xref: /linux/include/uapi/drm/xe_drm.h (revision be239684b18e1cdcafcf8c7face4a2f562c745ad)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #ifndef _UAPI_XE_DRM_H_
7 #define _UAPI_XE_DRM_H_
8 
9 #include "drm.h"
10 
11 #if defined(__cplusplus)
12 extern "C" {
13 #endif
14 
15 /*
16  * Please note that modifications to all structs defined here are
17  * subject to backwards-compatibility constraints.
18  * Sections in this file are organized as follows:
19  *   1. IOCTL definition
20  *   2. Extension definition and helper structs
21  *   3. IOCTL's Query structs in the order of the Query's entries.
22  *   4. The rest of IOCTL structs in the order of IOCTL declaration.
23  */
24 
25 /**
26  * DOC: Xe Device Block Diagram
27  *
28  * The diagram below represents a high-level simplification of a discrete
29  * GPU supported by the Xe driver. It shows some device components which
30  * are necessary to understand this API, as well as how their relations
31  * to each other. This diagram does not represent real hardware::
32  *
33  *   ┌──────────────────────────────────────────────────────────────────┐
34  *   │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
35  *   │ │        ┌───────────────────────┐   ┌─────┐       │ │ ┌─────┐ │ │
36  *   │ │        │         VRAM0         ├───┤ ... │       │ │ │VRAM1│ │ │
37  *   │ │        └───────────┬───────────┘   └─GT1─┘       │ │ └──┬──┘ │ │
38  *   │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
39  *   │ │ │ ┌─────────────────────┐  ┌─────────────────┐ │ │ │ │     │ │ │
40  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
41  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │RCS0 │ │BCS0 │ │ │ │ │ │     │ │ │
42  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
43  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
44  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VCS0 │ │VCS1 │ │ │ │ │ │     │ │ │
45  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
46  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
47  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
48  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
49  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
50  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │CCS0 │ │CCS1 │ │ │ │ │ │     │ │ │
51  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
52  *   │ │ │ └─────────DSS─────────┘  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
53  *   │ │ │                          │ │CCS2 │ │CCS3 │ │ │ │ │ │     │ │ │
54  *   │ │ │ ┌─────┐ ┌─────┐ ┌─────┐  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
55  *   │ │ │ │ ... │ │ ... │ │ ... │  │                 │ │ │ │ │     │ │ │
56  *   │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘  └─────Engines─────┘ │ │ │ │     │ │ │
57  *   │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
58  *   │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
59  *   └─────────────────────────────Device0───────┬──────────────────────┘
60  *                                               │
61  *                        ───────────────────────┴────────── PCI bus
62  */
63 
64 /**
65  * DOC: Xe uAPI Overview
66  *
67  * This section aims to describe the Xe's IOCTL entries, its structs, and other
68  * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
69  * entries and usage.
70  *
71  * List of supported IOCTLs:
72  *  - &DRM_IOCTL_XE_DEVICE_QUERY
73  *  - &DRM_IOCTL_XE_GEM_CREATE
74  *  - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
75  *  - &DRM_IOCTL_XE_VM_CREATE
76  *  - &DRM_IOCTL_XE_VM_DESTROY
77  *  - &DRM_IOCTL_XE_VM_BIND
78  *  - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
79  *  - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
80  *  - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
81  *  - &DRM_IOCTL_XE_EXEC
82  *  - &DRM_IOCTL_XE_WAIT_USER_FENCE
83  */
84 
85 /*
86  * xe specific ioctls.
87  *
88  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
89  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
90  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
91  */
92 #define DRM_XE_DEVICE_QUERY		0x00
93 #define DRM_XE_GEM_CREATE		0x01
94 #define DRM_XE_GEM_MMAP_OFFSET		0x02
95 #define DRM_XE_VM_CREATE		0x03
96 #define DRM_XE_VM_DESTROY		0x04
97 #define DRM_XE_VM_BIND			0x05
98 #define DRM_XE_EXEC_QUEUE_CREATE	0x06
99 #define DRM_XE_EXEC_QUEUE_DESTROY	0x07
100 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY	0x08
101 #define DRM_XE_EXEC			0x09
102 #define DRM_XE_WAIT_USER_FENCE		0x0a
103 /* Must be kept compact -- no holes */
104 
105 #define DRM_IOCTL_XE_DEVICE_QUERY		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
106 #define DRM_IOCTL_XE_GEM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
107 #define DRM_IOCTL_XE_GEM_MMAP_OFFSET		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
108 #define DRM_IOCTL_XE_VM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
109 #define DRM_IOCTL_XE_VM_DESTROY			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
110 #define DRM_IOCTL_XE_VM_BIND			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
111 #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
112 #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
113 #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY	DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
114 #define DRM_IOCTL_XE_EXEC			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
115 #define DRM_IOCTL_XE_WAIT_USER_FENCE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
116 
117 /**
118  * DOC: Xe IOCTL Extensions
119  *
120  * Before detailing the IOCTLs and its structs, it is important to highlight
121  * that every IOCTL in Xe is extensible.
122  *
123  * Many interfaces need to grow over time. In most cases we can simply
124  * extend the struct and have userspace pass in more data. Another option,
125  * as demonstrated by Vulkan's approach to providing extensions for forward
126  * and backward compatibility, is to use a list of optional structs to
127  * provide those extra details.
128  *
129  * The key advantage to using an extension chain is that it allows us to
130  * redefine the interface more easily than an ever growing struct of
131  * increasing complexity, and for large parts of that interface to be
132  * entirely optional. The downside is more pointer chasing; chasing across
133  * the __user boundary with pointers encapsulated inside u64.
134  *
135  * Example chaining:
136  *
137  * .. code-block:: C
138  *
139  *	struct drm_xe_user_extension ext3 {
140  *		.next_extension = 0, // end
141  *		.name = ...,
142  *	};
143  *	struct drm_xe_user_extension ext2 {
144  *		.next_extension = (uintptr_t)&ext3,
145  *		.name = ...,
146  *	};
147  *	struct drm_xe_user_extension ext1 {
148  *		.next_extension = (uintptr_t)&ext2,
149  *		.name = ...,
150  *	};
151  *
152  * Typically the struct drm_xe_user_extension would be embedded in some uAPI
153  * struct, and in this case we would feed it the head of the chain(i.e ext1),
154  * which would then apply all of the above extensions.
