xref: /linux/include/uapi/drm/xe_drm.h (revision ff9fbcafbaf13346c742c0d672a22f5ac20b9d92)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #ifndef _UAPI_XE_DRM_H_
7 #define _UAPI_XE_DRM_H_
8 
9 #include "drm.h"
10 
11 #if defined(__cplusplus)
12 extern "C" {
13 #endif
14 
15 /*
16  * Please note that modifications to all structs defined here are
17  * subject to backwards-compatibility constraints.
18  * Sections in this file are organized as follows:
19  *   1. IOCTL definition
20  *   2. Extension definition and helper structs
21  *   3. IOCTL's Query structs in the order of the Query's entries.
22  *   4. The rest of IOCTL structs in the order of IOCTL declaration.
23  */
24 
25 /**
26  * DOC: Xe Device Block Diagram
27  *
28  * The diagram below represents a high-level simplification of a discrete
29  * GPU supported by the Xe driver. It shows some device components which
30  * are necessary to understand this API, as well as how their relations
31  * to each other. This diagram does not represent real hardware::
32  *
33  *   ┌──────────────────────────────────────────────────────────────────┐
34  *   │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
35  *   │ │        ┌───────────────────────┐   ┌─────┐       │ │ ┌─────┐ │ │
36  *   │ │        │         VRAM0         ├───┤ ... │       │ │ │VRAM1│ │ │
37  *   │ │        └───────────┬───────────┘   └─GT1─┘       │ │ └──┬──┘ │ │
38  *   │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
39  *   │ │ │ ┌─────────────────────┐  ┌─────────────────┐ │ │ │ │     │ │ │
40  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
41  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │RCS0 │ │BCS0 │ │ │ │ │ │     │ │ │
42  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
43  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
44  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VCS0 │ │VCS1 │ │ │ │ │ │     │ │ │
45  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
46  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
47  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
48  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
49  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
50  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │CCS0 │ │CCS1 │ │ │ │ │ │     │ │ │
51  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
52  *   │ │ │ └─────────DSS─────────┘  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
53  *   │ │ │                          │ │CCS2 │ │CCS3 │ │ │ │ │ │     │ │ │
54  *   │ │ │ ┌─────┐ ┌─────┐ ┌─────┐  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
55  *   │ │ │ │ ... │ │ ... │ │ ... │  │                 │ │ │ │ │     │ │ │
56  *   │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘  └─────Engines─────┘ │ │ │ │     │ │ │
57  *   │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
58  *   │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
59  *   └─────────────────────────────Device0───────┬──────────────────────┘
60  *                                               │
61  *                        ───────────────────────┴────────── PCI bus
62  */
63 
64 /**
65  * DOC: Xe uAPI Overview
66  *
67  * This section aims to describe the Xe's IOCTL entries, its structs, and other
68  * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
69  * entries and usage.
70  *
71  * List of supported IOCTLs:
72  *  - &DRM_IOCTL_XE_DEVICE_QUERY
73  *  - &DRM_IOCTL_XE_GEM_CREATE
74  *  - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
75  *  - &DRM_IOCTL_XE_VM_CREATE
76  *  - &DRM_IOCTL_XE_VM_DESTROY
77  *  - &DRM_IOCTL_XE_VM_BIND
78  *  - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
79  *  - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
80  *  - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
81  *  - &DRM_IOCTL_XE_EXEC
82  *  - &DRM_IOCTL_XE_WAIT_USER_FENCE
83  */
84 
85 /*
86  * xe specific ioctls.
87  *
88  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
89  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
90  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
91  */
92 #define DRM_XE_DEVICE_QUERY		0x00
93 #define DRM_XE_GEM_CREATE		0x01
94 #define DRM_XE_GEM_MMAP_OFFSET		0x02
95 #define DRM_XE_VM_CREATE		0x03
96 #define DRM_XE_VM_DESTROY		0x04
97 #define DRM_XE_VM_BIND			0x05
98 #define DRM_XE_EXEC_QUEUE_CREATE	0x06
99 #define DRM_XE_EXEC_QUEUE_DESTROY	0x07
100 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY	0x08
101 #define DRM_XE_EXEC			0x09
102 #define DRM_XE_WAIT_USER_FENCE		0x0a
103 /* Must be kept compact -- no holes */
104 
105 #define DRM_IOCTL_XE_DEVICE_QUERY		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
106 #define DRM_IOCTL_XE_GEM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
107 #define DRM_IOCTL_XE_GEM_MMAP_OFFSET		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
108 #define DRM_IOCTL_XE_VM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
109 #define DRM_IOCTL_XE_VM_DESTROY			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
110 #define DRM_IOCTL_XE_VM_BIND			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
111 #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
112 #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
113 #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY	DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
114 #define DRM_IOCTL_XE_EXEC			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
115 #define DRM_IOCTL_XE_WAIT_USER_FENCE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
116 
117 /**
118  * DOC: Xe IOCTL Extensions
119  *
120  * Before detailing the IOCTLs and its structs, it is important to highlight
121  * that every IOCTL in Xe is extensible.
122  *
123  * Many interfaces need to grow over time. In most cases we can simply
124  * extend the struct and have userspace pass in more data. Another option,
125  * as demonstrated by Vulkan's approach to providing extensions for forward
126  * and backward compatibility, is to use a list of optional structs to
127  * provide those extra details.
128  *
129  * The key advantage to using an extension chain is that it allows us to
130  * redefine the interface more easily than an ever growing struct of
131  * increasing complexity, and for large parts of that interface to be
132  * entirely optional. The downside is more pointer chasing; chasing across
133  * the __user boundary with pointers encapsulated inside u64.
134  *
135  * Example chaining:
136  *
137  * .. code-block:: C
138  *
139  *	struct drm_xe_user_extension ext3 {
140  *		.next_extension = 0, // end
141  *		.name = ...,
142  *	};
143  *	struct drm_xe_user_extension ext2 {
144  *		.next_extension = (uintptr_t)&ext3,
145  *		.name = ...,
146  *	};
147  *	struct drm_xe_user_extension ext1 {
148  *		.next_extension = (uintptr_t)&ext2,
149  *		.name = ...,
150  *	};
151  *
152  * Typically the struct drm_xe_user_extension would be embedded in some uAPI
153  * struct, and in this case we would feed it the head of the chain(i.e ext1),
154  * which would then apply all of the above extensions.
