xref: /linux/include/uapi/drm/xe_drm.h (revision dcdd6b84d9acaa0794c29de7024cfdb20cfd7b92)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #ifndef _UAPI_XE_DRM_H_
7 #define _UAPI_XE_DRM_H_
8 
9 #include "drm.h"
10 
11 #if defined(__cplusplus)
12 extern "C" {
13 #endif
14 
15 /*
16  * Please note that modifications to all structs defined here are
17  * subject to backwards-compatibility constraints.
18  * Sections in this file are organized as follows:
19  *   1. IOCTL definition
20  *   2. Extension definition and helper structs
21  *   3. IOCTL's Query structs in the order of the Query's entries.
22  *   4. The rest of IOCTL structs in the order of IOCTL declaration.
23  */
24 
25 /**
26  * DOC: Xe Device Block Diagram
27  *
28  * The diagram below represents a high-level simplification of a discrete
29  * GPU supported by the Xe driver. It shows some device components which
30  * are necessary to understand this API, as well as how their relations
31  * to each other. This diagram does not represent real hardware::
32  *
33  *   ┌──────────────────────────────────────────────────────────────────┐
34  *   │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
35  *   │ │        ┌───────────────────────┐   ┌─────┐       │ │ ┌─────┐ │ │
36  *   │ │        │         VRAM0         ├───┤ ... │       │ │ │VRAM1│ │ │
37  *   │ │        └───────────┬───────────┘   └─GT1─┘       │ │ └──┬──┘ │ │
38  *   │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
39  *   │ │ │ ┌─────────────────────┐  ┌─────────────────┐ │ │ │ │     │ │ │
40  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
41  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │RCS0 │ │BCS0 │ │ │ │ │ │     │ │ │
42  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
43  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
44  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VCS0 │ │VCS1 │ │ │ │ │ │     │ │ │
45  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
46  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
47  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
48  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
49  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
50  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │CCS0 │ │CCS1 │ │ │ │ │ │     │ │ │
51  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
52  *   │ │ │ └─────────DSS─────────┘  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
53  *   │ │ │                          │ │CCS2 │ │CCS3 │ │ │ │ │ │     │ │ │
54  *   │ │ │ ┌─────┐ ┌─────┐ ┌─────┐  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
55  *   │ │ │ │ ... │ │ ... │ │ ... │  │                 │ │ │ │ │     │ │ │
56  *   │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘  └─────Engines─────┘ │ │ │ │     │ │ │
57  *   │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
58  *   │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
59  *   └─────────────────────────────Device0───────┬──────────────────────┘
60  *                                               │
61  *                        ───────────────────────┴────────── PCI bus
62  */
63 
64 /**
65  * DOC: Xe uAPI Overview
66  *
67  * This section aims to describe the Xe's IOCTL entries, its structs, and other
68  * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
69  * entries and usage.
70  *
71  * List of supported IOCTLs:
72  *  - &DRM_IOCTL_XE_DEVICE_QUERY
73  *  - &DRM_IOCTL_XE_GEM_CREATE
74  *  - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
75  *  - &DRM_IOCTL_XE_VM_CREATE
76  *  - &DRM_IOCTL_XE_VM_DESTROY
77  *  - &DRM_IOCTL_XE_VM_BIND
78  *  - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
79  *  - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
80  *  - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
81  *  - &DRM_IOCTL_XE_EXEC
82  *  - &DRM_IOCTL_XE_WAIT_USER_FENCE
83  *  - &DRM_IOCTL_XE_OBSERVATION
84  */
85 
86 /*
87  * xe specific ioctls.
88  *
89  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
90  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
91  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
92  */
93 #define DRM_XE_DEVICE_QUERY		0x00
94 #define DRM_XE_GEM_CREATE		0x01
95 #define DRM_XE_GEM_MMAP_OFFSET		0x02
96 #define DRM_XE_VM_CREATE		0x03
97 #define DRM_XE_VM_DESTROY		0x04
98 #define DRM_XE_VM_BIND			0x05
99 #define DRM_XE_EXEC_QUEUE_CREATE	0x06
100 #define DRM_XE_EXEC_QUEUE_DESTROY	0x07
101 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY	0x08
102 #define DRM_XE_EXEC			0x09
103 #define DRM_XE_WAIT_USER_FENCE		0x0a
104 #define DRM_XE_OBSERVATION		0x0b
105 
106 /* Must be kept compact -- no holes */
107 
108 #define DRM_IOCTL_XE_DEVICE_QUERY		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
109 #define DRM_IOCTL_XE_GEM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
110 #define DRM_IOCTL_XE_GEM_MMAP_OFFSET		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
111 #define DRM_IOCTL_XE_VM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
112 #define DRM_IOCTL_XE_VM_DESTROY			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
113 #define DRM_IOCTL_XE_VM_BIND			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
114 #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
115 #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
116 #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY	DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
117 #define DRM_IOCTL_XE_EXEC			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
118 #define DRM_IOCTL_XE_WAIT_USER_FENCE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
119 #define DRM_IOCTL_XE_OBSERVATION		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_OBSERVATION, struct drm_xe_observation_param)
120 
121 /**
122  * DOC: Xe IOCTL Extensions
123  *
124  * Before detailing the IOCTLs and its structs, it is important to highlight
125  * that every IOCTL in Xe is extensible.
126  *
127  * Many interfaces need to grow over time. In most cases we can simply
128  * extend the struct and have userspace pass in more data. Another option,
129  * as demonstrated by Vulkan's approach to providing extensions for forward
130  * and backward compatibility, is to use a list of optional structs to
131  * provide those extra details.
132  *
133  * The key advantage to using an extension chain is that it allows us to
134  * redefine the interface more easily than an ever growing struct of
135  * increasing complexity, and for large parts of that interface to be
136  * entirely optional. The downside is more pointer chasing; chasing across
137  * the __user boundary with pointers encapsulated inside u64.
138  *
139  * Example chaining:
140  *
141  * .. code-block:: C
142  *
143  *	struct drm_xe_user_extension ext3 {
144  *		.next_extension = 0, // end
145  *		.name = ...,
146  *	};
147  *	struct drm_xe_user_extension ext2 {
148  *		.next_extension = (uintptr_t)&ext3,
149  *		.name = ...,
150  *	};
151  *	struct drm_xe_user_extension ext1 {
152  *		.next_extension = (uintptr_t)&ext2,
153  *		.name = ...,
154  *	};
155  *
156  * Typically the struct drm_xe_user_extension would be embedded in some uAPI
157  * struct, and in this case we would feed it the head of the chain(i.e ext1),
158  * which would then apply all of the above extensions.
159 */
160 
161 /**
162  * struct drm_xe_user_extension - Base class for defining a chain of extensions
163  */
164 struct drm_xe_user_extension {
165 	/**
166 	 * @next_extension:
167 	 *
168 	 * Pointer to the next struct drm_xe_user_extension, or zero if the end.
169 	 */
170 	__u64 next_extension;
171 
172 	/**
173 	 * @name: Name of the extension.
174 	 *
175 	 * Note that the name here is just some integer.
176 	 *
177 	 * Also note that the name space for this is not global for the whole
178 	 * driver, but rather its scope/meaning is limited to the specific piece
179 	 * of uAPI which has embedded the struct drm_xe_user_extension.
180 	 */
181 	__u32 name;
182 
183 	/**
184 	 * @pad: MBZ
185 	 *
186 	 * All undefined bits must be zero.
187 	 */
188 	__u32 pad;
189 };
190 
191 /**
192  * struct drm_xe_ext_set_property - Generic set property extension
193  *
194  * A generic struct that allows any of the Xe's IOCTL to be extended
195  * with a set_property operation.
196  */
197 struct drm_xe_ext_set_property {
198 	/** @base: base user extension */
199 	struct drm_xe_user_extension base;
200 
201 	/** @property: property to set */
202 	__u32 property;
203 
204 	/** @pad: MBZ */
205 	__u32 pad;
206 
207 	/** @value: property value */
208 	__u64 value;
209 
210 	/** @reserved: Reserved */
211 	__u64 reserved[2];
212 };
213 
214 /**
215  * struct drm_xe_engine_class_instance - instance of an engine class
216  *
217  * It is returned as part of the @drm_xe_engine, but it also is used as
218  * the input of engine selection for both @drm_xe_exec_queue_create and
219  * @drm_xe_query_engine_cycles
220  *
221  * The @engine_class can be:
222  *  - %DRM_XE_ENGINE_CLASS_RENDER
223  *  - %DRM_XE_ENGINE_CLASS_COPY
224  *  - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
225  *  - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
226  *  - %DRM_XE_ENGINE_CLASS_COMPUTE
227  *  - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
228  *    hardware engine class). Used for creating ordered queues of VM
229  *    bind operations.
