xref: /linux/include/uapi/drm/i915_drm.h (revision ae22b2f1c8ccd9a3e5f19e3ebb4ef6ec1e8655e0)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on its device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the GPU L3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events, and if a specific cache-line seems to have a
47  *	persistent error, remap it with the L3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /**
158  * enum drm_i915_gem_engine_class - uapi engine type enumeration
159  *
160  * Different engines serve different roles, and there may be more than one
161  * engine serving each role.  This enum provides a classification of the role
162  * of the engine, which may be used when requesting operations to be performed
163  * on a certain subset of engines, or for providing information about that
164  * group.
165  */
166 enum drm_i915_gem_engine_class {
167 	/**
168 	 * @I915_ENGINE_CLASS_RENDER:
169 	 *
170 	 * Render engines support instructions used for 3D, Compute (GPGPU),
171 	 * and programmable media workloads.  These instructions fetch data and
172 	 * dispatch individual work items to threads that operate in parallel.
173 	 * The threads run small programs (called "kernels" or "shaders") on
174 	 * the GPU's execution units (EUs).
175 	 */
176 	I915_ENGINE_CLASS_RENDER	= 0,
177 
178 	/**
179 	 * @I915_ENGINE_CLASS_COPY:
180 	 *
181 	 * Copy engines (also referred to as "blitters") support instructions
182 	 * that move blocks of data from one location in memory to another,
183 	 * or that fill a specified location of memory with fixed data.
184 	 * Copy engines can perform pre-defined logical or bitwise operations
185 	 * on the source, destination, or pattern data.
186 	 */
187 	I915_ENGINE_CLASS_COPY		= 1,
188 
189 	/**
190 	 * @I915_ENGINE_CLASS_VIDEO:
191 	 *
192 	 * Video engines (also referred to as "bit stream decode" (BSD) or
193 	 * "vdbox") support instructions that perform fixed-function media
194 	 * decode and encode.
195 	 */
196 	I915_ENGINE_CLASS_VIDEO		= 2,
197 
198 	/**
199 	 * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
200 	 *
201 	 * Video enhancement engines (also referred to as "vebox") support
202 	 * instructions related to image enhancement.
203 	 */
204 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
205 
206 	/**
207 	 * @I915_ENGINE_CLASS_COMPUTE:
208 	 *
209 	 * Compute engines support a subset of the instructions available
210 	 * on render engines:  compute engines support Compute (GPGPU) and
211 	 * programmable media workloads, but do not support the 3D pipeline.
212 	 */
213 	I915_ENGINE_CLASS_COMPUTE	= 4,
214 
215 	/* Values in this enum should be kept compact. */
216 
217 	/**
218 	 * @I915_ENGINE_CLASS_INVALID:
219 	 *
220 	 * Placeholder value to represent an invalid engine class assignment.
221 	 */
222 	I915_ENGINE_CLASS_INVALID	= -1
223 };
224 
225 /**
226  * struct i915_engine_class_instance - Engine class/instance identifier
227  *
228  * There may be more than one engine fulfilling any role within the system.
229  * Each engine of a class is given a unique instance number and therefore
230  * any engine can be specified by its class:instance tuplet. APIs that allow
231  * access to any engine in the system will use struct i915_engine_class_instance
232  * for this identification.
233  */
234 struct i915_engine_class_instance {
235 	/**
236 	 * @engine_class:
237 	 *
238 	 * Engine class from enum drm_i915_gem_engine_class
239 	 */
240 	__u16 engine_class;
241 #define I915_ENGINE_CLASS_INVALID_NONE -1
242 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
243 
244 	/**
245 	 * @engine_instance:
246 	 *
247 	 * Engine instance.
248 	 */
249 	__u16 engine_instance;
250 };
251 
252 /**
253  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
254  *
255  */
256 
257 enum drm_i915_pmu_engine_sample {
258 	I915_SAMPLE_BUSY = 0,
259 	I915_SAMPLE_WAIT = 1,
260 	I915_SAMPLE_SEMA = 2
261 };
262 
263 #define I915_PMU_SAMPLE_BITS (4)
264 #define I915_PMU_SAMPLE_MASK (0xf)
265 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
266 #define I915_PMU_CLASS_SHIFT \
267 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
268 
269 #define __I915_PMU_ENGINE(class, instance, sample) \
270 	((class) << I915_PMU_CLASS_SHIFT | \
271 	(instance) << I915_PMU_SAMPLE_BITS | \
272 	(sample))
273 
274 #define I915_PMU_ENGINE_BUSY(class, instance) \
275 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
276 
277 #define I915_PMU_ENGINE_WAIT(class, instance) \
278 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
279 
280 #define I915_PMU_ENGINE_SEMA(class, instance) \
281 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
282 
283 /*
284  * Top 4 bits of every non-engine counter are GT id.
285  */
286 #define __I915_PMU_GT_SHIFT (60)
287 
288 #define ___I915_PMU_OTHER(gt, x) \
289 	(((__u64)__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x)) | \
290 	((__u64)(gt) << __I915_PMU_GT_SHIFT))
291 
292 #define __I915_PMU_OTHER(x) ___I915_PMU_OTHER(0, x)
293 
294 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
295 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
296 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
297 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
298 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
299 
300 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
301 
302 #define __I915_PMU_ACTUAL_FREQUENCY(gt)		___I915_PMU_OTHER(gt, 0)
303 #define __I915_PMU_REQUESTED_FREQUENCY(gt)	___I915_PMU_OTHER(gt, 1)
304 #define __I915_PMU_INTERRUPTS(gt)		___I915_PMU_OTHER(gt, 2)
305 #define __I915_PMU_RC6_RESIDENCY(gt)		___I915_PMU_OTHER(gt, 3)
306 #define __I915_PMU_SOFTWARE_GT_AWAKE_TIME(gt)	___I915_PMU_OTHER(gt, 4)
307 
308 /* Each region is a minimum of 16k, and there are at most 255 of them.
309  */
310 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
311 				 * of chars for next/prev indices */
312 #define I915_LOG_MIN_TEX_REGION_SIZE 14
313 
314 typedef struct _drm_i915_init {
315 	enum {
316 		I915_INIT_DMA = 0x01,
317 		I915_CLEANUP_DMA = 0x02,
318 		I915_RESUME_DMA = 0x03
319 	} func;
320 	unsigned int mmio_offset;
321 	int sarea_priv_offset;
322 	unsigned int ring_start;
323 	unsigned int ring_end;
324 	unsigned int ring_size;
325 	unsigned int front_offset;
326 	unsigned int back_offset;
327 	unsigned int depth_offset;
328 	unsigned int w;
329 	unsigned int h;
330 	unsigned int pitch;
331 	unsigned int pitch_bits;
332 	unsigned int back_pitch;
333 	unsigned int depth_pitch;
334 	unsigned int cpp;
335 	unsigned int chipset;
336 } drm_i915_init_t;
337 
338 typedef struct _drm_i915_sarea {
339 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
340 	int last_upload;	/* last time texture was uploaded */
341 	int last_enqueue;	/* last time a buffer was enqueued */
342 	int last_dispatch;	/* age of the most recently dispatched buffer */
343 	int ctxOwner;		/* last context to upload state */
344 	int texAge;
345 	int pf_enabled;		/* is pageflipping allowed? */
346 	int pf_active;
347 	int pf_current_page;	/* which buffer is being displayed? */
348 	int perf_boxes;		/* performance boxes to be displayed */
349 	int width, height;      /* screen size in pixels */
350 
351 	drm_handle_t front_handle;
352 	int front_offset;
353 	int front_size;
354 
355 	drm_handle_t back_handle;
356 	int back_offset;
357 	int back_size;
358 
359 	drm_handle_t depth_handle;
360 	int depth_offset;
361 	int depth_size;
362 
363 	drm_handle_t tex_handle;
364 	int tex_offset;
365 	int tex_size;
366 	int log_tex_granularity;
367 	int pitch;
368 	int rotation;           /* 0, 90, 180 or 270 */
369 	int rotated_offset;
370 	int rotated_size;
371 	int rotated_pitch;
372 	int virtualX, virtualY;
373 
374 	unsigned int front_tiled;
375 	unsigned int back_tiled;
376 	unsigned int depth_tiled;
377 	unsigned int rotated_tiled;
378 	unsigned int rotated2_tiled;
379 
380 	int pipeA_x;
381 	int pipeA_y;
382 	int pipeA_w;
383 	int pipeA_h;
384 	int pipeB_x;
385 	int pipeB_y;
386 	int pipeB_w;
387 	int pipeB_h;
388 
389 	/* fill out some space for old userspace triple buffer */
390 	drm_handle_t unused_handle;
391 	__u32 unused1, unused2, unused3;
392 
393 	/* buffer object handles for static buffers. May change
394 	 * over the lifetime of the client.
395 	 */
396 	__u32 front_bo_handle;
397 	__u32 back_bo_handle;
398 	__u32 unused_bo_handle;
399 	__u32 depth_bo_handle;
400 
401 } drm_i915_sarea_t;
402 
403 /* due to userspace building against these headers we need some compat here */
404 #define planeA_x pipeA_x
405 #define planeA_y pipeA_y
406 #define planeA_w pipeA_w
407 #define planeA_h pipeA_h
408 #define planeB_x pipeB_x
409 #define planeB_y pipeB_y
410 #define planeB_w pipeB_w
411 #define planeB_h pipeB_h
412 
413 /* Flags for perf_boxes
414  */
415 #define I915_BOX_RING_EMPTY    0x1
416 #define I915_BOX_FLIP          0x2
417 #define I915_BOX_WAIT          0x4
418 #define I915_BOX_TEXTURE_LOAD  0x8
419 #define I915_BOX_LOST_CONTEXT  0x10
420 
421 /*
422  * i915 specific ioctls.
423  *
424  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
425  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
426  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
427  */
428 #define DRM_I915_INIT		0x00
429 #define DRM_I915_FLUSH		0x01
430 #define DRM_I915_FLIP		0x02
431 #define DRM_I915_BATCHBUFFER	0x03
432 #define DRM_I915_IRQ_EMIT	0x04
433 #define DRM_I915_IRQ_WAIT	0x05
434 #define DRM_I915_GETPARAM	0x06
435 #define DRM_I915_SETPARAM	0x07
436 #define DRM_I915_ALLOC		0x08
437 #define DRM_I915_FREE		0x09
438 #define DRM_I915_INIT_HEAP	0x0a
439 #define DRM_I915_CMDBUFFER	0x0b
440 #define DRM_I915_DESTROY_HEAP	0x0c
441 #define DRM_I915_SET_VBLANK_PIPE	0x0d
442 #define DRM_I915_GET_VBLANK_PIPE	0x0e
443 #define DRM_I915_VBLANK_SWAP	0x0f
444 #define DRM_I915_HWS_ADDR	0x11
445 #define DRM_I915_GEM_INIT	0x13
446 #define DRM_I915_GEM_EXECBUFFER	0x14
447 #define DRM_I915_GEM_PIN	0x15
448 #define DRM_I915_GEM_UNPIN	0x16
449 #define DRM_I915_GEM_BUSY	0x17
450 #define DRM_I915_GEM_THROTTLE	0x18
451 #define DRM_I915_GEM_ENTERVT	0x19
452 #define DRM_I915_GEM_LEAVEVT	0x1a
453 #define DRM_I915_GEM_CREATE	0x1b
454 #define DRM_I915_GEM_PREAD	0x1c
455 #define DRM_I915_GEM_PWRITE	0x1d
456 #define DRM_I915_GEM_MMAP	0x1e
457 #define DRM_I915_GEM_SET_DOMAIN	0x1f
458 #define DRM_I915_GEM_SW_FINISH	0x20
459 #define DRM_I915_GEM_SET_TILING	0x21
460 #define DRM_I915_GEM_GET_TILING	0x22
461 #define DRM_I915_GEM_GET_APERTURE 0x23
462 #define DRM_I915_GEM_MMAP_GTT	0x24
463 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
464 #define DRM_I915_GEM_MADVISE	0x26
465 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
466 #define DRM_I915_OVERLAY_ATTRS	0x28
467 #define DRM_I915_GEM_EXECBUFFER2	0x29
468 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
469 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
470 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
471 #define DRM_I915_GEM_WAIT	0x2c
472 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
473 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
474 #define DRM_I915_GEM_SET_CACHING	0x2f
475 #define DRM_I915_GEM_GET_CACHING	0x30
476 #define DRM_I915_REG_READ		0x31
477 #define DRM_I915_GET_RESET_STATS	0x32
478 #define DRM_I915_GEM_USERPTR		0x33
479 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
480 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
481 #define DRM_I915_PERF_OPEN		0x36
482 #define DRM_I915_PERF_ADD_CONFIG	0x37
483 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
484 #define DRM_I915_QUERY			0x39
485 #define DRM_I915_GEM_VM_CREATE		0x3a
486 #define DRM_I915_GEM_VM_DESTROY		0x3b
487 #define DRM_I915_GEM_CREATE_EXT		0x3c
488 /* Must be kept compact -- no holes */
489 
490 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
491 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
492 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
493 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
494 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
495 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
496 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
497 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
498 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
499 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
500 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
501 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
502 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
503 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
504 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
505 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
506 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
507 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
508 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
509 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
510 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
511 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
512 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
513 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
514 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
515 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
516 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
517 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
518 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
519 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
520 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
521 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
522 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
523 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
524 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
525 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
526 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
527 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
528 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
529 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
530 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
531 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
532 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
533 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
534 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
535 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
536 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
537 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
538 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
539 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
540 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
541 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
542 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
543 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
544 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
545 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
546 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
547 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
548 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
549 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
550 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
551 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
552 
553 /* Allow drivers to submit batchbuffers directly to hardware, relying
554  * on the security mechanisms provided by hardware.
