1 /* SPDX-License-Identifier: MIT */ 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #ifndef _UAPI_XE_DRM_H_ 7 #define _UAPI_XE_DRM_H_ 8 9 #include "drm.h" 10 11 #if defined(__cplusplus) 12 extern "C" { 13 #endif 14 15 /* 16 * Please note that modifications to all structs defined here are 17 * subject to backwards-compatibility constraints. 18 * Sections in this file are organized as follows: 19 * 1. IOCTL definition 20 * 2. Extension definition and helper structs 21 * 3. IOCTL's Query structs in the order of the Query's entries. 22 * 4. The rest of IOCTL structs in the order of IOCTL declaration. 23 */ 24 25 /** 26 * DOC: Xe Device Block Diagram 27 * 28 * The diagram below represents a high-level simplification of a discrete 29 * GPU supported by the Xe driver. It shows some device components which 30 * are necessary to understand this API, as well as how their relations 31 * to each other. This diagram does not represent real hardware:: 32 * 33 * ┌──────────────────────────────────────────────────────────────────┐ 34 * │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │ 35 * │ │ ┌───────────────────────┐ ┌─────┐ │ │ ┌─────┐ │ │ 36 * │ │ │ VRAM0 ├───┤ ... │ │ │ │VRAM1│ │ │ 37 * │ │ └───────────┬───────────┘ └─GT1─┘ │ │ └──┬──┘ │ │ 38 * │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │ 39 * │ │ │ ┌─────────────────────┐ ┌─────────────────┐ │ │ │ │ │ │ │ 40 * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ 41 * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │RCS0 │ │BCS0 │ │ │ │ │ │ │ │ │ 42 * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ 43 * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ 44 * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VCS0 │ │VCS1 │ │ │ │ │ │ │ │ │ 45 * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ 46 * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ 47 * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │ 48 * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ 49 * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ 50 * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │CCS0 │ │CCS1 │ │ │ │ │ │ │ │ │ 51 * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ 52 * │ │ │ └─────────DSS─────────┘ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ 53 * │ │ │ │ │CCS2 │ │CCS3 │ │ │ │ │ │ │ │ │ 54 * │ │ │ ┌─────┐ ┌─────┐ ┌─────┐ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │ 55 * │ │ │ │ ... │ │ ... │ │ ... │ │ │ │ │ │ │ │ │ │ 56 * │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘ └─────Engines─────┘ │ │ │ │ │ │ │ 57 * │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │ 58 * │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │ 59 * └─────────────────────────────Device0───────┬──────────────────────┘ 60 * │ 61 * ───────────────────────┴────────── PCI bus 62 */ 63 64 /** 65 * DOC: Xe uAPI Overview 66 * 67 * This section aims to describe the Xe's IOCTL entries, its structs, and other 68 * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related 69 * entries and usage. 70 * 71 * List of supported IOCTLs: 72 * - &DRM_IOCTL_XE_DEVICE_QUERY 73 * - &DRM_IOCTL_XE_GEM_CREATE 74 * - &DRM_IOCTL_XE_GEM_MMAP_OFFSET 75 * - &DRM_IOCTL_XE_VM_CREATE 76 * - &DRM_IOCTL_XE_VM_DESTROY 77 * - &DRM_IOCTL_XE_VM_BIND 78 * - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE 79 * - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY 80 * - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY 81 * - &DRM_IOCTL_XE_EXEC 82 * - &DRM_IOCTL_XE_WAIT_USER_FENCE 83 * - &DRM_IOCTL_XE_OBSERVATION 84 */ 85 86 /* 87 * xe specific ioctls. 88 * 89 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie 90 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset 91 * against DRM_COMMAND_BASE and should be between [0x0, 0x60). 92 */ 93 #define DRM_XE_DEVICE_QUERY 0x00 94 #define DRM_XE_GEM_CREATE 0x01 95 #define DRM_XE_GEM_MMAP_OFFSET 0x02 96 #define DRM_XE_VM_CREATE 0x03 97 #define DRM_XE_VM_DESTROY 0x04 98 #define DRM_XE_VM_BIND 0x05 99 #define DRM_XE_EXEC_QUEUE_CREATE 0x06 100 #define DRM_XE_EXEC_QUEUE_DESTROY 0x07 101 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY 0x08 102 #define DRM_XE_EXEC 0x09 103 #define DRM_XE_WAIT_USER_FENCE 0x0a 104 #define DRM_XE_OBSERVATION 0x0b 105 106 /* Must be kept compact -- no holes */ 107 108 #define DRM_IOCTL_XE_DEVICE_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query) 109 #define DRM_IOCTL_XE_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create) 110 #define DRM_IOCTL_XE_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset) 111 #define DRM_IOCTL_XE_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create) 112 #define DRM_IOCTL_XE_VM_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy) 113 #define DRM_IOCTL_XE_VM_BIND DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind) 114 #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create) 115 #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy) 116 #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property) 117 #define DRM_IOCTL_XE_EXEC DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec) 118 #define DRM_IOCTL_XE_WAIT_USER_FENCE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence) 119 #define DRM_IOCTL_XE_OBSERVATION DRM_IOW(DRM_COMMAND_BASE + DRM_XE_OBSERVATION, struct drm_xe_observation_param) 120 121 /** 122 * DOC: Xe IOCTL Extensions 123 * 124 * Before detailing the IOCTLs and its structs, it is important to highlight 125 * that every IOCTL in Xe is extensible. 126 * 127 * Many interfaces need to grow over time. In most cases we can simply 128 * extend the struct and have userspace pass in more data. Another option, 129 * as demonstrated by Vulkan's approach to providing extensions for forward 130 * and backward compatibility, is to use a list of optional structs to 131 * provide those extra details. 132 * 133 * The key advantage to using an extension chain is that it allows us to 134 * redefine the interface more easily than an ever growing struct of 135 * increasing complexity, and for large parts of that interface to be 136 * entirely optional. The downside is more pointer chasing; chasing across 137 * the __user boundary with pointers encapsulated inside u64. 138 * 139 * Example chaining: 140 * 141 * .. code-block:: C 142 * 143 * struct drm_xe_user_extension ext3 { 144 * .next_extension = 0, // end 145 * .name = ..., 146 * }; 147 * struct drm_xe_user_extension ext2 { 148 * .next_extension = (uintptr_t)&ext3, 149 * .name = ..., 150 * }; 151 * struct drm_xe_user_extension ext1 { 152 * .next_extension = (uintptr_t)&ext2, 153 * .name = ..., 154 * }; 155 * 156 * Typically the struct drm_xe_user_extension would be embedded in some uAPI 157 * struct, and in this case we would feed it the head of the chain(i.e ext1), 158 * which would then apply all of the above extensions. 159 */ 160 161 /** 162 * struct drm_xe_user_extension - Base class for defining a chain of extensions 163 */ 164 struct drm_xe_user_extension { 165 /** 166 * @next_extension: 167 * 168 * Pointer to the next struct drm_xe_user_extension, or zero if the end. 169 */ 170 __u64 next_extension; 171 172 /** 173 * @name: Name of the extension. 174 * 175 * Note that the name here is just some integer. 176 * 177 * Also note that the name space for this is not global for the whole 178 * driver, but rather its scope/meaning is limited to the specific piece 179 * of uAPI which has embedded the struct drm_xe_user_extension. 