155 */
156 
157 /**
158  * struct drm_xe_user_extension - Base class for defining a chain of extensions
159  */
160 struct drm_xe_user_extension {
161 	/**
162 	 * @next_extension:
163 	 *
164 	 * Pointer to the next struct drm_xe_user_extension, or zero if the end.
165 	 */
166 	__u64 next_extension;
167 
168 	/**
169 	 * @name: Name of the extension.
170 	 *
171 	 * Note that the name here is just some integer.
172 	 *
173 	 * Also note that the name space for this is not global for the whole
174 	 * driver, but rather its scope/meaning is limited to the specific piece
175 	 * of uAPI which has embedded the struct drm_xe_user_extension.
176 	 */
177 	__u32 name;
178 
179 	/**
180 	 * @pad: MBZ
181 	 *
182 	 * All undefined bits must be zero.
183 	 */
184 	__u32 pad;
185 };
186 
187 /**
188  * struct drm_xe_ext_set_property - Generic set property extension
189  *
190  * A generic struct that allows any of the Xe's IOCTL to be extended
191  * with a set_property operation.
192  */
193 struct drm_xe_ext_set_property {
194 	/** @base: base user extension */
195 	struct drm_xe_user_extension base;
196 
197 	/** @property: property to set */
198 	__u32 property;
199 
200 	/** @pad: MBZ */
201 	__u32 pad;
202 
203 	/** @value: property value */
204 	__u64 value;
205 
206 	/** @reserved: Reserved */
207 	__u64 reserved[2];
208 };
209 
210 /**
211  * struct drm_xe_engine_class_instance - instance of an engine class
212  *
213  * It is returned as part of the @drm_xe_engine, but it also is used as
214  * the input of engine selection for both @drm_xe_exec_queue_create and
215  * @drm_xe_query_engine_cycles
216  *
217  * The @engine_class can be:
218  *  - %DRM_XE_ENGINE_CLASS_RENDER
219  *  - %DRM_XE_ENGINE_CLASS_COPY
220  *  - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
221  *  - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
222  *  - %DRM_XE_ENGINE_CLASS_COMPUTE
223  *  - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
224  *    hardware engine class). Used for creating ordered queues of VM
225  *    bind operations.
226  */
227 struct drm_xe_engine_class_instance {
228 #define DRM_XE_ENGINE_CLASS_RENDER		0
229 #define DRM_XE_ENGINE_CLASS_COPY		1
230 #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE	2
231 #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE	3
232 #define DRM_XE_ENGINE_CLASS_COMPUTE		4
233 #define DRM_XE_ENGINE_CLASS_VM_BIND		5
234 	/** @engine_class: engine class id */
235 	__u16 engine_class;
236 	/** @engine_instance: engine instance id */
237 	__u16 engine_instance;
238 	/** @gt_id: Unique ID of this GT within the PCI Device */
239 	__u16 gt_id;
240 	/** @pad: MBZ */
241 	__u16 pad;
242 };
243 
244 /**
245  * struct drm_xe_engine - describe hardware engine
246  */
247 struct drm_xe_engine {
248 	/** @instance: The @drm_xe_engine_class_instance */
249 	struct drm_xe_engine_class_instance instance;
250 
251 	/** @reserved: Reserved */
252 	__u64 reserved[3];
253 };
254 
255 /**
256  * struct drm_xe_query_engines - describe engines
257  *
258  * If a query is made with a struct @drm_xe_device_query where .query
259  * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
260  * struct @drm_xe_query_engines in .data.
261  */
262 struct drm_xe_query_engines {
263 	/** @num_engines: number of engines returned in @engines */
264 	__u32 num_engines;
265 	/** @pad: MBZ */
266 	__u32 pad;
267 	/** @engines: The returned engines for this device */
268 	struct drm_xe_engine engines[];
269 };
270 
271 /**
272  * enum drm_xe_memory_class - Supported memory classes.
273  */
274 enum drm_xe_memory_class {
275 	/** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
276 	DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
277 	/**
278 	 * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
279 	 * represents the memory that is local to the device, which we
280 	 * call VRAM. Not valid on integrated platforms.
281 	 */
282 	DRM_XE_MEM_REGION_CLASS_VRAM
283 };
284 
285 /**
286  * struct drm_xe_mem_region - Describes some region as known to
287  * the driver.
288  */
289 struct drm_xe_mem_region {
290 	/**
291 	 * @mem_class: The memory class describing this region.
292 	 *
293 	 * See enum drm_xe_memory_class for supported values.
294 	 */
295 	__u16 mem_class;
296 	/**
297 	 * @instance: The unique ID for this region, which serves as the
298 	 * index in the placement bitmask used as argument for
299 	 * &DRM_IOCTL_XE_GEM_CREATE
300 	 */
301 	__u16 instance;
302 	/**
303 	 * @min_page_size: Min page-size in bytes for this region.
304 	 *
305 	 * When the kernel allocates memory for this region, the
306 	 * underlying pages will be at least @min_page_size in size.
307 	 * Buffer objects with an allowable placement in this region must be
308 	 * created with a size aligned to this value.
309 	 * GPU virtual address mappings of (parts of) buffer objects that
310 	 * may be placed in this region must also have their GPU virtual
311 	 * address and range aligned to this value.
312 	 * Affected IOCTLS will return %-EINVAL if alignment restrictions are
313 	 * not met.
314 	 */
315 	__u32 min_page_size;
316 	/**
317 	 * @total_size: The usable size in bytes for this region.
318 	 */
319 	__u64 total_size;
320 	/**
321 	 * @used: Estimate of the memory used in bytes for this region.
322 	 *
323 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
324 	 * accounting.  Without this the value here will always equal
325 	 * zero.
326 	 */
327 	__u64 used;
328 	/**
329 	 * @cpu_visible_size: How much of this region can be CPU
330 	 * accessed, in bytes.
331 	 *
332 	 * This will always be <= @total_size, and the remainder (if
333 	 * any) will not be CPU accessible. If the CPU accessible part
334 	 * is smaller than @total_size then this is referred to as a
335 	 * small BAR system.
336 	 *
337 	 * On systems without small BAR (full BAR), the probed_size will
338 	 * always equal the @total_size, since all of it will be CPU
339 	 * accessible.