555  */
556 typedef struct drm_i915_batchbuffer {
557 	int start;		/* agp offset */
558 	int used;		/* nr bytes in use */
559 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
560 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
561 	int num_cliprects;	/* mulitpass with multiple cliprects? */
562 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
563 } drm_i915_batchbuffer_t;
564 
565 /* As above, but pass a pointer to userspace buffer which can be
566  * validated by the kernel prior to sending to hardware.
567  */
568 typedef struct _drm_i915_cmdbuffer {
569 	char __user *buf;	/* pointer to userspace command buffer */
570 	int sz;			/* nr bytes in buf */
571 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
572 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
573 	int num_cliprects;	/* mulitpass with multiple cliprects? */
574 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
575 } drm_i915_cmdbuffer_t;
576 
577 /* Userspace can request & wait on irq's:
578  */
579 typedef struct drm_i915_irq_emit {
580 	int __user *irq_seq;
581 } drm_i915_irq_emit_t;
582 
583 typedef struct drm_i915_irq_wait {
584 	int irq_seq;
585 } drm_i915_irq_wait_t;
586 
587 /*
588  * Different modes of per-process Graphics Translation Table,
589  * see I915_PARAM_HAS_ALIASING_PPGTT
590  */
591 #define I915_GEM_PPGTT_NONE	0
592 #define I915_GEM_PPGTT_ALIASING	1
593 #define I915_GEM_PPGTT_FULL	2
594 
595 /* Ioctl to query kernel params:
596  */
597 #define I915_PARAM_IRQ_ACTIVE            1
598 #define I915_PARAM_ALLOW_BATCHBUFFER     2
599 #define I915_PARAM_LAST_DISPATCH         3
600 #define I915_PARAM_CHIPSET_ID            4
601 #define I915_PARAM_HAS_GEM               5
602 #define I915_PARAM_NUM_FENCES_AVAIL      6
603 #define I915_PARAM_HAS_OVERLAY           7
604 #define I915_PARAM_HAS_PAGEFLIPPING	 8
605 #define I915_PARAM_HAS_EXECBUF2          9
606 #define I915_PARAM_HAS_BSD		 10
607 #define I915_PARAM_HAS_BLT		 11
608 #define I915_PARAM_HAS_RELAXED_FENCING	 12
609 #define I915_PARAM_HAS_COHERENT_RINGS	 13
610 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
611 #define I915_PARAM_HAS_RELAXED_DELTA	 15
612 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
613 #define I915_PARAM_HAS_LLC     	 	 17
614 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
615 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
616 #define I915_PARAM_HAS_SEMAPHORES	 20
617 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
618 #define I915_PARAM_HAS_VEBOX		 22
619 #define I915_PARAM_HAS_SECURE_BATCHES	 23
620 #define I915_PARAM_HAS_PINNED_BATCHES	 24
621 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
622 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
623 #define I915_PARAM_HAS_WT     	 	 27
624 #define I915_PARAM_CMD_PARSER_VERSION	 28
625 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
626 #define I915_PARAM_MMAP_VERSION          30
627 #define I915_PARAM_HAS_BSD2		 31
628 #define I915_PARAM_REVISION              32
629 #define I915_PARAM_SUBSLICE_TOTAL	 33
630 #define I915_PARAM_EU_TOTAL		 34
631 #define I915_PARAM_HAS_GPU_RESET	 35
632 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
633 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
634 #define I915_PARAM_HAS_POOLED_EU	 38
635 #define I915_PARAM_MIN_EU_IN_POOL	 39
636 #define I915_PARAM_MMAP_GTT_VERSION	 40
637 
638 /*
639  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
640  * priorities and the driver will attempt to execute batches in priority order.
641  * The param returns a capability bitmask, nonzero implies that the scheduler
642  * is enabled, with different features present according to the mask.
643  *
644  * The initial priority for each batch is supplied by the context and is
645  * controlled via I915_CONTEXT_PARAM_PRIORITY.
646  */
647 #define I915_PARAM_HAS_SCHEDULER	 41
648 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
649 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
650 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
651 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
652 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
653 /*
654  * Indicates the 2k user priority levels are statically mapped into 3 buckets as
655  * follows:
656  *
657  * -1k to -1	Low priority
658  * 0		Normal priority
659  * 1 to 1k	Highest priority
660  */
661 #define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP	(1ul << 5)
662 
663 /*
664  * Query the status of HuC load.
665  *
666  * The query can fail in the following scenarios with the listed error codes:
667  *  -ENODEV if HuC is not present on this platform,
668  *  -EOPNOTSUPP if HuC firmware usage is disabled,
669  *  -ENOPKG if HuC firmware fetch failed,
670  *  -ENOEXEC if HuC firmware is invalid or mismatched,
671  *  -ENOMEM if i915 failed to prepare the FW objects for transfer to the uC,
672  *  -EIO if the FW transfer or the FW authentication failed.
673  *
674  * If the IOCTL is successful, the returned parameter will be set to one of the
675  * following values:
676  *  * 0 if HuC firmware load is not complete,
677  *  * 1 if HuC firmware is loaded and fully authenticated,
678  *  * 2 if HuC firmware is loaded and authenticated for clear media only
679  */
680 #define I915_PARAM_HUC_STATUS		 42
681 
682 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
683  * synchronisation with implicit fencing on individual objects.
684  * See EXEC_OBJECT_ASYNC.
685  */
686 #define I915_PARAM_HAS_EXEC_ASYNC	 43
687 
688 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
689  * both being able to pass in a sync_file fd to wait upon before executing,
690  * and being able to return a new sync_file fd that is signaled when the
691  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
692  */
693 #define I915_PARAM_HAS_EXEC_FENCE	 44
694 
695 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
696  * user-specified buffers for post-mortem debugging of GPU hangs. See
697  * EXEC_OBJECT_CAPTURE.
698  */
699 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
700 
701 #define I915_PARAM_SLICE_MASK		 46
702 
703 /* Assuming it's uniform for each slice, this queries the mask of subslices
704  * per-slice for this system.
705  */
706 #define I915_PARAM_SUBSLICE_MASK	 47
707 
708 /*
709  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
710  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
711  */
712 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
713 
714 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
715  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
716  */
717 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
718 
719 /*
720  * Query whether every context (both per-file default and user created) is
721  * isolated (insofar as HW supports). If this parameter is not true, then
722  * freshly created contexts may inherit values from an existing context,
723  * rather than default HW values. If true, it also ensures (insofar as HW
724  * supports) that all state set by this context will not leak to any other
725  * context.
726  *
727  * As not every engine across every gen support contexts, the returned
728  * value reports the support of context isolation for individual engines by
729  * returning a bitmask of each engine class set to true if that class supports
730  * isolation.
731  */
732 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
733 
734 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
735  * registers. This used to be fixed per platform but from CNL onwards, this
736  * might vary depending on the parts.
737  */
738 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
739 
740 /*
741  * Once upon a time we supposed that writes through the GGTT would be
742  * immediately in physical memory (once flushed out of the CPU path). However,
743  * on a few different processors and chipsets, this is not necessarily the case
744  * as the writes appear to be buffered internally. Thus a read of the backing
745  * storage (physical memory) via a different path (with different physical tags
746  * to the indirect write via the GGTT) will see stale values from before
747  * the GGTT write. Inside the kernel, we can for the most part keep track of
748  * the different read/write domains in use (e.g. set-domain), but the assumption
749  * of coherency is baked into the ABI, hence reporting its true state in this
750  * parameter.
751  *
752  * Reports true when writes via mmap_gtt are immediately visible following an
753  * lfence to flush the WCB.
754  *
755  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
756  * internal buffer and are _not_ immediately visible to third parties accessing
757  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
758  * communications channel when reporting false is strongly disadvised.
759  */
760 #define I915_PARAM_MMAP_GTT_COHERENT	52
761 
762 /*
763  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
764  * execution through use of explicit fence support.
765  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
766  */
767 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
768 
769 /*
770  * Revision of the i915-perf uAPI. The value returned helps determine what
771  * i915-perf features are available. See drm_i915_perf_property_id.
772  */
773 #define I915_PARAM_PERF_REVISION	54
774 
775 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
776  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
777  * I915_EXEC_USE_EXTENSIONS.
778  */
779 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
780 
781 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */
782 #define I915_PARAM_HAS_USERPTR_PROBE 56
783 
784 /*
785  * Frequency of the timestamps in OA reports. This used to be the same as the CS
786  * timestamp frequency, but differs on some platforms.
787  */
788 #define I915_PARAM_OA_TIMESTAMP_FREQUENCY 57
789 
790 /*
791  * Query the status of PXP support in i915.
792  *
793  * The query can fail in the following scenarios with the listed error codes:
794  *     -ENODEV = PXP support is not available on the GPU device or in the
795  *               kernel due to missing component drivers or kernel configs.
796  *
797  * If the IOCTL is successful, the returned parameter will be set to one of
798  * the following values:
799  *     1 = PXP feature is supported and is ready for use.
800  *     2 = PXP feature is supported but should be ready soon (pending
801  *         initialization of non-i915 system dependencies).
802  *
803  * NOTE: When param is supported (positive return values), user space should
804  *       still refer to the GEM PXP context-creation UAPI header specs to be
805  *       aware of possible failure due to system state machine at the time.
806  */
807 #define I915_PARAM_PXP_STATUS		 58
808 
809 /*
810  * Query if kernel allows marking a context to send a Freq hint to SLPC. This
811  * will enable use of the strategies allowed by the SLPC algorithm.
812  */
813 #define I915_PARAM_HAS_CONTEXT_FREQ_HINT	59
814 
815 /* Must be kept compact -- no holes and well documented */
816 
817 /**
818  * struct drm_i915_getparam - Driver parameter query structure.
819  */
820 struct drm_i915_getparam {
821 	/** @param: Driver parameter to query. */
822 	__s32 param;
823 
824 	/**
825 	 * @value: Address of memory where queried value should be put.
826 	 *
827 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
828 	 * compat32 code. Don't repeat this mistake.
829 	 */
830 	int __user *value;
831 };
832 
833 /**
834  * typedef drm_i915_getparam_t - Driver parameter query structure.
835  * See struct drm_i915_getparam.