155 */
156 
157 /**
158  * struct drm_xe_user_extension - Base class for defining a chain of extensions
159  */
160 struct drm_xe_user_extension {
161 	/**
162 	 * @next_extension:
163 	 *
164 	 * Pointer to the next struct drm_xe_user_extension, or zero if the end.
165 	 */
166 	__u64 next_extension;
167 
168 	/**
169 	 * @name: Name of the extension.
170 	 *
171 	 * Note that the name here is just some integer.
172 	 *
173 	 * Also note that the name space for this is not global for the whole
174 	 * driver, but rather its scope/meaning is limited to the specific piece
175 	 * of uAPI which has embedded the struct drm_xe_user_extension.
176 	 */
177 	__u32 name;
178 
179 	/**
180 	 * @pad: MBZ
181 	 *
182 	 * All undefined bits must be zero.
183 	 */
184 	__u32 pad;
185 };
186 
187 /**
188  * struct drm_xe_ext_set_property - Generic set property extension
189  *
190  * A generic struct that allows any of the Xe's IOCTL to be extended
191  * with a set_property operation.
192  */
193 struct drm_xe_ext_set_property {
194 	/** @base: base user extension */
195 	struct drm_xe_user_extension base;
196 
197 	/** @property: property to set */
198 	__u32 property;
199 
200 	/** @pad: MBZ */
201 	__u32 pad;
202 
203 	/** @value: property value */
204 	__u64 value;
205 
206 	/** @reserved: Reserved */
207 	__u64 reserved[2];
208 };
209 
210 /**
211  * struct drm_xe_engine_class_instance - instance of an engine class
212  *
213  * It is returned as part of the @drm_xe_engine, but it also is used as
214  * the input of engine selection for both @drm_xe_exec_queue_create and
215  * @drm_xe_query_engine_cycles
216  *
217  * The @engine_class can be:
218  *  - %DRM_XE_ENGINE_CLASS_RENDER
219  *  - %DRM_XE_ENGINE_CLASS_COPY
220  *  - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
221  *  - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
222  *  - %DRM_XE_ENGINE_CLASS_COMPUTE
223  *  - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
224  *    hardware engine class). Used for creating ordered queues of VM
225  *    bind operations.
226  */
227 struct drm_xe_engine_class_instance {
228 #define DRM_XE_ENGINE_CLASS_RENDER		0
229 #define DRM_XE_ENGINE_CLASS_COPY		1
230 #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE	2
231 #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE	3
232 #define DRM_XE_ENGINE_CLASS_COMPUTE		4
233 #define DRM_XE_ENGINE_CLASS_VM_BIND		5
234 	/** @engine_class: engine class id */
235 	__u16 engine_class;
236 	/** @engine_instance: engine instance id */
237 	__u16 engine_instance;
238 	/** @gt_id: Unique ID of this GT within the PCI Device */
239 	__u16 gt_id;
240 	/** @pad: MBZ */
241 	__u16 pad;
242 };
243 
244 /**
245  * struct drm_xe_engine - describe hardware engine
246  */
247 struct drm_xe_engine {
248 	/** @instance: The @drm_xe_engine_class_instance */
249 	struct drm_xe_engine_class_instance instance;
250 
251 	/** @reserved: Reserved */
252 	__u64 reserved[3];
253 };
254 
255 /**
256  * struct drm_xe_query_engines - describe engines
257  *
258  * If a query is made with a struct @drm_xe_device_query where .query
259  * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
260  * struct @drm_xe_query_engines in .data.
261  */
262 struct drm_xe_query_engines {
263 	/** @num_engines: number of engines returned in @engines */
264 	__u32 num_engines;
265 	/** @pad: MBZ */
266 	__u32 pad;
267 	/** @engines: The returned engines for this device */
268 	struct drm_xe_engine engines[];
269 };
270 
271 /**
272  * enum drm_xe_memory_class - Supported memory classes.
273  */
274 enum drm_xe_memory_class {
275 	/** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
276 	DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
277 	/**
278 	 * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
279 	 * represents the memory that is local to the device, which we
280 	 * call VRAM. Not valid on integrated platforms.
281 	 */
282 	DRM_XE_MEM_REGION_CLASS_VRAM
283 };
284 
285 /**
286  * struct drm_xe_mem_region - Describes some region as known to
287  * the driver.
288  */
289 struct drm_xe_mem_region {
290 	/**
291 	 * @mem_class: The memory class describing this region.
292 	 *
293 	 * See enum drm_xe_memory_class for supported values.
294 	 */
295 	__u16 mem_class;
296 	/**
297 	 * @instance: The unique ID for this region, which serves as the
298 	 * index in the placement bitmask used as argument for
299 	 * &DRM_IOCTL_XE_GEM_CREATE
300 	 */
301 	__u16 instance;
302 	/**
303 	 * @min_page_size: Min page-size in bytes for this region.
304 	 *
305 	 * When the kernel allocates memory for this region, the
306 	 * underlying pages will be at least @min_page_size in size.
307 	 * Buffer objects with an allowable placement in this region must be
308 	 * created with a size aligned to this value.
309 	 * GPU virtual address mappings of (parts of) buffer objects that
310 	 * may be placed in this region must also have their GPU virtual
311 	 * address and range aligned to this value.
312 	 * Affected IOCTLS will return %-EINVAL if alignment restrictions are
313 	 * not met.
314 	 */
315 	__u32 min_page_size;
316 	/**
317 	 * @total_size: The usable size in bytes for this region.
318 	 */
319 	__u64 total_size;
320 	/**
321 	 * @used: Estimate of the memory used in bytes for this region.
322 	 *
323 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
324 	 * accounting.  Without this the value here will always equal
325 	 * zero.
326 	 */
327 	__u64 used;
328 	/**
329 	 * @cpu_visible_size: How much of this region can be CPU
330 	 * accessed, in bytes.
331 	 *
332 	 * This will always be <= @total_size, and the remainder (if
333 	 * any) will not be CPU accessible. If the CPU accessible part
334 	 * is smaller than @total_size then this is referred to as a
335 	 * small BAR system.
336 	 *
337 	 * On systems without small BAR (full BAR), the probed_size will
338 	 * always equal the @total_size, since all of it will be CPU
339 	 * accessible.