230  */
231 struct drm_xe_engine_class_instance {
232 #define DRM_XE_ENGINE_CLASS_RENDER		0
233 #define DRM_XE_ENGINE_CLASS_COPY		1
234 #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE	2
235 #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE	3
236 #define DRM_XE_ENGINE_CLASS_COMPUTE		4
237 #define DRM_XE_ENGINE_CLASS_VM_BIND		5
238 	/** @engine_class: engine class id */
239 	__u16 engine_class;
240 	/** @engine_instance: engine instance id */
241 	__u16 engine_instance;
242 	/** @gt_id: Unique ID of this GT within the PCI Device */
243 	__u16 gt_id;
244 	/** @pad: MBZ */
245 	__u16 pad;
246 };
247 
248 /**
249  * struct drm_xe_engine - describe hardware engine
250  */
251 struct drm_xe_engine {
252 	/** @instance: The @drm_xe_engine_class_instance */
253 	struct drm_xe_engine_class_instance instance;
254 
255 	/** @reserved: Reserved */
256 	__u64 reserved[3];
257 };
258 
259 /**
260  * struct drm_xe_query_engines - describe engines
261  *
262  * If a query is made with a struct @drm_xe_device_query where .query
263  * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
264  * struct @drm_xe_query_engines in .data.
265  */
266 struct drm_xe_query_engines {
267 	/** @num_engines: number of engines returned in @engines */
268 	__u32 num_engines;
269 	/** @pad: MBZ */
270 	__u32 pad;
271 	/** @engines: The returned engines for this device */
272 	struct drm_xe_engine engines[];
273 };
274 
275 /**
276  * enum drm_xe_memory_class - Supported memory classes.
277  */
278 enum drm_xe_memory_class {
279 	/** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
280 	DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
281 	/**
282 	 * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
283 	 * represents the memory that is local to the device, which we
284 	 * call VRAM. Not valid on integrated platforms.
285 	 */
286 	DRM_XE_MEM_REGION_CLASS_VRAM
287 };
288 
289 /**
290  * struct drm_xe_mem_region - Describes some region as known to
291  * the driver.
292  */
293 struct drm_xe_mem_region {
294 	/**
295 	 * @mem_class: The memory class describing this region.
296 	 *
297 	 * See enum drm_xe_memory_class for supported values.
298 	 */
299 	__u16 mem_class;
300 	/**
301 	 * @instance: The unique ID for this region, which serves as the
302 	 * index in the placement bitmask used as argument for
303 	 * &DRM_IOCTL_XE_GEM_CREATE
304 	 */
305 	__u16 instance;
306 	/**
307 	 * @min_page_size: Min page-size in bytes for this region.
308 	 *
309 	 * When the kernel allocates memory for this region, the
310 	 * underlying pages will be at least @min_page_size in size.
311 	 * Buffer objects with an allowable placement in this region must be
312 	 * created with a size aligned to this value.
313 	 * GPU virtual address mappings of (parts of) buffer objects that
314 	 * may be placed in this region must also have their GPU virtual
315 	 * address and range aligned to this value.
316 	 * Affected IOCTLS will return %-EINVAL if alignment restrictions are
317 	 * not met.
318 	 */
319 	__u32 min_page_size;
320 	/**
321 	 * @total_size: The usable size in bytes for this region.
322 	 */
323 	__u64 total_size;
324 	/**
325 	 * @used: Estimate of the memory used in bytes for this region.
326 	 *
327 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
328 	 * accounting.  Without this the value here will always equal
329 	 * zero.
330 	 */
331 	__u64 used;
332 	/**
333 	 * @cpu_visible_size: How much of this region can be CPU
334 	 * accessed, in bytes.
335 	 *
336 	 * This will always be <= @total_size, and the remainder (if
337 	 * any) will not be CPU accessible. If the CPU accessible part
338 	 * is smaller than @total_size then this is referred to as a
339 	 * small BAR system.
340 	 *
341 	 * On systems without small BAR (full BAR), the probed_size will
342 	 * always equal the @total_size, since all of it will be CPU
343 	 * accessible.
344 	 *
345 	 * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
346 	 * regions (for other types the value here will always equal
347 	 * zero).
348 	 */
349 	__u64 cpu_visible_size;
350 	/**
351 	 * @cpu_visible_used: Estimate of CPU visible memory used, in
352 	 * bytes.
353 	 *
354 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
355 	 * accounting. Without this the value here will always equal
356 	 * zero.  Note this is only currently tracked for
357 	 * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
358 	 * here will always be zero).
359 	 */
360 	__u64 cpu_visible_used;
361 	/** @reserved: Reserved */
362 	__u64 reserved[6];
363 };
364 
365 /**
366  * struct drm_xe_query_mem_regions - describe memory regions
367  *
368  * If a query is made with a struct drm_xe_device_query where .query
369  * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
370  * struct drm_xe_query_mem_regions in .data.
371  */
372 struct drm_xe_query_mem_regions {
373 	/** @num_mem_regions: number of memory regions returned in @mem_regions */
374 	__u32 num_mem_regions;
375 	/** @pad: MBZ */
376 	__u32 pad;
377 	/** @mem_regions: The returned memory regions for this device */
378 	struct drm_xe_mem_region mem_regions[];
379 };
380 
381 /**
382  * struct drm_xe_query_config - describe the device configuration
383  *
384  * If a query is made with a struct drm_xe_device_query where .query
385  * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
386  * struct drm_xe_query_config in .data.
387  *
388  * The index in @info can be:
389  *  - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
390  *    and the device revision (next 8 bits)
391  *  - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
392  *    configuration, see list below
393  *
394  *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
395  *      has usable VRAM
396  *  - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
397  *    required by this device, typically SZ_4K or SZ_64K
398  *  - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
399  *  - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
400  *    available exec queue priority
401  */
402 struct drm_xe_query_config {
403 	/** @num_params: number of parameters returned in info */
404 	__u32 num_params;
405 
406 	/** @pad: MBZ */
407 	__u32 pad;
408 
409 #define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID	0
410 #define DRM_XE_QUERY_CONFIG_FLAGS			1
411 	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM	(1 << 0)
412 #define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT		2
413 #define DRM_XE_QUERY_CONFIG_VA_BITS			3
414 #define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY	4
415 	/** @info: array of elements containing the config info */
416 	__u64 info[];
417 };
418 
419 /**
420  * struct drm_xe_gt - describe an individual GT.
421  *
422  * To be used with drm_xe_query_gt_list, which will return a list with all the
423  * existing GT individual descriptions.
424  * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
425  * implementing graphics and/or media operations.
426  *
427  * The index in @type can be:
428  *  - %DRM_XE_QUERY_GT_TYPE_MAIN
429  *  - %DRM_XE_QUERY_GT_TYPE_MEDIA
430  */
431 struct drm_xe_gt {
432 #define DRM_XE_QUERY_GT_TYPE_MAIN		0
433 #define DRM_XE_QUERY_GT_TYPE_MEDIA		1
434 	/** @type: GT type: Main or Media */
435 	__u16 type;
436 	/** @tile_id: Tile ID where this GT lives (Information only) */
437 	__u16 tile_id;
438 	/** @gt_id: Unique ID of this GT within the PCI Device */
439 	__u16 gt_id;
440 	/** @pad: MBZ */
441 	__u16 pad[3];
442 	/** @reference_clock: A clock frequency for timestamp */
443 	__u32 reference_clock;
444 	/**
445 	 * @near_mem_regions: Bit mask of instances from
446 	 * drm_xe_query_mem_regions that are nearest to the current engines
447 	 * of this GT.
448 	 * Each index in this mask refers directly to the struct
449 	 * drm_xe_query_mem_regions' instance, no assumptions should
450 	 * be made about order. The type of each region is described
451 	 * by struct drm_xe_query_mem_regions' mem_class.
452 	 */
453 	__u64 near_mem_regions;
454 	/**
455 	 * @far_mem_regions: Bit mask of instances from
456 	 * drm_xe_query_mem_regions that are far from the engines of this GT.
457 	 * In general, they have extra indirections when compared to the
458 	 * @near_mem_regions. For a discrete device this could mean system
459 	 * memory and memory living in a different tile.
460 	 * Each index in this mask refers directly to the struct
461 	 * drm_xe_query_mem_regions' instance, no assumptions should
462 	 * be made about order. The type of each region is described
463 	 * by struct drm_xe_query_mem_regions' mem_class.