836  */
837 typedef struct drm_i915_getparam drm_i915_getparam_t;
838 
839 /* Ioctl to set kernel params:
840  */
841 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
842 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
843 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
844 #define I915_SETPARAM_NUM_USED_FENCES                     4
845 /* Must be kept compact -- no holes */
846 
847 typedef struct drm_i915_setparam {
848 	int param;
849 	int value;
850 } drm_i915_setparam_t;
851 
852 /* A memory manager for regions of shared memory:
853  */
854 #define I915_MEM_REGION_AGP 1
855 
856 typedef struct drm_i915_mem_alloc {
857 	int region;
858 	int alignment;
859 	int size;
860 	int __user *region_offset;	/* offset from start of fb or agp */
861 } drm_i915_mem_alloc_t;
862 
863 typedef struct drm_i915_mem_free {
864 	int region;
865 	int region_offset;
866 } drm_i915_mem_free_t;
867 
868 typedef struct drm_i915_mem_init_heap {
869 	int region;
870 	int size;
871 	int start;
872 } drm_i915_mem_init_heap_t;
873 
874 /* Allow memory manager to be torn down and re-initialized (eg on
875  * rotate):
876  */
877 typedef struct drm_i915_mem_destroy_heap {
878 	int region;
879 } drm_i915_mem_destroy_heap_t;
880 
881 /* Allow X server to configure which pipes to monitor for vblank signals
882  */
883 #define	DRM_I915_VBLANK_PIPE_A	1
884 #define	DRM_I915_VBLANK_PIPE_B	2
885 
886 typedef struct drm_i915_vblank_pipe {
887 	int pipe;
888 } drm_i915_vblank_pipe_t;
889 
890 /* Schedule buffer swap at given vertical blank:
891  */
892 typedef struct drm_i915_vblank_swap {
893 	drm_drawable_t drawable;
894 	enum drm_vblank_seq_type seqtype;
895 	unsigned int sequence;
896 } drm_i915_vblank_swap_t;
897 
898 typedef struct drm_i915_hws_addr {
899 	__u64 addr;
900 } drm_i915_hws_addr_t;
901 
902 struct drm_i915_gem_init {
903 	/**
904 	 * Beginning offset in the GTT to be managed by the DRM memory
905 	 * manager.
906 	 */
907 	__u64 gtt_start;
908 	/**
909 	 * Ending offset in the GTT to be managed by the DRM memory
910 	 * manager.
911 	 */
912 	__u64 gtt_end;
913 };
914 
915 struct drm_i915_gem_create {
916 	/**
917 	 * Requested size for the object.
918 	 *
919 	 * The (page-aligned) allocated size for the object will be returned.
920 	 */
921 	__u64 size;
922 	/**
923 	 * Returned handle for the object.
924 	 *
925 	 * Object handles are nonzero.
926 	 */
927 	__u32 handle;
928 	__u32 pad;
929 };
930 
931 struct drm_i915_gem_pread {
932 	/** Handle for the object being read. */
933 	__u32 handle;
934 	__u32 pad;
935 	/** Offset into the object to read from */
936 	__u64 offset;
937 	/** Length of data to read */
938 	__u64 size;
939 	/**
940 	 * Pointer to write the data into.
941 	 *
942 	 * This is a fixed-size type for 32/64 compatibility.
943 	 */
944 	__u64 data_ptr;
945 };
946 
947 struct drm_i915_gem_pwrite {
948 	/** Handle for the object being written to. */
949 	__u32 handle;
950 	__u32 pad;
951 	/** Offset into the object to write to */
952 	__u64 offset;
953 	/** Length of data to write */
954 	__u64 size;
955 	/**
956 	 * Pointer to read the data from.
957 	 *
958 	 * This is a fixed-size type for 32/64 compatibility.
959 	 */
960 	__u64 data_ptr;
961 };
962 
963 struct drm_i915_gem_mmap {
964 	/** Handle for the object being mapped. */
965 	__u32 handle;
966 	__u32 pad;
967 	/** Offset in the object to map. */
968 	__u64 offset;
969 	/**
970 	 * Length of data to map.
971 	 *
972 	 * The value will be page-aligned.
973 	 */
974 	__u64 size;
975 	/**
976 	 * Returned pointer the data was mapped at.
977 	 *
978 	 * This is a fixed-size type for 32/64 compatibility.
979 	 */
980 	__u64 addr_ptr;
981 
982 	/**
983 	 * Flags for extended behaviour.
984 	 *
985 	 * Added in version 2.
986 	 */
987 	__u64 flags;
988 #define I915_MMAP_WC 0x1
989 };
990 
991 struct drm_i915_gem_mmap_gtt {
992 	/** Handle for the object being mapped. */
993 	__u32 handle;
994 	__u32 pad;
995 	/**
996 	 * Fake offset to use for subsequent mmap call
997 	 *
998 	 * This is a fixed-size type for 32/64 compatibility.
999 	 */
1000 	__u64 offset;
1001 };
1002 
1003 /**
1004  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
1005  *
1006  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
1007  * and is used to retrieve the fake offset to mmap an object specified by &handle.
1008  *
1009  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
1010  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
1011  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
1012  */
1013 struct drm_i915_gem_mmap_offset {
1014 	/** @handle: Handle for the object being mapped. */
1015 	__u32 handle;
1016 	/** @pad: Must be zero */
1017 	__u32 pad;
1018 	/**
1019 	 * @offset: The fake offset to use for subsequent mmap call
1020 	 *
1021 	 * This is a fixed-size type for 32/64 compatibility.
1022 	 */
1023 	__u64 offset;
1024 
1025 	/**
1026 	 * @flags: Flags for extended behaviour.
1027 	 *
1028 	 * It is mandatory that one of the `MMAP_OFFSET` types
1029 	 * should be included:
1030 	 *
1031 	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
1032 	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
1033 	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
1034 	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
1035 	 *
1036 	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
1037 	 * type. On devices without local memory, this caching mode is invalid.
1038 	 *
1039 	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
1040 	 * be used, depending on the object placement on creation. WB will be used
1041 	 * when the object can only exist in system memory, WC otherwise.
1042 	 */
1043 	__u64 flags;
1044 
1045 #define I915_MMAP_OFFSET_GTT	0
1046 #define I915_MMAP_OFFSET_WC	1
1047 #define I915_MMAP_OFFSET_WB	2
1048 #define I915_MMAP_OFFSET_UC	3
1049 #define I915_MMAP_OFFSET_FIXED	4
1050 
1051 	/**
1052 	 * @extensions: Zero-terminated chain of extensions.
1053 	 *
1054 	 * No current extensions defined; mbz.
1055 	 */
1056 	__u64 extensions;
1057 };
1058 
1059 /**
1060  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
1061  * preparation for accessing the pages via some CPU domain.
1062  *
1063  * Specifying a new write or read domain will flush the object out of the
1064  * previous domain(if required), before then updating the objects domain
1065  * tracking with the new domain.
1066  *
1067  * Note this might involve waiting for the object first if it is still active on
1068  * the GPU.
1069  *
1070  * Supported values for @read_domains and @write_domain:
1071  *
1072  *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
1073  *	- I915_GEM_DOMAIN_CPU: CPU cache domain
1074  *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
1075  *
1076  * All other domains are rejected.
1077  *
1078  * Note that for discrete, starting from DG1, this is no longer supported, and
1079  * is instead rejected. On such platforms the CPU domain is effectively static,
1080  * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
1081  * which can't be set explicitly and instead depends on the object placements,
1082  * as per the below.
1083  *
1084  * Implicit caching rules, starting from DG1:
1085  *
1086  *	- If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1087  *	  contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1088  *	  mapped as write-combined only.
1089  *
1090  *	- Everything else is always allocated and mapped as write-back, with the
1091  *	  guarantee that everything is also coherent with the GPU.
1092  *
1093  * Note that this is likely to change in the future again, where we might need
1094  * more flexibility on future devices, so making this all explicit as part of a
1095  * new &drm_i915_gem_create_ext extension is probable.
1096  */
1097 struct drm_i915_gem_set_domain {
1098 	/** @handle: Handle for the object. */
1099 	__u32 handle;
1100 
1101 	/** @read_domains: New read domains. */
1102 	__u32 read_domains;
1103 
1104 	/**
1105 	 * @write_domain: New write domain.
1106 	 *
1107 	 * Note that having something in the write domain implies it's in the
1108 	 * read domain, and only that read domain.
1109 	 */
1110 	__u32 write_domain;
1111 };
1112 
1113 struct drm_i915_gem_sw_finish {
1114 	/** Handle for the object */
1115 	__u32 handle;
1116 };
1117 
1118 struct drm_i915_gem_relocation_entry {
1119 	/**
1120 	 * Handle of the buffer being pointed to by this relocation entry.
1121 	 *
1122 	 * It's appealing to make this be an index into the mm_validate_entry
1123 	 * list to refer to the buffer, but this allows the driver to create
1124 	 * a relocation list for state buffers and not re-write it per
1125 	 * exec using the buffer.
1126 	 */
1127 	__u32 target_handle;
1128 
1129 	/**
1130 	 * Value to be added to the offset of the target buffer to make up
1131 	 * the relocation entry.
1132 	 */
1133 	__u32 delta;
1134 
1135 	/** Offset in the buffer the relocation entry will be written into */
1136 	__u64 offset;
1137 
1138 	/**
1139 	 * Offset value of the target buffer that the relocation entry was last
1140 	 * written as.
1141 	 *
1142 	 * If the buffer has the same offset as last time, we can skip syncing
1143 	 * and writing the relocation.  This value is written back out by
1144 	 * the execbuffer ioctl when the relocation is written.
1145 	 */
1146 	__u64 presumed_offset;
1147 
1148 	/**
1149 	 * Target memory domains read by this operation.
1150 	 */
1151 	__u32 read_domains;
1152 
1153 	/**
1154 	 * Target memory domains written by this operation.
1155 	 *
1156 	 * Note that only one domain may be written by the whole
1157 	 * execbuffer operation, so that where there are conflicts,
1158 	 * the application will get -EINVAL back.
1159 	 */
1160 	__u32 write_domain;
1161 };
1162 
1163 /** @{
1164  * Intel memory domains
1165  *
1166  * Most of these just align with the various caches in
1167  * the system and are used to flush and invalidate as
1168  * objects end up cached in different domains.
1169  */
1170 /** CPU cache */
1171 #define I915_GEM_DOMAIN_CPU		0x00000001
1172 /** Render cache, used by 2D and 3D drawing */
1173 #define I915_GEM_DOMAIN_RENDER		0x00000002
1174 /** Sampler cache, used by texture engine */
1175 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
1176 /** Command queue, used to load batch buffers */
1177 #define I915_GEM_DOMAIN_COMMAND		0x00000008
1178 /** Instruction cache, used by shader programs */
1179 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1180 /** Vertex address cache */
1181 #define I915_GEM_DOMAIN_VERTEX		0x00000020
1182 /** GTT domain - aperture and scanout */
1183 #define I915_GEM_DOMAIN_GTT		0x00000040
1184 /** WC domain - uncached access */
1185 #define I915_GEM_DOMAIN_WC		0x00000080
1186 /** @} */
1187 
1188 struct drm_i915_gem_exec_object {
1189 	/**
1190 	 * User's handle for a buffer to be bound into the GTT for this
1191 	 * operation.
1192 	 */
1193 	__u32 handle;
1194 
1195 	/** Number of relocations to be performed on this buffer */
1196 	__u32 relocation_count;
1197 	/**
1198 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1199 	 * the relocations to be performed in this buffer.
1200 	 */
1201 	__u64 relocs_ptr;
1202 
1203 	/** Required alignment in graphics aperture */
1204 	__u64 alignment;
1205 
1206 	/**
1207 	 * Returned value of the updated offset of the object, for future
1208 	 * presumed_offset writes.
1209 	 */
1210 	__u64 offset;
1211 };
1212 
1213 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1214 struct drm_i915_gem_execbuffer {
1215 	/**
1216 	 * List of buffers to be validated with their relocations to be
1217 	 * performend on them.
1218 	 *
1219 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1220 	 *
1221 	 * These buffers must be listed in an order such that all relocations
1222 	 * a buffer is performing refer to buffers that have already appeared
1223 	 * in the validate list.
1224 	 */
1225 	__u64 buffers_ptr;
1226 	__u32 buffer_count;
1227 
1228 	/** Offset in the batchbuffer to start execution from. */
1229 	__u32 batch_start_offset;
1230 	/** Bytes used in batchbuffer from batch_start_offset */
1231 	__u32 batch_len;
1232 	__u32 DR1;
1233 	__u32 DR4;
1234 	__u32 num_cliprects;
1235 	/** This is a struct drm_clip_rect *cliprects */
1236 	__u64 cliprects_ptr;
1237 };
1238 
1239 struct drm_i915_gem_exec_object2 {
1240 	/**
1241 	 * User's handle for a buffer to be bound into the GTT for this
1242 	 * operation.
1243 	 */
1244 	__u32 handle;
1245 
1246 	/** Number of relocations to be performed on this buffer */
1247 	__u32 relocation_count;
1248 	/**
1249 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1250 	 * the relocations to be performed in this buffer.
1251 	 */
1252 	__u64 relocs_ptr;
1253 
1254 	/** Required alignment in graphics aperture */
1255 	__u64 alignment;
1256 
1257 	/**
1258 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1259 	 * the user with the GTT offset at which this object will be pinned.