340 	 *
341 	 * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
342 	 * regions (for other types the value here will always equal
343 	 * zero).
344 	 */
345 	__u64 cpu_visible_size;
346 	/**
347 	 * @cpu_visible_used: Estimate of CPU visible memory used, in
348 	 * bytes.
349 	 *
350 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
351 	 * accounting. Without this the value here will always equal
352 	 * zero.  Note this is only currently tracked for
353 	 * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
354 	 * here will always be zero).
355 	 */
356 	__u64 cpu_visible_used;
357 	/** @reserved: Reserved */
358 	__u64 reserved[6];
359 };
360 
361 /**
362  * struct drm_xe_query_mem_regions - describe memory regions
363  *
364  * If a query is made with a struct drm_xe_device_query where .query
365  * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
366  * struct drm_xe_query_mem_regions in .data.
367  */
368 struct drm_xe_query_mem_regions {
369 	/** @num_mem_regions: number of memory regions returned in @mem_regions */
370 	__u32 num_mem_regions;
371 	/** @pad: MBZ */
372 	__u32 pad;
373 	/** @mem_regions: The returned memory regions for this device */
374 	struct drm_xe_mem_region mem_regions[];
375 };
376 
377 /**
378  * struct drm_xe_query_config - describe the device configuration
379  *
380  * If a query is made with a struct drm_xe_device_query where .query
381  * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
382  * struct drm_xe_query_config in .data.
383  *
384  * The index in @info can be:
385  *  - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
386  *    and the device revision (next 8 bits)
387  *  - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
388  *    configuration, see list below
389  *
390  *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
391  *      has usable VRAM
392  *  - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
393  *    required by this device, typically SZ_4K or SZ_64K
394  *  - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
395  *  - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
396  *    available exec queue priority
397  */
398 struct drm_xe_query_config {
399 	/** @num_params: number of parameters returned in info */
400 	__u32 num_params;
401 
402 	/** @pad: MBZ */
403 	__u32 pad;
404 
405 #define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID	0
406 #define DRM_XE_QUERY_CONFIG_FLAGS			1
407 	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM	(1 << 0)
408 #define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT		2
409 #define DRM_XE_QUERY_CONFIG_VA_BITS			3
410 #define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY	4
411 	/** @info: array of elements containing the config info */
412 	__u64 info[];
413 };
414 
415 /**
416  * struct drm_xe_gt - describe an individual GT.
417  *
418  * To be used with drm_xe_query_gt_list, which will return a list with all the
419  * existing GT individual descriptions.
420  * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
421  * implementing graphics and/or media operations.
422  *
423  * The index in @type can be:
424  *  - %DRM_XE_QUERY_GT_TYPE_MAIN
425  *  - %DRM_XE_QUERY_GT_TYPE_MEDIA
426  */
427 struct drm_xe_gt {
428 #define DRM_XE_QUERY_GT_TYPE_MAIN		0
429 #define DRM_XE_QUERY_GT_TYPE_MEDIA		1
430 	/** @type: GT type: Main or Media */
431 	__u16 type;
432 	/** @tile_id: Tile ID where this GT lives (Information only) */
433 	__u16 tile_id;
434 	/** @gt_id: Unique ID of this GT within the PCI Device */
435 	__u16 gt_id;
436 	/** @pad: MBZ */
437 	__u16 pad[3];
438 	/** @reference_clock: A clock frequency for timestamp */
439 	__u32 reference_clock;
440 	/**
441 	 * @near_mem_regions: Bit mask of instances from
442 	 * drm_xe_query_mem_regions that are nearest to the current engines
443 	 * of this GT.
444 	 * Each index in this mask refers directly to the struct
445 	 * drm_xe_query_mem_regions' instance, no assumptions should
446 	 * be made about order. The type of each region is described
447 	 * by struct drm_xe_query_mem_regions' mem_class.
448 	 */
449 	__u64 near_mem_regions;
450 	/**
451 	 * @far_mem_regions: Bit mask of instances from
452 	 * drm_xe_query_mem_regions that are far from the engines of this GT.
453 	 * In general, they have extra indirections when compared to the
454 	 * @near_mem_regions. For a discrete device this could mean system
455 	 * memory and memory living in a different tile.
456 	 * Each index in this mask refers directly to the struct
457 	 * drm_xe_query_mem_regions' instance, no assumptions should
458 	 * be made about order. The type of each region is described
459 	 * by struct drm_xe_query_mem_regions' mem_class.
460 	 */
461 	__u64 far_mem_regions;
462 	/** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
463 	__u16 ip_ver_major;
464 	/** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
465 	__u16 ip_ver_minor;
466 	/** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
467 	__u16 ip_ver_rev;
468 	/** @pad2: MBZ */
469 	__u16 pad2;
470 	/** @reserved: Reserved */
471 	__u64 reserved[7];
472 };
473 
474 /**
475  * struct drm_xe_query_gt_list - A list with GT description items.
476  *
477  * If a query is made with a struct drm_xe_device_query where .query
478  * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
479  * drm_xe_query_gt_list in .data.
480  */
481 struct drm_xe_query_gt_list {
482 	/** @num_gt: number of GT items returned in gt_list */
483 	__u32 num_gt;
484 	/** @pad: MBZ */
485 	__u32 pad;
486 	/** @gt_list: The GT list returned for this device */
487 	struct drm_xe_gt gt_list[];
488 };
489 
490 /**
491  * struct drm_xe_query_topology_mask - describe the topology mask of a GT
492  *
493  * This is the hardware topology which reflects the internal physical
494  * structure of the GPU.
495  *
496  * If a query is made with a struct drm_xe_device_query where .query
497  * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
498  * struct drm_xe_query_topology_mask in .data.
499  *
500  * The @type can be:
501  *  - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
502  *    (DSS) available for geometry operations. For example a query response
503  *    containing the following in mask:
504  *    ``DSS_GEOMETRY    ff ff ff ff 00 00 00 00``
505  *    means 32 DSS are available for geometry.
506  *  - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
507  *    (DSS) available for compute operations. For example a query response
508  *    containing the following in mask:
509  *    ``DSS_COMPUTE    ff ff ff ff 00 00 00 00``
510  *    means 32 DSS are available for compute.