464 	 */
465 	__u64 far_mem_regions;
466 	/** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
467 	__u16 ip_ver_major;
468 	/** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
469 	__u16 ip_ver_minor;
470 	/** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
471 	__u16 ip_ver_rev;
472 	/** @pad2: MBZ */
473 	__u16 pad2;
474 	/** @reserved: Reserved */
475 	__u64 reserved[7];
476 };
477 
478 /**
479  * struct drm_xe_query_gt_list - A list with GT description items.
480  *
481  * If a query is made with a struct drm_xe_device_query where .query
482  * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
483  * drm_xe_query_gt_list in .data.
484  */
485 struct drm_xe_query_gt_list {
486 	/** @num_gt: number of GT items returned in gt_list */
487 	__u32 num_gt;
488 	/** @pad: MBZ */
489 	__u32 pad;
490 	/** @gt_list: The GT list returned for this device */
491 	struct drm_xe_gt gt_list[];
492 };
493 
494 /**
495  * struct drm_xe_query_topology_mask - describe the topology mask of a GT
496  *
497  * This is the hardware topology which reflects the internal physical
498  * structure of the GPU.
499  *
500  * If a query is made with a struct drm_xe_device_query where .query
501  * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
502  * struct drm_xe_query_topology_mask in .data.
503  *
504  * The @type can be:
505  *  - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
506  *    (DSS) available for geometry operations. For example a query response
507  *    containing the following in mask:
508  *    ``DSS_GEOMETRY    ff ff ff ff 00 00 00 00``
509  *    means 32 DSS are available for geometry.
510  *  - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
511  *    (DSS) available for compute operations. For example a query response
512  *    containing the following in mask:
513  *    ``DSS_COMPUTE    ff ff ff ff 00 00 00 00``
514  *    means 32 DSS are available for compute.
515  *  - %DRM_XE_TOPO_L3_BANK - To query the mask of enabled L3 banks.  This type
516  *    may be omitted if the driver is unable to query the mask from the
517  *    hardware.
518  *  - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
519  *    available per Dual Sub Slices (DSS). For example a query response
520  *    containing the following in mask:
521  *    ``EU_PER_DSS    ff ff 00 00 00 00 00 00``
522  *    means each DSS has 16 SIMD8 EUs. This type may be omitted if device
523  *    doesn't have SIMD8 EUs.
524  *  - %DRM_XE_TOPO_SIMD16_EU_PER_DSS - To query the mask of SIMD16 Execution
525  *    Units (EU) available per Dual Sub Slices (DSS). For example a query
526  *    response containing the following in mask:
527  *    ``SIMD16_EU_PER_DSS    ff ff 00 00 00 00 00 00``
528  *    means each DSS has 16 SIMD16 EUs. This type may be omitted if device
529  *    doesn't have SIMD16 EUs.
530  */
531 struct drm_xe_query_topology_mask {
532 	/** @gt_id: GT ID the mask is associated with */
533 	__u16 gt_id;
534 
535 #define DRM_XE_TOPO_DSS_GEOMETRY	1
536 #define DRM_XE_TOPO_DSS_COMPUTE		2
537 #define DRM_XE_TOPO_L3_BANK		3
538 #define DRM_XE_TOPO_EU_PER_DSS		4
539 #define DRM_XE_TOPO_SIMD16_EU_PER_DSS	5
540 	/** @type: type of mask */
541 	__u16 type;
542 
543 	/** @num_bytes: number of bytes in requested mask */
544 	__u32 num_bytes;
545 
546 	/** @mask: little-endian mask of @num_bytes */
547 	__u8 mask[];
548 };
549 
550 /**
551  * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
552  *
553  * If a query is made with a struct drm_xe_device_query where .query is equal to
554  * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
555  * in .data. struct drm_xe_query_engine_cycles is allocated by the user and
556  * .data points to this allocated structure.
557  *
558  * The query returns the engine cycles, which along with GT's @reference_clock,
559  * can be used to calculate the engine timestamp. In addition the
560  * query returns a set of cpu timestamps that indicate when the command
561  * streamer cycle count was captured.
562  */
563 struct drm_xe_query_engine_cycles {
564 	/**
565 	 * @eci: This is input by the user and is the engine for which command
566 	 * streamer cycles is queried.
567 	 */
568 	struct drm_xe_engine_class_instance eci;
569 
570 	/**
571 	 * @clockid: This is input by the user and is the reference clock id for
572 	 * CPU timestamp. For definition, see clock_gettime(2) and
573 	 * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
574 	 * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
575 	 */
576 	__s32 clockid;
577 
578 	/** @width: Width of the engine cycle counter in bits. */
579 	__u32 width;
580 
581 	/**
582 	 * @engine_cycles: Engine cycles as read from its register
583 	 * at 0x358 offset.
584 	 */
585 	__u64 engine_cycles;
586 
587 	/**
588 	 * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
589 	 * reading the engine_cycles register using the reference clockid set by the
590 	 * user.
591 	 */
592 	__u64 cpu_timestamp;
593 
594 	/**
595 	 * @cpu_delta: Time delta in ns captured around reading the lower dword
596 	 * of the engine_cycles register.
597 	 */
598 	__u64 cpu_delta;
599 };
600 
601 /**
602  * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
603  *
604  * Given a uc_type this will return the branch, major, minor and patch version
605  * of the micro-controller firmware.
606  */
607 struct drm_xe_query_uc_fw_version {
608 	/** @uc_type: The micro-controller type to query firmware version */
609 #define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
610 #define XE_QUERY_UC_TYPE_HUC 1
611 	__u16 uc_type;
612 
613 	/** @pad: MBZ */
614 	__u16 pad;
615 
616 	/** @branch_ver: branch uc fw version */
617 	__u32 branch_ver;
618 	/** @major_ver: major uc fw version */
619 	__u32 major_ver;
620 	/** @minor_ver: minor uc fw version */
621 	__u32 minor_ver;
622 	/** @patch_ver: patch uc fw version */
623 	__u32 patch_ver;
624 
625 	/** @pad2: MBZ */
626 	__u32 pad2;
627 
628 	/** @reserved: Reserved */
629 	__u64 reserved;
630 };
631 
632 /**
633  * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
634  * structure to query device information
635  *
636  * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
637  * and sets the value in the query member. This determines the type of
638  * the structure provided by the driver in data, among struct drm_xe_query_*.
639  *
640  * The @query can be:
641  *  - %DRM_XE_DEVICE_QUERY_ENGINES
642  *  - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
643  *  - %DRM_XE_DEVICE_QUERY_CONFIG
644  *  - %DRM_XE_DEVICE_QUERY_GT_LIST
645  *  - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
646  *    configuration of the device such as information on slices, memory,
647  *    caches, and so on. It is provided as a table of key / value
648  *    attributes.
649  *  - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
650  *  - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
651  *
652  * If size is set to 0, the driver fills it with the required size for
653  * the requested type of data to query. If size is equal to the required
654  * size, the queried information is copied into data. If size is set to
655  * a value different from 0 and different from the required size, the
656  * IOCTL call returns -EINVAL.
657  *
658  * For example the following code snippet allows retrieving and printing
659  * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
660  *
661  * .. code-block:: C
662  *
663  *     struct drm_xe_query_engines *engines;
664  *     struct drm_xe_device_query query = {
665  *         .extensions = 0,
666  *         .query = DRM_XE_DEVICE_QUERY_ENGINES,
667  *         .size = 0,
668  *         .data = 0,
669  *     };
670  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
671  *     engines = malloc(query.size);
672  *     query.data = (uintptr_t)engines;
673  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
674  *     for (int i = 0; i < engines->num_engines; i++) {
675  *         printf("Engine %d: %s\n", i,
676  *             engines->engines[i].instance.engine_class ==
677  *                 DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
678  *             engines->engines[i].instance.engine_class ==
679  *                 DRM_XE_ENGINE_CLASS_COPY ? "COPY":
680  *             engines->engines[i].instance.engine_class ==
681  *                 DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
682  *             engines->engines[i].instance.engine_class ==
683  *                 DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
684  *             engines->engines[i].instance.engine_class ==
685  *                 DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
686  *             "UNKNOWN");
687  *     }
688  *     free(engines);
689  */
690 struct drm_xe_device_query {
691 	/** @extensions: Pointer to the first extension struct, if any */
692 	__u64 extensions;
693 
694 #define DRM_XE_DEVICE_QUERY_ENGINES		0
695 #define DRM_XE_DEVICE_QUERY_MEM_REGIONS		1
696 #define DRM_XE_DEVICE_QUERY_CONFIG		2
697 #define DRM_XE_DEVICE_QUERY_GT_LIST		3
698 #define DRM_XE_DEVICE_QUERY_HWCONFIG		4
699 #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY		5
700 #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES	6
701 #define DRM_XE_DEVICE_QUERY_UC_FW_VERSION	7
702 #define DRM_XE_DEVICE_QUERY_OA_UNITS		8
703 	/** @query: The type of data to query */
704 	__u32 query;
705 
706 	/** @size: Size of the queried data */
707 	__u32 size;
708 
709 	/** @data: Queried data is placed here */
710 	__u64 data;
711 
712 	/** @reserved: Reserved */
713 	__u64 reserved[2];
714 };
715 
716 /**
717  * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
718  * gem creation
719  *
720  * The @flags can be:
721  *  - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING
722  *  - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
723  *  - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
724  *    possible placement, ensure that the corresponding VRAM allocation
725  *    will always use the CPU accessible part of VRAM. This is important
726  *    for small-bar systems (on full-bar systems this gets turned into a
727  *    noop).