1260 	 *
1261 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1262 	 * presumed_offset of the object.
1263 	 *
1264 	 * During execbuffer2 the kernel populates it with the value of the
1265 	 * current GTT offset of the object, for future presumed_offset writes.
1266 	 *
1267 	 * See struct drm_i915_gem_create_ext for the rules when dealing with
1268 	 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1269 	 * minimum page sizes, like DG2.
1270 	 */
1271 	__u64 offset;
1272 
1273 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1274 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1275 #define EXEC_OBJECT_WRITE		 (1<<2)
1276 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1277 #define EXEC_OBJECT_PINNED		 (1<<4)
1278 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1279 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1280  * synchronises operations with outstanding rendering. This includes
1281  * rendering on other devices if exported via dma-buf. However, sometimes
1282  * this tracking is too coarse and the user knows better. For example,
1283  * if the object is split into non-overlapping ranges shared between different
1284  * clients or engines (i.e. suballocating objects), the implicit tracking
1285  * by kernel assumes that each operation affects the whole object rather
1286  * than an individual range, causing needless synchronisation between clients.
1287  * The kernel will also forgo any CPU cache flushes prior to rendering from
1288  * the object as the client is expected to be also handling such domain
1289  * tracking.
1290  *
1291  * The kernel maintains the implicit tracking in order to manage resources
1292  * used by the GPU - this flag only disables the synchronisation prior to
1293  * rendering with this object in this execbuf.
1294  *
1295  * Opting out of implicit synhronisation requires the user to do its own
1296  * explicit tracking to avoid rendering corruption. See, for example,
1297  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1298  */
1299 #define EXEC_OBJECT_ASYNC		(1<<6)
1300 /* Request that the contents of this execobject be copied into the error
1301  * state upon a GPU hang involving this batch for post-mortem debugging.
1302  * These buffers are recorded in no particular order as "user" in
1303  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1304  * if the kernel supports this flag.
1305  */
1306 #define EXEC_OBJECT_CAPTURE		(1<<7)
1307 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1308 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1309 	__u64 flags;
1310 
1311 	union {
1312 		__u64 rsvd1;
1313 		__u64 pad_to_size;
1314 	};
1315 	__u64 rsvd2;
1316 };
1317 
1318 /**
1319  * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf
1320  * ioctl.
1321  *
1322  * The request will wait for input fence to signal before submission.
1323  *
1324  * The returned output fence will be signaled after the completion of the
1325  * request.
1326  */
1327 struct drm_i915_gem_exec_fence {
1328 	/** @handle: User's handle for a drm_syncobj to wait on or signal. */
1329 	__u32 handle;
1330 
1331 	/**
1332 	 * @flags: Supported flags are:
1333 	 *
1334 	 * I915_EXEC_FENCE_WAIT:
1335 	 * Wait for the input fence before request submission.
1336 	 *
1337 	 * I915_EXEC_FENCE_SIGNAL:
1338 	 * Return request completion fence as output
1339 	 */
1340 	__u32 flags;
1341 #define I915_EXEC_FENCE_WAIT            (1<<0)
1342 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1343 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1344 };
1345 
1346 /**
1347  * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences
1348  * for execbuf ioctl.
1349  *
1350  * This structure describes an array of drm_syncobj and associated points for
1351  * timeline variants of drm_syncobj. It is invalid to append this structure to
1352  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1353  */
1354 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1355 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1356 	/** @base: Extension link. See struct i915_user_extension. */
1357 	struct i915_user_extension base;
1358 
1359 	/**
1360 	 * @fence_count: Number of elements in the @handles_ptr & @value_ptr
1361 	 * arrays.
1362 	 */
1363 	__u64 fence_count;
1364 
1365 	/**
1366 	 * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence
1367 	 * of length @fence_count.
1368 	 */
1369 	__u64 handles_ptr;
1370 
1371 	/**
1372 	 * @values_ptr: Pointer to an array of u64 values of length
1373 	 * @fence_count.
1374 	 * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
1375 	 * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
1376 	 * binary one.
1377 	 */
1378 	__u64 values_ptr;
1379 };
1380 
1381 /**
1382  * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2
1383  * ioctl.
1384  */
1385 struct drm_i915_gem_execbuffer2 {
1386 	/** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */
1387 	__u64 buffers_ptr;
1388 
1389 	/** @buffer_count: Number of elements in @buffers_ptr array */
1390 	__u32 buffer_count;
1391 
1392 	/**
1393 	 * @batch_start_offset: Offset in the batchbuffer to start execution
1394 	 * from.
1395 	 */
1396 	__u32 batch_start_offset;
1397 
1398 	/**
1399 	 * @batch_len: Length in bytes of the batch buffer, starting from the
1400 	 * @batch_start_offset. If 0, length is assumed to be the batch buffer
1401 	 * object size.
1402 	 */
1403 	__u32 batch_len;
1404 
1405 	/** @DR1: deprecated */
1406 	__u32 DR1;
1407 
1408 	/** @DR4: deprecated */
1409 	__u32 DR4;
1410 
1411 	/** @num_cliprects: See @cliprects_ptr */
1412 	__u32 num_cliprects;
1413 
1414 	/**
1415 	 * @cliprects_ptr: Kernel clipping was a DRI1 misfeature.
1416 	 *
1417 	 * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or
1418 	 * I915_EXEC_USE_EXTENSIONS flags are not set.
1419 	 *
1420 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1421 	 * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the
1422 	 * array.
1423 	 *
1424 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1425 	 * single &i915_user_extension and num_cliprects is 0.
1426 	 */
1427 	__u64 cliprects_ptr;
1428 
1429 	/** @flags: Execbuf flags */
1430 	__u64 flags;
1431 #define I915_EXEC_RING_MASK              (0x3f)
1432 #define I915_EXEC_DEFAULT                (0<<0)
1433 #define I915_EXEC_RENDER                 (1<<0)
1434 #define I915_EXEC_BSD                    (2<<0)
1435 #define I915_EXEC_BLT                    (3<<0)
1436 #define I915_EXEC_VEBOX                  (4<<0)
1437 
1438 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1439  * Gen6+ only supports relative addressing to dynamic state (default) and
1440  * absolute addressing.
1441  *
1442  * These flags are ignored for the BSD and BLT rings.
1443  */
1444 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1445 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1446 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1447 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1448 
1449 /** Resets the SO write offset registers for transform feedback on gen7. */
1450 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1451 
1452 /** Request a privileged ("secure") batch buffer. Note only available for
1453  * DRM_ROOT_ONLY | DRM_MASTER processes.
1454  */
1455 #define I915_EXEC_SECURE		(1<<9)
1456 
1457 /** Inform the kernel that the batch is and will always be pinned. This
1458  * negates the requirement for a workaround to be performed to avoid
1459  * an incoherent CS (such as can be found on 830/845). If this flag is
1460  * not passed, the kernel will endeavour to make sure the batch is
1461  * coherent with the CS before execution. If this flag is passed,
1462  * userspace assumes the responsibility for ensuring the same.
1463  */
1464 #define I915_EXEC_IS_PINNED		(1<<10)
1465 
1466 /** Provide a hint to the kernel that the command stream and auxiliary
1467  * state buffers already holds the correct presumed addresses and so the
1468  * relocation process may be skipped if no buffers need to be moved in
1469  * preparation for the execbuffer.
1470  */
1471 #define I915_EXEC_NO_RELOC		(1<<11)
1472 
1473 /** Use the reloc.handle as an index into the exec object array rather
1474  * than as the per-file handle.
1475  */
1476 #define I915_EXEC_HANDLE_LUT		(1<<12)
1477 
1478 /** Used for switching BSD rings on the platforms with two BSD rings */
1479 #define I915_EXEC_BSD_SHIFT	 (13)
1480 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1481 /* default ping-pong mode */
1482 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1483 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1484 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1485 
1486 /** Tell the kernel that the batchbuffer is processed by
1487  *  the resource streamer.
1488  */
1489 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1490 
1491 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1492  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1493  * the batch.
1494  *
1495  * Returns -EINVAL if the sync_file fd cannot be found.
1496  */
1497 #define I915_EXEC_FENCE_IN		(1<<16)
1498 
1499 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1500  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1501  * to the caller, and it should be close() after use. (The fd is a regular
1502  * file descriptor and will be cleaned up on process termination. It holds
1503  * a reference to the request, but nothing else.)
1504  *
1505  * The sync_file fd can be combined with other sync_file and passed either
1506  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1507  * will only occur after this request completes), or to other devices.
1508  *
1509  * Using I915_EXEC_FENCE_OUT requires use of
1510  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1511  * back to userspace. Failure to do so will cause the out-fence to always
1512  * be reported as zero, and the real fence fd to be leaked.
1513  */
1514 #define I915_EXEC_FENCE_OUT		(1<<17)
1515 
1516 /*
1517  * Traditionally the execbuf ioctl has only considered the final element in
1518  * the execobject[] to be the executable batch. Often though, the client
1519  * will known the batch object prior to construction and being able to place
1520  * it into the execobject[] array first can simplify the relocation tracking.
1521  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1522  * execobject[] as the * batch instead (the default is to use the last
1523  * element).
1524  */
1525 #define I915_EXEC_BATCH_FIRST		(1<<18)
1526 
1527 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1528  * define an array of i915_gem_exec_fence structures which specify a set of
1529  * dma fences to wait upon or signal.
1530  */
1531 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1532 
1533 /*
1534  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1535  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1536  * the batch.
1537  *
1538  * Returns -EINVAL if the sync_file fd cannot be found.
1539  */
1540 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1541 
1542 /*
1543  * Setting I915_EXEC_USE_EXTENSIONS implies that
1544  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1545  * list of i915_user_extension. Each i915_user_extension node is the base of a
1546  * larger structure. The list of supported structures are listed in the
1547  * drm_i915_gem_execbuffer_ext enum.
1548  */
1549 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1550 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1551 
1552 	/** @rsvd1: Context id */
1553 	__u64 rsvd1;
1554 
1555 	/**
1556 	 * @rsvd2: in and out sync_file file descriptors.
1557 	 *
1558 	 * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the
1559 	 * lower 32 bits of this field will have the in sync_file fd (input).
1560 	 *
1561 	 * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this
1562 	 * field will have the out sync_file fd (output).
1563 	 */
1564 	__u64 rsvd2;
1565 };
1566 
1567 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1568 #define i915_execbuffer2_set_context_id(eb2, context) \
1569 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1570 #define i915_execbuffer2_get_context_id(eb2) \
1571 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1572 
1573 struct drm_i915_gem_pin {
1574 	/** Handle of the buffer to be pinned. */
1575 	__u32 handle;
1576 	__u32 pad;
1577 
1578 	/** alignment required within the aperture */
1579 	__u64 alignment;
1580 
1581 	/** Returned GTT offset of the buffer. */
1582 	__u64 offset;
1583 };
1584 
1585 struct drm_i915_gem_unpin {
1586 	/** Handle of the buffer to be unpinned. */
1587 	__u32 handle;
1588 	__u32 pad;
1589 };
1590 
1591 struct drm_i915_gem_busy {
1592 	/** Handle of the buffer to check for busy */
1593 	__u32 handle;
1594 
1595 	/** Return busy status
1596 	 *
1597 	 * A return of 0 implies that the object is idle (after
1598 	 * having flushed any pending activity), and a non-zero return that
1599 	 * the object is still in-flight on the GPU. (The GPU has not yet
1600 	 * signaled completion for all pending requests that reference the
1601 	 * object.) An object is guaranteed to become idle eventually (so
1602 	 * long as no new GPU commands are executed upon it). Due to the
1603 	 * asynchronous nature of the hardware, an object reported
1604 	 * as busy may become idle before the ioctl is completed.
1605 	 *
1606 	 * Furthermore, if the object is busy, which engine is busy is only
1607 	 * provided as a guide and only indirectly by reporting its class
1608 	 * (there may be more than one engine in each class). There are race
1609 	 * conditions which prevent the report of which engines are busy from
1610 	 * being always accurate.  However, the converse is not true. If the
1611 	 * object is idle, the result of the ioctl, that all engines are idle,
1612 	 * is accurate.
1613 	 *
1614 	 * The returned dword is split into two fields to indicate both
1615 	 * the engine classes on which the object is being read, and the
1616 	 * engine class on which it is currently being written (if any).
1617 	 *
1618 	 * The low word (bits 0:15) indicate if the object is being written
1619 	 * to by any engine (there can only be one, as the GEM implicit
1620 	 * synchronisation rules force writes to be serialised). Only the
1621 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1622 	 * 1 not 0 etc) for the last write is reported.
