */
2135 	req_fail_link_node(req, ret);
2136 	if (head && !(head->flags & REQ_F_FAIL))
2137 		req_fail_link_node(head, -ECANCELED);
2138 
2139 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2140 		if (head) {
2141 			link->last->link = req;
2142 			link->head = NULL;
2143 			req = head;
2144 		}
2145 		io_queue_sqe_fallback(req);
2146 		return ret;
2147 	}
2148 
2149 	if (head)
2150 		link->last->link = req;
2151 	else
2152 		link->head = req;
2153 	link->last = req;
2154 	return 0;
2155 }
2156 
2157 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2158 			 const struct io_uring_sqe *sqe)
2159 	__must_hold(&ctx->uring_lock)
2160 {
2161 	struct io_submit_link *link = &ctx->submit_state.link;
2162 	int ret;
2163 
2164 	ret = io_init_req(ctx, req, sqe);
2165 	if (unlikely(ret))
2166 		return io_submit_fail_init(sqe, req, ret);
2167 
2168 	trace_io_uring_submit_req(req);
2169 
2170 	/*
2171 	 * If we already have a head request, queue this one for async
2172 	 * submittal once the head completes. If we don't have a head but
2173 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2174 	 * submitted sync once the chain is complete. If none of those
2175 	 * conditions are true (normal request), then just queue it.
2176 	 */
2177 	if (unlikely(link->head)) {
2178 		trace_io_uring_link(req, link->last);
2179 		link->last->link = req;
2180 		link->last = req;
2181 
2182 		if (req->flags & IO_REQ_LINK_FLAGS)
2183 			return 0;
2184 		/* last request of the link, flush it */
2185 		req = link->head;
2186 		link->head = NULL;
2187 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2188 			goto fallback;
2189 
2190 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2191 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2192 		if (req->flags & IO_REQ_LINK_FLAGS) {
2193 			link->head = req;
2194 			link->last = req;
2195 		} else {
2196 fallback:
2197 			io_queue_sqe_fallback(req);
2198 		}
2199 		return 0;
2200 	}
2201 
2202 	io_queue_sqe(req);
2203 	return 0;
2204 }
2205 
2206 /*
2207  * Batched submission is done, ensure local IO is flushed out.
2208  */
2209 static void io_submit_state_end(struct io_ring_ctx *ctx)
2210 {
2211 	struct io_submit_state *state = &ctx->submit_state;
2212 
2213 	if (unlikely(state->link.head))
2214 		io_queue_sqe_fallback(state->link.head);
2215 	/* flush only after queuing links as they can generate completions */
2216 	io_submit_flush_completions(ctx);
2217 	if (state->plug_started)
2218 		blk_finish_plug(&state->plug);
2219 }
2220 
2221 /*
2222  * Start submission side cache.
2223  */
2224 static void io_submit_state_start(struct io_submit_state *state,
2225 				  unsigned int max_ios)
2226 {
2227 	state->plug_started = false;
2228 	state->need_plug = max_ios > 2;
2229 	state->submit_nr = max_ios;
2230 	/* set only head, no need to init link_last in advance */
2231 	state->link.head = NULL;
2232 }
2233 
2234 static void io_commit_sqring(struct io_ring_ctx *ctx)
2235 {
2236 	struct io_rings *rings = ctx->rings;
2237 
2238 	/*
2239 	 * Ensure any loads from the SQEs are done at this point,
2240 	 * since once we write the new head, the application could
2241 	 * write new data to them.
2242 	 */
2243 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2244 }
2245 
2246 /*
2247  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2248  * that is mapped by userspace. This means that care needs to be taken to
2249  * ensure that reads are stable, as we cannot rely on userspace always
2250  * being a good citizen. If members of the sqe are validated and then later
2251  * used, it's important that those reads are done through READ_ONCE() to
2252  * prevent a re-load down the line.
2253  */
2254 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2255 {
2256 	unsigned mask = ctx->sq_entries - 1;
2257 	unsigned head = ctx->cached_sq_head++ & mask;
2258 
2259 	if (static_branch_unlikely(&io_key_has_sqarray) &&
2260 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2261 		head = READ_ONCE(ctx->sq_array[head]);
2262 		if (unlikely(head >= ctx->sq_entries)) {
2263 			/* drop invalid entries */
2264 			spin_lock(&ctx->completion_lock);
2265 			ctx->cq_extra--;
2266 			spin_unlock(&ctx->completion_lock);
2267 			WRITE_ONCE(ctx->rings->sq_dropped,
2268 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2269 			return false;
2270 		}
2271 		head = array_index_nospec(head, ctx->sq_entries);
2272 	}
2273 
2274 	/*
2275 	 * The cached sq head (or cq tail) serves two purposes:
2276 	 *
2277 	 * 1) allows us to batch the cost of updating the user visible
2278 	 *    head updates.
2279 	 * 2) allows the kernel side to track the head on its own, even
2280 	 *    though the application is the one updating it.
2281 	 */
2282 
2283 	/* double index for 128-byte SQEs, twice as long */
2284 	if (ctx->flags & IORING_SETUP_SQE128)
2285 		head <<= 1;
2286 	*sqe = &ctx->sq_sqes[head];
2287 	return true;
2288 }
2289 
2290 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2291 	__must_hold(&ctx->uring_lock)
2292 {
2293 	unsigned int entries = io_sqring_entries(ctx);
2294 	unsigned int left;
2295 	int ret;
2296 
2297 	if (unlikely(!entries))
2298 		return 0;
2299 	/* make sure SQ entry isn't read before tail */
2300 	ret = left = min(nr, entries);
2301 	io_get_task_refs(left);
2302 	io_submit_state_start(&ctx->submit_state, left);
2303 
2304 	do {
2305 		const struct io_uring_sqe *sqe;
2306 		struct io_kiocb *req;
2307 
2308 		if (unlikely(!io_alloc_req(ctx, &req)))
2309 			break;
2310 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2311 			io_req_add_to_cache(req, ctx);
2312 			break;
2313 		}
2314 
2315 		/*
2316 		 * Continue submitting even for sqe failure if the
2317 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2318 		 */
2319 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2320 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2321 			left--;
2322 			break;
2323 		}
2324 	} while (--left);
2325 
2326 	if (unlikely(left)) {
2327 		ret -= left;
2328 		/* try again if it submitted nothing and can't allocate a req */
2329 		if (!ret && io_req_cache_empty(ctx))
2330 			ret = -EAGAIN;
2331 		current->io_uring->cached_refs += left;
2332 	}
2333 
2334 	io_submit_state_end(ctx);
2335 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2336 	io_commit_sqring(ctx);
2337 	return ret;
2338 }
2339 
2340 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2341 			    int wake_flags, void *key)
2342 {
2343 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2344 
2345 	/*
2346 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2347 	 * the task, and the next invocation will do it.
