xref: /linux/include/uapi/mtd/ubi-user.h (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0+ WITH Linux-syscall-note */
2 /*
3  * Copyright © International Business Machines Corp., 2006
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 #ifndef __UBI_USER_H__
23 #define __UBI_USER_H__
24 
25 #include <linux/types.h>
26 
27 /*
28  * UBI device creation (the same as MTD device attachment)
29  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30  *
31  * MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI
32  * control device. The caller has to properly fill and pass
33  * &struct ubi_attach_req object - UBI will attach the MTD device specified in
34  * the request and return the newly created UBI device number as the ioctl
35  * return value.
36  *
37  * UBI device deletion (the same as MTD device detachment)
38  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
39  *
40  * An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI
41  * control device.
42  *
43  * UBI volume creation
44  * ~~~~~~~~~~~~~~~~~~~
45  *
46  * UBI volumes are created via the %UBI_IOCMKVOL ioctl command of UBI character
47  * device. A &struct ubi_mkvol_req object has to be properly filled and a
48  * pointer to it has to be passed to the ioctl.
49  *
50  * UBI volume deletion
51  * ~~~~~~~~~~~~~~~~~~~
52  *
53  * To delete a volume, the %UBI_IOCRMVOL ioctl command of the UBI character
54  * device should be used. A pointer to the 32-bit volume ID hast to be passed
55  * to the ioctl.
56  *
57  * UBI volume re-size
58  * ~~~~~~~~~~~~~~~~~~
59  *
60  * To re-size a volume, the %UBI_IOCRSVOL ioctl command of the UBI character
61  * device should be used. A &struct ubi_rsvol_req object has to be properly
62  * filled and a pointer to it has to be passed to the ioctl.
63  *
64  * UBI volumes re-name
65  * ~~~~~~~~~~~~~~~~~~~
66  *
67  * To re-name several volumes atomically at one go, the %UBI_IOCRNVOL command
68  * of the UBI character device should be used. A &struct ubi_rnvol_req object
69  * has to be properly filled and a pointer to it has to be passed to the ioctl.
70  *
71  * UBI volume update
72  * ~~~~~~~~~~~~~~~~~
73  *
74  * Volume update should be done via the %UBI_IOCVOLUP ioctl command of the
75  * corresponding UBI volume character device. A pointer to a 64-bit update
76  * size should be passed to the ioctl. After this, UBI expects user to write
77  * this number of bytes to the volume character device. The update is finished
78  * when the claimed number of bytes is passed. So, the volume update sequence
79  * is something like:
80  *
81  * fd = open("/dev/my_volume");
82  * ioctl(fd, UBI_IOCVOLUP, &image_size);
83  * write(fd, buf, image_size);
84  * close(fd);
85  *
86  * Logical eraseblock erase
87  * ~~~~~~~~~~~~~~~~~~~~~~~~
88  *
89  * To erase a logical eraseblock, the %UBI_IOCEBER ioctl command of the
90  * corresponding UBI volume character device should be used. This command
91  * unmaps the requested logical eraseblock, makes sure the corresponding
92  * physical eraseblock is successfully erased, and returns.
93  *
94  * Atomic logical eraseblock change
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Atomic logical eraseblock change operation is called using the %UBI_IOCEBCH
98  * ioctl command of the corresponding UBI volume character device. A pointer to
99  * a &struct ubi_leb_change_req object has to be passed to the ioctl. Then the
100  * user is expected to write the requested amount of bytes (similarly to what
101  * should be done in case of the "volume update" ioctl).
102  *
103  * Logical eraseblock map
104  * ~~~~~~~~~~~~~~~~~~~~~
105  *
106  * To map a logical eraseblock to a physical eraseblock, the %UBI_IOCEBMAP
107  * ioctl command should be used. A pointer to a &struct ubi_map_req object is
108  * expected to be passed. The ioctl maps the requested logical eraseblock to
109  * a physical eraseblock and returns.  Only non-mapped logical eraseblocks can
110  * be mapped. If the logical eraseblock specified in the request is already
111  * mapped to a physical eraseblock, the ioctl fails and returns error.