1623 	 *
1624 	 * The high word (bits 16:31) are a bitmask of which engines classes
1625 	 * are currently reading from the object. Multiple engines may be
1626 	 * reading from the object simultaneously.
1627 	 *
1628 	 * The value of each engine class is the same as specified in the
1629 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1630 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1631 	 * Some hardware may have parallel execution engines, e.g. multiple
1632 	 * media engines, which are mapped to the same class identifier and so
1633 	 * are not separately reported for busyness.
1634 	 *
1635 	 * Caveat emptor:
1636 	 * Only the boolean result of this query is reliable; that is whether
1637 	 * the object is idle or busy. The report of which engines are busy
1638 	 * should be only used as a heuristic.
1639 	 */
1640 	__u32 busy;
1641 };
1642 
1643 /**
1644  * struct drm_i915_gem_caching - Set or get the caching for given object
1645  * handle.
1646  *
1647  * Allow userspace to control the GTT caching bits for a given object when the
1648  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1649  * ppGTT support, or if the object is used for scanout). Note that this might
1650  * require unbinding the object from the GTT first, if its current caching value
1651  * doesn't match.
1652  *
1653  * Note that this all changes on discrete platforms, starting from DG1, the
1654  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1655  * caching attributes(WB vs WC) will become an immutable creation time property
1656  * for the object, along with the GTT caching level. For now we don't expose any
1657  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1658  * shouldn't matter since DG1 is coherent by default(without any way of
1659  * controlling it).
1660  *
1661  * Implicit caching rules, starting from DG1:
1662  *
1663  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1664  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1665  *       mapped as write-combined only.
1666  *
1667  *     - Everything else is always allocated and mapped as write-back, with the
1668  *       guarantee that everything is also coherent with the GPU.
1669  *
1670  * Note that this is likely to change in the future again, where we might need
1671  * more flexibility on future devices, so making this all explicit as part of a
1672  * new &drm_i915_gem_create_ext extension is probable.
1673  *
1674  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1675  * caching attributes for the pages might be required(and is expensive) if we
1676  * need to then CPU map the pages later with different caching attributes. This
1677  * inconsistent caching behaviour, while supported on x86, is not universally
1678  * supported on other architectures. So for simplicity we opt for setting
1679  * everything at creation time, whilst also making it immutable, on discrete
1680  * platforms.
1681  */
1682 struct drm_i915_gem_caching {
1683 	/**
1684 	 * @handle: Handle of the buffer to set/get the caching level.
1685 	 */
1686 	__u32 handle;
1687 
1688 	/**
1689 	 * @caching: The GTT caching level to apply or possible return value.
1690 	 *
1691 	 * The supported @caching values:
1692 	 *
1693 	 * I915_CACHING_NONE:
1694 	 *
1695 	 * GPU access is not coherent with CPU caches.  Default for machines
1696 	 * without an LLC. This means manual flushing might be needed, if we
1697 	 * want GPU access to be coherent.
1698 	 *
1699 	 * I915_CACHING_CACHED:
1700 	 *
1701 	 * GPU access is coherent with CPU caches and furthermore the data is
1702 	 * cached in last-level caches shared between CPU cores and the GPU GT.
1703 	 *
1704 	 * I915_CACHING_DISPLAY:
1705 	 *
1706 	 * Special GPU caching mode which is coherent with the scanout engines.
1707 	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1708 	 * special cache mode (like write-through or gfdt flushing) is
1709 	 * available. The kernel automatically sets this mode when using a
1710 	 * buffer as a scanout target.  Userspace can manually set this mode to
1711 	 * avoid a costly stall and clflush in the hotpath of drawing the first
1712 	 * frame.
1713 	 */
1714 #define I915_CACHING_NONE		0
1715 #define I915_CACHING_CACHED		1
1716 #define I915_CACHING_DISPLAY		2
1717 	__u32 caching;
1718 };
1719 
1720 #define I915_TILING_NONE	0
1721 #define I915_TILING_X		1
1722 #define I915_TILING_Y		2
1723 /*
1724  * Do not add new tiling types here.  The I915_TILING_* values are for
1725  * de-tiling fence registers that no longer exist on modern platforms.  Although
1726  * the hardware may support new types of tiling in general (e.g., Tile4), we
1727  * do not need to add them to the uapi that is specific to now-defunct ioctls.
1728  */
1729 #define I915_TILING_LAST	I915_TILING_Y
1730 
1731 #define I915_BIT_6_SWIZZLE_NONE		0
1732 #define I915_BIT_6_SWIZZLE_9		1
1733 #define I915_BIT_6_SWIZZLE_9_10		2
1734 #define I915_BIT_6_SWIZZLE_9_11		3
1735 #define I915_BIT_6_SWIZZLE_9_10_11	4
1736 /* Not seen by userland */
1737 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1738 /* Seen by userland. */
1739 #define I915_BIT_6_SWIZZLE_9_17		6
1740 #define I915_BIT_6_SWIZZLE_9_10_17	7
1741 
1742 struct drm_i915_gem_set_tiling {
1743 	/** Handle of the buffer to have its tiling state updated */
1744 	__u32 handle;
1745 
1746 	/**
1747 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1748 	 * I915_TILING_Y).
1749 	 *
1750 	 * This value is to be set on request, and will be updated by the
1751 	 * kernel on successful return with the actual chosen tiling layout.
1752 	 *
1753 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1754 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1755 	 *
1756 	 * Buffer contents become undefined when changing tiling_mode.
1757 	 */
1758 	__u32 tiling_mode;
1759 
1760 	/**
1761 	 * Stride in bytes for the object when in I915_TILING_X or
1762 	 * I915_TILING_Y.
1763 	 */
1764 	__u32 stride;
1765 
1766 	/**
1767 	 * Returned address bit 6 swizzling required for CPU access through
1768 	 * mmap mapping.
1769 	 */
1770 	__u32 swizzle_mode;
1771 };
1772 
1773 struct drm_i915_gem_get_tiling {
1774 	/** Handle of the buffer to get tiling state for. */
1775 	__u32 handle;
1776 
1777 	/**
1778 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1779 	 * I915_TILING_Y).
1780 	 */
1781 	__u32 tiling_mode;
1782 
1783 	/**
1784 	 * Returned address bit 6 swizzling required for CPU access through
1785 	 * mmap mapping.
1786 	 */
1787 	__u32 swizzle_mode;
1788 
1789 	/**
1790 	 * Returned address bit 6 swizzling required for CPU access through
1791 	 * mmap mapping whilst bound.
1792 	 */
1793 	__u32 phys_swizzle_mode;
1794 };
1795 
1796 struct drm_i915_gem_get_aperture {
1797 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1798 	__u64 aper_size;
1799 
1800 	/**
1801 	 * Available space in the aperture used by i915_gem_execbuffer, in
1802 	 * bytes
1803 	 */
1804 	__u64 aper_available_size;
1805 };
1806 
1807 struct drm_i915_get_pipe_from_crtc_id {
1808 	/** ID of CRTC being requested **/
1809 	__u32 crtc_id;
1810 
1811 	/** pipe of requested CRTC **/
1812 	__u32 pipe;
1813 };
1814 
1815 #define I915_MADV_WILLNEED 0
1816 #define I915_MADV_DONTNEED 1
1817 #define __I915_MADV_PURGED 2 /* internal state */
1818 
1819 struct drm_i915_gem_madvise {
1820 	/** Handle of the buffer to change the backing store advice */
1821 	__u32 handle;
1822 
1823 	/* Advice: either the buffer will be needed again in the near future,
1824 	 *         or won't be and could be discarded under memory pressure.
1825 	 */
1826 	__u32 madv;
1827 
1828 	/** Whether the backing store still exists. */
1829 	__u32 retained;
1830 };
1831 
1832 /* flags */
1833 #define I915_OVERLAY_TYPE_MASK 		0xff
1834 #define I915_OVERLAY_YUV_PLANAR 	0x01
1835 #define I915_OVERLAY_YUV_PACKED 	0x02
1836 #define I915_OVERLAY_RGB		0x03
1837 
1838 #define I915_OVERLAY_DEPTH_MASK		0xff00
1839 #define I915_OVERLAY_RGB24		0x1000
1840 #define I915_OVERLAY_RGB16		0x2000
1841 #define I915_OVERLAY_RGB15		0x3000
1842 #define I915_OVERLAY_YUV422		0x0100
1843 #define I915_OVERLAY_YUV411		0x0200
1844 #define I915_OVERLAY_YUV420		0x0300
1845 #define I915_OVERLAY_YUV410		0x0400
1846 
1847 #define I915_OVERLAY_SWAP_MASK		0xff0000
1848 #define I915_OVERLAY_NO_SWAP		0x000000
1849 #define I915_OVERLAY_UV_SWAP		0x010000
1850 #define I915_OVERLAY_Y_SWAP		0x020000
1851 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1852 
1853 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1854 #define I915_OVERLAY_ENABLE		0x01000000
1855 
1856 struct drm_intel_overlay_put_image {
1857 	/* various flags and src format description */
1858 	__u32 flags;
1859 	/* source picture description */
1860 	__u32 bo_handle;
1861 	/* stride values and offsets are in bytes, buffer relative */
1862 	__u16 stride_Y; /* stride for packed formats */
1863 	__u16 stride_UV;
1864 	__u32 offset_Y; /* offset for packet formats */
1865 	__u32 offset_U;
1866 	__u32 offset_V;
1867 	/* in pixels */
1868 	__u16 src_width;
1869 	__u16 src_height;
1870 	/* to compensate the scaling factors for partially covered surfaces */
1871 	__u16 src_scan_width;
1872 	__u16 src_scan_height;
1873 	/* output crtc description */
1874 	__u32 crtc_id;
1875 	__u16 dst_x;
1876 	__u16 dst_y;
1877 	__u16 dst_width;
1878 	__u16 dst_height;
1879 };
1880 
1881 /* flags */
1882 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1883 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1884 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1885 struct drm_intel_overlay_attrs {
1886 	__u32 flags;
1887 	__u32 color_key;
1888 	__s32 brightness;
1889 	__u32 contrast;
1890 	__u32 saturation;
1891 	__u32 gamma0;
1892 	__u32 gamma1;
1893 	__u32 gamma2;
1894 	__u32 gamma3;
1895 	__u32 gamma4;
1896 	__u32 gamma5;
1897 };
1898 
1899 /*
1900  * Intel sprite handling
1901  *
1902  * Color keying works with a min/mask/max tuple.  Both source and destination
1903  * color keying is allowed.
1904  *
1905  * Source keying:
1906  * Sprite pixels within the min & max values, masked against the color channels
1907  * specified in the mask field, will be transparent.  All other pixels will
1908  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1909  * and mask fields will be used; ranged compares are not allowed.
1910  *
1911  * Destination keying:
1912  * Primary plane pixels that match the min value, masked against the color
1913  * channels specified in the mask field, will be replaced by corresponding
1914  * pixels from the sprite plane.
1915  *
1916  * Note that source & destination keying are exclusive; only one can be
1917  * active on a given plane.
1918  */
1919 
1920 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1921 						* flags==0 to disable colorkeying.
1922 						*/
1923 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1924 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1925 struct drm_intel_sprite_colorkey {
1926 	__u32 plane_id;
1927 	__u32 min_value;
1928 	__u32 channel_mask;
1929 	__u32 max_value;
1930 	__u32 flags;
1931 };
1932 
1933 struct drm_i915_gem_wait {
1934 	/** Handle of BO we shall wait on */
1935 	__u32 bo_handle;
1936 	__u32 flags;
1937 	/** Number of nanoseconds to wait, Returns time remaining. */
1938 	__s64 timeout_ns;
1939 };
1940 
1941 struct drm_i915_gem_context_create {
1942 	__u32 ctx_id; /* output: id of new context*/
1943 	__u32 pad;
1944 };
1945 
1946 /**
1947  * struct drm_i915_gem_context_create_ext - Structure for creating contexts.
1948  */
1949 struct drm_i915_gem_context_create_ext {
1950 	/** @ctx_id: Id of the created context (output) */
1951 	__u32 ctx_id;
1952 
1953 	/**
1954 	 * @flags: Supported flags are:
1955 	 *
1956 	 * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS:
1957 	 *
1958 	 * Extensions may be appended to this structure and driver must check
1959 	 * for those. See @extensions.
1960 	 *
1961 	 * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE
1962 	 *
1963 	 * Created context will have single timeline.