340 	 *
341 	 * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
342 	 * regions (for other types the value here will always equal
343 	 * zero).
344 	 */
345 	__u64 cpu_visible_size;
346 	/**
347 	 * @cpu_visible_used: Estimate of CPU visible memory used, in
348 	 * bytes.
349 	 *
350 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
351 	 * accounting. Without this the value here will always equal
352 	 * zero.  Note this is only currently tracked for
353 	 * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
354 	 * here will always be zero).
355 	 */
356 	__u64 cpu_visible_used;
357 	/** @reserved: Reserved */
358 	__u64 reserved[6];
359 };
360 
361 /**
362  * struct drm_xe_query_mem_regions - describe memory regions
363  *
364  * If a query is made with a struct drm_xe_device_query where .query
365  * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
366  * struct drm_xe_query_mem_regions in .data.
367  */
368 struct drm_xe_query_mem_regions {
369 	/** @num_mem_regions: number of memory regions returned in @mem_regions */
370 	__u32 num_mem_regions;
371 	/** @pad: MBZ */
372 	__u32 pad;
373 	/** @mem_regions: The returned memory regions for this device */
374 	struct drm_xe_mem_region mem_regions[];
375 };
376 
377 /**
378  * struct drm_xe_query_config - describe the device configuration
379  *
380  * If a query is made with a struct drm_xe_device_query where .query
381  * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
382  * struct drm_xe_query_config in .data.
383  *
384  * The index in @info can be:
385  *  - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
386  *    and the device revision (next 8 bits)
387  *  - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
388  *    configuration, see list below
389  *
390  *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
391  *      has usable VRAM
392  *  - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
393  *    required by this device, typically SZ_4K or SZ_64K
394  *  - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
395  *  - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
396  *    available exec queue priority
397  */
398 struct drm_xe_query_config {
399 	/** @num_params: number of parameters returned in info */
400 	__u32 num_params;
401 
402 	/** @pad: MBZ */
403 	__u32 pad;
404 
405 #define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID	0
406 #define DRM_XE_QUERY_CONFIG_FLAGS			1
407 	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM	(1 << 0)
408 #define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT		2
409 #define DRM_XE_QUERY_CONFIG_VA_BITS			3
410 #define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY	4
411 	/** @info: array of elements containing the config info */
412 	__u64 info[];
413 };
414 
415 /**
416  * struct drm_xe_gt - describe an individual GT.
417  *
418  * To be used with drm_xe_query_gt_list, which will return a list with all the
419  * existing GT individual descriptions.
420  * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
421  * implementing graphics and/or media operations.
422  *
423  * The index in @type can be:
424  *  - %DRM_XE_QUERY_GT_TYPE_MAIN
425  *  - %DRM_XE_QUERY_GT_TYPE_MEDIA
426  */
427 struct drm_xe_gt {
428 #define DRM_XE_QUERY_GT_TYPE_MAIN		0
429 #define DRM_XE_QUERY_GT_TYPE_MEDIA		1
430 	/** @type: GT type: Main or Media */
431 	__u16 type;
432 	/** @tile_id: Tile ID where this GT lives (Information only) */
433 	__u16 tile_id;
434 	/** @gt_id: Unique ID of this GT within the PCI Device */
435 	__u16 gt_id;
436 	/** @pad: MBZ */
437 	__u16 pad[3];
438 	/** @reference_clock: A clock frequency for timestamp */
439 	__u32 reference_clock;
440 	/**
441 	 * @near_mem_regions: Bit mask of instances from
442 	 * drm_xe_query_mem_regions that are nearest to the current engines
443 	 * of this GT.
444 	 * Each index in this mask refers directly to the struct
445 	 * drm_xe_query_mem_regions' instance, no assumptions should
446 	 * be made about order. The type of each region is described
447 	 * by struct drm_xe_query_mem_regions' mem_class.
448 	 */
449 	__u64 near_mem_regions;
450 	/**
451 	 * @far_mem_regions: Bit mask of instances from
452 	 * drm_xe_query_mem_regions that are far from the engines of this GT.
453 	 * In general, they have extra indirections when compared to the
454 	 * @near_mem_regions. For a discrete device this could mean system
455 	 * memory and memory living in a different tile.
456 	 * Each index in this mask refers directly to the struct
457 	 * drm_xe_query_mem_regions' instance, no assumptions should
458 	 * be made about order. The type of each region is described
459 	 * by struct drm_xe_query_mem_regions' mem_class.
460 	 */
461 	__u64 far_mem_regions;
462 	/** @reserved: Reserved */
463 	__u64 reserved[8];
464 };
465 
466 /**
467  * struct drm_xe_query_gt_list - A list with GT description items.
468  *
469  * If a query is made with a struct drm_xe_device_query where .query
470  * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
471  * drm_xe_query_gt_list in .data.
472  */
473 struct drm_xe_query_gt_list {
474 	/** @num_gt: number of GT items returned in gt_list */
475 	__u32 num_gt;
476 	/** @pad: MBZ */
477 	__u32 pad;
478 	/** @gt_list: The GT list returned for this device */
479 	struct drm_xe_gt gt_list[];
480 };
481 
482 /**
483  * struct drm_xe_query_topology_mask - describe the topology mask of a GT
484  *
485  * This is the hardware topology which reflects the internal physical
486  * structure of the GPU.
487  *
488  * If a query is made with a struct drm_xe_device_query where .query
489  * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
490  * struct drm_xe_query_topology_mask in .data.
491  *
492  * The @type can be:
493  *  - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
494  *    (DSS) available for geometry operations. For example a query response
495  *    containing the following in mask:
496  *    ``DSS_GEOMETRY    ff ff ff ff 00 00 00 00``
497  *    means 32 DSS are available for geometry.
498  *  - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
499  *    (DSS) available for compute operations. For example a query response
500  *    containing the following in mask:
501  *    ``DSS_COMPUTE    ff ff ff ff 00 00 00 00``
502  *    means 32 DSS are available for compute.
503  *  - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
504  *    available per Dual Sub Slices (DSS). For example a query response
505  *    containing the following in mask:
506  *    ``EU_PER_DSS    ff ff 00 00 00 00 00 00``
507  *    means each DSS has 16 EU.
