1 /****************************************************************************** 2 * ring.h 3 * 4 * Shared producer-consumer ring macros. 5 * 6 * Tim Deegan and Andrew Warfield November 2004. 7 */ 8 9 #ifndef __XEN_PUBLIC_IO_RING_H__ 10 #define __XEN_PUBLIC_IO_RING_H__ 11 12 typedef unsigned int RING_IDX; 13 14 /* Round a 32-bit unsigned constant down to the nearest power of two. */ 15 #define __RD2(_x) (((_x) & 0x00000002) ? 0x2 : ((_x) & 0x1)) 16 #define __RD4(_x) (((_x) & 0x0000000c) ? __RD2((_x)>>2)<<2 : __RD2(_x)) 17 #define __RD8(_x) (((_x) & 0x000000f0) ? __RD4((_x)>>4)<<4 : __RD4(_x)) 18 #define __RD16(_x) (((_x) & 0x0000ff00) ? __RD8((_x)>>8)<<8 : __RD8(_x)) 19 #define __RD32(_x) (((_x) & 0xffff0000) ? __RD16((_x)>>16)<<16 : __RD16(_x)) 20 21 /* 22 * Calculate size of a shared ring, given the total available space for the 23 * ring and indexes (_sz), and the name tag of the request/response structure. 24 * A ring contains as many entries as will fit, rounded down to the nearest 25 * power of two (so we can mask with (size-1) to loop around). 26 */ 27 #define __CONST_RING_SIZE(_s, _sz) \ 28 (__RD32(((_sz) - offsetof(struct _s##_sring, ring)) / \ 29 sizeof(((struct _s##_sring *)0)->ring[0]))) 30 31 /* 32 * The same for passing in an actual pointer instead of a name tag. 33 */ 34 #define __RING_SIZE(_s, _sz) \ 35 (__RD32(((_sz) - (long)&(_s)->ring + (long)(_s)) / sizeof((_s)->ring[0]))) 36 37 /* 38 * Macros to make the correct C datatypes for a new kind of ring. 39 * 40 * To make a new ring datatype, you need to have two message structures, 41 * let's say struct request, and struct response already defined. 42 * 43 * In a header where you want the ring datatype declared, you then do: 44 * 45 * DEFINE_RING_TYPES(mytag, struct request, struct response); 46 * 47 * These expand out to give you a set of types, as you can see below. 48 * The most important of these are: 49 * 50 * struct mytag_sring - The shared ring. 51 * struct mytag_front_ring - The 'front' half of the ring. 52 * struct mytag_back_ring - The 'back' half of the ring. 53 * 54 * To initialize a ring in your code you need to know the location and size 55 * of the shared memory area (PAGE_SIZE, for instance). To initialise 56 * the front half: 57 * 58 * struct mytag_front_ring front_ring; 59 * SHARED_RING_INIT((struct mytag_sring *)shared_page); 60 * FRONT_RING_INIT(&front_ring, (struct mytag_sring *)shared_page, 61 * PAGE_SIZE); 62 * 63 * Initializing the back follows similarly (note that only the front 64 * initializes the shared ring): 65 * 66 * struct mytag_back_ring back_ring; 67 * BACK_RING_INIT(&back_ring, (struct mytag_sring *)shared_page, 68 * PAGE_SIZE); 69 */ 70 71 #define DEFINE_RING_TYPES(__name, __req_t, __rsp_t) \ 72 \ 73 /* Shared ring entry */ \ 74 union __name##_sring_entry { \ 75 __req_t req; \ 76 __rsp_t rsp; \ 77 }; \ 78 \ 79 /* Shared ring page */ \ 80 struct __name##_sring { \ 81 RING_IDX req_prod, req_event; \ 82 RING_IDX rsp_prod, rsp_event; \ 83 uint8_t pad[48]; \ 84 union __name##_sring_entry ring[1]; /* variable-length */ \ 85 }; \ 86 \ 87 /* "Front" end's private variables */ \ 88 struct __name##_front_ring { \ 89 RING_IDX req_prod_pvt; \ 90 RING_IDX rsp_cons; \ 91 unsigned int nr_ents; \ 92 struct __name##_sring *sring; \ 93 }; \ 94 \ 95 /* "Back" end's private variables */ \ 96 struct __name##_back_ring { \ 97 RING_IDX rsp_prod_pvt; \ 98 RING_IDX req_cons; \ 99 unsigned int nr_ents; \ 100 struct __name##_sring *sring; \ 101 }; 102 103 /* 104 * Macros for manipulating rings. 105 * 106 * FRONT_RING_whatever works on the "front end" of a ring: here 107 * requests are pushed on to the ring and responses taken off it. 108 * 109 * BACK_RING_whatever works on the "back end" of a ring: here 110 * requests are taken off the ring and responses put on. 111 * 112 * N.B. these macros do NO INTERLOCKS OR FLOW CONTROL. 