180 */ 181 __u32 name; 182 183 /** 184 * @pad: MBZ 185 * 186 * All undefined bits must be zero. 187 */ 188 __u32 pad; 189 }; 190 191 /** 192 * struct drm_xe_ext_set_property - Generic set property extension 193 * 194 * A generic struct that allows any of the Xe's IOCTL to be extended 195 * with a set_property operation. 196 */ 197 struct drm_xe_ext_set_property { 198 /** @base: base user extension */ 199 struct drm_xe_user_extension base; 200 201 /** @property: property to set */ 202 __u32 property; 203 204 /** @pad: MBZ */ 205 __u32 pad; 206 207 /** @value: property value */ 208 __u64 value; 209 210 /** @reserved: Reserved */ 211 __u64 reserved[2]; 212 }; 213 214 /** 215 * struct drm_xe_engine_class_instance - instance of an engine class 216 * 217 * It is returned as part of the @drm_xe_engine, but it also is used as 218 * the input of engine selection for both @drm_xe_exec_queue_create and 219 * @drm_xe_query_engine_cycles 220 * 221 * The @engine_class can be: 222 * - %DRM_XE_ENGINE_CLASS_RENDER 223 * - %DRM_XE_ENGINE_CLASS_COPY 224 * - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE 225 * - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 226 * - %DRM_XE_ENGINE_CLASS_COMPUTE 227 * - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual 228 * hardware engine class). Used for creating ordered queues of VM 229 * bind operations. 230 */ 231 struct drm_xe_engine_class_instance { 232 #define DRM_XE_ENGINE_CLASS_RENDER 0 233 #define DRM_XE_ENGINE_CLASS_COPY 1 234 #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE 2 235 #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 3 236 #define DRM_XE_ENGINE_CLASS_COMPUTE 4 237 #define DRM_XE_ENGINE_CLASS_VM_BIND 5 238 /** @engine_class: engine class id */ 239 __u16 engine_class; 240 /** @engine_instance: engine instance id */ 241 __u16 engine_instance; 242 /** @gt_id: Unique ID of this GT within the PCI Device */ 243 __u16 gt_id; 244 /** @pad: MBZ */ 245 __u16 pad; 246 }; 247 248 /** 249 * struct drm_xe_engine - describe hardware engine 250 */ 251 struct drm_xe_engine { 252 /** @instance: The @drm_xe_engine_class_instance */ 253 struct drm_xe_engine_class_instance instance; 254 255 /** @reserved: Reserved */ 256 __u64 reserved[3]; 257 }; 258 259 /** 260 * struct drm_xe_query_engines - describe engines 261 * 262 * If a query is made with a struct @drm_xe_device_query where .query 263 * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of 264 * struct @drm_xe_query_engines in .data. 265 */ 266 struct drm_xe_query_engines { 267 /** @num_engines: number of engines returned in @engines */ 268 __u32 num_engines; 269 /** @pad: MBZ */ 270 __u32 pad; 271 /** @engines: The returned engines for this device */ 272 struct drm_xe_engine engines[]; 273 }; 274 275 /** 276 * enum drm_xe_memory_class - Supported memory classes. 277 */ 278 enum drm_xe_memory_class { 279 /** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */ 280 DRM_XE_MEM_REGION_CLASS_SYSMEM = 0, 281 /** 282 * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this 283 * represents the memory that is local to the device, which we 284 * call VRAM. Not valid on integrated platforms. 285 */ 286 DRM_XE_MEM_REGION_CLASS_VRAM 287 }; 288 289 /** 290 * struct drm_xe_mem_region - Describes some region as known to 291 * the driver. 292 */ 293 struct drm_xe_mem_region { 294 /** 295 * @mem_class: The memory class describing this region. 296 * 297 * See enum drm_xe_memory_class for supported values. 298 */ 299 __u16 mem_class; 300 /** 301 * @instance: The unique ID for this region, which serves as the 302 * index in the placement bitmask used as argument for 303 * &DRM_IOCTL_XE_GEM_CREATE 304 */ 305 __u16 instance; 306 /** 307 * @min_page_size: Min page-size in bytes for this region. 308 * 309 * When the kernel allocates memory for this region, the 310 * underlying pages will be at least @min_page_size in size. 311 * Buffer objects with an allowable placement in this region must be 312 * created with a size aligned to this value. 313 * GPU virtual address mappings of (parts of) buffer objects that 314 * may be placed in this region must also have their GPU virtual 315 * address and range aligned to this value. 316 * Affected IOCTLS will return %-EINVAL if alignment restrictions are 317 * not met. 318 */ 319 __u32 min_page_size; 320 /** 321 * @total_size: The usable size in bytes for this region. 322 */ 323 __u64 total_size; 324 /** 325 * @used: Estimate of the memory used in bytes for this region. 326 * 327 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable 328 * accounting. Without this the value here will always equal 329 * zero. 330 */ 331 __u64 used; 332 /** 333 * @cpu_visible_size: How much of this region can be CPU 334 * accessed, in bytes. 335 * 336 * This will always be <= @total_size, and the remainder (if 337 * any) will not be CPU accessible. If the CPU accessible part 338 * is smaller than @total_size then this is referred to as a 339 * small BAR system. 340 * 341 * On systems without small BAR (full BAR), the probed_size will 342 * always equal the @total_size, since all of it will be CPU 343 * accessible. 344 * 345 * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM 346 * regions (for other types the value here will always equal 347 * zero). 348 */ 349 __u64 cpu_visible_size; 350 /** 351 * @cpu_visible_used: Estimate of CPU visible memory used, in 352 * bytes. 353 * 354 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable 355 * accounting. Without this the value here will always equal 356 * zero. Note this is only currently tracked for 357 * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value 358 * here will always be zero). 359 */ 360 __u64 cpu_visible_used; 361 /** @reserved: Reserved */ 362 __u64 reserved[6]; 363 }; 364 365 /** 366 * struct drm_xe_query_mem_regions - describe memory regions 367 * 368 * If a query is made with a struct drm_xe_device_query where .query 369 * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses 370 * struct drm_xe_query_mem_regions in .data. 371 */ 372 struct drm_xe_query_mem_regions { 373 /** @num_mem_regions: number of memory regions returned in @mem_regions */ 374 __u32 num_mem_regions; 375 /** @pad: MBZ */ 376 __u32 pad; 377 /** @mem_regions: The returned memory regions for this device */ 378 struct drm_xe_mem_region mem_regions[]; 379 }; 380 381 /** 382 * struct drm_xe_query_config - describe the device configuration 383 * 384 * If a query is made with a struct drm_xe_device_query where .query 385 * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses 386 * struct drm_xe_query_config in .data. 387 * 388 * The index in @info can be: 389 * - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits) 390 * and the device revision (next 8 bits) 391 * - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device 392 * configuration, see list below 393 * 394 * - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device 395 * has usable VRAM 396 * - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment 397 * required by this device, typically SZ_4K or SZ_64K 398 * - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address 399 * - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest 400 * available exec queue priority 401 */ 402 struct drm_xe_query_config { 403 /** @num_params: number of parameters returned in info */ 404 __u32 num_params; 405 406 /** @pad: MBZ */ 407 __u32 pad; 408 409 #define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID 0 410 #define DRM_XE_QUERY_CONFIG_FLAGS 1 411 #define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM (1 << 0) 412 #define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT 2 413 #define DRM_XE_QUERY_CONFIG_VA_BITS 3 414 #define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY 4 415 /** @info: array of elements containing the config info */ 416 __u64 info[]; 417 }; 418 419 /** 420 * struct drm_xe_gt - describe an individual GT. 421 * 422 * To be used with drm_xe_query_gt_list, which will return a list with all the 423 * existing GT individual descriptions. 