2348 	 */
2349 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2350 		return autoremove_wake_function(curr, mode, wake_flags, key);
2351 	return -1;
2352 }
2353 
2354 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2355 {
2356 	if (io_local_work_pending(ctx)) {
2357 		__set_current_state(TASK_RUNNING);
2358 		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2359 			return 0;
2360 	}
2361 	if (io_run_task_work() > 0)
2362 		return 0;
2363 	if (task_sigpending(current))
2364 		return -EINTR;
2365 	return 0;
2366 }
2367 
2368 static bool current_pending_io(void)
2369 {
2370 	struct io_uring_task *tctx = current->io_uring;
2371 
2372 	if (!tctx)
2373 		return false;
2374 	return percpu_counter_read_positive(&tctx->inflight);
2375 }
2376 
2377 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2378 {
2379 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2380 
2381 	WRITE_ONCE(iowq->hit_timeout, 1);
2382 	iowq->min_timeout = 0;
2383 	wake_up_process(iowq->wq.private);
2384 	return HRTIMER_NORESTART;
2385 }
2386 
2387 /*
2388  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2389  * wake up. If not, and we have a normal timeout, switch to that and keep
2390  * sleeping.
2391  */
2392 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2393 {
2394 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2395 	struct io_ring_ctx *ctx = iowq->ctx;
2396 
2397 	/* no general timeout, or shorter (or equal), we are done */
2398 	if (iowq->timeout == KTIME_MAX ||
2399 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2400 		goto out_wake;
2401 	/* work we may need to run, wake function will see if we need to wake */
2402 	if (io_has_work(ctx))
2403 		goto out_wake;
2404 	/* got events since we started waiting, min timeout is done */
2405 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2406 		goto out_wake;
2407 	/* if we have any events and min timeout expired, we're done */
2408 	if (io_cqring_events(ctx))
2409 		goto out_wake;
2410 
2411 	/*
2412 	 * If using deferred task_work running and application is waiting on
2413 	 * more than one request, ensure we reset it now where we are switching
2414 	 * to normal sleeps. Any request completion post min_wait should wake
2415 	 * the task and return.
2416 	 */
2417 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2418 		atomic_set(&ctx->cq_wait_nr, 1);
2419 		smp_mb();
2420 		if (!llist_empty(&ctx->work_llist))
2421 			goto out_wake;
2422 	}
2423 
2424 	iowq->t.function = io_cqring_timer_wakeup;
2425 	hrtimer_set_expires(timer, iowq->timeout);
2426 	return HRTIMER_RESTART;
2427 out_wake:
2428 	return io_cqring_timer_wakeup(timer);
2429 }
2430 
2431 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2432 				      clockid_t clock_id, ktime_t start_time)
2433 {
2434 	ktime_t timeout;
2435 
2436 	if (iowq->min_timeout) {
2437 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2438 		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2439 				       HRTIMER_MODE_ABS);
2440 	} else {
2441 		timeout = iowq->timeout;
2442 		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2443 				       HRTIMER_MODE_ABS);
2444 	}
2445 
2446 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2447 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2448 
2449 	if (!READ_ONCE(iowq->hit_timeout))
2450 		schedule();
2451 
2452 	hrtimer_cancel(&iowq->t);
2453 	destroy_hrtimer_on_stack(&iowq->t);
2454 	__set_current_state(TASK_RUNNING);
2455 
2456 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2457 }
2458 
2459 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2460 				     struct io_wait_queue *iowq,
2461 				     ktime_t start_time)
2462 {
2463 	int ret = 0;
2464 
2465 	/*
2466 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2467 	 * can take into account that the task is waiting for IO - turns out
2468 	 * to be important for low QD IO.
2469 	 */
2470 	if (current_pending_io())
2471 		current->in_iowait = 1;
2472 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2473 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2474 	else
2475 		schedule();
2476 	current->in_iowait = 0;
2477 	return ret;
2478 }
2479 
2480 /* If this returns > 0, the caller should retry */
2481 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2482 					  struct io_wait_queue *iowq,
2483 					  ktime_t start_time)
2484 {
2485 	if (unlikely(READ_ONCE(ctx->check_cq)))
2486 		return 1;
2487 	if (unlikely(io_local_work_pending(ctx)))
2488 		return 1;
2489 	if (unlikely(task_work_pending(current)))
2490 		return 1;
2491 	if (unlikely(task_sigpending(current)))
2492 		return -EINTR;
2493 	if (unlikely(io_should_wake(iowq)))
2494 		return 0;
2495 
2496 	return __io_cqring_wait_schedule(ctx, iowq, start_time);
2497 }
2498 
2499 struct ext_arg {
2500 	size_t argsz;
2501 	struct timespec64 ts;
2502 	const sigset_t __user *sig;
2503 	ktime_t min_time;
2504 	bool ts_set;
2505 };
2506 
2507 /*
2508  * Wait until events become available, if we don't already have some. The
2509  * application must reap them itself, as they reside on the shared cq ring.
2510  */
2511 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2512 			  struct ext_arg *ext_arg)
2513 {
2514 	struct io_wait_queue iowq;
2515 	struct io_rings *rings = ctx->rings;
2516 	ktime_t start_time;
2517 	int ret;
2518 
2519 	if (!io_allowed_run_tw(ctx))
2520 		return -EEXIST;
2521 	if (io_local_work_pending(ctx))
2522 		io_run_local_work(ctx, min_events,
2523 				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2524 	io_run_task_work();
2525 
2526 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2527 		io_cqring_do_overflow_flush(ctx);
2528 	if (__io_cqring_events_user(ctx) >= min_events)
2529 		return 0;
2530 
2531 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2532 	iowq.wq.private = current;
2533 	INIT_LIST_HEAD(&iowq.wq.entry);
2534 	iowq.ctx = ctx;
2535 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2536 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2537 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2538 	iowq.hit_timeout = 0;
2539 	iowq.min_timeout = ext_arg->min_time;
2540 	iowq.timeout = KTIME_MAX;
2541 	start_time = io_get_time(ctx);
2542 
2543 	if (ext_arg->ts_set) {
2544 		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2545 		if (!(flags & IORING_ENTER_ABS_TIMER))
2546 			iowq.timeout = ktime_add(iowq.timeout, start_time);
2547 	}
2548 
2549 	if (ext_arg->sig) {
2550 #ifdef CONFIG_COMPAT
2551 		if (in_compat_syscall())
2552 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2553 						      ext_arg->argsz);
2554 		else
2555 #endif
2556 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2557 
2558 		if (ret)
2559 			return ret;
2560 	}
2561 
2562 	io_napi_busy_loop(ctx, &iowq);
2563 
2564 	trace_io_uring_cqring_wait(ctx, min_events);
2565 	do {
2566 		unsigned long check_cq;
2567 		int nr_wait;
2568 
2569 		/* if min timeout has been hit, don't reset wait count */
2570 		if (!iowq.hit_timeout)
2571 			nr_wait = (int) iowq.cq_tail -
2572 					READ_ONCE(ctx->rings->cq.tail);
2573 		else
2574 			nr_wait = 1;
2575 
2576 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2577 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2578 			set_current_state(TASK_INTERRUPTIBLE);
2579 		} else {
2580 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2581 							TASK_INTERRUPTIBLE);
2582 		}
2583 
2584 		ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2585 		__set_current_state(TASK_RUNNING);
2586 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2587 
2588 		/*
2589 		 * Run task_work after scheduling and before io_should_wake().