511  *  - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
512  *    available per Dual Sub Slices (DSS). For example a query response
513  *    containing the following in mask:
514  *    ``EU_PER_DSS    ff ff 00 00 00 00 00 00``
515  *    means each DSS has 16 EU.
516  */
517 struct drm_xe_query_topology_mask {
518 	/** @gt_id: GT ID the mask is associated with */
519 	__u16 gt_id;
520 
521 #define DRM_XE_TOPO_DSS_GEOMETRY	1
522 #define DRM_XE_TOPO_DSS_COMPUTE		2
523 #define DRM_XE_TOPO_EU_PER_DSS		4
524 	/** @type: type of mask */
525 	__u16 type;
526 
527 	/** @num_bytes: number of bytes in requested mask */
528 	__u32 num_bytes;
529 
530 	/** @mask: little-endian mask of @num_bytes */
531 	__u8 mask[];
532 };
533 
534 /**
535  * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
536  *
537  * If a query is made with a struct drm_xe_device_query where .query is equal to
538  * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
539  * in .data. struct drm_xe_query_engine_cycles is allocated by the user and
540  * .data points to this allocated structure.
541  *
542  * The query returns the engine cycles, which along with GT's @reference_clock,
543  * can be used to calculate the engine timestamp. In addition the
544  * query returns a set of cpu timestamps that indicate when the command
545  * streamer cycle count was captured.
546  */
547 struct drm_xe_query_engine_cycles {
548 	/**
549 	 * @eci: This is input by the user and is the engine for which command
550 	 * streamer cycles is queried.
551 	 */
552 	struct drm_xe_engine_class_instance eci;
553 
554 	/**
555 	 * @clockid: This is input by the user and is the reference clock id for
556 	 * CPU timestamp. For definition, see clock_gettime(2) and
557 	 * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
558 	 * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
559 	 */
560 	__s32 clockid;
561 
562 	/** @width: Width of the engine cycle counter in bits. */
563 	__u32 width;
564 
565 	/**
566 	 * @engine_cycles: Engine cycles as read from its register
567 	 * at 0x358 offset.
568 	 */
569 	__u64 engine_cycles;
570 
571 	/**
572 	 * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
573 	 * reading the engine_cycles register using the reference clockid set by the
574 	 * user.
575 	 */
576 	__u64 cpu_timestamp;
577 
578 	/**
579 	 * @cpu_delta: Time delta in ns captured around reading the lower dword
580 	 * of the engine_cycles register.
581 	 */
582 	__u64 cpu_delta;
583 };
584 
585 /**
586  * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
587  *
588  * Given a uc_type this will return the branch, major, minor and patch version
589  * of the micro-controller firmware.
590  */
591 struct drm_xe_query_uc_fw_version {
592 	/** @uc_type: The micro-controller type to query firmware version */
593 #define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
594 #define XE_QUERY_UC_TYPE_HUC 1
595 	__u16 uc_type;
596 
597 	/** @pad: MBZ */
598 	__u16 pad;
599 
600 	/** @branch_ver: branch uc fw version */
601 	__u32 branch_ver;
602 	/** @major_ver: major uc fw version */
603 	__u32 major_ver;
604 	/** @minor_ver: minor uc fw version */
605 	__u32 minor_ver;
606 	/** @patch_ver: patch uc fw version */
607 	__u32 patch_ver;
608 
609 	/** @pad2: MBZ */
610 	__u32 pad2;
611 
612 	/** @reserved: Reserved */
613 	__u64 reserved;
614 };
615 
616 /**
617  * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
618  * structure to query device information
619  *
620  * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
621  * and sets the value in the query member. This determines the type of
622  * the structure provided by the driver in data, among struct drm_xe_query_*.
623  *
624  * The @query can be:
625  *  - %DRM_XE_DEVICE_QUERY_ENGINES
626  *  - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
627  *  - %DRM_XE_DEVICE_QUERY_CONFIG
628  *  - %DRM_XE_DEVICE_QUERY_GT_LIST
629  *  - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
630  *    configuration of the device such as information on slices, memory,
631  *    caches, and so on. It is provided as a table of key / value
632  *    attributes.
633  *  - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
634  *  - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
635  *
636  * If size is set to 0, the driver fills it with the required size for
637  * the requested type of data to query. If size is equal to the required
638  * size, the queried information is copied into data. If size is set to
639  * a value different from 0 and different from the required size, the
640  * IOCTL call returns -EINVAL.
641  *
642  * For example the following code snippet allows retrieving and printing
643  * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
644  *
645  * .. code-block:: C
646  *
647  *     struct drm_xe_query_engines *engines;
648  *     struct drm_xe_device_query query = {
649  *         .extensions = 0,
650  *         .query = DRM_XE_DEVICE_QUERY_ENGINES,
651  *         .size = 0,
652  *         .data = 0,
653  *     };
654  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
655  *     engines = malloc(query.size);
656  *     query.data = (uintptr_t)engines;
657  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
658  *     for (int i = 0; i < engines->num_engines; i++) {
659  *         printf("Engine %d: %s\n", i,
660  *             engines->engines[i].instance.engine_class ==
661  *                 DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
662  *             engines->engines[i].instance.engine_class ==
663  *                 DRM_XE_ENGINE_CLASS_COPY ? "COPY":
664  *             engines->engines[i].instance.engine_class ==
665  *                 DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
666  *             engines->engines[i].instance.engine_class ==
667  *                 DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
668  *             engines->engines[i].instance.engine_class ==
669  *                 DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
670  *             "UNKNOWN");
671  *     }
672  *     free(engines);
673  */
674 struct drm_xe_device_query {
675 	/** @extensions: Pointer to the first extension struct, if any */
676 	__u64 extensions;
677 
678 #define DRM_XE_DEVICE_QUERY_ENGINES		0
679 #define DRM_XE_DEVICE_QUERY_MEM_REGIONS		1
680 #define DRM_XE_DEVICE_QUERY_CONFIG		2
681 #define DRM_XE_DEVICE_QUERY_GT_LIST		3
682 #define DRM_XE_DEVICE_QUERY_HWCONFIG		4
683 #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY		5
684 #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES	6
685 #define DRM_XE_DEVICE_QUERY_UC_FW_VERSION	7
686 	/** @query: The type of data to query */
687 	__u32 query;
688 
689 	/** @size: Size of the queried data */
690 	__u32 size;
691 
692 	/** @data: Queried data is placed here */
693 	__u64 data;
694 
695 	/** @reserved: Reserved */
696 	__u64 reserved[2];
697 };
698 
699 /**
700  * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
701  * gem creation
702  *
703  * The @flags can be:
704  *  - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING
705  *  - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
706  *  - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
707  *    possible placement, ensure that the corresponding VRAM allocation
708  *    will always use the CPU accessible part of VRAM. This is important
709  *    for small-bar systems (on full-bar systems this gets turned into a
710  *    noop).