424 * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for 425 * implementing graphics and/or media operations. 426 * 427 * The index in @type can be: 428 * - %DRM_XE_QUERY_GT_TYPE_MAIN 429 * - %DRM_XE_QUERY_GT_TYPE_MEDIA 430 */ 431 struct drm_xe_gt { 432 #define DRM_XE_QUERY_GT_TYPE_MAIN 0 433 #define DRM_XE_QUERY_GT_TYPE_MEDIA 1 434 /** @type: GT type: Main or Media */ 435 __u16 type; 436 /** @tile_id: Tile ID where this GT lives (Information only) */ 437 __u16 tile_id; 438 /** @gt_id: Unique ID of this GT within the PCI Device */ 439 __u16 gt_id; 440 /** @pad: MBZ */ 441 __u16 pad[3]; 442 /** @reference_clock: A clock frequency for timestamp */ 443 __u32 reference_clock; 444 /** 445 * @near_mem_regions: Bit mask of instances from 446 * drm_xe_query_mem_regions that are nearest to the current engines 447 * of this GT. 448 * Each index in this mask refers directly to the struct 449 * drm_xe_query_mem_regions' instance, no assumptions should 450 * be made about order. The type of each region is described 451 * by struct drm_xe_query_mem_regions' mem_class. 452 */ 453 __u64 near_mem_regions; 454 /** 455 * @far_mem_regions: Bit mask of instances from 456 * drm_xe_query_mem_regions that are far from the engines of this GT. 457 * In general, they have extra indirections when compared to the 458 * @near_mem_regions. For a discrete device this could mean system 459 * memory and memory living in a different tile. 460 * Each index in this mask refers directly to the struct 461 * drm_xe_query_mem_regions' instance, no assumptions should 462 * be made about order. The type of each region is described 463 * by struct drm_xe_query_mem_regions' mem_class. 464 */ 465 __u64 far_mem_regions; 466 /** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */ 467 __u16 ip_ver_major; 468 /** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */ 469 __u16 ip_ver_minor; 470 /** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */ 471 __u16 ip_ver_rev; 472 /** @pad2: MBZ */ 473 __u16 pad2; 474 /** @reserved: Reserved */ 475 __u64 reserved[7]; 476 }; 477 478 /** 479 * struct drm_xe_query_gt_list - A list with GT description items. 480 * 481 * If a query is made with a struct drm_xe_device_query where .query 482 * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct 483 * drm_xe_query_gt_list in .data. 484 */ 485 struct drm_xe_query_gt_list { 486 /** @num_gt: number of GT items returned in gt_list */ 487 __u32 num_gt; 488 /** @pad: MBZ */ 489 __u32 pad; 490 /** @gt_list: The GT list returned for this device */ 491 struct drm_xe_gt gt_list[]; 492 }; 493 494 /** 495 * struct drm_xe_query_topology_mask - describe the topology mask of a GT 496 * 497 * This is the hardware topology which reflects the internal physical 498 * structure of the GPU. 499 * 500 * If a query is made with a struct drm_xe_device_query where .query 501 * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses 502 * struct drm_xe_query_topology_mask in .data. 503 * 504 * The @type can be: 505 * - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices 506 * (DSS) available for geometry operations. For example a query response 507 * containing the following in mask: 508 * ``DSS_GEOMETRY ff ff ff ff 00 00 00 00`` 509 * means 32 DSS are available for geometry. 510 * - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices 511 * (DSS) available for compute operations. For example a query response 512 * containing the following in mask: 513 * ``DSS_COMPUTE ff ff ff ff 00 00 00 00`` 514 * means 32 DSS are available for compute. 515 * - %DRM_XE_TOPO_L3_BANK - To query the mask of enabled L3 banks 516 * - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU) 517 * available per Dual Sub Slices (DSS). For example a query response 518 * containing the following in mask: 519 * ``EU_PER_DSS ff ff 00 00 00 00 00 00`` 520 * means each DSS has 16 EU. 521 */ 522 struct drm_xe_query_topology_mask { 523 /** @gt_id: GT ID the mask is associated with */ 524 __u16 gt_id; 525 526 #define DRM_XE_TOPO_DSS_GEOMETRY 1 527 #define DRM_XE_TOPO_DSS_COMPUTE 2 528 #define DRM_XE_TOPO_L3_BANK 3 529 #define DRM_XE_TOPO_EU_PER_DSS 4 530 /** @type: type of mask */ 531 __u16 type; 532 533 /** @num_bytes: number of bytes in requested mask */ 534 __u32 num_bytes; 535 536 /** @mask: little-endian mask of @num_bytes */ 537 __u8 mask[]; 538 }; 539 540 /** 541 * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps 542 * 543 * If a query is made with a struct drm_xe_device_query where .query is equal to 544 * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles 545 * in .data. struct drm_xe_query_engine_cycles is allocated by the user and 546 * .data points to this allocated structure. 547 * 548 * The query returns the engine cycles, which along with GT's @reference_clock, 549 * can be used to calculate the engine timestamp. In addition the 550 * query returns a set of cpu timestamps that indicate when the command 551 * streamer cycle count was captured. 552 */ 553 struct drm_xe_query_engine_cycles { 554 /** 555 * @eci: This is input by the user and is the engine for which command 556 * streamer cycles is queried. 557 */ 558 struct drm_xe_engine_class_instance eci; 559 560 /** 561 * @clockid: This is input by the user and is the reference clock id for 562 * CPU timestamp. For definition, see clock_gettime(2) and 563 * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC, 564 * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI. 565 */ 566 __s32 clockid; 567 568 /** @width: Width of the engine cycle counter in bits. */ 569 __u32 width; 570 571 /** 572 * @engine_cycles: Engine cycles as read from its register 573 * at 0x358 offset. 574 */ 575 __u64 engine_cycles; 576 577 /** 578 * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before 579 * reading the engine_cycles register using the reference clockid set by the 580 * user. 581 */ 582 __u64 cpu_timestamp; 583 584 /** 585 * @cpu_delta: Time delta in ns captured around reading the lower dword 586 * of the engine_cycles register. 587 */ 588 __u64 cpu_delta; 589 }; 590 591 /** 592 * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version 593 * 594 * Given a uc_type this will return the branch, major, minor and patch version 595 * of the micro-controller firmware. 