2590 		 * If we got woken because of task_work being processed, run it
2591 		 * now rather than let the caller do another wait loop.
2592 		 */
2593 		if (io_local_work_pending(ctx))
2594 			io_run_local_work(ctx, nr_wait, nr_wait);
2595 		io_run_task_work();
2596 
2597 		/*
2598 		 * Non-local task_work will be run on exit to userspace, but
2599 		 * if we're using DEFER_TASKRUN, then we could have waited
2600 		 * with a timeout for a number of requests. If the timeout
2601 		 * hits, we could have some requests ready to process. Ensure
2602 		 * this break is _after_ we have run task_work, to avoid
2603 		 * deferring running potentially pending requests until the
2604 		 * next time we wait for events.
2605 		 */
2606 		if (ret < 0)
2607 			break;
2608 
2609 		check_cq = READ_ONCE(ctx->check_cq);
2610 		if (unlikely(check_cq)) {
2611 			/* let the caller flush overflows, retry */
2612 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2613 				io_cqring_do_overflow_flush(ctx);
2614 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2615 				ret = -EBADR;
2616 				break;
2617 			}
2618 		}
2619 
2620 		if (io_should_wake(&iowq)) {
2621 			ret = 0;
2622 			break;
2623 		}
2624 		cond_resched();
2625 	} while (1);
2626 
2627 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2628 		finish_wait(&ctx->cq_wait, &iowq.wq);
2629 	restore_saved_sigmask_unless(ret == -EINTR);
2630 
2631 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2632 }
2633 
2634 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2635 			  size_t size)
2636 {
2637 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2638 				size);
2639 }
2640 
2641 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2642 			 size_t size)
2643 {
2644 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2645 				size);
2646 }
2647 
2648 static void io_rings_free(struct io_ring_ctx *ctx)
2649 {
2650 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2651 		io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2652 				true);
2653 		io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2654 				true);
2655 	} else {
2656 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2657 		ctx->n_ring_pages = 0;
2658 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2659 		ctx->n_sqe_pages = 0;
2660 		vunmap(ctx->rings);
2661 		vunmap(ctx->sq_sqes);
2662 	}
2663 
2664 	ctx->rings = NULL;
2665 	ctx->sq_sqes = NULL;
2666 }
2667 
2668 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2669 			 unsigned int cq_entries, size_t *sq_offset)
2670 {
2671 	struct io_rings *rings;
2672 	size_t off, sq_array_size;
2673 
2674 	off = struct_size(rings, cqes, cq_entries);
2675 	if (off == SIZE_MAX)
2676 		return SIZE_MAX;
2677 	if (flags & IORING_SETUP_CQE32) {
2678 		if (check_shl_overflow(off, 1, &off))
2679 			return SIZE_MAX;
2680 	}
2681 
2682 #ifdef CONFIG_SMP
2683 	off = ALIGN(off, SMP_CACHE_BYTES);
2684 	if (off == 0)
2685 		return SIZE_MAX;
2686 #endif
2687 
2688 	if (flags & IORING_SETUP_NO_SQARRAY) {
2689 		*sq_offset = SIZE_MAX;
2690 		return off;
2691 	}
2692 
2693 	*sq_offset = off;
2694 
2695 	sq_array_size = array_size(sizeof(u32), sq_entries);
2696 	if (sq_array_size == SIZE_MAX)
2697 		return SIZE_MAX;
2698 
2699 	if (check_add_overflow(off, sq_array_size, &off))
2700 		return SIZE_MAX;
2701 
2702 	return off;
2703 }
2704 
2705 static void io_req_caches_free(struct io_ring_ctx *ctx)
2706 {
2707 	struct io_kiocb *req;
2708 	int nr = 0;
2709 
2710 	mutex_lock(&ctx->uring_lock);
2711 
2712 	while (!io_req_cache_empty(ctx)) {
2713 		req = io_extract_req(ctx);
2714 		kmem_cache_free(req_cachep, req);
2715 		nr++;
2716 	}
2717 	if (nr)
2718 		percpu_ref_put_many(&ctx->refs, nr);
2719 	mutex_unlock(&ctx->uring_lock);
2720 }
2721 
2722 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2723 {
2724 	io_sq_thread_finish(ctx);
2725 
2726 	mutex_lock(&ctx->uring_lock);
2727 	io_sqe_buffers_unregister(ctx);
2728 	io_sqe_files_unregister(ctx);
2729 	io_cqring_overflow_kill(ctx);
2730 	io_eventfd_unregister(ctx);
2731 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2732 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2733 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2734 	io_alloc_cache_free(&ctx->uring_cache, kfree);
2735 	io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2736 	io_futex_cache_free(ctx);
2737 	io_destroy_buffers(ctx);
2738 	io_free_region(ctx, &ctx->param_region);
2739 	mutex_unlock(&ctx->uring_lock);
2740 	if (ctx->sq_creds)
2741 		put_cred(ctx->sq_creds);
2742 	if (ctx->submitter_task)
2743 		put_task_struct(ctx->submitter_task);
2744 
2745 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2746 
2747 	if (ctx->mm_account) {
2748 		mmdrop(ctx->mm_account);
2749 		ctx->mm_account = NULL;
2750 	}
2751 	io_rings_free(ctx);
2752 
2753 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2754 		static_branch_dec(&io_key_has_sqarray);
2755 
2756 	percpu_ref_exit(&ctx->refs);
2757 	free_uid(ctx->user);
2758 	io_req_caches_free(ctx);
2759 	if (ctx->hash_map)
2760 		io_wq_put_hash(ctx->hash_map);
2761 	io_napi_free(ctx);
2762 	kvfree(ctx->cancel_table.hbs);
2763 	xa_destroy(&ctx->io_bl_xa);
2764 	kfree(ctx);
2765 }
2766 
2767 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2768 {
2769 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2770 					       poll_wq_task_work);
2771 
2772 	mutex_lock(&ctx->uring_lock);
2773 	ctx->poll_activated = true;
2774 	mutex_unlock(&ctx->uring_lock);
2775 
2776 	/*
2777 	 * Wake ups for some events between start of polling and activation
2778 	 * might've been lost due to loose synchronisation.