711  *    Note1: System memory can be used as an extra placement if the kernel
712  *    should spill the allocation to system memory, if space can't be made
713  *    available in the CPU accessible part of VRAM (giving the same
714  *    behaviour as the i915 interface, see
715  *    I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
716  *    Note2: For clear-color CCS surfaces the kernel needs to read the
717  *    clear-color value stored in the buffer, and on discrete platforms we
718  *    need to use VRAM for display surfaces, therefore the kernel requires
719  *    setting this flag for such objects, otherwise an error is thrown on
720  *    small-bar systems.
721  *
722  * @cpu_caching supports the following values:
723  *  - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
724  *    caching. On iGPU this can't be used for scanout surfaces. Currently
725  *    not allowed for objects placed in VRAM.
726  *  - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
727  *    is uncached. Scanout surfaces should likely use this. All objects
728  *    that can be placed in VRAM must use this.
729  */
730 struct drm_xe_gem_create {
731 	/** @extensions: Pointer to the first extension struct, if any */
732 	__u64 extensions;
733 
734 	/**
735 	 * @size: Size of the object to be created, must match region
736 	 * (system or vram) minimum alignment (&min_page_size).
737 	 */
738 	__u64 size;
739 
740 	/**
741 	 * @placement: A mask of memory instances of where BO can be placed.
742 	 * Each index in this mask refers directly to the struct
743 	 * drm_xe_query_mem_regions' instance, no assumptions should
744 	 * be made about order. The type of each region is described
745 	 * by struct drm_xe_query_mem_regions' mem_class.
746 	 */
747 	__u32 placement;
748 
749 #define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING		(1 << 0)
750 #define DRM_XE_GEM_CREATE_FLAG_SCANOUT			(1 << 1)
751 #define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM	(1 << 2)
752 	/**
753 	 * @flags: Flags, currently a mask of memory instances of where BO can
754 	 * be placed
755 	 */
756 	__u32 flags;
757 
758 	/**
759 	 * @vm_id: Attached VM, if any
760 	 *
761 	 * If a VM is specified, this BO must:
762 	 *
763 	 *  1. Only ever be bound to that VM.
764 	 *  2. Cannot be exported as a PRIME fd.
765 	 */
766 	__u32 vm_id;
767 
768 	/**
769 	 * @handle: Returned handle for the object.
770 	 *
771 	 * Object handles are nonzero.
772 	 */
773 	__u32 handle;
774 
775 #define DRM_XE_GEM_CPU_CACHING_WB                      1
776 #define DRM_XE_GEM_CPU_CACHING_WC                      2
777 	/**
778 	 * @cpu_caching: The CPU caching mode to select for this object. If
779 	 * mmaping the object the mode selected here will also be used. The
780 	 * exception is when mapping system memory (including data evicted
781 	 * to system) on discrete GPUs. The caching mode selected will
782 	 * then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency
783 	 * between GPU- and CPU is guaranteed. The caching mode of
784 	 * existing CPU-mappings will be updated transparently to
785 	 * user-space clients.
786 	 */
787 	__u16 cpu_caching;
788 	/** @pad: MBZ */
789 	__u16 pad[3];
790 
791 	/** @reserved: Reserved */
792 	__u64 reserved[2];
793 };
794 
795 /**
796  * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
797  */
798 struct drm_xe_gem_mmap_offset {
799 	/** @extensions: Pointer to the first extension struct, if any */
800 	__u64 extensions;
801 
802 	/** @handle: Handle for the object being mapped. */
803 	__u32 handle;
804 
805 	/** @flags: Must be zero */
806 	__u32 flags;
807 
808 	/** @offset: The fake offset to use for subsequent mmap call */
809 	__u64 offset;
810 
811 	/** @reserved: Reserved */
812 	__u64 reserved[2];
813 };
814 
815 /**
816  * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
817  *
818  * The @flags can be:
819  *  - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE
820  *  - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
821  *    exec submissions to its exec_queues that don't have an upper time
822  *    limit on the job execution time. But exec submissions to these
823  *    don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ,
824  *    DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF,
825  *    used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL.
826  *    LR VMs can be created in recoverable page-fault mode using
827  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
828  *    If that flag is omitted, the UMD can not rely on the slightly
829  *    different per-VM overcommit semantics that are enabled by
830  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
831  *    still enable recoverable pagefaults if supported by the device.
832  *  - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
833  *    DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
834  *    demand when accessed, and also allows per-VM overcommit of memory.
835  *    The xe driver internally uses recoverable pagefaults to implement
836  *    this.
837  */
838 struct drm_xe_vm_create {
839 	/** @extensions: Pointer to the first extension struct, if any */
840 	__u64 extensions;
841 
842 #define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE	(1 << 0)
843 #define DRM_XE_VM_CREATE_FLAG_LR_MODE	        (1 << 1)
844 #define DRM_XE_VM_CREATE_FLAG_FAULT_MODE	(1 << 2)
845 	/** @flags: Flags */
846 	__u32 flags;
847 
848 	/** @vm_id: Returned VM ID */
849 	__u32 vm_id;
850 
851 	/** @reserved: Reserved */
852 	__u64 reserved[2];
853 };
854 
855 /**
856  * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
857  */
858 struct drm_xe_vm_destroy {
859 	/** @vm_id: VM ID */
860 	__u32 vm_id;
861 
862 	/** @pad: MBZ */
863 	__u32 pad;
864 
865 	/** @reserved: Reserved */
866 	__u64 reserved[2];
867 };
868 
869 /**
870  * struct drm_xe_vm_bind_op - run bind operations
871  *
872  * The @op can be:
873  *  - %DRM_XE_VM_BIND_OP_MAP
874  *  - %DRM_XE_VM_BIND_OP_UNMAP
875  *  - %DRM_XE_VM_BIND_OP_MAP_USERPTR
876  *  - %DRM_XE_VM_BIND_OP_UNMAP_ALL
877  *  - %DRM_XE_VM_BIND_OP_PREFETCH
878  *
879  * and the @flags can be:
880  *  - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
881  *    to ensure write protection
882  *  - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
883  *    MAP operation immediately rather than deferring the MAP to the page
884  *    fault handler. This is implied on a non-faulting VM as there is no
885  *    fault handler to defer to.