596 */ 597 struct drm_xe_query_uc_fw_version { 598 /** @uc_type: The micro-controller type to query firmware version */ 599 #define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0 600 #define XE_QUERY_UC_TYPE_HUC 1 601 __u16 uc_type; 602 603 /** @pad: MBZ */ 604 __u16 pad; 605 606 /** @branch_ver: branch uc fw version */ 607 __u32 branch_ver; 608 /** @major_ver: major uc fw version */ 609 __u32 major_ver; 610 /** @minor_ver: minor uc fw version */ 611 __u32 minor_ver; 612 /** @patch_ver: patch uc fw version */ 613 __u32 patch_ver; 614 615 /** @pad2: MBZ */ 616 __u32 pad2; 617 618 /** @reserved: Reserved */ 619 __u64 reserved; 620 }; 621 622 /** 623 * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main 624 * structure to query device information 625 * 626 * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_* 627 * and sets the value in the query member. This determines the type of 628 * the structure provided by the driver in data, among struct drm_xe_query_*. 629 * 630 * The @query can be: 631 * - %DRM_XE_DEVICE_QUERY_ENGINES 632 * - %DRM_XE_DEVICE_QUERY_MEM_REGIONS 633 * - %DRM_XE_DEVICE_QUERY_CONFIG 634 * - %DRM_XE_DEVICE_QUERY_GT_LIST 635 * - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware 636 * configuration of the device such as information on slices, memory, 637 * caches, and so on. It is provided as a table of key / value 638 * attributes. 639 * - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 640 * - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 641 * 642 * If size is set to 0, the driver fills it with the required size for 643 * the requested type of data to query. If size is equal to the required 644 * size, the queried information is copied into data. If size is set to 645 * a value different from 0 and different from the required size, the 646 * IOCTL call returns -EINVAL. 647 * 648 * For example the following code snippet allows retrieving and printing 649 * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES: 650 * 651 * .. code-block:: C 652 * 653 * struct drm_xe_query_engines *engines; 654 * struct drm_xe_device_query query = { 655 * .extensions = 0, 656 * .query = DRM_XE_DEVICE_QUERY_ENGINES, 657 * .size = 0, 658 * .data = 0, 659 * }; 660 * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query); 661 * engines = malloc(query.size); 662 * query.data = (uintptr_t)engines; 663 * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query); 664 * for (int i = 0; i < engines->num_engines; i++) { 665 * printf("Engine %d: %s\n", i, 666 * engines->engines[i].instance.engine_class == 667 * DRM_XE_ENGINE_CLASS_RENDER ? "RENDER": 668 * engines->engines[i].instance.engine_class == 669 * DRM_XE_ENGINE_CLASS_COPY ? "COPY": 670 * engines->engines[i].instance.engine_class == 671 * DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE": 672 * engines->engines[i].instance.engine_class == 673 * DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE": 674 * engines->engines[i].instance.engine_class == 675 * DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE": 676 * "UNKNOWN"); 677 * } 678 * free(engines); 679 */ 680 struct drm_xe_device_query { 681 /** @extensions: Pointer to the first extension struct, if any */ 682 __u64 extensions; 683 684 #define DRM_XE_DEVICE_QUERY_ENGINES 0 685 #define DRM_XE_DEVICE_QUERY_MEM_REGIONS 1 686 #define DRM_XE_DEVICE_QUERY_CONFIG 2 687 #define DRM_XE_DEVICE_QUERY_GT_LIST 3 688 #define DRM_XE_DEVICE_QUERY_HWCONFIG 4 689 #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 5 690 #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 6 691 #define DRM_XE_DEVICE_QUERY_UC_FW_VERSION 7 692 #define DRM_XE_DEVICE_QUERY_OA_UNITS 8 693 /** @query: The type of data to query */ 694 __u32 query; 695 696 /** @size: Size of the queried data */ 697 __u32 size; 698 699 /** @data: Queried data is placed here */ 700 __u64 data; 701 702 /** @reserved: Reserved */ 703 __u64 reserved[2]; 704 }; 705 706 /** 707 * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for 708 * gem creation 709 * 710 * The @flags can be: 711 * - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING 712 * - %DRM_XE_GEM_CREATE_FLAG_SCANOUT 713 * - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a 714 * possible placement, ensure that the corresponding VRAM allocation 715 * will always use the CPU accessible part of VRAM. This is important 716 * for small-bar systems (on full-bar systems this gets turned into a 717 * noop). 718 * Note1: System memory can be used as an extra placement if the kernel 719 * should spill the allocation to system memory, if space can't be made 720 * available in the CPU accessible part of VRAM (giving the same 721 * behaviour as the i915 interface, see 722 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS). 723 * Note2: For clear-color CCS surfaces the kernel needs to read the 724 * clear-color value stored in the buffer, and on discrete platforms we 725 * need to use VRAM for display surfaces, therefore the kernel requires 726 * setting this flag for such objects, otherwise an error is thrown on 727 * small-bar systems. 728 * 729 * @cpu_caching supports the following values: 730 * - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back 731 * caching. On iGPU this can't be used for scanout surfaces. Currently 732 * not allowed for objects placed in VRAM. 733 * - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This 734 * is uncached. Scanout surfaces should likely use this. All objects 735 * that can be placed in VRAM must use this. 736 */ 737 struct drm_xe_gem_create { 738 /** @extensions: Pointer to the first extension struct, if any */ 739 __u64 extensions; 740 741 /** 742 * @size: Size of the object to be created, must match region 743 * (system or vram) minimum alignment (&min_page_size). 744 */ 745 __u64 size; 746 747 /** 748 * @placement: A mask of memory instances of where BO can be placed. 749 * Each index in this mask refers directly to the struct 750 * drm_xe_query_mem_regions' instance, no assumptions should 751 * be made about order. The type of each region is described 752 * by struct drm_xe_query_mem_regions' mem_class. 753 */ 754 __u32 placement; 755 756 #define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING (1 << 0) 757 #define DRM_XE_GEM_CREATE_FLAG_SCANOUT (1 << 1) 758 #define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM (1 << 2) 759 /** 760 * @flags: Flags, currently a mask of memory instances of where BO can 761 * be placed 762 */ 763 __u32 flags; 764 765 /** 766 * @vm_id: Attached VM, if any 767 * 768 * If a VM is specified, this BO must: 769 * 770 * 1. Only ever be bound to that VM. 771 * 2. Cannot be exported as a PRIME fd. 772 */ 773 __u32 vm_id; 774 775 /** 776 * @handle: Returned handle for the object. 777 * 778 * Object handles are nonzero. 779 */ 780 __u32 handle; 781 782 #define DRM_XE_GEM_CPU_CACHING_WB 1 783 #define DRM_XE_GEM_CPU_CACHING_WC 2 784 /** 785 * @cpu_caching: The CPU caching mode to select for this object. If 786 * mmaping the object the mode selected here will also be used. The 787 * exception is when mapping system memory (including data evicted 788 * to system) on discrete GPUs. The caching mode selected will 789 * then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency 790 * between GPU- and CPU is guaranteed. The caching mode of 791 * existing CPU-mappings will be updated transparently to 792 * user-space clients. 