728  *    Note1: System memory can be used as an extra placement if the kernel
729  *    should spill the allocation to system memory, if space can't be made
730  *    available in the CPU accessible part of VRAM (giving the same
731  *    behaviour as the i915 interface, see
732  *    I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
733  *    Note2: For clear-color CCS surfaces the kernel needs to read the
734  *    clear-color value stored in the buffer, and on discrete platforms we
735  *    need to use VRAM for display surfaces, therefore the kernel requires
736  *    setting this flag for such objects, otherwise an error is thrown on
737  *    small-bar systems.
738  *
739  * @cpu_caching supports the following values:
740  *  - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
741  *    caching. On iGPU this can't be used for scanout surfaces. Currently
742  *    not allowed for objects placed in VRAM.
743  *  - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
744  *    is uncached. Scanout surfaces should likely use this. All objects
745  *    that can be placed in VRAM must use this.
746  */
747 struct drm_xe_gem_create {
748 	/** @extensions: Pointer to the first extension struct, if any */
749 	__u64 extensions;
750 
751 	/**
752 	 * @size: Size of the object to be created, must match region
753 	 * (system or vram) minimum alignment (&min_page_size).
754 	 */
755 	__u64 size;
756 
757 	/**
758 	 * @placement: A mask of memory instances of where BO can be placed.
759 	 * Each index in this mask refers directly to the struct
760 	 * drm_xe_query_mem_regions' instance, no assumptions should
761 	 * be made about order. The type of each region is described
762 	 * by struct drm_xe_query_mem_regions' mem_class.
763 	 */
764 	__u32 placement;
765 
766 #define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING		(1 << 0)
767 #define DRM_XE_GEM_CREATE_FLAG_SCANOUT			(1 << 1)
768 #define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM	(1 << 2)
769 	/**
770 	 * @flags: Flags, currently a mask of memory instances of where BO can
771 	 * be placed
772 	 */
773 	__u32 flags;
774 
775 	/**
776 	 * @vm_id: Attached VM, if any
777 	 *
778 	 * If a VM is specified, this BO must:
779 	 *
780 	 *  1. Only ever be bound to that VM.
781 	 *  2. Cannot be exported as a PRIME fd.
782 	 */
783 	__u32 vm_id;
784 
785 	/**
786 	 * @handle: Returned handle for the object.
787 	 *
788 	 * Object handles are nonzero.
789 	 */
790 	__u32 handle;
791 
792 #define DRM_XE_GEM_CPU_CACHING_WB                      1
793 #define DRM_XE_GEM_CPU_CACHING_WC                      2
794 	/**
795 	 * @cpu_caching: The CPU caching mode to select for this object. If
796 	 * mmaping the object the mode selected here will also be used. The
797 	 * exception is when mapping system memory (including data evicted
798 	 * to system) on discrete GPUs. The caching mode selected will
799 	 * then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency
800 	 * between GPU- and CPU is guaranteed. The caching mode of
801 	 * existing CPU-mappings will be updated transparently to
802 	 * user-space clients.
803 	 */
804 	__u16 cpu_caching;
805 	/** @pad: MBZ */
806 	__u16 pad[3];
807 
808 	/** @reserved: Reserved */
809 	__u64 reserved[2];
810 };
811 
812 /**
813  * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
814  *
815  * The @flags can be:
816  *  - %DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER - For user to query special offset
817  *    for use in mmap ioctl. Writing to the returned mmap address will generate a
818  *    PCI memory barrier with low overhead (avoiding IOCTL call as well as writing
819  *    to VRAM which would also add overhead), acting like an MI_MEM_FENCE
820  *    instruction.
821  *
822  * Note: The mmap size can be at most 4K, due to HW limitations. As a result
823  * this interface is only supported on CPU architectures that support 4K page
824  * size. The mmap_offset ioctl will detect this and gracefully return an
825  * error, where userspace is expected to have a different fallback method for
826  * triggering a barrier.
827  *
828  * Roughly the usage would be as follows:
829  *
830  * .. code-block:: C
831  *
832  *     struct drm_xe_gem_mmap_offset mmo = {
833  *         .handle = 0, // must be set to 0
834  *         .flags = DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER,
835  *     };
836  *
837  *     err = ioctl(fd, DRM_IOCTL_XE_GEM_MMAP_OFFSET, &mmo);
838  *     map = mmap(NULL, size, PROT_WRITE, MAP_SHARED, fd, mmo.offset);
839  *     map[i] = 0xdeadbeaf; // issue barrier
840  */
841 struct drm_xe_gem_mmap_offset {
842 	/** @extensions: Pointer to the first extension struct, if any */
843 	__u64 extensions;
844 
845 	/** @handle: Handle for the object being mapped. */
846 	__u32 handle;
847 
848 #define DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER     (1 << 0)
849 	/** @flags: Flags */
850 	__u32 flags;
851 
852 	/** @offset: The fake offset to use for subsequent mmap call */
853 	__u64 offset;
854 
855 	/** @reserved: Reserved */
856 	__u64 reserved[2];
857 };
858 
859 /**
860  * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
861  *
862  * The @flags can be:
863  *  - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE
864  *  - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
865  *    exec submissions to its exec_queues that don't have an upper time
866  *    limit on the job execution time. But exec submissions to these
867  *    don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ,
868  *    DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF,
869  *    used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL.
870  *    LR VMs can be created in recoverable page-fault mode using
871  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
872  *    If that flag is omitted, the UMD can not rely on the slightly
873  *    different per-VM overcommit semantics that are enabled by
874  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
875  *    still enable recoverable pagefaults if supported by the device.
876  *  - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
877  *    DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
878  *    demand when accessed, and also allows per-VM overcommit of memory.
879  *    The xe driver internally uses recoverable pagefaults to implement
880  *    this.
881  */
882 struct drm_xe_vm_create {
883 	/** @extensions: Pointer to the first extension struct, if any */
884 	__u64 extensions;
885 
886 #define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE	(1 << 0)
887 #define DRM_XE_VM_CREATE_FLAG_LR_MODE	        (1 << 1)
888 #define DRM_XE_VM_CREATE_FLAG_FAULT_MODE	(1 << 2)
889 	/** @flags: Flags */
890 	__u32 flags;
891 
892 	/** @vm_id: Returned VM ID */
893 	__u32 vm_id;
894 
895 	/** @reserved: Reserved */
896 	__u64 reserved[2];
897 };
898 
899 /**
900  * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
901  */
902 struct drm_xe_vm_destroy {
903 	/** @vm_id: VM ID */
904 	__u32 vm_id;
905 
906 	/** @pad: MBZ */
907 	__u32 pad;
908 
909 	/** @reserved: Reserved */
910 	__u64 reserved[2];
911 };
912 
913 /**
914  * struct drm_xe_vm_bind_op - run bind operations
915  *
916  * The @op can be:
917  *  - %DRM_XE_VM_BIND_OP_MAP
918  *  - %DRM_XE_VM_BIND_OP_UNMAP
919  *  - %DRM_XE_VM_BIND_OP_MAP_USERPTR
920  *  - %DRM_XE_VM_BIND_OP_UNMAP_ALL
921  *  - %DRM_XE_VM_BIND_OP_PREFETCH
922  *
923  * and the @flags can be:
924  *  - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
925  *    to ensure write protection
926  *  - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
927  *    MAP operation immediately rather than deferring the MAP to the page
928  *    fault handler. This is implied on a non-faulting VM as there is no
929  *    fault handler to defer to.
930  *  - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
931  *    tables are setup with a special bit which indicates writes are
932  *    dropped and all reads return zero. In the future, the NULL flags
933  *    will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
934  *    handle MBZ, and the BO offset MBZ. This flag is intended to
935  *    implement VK sparse bindings.