886  *  - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
887  *    tables are setup with a special bit which indicates writes are
888  *    dropped and all reads return zero. In the future, the NULL flags
889  *    will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
890  *    handle MBZ, and the BO offset MBZ. This flag is intended to
891  *    implement VK sparse bindings.
892  */
893 struct drm_xe_vm_bind_op {
894 	/** @extensions: Pointer to the first extension struct, if any */
895 	__u64 extensions;
896 
897 	/**
898 	 * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
899 	 */
900 	__u32 obj;
901 
902 	/**
903 	 * @pat_index: The platform defined @pat_index to use for this mapping.
904 	 * The index basically maps to some predefined memory attributes,
905 	 * including things like caching, coherency, compression etc.  The exact
906 	 * meaning of the pat_index is platform specific and defined in the
907 	 * Bspec and PRMs.  When the KMD sets up the binding the index here is
908 	 * encoded into the ppGTT PTE.
909 	 *
910 	 * For coherency the @pat_index needs to be at least 1way coherent when
911 	 * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
912 	 * will extract the coherency mode from the @pat_index and reject if
913 	 * there is a mismatch (see note below for pre-MTL platforms).
914 	 *
915 	 * Note: On pre-MTL platforms there is only a caching mode and no
916 	 * explicit coherency mode, but on such hardware there is always a
917 	 * shared-LLC (or is dgpu) so all GT memory accesses are coherent with
918 	 * CPU caches even with the caching mode set as uncached.  It's only the
919 	 * display engine that is incoherent (on dgpu it must be in VRAM which
920 	 * is always mapped as WC on the CPU). However to keep the uapi somewhat
921 	 * consistent with newer platforms the KMD groups the different cache
922 	 * levels into the following coherency buckets on all pre-MTL platforms:
923 	 *
924 	 *	ppGTT UC -> COH_NONE
925 	 *	ppGTT WC -> COH_NONE
926 	 *	ppGTT WT -> COH_NONE
927 	 *	ppGTT WB -> COH_AT_LEAST_1WAY
928 	 *
929 	 * In practice UC/WC/WT should only ever used for scanout surfaces on
930 	 * such platforms (or perhaps in general for dma-buf if shared with
931 	 * another device) since it is only the display engine that is actually
932 	 * incoherent.  Everything else should typically use WB given that we
933 	 * have a shared-LLC.  On MTL+ this completely changes and the HW
934 	 * defines the coherency mode as part of the @pat_index, where
935 	 * incoherent GT access is possible.
936 	 *
937 	 * Note: For userptr and externally imported dma-buf the kernel expects
938 	 * either 1WAY or 2WAY for the @pat_index.
939 	 *
940 	 * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
941 	 * on the @pat_index. For such mappings there is no actual memory being
942 	 * mapped (the address in the PTE is invalid), so the various PAT memory
943 	 * attributes likely do not apply.  Simply leaving as zero is one
944 	 * option (still a valid pat_index).
945 	 */
946 	__u16 pat_index;
947 
948 	/** @pad: MBZ */
949 	__u16 pad;
950 
951 	union {
952 		/**
953 		 * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
954 		 * ignored for unbind
955 		 */
956 		__u64 obj_offset;
957 
958 		/** @userptr: user pointer to bind on */
959 		__u64 userptr;
960 	};
961 
962 	/**
963 	 * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
964 	 */
965 	__u64 range;
966 
967 	/** @addr: Address to operate on, MBZ for UNMAP_ALL */
968 	__u64 addr;
969 
970 #define DRM_XE_VM_BIND_OP_MAP		0x0
971 #define DRM_XE_VM_BIND_OP_UNMAP		0x1
972 #define DRM_XE_VM_BIND_OP_MAP_USERPTR	0x2
973 #define DRM_XE_VM_BIND_OP_UNMAP_ALL	0x3
974 #define DRM_XE_VM_BIND_OP_PREFETCH	0x4
975 	/** @op: Bind operation to perform */
976 	__u32 op;
977 
978 #define DRM_XE_VM_BIND_FLAG_READONLY	(1 << 0)
979 #define DRM_XE_VM_BIND_FLAG_IMMEDIATE	(1 << 1)
980 #define DRM_XE_VM_BIND_FLAG_NULL	(1 << 2)
981 #define DRM_XE_VM_BIND_FLAG_DUMPABLE	(1 << 3)
982 	/** @flags: Bind flags */
983 	__u32 flags;
984 
985 	/**
986 	 * @prefetch_mem_region_instance: Memory region to prefetch VMA to.
987 	 * It is a region instance, not a mask.
988 	 * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
989 	 */
990 	__u32 prefetch_mem_region_instance;
991 
992 	/** @pad2: MBZ */
993 	__u32 pad2;
994 
995 	/** @reserved: Reserved */
996 	__u64 reserved[3];
997 };
998 
999 /**
1000  * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
1001  *
1002  * Below is an example of a minimal use of @drm_xe_vm_bind to
1003  * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
1004  * illustrate `userptr`. It can be synchronized by using the example
1005  * provided for @drm_xe_sync.
1006  *
1007  * .. code-block:: C
1008  *
1009  *     data = aligned_alloc(ALIGNMENT, BO_SIZE);
1010  *     struct drm_xe_vm_bind bind = {
1011  *         .vm_id = vm,
1012  *         .num_binds = 1,
1013  *         .bind.obj = 0,
1014  *         .bind.obj_offset = to_user_pointer(data),
1015  *         .bind.range = BO_SIZE,
1016  *         .bind.addr = BIND_ADDRESS,
1017  *         .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
1018  *         .bind.flags = 0,
1019  *         .num_syncs = 1,
1020  *         .syncs = &sync,
1021  *         .exec_queue_id = 0,
1022  *     };
1023  *     ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
1024  *
1025  */
1026 struct drm_xe_vm_bind {
1027 	/** @extensions: Pointer to the first extension struct, if any */
1028 	__u64 extensions;
1029 
1030 	/** @vm_id: The ID of the VM to bind to */
1031 	__u32 vm_id;
1032 
1033 	/**
1034 	 * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
1035 	 * and exec queue must have same vm_id. If zero, the default VM bind engine
1036 	 * is used.