2779 	 */
2780 	wake_up_all(&ctx->poll_wq);
2781 	percpu_ref_put(&ctx->refs);
2782 }
2783 
2784 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2785 {
2786 	spin_lock(&ctx->completion_lock);
2787 	/* already activated or in progress */
2788 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2789 		goto out;
2790 	if (WARN_ON_ONCE(!ctx->task_complete))
2791 		goto out;
2792 	if (!ctx->submitter_task)
2793 		goto out;
2794 	/*
2795 	 * with ->submitter_task only the submitter task completes requests, we
2796 	 * only need to sync with it, which is done by injecting a tw
2797 	 */
2798 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2799 	percpu_ref_get(&ctx->refs);
2800 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2801 		percpu_ref_put(&ctx->refs);
2802 out:
2803 	spin_unlock(&ctx->completion_lock);
2804 }
2805 
2806 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2807 {
2808 	struct io_ring_ctx *ctx = file->private_data;
2809 	__poll_t mask = 0;
2810 
2811 	if (unlikely(!ctx->poll_activated))
2812 		io_activate_pollwq(ctx);
2813 	/*
2814 	 * provides mb() which pairs with barrier from wq_has_sleeper
2815 	 * call in io_commit_cqring
2816 	 */
2817 	poll_wait(file, &ctx->poll_wq, wait);
2818 
2819 	if (!io_sqring_full(ctx))
2820 		mask |= EPOLLOUT | EPOLLWRNORM;
2821 
2822 	/*
2823 	 * Don't flush cqring overflow list here, just do a simple check.
2824 	 * Otherwise there could possible be ABBA deadlock:
2825 	 *      CPU0                    CPU1
2826 	 *      ----                    ----
2827 	 * lock(&ctx->uring_lock);
2828 	 *                              lock(&ep->mtx);
2829 	 *                              lock(&ctx->uring_lock);
2830 	 * lock(&ep->mtx);
2831 	 *
2832 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2833 	 * pushes them to do the flush.
2834 	 */
2835 
2836 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2837 		mask |= EPOLLIN | EPOLLRDNORM;
2838 
2839 	return mask;
2840 }
2841 
2842 struct io_tctx_exit {
2843 	struct callback_head		task_work;
2844 	struct completion		completion;
2845 	struct io_ring_ctx		*ctx;
2846 };
2847 
2848 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2849 {
2850 	struct io_uring_task *tctx = current->io_uring;
2851 	struct io_tctx_exit *work;
2852 
2853 	work = container_of(cb, struct io_tctx_exit, task_work);
2854 	/*
2855 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2856 	 * node. It'll be removed by the end of cancellation, just ignore it.
2857 	 * tctx can be NULL if the queueing of this task_work raced with
2858 	 * work cancelation off the exec path.
2859 	 */
2860 	if (tctx && !atomic_read(&tctx->in_cancel))
2861 		io_uring_del_tctx_node((unsigned long)work->ctx);
2862 	complete(&work->completion);
2863 }
2864 
2865 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2866 {
2867 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2868 
2869 	return req->ctx == data;
2870 }
2871 
2872 static __cold void io_ring_exit_work(struct work_struct *work)
2873 {
2874 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2875 	unsigned long timeout = jiffies + HZ * 60 * 5;
2876 	unsigned long interval = HZ / 20;
2877 	struct io_tctx_exit exit;
2878 	struct io_tctx_node *node;
2879 	int ret;
2880 
2881 	/*
2882 	 * If we're doing polled IO and end up having requests being
2883 	 * submitted async (out-of-line), then completions can come in while
2884 	 * we're waiting for refs to drop. We need to reap these manually,
2885 	 * as nobody else will be looking for them.
2886 	 */
2887 	do {
2888 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2889 			mutex_lock(&ctx->uring_lock);
2890 			io_cqring_overflow_kill(ctx);
2891 			mutex_unlock(&ctx->uring_lock);
2892 		}
2893 
2894 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2895 			io_move_task_work_from_local(ctx);
2896 
2897 		while (io_uring_try_cancel_requests(ctx, NULL, true))
2898 			cond_resched();
2899 
2900 		if (ctx->sq_data) {
2901 			struct io_sq_data *sqd = ctx->sq_data;
2902 			struct task_struct *tsk;
2903 
2904 			io_sq_thread_park(sqd);
2905 			tsk = sqd->thread;
2906 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2907 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2908 						io_cancel_ctx_cb, ctx, true);
2909 			io_sq_thread_unpark(sqd);
2910 		}
2911 
2912 		io_req_caches_free(ctx);
2913 
2914 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2915 			/* there is little hope left, don't run it too often */
2916 			interval = HZ * 60;
2917 		}
2918 		/*
2919 		 * This is really an uninterruptible wait, as it has to be
2920 		 * complete. But it's also run from a kworker, which doesn't
2921 		 * take signals, so it's fine to make it interruptible. This
2922 		 * avoids scenarios where we knowingly can wait much longer
2923 		 * on completions, for example if someone does a SIGSTOP on
2924 		 * a task that needs to finish task_work to make this loop
2925 		 * complete. That's a synthetic situation that should not
2926 		 * cause a stuck task backtrace, and hence a potential panic
2927 		 * on stuck tasks if that is enabled.
2928 		 */
2929 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2930 
2931 	init_completion(&exit.completion);
2932 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2933 	exit.ctx = ctx;
2934 
2935 	mutex_lock(&ctx->uring_lock);
2936 	while (!list_empty(&ctx->tctx_list)) {
2937 		WARN_ON_ONCE(time_after(jiffies, timeout));
2938 
2939 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2940 					ctx_node);
2941 		/* don't spin on a single task if cancellation failed */
2942 		list_rotate_left(&ctx->tctx_list);
2943 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2944 		if (WARN_ON_ONCE(ret))
2945 			continue;
2946 
2947 		mutex_unlock(&ctx->uring_lock);
2948 		/*
2949 		 * See comment above for
2950 		 * wait_for_completion_interruptible_timeout() on why this
2951 		 * wait is marked as interruptible.
2952 		 */
2953 		wait_for_completion_interruptible(&exit.completion);
2954 		mutex_lock(&ctx->uring_lock);
2955 	}
2956 	mutex_unlock(&ctx->uring_lock);
2957 	spin_lock(&ctx->completion_lock);
2958 	spin_unlock(&ctx->completion_lock);
2959 
2960 	/* pairs with RCU read section in io_req_local_work_add() */
2961 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2962 		synchronize_rcu();
2963 
2964 	io_ring_ctx_free(ctx);
2965 }
2966 
2967 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2968 {
2969 	unsigned long index;
2970 	struct creds *creds;
2971 
2972 	mutex_lock(&ctx->uring_lock);
2973 	percpu_ref_kill(&ctx->refs);
2974 	xa_for_each(&ctx->personalities, index, creds)
2975 		io_unregister_personality(ctx, index);
2976 	mutex_unlock(&ctx->uring_lock);
2977 
2978 	flush_delayed_work(&ctx->fallback_work);
2979 
2980 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2981 	/*
2982 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2983 	 * if we're exiting a ton of rings at the same time. It just adds
2984 	 * noise and overhead, there's no discernable change in runtime
2985 	 * over using system_wq.