508  */
509 struct drm_xe_query_topology_mask {
510 	/** @gt_id: GT ID the mask is associated with */
511 	__u16 gt_id;
512 
513 #define DRM_XE_TOPO_DSS_GEOMETRY	(1 << 0)
514 #define DRM_XE_TOPO_DSS_COMPUTE		(1 << 1)
515 #define DRM_XE_TOPO_EU_PER_DSS		(1 << 2)
516 	/** @type: type of mask */
517 	__u16 type;
518 
519 	/** @num_bytes: number of bytes in requested mask */
520 	__u32 num_bytes;
521 
522 	/** @mask: little-endian mask of @num_bytes */
523 	__u8 mask[];
524 };
525 
526 /**
527  * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
528  *
529  * If a query is made with a struct drm_xe_device_query where .query is equal to
530  * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
531  * in .data. struct drm_xe_query_engine_cycles is allocated by the user and
532  * .data points to this allocated structure.
533  *
534  * The query returns the engine cycles, which along with GT's @reference_clock,
535  * can be used to calculate the engine timestamp. In addition the
536  * query returns a set of cpu timestamps that indicate when the command
537  * streamer cycle count was captured.
538  */
539 struct drm_xe_query_engine_cycles {
540 	/**
541 	 * @eci: This is input by the user and is the engine for which command
542 	 * streamer cycles is queried.
543 	 */
544 	struct drm_xe_engine_class_instance eci;
545 
546 	/**
547 	 * @clockid: This is input by the user and is the reference clock id for
548 	 * CPU timestamp. For definition, see clock_gettime(2) and
549 	 * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
550 	 * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
551 	 */
552 	__s32 clockid;
553 
554 	/** @width: Width of the engine cycle counter in bits. */
555 	__u32 width;
556 
557 	/**
558 	 * @engine_cycles: Engine cycles as read from its register
559 	 * at 0x358 offset.
560 	 */
561 	__u64 engine_cycles;
562 
563 	/**
564 	 * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
565 	 * reading the engine_cycles register using the reference clockid set by the
566 	 * user.
567 	 */
568 	__u64 cpu_timestamp;
569 
570 	/**
571 	 * @cpu_delta: Time delta in ns captured around reading the lower dword
572 	 * of the engine_cycles register.
573 	 */
574 	__u64 cpu_delta;
575 };
576 
577 /**
578  * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
579  *
580  * Given a uc_type this will return the branch, major, minor and patch version
581  * of the micro-controller firmware.
582  */
583 struct drm_xe_query_uc_fw_version {
584 	/** @uc_type: The micro-controller type to query firmware version */
585 #define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
586 	__u16 uc_type;
587 
588 	/** @pad: MBZ */
589 	__u16 pad;
590 
591 	/** @branch_ver: branch uc fw version */
592 	__u32 branch_ver;
593 	/** @major_ver: major uc fw version */
594 	__u32 major_ver;
595 	/** @minor_ver: minor uc fw version */
596 	__u32 minor_ver;
597 	/** @patch_ver: patch uc fw version */
598 	__u32 patch_ver;
599 
600 	/** @pad2: MBZ */
601 	__u32 pad2;
602 
603 	/** @reserved: Reserved */
604 	__u64 reserved;
605 };
606 
607 /**
608  * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
609  * structure to query device information
610  *
611  * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
612  * and sets the value in the query member. This determines the type of
613  * the structure provided by the driver in data, among struct drm_xe_query_*.
614  *
615  * The @query can be:
616  *  - %DRM_XE_DEVICE_QUERY_ENGINES
617  *  - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
618  *  - %DRM_XE_DEVICE_QUERY_CONFIG
619  *  - %DRM_XE_DEVICE_QUERY_GT_LIST
620  *  - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
621  *    configuration of the device such as information on slices, memory,
622  *    caches, and so on. It is provided as a table of key / value
623  *    attributes.
624  *  - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
625  *  - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
626  *
627  * If size is set to 0, the driver fills it with the required size for
628  * the requested type of data to query. If size is equal to the required
629  * size, the queried information is copied into data. If size is set to
630  * a value different from 0 and different from the required size, the
631  * IOCTL call returns -EINVAL.
632  *
633  * For example the following code snippet allows retrieving and printing
634  * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
635  *
636  * .. code-block:: C
637  *
638  *     struct drm_xe_query_engines *engines;
639  *     struct drm_xe_device_query query = {
640  *         .extensions = 0,
641  *         .query = DRM_XE_DEVICE_QUERY_ENGINES,
642  *         .size = 0,
643  *         .data = 0,
644  *     };
645  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
646  *     engines = malloc(query.size);
647  *     query.data = (uintptr_t)engines;
648  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
649  *     for (int i = 0; i < engines->num_engines; i++) {
650  *         printf("Engine %d: %s\n", i,
651  *             engines->engines[i].instance.engine_class ==
652  *                 DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
653  *             engines->engines[i].instance.engine_class ==
654  *                 DRM_XE_ENGINE_CLASS_COPY ? "COPY":
655  *             engines->engines[i].instance.engine_class ==
656  *                 DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
657  *             engines->engines[i].instance.engine_class ==
658  *                 DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
659  *             engines->engines[i].instance.engine_class ==
660  *                 DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
661  *             "UNKNOWN");
662  *     }
663  *     free(engines);
664  */
665 struct drm_xe_device_query {
666 	/** @extensions: Pointer to the first extension struct, if any */
667 	__u64 extensions;
668 
669 #define DRM_XE_DEVICE_QUERY_ENGINES		0
670 #define DRM_XE_DEVICE_QUERY_MEM_REGIONS		1
671 #define DRM_XE_DEVICE_QUERY_CONFIG		2
672 #define DRM_XE_DEVICE_QUERY_GT_LIST		3
673 #define DRM_XE_DEVICE_QUERY_HWCONFIG		4
674 #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY		5
675 #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES	6
676 #define DRM_XE_DEVICE_QUERY_UC_FW_VERSION	7
677 	/** @query: The type of data to query */
678 	__u32 query;
679 
680 	/** @size: Size of the queried data */
681 	__u32 size;
682 
683 	/** @data: Queried data is placed here */
684 	__u64 data;
685 
686 	/** @reserved: Reserved */
687 	__u64 reserved[2];
688 };
689 
690 /**
691  * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
692  * gem creation
693  *
694  * The @flags can be:
695  *  - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING
696  *  - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
697  *  - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
698  *    possible placement, ensure that the corresponding VRAM allocation
699  *    will always use the CPU accessible part of VRAM. This is important
700  *    for small-bar systems (on full-bar systems this gets turned into a
701  *    noop).