1964 	 */
1965 	__u32 flags;
1966 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1967 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1968 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1969 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1970 
1971 	/**
1972 	 * @extensions: Zero-terminated chain of extensions.
1973 	 *
1974 	 * I915_CONTEXT_CREATE_EXT_SETPARAM:
1975 	 * Context parameter to set or query during context creation.
1976 	 * See struct drm_i915_gem_context_create_ext_setparam.
1977 	 *
1978 	 * I915_CONTEXT_CREATE_EXT_CLONE:
1979 	 * This extension has been removed. On the off chance someone somewhere
1980 	 * has attempted to use it, never re-use this extension number.
1981 	 */
1982 	__u64 extensions;
1983 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1984 #define I915_CONTEXT_CREATE_EXT_CLONE 1
1985 };
1986 
1987 /**
1988  * struct drm_i915_gem_context_param - Context parameter to set or query.
1989  */
1990 struct drm_i915_gem_context_param {
1991 	/** @ctx_id: Context id */
1992 	__u32 ctx_id;
1993 
1994 	/** @size: Size of the parameter @value */
1995 	__u32 size;
1996 
1997 	/** @param: Parameter to set or query */
1998 	__u64 param;
1999 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
2000 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
2001  * someone somewhere has attempted to use it, never re-use this context
2002  * param number.
2003  */
2004 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
2005 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
2006 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
2007 #define I915_CONTEXT_PARAM_BANNABLE	0x5
2008 #define I915_CONTEXT_PARAM_PRIORITY	0x6
2009 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
2010 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
2011 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
2012 	/*
2013 	 * When using the following param, value should be a pointer to
2014 	 * drm_i915_gem_context_param_sseu.
2015 	 */
2016 #define I915_CONTEXT_PARAM_SSEU		0x7
2017 
2018 /*
2019  * Not all clients may want to attempt automatic recover of a context after
2020  * a hang (for example, some clients may only submit very small incremental
2021  * batches relying on known logical state of previous batches which will never
2022  * recover correctly and each attempt will hang), and so would prefer that
2023  * the context is forever banned instead.
2024  *
2025  * If set to false (0), after a reset, subsequent (and in flight) rendering
2026  * from this context is discarded, and the client will need to create a new
2027  * context to use instead.
2028  *
2029  * If set to true (1), the kernel will automatically attempt to recover the
2030  * context by skipping the hanging batch and executing the next batch starting
2031  * from the default context state (discarding the incomplete logical context
2032  * state lost due to the reset).
2033  *
2034  * On creation, all new contexts are marked as recoverable.
2035  */
2036 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
2037 
2038 	/*
2039 	 * The id of the associated virtual memory address space (ppGTT) of
2040 	 * this context. Can be retrieved and passed to another context
2041 	 * (on the same fd) for both to use the same ppGTT and so share
2042 	 * address layouts, and avoid reloading the page tables on context
2043 	 * switches between themselves.
2044 	 *
2045 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
2046 	 */
2047 #define I915_CONTEXT_PARAM_VM		0x9
2048 
2049 /*
2050  * I915_CONTEXT_PARAM_ENGINES:
2051  *
2052  * Bind this context to operate on this subset of available engines. Henceforth,
2053  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
2054  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
2055  * and upwards. Slots 0...N are filled in using the specified (class, instance).
2056  * Use
2057  *	engine_class: I915_ENGINE_CLASS_INVALID,
2058  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
2059  * to specify a gap in the array that can be filled in later, e.g. by a
2060  * virtual engine used for load balancing.
2061  *
2062  * Setting the number of engines bound to the context to 0, by passing a zero
2063  * sized argument, will revert back to default settings.
2064  *
2065  * See struct i915_context_param_engines.
2066  *
2067  * Extensions:
2068  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
2069  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
2070  *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
2071  */
2072 #define I915_CONTEXT_PARAM_ENGINES	0xa
2073 
2074 /*
2075  * I915_CONTEXT_PARAM_PERSISTENCE:
2076  *
2077  * Allow the context and active rendering to survive the process until
2078  * completion. Persistence allows fire-and-forget clients to queue up a
2079  * bunch of work, hand the output over to a display server and then quit.
2080  * If the context is marked as not persistent, upon closing (either via
2081  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
2082  * or process termination), the context and any outstanding requests will be
2083  * cancelled (and exported fences for cancelled requests marked as -EIO).
2084  *
2085  * By default, new contexts allow persistence.
2086  */
2087 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
2088 
2089 /* This API has been removed.  On the off chance someone somewhere has
2090  * attempted to use it, never re-use this context param number.
2091  */
2092 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
2093 
2094 /*
2095  * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
2096  *
2097  * Mark that the context makes use of protected content, which will result
2098  * in the context being invalidated when the protected content session is.
2099  * Given that the protected content session is killed on suspend, the device
2100  * is kept awake for the lifetime of a protected context, so the user should
2101  * make sure to dispose of them once done.
2102  * This flag can only be set at context creation time and, when set to true,
2103  * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
2104  * to false. This flag can't be set to true in conjunction with setting the
2105  * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
2106  *
2107  * .. code-block:: C
2108  *
2109  *	struct drm_i915_gem_context_create_ext_setparam p_protected = {
2110  *		.base = {
2111  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2112  *		},
2113  *		.param = {
2114  *			.param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
2115  *			.value = 1,
2116  *		}
2117  *	};
2118  *	struct drm_i915_gem_context_create_ext_setparam p_norecover = {
2119  *		.base = {
2120  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2121  *			.next_extension = to_user_pointer(&p_protected),
2122  *		},
2123  *		.param = {
2124  *			.param = I915_CONTEXT_PARAM_RECOVERABLE,
2125  *			.value = 0,
2126  *		}
2127  *	};
2128  *	struct drm_i915_gem_context_create_ext create = {
2129  *		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2130  *		.extensions = to_user_pointer(&p_norecover);
2131  *	};
2132  *
2133  *	ctx_id = gem_context_create_ext(drm_fd, &create);
2134  *
2135  * In addition to the normal failure cases, setting this flag during context
2136  * creation can result in the following errors:
2137  *
2138  * -ENODEV: feature not available
2139  * -EPERM: trying to mark a recoverable or not bannable context as protected
2140  * -ENXIO: A dependency such as a component driver or firmware is not yet
2141  *         loaded so user space may need to attempt again. Depending on the
2142  *         device, this error may be reported if protected context creation is
2143  *         attempted very early after kernel start because the internal timeout
2144  *         waiting for such dependencies is not guaranteed to be larger than
2145  *         required (numbers differ depending on system and kernel config):
2146  *            - ADL/RPL: dependencies may take up to 3 seconds from kernel start
2147  *                       while context creation internal timeout is 250 milisecs
2148  *            - MTL: dependencies may take up to 8 seconds from kernel start
2149  *                   while context creation internal timeout is 250 milisecs
2150  *         NOTE: such dependencies happen once, so a subsequent call to create a
2151  *         protected context after a prior successful call will not experience
2152  *         such timeouts and will not return -ENXIO (unless the driver is reloaded,
2153  *         or, depending on the device, resumes from a suspended state).
2154  * -EIO: The firmware did not succeed in creating the protected context.
2155  */
2156 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
2157 
2158 /*
2159  * I915_CONTEXT_PARAM_LOW_LATENCY:
2160  *
2161  * Mark this context as a low latency workload which requires aggressive GT
2162  * frequency scaling. Use I915_PARAM_HAS_CONTEXT_FREQ_HINT to check if the kernel
2163  * supports this per context flag.
2164  */
2165 #define I915_CONTEXT_PARAM_LOW_LATENCY		0xe
2166 /* Must be kept compact -- no holes and well documented */
2167 
2168 	/** @value: Context parameter value to be set or queried */
2169 	__u64 value;
2170 };
2171 
2172 /*
2173  * Context SSEU programming
2174  *
2175  * It may be necessary for either functional or performance reason to configure
2176  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
2177  * Sub-slice/EU).
2178  *
2179  * This is done by configuring SSEU configuration using the below
2180  * @struct drm_i915_gem_context_param_sseu for every supported engine which
2181  * userspace intends to use.
2182  *
2183  * Not all GPUs or engines support this functionality in which case an error
2184  * code -ENODEV will be returned.
2185  *
2186  * Also, flexibility of possible SSEU configuration permutations varies between
2187  * GPU generations and software imposed limitations. Requesting such a
2188  * combination will return an error code of -EINVAL.
2189  *
2190  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
2191  * favour of a single global setting.
2192  */
2193 struct drm_i915_gem_context_param_sseu {
2194 	/*
2195 	 * Engine class & instance to be configured or queried.
2196 	 */
2197 	struct i915_engine_class_instance engine;
2198 
2199 	/*
2200 	 * Unknown flags must be cleared to zero.
2201 	 */
2202 	__u32 flags;
2203 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
2204 
2205 	/*
2206 	 * Mask of slices to enable for the context. Valid values are a subset
2207 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
2208 	 */
2209 	__u64 slice_mask;
2210 
2211 	/*
2212 	 * Mask of subslices to enable for the context. Valid values are a
2213 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
2214 	 */
2215 	__u64 subslice_mask;
2216 
2217 	/*
2218 	 * Minimum/Maximum number of EUs to enable per subslice for the
2219 	 * context. min_eus_per_subslice must be inferior or equal to
2220 	 * max_eus_per_subslice.
2221 	 */
2222 	__u16 min_eus_per_subslice;
2223 	__u16 max_eus_per_subslice;
2224 
2225 	/*
2226 	 * Unused for now. Must be cleared to zero.
2227 	 */
2228 	__u32 rsvd;
2229 };
2230 
2231 /**
2232  * DOC: Virtual Engine uAPI
2233  *
2234  * Virtual engine is a concept where userspace is able to configure a set of
2235  * physical engines, submit a batch buffer, and let the driver execute it on any
2236  * engine from the set as it sees fit.
2237  *
2238  * This is primarily useful on parts which have multiple instances of a same
2239  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
2240  *
2241  * For instance userspace can enumerate all engines of a certain class using the
2242  * previously described `Engine Discovery uAPI`_. After that userspace can
2243  * create a GEM context with a placeholder slot for the virtual engine (using
2244  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2245  * and instance respectively) and finally using the
2246  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2247  * the same reserved slot.
2248  *
2249  * Example of creating a virtual engine and submitting a batch buffer to it:
2250  *
2251  * .. code-block:: C
2252  *
2253  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2254  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2255  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
2256  * 		.num_siblings = 2,
2257  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2258  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
2259  * 	};
2260  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2261  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
2262  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
2263  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2264  * 	};
2265  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2266  * 		.base = {
2267  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2268  * 		},
2269  * 		.param = {
2270  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2271  * 			.value = to_user_pointer(&engines),
2272  * 			.size = sizeof(engines),
2273  * 		},
2274  * 	};
2275  * 	struct drm_i915_gem_context_create_ext create = {
2276  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2277  * 		.extensions = to_user_pointer(&p_engines);
2278  * 	};
2279  *
2280  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2281  *
2282  * 	// Now we have created a GEM context with its engine map containing a
2283  * 	// single virtual engine. Submissions to this slot can go either to
2284  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
2285  * 	// the driver. The load balancing is dynamic from one batch buffer to
2286  * 	// another and transparent to userspace.
2287  *
2288  * 	...
2289  * 	execbuf.rsvd1 = ctx_id;
2290  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2291  * 	gem_execbuf(drm_fd, &execbuf);
2292  */
2293 
2294 /*
2295  * i915_context_engines_load_balance:
2296  *
2297  * Enable load balancing across this set of engines.
2298  *
2299  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2300  * used will proxy the execbuffer request onto one of the set of engines
2301  * in such a way as to distribute the load evenly across the set.
2302  *
2303  * The set of engines must be compatible (e.g. the same HW class) as they
2304  * will share the same logical GPU context and ring.
2305  *
2306  * To intermix rendering with the virtual engine and direct rendering onto
2307  * the backing engines (bypassing the load balancing proxy), the context must
2308  * be defined to use a single timeline for all engines.