793 */ 794 __u16 cpu_caching; 795 /** @pad: MBZ */ 796 __u16 pad[3]; 797 798 /** @reserved: Reserved */ 799 __u64 reserved[2]; 800 }; 801 802 /** 803 * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET 804 */ 805 struct drm_xe_gem_mmap_offset { 806 /** @extensions: Pointer to the first extension struct, if any */ 807 __u64 extensions; 808 809 /** @handle: Handle for the object being mapped. */ 810 __u32 handle; 811 812 /** @flags: Must be zero */ 813 __u32 flags; 814 815 /** @offset: The fake offset to use for subsequent mmap call */ 816 __u64 offset; 817 818 /** @reserved: Reserved */ 819 __u64 reserved[2]; 820 }; 821 822 /** 823 * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE 824 * 825 * The @flags can be: 826 * - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE 827 * - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts 828 * exec submissions to its exec_queues that don't have an upper time 829 * limit on the job execution time. But exec submissions to these 830 * don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ, 831 * DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF, 832 * used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL. 833 * LR VMs can be created in recoverable page-fault mode using 834 * DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it. 835 * If that flag is omitted, the UMD can not rely on the slightly 836 * different per-VM overcommit semantics that are enabled by 837 * DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may 838 * still enable recoverable pagefaults if supported by the device. 839 * - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also 840 * DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on 841 * demand when accessed, and also allows per-VM overcommit of memory. 842 * The xe driver internally uses recoverable pagefaults to implement 843 * this. 844 */ 845 struct drm_xe_vm_create { 846 /** @extensions: Pointer to the first extension struct, if any */ 847 __u64 extensions; 848 849 #define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE (1 << 0) 850 #define DRM_XE_VM_CREATE_FLAG_LR_MODE (1 << 1) 851 #define DRM_XE_VM_CREATE_FLAG_FAULT_MODE (1 << 2) 852 /** @flags: Flags */ 853 __u32 flags; 854 855 /** @vm_id: Returned VM ID */ 856 __u32 vm_id; 857 858 /** @reserved: Reserved */ 859 __u64 reserved[2]; 860 }; 861 862 /** 863 * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY 864 */ 865 struct drm_xe_vm_destroy { 866 /** @vm_id: VM ID */ 867 __u32 vm_id; 868 869 /** @pad: MBZ */ 870 __u32 pad; 871 872 /** @reserved: Reserved */ 873 __u64 reserved[2]; 874 }; 875 876 /** 877 * struct drm_xe_vm_bind_op - run bind operations 878 * 879 * The @op can be: 880 * - %DRM_XE_VM_BIND_OP_MAP 881 * - %DRM_XE_VM_BIND_OP_UNMAP 882 * - %DRM_XE_VM_BIND_OP_MAP_USERPTR 883 * - %DRM_XE_VM_BIND_OP_UNMAP_ALL 884 * - %DRM_XE_VM_BIND_OP_PREFETCH 885 * 886 * and the @flags can be: 887 * - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only 888 * to ensure write protection 889 * - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the 890 * MAP operation immediately rather than deferring the MAP to the page 891 * fault handler. This is implied on a non-faulting VM as there is no 892 * fault handler to defer to. 893 * - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page 894 * tables are setup with a special bit which indicates writes are 895 * dropped and all reads return zero. In the future, the NULL flags 896 * will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO 897 * handle MBZ, and the BO offset MBZ. This flag is intended to 898 * implement VK sparse bindings. 899 */ 900 struct drm_xe_vm_bind_op { 901 /** @extensions: Pointer to the first extension struct, if any */ 902 __u64 extensions; 903 904 /** 905 * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP 906 */ 907 __u32 obj; 908 909 /** 910 * @pat_index: The platform defined @pat_index to use for this mapping. 911 * The index basically maps to some predefined memory attributes, 912 * including things like caching, coherency, compression etc. The exact 913 * meaning of the pat_index is platform specific and defined in the 914 * Bspec and PRMs. When the KMD sets up the binding the index here is 915 * encoded into the ppGTT PTE. 916 * 917 * For coherency the @pat_index needs to be at least 1way coherent when 918 * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD 919 * will extract the coherency mode from the @pat_index and reject if 920 * there is a mismatch (see note below for pre-MTL platforms). 921 * 922 * Note: On pre-MTL platforms there is only a caching mode and no 923 * explicit coherency mode, but on such hardware there is always a 924 * shared-LLC (or is dgpu) so all GT memory accesses are coherent with 925 * CPU caches even with the caching mode set as uncached. It's only the 926 * display engine that is incoherent (on dgpu it must be in VRAM which 927 * is always mapped as WC on the CPU). However to keep the uapi somewhat 928 * consistent with newer platforms the KMD groups the different cache 929 * levels into the following coherency buckets on all pre-MTL platforms: 930 * 931 * ppGTT UC -> COH_NONE 932 * ppGTT WC -> COH_NONE 933 * ppGTT WT -> COH_NONE 934 * ppGTT WB -> COH_AT_LEAST_1WAY 935 * 936 * In practice UC/WC/WT should only ever used for scanout surfaces on 937 * such platforms (or perhaps in general for dma-buf if shared with 938 * another device) since it is only the display engine that is actually 939 * incoherent. Everything else should typically use WB given that we 940 * have a shared-LLC. On MTL+ this completely changes and the HW 941 * defines the coherency mode as part of the @pat_index, where 942 * incoherent GT access is possible. 943 * 944 * Note: For userptr and externally imported dma-buf the kernel expects 945 * either 1WAY or 2WAY for the @pat_index. 946 * 947 * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions 948 * on the @pat_index. For such mappings there is no actual memory being 949 * mapped (the address in the PTE is invalid), so the various PAT memory 950 * attributes likely do not apply. Simply leaving as zero is one 951 * option (still a valid pat_index). 952 */ 953 __u16 pat_index; 954 955 /** @pad: MBZ */ 956 __u16 pad; 957 958 union { 959 /** 960 * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE, 961 * ignored for unbind 962 */ 963 __u64 obj_offset; 964 965 /** @userptr: user pointer to bind on */ 966 __u64 userptr; 967 }; 968 969 /** 970 * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL 971 */ 972 __u64 range; 973 974 /** @addr: Address to operate on, MBZ for UNMAP_ALL */ 975 __u64 addr; 976 977 #define DRM_XE_VM_BIND_OP_MAP 0x0 978 #define DRM_XE_VM_BIND_OP_UNMAP 0x1 979 #define DRM_XE_VM_BIND_OP_MAP_USERPTR 0x2 980 #define DRM_XE_VM_BIND_OP_UNMAP_ALL 0x3 981 #define DRM_XE_VM_BIND_OP_PREFETCH 0x4 982 /** @op: Bind operation to perform */ 983 __u32 op; 984 985 #define DRM_XE_VM_BIND_FLAG_READONLY (1 << 0) 986 #define DRM_XE_VM_BIND_FLAG_IMMEDIATE (1 << 1) 987 #define DRM_XE_VM_BIND_FLAG_NULL (1 << 2) 988 #define DRM_XE_VM_BIND_FLAG_DUMPABLE (1 << 3) 989 /** @flags: Bind flags */ 990 __u32 flags; 991 992 /** 993 * @prefetch_mem_region_instance: Memory region to prefetch VMA to. 994 * It is a region instance, not a mask. 995 * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation. 