702  *    Note1: System memory can be used as an extra placement if the kernel
703  *    should spill the allocation to system memory, if space can't be made
704  *    available in the CPU accessible part of VRAM (giving the same
705  *    behaviour as the i915 interface, see
706  *    I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
707  *    Note2: For clear-color CCS surfaces the kernel needs to read the
708  *    clear-color value stored in the buffer, and on discrete platforms we
709  *    need to use VRAM for display surfaces, therefore the kernel requires
710  *    setting this flag for such objects, otherwise an error is thrown on
711  *    small-bar systems.
712  *
713  * @cpu_caching supports the following values:
714  *  - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
715  *    caching. On iGPU this can't be used for scanout surfaces. Currently
716  *    not allowed for objects placed in VRAM.
717  *  - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
718  *    is uncached. Scanout surfaces should likely use this. All objects
719  *    that can be placed in VRAM must use this.
720  */
721 struct drm_xe_gem_create {
722 	/** @extensions: Pointer to the first extension struct, if any */
723 	__u64 extensions;
724 
725 	/**
726 	 * @size: Size of the object to be created, must match region
727 	 * (system or vram) minimum alignment (&min_page_size).
728 	 */
729 	__u64 size;
730 
731 	/**
732 	 * @placement: A mask of memory instances of where BO can be placed.
733 	 * Each index in this mask refers directly to the struct
734 	 * drm_xe_query_mem_regions' instance, no assumptions should
735 	 * be made about order. The type of each region is described
736 	 * by struct drm_xe_query_mem_regions' mem_class.
737 	 */
738 	__u32 placement;
739 
740 #define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING		(1 << 0)
741 #define DRM_XE_GEM_CREATE_FLAG_SCANOUT			(1 << 1)
742 #define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM	(1 << 2)
743 	/**
744 	 * @flags: Flags, currently a mask of memory instances of where BO can
745 	 * be placed
746 	 */
747 	__u32 flags;
748 
749 	/**
750 	 * @vm_id: Attached VM, if any
751 	 *
752 	 * If a VM is specified, this BO must:
753 	 *
754 	 *  1. Only ever be bound to that VM.
755 	 *  2. Cannot be exported as a PRIME fd.
756 	 */
757 	__u32 vm_id;
758 
759 	/**
760 	 * @handle: Returned handle for the object.
761 	 *
762 	 * Object handles are nonzero.
763 	 */
764 	__u32 handle;
765 
766 #define DRM_XE_GEM_CPU_CACHING_WB                      1
767 #define DRM_XE_GEM_CPU_CACHING_WC                      2
768 	/**
769 	 * @cpu_caching: The CPU caching mode to select for this object. If
770 	 * mmaping the object the mode selected here will also be used.
771 	 */
772 	__u16 cpu_caching;
773 	/** @pad: MBZ */
774 	__u16 pad[3];
775 
776 	/** @reserved: Reserved */
777 	__u64 reserved[2];
778 };
779 
780 /**
781  * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
782  */
783 struct drm_xe_gem_mmap_offset {
784 	/** @extensions: Pointer to the first extension struct, if any */
785 	__u64 extensions;
786 
787 	/** @handle: Handle for the object being mapped. */
788 	__u32 handle;
789 
790 	/** @flags: Must be zero */
791 	__u32 flags;
792 
793 	/** @offset: The fake offset to use for subsequent mmap call */
794 	__u64 offset;
795 
796 	/** @reserved: Reserved */
797 	__u64 reserved[2];
798 };
799 
800 /**
801  * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
802  *
803  * The @flags can be:
804  *  - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE
805  *  - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
806  *    exec submissions to its exec_queues that don't have an upper time
807  *    limit on the job execution time. But exec submissions to these
808  *    don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ,
809  *    DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF,
810  *    used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL.
811  *    LR VMs can be created in recoverable page-fault mode using
812  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
813  *    If that flag is omitted, the UMD can not rely on the slightly
814  *    different per-VM overcommit semantics that are enabled by
815  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
816  *    still enable recoverable pagefaults if supported by the device.
817  *  - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
818  *    DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
819  *    demand when accessed, and also allows per-VM overcommit of memory.
820  *    The xe driver internally uses recoverable pagefaults to implement
821  *    this.
822  */
823 struct drm_xe_vm_create {
824 	/** @extensions: Pointer to the first extension struct, if any */
825 	__u64 extensions;
826 
827 #define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE	(1 << 0)
828 #define DRM_XE_VM_CREATE_FLAG_LR_MODE	        (1 << 1)
829 #define DRM_XE_VM_CREATE_FLAG_FAULT_MODE	(1 << 2)
830 	/** @flags: Flags */
831 	__u32 flags;
832 
833 	/** @vm_id: Returned VM ID */
834 	__u32 vm_id;
835 
836 	/** @reserved: Reserved */
837 	__u64 reserved[2];
838 };
839 
840 /**
841  * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
842  */
843 struct drm_xe_vm_destroy {
844 	/** @vm_id: VM ID */
845 	__u32 vm_id;
846 
847 	/** @pad: MBZ */
848 	__u32 pad;
849 
850 	/** @reserved: Reserved */
851 	__u64 reserved[2];
852 };
853 
854 /**
855  * struct drm_xe_vm_bind_op - run bind operations
856  *
857  * The @op can be:
858  *  - %DRM_XE_VM_BIND_OP_MAP
859  *  - %DRM_XE_VM_BIND_OP_UNMAP
860  *  - %DRM_XE_VM_BIND_OP_MAP_USERPTR
861  *  - %DRM_XE_VM_BIND_OP_UNMAP_ALL
862  *  - %DRM_XE_VM_BIND_OP_PREFETCH
863  *
864  * and the @flags can be:
865  *  - %DRM_XE_VM_BIND_FLAG_READONLY
866  *  - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - Valid on a faulting VM only, do the
867  *    MAP operation immediately rather than deferring the MAP to the page
868  *    fault handler.