2309  */
2310 struct i915_context_engines_load_balance {
2311 	struct i915_user_extension base;
2312 
2313 	__u16 engine_index;
2314 	__u16 num_siblings;
2315 	__u32 flags; /* all undefined flags must be zero */
2316 
2317 	__u64 mbz64; /* reserved for future use; must be zero */
2318 
2319 	struct i915_engine_class_instance engines[];
2320 } __attribute__((packed));
2321 
2322 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2323 	struct i915_user_extension base; \
2324 	__u16 engine_index; \
2325 	__u16 num_siblings; \
2326 	__u32 flags; \
2327 	__u64 mbz64; \
2328 	struct i915_engine_class_instance engines[N__]; \
2329 } __attribute__((packed)) name__
2330 
2331 /*
2332  * i915_context_engines_bond:
2333  *
2334  * Constructed bonded pairs for execution within a virtual engine.
2335  *
2336  * All engines are equal, but some are more equal than others. Given
2337  * the distribution of resources in the HW, it may be preferable to run
2338  * a request on a given subset of engines in parallel to a request on a
2339  * specific engine. We enable this selection of engines within a virtual
2340  * engine by specifying bonding pairs, for any given master engine we will
2341  * only execute on one of the corresponding siblings within the virtual engine.
2342  *
2343  * To execute a request in parallel on the master engine and a sibling requires
2344  * coordination with a I915_EXEC_FENCE_SUBMIT.
2345  */
2346 struct i915_context_engines_bond {
2347 	struct i915_user_extension base;
2348 
2349 	struct i915_engine_class_instance master;
2350 
2351 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2352 	__u16 num_bonds;
2353 
2354 	__u64 flags; /* all undefined flags must be zero */
2355 	__u64 mbz64[4]; /* reserved for future use; must be zero */
2356 
2357 	struct i915_engine_class_instance engines[];
2358 } __attribute__((packed));
2359 
2360 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2361 	struct i915_user_extension base; \
2362 	struct i915_engine_class_instance master; \
2363 	__u16 virtual_index; \
2364 	__u16 num_bonds; \
2365 	__u64 flags; \
2366 	__u64 mbz64[4]; \
2367 	struct i915_engine_class_instance engines[N__]; \
2368 } __attribute__((packed)) name__
2369 
2370 /**
2371  * struct i915_context_engines_parallel_submit - Configure engine for
2372  * parallel submission.
2373  *
2374  * Setup a slot in the context engine map to allow multiple BBs to be submitted
2375  * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2376  * in parallel. Multiple hardware contexts are created internally in the i915 to
2377  * run these BBs. Once a slot is configured for N BBs only N BBs can be
2378  * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2379  * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2380  * many BBs there are based on the slot's configuration. The N BBs are the last
2381  * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2382  *
2383  * The default placement behavior is to create implicit bonds between each
2384  * context if each context maps to more than 1 physical engine (e.g. context is
2385  * a virtual engine). Also we only allow contexts of same engine class and these
2386  * contexts must be in logically contiguous order. Examples of the placement
2387  * behavior are described below. Lastly, the default is to not allow BBs to be
2388  * preempted mid-batch. Rather insert coordinated preemption points on all
2389  * hardware contexts between each set of BBs. Flags could be added in the future
2390  * to change both of these default behaviors.
2391  *
2392  * Returns -EINVAL if hardware context placement configuration is invalid or if
2393  * the placement configuration isn't supported on the platform / submission
2394  * interface.
2395  * Returns -ENODEV if extension isn't supported on the platform / submission
2396  * interface.
2397  *
2398  * .. code-block:: none
2399  *
2400  *	Examples syntax:
2401  *	CS[X] = generic engine of same class, logical instance X
2402  *	INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2403  *
2404  *	Example 1 pseudo code:
2405  *	set_engines(INVALID)
2406  *	set_parallel(engine_index=0, width=2, num_siblings=1,
2407  *		     engines=CS[0],CS[1])
2408  *
2409  *	Results in the following valid placement:
2410  *	CS[0], CS[1]
2411  *
2412  *	Example 2 pseudo code:
2413  *	set_engines(INVALID)
2414  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2415  *		     engines=CS[0],CS[2],CS[1],CS[3])
2416  *
2417  *	Results in the following valid placements:
2418  *	CS[0], CS[1]
2419  *	CS[2], CS[3]
2420  *
2421  *	This can be thought of as two virtual engines, each containing two
2422  *	engines thereby making a 2D array. However, there are bonds tying the
2423  *	entries together and placing restrictions on how they can be scheduled.
2424  *	Specifically, the scheduler can choose only vertical columns from the 2D
2425  *	array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2426  *	scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2427  *	versa. Same for CS[2] requires also using CS[3].
2428  *	VE[0] = CS[0], CS[2]
2429  *	VE[1] = CS[1], CS[3]
2430  *
2431  *	Example 3 pseudo code:
2432  *	set_engines(INVALID)
2433  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2434  *		     engines=CS[0],CS[1],CS[1],CS[3])
2435  *
2436  *	Results in the following valid and invalid placements:
2437  *	CS[0], CS[1]
2438  *	CS[1], CS[3] - Not logically contiguous, return -EINVAL
2439  */
2440 struct i915_context_engines_parallel_submit {
2441 	/**
2442 	 * @base: base user extension.
2443 	 */
2444 	struct i915_user_extension base;
2445 
2446 	/**
2447 	 * @engine_index: slot for parallel engine
2448 	 */
2449 	__u16 engine_index;
2450 
2451 	/**
2452 	 * @width: number of contexts per parallel engine or in other words the
2453 	 * number of batches in each submission
2454 	 */
2455 	__u16 width;
2456 
2457 	/**
2458 	 * @num_siblings: number of siblings per context or in other words the
2459 	 * number of possible placements for each submission
2460 	 */
2461 	__u16 num_siblings;
2462 
2463 	/**
2464 	 * @mbz16: reserved for future use; must be zero
2465 	 */
2466 	__u16 mbz16;
2467 
2468 	/**
2469 	 * @flags: all undefined flags must be zero, currently not defined flags
2470 	 */
2471 	__u64 flags;
2472 
2473 	/**
2474 	 * @mbz64: reserved for future use; must be zero
2475 	 */
2476 	__u64 mbz64[3];
2477 
2478 	/**
2479 	 * @engines: 2-d array of engine instances to configure parallel engine
2480 	 *
2481 	 * length = width (i) * num_siblings (j)
2482 	 * index = j + i * num_siblings
2483 	 */
2484 	struct i915_engine_class_instance engines[];
2485 
2486 } __packed;
2487 
2488 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2489 	struct i915_user_extension base; \
2490 	__u16 engine_index; \
2491 	__u16 width; \
2492 	__u16 num_siblings; \
2493 	__u16 mbz16; \
2494 	__u64 flags; \
2495 	__u64 mbz64[3]; \
2496 	struct i915_engine_class_instance engines[N__]; \
2497 } __attribute__((packed)) name__
2498 
2499 /**
2500  * DOC: Context Engine Map uAPI
2501  *
2502  * Context engine map is a new way of addressing engines when submitting batch-
2503  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2504  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2505  *
2506  * To use it created GEM contexts need to be configured with a list of engines
2507  * the user is intending to submit to. This is accomplished using the
2508  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2509  * i915_context_param_engines`.
2510  *
2511  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2512  * configured map.
2513  *
2514  * Example of creating such context and submitting against it:
2515  *
2516  * .. code-block:: C
2517  *
2518  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2519  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2520  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2521  * 	};
2522  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2523  * 		.base = {
2524  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2525  * 		},
2526  * 		.param = {
2527  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2528  * 			.value = to_user_pointer(&engines),
2529  * 			.size = sizeof(engines),
2530  * 		},
2531  * 	};
2532  * 	struct drm_i915_gem_context_create_ext create = {
2533  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2534  * 		.extensions = to_user_pointer(&p_engines);
2535  * 	};
2536  *
2537  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2538  *
2539  * 	// We have now created a GEM context with two engines in the map:
2540  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2541  * 	// will not be accessible from this context.
2542  *
2543  * 	...
2544  * 	execbuf.rsvd1 = ctx_id;
2545  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2546  * 	gem_execbuf(drm_fd, &execbuf);
2547  *
2548  * 	...
2549  * 	execbuf.rsvd1 = ctx_id;
2550  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2551  * 	gem_execbuf(drm_fd, &execbuf);
2552  */
2553 
2554 struct i915_context_param_engines {
2555 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2556 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2557 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2558 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2559 	struct i915_engine_class_instance engines[];
2560 } __attribute__((packed));
2561 
2562 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2563 	__u64 extensions; \
2564 	struct i915_engine_class_instance engines[N__]; \
2565 } __attribute__((packed)) name__
2566 
2567 /**
2568  * struct drm_i915_gem_context_create_ext_setparam - Context parameter
2569  * to set or query during context creation.
2570  */
2571 struct drm_i915_gem_context_create_ext_setparam {
2572 	/** @base: Extension link. See struct i915_user_extension. */
2573 	struct i915_user_extension base;
2574 
2575 	/**
2576 	 * @param: Context parameter to set or query.
2577 	 * See struct drm_i915_gem_context_param.
2578 	 */
2579 	struct drm_i915_gem_context_param param;
2580 };
2581 
2582 struct drm_i915_gem_context_destroy {
2583 	__u32 ctx_id;
2584 	__u32 pad;
2585 };
2586 
2587 /**
2588  * struct drm_i915_gem_vm_control - Structure to create or destroy VM.
2589  *
2590  * DRM_I915_GEM_VM_CREATE -
2591  *
2592  * Create a new virtual memory address space (ppGTT) for use within a context
2593  * on the same file. Extensions can be provided to configure exactly how the
2594  * address space is setup upon creation.
2595  *
2596  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2597  * returned in the outparam @id.
2598  *
2599  * An extension chain maybe provided, starting with @extensions, and terminated
2600  * by the @next_extension being 0. Currently, no extensions are defined.
2601  *
2602  * DRM_I915_GEM_VM_DESTROY -
2603  *
2604  * Destroys a previously created VM id, specified in @vm_id.
2605  *
2606  * No extensions or flags are allowed currently, and so must be zero.
2607  */
2608 struct drm_i915_gem_vm_control {
2609 	/** @extensions: Zero-terminated chain of extensions. */
2610 	__u64 extensions;
2611 
2612 	/** @flags: reserved for future usage, currently MBZ */
2613 	__u32 flags;
2614 
2615 	/** @vm_id: Id of the VM created or to be destroyed */
2616 	__u32 vm_id;
2617 };
2618 
2619 struct drm_i915_reg_read {
2620 	/*
2621 	 * Register offset.
2622 	 * For 64bit wide registers where the upper 32bits don't immediately
2623 	 * follow the lower 32bits, the offset of the lower 32bits must
2624 	 * be specified
2625 	 */
2626 	__u64 offset;
2627 #define I915_REG_READ_8B_WA (1ul << 0)
2628 
2629 	__u64 val; /* Return value */
2630 };
2631 
2632 /* Known registers:
2633  *
2634  * Render engine timestamp - 0x2358 + 64bit - gen7+
2635  * - Note this register returns an invalid value if using the default
2636  *   single instruction 8byte read, in order to workaround that pass
2637  *   flag I915_REG_READ_8B_WA in offset field.
2638  *
2639  */
2640 
2641 /*
2642  * struct drm_i915_reset_stats - Return global reset and other context stats
2643  *
2644  * Driver keeps few stats for each contexts and also global reset count.
2645  * This struct can be used to query those stats.
2646  */
2647 struct drm_i915_reset_stats {
2648 	/** @ctx_id: ID of the requested context */
2649 	__u32 ctx_id;
2650 
2651 	/** @flags: MBZ */
2652 	__u32 flags;
2653 
2654 	/** @reset_count: All resets since boot/module reload, for all contexts */
2655 	__u32 reset_count;
2656 
2657 	/** @batch_active: Number of batches lost when active in GPU, for this context */
2658 	__u32 batch_active;
2659 
2660 	/** @batch_pending: Number of batches lost pending for execution, for this context */
2661 	__u32 batch_pending;
2662 
2663 	/** @pad: MBZ */
2664 	__u32 pad;
2665 };
2666 
2667 /**
2668  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2669  *
2670  * Userptr objects have several restrictions on what ioctls can be used with the
2671  * object handle.
2672  */
2673 struct drm_i915_gem_userptr {
2674 	/**
2675 	 * @user_ptr: The pointer to the allocated memory.
2676 	 *
2677 	 * Needs to be aligned to PAGE_SIZE.
2678 	 */
2679 	__u64 user_ptr;
2680 
2681 	/**
2682 	 * @user_size:
2683 	 *
2684 	 * The size in bytes for the allocated memory. This will also become the
2685 	 * object size.
2686 	 *
2687 	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2688 	 * or larger.