996 */ 997 __u32 prefetch_mem_region_instance; 998 999 /** @pad2: MBZ */ 1000 __u32 pad2; 1001 1002 /** @reserved: Reserved */ 1003 __u64 reserved[3]; 1004 }; 1005 1006 /** 1007 * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND 1008 * 1009 * Below is an example of a minimal use of @drm_xe_vm_bind to 1010 * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to 1011 * illustrate `userptr`. It can be synchronized by using the example 1012 * provided for @drm_xe_sync. 1013 * 1014 * .. code-block:: C 1015 * 1016 * data = aligned_alloc(ALIGNMENT, BO_SIZE); 1017 * struct drm_xe_vm_bind bind = { 1018 * .vm_id = vm, 1019 * .num_binds = 1, 1020 * .bind.obj = 0, 1021 * .bind.obj_offset = to_user_pointer(data), 1022 * .bind.range = BO_SIZE, 1023 * .bind.addr = BIND_ADDRESS, 1024 * .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR, 1025 * .bind.flags = 0, 1026 * .num_syncs = 1, 1027 * .syncs = &sync, 1028 * .exec_queue_id = 0, 1029 * }; 1030 * ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind); 1031 * 1032 */ 1033 struct drm_xe_vm_bind { 1034 /** @extensions: Pointer to the first extension struct, if any */ 1035 __u64 extensions; 1036 1037 /** @vm_id: The ID of the VM to bind to */ 1038 __u32 vm_id; 1039 1040 /** 1041 * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND 1042 * and exec queue must have same vm_id. If zero, the default VM bind engine 1043 * is used. 1044 */ 1045 __u32 exec_queue_id; 1046 1047 /** @pad: MBZ */ 1048 __u32 pad; 1049 1050 /** @num_binds: number of binds in this IOCTL */ 1051 __u32 num_binds; 1052 1053 union { 1054 /** @bind: used if num_binds == 1 */ 1055 struct drm_xe_vm_bind_op bind; 1056 1057 /** 1058 * @vector_of_binds: userptr to array of struct 1059 * drm_xe_vm_bind_op if num_binds > 1 1060 */ 1061 __u64 vector_of_binds; 1062 }; 1063 1064 /** @pad2: MBZ */ 1065 __u32 pad2; 1066 1067 /** @num_syncs: amount of syncs to wait on */ 1068 __u32 num_syncs; 1069 1070 /** @syncs: pointer to struct drm_xe_sync array */ 1071 __u64 syncs; 1072 1073 /** @reserved: Reserved */ 1074 __u64 reserved[2]; 1075 }; 1076 1077 /** 1078 * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE 1079 * 1080 * The example below shows how to use @drm_xe_exec_queue_create to create 1081 * a simple exec_queue (no parallel submission) of class 1082 * &DRM_XE_ENGINE_CLASS_RENDER. 1083 * 1084 * .. code-block:: C 1085 * 1086 * struct drm_xe_engine_class_instance instance = { 1087 * .engine_class = DRM_XE_ENGINE_CLASS_RENDER, 1088 * }; 1089 * struct drm_xe_exec_queue_create exec_queue_create = { 1090 * .extensions = 0, 1091 * .vm_id = vm, 1092 * .num_bb_per_exec = 1, 1093 * .num_eng_per_bb = 1, 1094 * .instances = to_user_pointer(&instance), 1095 * }; 1096 * ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create); 1097 * 1098 */ 1099 struct drm_xe_exec_queue_create { 1100 #define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY 0 1101 #define DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY 0 1102 #define DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE 1 1103 1104 /** @extensions: Pointer to the first extension struct, if any */ 1105 __u64 extensions; 1106 1107 /** @width: submission width (number BB per exec) for this exec queue */ 1108 __u16 width; 1109 1110 /** @num_placements: number of valid placements for this exec queue */ 1111 __u16 num_placements; 1112 1113 /** @vm_id: VM to use for this exec queue */ 1114 __u32 vm_id; 1115 1116 /** @flags: MBZ */ 1117 __u32 flags; 1118 1119 /** @exec_queue_id: Returned exec queue ID */ 1120 __u32 exec_queue_id; 1121 1122 /** 1123 * @instances: user pointer to a 2-d array of struct 1124 * drm_xe_engine_class_instance 1125 * 1126 * length = width (i) * num_placements (j) 1127 * index = j + i * width 1128 */ 1129 __u64 instances; 1130 1131 /** @reserved: Reserved */ 1132 __u64 reserved[2]; 1133 }; 1134 1135 /** 1136 * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY 1137 */ 1138 struct drm_xe_exec_queue_destroy { 1139 /** @exec_queue_id: Exec queue ID */ 1140 __u32 exec_queue_id; 1141 1142 /** @pad: MBZ */ 1143 __u32 pad; 1144 1145 /** @reserved: Reserved */ 1146 __u64 reserved[2]; 1147 }; 1148 1149 /** 1150 * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY 1151 * 1152 * The @property can be: 1153 * - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN 1154 */ 1155 struct drm_xe_exec_queue_get_property { 1156 /** @extensions: Pointer to the first extension struct, if any */ 1157 __u64 extensions; 1158 1159 /** @exec_queue_id: Exec queue ID */ 1160 __u32 exec_queue_id; 1161 1162 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN 0 1163 /** @property: property to get */ 1164 __u32 property; 1165 1166 /** @value: property value */ 1167 __u64 value; 1168 1169 /** @reserved: Reserved */ 1170 __u64 reserved[2]; 1171 }; 1172 1173 /** 1174 * struct drm_xe_sync - sync object 1175 * 1176 * The @type can be: 1177 * - %DRM_XE_SYNC_TYPE_SYNCOBJ 1178 * - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ 1179 * - %DRM_XE_SYNC_TYPE_USER_FENCE 1180 * 1181 * and the @flags can be: 1182 * - %DRM_XE_SYNC_FLAG_SIGNAL 1183 * 1184 * A minimal use of @drm_xe_sync looks like this: 1185 * 1186 * .. code-block:: C 1187 * 1188 * struct drm_xe_sync sync = { 1189 * .flags = DRM_XE_SYNC_FLAG_SIGNAL, 1190 * .type = DRM_XE_SYNC_TYPE_SYNCOBJ, 1191 * }; 1192 * struct drm_syncobj_create syncobj_create = { 0 }; 1193 * ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create); 1194 * sync.handle = syncobj_create.handle; 1195 * ... 1196 * use of &sync in drm_xe_exec or drm_xe_vm_bind 1197 * ... 1198 * struct drm_syncobj_wait wait = { 1199 * .handles = &sync.handle, 1200 * .timeout_nsec = INT64_MAX, 1201 * .count_handles = 1, 1202 * .flags = 0, 1203 * .first_signaled = 0, 1204 * .pad = 0, 1205 * }; 1206 * ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait); 1207 */ 1208 struct drm_xe_sync { 1209 /** @extensions: Pointer to the first extension struct, if any */ 1210 __u64 extensions; 1211 1212 #define DRM_XE_SYNC_TYPE_SYNCOBJ 0x0 1213 #define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ 0x1 1214 #define DRM_XE_SYNC_TYPE_USER_FENCE 0x2 1215 /** @type: Type of the this sync object */ 1216 __u32 type; 1217 1218 #define DRM_XE_SYNC_FLAG_SIGNAL (1 << 0) 1219 /** @flags: Sync Flags */ 1220 __u32 flags; 1221 1222 union { 1223 /** @handle: Handle for the object */ 1224 __u32 handle; 1225 1226 /** 1227 * @addr: Address of user fence. When sync is passed in via exec 1228 * IOCTL this is a GPU address in the VM. When sync passed in via 1229 * VM bind IOCTL this is a user pointer. In either case, it is 1230 * the users responsibility that this address is present and 1231 * mapped when the user fence is signalled. Must be qword 1232 * aligned. 1233 */ 1234 __u64 addr; 1235 }; 1236 1237 /** 1238 * @timeline_value: Input for the timeline sync object. Needs to be 1239 * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ. 