112  *
113  * Logical eraseblock unmap
114  * ~~~~~~~~~~~~~~~~~~~~~~~~
115  *
116  * To unmap a logical eraseblock to a physical eraseblock, the %UBI_IOCEBUNMAP
117  * ioctl command should be used. The ioctl unmaps the logical eraseblocks,
118  * schedules corresponding physical eraseblock for erasure, and returns. Unlike
119  * the "LEB erase" command, it does not wait for the physical eraseblock being
120  * erased. Note, the side effect of this is that if an unclean reboot happens
121  * after the unmap ioctl returns, you may find the LEB mapped again to the same
122  * physical eraseblock after the UBI is run again.
123  *
124  * Check if logical eraseblock is mapped
125  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
126  *
127  * To check if a logical eraseblock is mapped to a physical eraseblock, the
128  * %UBI_IOCEBISMAP ioctl command should be used. It returns %0 if the LEB is
129  * not mapped, and %1 if it is mapped.
130  *
131  * Set an UBI volume property
132  * ~~~~~~~~~~~~~~~~~~~~~~~~~
133  *
134  * To set an UBI volume property the %UBI_IOCSETPROP ioctl command should be
135  * used. A pointer to a &struct ubi_set_vol_prop_req object is expected to be
136  * passed. The object describes which property should be set, and to which value
137  * it should be set.
138  *
139  * Block devices on UBI volumes
140  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
141  *
142  * To create a R/O block device on top of an UBI volume the %UBI_IOCVOLCRBLK
143  * should be used. A pointer to a &struct ubi_blkcreate_req object is expected
144  * to be passed, which is not used and reserved for future usage.
145  *
146  * Conversely, to remove a block device the %UBI_IOCVOLRMBLK should be used,
147  * which takes no arguments.
148  */
149 
150 /*
151  * When a new UBI volume or UBI device is created, users may either specify the
152  * volume/device number they want to create or to let UBI automatically assign
153  * the number using these constants.
154  */
155 #define UBI_VOL_NUM_AUTO (-1)
156 #define UBI_DEV_NUM_AUTO (-1)
157 
158 /* Maximum volume name length */
159 #define UBI_MAX_VOLUME_NAME 127
160 
161 /* ioctl commands of UBI character devices */
162 
163 #define UBI_IOC_MAGIC 'o'
164 
165 /* Create an UBI volume */
166 #define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
167 /* Remove an UBI volume */
168 #define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, __s32)
169 /* Re-size an UBI volume */
170 #define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
171 /* Re-name volumes */
172 #define UBI_IOCRNVOL _IOW(UBI_IOC_MAGIC, 3, struct ubi_rnvol_req)
173 
174 /* Read the specified PEB and scrub it if there are bitflips */
175 #define UBI_IOCRPEB _IOW(UBI_IOC_MAGIC, 4, __s32)
176 /* Force scrubbing on the specified PEB */
177 #define UBI_IOCSPEB _IOW(UBI_IOC_MAGIC, 5, __s32)
178 
179 /* ioctl commands of the UBI control character device */
180 
181 #define UBI_CTRL_IOC_MAGIC 'o'
182 
183 /* Attach an MTD device */
184 #define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req)
185 /* Detach an MTD device */
186 #define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, __s32)
187 
188 /* ioctl commands of UBI volume character devices */
189 
190 #define UBI_VOL_IOC_MAGIC 'O'
191 
192 /* Start UBI volume update
193  * Note: This actually takes a pointer (__s64*), but we can't change
194  *       that without breaking the ABI on 32bit systems
195  */
196 #define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, __s64)
197 /* LEB erasure command, used for debugging, disabled by default */
198 #define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, __s32)
199 /* Atomic LEB change command */
200 #define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, __s32)
201 /* Map LEB command */
202 #define UBI_IOCEBMAP _IOW(UBI_VOL_IOC_MAGIC, 3, struct ubi_map_req)
203 /* Unmap LEB command */
204 #define UBI_IOCEBUNMAP _IOW(UBI_VOL_IOC_MAGIC, 4, __s32)
205 /* Check if LEB is mapped command */
206 #define UBI_IOCEBISMAP _IOR(UBI_VOL_IOC_MAGIC, 5, __s32)
207 /* Set an UBI volume property */
208 #define UBI_IOCSETVOLPROP _IOW(UBI_VOL_IOC_MAGIC, 6, \
209 			       struct ubi_set_vol_prop_req)
210 /* Create a R/O block device on top of an UBI volume */
211 #define UBI_IOCVOLCRBLK _IOW(UBI_VOL_IOC_MAGIC, 7, struct ubi_blkcreate_req)
212 /* Remove the R/O block device */
213 #define UBI_IOCVOLRMBLK _IO(UBI_VOL_IOC_MAGIC, 8)
214 
215 /* Maximum MTD device name length supported by UBI */
216 #define MAX_UBI_MTD_NAME_LEN 127
217 
218 /* Maximum amount of UBI volumes that can be re-named at one go */
219 #define UBI_MAX_RNVOL 32
220 
221 /*
222  * UBI volume type constants.