113 * This is OK in 1-for-1 request-response situations where the 114 * requestor (front end) never has more than RING_SIZE()-1 115 * outstanding requests. 116 */ 117 118 /* Initialising empty rings */ 119 #define SHARED_RING_INIT(_s) do { \ 120 (_s)->req_prod = (_s)->rsp_prod = 0; \ 121 (_s)->req_event = (_s)->rsp_event = 1; \ 122 memset((_s)->pad, 0, sizeof((_s)->pad)); \ 123 } while(0) 124 125 #define FRONT_RING_INIT(_r, _s, __size) do { \ 126 (_r)->req_prod_pvt = 0; \ 127 (_r)->rsp_cons = 0; \ 128 (_r)->nr_ents = __RING_SIZE(_s, __size); \ 129 (_r)->sring = (_s); \ 130 } while (0) 131 132 #define BACK_RING_INIT(_r, _s, __size) do { \ 133 (_r)->rsp_prod_pvt = 0; \ 134 (_r)->req_cons = 0; \ 135 (_r)->nr_ents = __RING_SIZE(_s, __size); \ 136 (_r)->sring = (_s); \ 137 } while (0) 138 139 /* Initialize to existing shared indexes -- for recovery */ 140 #define FRONT_RING_ATTACH(_r, _s, __size) do { \ 141 (_r)->sring = (_s); \ 142 (_r)->req_prod_pvt = (_s)->req_prod; \ 143 (_r)->rsp_cons = (_s)->rsp_prod; \ 144 (_r)->nr_ents = __RING_SIZE(_s, __size); \ 145 } while (0) 146 147 #define BACK_RING_ATTACH(_r, _s, __size) do { \ 148 (_r)->sring = (_s); \ 149 (_r)->rsp_prod_pvt = (_s)->rsp_prod; \ 150 (_r)->req_cons = (_s)->req_prod; \ 151 (_r)->nr_ents = __RING_SIZE(_s, __size); \ 152 } while (0) 153 154 /* How big is this ring? */ 155 #define RING_SIZE(_r) \ 156 ((_r)->nr_ents) 157 158 /* Number of free requests (for use on front side only). */ 159 #define RING_FREE_REQUESTS(_r) \ 160 (RING_SIZE(_r) - ((_r)->req_prod_pvt - (_r)->rsp_cons)) 161 162 /* Test if there is an empty slot available on the front ring. 163 * (This is only meaningful from the front. ) 164 */ 165 #define RING_FULL(_r) \ 166 (RING_FREE_REQUESTS(_r) == 0) 167 168 /* Test if there are outstanding messages to be processed on a ring. */ 169 #define RING_HAS_UNCONSUMED_RESPONSES(_r) \ 170 ((_r)->sring->rsp_prod - (_r)->rsp_cons) 171 172 #define RING_HAS_UNCONSUMED_REQUESTS(_r) \ 173 ({ \ 174 unsigned int req = (_r)->sring->req_prod - (_r)->req_cons; \ 175 unsigned int rsp = RING_SIZE(_r) - \ 176 ((_r)->req_cons - (_r)->rsp_prod_pvt); \ 177 req < rsp ? req : rsp; \ 178 }) 179 180 /* Direct access to individual ring elements, by index. */ 181 #define RING_GET_REQUEST(_r, _idx) \ 182 (&((_r)->sring->ring[((_idx) & (RING_SIZE(_r) - 1))].req)) 183 184 /* 185 * Get a local copy of a request. 186 * 187 * Use this in preference to RING_GET_REQUEST() so all processing is 188 * done on a local copy that cannot be modified by the other end. 189 * 190 * Note that https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145 may cause this 191 * to be ineffective where _req is a struct which consists of only bitfields. 192 */ 193 #define RING_COPY_REQUEST(_r, _idx, _req) do { \ 194 /* Use volatile to force the copy into _req. */ \ 195 *(_req) = *(volatile typeof(_req))RING_GET_REQUEST(_r, _idx); \ 196 } while (0) 197 198 #define RING_GET_RESPONSE(_r, _idx) \ 199 (&((_r)->sring->ring[((_idx) & (RING_SIZE(_r) - 1))].rsp)) 200 201 /* Loop termination condition: Would the specified index overflow the ring? */ 202 #define RING_REQUEST_CONS_OVERFLOW(_r, _cons) \ 203 (((_cons) - (_r)->rsp_prod_pvt) >= RING_SIZE(_r)) 204 205 /* Ill-behaved frontend determination: Can there be this many requests? */ 206 #define RING_REQUEST_PROD_OVERFLOW(_r, _prod) \ 207 (((_prod) - (_r)->rsp_prod_pvt) > RING_SIZE(_r)) 208 209 210 #define RING_PUSH_REQUESTS(_r) do { \ 211 virt_wmb(); /* back sees requests /before/ updated producer index */ \ 212 (_r)->sring->req_prod = (_r)->req_prod_pvt; \ 213 } while (0) 214 215 #define RING_PUSH_RESPONSES(_r) do { \ 216 virt_wmb(); /* front sees responses /before/ updated producer index */ \ 217 (_r)->sring->rsp_prod = (_r)->rsp_prod_pvt; \ 218 } while (0) 219 220 /* 221 * Notification hold-off (req_event and rsp_event): 222 * 223 * When queueing requests or responses on a shared ring, it may not always be 224 * necessary to notify the remote end. For example, if requests are in flight 225 * in a backend, the front may be able to queue further requests without 226 * notifying the back (if the back checks for new requests when it queues 227 * responses). 