869  *  - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
870  *    tables are setup with a special bit which indicates writes are
871  *    dropped and all reads return zero. In the future, the NULL flags
872  *    will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
873  *    handle MBZ, and the BO offset MBZ. This flag is intended to
874  *    implement VK sparse bindings.
875  */
876 struct drm_xe_vm_bind_op {
877 	/** @extensions: Pointer to the first extension struct, if any */
878 	__u64 extensions;
879 
880 	/**
881 	 * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
882 	 */
883 	__u32 obj;
884 
885 	/**
886 	 * @pat_index: The platform defined @pat_index to use for this mapping.
887 	 * The index basically maps to some predefined memory attributes,
888 	 * including things like caching, coherency, compression etc.  The exact
889 	 * meaning of the pat_index is platform specific and defined in the
890 	 * Bspec and PRMs.  When the KMD sets up the binding the index here is
891 	 * encoded into the ppGTT PTE.
892 	 *
893 	 * For coherency the @pat_index needs to be at least 1way coherent when
894 	 * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
895 	 * will extract the coherency mode from the @pat_index and reject if
896 	 * there is a mismatch (see note below for pre-MTL platforms).
897 	 *
898 	 * Note: On pre-MTL platforms there is only a caching mode and no
899 	 * explicit coherency mode, but on such hardware there is always a
900 	 * shared-LLC (or is dgpu) so all GT memory accesses are coherent with
901 	 * CPU caches even with the caching mode set as uncached.  It's only the
902 	 * display engine that is incoherent (on dgpu it must be in VRAM which
903 	 * is always mapped as WC on the CPU). However to keep the uapi somewhat
904 	 * consistent with newer platforms the KMD groups the different cache
905 	 * levels into the following coherency buckets on all pre-MTL platforms:
906 	 *
907 	 *	ppGTT UC -> COH_NONE
908 	 *	ppGTT WC -> COH_NONE
909 	 *	ppGTT WT -> COH_NONE
910 	 *	ppGTT WB -> COH_AT_LEAST_1WAY
911 	 *
912 	 * In practice UC/WC/WT should only ever used for scanout surfaces on
913 	 * such platforms (or perhaps in general for dma-buf if shared with
914 	 * another device) since it is only the display engine that is actually
915 	 * incoherent.  Everything else should typically use WB given that we
916 	 * have a shared-LLC.  On MTL+ this completely changes and the HW
917 	 * defines the coherency mode as part of the @pat_index, where
918 	 * incoherent GT access is possible.
919 	 *
920 	 * Note: For userptr and externally imported dma-buf the kernel expects
921 	 * either 1WAY or 2WAY for the @pat_index.
922 	 *
923 	 * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
924 	 * on the @pat_index. For such mappings there is no actual memory being
925 	 * mapped (the address in the PTE is invalid), so the various PAT memory
926 	 * attributes likely do not apply.  Simply leaving as zero is one
927 	 * option (still a valid pat_index).
928 	 */
929 	__u16 pat_index;
930 
931 	/** @pad: MBZ */
932 	__u16 pad;
933 
934 	union {
935 		/**
936 		 * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
937 		 * ignored for unbind
938 		 */
939 		__u64 obj_offset;
940 
941 		/** @userptr: user pointer to bind on */
942 		__u64 userptr;
943 	};
944 
945 	/**
946 	 * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
947 	 */
948 	__u64 range;
949 
950 	/** @addr: Address to operate on, MBZ for UNMAP_ALL */
951 	__u64 addr;
952 
953 #define DRM_XE_VM_BIND_OP_MAP		0x0
954 #define DRM_XE_VM_BIND_OP_UNMAP		0x1
955 #define DRM_XE_VM_BIND_OP_MAP_USERPTR	0x2
956 #define DRM_XE_VM_BIND_OP_UNMAP_ALL	0x3
957 #define DRM_XE_VM_BIND_OP_PREFETCH	0x4
958 	/** @op: Bind operation to perform */
959 	__u32 op;
960 
961 #define DRM_XE_VM_BIND_FLAG_READONLY	(1 << 0)
962 #define DRM_XE_VM_BIND_FLAG_IMMEDIATE	(1 << 1)
963 #define DRM_XE_VM_BIND_FLAG_NULL	(1 << 2)
964 #define DRM_XE_VM_BIND_FLAG_DUMPABLE	(1 << 3)
965 	/** @flags: Bind flags */
966 	__u32 flags;
967 
968 	/**
969 	 * @prefetch_mem_region_instance: Memory region to prefetch VMA to.
970 	 * It is a region instance, not a mask.
971 	 * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
972 	 */
973 	__u32 prefetch_mem_region_instance;
974 
975 	/** @pad2: MBZ */
976 	__u32 pad2;
977 
978 	/** @reserved: Reserved */
979 	__u64 reserved[3];
980 };
981 
982 /**
983  * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
984  *
985  * Below is an example of a minimal use of @drm_xe_vm_bind to
986  * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
987  * illustrate `userptr`. It can be synchronized by using the example
988  * provided for @drm_xe_sync.
989  *
990  * .. code-block:: C
991  *
992  *     data = aligned_alloc(ALIGNMENT, BO_SIZE);
993  *     struct drm_xe_vm_bind bind = {
994  *         .vm_id = vm,
995  *         .num_binds = 1,
996  *         .bind.obj = 0,
997  *         .bind.obj_offset = to_user_pointer(data),
998  *         .bind.range = BO_SIZE,
999  *         .bind.addr = BIND_ADDRESS,
1000  *         .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
1001  *         .bind.flags = 0,
1002  *         .num_syncs = 1,
1003  *         .syncs = &sync,
1004  *         .exec_queue_id = 0,
1005  *     };
1006  *     ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
1007  *
1008  */
1009 struct drm_xe_vm_bind {
1010 	/** @extensions: Pointer to the first extension struct, if any */
1011 	__u64 extensions;
1012 
1013 	/** @vm_id: The ID of the VM to bind to */
1014 	__u32 vm_id;
1015 
1016 	/**
1017 	 * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
1018 	 * and exec queue must have same vm_id. If zero, the default VM bind engine
1019 	 * is used.