223  *
224  * @UBI_DYNAMIC_VOLUME: dynamic volume
225  * @UBI_STATIC_VOLUME:  static volume
226  */
227 enum {
228 	UBI_DYNAMIC_VOLUME = 3,
229 	UBI_STATIC_VOLUME  = 4,
230 };
231 
232 /*
233  * UBI set volume property ioctl constants.
234  *
235  * @UBI_VOL_PROP_DIRECT_WRITE: allow (any non-zero value) or disallow (value 0)
236  *                             user to directly write and erase individual
237  *                             eraseblocks on dynamic volumes
238  */
239 enum {
240 	UBI_VOL_PROP_DIRECT_WRITE = 1,
241 };
242 
243 /**
244  * struct ubi_attach_req - attach MTD device request.
245  * @ubi_num: UBI device number to create
246  * @mtd_num: MTD device number to attach
247  * @vid_hdr_offset: VID header offset (use defaults if %0)
248  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
249  * @padding: reserved for future, not used, has to be zeroed
250  * @disable_fm: whether disable fastmap
251  * @need_resv_pool: whether reserve free pebs for filling pool/wl_pool
252  *
253  * This data structure is used to specify MTD device UBI has to attach and the
254  * parameters it has to use. The number which should be assigned to the new UBI
255  * device is passed in @ubi_num. UBI may automatically assign the number if
256  * @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in
257  * @ubi_num.
258  *
259  * Most applications should pass %0 in @vid_hdr_offset to make UBI use default
260  * offset of the VID header within physical eraseblocks. The default offset is
261  * the next min. I/O unit after the EC header. For example, it will be offset
262  * 512 in case of a 512 bytes page NAND flash with no sub-page support. Or
263  * it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages.
264  *
265  * But in rare cases, if this optimizes things, the VID header may be placed to
266  * a different offset. For example, the boot-loader might do things faster if
267  * the VID header sits at the end of the first 2KiB NAND page with 4 sub-pages.
268  * As the boot-loader would not normally need to read EC headers (unless it
269  * needs UBI in RW mode), it might be faster to calculate ECC. This is weird
270  * example, but it real-life example. So, in this example, @vid_hdr_offer would
271  * be 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes
272  * aligned, which is OK, as UBI is clever enough to realize this is 4th
273  * sub-page of the first page and add needed padding.
274  *
275  * The @max_beb_per1024 is the maximum amount of bad PEBs UBI expects on the
276  * UBI device per 1024 eraseblocks.  This value is often given in an other form
277  * in the NAND datasheet (min NVB i.e. minimal number of valid blocks). The
278  * maximum expected bad eraseblocks per 1024 is then:
279  *    1024 * (1 - MinNVB / MaxNVB)
280  * Which gives 20 for most NAND devices.  This limit is used in order to derive
281  * amount of eraseblock UBI reserves for handling new bad blocks. If the device
282  * has more bad eraseblocks than this limit, UBI does not reserve any physical
283  * eraseblocks for new bad eraseblocks, but attempts to use available
284  * eraseblocks (if any). The accepted range is 0-768. If 0 is given, the
285  * default kernel value of %CONFIG_MTD_UBI_BEB_LIMIT will be used.