1240 */ 1241 __u64 timeline_value; 1242 1243 /** @reserved: Reserved */ 1244 __u64 reserved[2]; 1245 }; 1246 1247 /** 1248 * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC 1249 * 1250 * This is an example to use @drm_xe_exec for execution of the object 1251 * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue 1252 * (see example in @drm_xe_exec_queue_create). It can be synchronized 1253 * by using the example provided for @drm_xe_sync. 1254 * 1255 * .. code-block:: C 1256 * 1257 * struct drm_xe_exec exec = { 1258 * .exec_queue_id = exec_queue, 1259 * .syncs = &sync, 1260 * .num_syncs = 1, 1261 * .address = BIND_ADDRESS, 1262 * .num_batch_buffer = 1, 1263 * }; 1264 * ioctl(fd, DRM_IOCTL_XE_EXEC, &exec); 1265 * 1266 */ 1267 struct drm_xe_exec { 1268 /** @extensions: Pointer to the first extension struct, if any */ 1269 __u64 extensions; 1270 1271 /** @exec_queue_id: Exec queue ID for the batch buffer */ 1272 __u32 exec_queue_id; 1273 1274 /** @num_syncs: Amount of struct drm_xe_sync in array. */ 1275 __u32 num_syncs; 1276 1277 /** @syncs: Pointer to struct drm_xe_sync array. */ 1278 __u64 syncs; 1279 1280 /** 1281 * @address: address of batch buffer if num_batch_buffer == 1 or an 1282 * array of batch buffer addresses 1283 */ 1284 __u64 address; 1285 1286 /** 1287 * @num_batch_buffer: number of batch buffer in this exec, must match 1288 * the width of the engine 1289 */ 1290 __u16 num_batch_buffer; 1291 1292 /** @pad: MBZ */ 1293 __u16 pad[3]; 1294 1295 /** @reserved: Reserved */ 1296 __u64 reserved[2]; 1297 }; 1298 1299 /** 1300 * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE 1301 * 1302 * Wait on user fence, XE will wake-up on every HW engine interrupt in the 1303 * instances list and check if user fence is complete:: 1304 * 1305 * (*addr & MASK) OP (VALUE & MASK) 1306 * 1307 * Returns to user on user fence completion or timeout. 1308 * 1309 * The @op can be: 1310 * - %DRM_XE_UFENCE_WAIT_OP_EQ 1311 * - %DRM_XE_UFENCE_WAIT_OP_NEQ 1312 * - %DRM_XE_UFENCE_WAIT_OP_GT 1313 * - %DRM_XE_UFENCE_WAIT_OP_GTE 1314 * - %DRM_XE_UFENCE_WAIT_OP_LT 1315 * - %DRM_XE_UFENCE_WAIT_OP_LTE 1316 * 1317 * and the @flags can be: 1318 * - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME 1319 * - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP 1320 * 1321 * The @mask values can be for example: 1322 * - 0xffu for u8 1323 * - 0xffffu for u16 1324 * - 0xffffffffu for u32 1325 * - 0xffffffffffffffffu for u64 1326 */ 1327 struct drm_xe_wait_user_fence { 1328 /** @extensions: Pointer to the first extension struct, if any */ 1329 __u64 extensions; 1330 1331 /** 1332 * @addr: user pointer address to wait on, must qword aligned 1333 */ 1334 __u64 addr; 1335 1336 #define DRM_XE_UFENCE_WAIT_OP_EQ 0x0 1337 #define DRM_XE_UFENCE_WAIT_OP_NEQ 0x1 1338 #define DRM_XE_UFENCE_WAIT_OP_GT 0x2 1339 #define DRM_XE_UFENCE_WAIT_OP_GTE 0x3 1340 #define DRM_XE_UFENCE_WAIT_OP_LT 0x4 1341 #define DRM_XE_UFENCE_WAIT_OP_LTE 0x5 1342 /** @op: wait operation (type of comparison) */ 1343 __u16 op; 1344 1345 #define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME (1 << 0) 1346 /** @flags: wait flags */ 1347 __u16 flags; 1348 1349 /** @pad: MBZ */ 1350 __u32 pad; 1351 1352 /** @value: compare value */ 1353 __u64 value; 1354 1355 /** @mask: comparison mask */ 1356 __u64 mask; 1357 1358 /** 1359 * @timeout: how long to wait before bailing, value in nanoseconds. 1360 * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout) 1361 * it contains timeout expressed in nanoseconds to wait (fence will 1362 * expire at now() + timeout). 1363 * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait 1364 * will end at timeout (uses system MONOTONIC_CLOCK). 1365 * Passing negative timeout leads to neverending wait. 1366 * 1367 * On relative timeout this value is updated with timeout left 1368 * (for restarting the call in case of signal delivery). 1369 * On absolute timeout this value stays intact (restarted call still 1370 * expire at the same point of time). 1371 */ 1372 __s64 timeout; 1373 1374 /** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */ 1375 __u32 exec_queue_id; 1376 1377 /** @pad2: MBZ */ 1378 __u32 pad2; 1379 1380 /** @reserved: Reserved */ 1381 __u64 reserved[2]; 1382 }; 1383 1384 /** 1385 * enum drm_xe_observation_type - Observation stream types 1386 */ 1387 enum drm_xe_observation_type { 1388 /** @DRM_XE_OBSERVATION_TYPE_OA: OA observation stream type */ 1389 DRM_XE_OBSERVATION_TYPE_OA, 1390 }; 1391 1392 /** 1393 * enum drm_xe_observation_op - Observation stream ops 1394 */ 1395 enum drm_xe_observation_op { 1396 /** @DRM_XE_OBSERVATION_OP_STREAM_OPEN: Open an observation stream */ 1397 DRM_XE_OBSERVATION_OP_STREAM_OPEN, 1398 1399 /** @DRM_XE_OBSERVATION_OP_ADD_CONFIG: Add observation stream config */ 1400 DRM_XE_OBSERVATION_OP_ADD_CONFIG, 1401 1402 /** @DRM_XE_OBSERVATION_OP_REMOVE_CONFIG: Remove observation stream config */ 1403 DRM_XE_OBSERVATION_OP_REMOVE_CONFIG, 1404 }; 1405 1406 /** 1407 * struct drm_xe_observation_param - Input of &DRM_XE_OBSERVATION 1408 * 1409 * The observation layer enables multiplexing observation streams of 1410 * multiple types. The actual params for a particular stream operation are 1411 * supplied via the @param pointer (use __copy_from_user to get these 1412 * params). 1413 */ 1414 struct drm_xe_observation_param { 1415 /** @extensions: Pointer to the first extension struct, if any */ 1416 __u64 extensions; 1417 /** @observation_type: observation stream type, of enum @drm_xe_observation_type */ 1418 __u64 observation_type; 1419 /** @observation_op: observation stream op, of enum @drm_xe_observation_op */ 1420 __u64 observation_op; 1421 /** @param: Pointer to actual stream params */ 1422 __u64 param; 1423 }; 1424 1425 /** 1426 * enum drm_xe_observation_ioctls - Observation stream fd ioctl's 1427 * 1428 * Information exchanged between userspace and kernel for observation fd 1429 * ioctl's is stream type specific 1430 */ 1431 enum drm_xe_observation_ioctls { 1432 /** @DRM_XE_OBSERVATION_IOCTL_ENABLE: Enable data capture for an observation stream */ 1433 DRM_XE_OBSERVATION_IOCTL_ENABLE = _IO('i', 0x0), 1434 1435 /** @DRM_XE_OBSERVATION_IOCTL_DISABLE: Disable data capture for a observation stream */ 1436 DRM_XE_OBSERVATION_IOCTL_DISABLE = _IO('i', 0x1), 1437 1438 /** @DRM_XE_OBSERVATION_IOCTL_CONFIG: Change observation stream configuration */ 1439 DRM_XE_OBSERVATION_IOCTL_CONFIG = _IO('i', 0x2), 1440 1441 /** @DRM_XE_OBSERVATION_IOCTL_STATUS: Return observation stream status */ 1442 DRM_XE_OBSERVATION_IOCTL_STATUS = _IO('i', 0x3), 1443 1444 /** @DRM_XE_OBSERVATION_IOCTL_INFO: Return observation stream info */ 1445 DRM_XE_OBSERVATION_IOCTL_INFO = _IO('i', 0x4), 1446 }; 1447 1448 /** 1449 * enum drm_xe_oa_unit_type - OA unit types 1450 */ 1451 enum drm_xe_oa_unit_type { 1452 /** 1453 * @DRM_XE_OA_UNIT_TYPE_OAG: OAG OA unit. OAR/OAC are considered 1454 * sub-types of OAG. For OAR/OAC, use OAG. 1455 */ 1456 DRM_XE_OA_UNIT_TYPE_OAG, 1457 1458 /** @DRM_XE_OA_UNIT_TYPE_OAM: OAM OA unit */ 1459 DRM_XE_OA_UNIT_TYPE_OAM, 1460 }; 1461 1462 /** 1463 * struct drm_xe_oa_unit - describe OA unit 1464 */ 1465 struct drm_xe_oa_unit { 1466 /** @extensions: Pointer to the first extension struct, if any */ 1467 __u64 extensions; 1468 1469 /** @oa_unit_id: OA unit ID */ 1470 __u32 oa_unit_id; 1471 1472 /** @oa_unit_type: OA unit type of @drm_xe_oa_unit_type */ 1473 __u32 oa_unit_type; 1474 1475 /** @capabilities: OA capabilities bit-mask */ 1476 __u64 capabilities; 1477 #define DRM_XE_OA_CAPS_BASE (1 << 0) 1478 1479 /** @oa_timestamp_freq: OA timestamp freq */ 1480 __u64 oa_timestamp_freq; 1481 1482 /** @reserved: MBZ */ 1483 __u64 reserved[4]; 1484 1485 /** @num_engines: number of engines in @eci array */ 1486 __u64 num_engines; 1487 1488 /** @eci: engines attached to this OA unit */ 1489 struct drm_xe_engine_class_instance eci[]; 1490 }; 1491 1492 /** 1493 * struct drm_xe_query_oa_units - describe OA units 1494 * 1495 * If a query is made with a struct drm_xe_device_query where .query 1496 * is equal to DRM_XE_DEVICE_QUERY_OA_UNITS, then the reply uses struct 1497 * drm_xe_query_oa_units in .data. 1498 * 1499 * OA unit properties for all OA units can be accessed using a code block 1500 * such as the one below: 1501 * 1502 * .. code-block:: C 1503 * 1504 * struct drm_xe_query_oa_units *qoa; 1505 * struct drm_xe_oa_unit *oau; 1506 * u8 *poau; 1507 * 1508 * // malloc qoa and issue DRM_XE_DEVICE_QUERY_OA_UNITS. Then: 1509 * poau = (u8 *)&qoa->oa_units[0]; 1510 * for (int i = 0; i < qoa->num_oa_units; i++) { 1511 * oau = (struct drm_xe_oa_unit *)poau; 1512 * // Access 'struct drm_xe_oa_unit' fields here 1513 * poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]); 1514 * } 1515 */ 1516 struct drm_xe_query_oa_units { 1517 /** @extensions: Pointer to the first extension struct, if any */ 1518 __u64 extensions; 1519 /** @num_oa_units: number of OA units returned in oau[] */ 1520 __u32 num_oa_units; 1521 /** @pad: MBZ */ 1522 __u32 pad; 1523 /** 1524 * @oa_units: struct @drm_xe_oa_unit array returned for this device. 