2986 	 */
2987 	queue_work(iou_wq, &ctx->exit_work);
2988 }
2989 
2990 static int io_uring_release(struct inode *inode, struct file *file)
2991 {
2992 	struct io_ring_ctx *ctx = file->private_data;
2993 
2994 	file->private_data = NULL;
2995 	io_ring_ctx_wait_and_kill(ctx);
2996 	return 0;
2997 }
2998 
2999 struct io_task_cancel {
3000 	struct io_uring_task *tctx;
3001 	bool all;
3002 };
3003 
3004 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3005 {
3006 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3007 	struct io_task_cancel *cancel = data;
3008 
3009 	return io_match_task_safe(req, cancel->tctx, cancel->all);
3010 }
3011 
3012 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3013 					 struct io_uring_task *tctx,
3014 					 bool cancel_all)
3015 {
3016 	struct io_defer_entry *de;
3017 	LIST_HEAD(list);
3018 
3019 	spin_lock(&ctx->completion_lock);
3020 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3021 		if (io_match_task_safe(de->req, tctx, cancel_all)) {
3022 			list_cut_position(&list, &ctx->defer_list, &de->list);
3023 			break;
3024 		}
3025 	}
3026 	spin_unlock(&ctx->completion_lock);
3027 	if (list_empty(&list))
3028 		return false;
3029 
3030 	while (!list_empty(&list)) {
3031 		de = list_first_entry(&list, struct io_defer_entry, list);
3032 		list_del_init(&de->list);
3033 		io_req_task_queue_fail(de->req, -ECANCELED);
3034 		kfree(de);
3035 	}
3036 	return true;
3037 }
3038 
3039 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3040 {
3041 	struct io_tctx_node *node;
3042 	enum io_wq_cancel cret;
3043 	bool ret = false;
3044 
3045 	mutex_lock(&ctx->uring_lock);
3046 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3047 		struct io_uring_task *tctx = node->task->io_uring;
3048 
3049 		/*
3050 		 * io_wq will stay alive while we hold uring_lock, because it's
3051 		 * killed after ctx nodes, which requires to take the lock.
3052 		 */
3053 		if (!tctx || !tctx->io_wq)
3054 			continue;
3055 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3056 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3057 	}
3058 	mutex_unlock(&ctx->uring_lock);
3059 
3060 	return ret;
3061 }
3062 
3063 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3064 						struct io_uring_task *tctx,
3065 						bool cancel_all)
3066 {
3067 	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3068 	enum io_wq_cancel cret;
3069 	bool ret = false;
3070 
3071 	/* set it so io_req_local_work_add() would wake us up */
3072 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3073 		atomic_set(&ctx->cq_wait_nr, 1);
3074 		smp_mb();
3075 	}
3076 
3077 	/* failed during ring init, it couldn't have issued any requests */
3078 	if (!ctx->rings)
3079 		return false;
3080 
3081 	if (!tctx) {
3082 		ret |= io_uring_try_cancel_iowq(ctx);
3083 	} else if (tctx->io_wq) {
3084 		/*
3085 		 * Cancels requests of all rings, not only @ctx, but
3086 		 * it's fine as the task is in exit/exec.
3087 		 */
3088 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3089 				       &cancel, true);
3090 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3091 	}
3092 
3093 	/* SQPOLL thread does its own polling */
3094 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3095 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3096 		while (!wq_list_empty(&ctx->iopoll_list)) {
3097 			io_iopoll_try_reap_events(ctx);
3098 			ret = true;
3099 			cond_resched();
3100 		}
3101 	}
3102 
3103 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3104 	    io_allowed_defer_tw_run(ctx))
3105 		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3106 	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3107 	mutex_lock(&ctx->uring_lock);
3108 	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3109 	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3110 	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3111 	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3112 	mutex_unlock(&ctx->uring_lock);
3113 	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3114 	if (tctx)
3115 		ret |= io_run_task_work() > 0;
3116 	else
3117 		ret |= flush_delayed_work(&ctx->fallback_work);
3118 	return ret;
3119 }
3120 
3121 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3122 {
3123 	if (tracked)
3124 		return atomic_read(&tctx->inflight_tracked);
3125 	return percpu_counter_sum(&tctx->inflight);
3126 }
3127 
3128 /*
3129  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3130  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3131  */
3132 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3133 {
3134 	struct io_uring_task *tctx = current->io_uring;
3135 	struct io_ring_ctx *ctx;
3136 	struct io_tctx_node *node;
3137 	unsigned long index;
3138 	s64 inflight;
3139 	DEFINE_WAIT(wait);
3140 
3141 	WARN_ON_ONCE(sqd && sqd->thread != current);
3142 
3143 	if (!current->io_uring)
3144 		return;
3145 	if (tctx->io_wq)
3146 		io_wq_exit_start(tctx->io_wq);
3147 
3148 	atomic_inc(&tctx->in_cancel);
3149 	do {
3150 		bool loop = false;
3151 
3152 		io_uring_drop_tctx_refs(current);
3153 		if (!tctx_inflight(tctx, !cancel_all))
3154 			break;
3155 
3156 		/* read completions before cancelations */
3157 		inflight = tctx_inflight(tctx, false);
3158 		if (!inflight)
3159 			break;
3160 
3161 		if (!sqd) {
3162 			xa_for_each(&tctx->xa, index, node) {
3163 				/* sqpoll task will cancel all its requests */
3164 				if (node->ctx->sq_data)
3165 					continue;
3166 				loop |= io_uring_try_cancel_requests(node->ctx,
3167 							current->io_uring,
3168 							cancel_all);
3169 			}
3170 		} else {
3171 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3172 				loop |= io_uring_try_cancel_requests(ctx,
3173 								     current->io_uring,
3174 								     cancel_all);
3175 		}
3176 
3177 		if (loop) {
3178 			cond_resched();
3179 			continue;
3180 		}
3181 
3182 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3183 		io_run_task_work();
3184 		io_uring_drop_tctx_refs(current);
3185 		xa_for_each(&tctx->xa, index, node) {
3186 			if (io_local_work_pending(node->ctx)) {
3187 				WARN_ON_ONCE(node->ctx->submitter_task &&
3188 					     node->ctx->submitter_task != current);
3189 				goto end_wait;
3190 			}
3191 		}
3192 		/*
3193 		 * If we've seen completions, retry without waiting. This
3194 		 * avoids a race where a completion comes in before we did
3195 		 * prepare_to_wait().
3196 		 */
3197 		if (inflight == tctx_inflight(tctx, !cancel_all))
3198 			schedule();
3199 end_wait:
3200 		finish_wait(&tctx->wait, &wait);
3201 	} while (1);
3202 
3203 	io_uring_clean_tctx(tctx);
3204 	if (cancel_all) {
3205 		/*
3206 		 * We shouldn't run task_works after cancel, so just leave
3207 		 * ->in_cancel set for normal exit.