1037 	 */
1038 	__u32 exec_queue_id;
1039 
1040 	/** @pad: MBZ */
1041 	__u32 pad;
1042 
1043 	/** @num_binds: number of binds in this IOCTL */
1044 	__u32 num_binds;
1045 
1046 	union {
1047 		/** @bind: used if num_binds == 1 */
1048 		struct drm_xe_vm_bind_op bind;
1049 
1050 		/**
1051 		 * @vector_of_binds: userptr to array of struct
1052 		 * drm_xe_vm_bind_op if num_binds > 1
1053 		 */
1054 		__u64 vector_of_binds;
1055 	};
1056 
1057 	/** @pad2: MBZ */
1058 	__u32 pad2;
1059 
1060 	/** @num_syncs: amount of syncs to wait on */
1061 	__u32 num_syncs;
1062 
1063 	/** @syncs: pointer to struct drm_xe_sync array */
1064 	__u64 syncs;
1065 
1066 	/** @reserved: Reserved */
1067 	__u64 reserved[2];
1068 };
1069 
1070 /**
1071  * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
1072  *
1073  * The example below shows how to use @drm_xe_exec_queue_create to create
1074  * a simple exec_queue (no parallel submission) of class
1075  * &DRM_XE_ENGINE_CLASS_RENDER.
1076  *
1077  * .. code-block:: C
1078  *
1079  *     struct drm_xe_engine_class_instance instance = {
1080  *         .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
1081  *     };
1082  *     struct drm_xe_exec_queue_create exec_queue_create = {
1083  *          .extensions = 0,
1084  *          .vm_id = vm,
1085  *          .num_bb_per_exec = 1,
1086  *          .num_eng_per_bb = 1,
1087  *          .instances = to_user_pointer(&instance),
1088  *     };
1089  *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1090  *
1091  */
1092 struct drm_xe_exec_queue_create {
1093 #define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY		0
1094 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY		0
1095 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE		1
1096 
1097 	/** @extensions: Pointer to the first extension struct, if any */
1098 	__u64 extensions;
1099 
1100 	/** @width: submission width (number BB per exec) for this exec queue */
1101 	__u16 width;
1102 
1103 	/** @num_placements: number of valid placements for this exec queue */
1104 	__u16 num_placements;
1105 
1106 	/** @vm_id: VM to use for this exec queue */
1107 	__u32 vm_id;
1108 
1109 	/** @flags: MBZ */
1110 	__u32 flags;
1111 
1112 	/** @exec_queue_id: Returned exec queue ID */
1113 	__u32 exec_queue_id;
1114 
1115 	/**
1116 	 * @instances: user pointer to a 2-d array of struct
1117 	 * drm_xe_engine_class_instance
1118 	 *
1119 	 * length = width (i) * num_placements (j)
1120 	 * index = j + i * width
1121 	 */
1122 	__u64 instances;
1123 
1124 	/** @reserved: Reserved */
1125 	__u64 reserved[2];
1126 };
1127 
1128 /**
1129  * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
1130  */
1131 struct drm_xe_exec_queue_destroy {
1132 	/** @exec_queue_id: Exec queue ID */
1133 	__u32 exec_queue_id;
1134 
1135 	/** @pad: MBZ */
1136 	__u32 pad;
1137 
1138 	/** @reserved: Reserved */
1139 	__u64 reserved[2];
1140 };
1141 
1142 /**
1143  * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
1144  *
1145  * The @property can be:
1146  *  - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
1147  */
1148 struct drm_xe_exec_queue_get_property {
1149 	/** @extensions: Pointer to the first extension struct, if any */
1150 	__u64 extensions;
1151 
1152 	/** @exec_queue_id: Exec queue ID */
1153 	__u32 exec_queue_id;
1154 
1155 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN	0
1156 	/** @property: property to get */
1157 	__u32 property;
1158 
1159 	/** @value: property value */
1160 	__u64 value;
1161 
1162 	/** @reserved: Reserved */
1163 	__u64 reserved[2];
1164 };
1165 
1166 /**
1167  * struct drm_xe_sync - sync object
1168  *
1169  * The @type can be:
1170  *  - %DRM_XE_SYNC_TYPE_SYNCOBJ
1171  *  - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
1172  *  - %DRM_XE_SYNC_TYPE_USER_FENCE
1173  *
1174  * and the @flags can be:
1175  *  - %DRM_XE_SYNC_FLAG_SIGNAL
1176  *
1177  * A minimal use of @drm_xe_sync looks like this:
1178  *
1179  * .. code-block:: C
1180  *
1181  *     struct drm_xe_sync sync = {
1182  *         .flags = DRM_XE_SYNC_FLAG_SIGNAL,
1183  *         .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
1184  *     };
1185  *     struct drm_syncobj_create syncobj_create = { 0 };
1186  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
1187  *     sync.handle = syncobj_create.handle;
1188  *         ...
1189  *         use of &sync in drm_xe_exec or drm_xe_vm_bind
1190  *         ...
1191  *     struct drm_syncobj_wait wait = {
1192  *         .handles = &sync.handle,
1193  *         .timeout_nsec = INT64_MAX,
1194  *         .count_handles = 1,
1195  *         .flags = 0,
1196  *         .first_signaled = 0,
1197  *         .pad = 0,
1198  *     };
1199  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
1200  */
1201 struct drm_xe_sync {
1202 	/** @extensions: Pointer to the first extension struct, if any */
1203 	__u64 extensions;
1204 
1205 #define DRM_XE_SYNC_TYPE_SYNCOBJ		0x0
1206 #define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ	0x1
1207 #define DRM_XE_SYNC_TYPE_USER_FENCE		0x2
1208 	/** @type: Type of the this sync object */
1209 	__u32 type;
1210 
1211 #define DRM_XE_SYNC_FLAG_SIGNAL	(1 << 0)
1212 	/** @flags: Sync Flags */
1213 	__u32 flags;
1214 
1215 	union {
1216 		/** @handle: Handle for the object */
1217 		__u32 handle;
1218 
1219 		/**
1220 		 * @addr: Address of user fence. When sync is passed in via exec
1221 		 * IOCTL this is a GPU address in the VM. When sync passed in via
1222 		 * VM bind IOCTL this is a user pointer. In either case, it is
1223 		 * the users responsibility that this address is present and
1224 		 * mapped when the user fence is signalled. Must be qword
1225 		 * aligned.