1020 	 */
1021 	__u32 exec_queue_id;
1022 
1023 	/** @pad: MBZ */
1024 	__u32 pad;
1025 
1026 	/** @num_binds: number of binds in this IOCTL */
1027 	__u32 num_binds;
1028 
1029 	union {
1030 		/** @bind: used if num_binds == 1 */
1031 		struct drm_xe_vm_bind_op bind;
1032 
1033 		/**
1034 		 * @vector_of_binds: userptr to array of struct
1035 		 * drm_xe_vm_bind_op if num_binds > 1
1036 		 */
1037 		__u64 vector_of_binds;
1038 	};
1039 
1040 	/** @pad2: MBZ */
1041 	__u32 pad2;
1042 
1043 	/** @num_syncs: amount of syncs to wait on */
1044 	__u32 num_syncs;
1045 
1046 	/** @syncs: pointer to struct drm_xe_sync array */
1047 	__u64 syncs;
1048 
1049 	/** @reserved: Reserved */
1050 	__u64 reserved[2];
1051 };
1052 
1053 /**
1054  * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
1055  *
1056  * The example below shows how to use @drm_xe_exec_queue_create to create
1057  * a simple exec_queue (no parallel submission) of class
1058  * &DRM_XE_ENGINE_CLASS_RENDER.
1059  *
1060  * .. code-block:: C
1061  *
1062  *     struct drm_xe_engine_class_instance instance = {
1063  *         .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
1064  *     };
1065  *     struct drm_xe_exec_queue_create exec_queue_create = {
1066  *          .extensions = 0,
1067  *          .vm_id = vm,
1068  *          .num_bb_per_exec = 1,
1069  *          .num_eng_per_bb = 1,
1070  *          .instances = to_user_pointer(&instance),
1071  *     };
1072  *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1073  *
1074  */
1075 struct drm_xe_exec_queue_create {
1076 #define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY		0
1077 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY		0
1078 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE		1
1079 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PREEMPTION_TIMEOUT	2
1080 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_JOB_TIMEOUT		4
1081 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_ACC_TRIGGER		5
1082 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_ACC_NOTIFY		6
1083 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_ACC_GRANULARITY	7
1084 /* Monitor 128KB contiguous region with 4K sub-granularity */
1085 #define     DRM_XE_ACC_GRANULARITY_128K				0
1086 /* Monitor 2MB contiguous region with 64KB sub-granularity */
1087 #define     DRM_XE_ACC_GRANULARITY_2M				1
1088 /* Monitor 16MB contiguous region with 512KB sub-granularity */
1089 #define     DRM_XE_ACC_GRANULARITY_16M				2
1090 /* Monitor 64MB contiguous region with 2M sub-granularity */
1091 #define     DRM_XE_ACC_GRANULARITY_64M				3
1092 
1093 	/** @extensions: Pointer to the first extension struct, if any */
1094 	__u64 extensions;
1095 
1096 	/** @width: submission width (number BB per exec) for this exec queue */
1097 	__u16 width;
1098 
1099 	/** @num_placements: number of valid placements for this exec queue */
1100 	__u16 num_placements;
1101 
1102 	/** @vm_id: VM to use for this exec queue */
1103 	__u32 vm_id;
1104 
1105 	/** @flags: MBZ */
1106 	__u32 flags;
1107 
1108 	/** @exec_queue_id: Returned exec queue ID */
1109 	__u32 exec_queue_id;
1110 
1111 	/**
1112 	 * @instances: user pointer to a 2-d array of struct
1113 	 * drm_xe_engine_class_instance
1114 	 *
1115 	 * length = width (i) * num_placements (j)
1116 	 * index = j + i * width
1117 	 */
1118 	__u64 instances;
1119 
1120 	/** @reserved: Reserved */
1121 	__u64 reserved[2];
1122 };
1123 
1124 /**
1125  * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
1126  */
1127 struct drm_xe_exec_queue_destroy {
1128 	/** @exec_queue_id: Exec queue ID */
1129 	__u32 exec_queue_id;
1130 
1131 	/** @pad: MBZ */
1132 	__u32 pad;
1133 
1134 	/** @reserved: Reserved */
1135 	__u64 reserved[2];
1136 };
1137 
1138 /**
1139  * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
1140  *
1141  * The @property can be:
1142  *  - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
1143  */
1144 struct drm_xe_exec_queue_get_property {
1145 	/** @extensions: Pointer to the first extension struct, if any */
1146 	__u64 extensions;
1147 
1148 	/** @exec_queue_id: Exec queue ID */
1149 	__u32 exec_queue_id;
1150 
1151 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN	0
1152 	/** @property: property to get */
1153 	__u32 property;
1154 
1155 	/** @value: property value */
1156 	__u64 value;
1157 
1158 	/** @reserved: Reserved */
1159 	__u64 reserved[2];
1160 };
1161 
1162 /**
1163  * struct drm_xe_sync - sync object
1164  *
1165  * The @type can be:
1166  *  - %DRM_XE_SYNC_TYPE_SYNCOBJ
1167  *  - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
1168  *  - %DRM_XE_SYNC_TYPE_USER_FENCE
1169  *
1170  * and the @flags can be:
1171  *  - %DRM_XE_SYNC_FLAG_SIGNAL
1172  *
1173  * A minimal use of @drm_xe_sync looks like this:
1174  *
1175  * .. code-block:: C
1176  *
1177  *     struct drm_xe_sync sync = {
1178  *         .flags = DRM_XE_SYNC_FLAG_SIGNAL,
1179  *         .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
1180  *     };
1181  *     struct drm_syncobj_create syncobj_create = { 0 };
1182  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
1183  *     sync.handle = syncobj_create.handle;
1184  *         ...
1185  *         use of &sync in drm_xe_exec or drm_xe_vm_bind
1186  *         ...
1187  *     struct drm_syncobj_wait wait = {
1188  *         .handles = &sync.handle,
1189  *         .timeout_nsec = INT64_MAX,
1190  *         .count_handles = 1,
1191  *         .flags = 0,
1192  *         .first_signaled = 0,
1193  *         .pad = 0,
1194  *     };
1195  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
1196  */
1197 struct drm_xe_sync {
1198 	/** @extensions: Pointer to the first extension struct, if any */
1199 	__u64 extensions;
1200 
1201 #define DRM_XE_SYNC_TYPE_SYNCOBJ		0x0
1202 #define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ	0x1
1203 #define DRM_XE_SYNC_TYPE_USER_FENCE		0x2
1204 	/** @type: Type of the this sync object */
1205 	__u32 type;
1206 
1207 #define DRM_XE_SYNC_FLAG_SIGNAL	(1 << 0)
1208 	/** @flags: Sync Flags */
1209 	__u32 flags;
1210 
1211 	union {
1212 		/** @handle: Handle for the object */
1213 		__u32 handle;
1214 
1215 		/**
1216 		 * @addr: Address of user fence. When sync is passed in via exec
1217 		 * IOCTL this is a GPU address in the VM. When sync passed in via
1218 		 * VM bind IOCTL this is a user pointer. In either case, it is
1219 		 * the users responsibility that this address is present and
1220 		 * mapped when the user fence is signalled. Must be qword
1221 		 * aligned.