936  */
937 struct drm_xe_vm_bind_op {
938 	/** @extensions: Pointer to the first extension struct, if any */
939 	__u64 extensions;
940 
941 	/**
942 	 * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
943 	 */
944 	__u32 obj;
945 
946 	/**
947 	 * @pat_index: The platform defined @pat_index to use for this mapping.
948 	 * The index basically maps to some predefined memory attributes,
949 	 * including things like caching, coherency, compression etc.  The exact
950 	 * meaning of the pat_index is platform specific and defined in the
951 	 * Bspec and PRMs.  When the KMD sets up the binding the index here is
952 	 * encoded into the ppGTT PTE.
953 	 *
954 	 * For coherency the @pat_index needs to be at least 1way coherent when
955 	 * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
956 	 * will extract the coherency mode from the @pat_index and reject if
957 	 * there is a mismatch (see note below for pre-MTL platforms).
958 	 *
959 	 * Note: On pre-MTL platforms there is only a caching mode and no
960 	 * explicit coherency mode, but on such hardware there is always a
961 	 * shared-LLC (or is dgpu) so all GT memory accesses are coherent with
962 	 * CPU caches even with the caching mode set as uncached.  It's only the
963 	 * display engine that is incoherent (on dgpu it must be in VRAM which
964 	 * is always mapped as WC on the CPU). However to keep the uapi somewhat
965 	 * consistent with newer platforms the KMD groups the different cache
966 	 * levels into the following coherency buckets on all pre-MTL platforms:
967 	 *
968 	 *	ppGTT UC -> COH_NONE
969 	 *	ppGTT WC -> COH_NONE
970 	 *	ppGTT WT -> COH_NONE
971 	 *	ppGTT WB -> COH_AT_LEAST_1WAY
972 	 *
973 	 * In practice UC/WC/WT should only ever used for scanout surfaces on
974 	 * such platforms (or perhaps in general for dma-buf if shared with
975 	 * another device) since it is only the display engine that is actually
976 	 * incoherent.  Everything else should typically use WB given that we
977 	 * have a shared-LLC.  On MTL+ this completely changes and the HW
978 	 * defines the coherency mode as part of the @pat_index, where
979 	 * incoherent GT access is possible.
980 	 *
981 	 * Note: For userptr and externally imported dma-buf the kernel expects
982 	 * either 1WAY or 2WAY for the @pat_index.
983 	 *
984 	 * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
985 	 * on the @pat_index. For such mappings there is no actual memory being
986 	 * mapped (the address in the PTE is invalid), so the various PAT memory
987 	 * attributes likely do not apply.  Simply leaving as zero is one
988 	 * option (still a valid pat_index).
989 	 */
990 	__u16 pat_index;
991 
992 	/** @pad: MBZ */
993 	__u16 pad;
994 
995 	union {
996 		/**
997 		 * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
998 		 * ignored for unbind
999 		 */
1000 		__u64 obj_offset;
1001 
1002 		/** @userptr: user pointer to bind on */
1003 		__u64 userptr;
1004 	};
1005 
1006 	/**
1007 	 * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
1008 	 */
1009 	__u64 range;
1010 
1011 	/** @addr: Address to operate on, MBZ for UNMAP_ALL */
1012 	__u64 addr;
1013 
1014 #define DRM_XE_VM_BIND_OP_MAP		0x0
1015 #define DRM_XE_VM_BIND_OP_UNMAP		0x1
1016 #define DRM_XE_VM_BIND_OP_MAP_USERPTR	0x2
1017 #define DRM_XE_VM_BIND_OP_UNMAP_ALL	0x3
1018 #define DRM_XE_VM_BIND_OP_PREFETCH	0x4
1019 	/** @op: Bind operation to perform */
1020 	__u32 op;
1021 
1022 #define DRM_XE_VM_BIND_FLAG_READONLY	(1 << 0)
1023 #define DRM_XE_VM_BIND_FLAG_IMMEDIATE	(1 << 1)
1024 #define DRM_XE_VM_BIND_FLAG_NULL	(1 << 2)
1025 #define DRM_XE_VM_BIND_FLAG_DUMPABLE	(1 << 3)
1026 	/** @flags: Bind flags */
1027 	__u32 flags;
1028 
1029 	/**
1030 	 * @prefetch_mem_region_instance: Memory region to prefetch VMA to.
1031 	 * It is a region instance, not a mask.
1032 	 * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
1033 	 */
1034 	__u32 prefetch_mem_region_instance;
1035 
1036 	/** @pad2: MBZ */
1037 	__u32 pad2;
1038 
1039 	/** @reserved: Reserved */
1040 	__u64 reserved[3];
1041 };
1042 
1043 /**
1044  * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
1045  *
1046  * Below is an example of a minimal use of @drm_xe_vm_bind to
1047  * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
1048  * illustrate `userptr`. It can be synchronized by using the example
1049  * provided for @drm_xe_sync.
1050  *
1051  * .. code-block:: C
1052  *
1053  *     data = aligned_alloc(ALIGNMENT, BO_SIZE);
1054  *     struct drm_xe_vm_bind bind = {
1055  *         .vm_id = vm,
1056  *         .num_binds = 1,
1057  *         .bind.obj = 0,
1058  *         .bind.obj_offset = to_user_pointer(data),
1059  *         .bind.range = BO_SIZE,
1060  *         .bind.addr = BIND_ADDRESS,
1061  *         .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
1062  *         .bind.flags = 0,
1063  *         .num_syncs = 1,
1064  *         .syncs = &sync,
1065  *         .exec_queue_id = 0,
1066  *     };
1067  *     ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
1068  *
1069  */
1070 struct drm_xe_vm_bind {
1071 	/** @extensions: Pointer to the first extension struct, if any */
1072 	__u64 extensions;
1073 
1074 	/** @vm_id: The ID of the VM to bind to */
1075 	__u32 vm_id;
1076 
1077 	/**
1078 	 * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
1079 	 * and exec queue must have same vm_id. If zero, the default VM bind engine
1080 	 * is used.
1081 	 */
1082 	__u32 exec_queue_id;
1083 
1084 	/** @pad: MBZ */
1085 	__u32 pad;
1086 
1087 	/** @num_binds: number of binds in this IOCTL */
1088 	__u32 num_binds;
1089 
1090 	union {
1091 		/** @bind: used if num_binds == 1 */
1092 		struct drm_xe_vm_bind_op bind;
1093 
1094 		/**
1095 		 * @vector_of_binds: userptr to array of struct
1096 		 * drm_xe_vm_bind_op if num_binds > 1
1097 		 */
1098 		__u64 vector_of_binds;
1099 	};
1100 
1101 	/** @pad2: MBZ */
1102 	__u32 pad2;
1103 
1104 	/** @num_syncs: amount of syncs to wait on */
1105 	__u32 num_syncs;
1106 
1107 	/** @syncs: pointer to struct drm_xe_sync array */
1108 	__u64 syncs;
1109 
1110 	/** @reserved: Reserved */
1111 	__u64 reserved[2];
1112 };
1113 
1114 /**
1115  * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
1116  *
1117  * The example below shows how to use @drm_xe_exec_queue_create to create
1118  * a simple exec_queue (no parallel submission) of class
1119  * &DRM_XE_ENGINE_CLASS_RENDER.