1226 		 */
1227 		__u64 addr;
1228 	};
1229 
1230 	/**
1231 	 * @timeline_value: Input for the timeline sync object. Needs to be
1232 	 * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ.
1233 	 */
1234 	__u64 timeline_value;
1235 
1236 	/** @reserved: Reserved */
1237 	__u64 reserved[2];
1238 };
1239 
1240 /**
1241  * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
1242  *
1243  * This is an example to use @drm_xe_exec for execution of the object
1244  * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
1245  * (see example in @drm_xe_exec_queue_create). It can be synchronized
1246  * by using the example provided for @drm_xe_sync.
1247  *
1248  * .. code-block:: C
1249  *
1250  *     struct drm_xe_exec exec = {
1251  *         .exec_queue_id = exec_queue,
1252  *         .syncs = &sync,
1253  *         .num_syncs = 1,
1254  *         .address = BIND_ADDRESS,
1255  *         .num_batch_buffer = 1,
1256  *     };
1257  *     ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
1258  *
1259  */
1260 struct drm_xe_exec {
1261 	/** @extensions: Pointer to the first extension struct, if any */
1262 	__u64 extensions;
1263 
1264 	/** @exec_queue_id: Exec queue ID for the batch buffer */
1265 	__u32 exec_queue_id;
1266 
1267 	/** @num_syncs: Amount of struct drm_xe_sync in array. */
1268 	__u32 num_syncs;
1269 
1270 	/** @syncs: Pointer to struct drm_xe_sync array. */
1271 	__u64 syncs;
1272 
1273 	/**
1274 	 * @address: address of batch buffer if num_batch_buffer == 1 or an
1275 	 * array of batch buffer addresses
1276 	 */
1277 	__u64 address;
1278 
1279 	/**
1280 	 * @num_batch_buffer: number of batch buffer in this exec, must match
1281 	 * the width of the engine
1282 	 */
1283 	__u16 num_batch_buffer;
1284 
1285 	/** @pad: MBZ */
1286 	__u16 pad[3];
1287 
1288 	/** @reserved: Reserved */
1289 	__u64 reserved[2];
1290 };
1291 
1292 /**
1293  * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
1294  *
1295  * Wait on user fence, XE will wake-up on every HW engine interrupt in the
1296  * instances list and check if user fence is complete::
1297  *
1298  *	(*addr & MASK) OP (VALUE & MASK)
1299  *
1300  * Returns to user on user fence completion or timeout.
1301  *
1302  * The @op can be:
1303  *  - %DRM_XE_UFENCE_WAIT_OP_EQ
1304  *  - %DRM_XE_UFENCE_WAIT_OP_NEQ
1305  *  - %DRM_XE_UFENCE_WAIT_OP_GT
1306  *  - %DRM_XE_UFENCE_WAIT_OP_GTE
1307  *  - %DRM_XE_UFENCE_WAIT_OP_LT
1308  *  - %DRM_XE_UFENCE_WAIT_OP_LTE
1309  *
1310  * and the @flags can be:
1311  *  - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
1312  *  - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
1313  *
1314  * The @mask values can be for example:
1315  *  - 0xffu for u8
1316  *  - 0xffffu for u16
1317  *  - 0xffffffffu for u32
1318  *  - 0xffffffffffffffffu for u64
1319  */
1320 struct drm_xe_wait_user_fence {
1321 	/** @extensions: Pointer to the first extension struct, if any */
1322 	__u64 extensions;
1323 
1324 	/**
1325 	 * @addr: user pointer address to wait on, must qword aligned
1326 	 */
1327 	__u64 addr;
1328 
1329 #define DRM_XE_UFENCE_WAIT_OP_EQ	0x0
1330 #define DRM_XE_UFENCE_WAIT_OP_NEQ	0x1
1331 #define DRM_XE_UFENCE_WAIT_OP_GT	0x2
1332 #define DRM_XE_UFENCE_WAIT_OP_GTE	0x3
1333 #define DRM_XE_UFENCE_WAIT_OP_LT	0x4
1334 #define DRM_XE_UFENCE_WAIT_OP_LTE	0x5
1335 	/** @op: wait operation (type of comparison) */
1336 	__u16 op;
1337 
1338 #define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME	(1 << 0)
1339 	/** @flags: wait flags */
1340 	__u16 flags;
1341 
1342 	/** @pad: MBZ */
1343 	__u32 pad;
1344 
1345 	/** @value: compare value */
1346 	__u64 value;
1347 
1348 	/** @mask: comparison mask */
1349 	__u64 mask;
1350 
1351 	/**
1352 	 * @timeout: how long to wait before bailing, value in nanoseconds.
1353 	 * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
1354 	 * it contains timeout expressed in nanoseconds to wait (fence will
1355 	 * expire at now() + timeout).
1356 	 * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
1357 	 * will end at timeout (uses system MONOTONIC_CLOCK).
1358 	 * Passing negative timeout leads to neverending wait.
1359 	 *
1360 	 * On relative timeout this value is updated with timeout left
1361 	 * (for restarting the call in case of signal delivery).
1362 	 * On absolute timeout this value stays intact (restarted call still
1363 	 * expire at the same point of time).
1364 	 */
1365 	__s64 timeout;
1366 
1367 	/** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
1368 	__u32 exec_queue_id;
1369 
1370 	/** @pad2: MBZ */
1371 	__u32 pad2;
1372 
1373 	/** @reserved: Reserved */
1374 	__u64 reserved[2];
1375 };
1376 
1377 #if defined(__cplusplus)
1378 }
1379 #endif
1380 
1381 #endif /* _UAPI_XE_DRM_H_ */
1382