3208 		 */
3209 		atomic_dec(&tctx->in_cancel);
3210 		/* for exec all current's requests should be gone, kill tctx */
3211 		__io_uring_free(current);
3212 	}
3213 }
3214 
3215 void __io_uring_cancel(bool cancel_all)
3216 {
3217 	io_uring_unreg_ringfd();
3218 	io_uring_cancel_generic(cancel_all, NULL);
3219 }
3220 
3221 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3222 			const struct io_uring_getevents_arg __user *uarg)
3223 {
3224 	unsigned long size = sizeof(struct io_uring_reg_wait);
3225 	unsigned long offset = (uintptr_t)uarg;
3226 	unsigned long end;
3227 
3228 	if (unlikely(offset % sizeof(long)))
3229 		return ERR_PTR(-EFAULT);
3230 
3231 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3232 	if (unlikely(check_add_overflow(offset, size, &end) ||
3233 		     end > ctx->cq_wait_size))
3234 		return ERR_PTR(-EFAULT);
3235 
3236 	return ctx->cq_wait_arg + offset;
3237 }
3238 
3239 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3240 			       const void __user *argp, size_t argsz)
3241 {
3242 	struct io_uring_getevents_arg arg;
3243 
3244 	if (!(flags & IORING_ENTER_EXT_ARG))
3245 		return 0;
3246 	if (flags & IORING_ENTER_EXT_ARG_REG)
3247 		return -EINVAL;
3248 	if (argsz != sizeof(arg))
3249 		return -EINVAL;
3250 	if (copy_from_user(&arg, argp, sizeof(arg)))
3251 		return -EFAULT;
3252 	return 0;
3253 }
3254 
3255 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3256 			  const void __user *argp, struct ext_arg *ext_arg)
3257 {
3258 	const struct io_uring_getevents_arg __user *uarg = argp;
3259 	struct io_uring_getevents_arg arg;
3260 
3261 	/*
3262 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3263 	 * is just a pointer to the sigset_t.
3264 	 */
3265 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3266 		ext_arg->sig = (const sigset_t __user *) argp;
3267 		return 0;
3268 	}
3269 
3270 	if (flags & IORING_ENTER_EXT_ARG_REG) {
3271 		struct io_uring_reg_wait *w;
3272 
3273 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3274 			return -EINVAL;
3275 		w = io_get_ext_arg_reg(ctx, argp);
3276 		if (IS_ERR(w))
3277 			return PTR_ERR(w);
3278 
3279 		if (w->flags & ~IORING_REG_WAIT_TS)
3280 			return -EINVAL;
3281 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3282 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3283 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3284 		if (w->flags & IORING_REG_WAIT_TS) {
3285 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3286 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3287 			ext_arg->ts_set = true;
3288 		}
3289 		return 0;
3290 	}
3291 
3292 	/*
3293 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3294 	 * timespec and sigset_t pointers if good.
3295 	 */
3296 	if (ext_arg->argsz != sizeof(arg))
3297 		return -EINVAL;
3298 #ifdef CONFIG_64BIT
3299 	if (!user_access_begin(uarg, sizeof(*uarg)))
3300 		return -EFAULT;
3301 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3302 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3303 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3304 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3305 	user_access_end();
3306 #else
3307 	if (copy_from_user(&arg, uarg, sizeof(arg)))
3308 		return -EFAULT;
3309 #endif
3310 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3311 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3312 	ext_arg->argsz = arg.sigmask_sz;
3313 	if (arg.ts) {
3314 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3315 			return -EFAULT;
3316 		ext_arg->ts_set = true;
3317 	}
3318 	return 0;
3319 #ifdef CONFIG_64BIT
3320 uaccess_end:
3321 	user_access_end();
3322 	return -EFAULT;
3323 #endif
3324 }
3325 
3326 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3327 		u32, min_complete, u32, flags, const void __user *, argp,
3328 		size_t, argsz)
3329 {
3330 	struct io_ring_ctx *ctx;
3331 	struct file *file;
3332 	long ret;
3333 
3334 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3335 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3336 			       IORING_ENTER_REGISTERED_RING |
3337 			       IORING_ENTER_ABS_TIMER |
3338 			       IORING_ENTER_EXT_ARG_REG)))
3339 		return -EINVAL;
3340 
3341 	/*
3342 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3343 	 * need only dereference our task private array to find it.
3344 	 */
3345 	if (flags & IORING_ENTER_REGISTERED_RING) {
3346 		struct io_uring_task *tctx = current->io_uring;
3347 
3348 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3349 			return -EINVAL;
3350 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3351 		file = tctx->registered_rings[fd];
3352 		if (unlikely(!file))
3353 			return -EBADF;
3354 	} else {
3355 		file = fget(fd);
3356 		if (unlikely(!file))
3357 			return -EBADF;
3358 		ret = -EOPNOTSUPP;
3359 		if (unlikely(!io_is_uring_fops(file)))
3360 			goto out;
3361 	}
3362 
3363 	ctx = file->private_data;
3364 	ret = -EBADFD;
3365 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3366 		goto out;
3367 
3368 	/*
3369 	 * For SQ polling, the thread will do all submissions and completions.
3370 	 * Just return the requested submit count, and wake the thread if
3371 	 * we were asked to.
3372 	 */
3373 	ret = 0;
3374 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3375 		if (unlikely(ctx->sq_data->thread == NULL)) {
3376 			ret = -EOWNERDEAD;
3377 			goto out;
3378 		}
3379 		if (flags & IORING_ENTER_SQ_WAKEUP)
3380 			wake_up(&ctx->sq_data->wait);
3381 		if (flags & IORING_ENTER_SQ_WAIT)
3382 			io_sqpoll_wait_sq(ctx);
3383 
3384 		ret = to_submit;
3385 	} else if (to_submit) {
3386 		ret = io_uring_add_tctx_node(ctx);
3387 		if (unlikely(ret))
3388 			goto out;
3389 
3390 		mutex_lock(&ctx->uring_lock);
3391 		ret = io_submit_sqes(ctx, to_submit);
3392 		if (ret != to_submit) {
3393 			mutex_unlock(&ctx->uring_lock);
3394 			goto out;
3395 		}
3396 		if (flags & IORING_ENTER_GETEVENTS) {
3397 			if (ctx->syscall_iopoll)
3398 				goto iopoll_locked;
3399 			/*
3400 			 * Ignore errors, we'll soon call io_cqring_wait() and
3401 			 * it should handle ownership problems if any.
3402 			 */
3403 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3404 				(void)io_run_local_work_locked(ctx, min_complete);
3405 		}
3406 		mutex_unlock(&ctx->uring_lock);
3407 	}
3408 
3409 	if (flags & IORING_ENTER_GETEVENTS) {
3410 		int ret2;
3411 
3412 		if (ctx->syscall_iopoll) {
3413 			/*
3414 			 * We disallow the app entering submit/complete with
3415 			 * polling, but we still need to lock the ring to
3416 			 * prevent racing with polled issue that got punted to
3417 			 * a workqueue.