1525 * Written below as a u64 array to avoid problems with nested flexible 1526 * arrays with some compilers 1527 */ 1528 __u64 oa_units[]; 1529 }; 1530 1531 /** 1532 * enum drm_xe_oa_format_type - OA format types as specified in PRM/Bspec 1533 * 52198/60942 1534 */ 1535 enum drm_xe_oa_format_type { 1536 /** @DRM_XE_OA_FMT_TYPE_OAG: OAG report format */ 1537 DRM_XE_OA_FMT_TYPE_OAG, 1538 /** @DRM_XE_OA_FMT_TYPE_OAR: OAR report format */ 1539 DRM_XE_OA_FMT_TYPE_OAR, 1540 /** @DRM_XE_OA_FMT_TYPE_OAM: OAM report format */ 1541 DRM_XE_OA_FMT_TYPE_OAM, 1542 /** @DRM_XE_OA_FMT_TYPE_OAC: OAC report format */ 1543 DRM_XE_OA_FMT_TYPE_OAC, 1544 /** @DRM_XE_OA_FMT_TYPE_OAM_MPEC: OAM SAMEDIA or OAM MPEC report format */ 1545 DRM_XE_OA_FMT_TYPE_OAM_MPEC, 1546 /** @DRM_XE_OA_FMT_TYPE_PEC: PEC report format */ 1547 DRM_XE_OA_FMT_TYPE_PEC, 1548 }; 1549 1550 /** 1551 * enum drm_xe_oa_property_id - OA stream property id's 1552 * 1553 * Stream params are specified as a chain of @drm_xe_ext_set_property 1554 * struct's, with @property values from enum @drm_xe_oa_property_id and 1555 * @drm_xe_user_extension base.name set to @DRM_XE_OA_EXTENSION_SET_PROPERTY. 1556 * @param field in struct @drm_xe_observation_param points to the first 1557 * @drm_xe_ext_set_property struct. 1558 * 1559 * Exactly the same mechanism is also used for stream reconfiguration using the 1560 * @DRM_XE_OBSERVATION_IOCTL_CONFIG observation stream fd ioctl, though only a 1561 * subset of properties below can be specified for stream reconfiguration. 1562 */ 1563 enum drm_xe_oa_property_id { 1564 #define DRM_XE_OA_EXTENSION_SET_PROPERTY 0 1565 /** 1566 * @DRM_XE_OA_PROPERTY_OA_UNIT_ID: ID of the OA unit on which to open 1567 * the OA stream, see @oa_unit_id in 'struct 1568 * drm_xe_query_oa_units'. Defaults to 0 if not provided. 1569 */ 1570 DRM_XE_OA_PROPERTY_OA_UNIT_ID = 1, 1571 1572 /** 1573 * @DRM_XE_OA_PROPERTY_SAMPLE_OA: A value of 1 requests inclusion of raw 1574 * OA unit reports or stream samples in a global buffer attached to an 1575 * OA unit. 1576 */ 1577 DRM_XE_OA_PROPERTY_SAMPLE_OA, 1578 1579 /** 1580 * @DRM_XE_OA_PROPERTY_OA_METRIC_SET: OA metrics defining contents of OA 1581 * reports, previously added via @DRM_XE_OBSERVATION_OP_ADD_CONFIG. 1582 */ 1583 DRM_XE_OA_PROPERTY_OA_METRIC_SET, 1584 1585 /** @DRM_XE_OA_PROPERTY_OA_FORMAT: OA counter report format */ 1586 DRM_XE_OA_PROPERTY_OA_FORMAT, 1587 /* 1588 * OA_FORMAT's are specified the same way as in PRM/Bspec 52198/60942, 1589 * in terms of the following quantities: a. enum @drm_xe_oa_format_type 1590 * b. Counter select c. Counter size and d. BC report. Also refer to the 1591 * oa_formats array in drivers/gpu/drm/xe/xe_oa.c. 1592 */ 1593 #define DRM_XE_OA_FORMAT_MASK_FMT_TYPE (0xff << 0) 1594 #define DRM_XE_OA_FORMAT_MASK_COUNTER_SEL (0xff << 8) 1595 #define DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE (0xff << 16) 1596 #define DRM_XE_OA_FORMAT_MASK_BC_REPORT (0xff << 24) 1597 1598 /** 1599 * @DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT: Requests periodic OA unit 1600 * sampling with sampling frequency proportional to 2^(period_exponent + 1) 1601 */ 1602 DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT, 1603 1604 /** 1605 * @DRM_XE_OA_PROPERTY_OA_DISABLED: A value of 1 will open the OA 1606 * stream in a DISABLED state (see @DRM_XE_OBSERVATION_IOCTL_ENABLE). 1607 */ 1608 DRM_XE_OA_PROPERTY_OA_DISABLED, 1609 1610 /** 1611 * @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID: Open the stream for a specific 1612 * @exec_queue_id. OA queries can be executed on this exec queue. 1613 */ 1614 DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID, 1615 1616 /** 1617 * @DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE: Optional engine instance to 1618 * pass along with @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID or will default to 0. 1619 */ 1620 DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE, 1621 1622 /** 1623 * @DRM_XE_OA_PROPERTY_NO_PREEMPT: Allow preemption and timeslicing 1624 * to be disabled for the stream exec queue. 1625 */ 1626 DRM_XE_OA_PROPERTY_NO_PREEMPT, 1627 }; 1628 1629 /** 1630 * struct drm_xe_oa_config - OA metric configuration 1631 * 1632 * Multiple OA configs can be added using @DRM_XE_OBSERVATION_OP_ADD_CONFIG. A 1633 * particular config can be specified when opening an OA stream using 1634 * @DRM_XE_OA_PROPERTY_OA_METRIC_SET property. 1635 */ 1636 struct drm_xe_oa_config { 1637 /** @extensions: Pointer to the first extension struct, if any */ 1638 __u64 extensions; 1639 1640 /** @uuid: String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" */ 1641 char uuid[36]; 1642 1643 /** @n_regs: Number of regs in @regs_ptr */ 1644 __u32 n_regs; 1645 1646 /** 1647 * @regs_ptr: Pointer to (register address, value) pairs for OA config 1648 * registers. Expected length of buffer is: (2 * sizeof(u32) * @n_regs). 1649 */ 1650 __u64 regs_ptr; 1651 }; 1652 1653 /** 1654 * struct drm_xe_oa_stream_status - OA stream status returned from 1655 * @DRM_XE_OBSERVATION_IOCTL_STATUS observation stream fd ioctl. Userspace can 1656 * call the ioctl to query stream status in response to EIO errno from 1657 * observation fd read(). 1658 */ 1659 struct drm_xe_oa_stream_status { 1660 /** @extensions: Pointer to the first extension struct, if any */ 1661 __u64 extensions; 1662 1663 /** @oa_status: OA stream status (see Bspec 46717/61226) */ 1664 __u64 oa_status; 1665 #define DRM_XE_OASTATUS_MMIO_TRG_Q_FULL (1 << 3) 1666 #define DRM_XE_OASTATUS_COUNTER_OVERFLOW (1 << 2) 1667 #define DRM_XE_OASTATUS_BUFFER_OVERFLOW (1 << 1) 1668 #define DRM_XE_OASTATUS_REPORT_LOST (1 << 0) 1669 1670 /** @reserved: reserved for future use */ 1671 __u64 reserved[3]; 1672 }; 1673 1674 /** 1675 * struct drm_xe_oa_stream_info - OA stream info returned from 1676 * @DRM_XE_OBSERVATION_IOCTL_INFO observation stream fd ioctl 1677 */ 1678 struct drm_xe_oa_stream_info { 1679 /** @extensions: Pointer to the first extension struct, if any */ 1680 __u64 extensions; 1681 1682 /** @oa_buf_size: OA buffer size */ 1683 __u64 oa_buf_size; 1684 1685 /** @reserved: reserved for future use */ 1686 __u64 reserved[3]; 1687 }; 1688 1689 #if defined(__cplusplus) 1690 } 1691 #endif 1692 1693 #endif /* _UAPI_XE_DRM_H_ */ 1694