1120  *
1121  * .. code-block:: C
1122  *
1123  *     struct drm_xe_engine_class_instance instance = {
1124  *         .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
1125  *     };
1126  *     struct drm_xe_exec_queue_create exec_queue_create = {
1127  *          .extensions = 0,
1128  *          .vm_id = vm,
1129  *          .num_bb_per_exec = 1,
1130  *          .num_eng_per_bb = 1,
1131  *          .instances = to_user_pointer(&instance),
1132  *     };
1133  *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1134  *
1135  */
1136 struct drm_xe_exec_queue_create {
1137 #define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY		0
1138 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY		0
1139 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE		1
1140 
1141 	/** @extensions: Pointer to the first extension struct, if any */
1142 	__u64 extensions;
1143 
1144 	/** @width: submission width (number BB per exec) for this exec queue */
1145 	__u16 width;
1146 
1147 	/** @num_placements: number of valid placements for this exec queue */
1148 	__u16 num_placements;
1149 
1150 	/** @vm_id: VM to use for this exec queue */
1151 	__u32 vm_id;
1152 
1153 	/** @flags: MBZ */
1154 	__u32 flags;
1155 
1156 	/** @exec_queue_id: Returned exec queue ID */
1157 	__u32 exec_queue_id;
1158 
1159 	/**
1160 	 * @instances: user pointer to a 2-d array of struct
1161 	 * drm_xe_engine_class_instance
1162 	 *
1163 	 * length = width (i) * num_placements (j)
1164 	 * index = j + i * width
1165 	 */
1166 	__u64 instances;
1167 
1168 	/** @reserved: Reserved */
1169 	__u64 reserved[2];
1170 };
1171 
1172 /**
1173  * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
1174  */
1175 struct drm_xe_exec_queue_destroy {
1176 	/** @exec_queue_id: Exec queue ID */
1177 	__u32 exec_queue_id;
1178 
1179 	/** @pad: MBZ */
1180 	__u32 pad;
1181 
1182 	/** @reserved: Reserved */
1183 	__u64 reserved[2];
1184 };
1185 
1186 /**
1187  * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
1188  *
1189  * The @property can be:
1190  *  - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
1191  */
1192 struct drm_xe_exec_queue_get_property {
1193 	/** @extensions: Pointer to the first extension struct, if any */
1194 	__u64 extensions;
1195 
1196 	/** @exec_queue_id: Exec queue ID */
1197 	__u32 exec_queue_id;
1198 
1199 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN	0
1200 	/** @property: property to get */
1201 	__u32 property;
1202 
1203 	/** @value: property value */
1204 	__u64 value;
1205 
1206 	/** @reserved: Reserved */
1207 	__u64 reserved[2];
1208 };
1209 
1210 /**
1211  * struct drm_xe_sync - sync object
1212  *
1213  * The @type can be:
1214  *  - %DRM_XE_SYNC_TYPE_SYNCOBJ
1215  *  - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
1216  *  - %DRM_XE_SYNC_TYPE_USER_FENCE
1217  *
1218  * and the @flags can be:
1219  *  - %DRM_XE_SYNC_FLAG_SIGNAL
1220  *
1221  * A minimal use of @drm_xe_sync looks like this:
1222  *
1223  * .. code-block:: C
1224  *
1225  *     struct drm_xe_sync sync = {
1226  *         .flags = DRM_XE_SYNC_FLAG_SIGNAL,
1227  *         .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
1228  *     };
1229  *     struct drm_syncobj_create syncobj_create = { 0 };
1230  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
1231  *     sync.handle = syncobj_create.handle;
1232  *         ...
1233  *         use of &sync in drm_xe_exec or drm_xe_vm_bind
1234  *         ...
1235  *     struct drm_syncobj_wait wait = {
1236  *         .handles = &sync.handle,
1237  *         .timeout_nsec = INT64_MAX,
1238  *         .count_handles = 1,
1239  *         .flags = 0,
1240  *         .first_signaled = 0,
1241  *         .pad = 0,
1242  *     };
1243  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
1244  */
1245 struct drm_xe_sync {
1246 	/** @extensions: Pointer to the first extension struct, if any */
1247 	__u64 extensions;
1248 
1249 #define DRM_XE_SYNC_TYPE_SYNCOBJ		0x0
1250 #define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ	0x1
1251 #define DRM_XE_SYNC_TYPE_USER_FENCE		0x2
1252 	/** @type: Type of the this sync object */
1253 	__u32 type;
1254 
1255 #define DRM_XE_SYNC_FLAG_SIGNAL	(1 << 0)
1256 	/** @flags: Sync Flags */
1257 	__u32 flags;
1258 
1259 	union {
1260 		/** @handle: Handle for the object */
1261 		__u32 handle;
1262 
1263 		/**
1264 		 * @addr: Address of user fence. When sync is passed in via exec
1265 		 * IOCTL this is a GPU address in the VM. When sync passed in via
1266 		 * VM bind IOCTL this is a user pointer. In either case, it is
1267 		 * the users responsibility that this address is present and
1268 		 * mapped when the user fence is signalled. Must be qword
1269 		 * aligned.
1270 		 */
1271 		__u64 addr;
1272 	};
1273 
1274 	/**
1275 	 * @timeline_value: Input for the timeline sync object. Needs to be
1276 	 * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ.
1277 	 */
1278 	__u64 timeline_value;
1279 
1280 	/** @reserved: Reserved */
1281 	__u64 reserved[2];
1282 };
1283 
1284 /**
1285  * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
1286  *
1287  * This is an example to use @drm_xe_exec for execution of the object
1288  * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
1289  * (see example in @drm_xe_exec_queue_create). It can be synchronized
1290  * by using the example provided for @drm_xe_sync.
1291  *
1292  * .. code-block:: C
1293  *
1294  *     struct drm_xe_exec exec = {
1295  *         .exec_queue_id = exec_queue,
1296  *         .syncs = &sync,
1297  *         .num_syncs = 1,
1298  *         .address = BIND_ADDRESS,
1299  *         .num_batch_buffer = 1,
1300  *     };
1301  *     ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
1302  *
1303  */
1304 struct drm_xe_exec {
1305 	/** @extensions: Pointer to the first extension struct, if any */
1306 	__u64 extensions;
1307 
1308 	/** @exec_queue_id: Exec queue ID for the batch buffer */
1309 	__u32 exec_queue_id;
1310 
1311 	/** @num_syncs: Amount of struct drm_xe_sync in array. */
1312 	__u32 num_syncs;
1313 
1314 	/** @syncs: Pointer to struct drm_xe_sync array. */
1315 	__u64 syncs;
1316 
1317 	/**
1318 	 * @address: address of batch buffer if num_batch_buffer == 1 or an
1319 	 * array of batch buffer addresses
1320 	 */
1321 	__u64 address;
1322 
1323 	/**
1324 	 * @num_batch_buffer: number of batch buffer in this exec, must match
1325 	 * the width of the engine
1326 	 */
1327 	__u16 num_batch_buffer;
1328 
1329 	/** @pad: MBZ */
1330 	__u16 pad[3];
1331 
1332 	/** @reserved: Reserved */
1333 	__u64 reserved[2];
1334 };
1335 
1336 /**
1337  * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
1338  *
1339  * Wait on user fence, XE will wake-up on every HW engine interrupt in the
1340  * instances list and check if user fence is complete::
1341  *
1342  *	(*addr & MASK) OP (VALUE & MASK)
1343  *
1344  * Returns to user on user fence completion or timeout.
1345  *
1346  * The @op can be:
1347  *  - %DRM_XE_UFENCE_WAIT_OP_EQ
1348  *  - %DRM_XE_UFENCE_WAIT_OP_NEQ
1349  *  - %DRM_XE_UFENCE_WAIT_OP_GT
1350  *  - %DRM_XE_UFENCE_WAIT_OP_GTE
1351  *  - %DRM_XE_UFENCE_WAIT_OP_LT
1352  *  - %DRM_XE_UFENCE_WAIT_OP_LTE
1353  *
1354  * and the @flags can be:
1355  *  - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
1356  *  - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
1357  *
1358  * The @mask values can be for example:
1359  *  - 0xffu for u8
1360  *  - 0xffffu for u16
1361  *  - 0xffffffffu for u32
1362  *  - 0xffffffffffffffffu for u64
1363  */
1364 struct drm_xe_wait_user_fence {
1365 	/** @extensions: Pointer to the first extension struct, if any */
1366 	__u64 extensions;
1367 
1368 	/**
1369 	 * @addr: user pointer address to wait on, must qword aligned
1370 	 */
1371 	__u64 addr;
1372 
1373 #define DRM_XE_UFENCE_WAIT_OP_EQ	0x0
1374 #define DRM_XE_UFENCE_WAIT_OP_NEQ	0x1
1375 #define DRM_XE_UFENCE_WAIT_OP_GT	0x2
1376 #define DRM_XE_UFENCE_WAIT_OP_GTE	0x3
1377 #define DRM_XE_UFENCE_WAIT_OP_LT	0x4
1378 #define DRM_XE_UFENCE_WAIT_OP_LTE	0x5
1379 	/** @op: wait operation (type of comparison) */
1380 	__u16 op;
1381 
1382 #define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME	(1 << 0)
1383 	/** @flags: wait flags */
1384 	__u16 flags;
1385 
1386 	/** @pad: MBZ */
1387 	__u32 pad;
1388 
1389 	/** @value: compare value */
1390 	__u64 value;
1391 
1392 	/** @mask: comparison mask */
1393 	__u64 mask;
1394 
1395 	/**
1396 	 * @timeout: how long to wait before bailing, value in nanoseconds.
1397 	 * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
1398 	 * it contains timeout expressed in nanoseconds to wait (fence will
1399 	 * expire at now() + timeout).
1400 	 * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
1401 	 * will end at timeout (uses system MONOTONIC_CLOCK).
1402 	 * Passing negative timeout leads to neverending wait.
1403 	 *
1404 	 * On relative timeout this value is updated with timeout left
1405 	 * (for restarting the call in case of signal delivery).
1406 	 * On absolute timeout this value stays intact (restarted call still
1407 	 * expire at the same point of time).