3418 			 */
3419 			mutex_lock(&ctx->uring_lock);
3420 iopoll_locked:
3421 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3422 			if (likely(!ret2)) {
3423 				min_complete = min(min_complete,
3424 						   ctx->cq_entries);
3425 				ret2 = io_iopoll_check(ctx, min_complete);
3426 			}
3427 			mutex_unlock(&ctx->uring_lock);
3428 		} else {
3429 			struct ext_arg ext_arg = { .argsz = argsz };
3430 
3431 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3432 			if (likely(!ret2)) {
3433 				min_complete = min(min_complete,
3434 						   ctx->cq_entries);
3435 				ret2 = io_cqring_wait(ctx, min_complete, flags,
3436 						      &ext_arg);
3437 			}
3438 		}
3439 
3440 		if (!ret) {
3441 			ret = ret2;
3442 
3443 			/*
3444 			 * EBADR indicates that one or more CQE were dropped.
3445 			 * Once the user has been informed we can clear the bit
3446 			 * as they are obviously ok with those drops.
3447 			 */
3448 			if (unlikely(ret2 == -EBADR))
3449 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3450 					  &ctx->check_cq);
3451 		}
3452 	}
3453 out:
3454 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3455 		fput(file);
3456 	return ret;
3457 }
3458 
3459 static const struct file_operations io_uring_fops = {
3460 	.release	= io_uring_release,
3461 	.mmap		= io_uring_mmap,
3462 	.get_unmapped_area = io_uring_get_unmapped_area,
3463 #ifndef CONFIG_MMU
3464 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3465 #endif
3466 	.poll		= io_uring_poll,
3467 #ifdef CONFIG_PROC_FS
3468 	.show_fdinfo	= io_uring_show_fdinfo,
3469 #endif
3470 };
3471 
3472 bool io_is_uring_fops(struct file *file)
3473 {
3474 	return file->f_op == &io_uring_fops;
3475 }
3476 
3477 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3478 					 struct io_uring_params *p)
3479 {
3480 	struct io_rings *rings;
3481 	size_t size, sq_array_offset;
3482 	void *ptr;
3483 
3484 	/* make sure these are sane, as we already accounted them */
3485 	ctx->sq_entries = p->sq_entries;
3486 	ctx->cq_entries = p->cq_entries;
3487 
3488 	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3489 			  &sq_array_offset);
3490 	if (size == SIZE_MAX)
3491 		return -EOVERFLOW;
3492 
3493 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3494 		rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3495 	else
3496 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3497 
3498 	if (IS_ERR(rings))
3499 		return PTR_ERR(rings);
3500 
3501 	ctx->rings = rings;
3502 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3503 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3504 	rings->sq_ring_mask = p->sq_entries - 1;
3505 	rings->cq_ring_mask = p->cq_entries - 1;
3506 	rings->sq_ring_entries = p->sq_entries;
3507 	rings->cq_ring_entries = p->cq_entries;
3508 
3509 	if (p->flags & IORING_SETUP_SQE128)
3510 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3511 	else
3512 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3513 	if (size == SIZE_MAX) {
3514 		io_rings_free(ctx);
3515 		return -EOVERFLOW;
3516 	}
3517 
3518 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3519 		ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3520 	else
3521 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3522 
3523 	if (IS_ERR(ptr)) {
3524 		io_rings_free(ctx);
3525 		return PTR_ERR(ptr);
3526 	}
3527 
3528 	ctx->sq_sqes = ptr;
3529 	return 0;
3530 }
3531 
3532 static int io_uring_install_fd(struct file *file)
3533 {
3534 	int fd;
3535 
3536 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3537 	if (fd < 0)
3538 		return fd;
3539 	fd_install(fd, file);
3540 	return fd;
3541 }
3542 
3543 /*
3544  * Allocate an anonymous fd, this is what constitutes the application
3545  * visible backing of an io_uring instance. The application mmaps this
3546  * fd to gain access to the SQ/CQ ring details.
3547  */
3548 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3549 {
3550 	/* Create a new inode so that the LSM can block the creation.  */
3551 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3552 					 O_RDWR | O_CLOEXEC, NULL);
3553 }
3554 
3555 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3556 {
3557 	if (!entries)
3558 		return -EINVAL;
3559 	if (entries > IORING_MAX_ENTRIES) {
3560 		if (!(p->flags & IORING_SETUP_CLAMP))
3561 			return -EINVAL;
3562 		entries = IORING_MAX_ENTRIES;
3563 	}
3564 
3565 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3566 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3567 		return -EINVAL;
3568 
3569 	/*
3570 	 * Use twice as many entries for the CQ ring. It's possible for the
3571 	 * application to drive a higher depth than the size of the SQ ring,
3572 	 * since the sqes are only used at submission time. This allows for
3573 	 * some flexibility in overcommitting a bit. If the application has
3574 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3575 	 * of CQ ring entries manually.
3576 	 */
3577 	p->sq_entries = roundup_pow_of_two(entries);
3578 	if (p->flags & IORING_SETUP_CQSIZE) {
3579 		/*
3580 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3581 		 * to a power-of-two, if it isn't already. We do NOT impose
3582 		 * any cq vs sq ring sizing.
3583 		 */
3584 		if (!p->cq_entries)
3585 			return -EINVAL;
3586 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3587 			if (!(p->flags & IORING_SETUP_CLAMP))
3588 				return -EINVAL;
3589 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3590 		}
3591 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3592 		if (p->cq_entries < p->sq_entries)
3593 			return -EINVAL;
3594 	} else {
3595 		p->cq_entries = 2 * p->sq_entries;
3596 	}
3597 
3598 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3599 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3600 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3601 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3602 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3603 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3604 	p->sq_off.resv1 = 0;
3605 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3606 		p->sq_off.user_addr = 0;
3607 
3608 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3609 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3610 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3611 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3612 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3613 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3614 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3615 	p->cq_off.resv1 = 0;
3616 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3617 		p->cq_off.user_addr = 0;
3618 
3619 	return 0;
3620 }
3621 
3622 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3623 				  struct io_uring_params __user *params)
3624 {
3625 	struct io_ring_ctx *ctx;
3626 	struct io_uring_task *tctx;
3627 	struct file *file;
3628 	int ret;
3629 
3630 	ret = io_uring_fill_params(entries, p);
3631 	if (unlikely(ret))
3632 		return ret;
3633 
3634 	ctx = io_ring_ctx_alloc(p);
3635 	if (!ctx)
3636 		return -ENOMEM;
3637 
3638 	ctx->clockid = CLOCK_MONOTONIC;
3639 	ctx->clock_offset = 0;
3640 
3641 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3642 		static_branch_inc(&io_key_has_sqarray);
3643 
3644 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3645 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3646 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3647 		ctx->task_complete = true;
3648 
3649 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3650 		ctx->lockless_cq = true;
3651 
3652 	/*
3653 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3654 	 * purposes, see io_activate_pollwq()
3655 	 */
3656 	if (!ctx->task_complete)
3657 		ctx->poll_activated = true;
3658 
3659 	/*
3660 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3661 	 * space applications don't need to do io completion events
3662 	 * polling again, they can rely on io_sq_thread to do polling
3663 	 * work, which can reduce cpu usage and uring_lock contention.