1222 		 */
1223 		__u64 addr;
1224 	};
1225 
1226 	/**
1227 	 * @timeline_value: Input for the timeline sync object. Needs to be
1228 	 * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ.
1229 	 */
1230 	__u64 timeline_value;
1231 
1232 	/** @reserved: Reserved */
1233 	__u64 reserved[2];
1234 };
1235 
1236 /**
1237  * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
1238  *
1239  * This is an example to use @drm_xe_exec for execution of the object
1240  * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
1241  * (see example in @drm_xe_exec_queue_create). It can be synchronized
1242  * by using the example provided for @drm_xe_sync.
1243  *
1244  * .. code-block:: C
1245  *
1246  *     struct drm_xe_exec exec = {
1247  *         .exec_queue_id = exec_queue,
1248  *         .syncs = &sync,
1249  *         .num_syncs = 1,
1250  *         .address = BIND_ADDRESS,
1251  *         .num_batch_buffer = 1,
1252  *     };
1253  *     ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
1254  *
1255  */
1256 struct drm_xe_exec {
1257 	/** @extensions: Pointer to the first extension struct, if any */
1258 	__u64 extensions;
1259 
1260 	/** @exec_queue_id: Exec queue ID for the batch buffer */
1261 	__u32 exec_queue_id;
1262 
1263 	/** @num_syncs: Amount of struct drm_xe_sync in array. */
1264 	__u32 num_syncs;
1265 
1266 	/** @syncs: Pointer to struct drm_xe_sync array. */
1267 	__u64 syncs;
1268 
1269 	/**
1270 	 * @address: address of batch buffer if num_batch_buffer == 1 or an
1271 	 * array of batch buffer addresses
1272 	 */
1273 	__u64 address;
1274 
1275 	/**
1276 	 * @num_batch_buffer: number of batch buffer in this exec, must match
1277 	 * the width of the engine
1278 	 */
1279 	__u16 num_batch_buffer;
1280 
1281 	/** @pad: MBZ */
1282 	__u16 pad[3];
1283 
1284 	/** @reserved: Reserved */
1285 	__u64 reserved[2];
1286 };
1287 
1288 /**
1289  * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
1290  *
1291  * Wait on user fence, XE will wake-up on every HW engine interrupt in the
1292  * instances list and check if user fence is complete::
1293  *
1294  *	(*addr & MASK) OP (VALUE & MASK)
1295  *
1296  * Returns to user on user fence completion or timeout.
1297  *
1298  * The @op can be:
1299  *  - %DRM_XE_UFENCE_WAIT_OP_EQ
1300  *  - %DRM_XE_UFENCE_WAIT_OP_NEQ
1301  *  - %DRM_XE_UFENCE_WAIT_OP_GT
1302  *  - %DRM_XE_UFENCE_WAIT_OP_GTE
1303  *  - %DRM_XE_UFENCE_WAIT_OP_LT
1304  *  - %DRM_XE_UFENCE_WAIT_OP_LTE
1305  *
1306  * and the @flags can be:
1307  *  - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
1308  *  - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
1309  *
1310  * The @mask values can be for example:
1311  *  - 0xffu for u8
1312  *  - 0xffffu for u16
1313  *  - 0xffffffffu for u32
1314  *  - 0xffffffffffffffffu for u64
1315  */
1316 struct drm_xe_wait_user_fence {
1317 	/** @extensions: Pointer to the first extension struct, if any */
1318 	__u64 extensions;
1319 
1320 	/**
1321 	 * @addr: user pointer address to wait on, must qword aligned
1322 	 */
1323 	__u64 addr;
1324 
1325 #define DRM_XE_UFENCE_WAIT_OP_EQ	0x0
1326 #define DRM_XE_UFENCE_WAIT_OP_NEQ	0x1
1327 #define DRM_XE_UFENCE_WAIT_OP_GT	0x2
1328 #define DRM_XE_UFENCE_WAIT_OP_GTE	0x3
1329 #define DRM_XE_UFENCE_WAIT_OP_LT	0x4
1330 #define DRM_XE_UFENCE_WAIT_OP_LTE	0x5
1331 	/** @op: wait operation (type of comparison) */
1332 	__u16 op;
1333 
1334 #define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME	(1 << 0)
1335 	/** @flags: wait flags */
1336 	__u16 flags;
1337 
1338 	/** @pad: MBZ */
1339 	__u32 pad;
1340 
1341 	/** @value: compare value */
1342 	__u64 value;
1343 
1344 	/** @mask: comparison mask */
1345 	__u64 mask;
1346 
1347 	/**
1348 	 * @timeout: how long to wait before bailing, value in nanoseconds.
1349 	 * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
1350 	 * it contains timeout expressed in nanoseconds to wait (fence will
1351 	 * expire at now() + timeout).
1352 	 * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
1353 	 * will end at timeout (uses system MONOTONIC_CLOCK).
1354 	 * Passing negative timeout leads to neverending wait.
1355 	 *
1356 	 * On relative timeout this value is updated with timeout left
1357 	 * (for restarting the call in case of signal delivery).
1358 	 * On absolute timeout this value stays intact (restarted call still
1359 	 * expire at the same point of time).
1360 	 */
1361 	__s64 timeout;
1362 
1363 	/** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
1364 	__u32 exec_queue_id;
1365 
1366 	/** @pad2: MBZ */
1367 	__u32 pad2;
1368 
1369 	/** @reserved: Reserved */
1370 	__u64 reserved[2];
1371 };
1372 
1373 #if defined(__cplusplus)
1374 }
1375 #endif
1376 
1377 #endif /* _UAPI_XE_DRM_H_ */
1378