1408 	 */
1409 	__s64 timeout;
1410 
1411 	/** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
1412 	__u32 exec_queue_id;
1413 
1414 	/** @pad2: MBZ */
1415 	__u32 pad2;
1416 
1417 	/** @reserved: Reserved */
1418 	__u64 reserved[2];
1419 };
1420 
1421 /**
1422  * enum drm_xe_observation_type - Observation stream types
1423  */
1424 enum drm_xe_observation_type {
1425 	/** @DRM_XE_OBSERVATION_TYPE_OA: OA observation stream type */
1426 	DRM_XE_OBSERVATION_TYPE_OA,
1427 };
1428 
1429 /**
1430  * enum drm_xe_observation_op - Observation stream ops
1431  */
1432 enum drm_xe_observation_op {
1433 	/** @DRM_XE_OBSERVATION_OP_STREAM_OPEN: Open an observation stream */
1434 	DRM_XE_OBSERVATION_OP_STREAM_OPEN,
1435 
1436 	/** @DRM_XE_OBSERVATION_OP_ADD_CONFIG: Add observation stream config */
1437 	DRM_XE_OBSERVATION_OP_ADD_CONFIG,
1438 
1439 	/** @DRM_XE_OBSERVATION_OP_REMOVE_CONFIG: Remove observation stream config */
1440 	DRM_XE_OBSERVATION_OP_REMOVE_CONFIG,
1441 };
1442 
1443 /**
1444  * struct drm_xe_observation_param - Input of &DRM_XE_OBSERVATION
1445  *
1446  * The observation layer enables multiplexing observation streams of
1447  * multiple types. The actual params for a particular stream operation are
1448  * supplied via the @param pointer (use __copy_from_user to get these
1449  * params).
1450  */
1451 struct drm_xe_observation_param {
1452 	/** @extensions: Pointer to the first extension struct, if any */
1453 	__u64 extensions;
1454 	/** @observation_type: observation stream type, of enum @drm_xe_observation_type */
1455 	__u64 observation_type;
1456 	/** @observation_op: observation stream op, of enum @drm_xe_observation_op */
1457 	__u64 observation_op;
1458 	/** @param: Pointer to actual stream params */
1459 	__u64 param;
1460 };
1461 
1462 /**
1463  * enum drm_xe_observation_ioctls - Observation stream fd ioctl's
1464  *
1465  * Information exchanged between userspace and kernel for observation fd
1466  * ioctl's is stream type specific
1467  */
1468 enum drm_xe_observation_ioctls {
1469 	/** @DRM_XE_OBSERVATION_IOCTL_ENABLE: Enable data capture for an observation stream */
1470 	DRM_XE_OBSERVATION_IOCTL_ENABLE = _IO('i', 0x0),
1471 
1472 	/** @DRM_XE_OBSERVATION_IOCTL_DISABLE: Disable data capture for a observation stream */
1473 	DRM_XE_OBSERVATION_IOCTL_DISABLE = _IO('i', 0x1),
1474 
1475 	/** @DRM_XE_OBSERVATION_IOCTL_CONFIG: Change observation stream configuration */
1476 	DRM_XE_OBSERVATION_IOCTL_CONFIG = _IO('i', 0x2),
1477 
1478 	/** @DRM_XE_OBSERVATION_IOCTL_STATUS: Return observation stream status */
1479 	DRM_XE_OBSERVATION_IOCTL_STATUS = _IO('i', 0x3),
1480 
1481 	/** @DRM_XE_OBSERVATION_IOCTL_INFO: Return observation stream info */
1482 	DRM_XE_OBSERVATION_IOCTL_INFO = _IO('i', 0x4),
1483 };
1484 
1485 /**
1486  * enum drm_xe_oa_unit_type - OA unit types
1487  */
1488 enum drm_xe_oa_unit_type {
1489 	/**
1490 	 * @DRM_XE_OA_UNIT_TYPE_OAG: OAG OA unit. OAR/OAC are considered
1491 	 * sub-types of OAG. For OAR/OAC, use OAG.
1492 	 */
1493 	DRM_XE_OA_UNIT_TYPE_OAG,
1494 
1495 	/** @DRM_XE_OA_UNIT_TYPE_OAM: OAM OA unit */
1496 	DRM_XE_OA_UNIT_TYPE_OAM,
1497 };
1498 
1499 /**
1500  * struct drm_xe_oa_unit - describe OA unit
1501  */
1502 struct drm_xe_oa_unit {
1503 	/** @extensions: Pointer to the first extension struct, if any */
1504 	__u64 extensions;
1505 
1506 	/** @oa_unit_id: OA unit ID */
1507 	__u32 oa_unit_id;
1508 
1509 	/** @oa_unit_type: OA unit type of @drm_xe_oa_unit_type */
1510 	__u32 oa_unit_type;
1511 
1512 	/** @capabilities: OA capabilities bit-mask */
1513 	__u64 capabilities;
1514 #define DRM_XE_OA_CAPS_BASE		(1 << 0)
1515 #define DRM_XE_OA_CAPS_SYNCS		(1 << 1)
1516 #define DRM_XE_OA_CAPS_OA_BUFFER_SIZE	(1 << 2)
1517 #define DRM_XE_OA_CAPS_WAIT_NUM_REPORTS	(1 << 3)
1518 
1519 	/** @oa_timestamp_freq: OA timestamp freq */
1520 	__u64 oa_timestamp_freq;
1521 
1522 	/** @reserved: MBZ */
1523 	__u64 reserved[4];
1524 
1525 	/** @num_engines: number of engines in @eci array */
1526 	__u64 num_engines;
1527 
1528 	/** @eci: engines attached to this OA unit */
1529 	struct drm_xe_engine_class_instance eci[];
1530 };
1531 
1532 /**
1533  * struct drm_xe_query_oa_units - describe OA units
1534  *
1535  * If a query is made with a struct drm_xe_device_query where .query
1536  * is equal to DRM_XE_DEVICE_QUERY_OA_UNITS, then the reply uses struct
1537  * drm_xe_query_oa_units in .data.
1538  *
1539  * OA unit properties for all OA units can be accessed using a code block
1540  * such as the one below:
1541  *
1542  * .. code-block:: C
1543  *
1544  *	struct drm_xe_query_oa_units *qoa;
1545  *	struct drm_xe_oa_unit *oau;
1546  *	u8 *poau;
1547  *
1548  *	// malloc qoa and issue DRM_XE_DEVICE_QUERY_OA_UNITS. Then:
1549  *	poau = (u8 *)&qoa->oa_units[0];
1550  *	for (int i = 0; i < qoa->num_oa_units; i++) {
1551  *		oau = (struct drm_xe_oa_unit *)poau;
1552  *		// Access 'struct drm_xe_oa_unit' fields here
1553  *		poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]);
1554  *	}
1555  */
1556 struct drm_xe_query_oa_units {
1557 	/** @extensions: Pointer to the first extension struct, if any */
1558 	__u64 extensions;
1559 	/** @num_oa_units: number of OA units returned in oau[] */
1560 	__u32 num_oa_units;
1561 	/** @pad: MBZ */
1562 	__u32 pad;
1563 	/**
1564 	 * @oa_units: struct @drm_xe_oa_unit array returned for this device.
1565 	 * Written below as a u64 array to avoid problems with nested flexible
1566 	 * arrays with some compilers
1567 	 */
1568 	__u64 oa_units[];
1569 };
1570 
1571 /**
1572  * enum drm_xe_oa_format_type - OA format types as specified in PRM/Bspec
1573  * 52198/60942
1574  */
1575 enum drm_xe_oa_format_type {
1576 	/** @DRM_XE_OA_FMT_TYPE_OAG: OAG report format */
1577 	DRM_XE_OA_FMT_TYPE_OAG,
1578 	/** @DRM_XE_OA_FMT_TYPE_OAR: OAR report format */
1579 	DRM_XE_OA_FMT_TYPE_OAR,
1580 	/** @DRM_XE_OA_FMT_TYPE_OAM: OAM report format */
1581 	DRM_XE_OA_FMT_TYPE_OAM,
1582 	/** @DRM_XE_OA_FMT_TYPE_OAC: OAC report format */
1583 	DRM_XE_OA_FMT_TYPE_OAC,
1584 	/** @DRM_XE_OA_FMT_TYPE_OAM_MPEC: OAM SAMEDIA or OAM MPEC report format */
1585 	DRM_XE_OA_FMT_TYPE_OAM_MPEC,
1586 	/** @DRM_XE_OA_FMT_TYPE_PEC: PEC report format */
1587 	DRM_XE_OA_FMT_TYPE_PEC,
1588 };
1589 
1590 /**
1591  * enum drm_xe_oa_property_id - OA stream property id's
1592  *
1593  * Stream params are specified as a chain of @drm_xe_ext_set_property
1594  * struct's, with @property values from enum @drm_xe_oa_property_id and
1595  * @drm_xe_user_extension base.name set to @DRM_XE_OA_EXTENSION_SET_PROPERTY.