228 * 229 * When enqueuing requests or responses: 230 * 231 * Use RING_PUSH_{REQUESTS,RESPONSES}_AND_CHECK_NOTIFY(). The second argument 232 * is a boolean return value. True indicates that the receiver requires an 233 * asynchronous notification. 234 * 235 * After dequeuing requests or responses (before sleeping the connection): 236 * 237 * Use RING_FINAL_CHECK_FOR_REQUESTS() or RING_FINAL_CHECK_FOR_RESPONSES(). 238 * The second argument is a boolean return value. True indicates that there 239 * are pending messages on the ring (i.e., the connection should not be put 240 * to sleep). 241 * 242 * These macros will set the req_event/rsp_event field to trigger a 243 * notification on the very next message that is enqueued. If you want to 244 * create batches of work (i.e., only receive a notification after several 245 * messages have been enqueued) then you will need to create a customised 246 * version of the FINAL_CHECK macro in your own code, which sets the event 247 * field appropriately. 248 */ 249 250 #define RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(_r, _notify) do { \ 251 RING_IDX __old = (_r)->sring->req_prod; \ 252 RING_IDX __new = (_r)->req_prod_pvt; \ 253 virt_wmb(); /* back sees requests /before/ updated producer index */ \ 254 (_r)->sring->req_prod = __new; \ 255 virt_mb(); /* back sees new requests /before/ we check req_event */ \ 256 (_notify) = ((RING_IDX)(__new - (_r)->sring->req_event) < \ 257 (RING_IDX)(__new - __old)); \ 258 } while (0) 259 260 #define RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(_r, _notify) do { \ 261 RING_IDX __old = (_r)->sring->rsp_prod; \ 262 RING_IDX __new = (_r)->rsp_prod_pvt; \ 263 virt_wmb(); /* front sees responses /before/ updated producer index */ \ 264 (_r)->sring->rsp_prod = __new; \ 265 virt_mb(); /* front sees new responses /before/ we check rsp_event */ \ 266 (_notify) = ((RING_IDX)(__new - (_r)->sring->rsp_event) < \ 267 (RING_IDX)(__new - __old)); \ 268 } while (0) 269 270 #define RING_FINAL_CHECK_FOR_REQUESTS(_r, _work_to_do) do { \ 271 (_work_to_do) = RING_HAS_UNCONSUMED_REQUESTS(_r); \ 272 if (_work_to_do) break; \ 273 (_r)->sring->req_event = (_r)->req_cons + 1; \ 274 virt_mb(); \ 275 (_work_to_do) = RING_HAS_UNCONSUMED_REQUESTS(_r); \ 276 } while (0) 277 278 #define RING_FINAL_CHECK_FOR_RESPONSES(_r, _work_to_do) do { \ 279 (_work_to_do) = RING_HAS_UNCONSUMED_RESPONSES(_r); \ 280 if (_work_to_do) break; \ 281 (_r)->sring->rsp_event = (_r)->rsp_cons + 1; \ 282 virt_mb(); \ 283 (_work_to_do) = RING_HAS_UNCONSUMED_RESPONSES(_r); \ 284 } while (0) 285 286 287 /* 288 * DEFINE_XEN_FLEX_RING_AND_INTF defines two monodirectional rings and 289 * functions to check if there is data on the ring, and to read and 290 * write to them. 291 * 292 * DEFINE_XEN_FLEX_RING is similar to DEFINE_XEN_FLEX_RING_AND_INTF, but 293 * does not define the indexes page. As different protocols can have 294 * extensions to the basic format, this macro allow them to define their 295 * own struct. 296 * 297 * XEN_FLEX_RING_SIZE 298 * Convenience macro to calculate the size of one of the two rings 299 * from the overall order. 300 * 301 * $NAME_mask 302 * Function to apply the size mask to an index, to reduce the index 303 * within the range [0-size]. 