286  *
287  * If @disable_fm is not zero, ubi doesn't create new fastmap even the module
288  * param 'fm_autoconvert' is set, and existed old fastmap will be destroyed
289  * after doing full scanning.
290  */
291 struct ubi_attach_req {
292 	__s32 ubi_num;
293 	__s32 mtd_num;
294 	__s32 vid_hdr_offset;
295 	__s16 max_beb_per1024;
296 	__s8 disable_fm;
297 	__s8 need_resv_pool;
298 	__s8 padding[8];
299 };
300 
301 /*
302  * UBI volume flags.
303  *
304  * @UBI_VOL_SKIP_CRC_CHECK_FLG: skip the CRC check done on a static volume at
305  *				open time. Only valid for static volumes and
306  *				should only be used if the volume user has a
307  *				way to verify data integrity
308  */
309 enum {
310 	UBI_VOL_SKIP_CRC_CHECK_FLG = 0x1,
311 };
312 
313 #define UBI_VOL_VALID_FLGS	(UBI_VOL_SKIP_CRC_CHECK_FLG)
314 
315 /**
316  * struct ubi_mkvol_req - volume description data structure used in
317  *                        volume creation requests.
318  * @vol_id: volume number
319  * @alignment: volume alignment
320  * @bytes: volume size in bytes
321  * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
322  * @flags: volume flags (%UBI_VOL_SKIP_CRC_CHECK_FLG)
323  * @name_len: volume name length
324  * @padding2: reserved for future, not used, has to be zeroed
325  * @name: volume name
326  *
327  * This structure is used by user-space programs when creating new volumes. The
328  * @used_bytes field is only necessary when creating static volumes.
329  *
330  * The @alignment field specifies the required alignment of the volume logical
331  * eraseblock. This means, that the size of logical eraseblocks will be aligned
332  * to this number, i.e.,
333  *	(UBI device logical eraseblock size) mod (@alignment) = 0.
334  *
335  * To put it differently, the logical eraseblock of this volume may be slightly
336  * shortened in order to make it properly aligned. The alignment has to be
337  * multiple of the flash minimal input/output unit, or %1 to utilize the entire
338  * available space of logical eraseblocks.
339  *
340  * The @alignment field may be useful, for example, when one wants to maintain
341  * a block device on top of an UBI volume. In this case, it is desirable to fit
342  * an integer number of blocks in logical eraseblocks of this UBI volume. With
343  * alignment it is possible to update this volume using plane UBI volume image
344  * BLOBs, without caring about how to properly align them.
345  */
346 struct ubi_mkvol_req {
347 	__s32 vol_id;
348 	__s32 alignment;
349 	__s64 bytes;
350 	__s8 vol_type;
351 	__u8 flags;
352 	__s16 name_len;
353 	__s8 padding2[4];
354 	char name[UBI_MAX_VOLUME_NAME + 1];
355 } __packed;
356 
357 /**
358  * struct ubi_rsvol_req - a data structure used in volume re-size requests.
359  * @vol_id: ID of the volume to re-size
360  * @bytes: new size of the volume in bytes
361  *
362  * Re-sizing is possible for both dynamic and static volumes. But while dynamic
363  * volumes may be re-sized arbitrarily, static volumes cannot be made to be
364  * smaller than the number of bytes they bear. To arbitrarily shrink a static
365  * volume, it must be wiped out first (by means of volume update operation with
366  * zero number of bytes).
367  */
368 struct ubi_rsvol_req {
369 	__s64 bytes;
370 	__s32 vol_id;
371 } __packed;
372 
373 /**
374  * struct ubi_rnvol_req - volumes re-name request.