1596  * @param field in struct @drm_xe_observation_param points to the first
1597  * @drm_xe_ext_set_property struct.
1598  *
1599  * Exactly the same mechanism is also used for stream reconfiguration using the
1600  * @DRM_XE_OBSERVATION_IOCTL_CONFIG observation stream fd ioctl, though only a
1601  * subset of properties below can be specified for stream reconfiguration.
1602  */
1603 enum drm_xe_oa_property_id {
1604 #define DRM_XE_OA_EXTENSION_SET_PROPERTY	0
1605 	/**
1606 	 * @DRM_XE_OA_PROPERTY_OA_UNIT_ID: ID of the OA unit on which to open
1607 	 * the OA stream, see @oa_unit_id in 'struct
1608 	 * drm_xe_query_oa_units'. Defaults to 0 if not provided.
1609 	 */
1610 	DRM_XE_OA_PROPERTY_OA_UNIT_ID = 1,
1611 
1612 	/**
1613 	 * @DRM_XE_OA_PROPERTY_SAMPLE_OA: A value of 1 requests inclusion of raw
1614 	 * OA unit reports or stream samples in a global buffer attached to an
1615 	 * OA unit.
1616 	 */
1617 	DRM_XE_OA_PROPERTY_SAMPLE_OA,
1618 
1619 	/**
1620 	 * @DRM_XE_OA_PROPERTY_OA_METRIC_SET: OA metrics defining contents of OA
1621 	 * reports, previously added via @DRM_XE_OBSERVATION_OP_ADD_CONFIG.
1622 	 */
1623 	DRM_XE_OA_PROPERTY_OA_METRIC_SET,
1624 
1625 	/** @DRM_XE_OA_PROPERTY_OA_FORMAT: OA counter report format */
1626 	DRM_XE_OA_PROPERTY_OA_FORMAT,
1627 	/*
1628 	 * OA_FORMAT's are specified the same way as in PRM/Bspec 52198/60942,
1629 	 * in terms of the following quantities: a. enum @drm_xe_oa_format_type
1630 	 * b. Counter select c. Counter size and d. BC report. Also refer to the
1631 	 * oa_formats array in drivers/gpu/drm/xe/xe_oa.c.
1632 	 */
1633 #define DRM_XE_OA_FORMAT_MASK_FMT_TYPE		(0xffu << 0)
1634 #define DRM_XE_OA_FORMAT_MASK_COUNTER_SEL	(0xffu << 8)
1635 #define DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE	(0xffu << 16)
1636 #define DRM_XE_OA_FORMAT_MASK_BC_REPORT		(0xffu << 24)
1637 
1638 	/**
1639 	 * @DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT: Requests periodic OA unit
1640 	 * sampling with sampling frequency proportional to 2^(period_exponent + 1)
1641 	 */
1642 	DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT,
1643 
1644 	/**
1645 	 * @DRM_XE_OA_PROPERTY_OA_DISABLED: A value of 1 will open the OA
1646 	 * stream in a DISABLED state (see @DRM_XE_OBSERVATION_IOCTL_ENABLE).
1647 	 */
1648 	DRM_XE_OA_PROPERTY_OA_DISABLED,
1649 
1650 	/**
1651 	 * @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID: Open the stream for a specific
1652 	 * @exec_queue_id. OA queries can be executed on this exec queue.
1653 	 */
1654 	DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID,
1655 
1656 	/**
1657 	 * @DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE: Optional engine instance to
1658 	 * pass along with @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID or will default to 0.
1659 	 */
1660 	DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE,
1661 
1662 	/**
1663 	 * @DRM_XE_OA_PROPERTY_NO_PREEMPT: Allow preemption and timeslicing
1664 	 * to be disabled for the stream exec queue.
1665 	 */
1666 	DRM_XE_OA_PROPERTY_NO_PREEMPT,
1667 
1668 	/**
1669 	 * @DRM_XE_OA_PROPERTY_NUM_SYNCS: Number of syncs in the sync array
1670 	 * specified in @DRM_XE_OA_PROPERTY_SYNCS
1671 	 */
1672 	DRM_XE_OA_PROPERTY_NUM_SYNCS,
1673 
1674 	/**
1675 	 * @DRM_XE_OA_PROPERTY_SYNCS: Pointer to struct @drm_xe_sync array
1676 	 * with array size specified via @DRM_XE_OA_PROPERTY_NUM_SYNCS. OA
1677 	 * configuration will wait till input fences signal. Output fences
1678 	 * will signal after the new OA configuration takes effect. For
1679 	 * @DRM_XE_SYNC_TYPE_USER_FENCE, @addr is a user pointer, similar
1680 	 * to the VM bind case.
1681 	 */
1682 	DRM_XE_OA_PROPERTY_SYNCS,
1683 
1684 	/**
1685 	 * @DRM_XE_OA_PROPERTY_OA_BUFFER_SIZE: Size of OA buffer to be
1686 	 * allocated by the driver in bytes. Supported sizes are powers of
1687 	 * 2 from 128 KiB to 128 MiB. When not specified, a 16 MiB OA
1688 	 * buffer is allocated by default.
1689 	 */
1690 	DRM_XE_OA_PROPERTY_OA_BUFFER_SIZE,
1691 
1692 	/**
1693 	 * @DRM_XE_OA_PROPERTY_WAIT_NUM_REPORTS: Number of reports to wait
1694 	 * for before unblocking poll or read
1695 	 */
1696 	DRM_XE_OA_PROPERTY_WAIT_NUM_REPORTS,
1697 };
1698 
1699 /**
1700  * struct drm_xe_oa_config - OA metric configuration
1701  *
1702  * Multiple OA configs can be added using @DRM_XE_OBSERVATION_OP_ADD_CONFIG. A
1703  * particular config can be specified when opening an OA stream using
1704  * @DRM_XE_OA_PROPERTY_OA_METRIC_SET property.
1705  */
1706 struct drm_xe_oa_config {
1707 	/** @extensions: Pointer to the first extension struct, if any */
1708 	__u64 extensions;
1709 
1710 	/** @uuid: String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" */
1711 	char uuid[36];
1712 
1713 	/** @n_regs: Number of regs in @regs_ptr */
1714 	__u32 n_regs;
1715 
1716 	/**
1717 	 * @regs_ptr: Pointer to (register address, value) pairs for OA config
1718 	 * registers. Expected length of buffer is: (2 * sizeof(u32) * @n_regs).
1719 	 */
1720 	__u64 regs_ptr;
1721 };
1722 
1723 /**
1724  * struct drm_xe_oa_stream_status - OA stream status returned from
1725  * @DRM_XE_OBSERVATION_IOCTL_STATUS observation stream fd ioctl. Userspace can
1726  * call the ioctl to query stream status in response to EIO errno from
1727  * observation fd read().
1728  */
1729 struct drm_xe_oa_stream_status {
1730 	/** @extensions: Pointer to the first extension struct, if any */
1731 	__u64 extensions;
1732 
1733 	/** @oa_status: OA stream status (see Bspec 46717/61226) */
1734 	__u64 oa_status;
1735 #define DRM_XE_OASTATUS_MMIO_TRG_Q_FULL		(1 << 3)
1736 #define DRM_XE_OASTATUS_COUNTER_OVERFLOW	(1 << 2)
1737 #define DRM_XE_OASTATUS_BUFFER_OVERFLOW		(1 << 1)
1738 #define DRM_XE_OASTATUS_REPORT_LOST		(1 << 0)
1739 
1740 	/** @reserved: reserved for future use */
1741 	__u64 reserved[3];
1742 };
1743 
1744 /**
1745  * struct drm_xe_oa_stream_info - OA stream info returned from
1746  * @DRM_XE_OBSERVATION_IOCTL_INFO observation stream fd ioctl
1747  */
1748 struct drm_xe_oa_stream_info {
1749 	/** @extensions: Pointer to the first extension struct, if any */
1750 	__u64 extensions;
1751 
1752 	/** @oa_buf_size: OA buffer size */
1753 	__u64 oa_buf_size;
1754 
1755 	/** @reserved: reserved for future use */
1756 	__u64 reserved[3];
1757 };
1758 
1759 #if defined(__cplusplus)
1760 }
1761 #endif
1762 
1763 #endif /* _UAPI_XE_DRM_H_ */
1764