304 * 305 * $NAME_read_packet 306 * Function to read data from the ring. The amount of data to read is 307 * specified by the "size" argument. 308 * 309 * $NAME_write_packet 310 * Function to write data to the ring. The amount of data to write is 311 * specified by the "size" argument. 312 * 313 * $NAME_get_ring_ptr 314 * Convenience function that returns a pointer to read/write to the 315 * ring at the right location. 316 * 317 * $NAME_data_intf 318 * Indexes page, shared between frontend and backend. It also 319 * contains the array of grant refs. 320 * 321 * $NAME_queued 322 * Function to calculate how many bytes are currently on the ring, 323 * ready to be read. It can also be used to calculate how much free 324 * space is currently on the ring (XEN_FLEX_RING_SIZE() - 325 * $NAME_queued()). 326 */ 327 328 #ifndef XEN_PAGE_SHIFT 329 /* The PAGE_SIZE for ring protocols and hypercall interfaces is always 330 * 4K, regardless of the architecture, and page granularity chosen by 331 * operating systems. 332 */ 333 #define XEN_PAGE_SHIFT 12 334 #endif 335 #define XEN_FLEX_RING_SIZE(order) \ 336 (1UL << ((order) + XEN_PAGE_SHIFT - 1)) 337 338 #define DEFINE_XEN_FLEX_RING(name) \ 339 static inline RING_IDX name##_mask(RING_IDX idx, RING_IDX ring_size) \ 340 { \ 341 return idx & (ring_size - 1); \ 342 } \ 343 \ 344 static inline unsigned char *name##_get_ring_ptr(unsigned char *buf, \ 345 RING_IDX idx, \ 346 RING_IDX ring_size) \ 347 { \ 348 return buf + name##_mask(idx, ring_size); \ 349 } \ 350 \ 351 static inline void name##_read_packet(void *opaque, \ 352 const unsigned char *buf, \ 353 size_t size, \ 354 RING_IDX masked_prod, \ 355 RING_IDX *masked_cons, \ 356 RING_IDX ring_size) \ 357 { \ 358 if (*masked_cons < masked_prod || \ 359 size <= ring_size - *masked_cons) { \ 360 memcpy(opaque, buf + *masked_cons, size); \ 361 } else { \ 362 memcpy(opaque, buf + *masked_cons, ring_size - *masked_cons); \ 363 memcpy((unsigned char *)opaque + ring_size - *masked_cons, buf, \ 364 size - (ring_size - *masked_cons)); \ 365 } \ 366 *masked_cons = name##_mask(*masked_cons + size, ring_size); \ 367 } \ 368 \ 369 static inline void name##_write_packet(unsigned char *buf, \ 370 const void *opaque, \ 371 size_t size, \ 372 RING_IDX *masked_prod, \ 373 RING_IDX masked_cons, \ 374 RING_IDX ring_size) \ 375 { \ 376 if (*masked_prod < masked_cons || \ 377 size <= ring_size - *masked_prod) { \ 378 memcpy(buf + *masked_prod, opaque, size); \ 379 } else { \ 380 memcpy(buf + *masked_prod, opaque, ring_size - *masked_prod); \ 381 memcpy(buf, (unsigned char *)opaque + (ring_size - *masked_prod), \ 382 size - (ring_size - *masked_prod)); \ 383 } \ 384 *masked_prod = name##_mask(*masked_prod + size, ring_size); \ 385 } \ 386 \ 387 static inline RING_IDX name##_queued(RING_IDX prod, \ 388 RING_IDX cons, \ 389 RING_IDX ring_size) \ 390 { \ 391 RING_IDX size; \ 392 \ 393 if (prod == cons) \ 394 return 0; \ 395 \ 396 prod = name##_mask(prod, ring_size); \ 397 cons = name##_mask(cons, ring_size); \ 398 \ 399 if (prod == cons) \ 400 return ring_size; \ 401 \ 402 if (prod > cons) \ 403 size = prod - cons; \ 404 else \ 405 size = ring_size - (cons - prod); \ 406 return size; \ 407 } \ 408 \ 409 struct name##_data { \ 410 unsigned char *in; /* half of the allocation */ \ 411 unsigned char *out; /* half of the allocation */ \ 412 } 413 414 #define DEFINE_XEN_FLEX_RING_AND_INTF(name) \ 415 struct name##_data_intf { \ 416 RING_IDX in_cons, in_prod; \ 417 \ 418 uint8_t pad1[56]; \ 419 \ 420 RING_IDX out_cons, out_prod; \ 421 \ 422 uint8_t pad2[56]; \ 423 \ 424 RING_IDX ring_order; \ 425 grant_ref_t ref[]; \ 426 }; \ 427 DEFINE_XEN_FLEX_RING(name) 428 429 #endif /* __XEN_PUBLIC_IO_RING_H__ */ 430