375  * @count: count of volumes to re-name
376  * @padding1:  reserved for future, not used, has to be zeroed
377  * @vol_id: ID of the volume to re-name
378  * @name_len: name length
379  * @padding2:  reserved for future, not used, has to be zeroed
380  * @name: new volume name
381  *
382  * UBI allows to re-name up to %32 volumes at one go. The count of volumes to
383  * re-name is specified in the @count field. The ID of the volumes to re-name
384  * and the new names are specified in the @vol_id and @name fields.
385  *
386  * The UBI volume re-name operation is atomic, which means that should power cut
387  * happen, the volumes will have either old name or new name. So the possible
388  * use-cases of this command is atomic upgrade. Indeed, to upgrade, say, volumes
389  * A and B one may create temporary volumes %A1 and %B1 with the new contents,
390  * then atomically re-name A1->A and B1->B, in which case old %A and %B will
391  * be removed.
392  *
393  * If it is not desirable to remove old A and B, the re-name request has to
394  * contain 4 entries: A1->A, A->A1, B1->B, B->B1, in which case old A1 and B1
395  * become A and B, and old A and B will become A1 and B1.
396  *
397  * It is also OK to request: A1->A, A1->X, B1->B, B->Y, in which case old A1
398  * and B1 become A and B, and old A and B become X and Y.
399  *
400  * In other words, in case of re-naming into an existing volume name, the
401  * existing volume is removed, unless it is re-named as well at the same
402  * re-name request.
403  */
404 struct ubi_rnvol_req {
405 	__s32 count;
406 	__s8 padding1[12];
407 	struct {
408 		__s32 vol_id;
409 		__s16 name_len;
410 		__s8  padding2[2];
411 		char    name[UBI_MAX_VOLUME_NAME + 1];
412 	} ents[UBI_MAX_RNVOL];
413 } __packed;
414 
415 /**
416  * struct ubi_leb_change_req - a data structure used in atomic LEB change
417  *                             requests.
418  * @lnum: logical eraseblock number to change
419  * @bytes: how many bytes will be written to the logical eraseblock
420  * @dtype: pass "3" for better compatibility with old kernels
421  * @padding: reserved for future, not used, has to be zeroed
422  *
423  * The @dtype field used to inform UBI about what kind of data will be written
424  * to the LEB: long term (value 1), short term (value 2), unknown (value 3).
425  * UBI tried to pick a PEB with lower erase counter for short term data and a
426  * PEB with higher erase counter for long term data. But this was not really
427  * used because users usually do not know this and could easily mislead UBI. We
428  * removed this feature in May 2012. UBI currently just ignores the @dtype
429  * field. But for better compatibility with older kernels it is recommended to
430  * set @dtype to 3 (unknown).
431  */
432 struct ubi_leb_change_req {
433 	__s32 lnum;
434 	__s32 bytes;
435 	__s8  dtype; /* obsolete, do not use! */
436 	__s8  padding[7];
437 } __packed;
438 
439 /**
440  * struct ubi_map_req - a data structure used in map LEB requests.
441  * @dtype: pass "3" for better compatibility with old kernels
442  * @lnum: logical eraseblock number to unmap
443  * @padding: reserved for future, not used, has to be zeroed
444  */
445 struct ubi_map_req {
446 	__s32 lnum;
447 	__s8  dtype; /* obsolete, do not use! */
448 	__s8  padding[3];
449 } __packed;
450 
451 
452 /**
453  * struct ubi_set_vol_prop_req - a data structure used to set an UBI volume
454  *                               property.
455  * @property: property to set (%UBI_VOL_PROP_DIRECT_WRITE)
456  * @padding: reserved for future, not used, has to be zeroed
457  * @value: value to set
458  */
459 struct ubi_set_vol_prop_req {
460 	__u8  property;
461 	__u8  padding[7];
462 	__u64 value;
463 }  __packed;
464 
465 /**
466  * struct ubi_blkcreate_req - a data structure used in block creation requests.
467  * @padding: reserved for future, not used, has to be zeroed
468  */
469 struct ubi_blkcreate_req {
470 	__s8  padding[128];
471 }  __packed;
472 
473 #endif /* __UBI_USER_H__ */
474