3664 	 */
3665 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3666 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3667 		ctx->syscall_iopoll = 1;
3668 
3669 	ctx->compat = in_compat_syscall();
3670 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3671 		ctx->user = get_uid(current_user());
3672 
3673 	/*
3674 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3675 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3676 	 */
3677 	ret = -EINVAL;
3678 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3679 		/* IPI related flags don't make sense with SQPOLL */
3680 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3681 				  IORING_SETUP_TASKRUN_FLAG |
3682 				  IORING_SETUP_DEFER_TASKRUN))
3683 			goto err;
3684 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3685 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3686 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3687 	} else {
3688 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3689 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3690 			goto err;
3691 		ctx->notify_method = TWA_SIGNAL;
3692 	}
3693 
3694 	/* HYBRID_IOPOLL only valid with IOPOLL */
3695 	if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3696 			IORING_SETUP_HYBRID_IOPOLL)
3697 		goto err;
3698 
3699 	/*
3700 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3701 	 * submission task. This implies that there is only one submitter, so enforce
3702 	 * that.
3703 	 */
3704 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3705 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3706 		goto err;
3707 	}
3708 
3709 	/*
3710 	 * This is just grabbed for accounting purposes. When a process exits,
3711 	 * the mm is exited and dropped before the files, hence we need to hang
3712 	 * on to this mm purely for the purposes of being able to unaccount
3713 	 * memory (locked/pinned vm). It's not used for anything else.
3714 	 */
3715 	mmgrab(current->mm);
3716 	ctx->mm_account = current->mm;
3717 
3718 	ret = io_allocate_scq_urings(ctx, p);
3719 	if (ret)
3720 		goto err;
3721 
3722 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3723 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3724 
3725 	ret = io_sq_offload_create(ctx, p);
3726 	if (ret)
3727 		goto err;
3728 
3729 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3730 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3731 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3732 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3733 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3734 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3735 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3736 			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3737 
3738 	if (copy_to_user(params, p, sizeof(*p))) {
3739 		ret = -EFAULT;
3740 		goto err;
3741 	}
3742 
3743 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3744 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3745 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3746 
3747 	file = io_uring_get_file(ctx);
3748 	if (IS_ERR(file)) {
3749 		ret = PTR_ERR(file);
3750 		goto err;
3751 	}
3752 
3753 	ret = __io_uring_add_tctx_node(ctx);
3754 	if (ret)
3755 		goto err_fput;
3756 	tctx = current->io_uring;
3757 
3758 	/*
3759 	 * Install ring fd as the very last thing, so we don't risk someone
3760 	 * having closed it before we finish setup
3761 	 */
3762 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3763 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3764 	else
3765 		ret = io_uring_install_fd(file);
3766 	if (ret < 0)
3767 		goto err_fput;
3768 
3769 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3770 	return ret;
3771 err:
3772 	io_ring_ctx_wait_and_kill(ctx);
3773 	return ret;
3774 err_fput:
3775 	fput(file);
3776 	return ret;
3777 }
3778 
3779 /*
3780  * Sets up an aio uring context, and returns the fd. Applications asks for a
3781  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3782  * params structure passed in.
3783  */
3784 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3785 {
3786 	struct io_uring_params p;
3787 	int i;
3788 
3789 	if (copy_from_user(&p, params, sizeof(p)))
3790 		return -EFAULT;
3791 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3792 		if (p.resv[i])
3793 			return -EINVAL;
3794 	}
3795 
3796 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3797 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3798 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3799 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3800 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3801 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3802 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3803 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3804 			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3805 		return -EINVAL;
3806 
3807 	return io_uring_create(entries, &p, params);
3808 }
3809 
3810 static inline bool io_uring_allowed(void)
3811 {
3812 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3813 	kgid_t io_uring_group;
3814 
3815 	if (disabled == 2)
3816 		return false;
3817 
3818 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3819 		return true;
3820 
3821 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3822 	if (!gid_valid(io_uring_group))
3823 		return false;
3824 
3825 	return in_group_p(io_uring_group);
3826 }
3827 
3828 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3829 		struct io_uring_params __user *, params)
3830 {
3831 	if (!io_uring_allowed())
3832 		return -EPERM;
3833 
3834 	return io_uring_setup(entries, params);
3835 }
3836 
3837 static int __init io_uring_init(void)
3838 {
3839 	struct kmem_cache_args kmem_args = {
3840 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3841 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3842 		.freeptr_offset = offsetof(struct io_kiocb, work),
3843 		.use_freeptr_offset = true,
3844 	};
3845 
3846 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3847 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3848 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3849 } while (0)
3850 
3851 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3852 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3853 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3854 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3855 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3856 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3857 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3858 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3859 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3860 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3861 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3862 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3863 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3864 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3865 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3866 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3867 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3868 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3869 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3870 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3871 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3872 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3873 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3874 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3875 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3876 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3877 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3878 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3879 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3880 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3881 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3882 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3883 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3884 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3885 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3886 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3887 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3888 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3889 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3890 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3891 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3892 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3893 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3894 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3895 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3896 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3897 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3898 
3899 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3900 		     sizeof(struct io_uring_rsrc_update));
3901 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3902 		     sizeof(struct io_uring_rsrc_update2));
3903 
3904 	/* ->buf_index is u16 */
3905 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3906 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3907 		     offsetof(struct io_uring_buf_ring, tail));
3908 
3909 	/* should fit into one byte */
3910 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3911 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3912 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3913 
3914 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3915 
3916 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3917 
3918 	/* top 8bits are for internal use */
3919 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3920 
3921 	io_uring_optable_init();
3922 
3923 	/*
3924 	 * Allow user copy in the per-command field, which starts after the
3925 	 * file in io_kiocb and until the opcode field. The openat2 handling
3926 	 * requires copying in user memory into the io_kiocb object in that
3927 	 * range, and HARDENED_USERCOPY will complain if we haven't
3928 	 * correctly annotated this range.
3929 	 */
3930 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3931 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3932 				SLAB_TYPESAFE_BY_RCU);
3933 	io_buf_cachep = KMEM_CACHE(io_buffer,
3934 					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3935 
3936 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3937 
3938 #ifdef CONFIG_SYSCTL
3939 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3940 #endif
3941 
3942 	return 0;
3943 };
3944 __initcall(io_uring_init);
3945