2689 	 */
2690 	__u64 user_size;
2691 
2692 	/**
2693 	 * @flags:
2694 	 *
2695 	 * Supported flags:
2696 	 *
2697 	 * I915_USERPTR_READ_ONLY:
2698 	 *
2699 	 * Mark the object as readonly, this also means GPU access can only be
2700 	 * readonly. This is only supported on HW which supports readonly access
2701 	 * through the GTT. If the HW can't support readonly access, an error is
2702 	 * returned.
2703 	 *
2704 	 * I915_USERPTR_PROBE:
2705 	 *
2706 	 * Probe the provided @user_ptr range and validate that the @user_ptr is
2707 	 * indeed pointing to normal memory and that the range is also valid.
2708 	 * For example if some garbage address is given to the kernel, then this
2709 	 * should complain.
2710 	 *
2711 	 * Returns -EFAULT if the probe failed.
2712 	 *
2713 	 * Note that this doesn't populate the backing pages, and also doesn't
2714 	 * guarantee that the object will remain valid when the object is
2715 	 * eventually used.
2716 	 *
2717 	 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2718 	 * returns a non-zero value.
2719 	 *
2720 	 * I915_USERPTR_UNSYNCHRONIZED:
2721 	 *
2722 	 * NOT USED. Setting this flag will result in an error.
2723 	 */
2724 	__u32 flags;
2725 #define I915_USERPTR_READ_ONLY 0x1
2726 #define I915_USERPTR_PROBE 0x2
2727 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2728 	/**
2729 	 * @handle: Returned handle for the object.
2730 	 *
2731 	 * Object handles are nonzero.
2732 	 */
2733 	__u32 handle;
2734 };
2735 
2736 enum drm_i915_oa_format {
2737 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2738 	I915_OA_FORMAT_A29,	    /* HSW only */
2739 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2740 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2741 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2742 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2743 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2744 
2745 	/* Gen8+ */
2746 	I915_OA_FORMAT_A12,
2747 	I915_OA_FORMAT_A12_B8_C8,
2748 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2749 
2750 	/* DG2 */
2751 	I915_OAR_FORMAT_A32u40_A4u32_B8_C8,
2752 	I915_OA_FORMAT_A24u40_A14u32_B8_C8,
2753 
2754 	/* MTL OAM */
2755 	I915_OAM_FORMAT_MPEC8u64_B8_C8,
2756 	I915_OAM_FORMAT_MPEC8u32_B8_C8,
2757 
2758 	I915_OA_FORMAT_MAX	    /* non-ABI */
2759 };
2760 
2761 enum drm_i915_perf_property_id {
2762 	/**
2763 	 * Open the stream for a specific context handle (as used with
2764 	 * execbuffer2). A stream opened for a specific context this way
2765 	 * won't typically require root privileges.
2766 	 *
2767 	 * This property is available in perf revision 1.
2768 	 */
2769 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2770 
2771 	/**
2772 	 * A value of 1 requests the inclusion of raw OA unit reports as
2773 	 * part of stream samples.
2774 	 *
2775 	 * This property is available in perf revision 1.
2776 	 */
2777 	DRM_I915_PERF_PROP_SAMPLE_OA,
2778 
2779 	/**
2780 	 * The value specifies which set of OA unit metrics should be
2781 	 * configured, defining the contents of any OA unit reports.
2782 	 *
2783 	 * This property is available in perf revision 1.
2784 	 */
2785 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2786 
2787 	/**
2788 	 * The value specifies the size and layout of OA unit reports.
2789 	 *
2790 	 * This property is available in perf revision 1.
2791 	 */
2792 	DRM_I915_PERF_PROP_OA_FORMAT,
2793 
2794 	/**
2795 	 * Specifying this property implicitly requests periodic OA unit
2796 	 * sampling and (at least on Haswell) the sampling frequency is derived
2797 	 * from this exponent as follows:
2798 	 *
2799 	 *   80ns * 2^(period_exponent + 1)
2800 	 *
2801 	 * This property is available in perf revision 1.
2802 	 */
2803 	DRM_I915_PERF_PROP_OA_EXPONENT,
2804 
2805 	/**
2806 	 * Specifying this property is only valid when specify a context to
2807 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2808 	 * will hold preemption of the particular context we want to gather
2809 	 * performance data about. The execbuf2 submissions must include a
2810 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2811 	 *
2812 	 * This property is available in perf revision 3.
2813 	 */
2814 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2815 
2816 	/**
2817 	 * Specifying this pins all contexts to the specified SSEU power
2818 	 * configuration for the duration of the recording.
2819 	 *
2820 	 * This parameter's value is a pointer to a struct
2821 	 * drm_i915_gem_context_param_sseu.
2822 	 *
2823 	 * This property is available in perf revision 4.
2824 	 */
2825 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2826 
2827 	/**
2828 	 * This optional parameter specifies the timer interval in nanoseconds
2829 	 * at which the i915 driver will check the OA buffer for available data.
2830 	 * Minimum allowed value is 100 microseconds. A default value is used by
2831 	 * the driver if this parameter is not specified. Note that larger timer
2832 	 * values will reduce cpu consumption during OA perf captures. However,
2833 	 * excessively large values would potentially result in OA buffer
2834 	 * overwrites as captures reach end of the OA buffer.
2835 	 *
2836 	 * This property is available in perf revision 5.
2837 	 */
2838 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2839 
2840 	/**
2841 	 * Multiple engines may be mapped to the same OA unit. The OA unit is
2842 	 * identified by class:instance of any engine mapped to it.
2843 	 *
2844 	 * This parameter specifies the engine class and must be passed along
2845 	 * with DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE.
2846 	 *
2847 	 * This property is available in perf revision 6.
2848 	 */
2849 	DRM_I915_PERF_PROP_OA_ENGINE_CLASS,
2850 
2851 	/**
2852 	 * This parameter specifies the engine instance and must be passed along
2853 	 * with DRM_I915_PERF_PROP_OA_ENGINE_CLASS.
2854 	 *
2855 	 * This property is available in perf revision 6.
2856 	 */
2857 	DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE,
2858 
2859 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2860 };
2861 
2862 struct drm_i915_perf_open_param {
2863 	__u32 flags;
2864 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2865 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2866 #define I915_PERF_FLAG_DISABLED		(1<<2)
2867 
2868 	/** The number of u64 (id, value) pairs */
2869 	__u32 num_properties;
2870 
2871 	/**
2872 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2873 	 * to open.
2874 	 */
2875 	__u64 properties_ptr;
2876 };
2877 
2878 /*
2879  * Enable data capture for a stream that was either opened in a disabled state
2880  * via I915_PERF_FLAG_DISABLED or was later disabled via
2881  * I915_PERF_IOCTL_DISABLE.
2882  *
2883  * It is intended to be cheaper to disable and enable a stream than it may be
2884  * to close and re-open a stream with the same configuration.
2885  *
2886  * It's undefined whether any pending data for the stream will be lost.
2887  *
2888  * This ioctl is available in perf revision 1.
2889  */
2890 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2891 
2892 /*
2893  * Disable data capture for a stream.
2894  *
2895  * It is an error to try and read a stream that is disabled.
2896  *
2897  * This ioctl is available in perf revision 1.
2898  */
2899 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2900 
2901 /*
2902  * Change metrics_set captured by a stream.
2903  *
2904  * If the stream is bound to a specific context, the configuration change
2905  * will performed inline with that context such that it takes effect before
2906  * the next execbuf submission.
2907  *
2908  * Returns the previously bound metrics set id, or a negative error code.
2909  *
2910  * This ioctl is available in perf revision 2.
2911  */
2912 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2913 
2914 /*
2915  * Common to all i915 perf records
2916  */
2917 struct drm_i915_perf_record_header {
2918 	__u32 type;
2919 	__u16 pad;
2920 	__u16 size;
2921 };
2922 
2923 enum drm_i915_perf_record_type {
2924 
2925 	/**
2926 	 * Samples are the work horse record type whose contents are extensible
2927 	 * and defined when opening an i915 perf stream based on the given
2928 	 * properties.
2929 	 *
2930 	 * Boolean properties following the naming convention
2931 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2932 	 * every sample.
2933 	 *
2934 	 * The order of these sample properties given by userspace has no
2935 	 * affect on the ordering of data within a sample. The order is
2936 	 * documented here.
2937 	 *
2938 	 * struct {
2939 	 *     struct drm_i915_perf_record_header header;
2940 	 *
2941 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2942 	 * };
2943 	 */
2944 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2945 
2946 	/*
2947 	 * Indicates that one or more OA reports were not written by the
2948 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2949 	 * command collides with periodic sampling - which would be more likely
2950 	 * at higher sampling frequencies.
2951 	 */
2952 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2953 
2954 	/**
2955 	 * An error occurred that resulted in all pending OA reports being lost.
2956 	 */
2957 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2958 
2959 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2960 };
2961 
2962 /**
2963  * struct drm_i915_perf_oa_config
2964  *
2965  * Structure to upload perf dynamic configuration into the kernel.
2966  */
2967 struct drm_i915_perf_oa_config {
2968 	/**
2969 	 * @uuid:
2970 	 *
2971 	 * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2972 	 */
2973 	char uuid[36];
2974 
2975 	/**
2976 	 * @n_mux_regs:
2977 	 *
2978 	 * Number of mux regs in &mux_regs_ptr.
2979 	 */
2980 	__u32 n_mux_regs;
2981 
2982 	/**
2983 	 * @n_boolean_regs:
2984 	 *
2985 	 * Number of boolean regs in &boolean_regs_ptr.
2986 	 */
2987 	__u32 n_boolean_regs;
2988 
2989 	/**
2990 	 * @n_flex_regs:
2991 	 *
2992 	 * Number of flex regs in &flex_regs_ptr.
2993 	 */
2994 	__u32 n_flex_regs;
2995 
2996 	/**
2997 	 * @mux_regs_ptr:
2998 	 *
2999 	 * Pointer to tuples of u32 values (register address, value) for mux
3000 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
3001 	 * &n_mux_regs).
3002 	 */
3003 	__u64 mux_regs_ptr;
3004 
3005 	/**
3006 	 * @boolean_regs_ptr:
3007 	 *
3008 	 * Pointer to tuples of u32 values (register address, value) for mux
3009 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
3010 	 * &n_boolean_regs).
3011 	 */
3012 	__u64 boolean_regs_ptr;
3013 
3014 	/**
3015 	 * @flex_regs_ptr:
3016 	 *
3017 	 * Pointer to tuples of u32 values (register address, value) for mux
3018 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
3019 	 * &n_flex_regs).
3020 	 */
3021 	__u64 flex_regs_ptr;
3022 };
3023 
3024 /**
3025  * struct drm_i915_query_item - An individual query for the kernel to process.
3026  *
3027  * The behaviour is determined by the @query_id. Note that exactly what
3028  * @data_ptr is also depends on the specific @query_id.
3029  */
3030 struct drm_i915_query_item {
3031 	/**
3032 	 * @query_id:
3033 	 *
3034 	 * The id for this query.  Currently accepted query IDs are:
3035 	 *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
3036 	 *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
3037 	 *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
3038 	 *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
3039 	 *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
3040 	 *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
3041 	 *  - %DRM_I915_QUERY_GUC_SUBMISSION_VERSION (see struct drm_i915_query_guc_submission_version)
3042 	 */
3043 	__u64 query_id;
3044 #define DRM_I915_QUERY_TOPOLOGY_INFO		1
3045 #define DRM_I915_QUERY_ENGINE_INFO		2
3046 #define DRM_I915_QUERY_PERF_CONFIG		3
3047 #define DRM_I915_QUERY_MEMORY_REGIONS		4
3048 #define DRM_I915_QUERY_HWCONFIG_BLOB		5
3049 #define DRM_I915_QUERY_GEOMETRY_SUBSLICES	6
3050 #define DRM_I915_QUERY_GUC_SUBMISSION_VERSION	7
3051 /* Must be kept compact -- no holes and well documented */
3052 
3053 	/**
3054 	 * @length:
3055 	 *
3056 	 * When set to zero by userspace, this is filled with the size of the
3057 	 * data to be written at the @data_ptr pointer. The kernel sets this
3058 	 * value to a negative value to signal an error on a particular query
3059 	 * item.
3060 	 */
3061 	__s32 length;
3062 
3063 	/**
3064 	 * @flags:
3065 	 *
3066 	 * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
3067 	 *
3068 	 * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
3069 	 * following:
3070 	 *
3071 	 *	- %DRM_I915_QUERY_PERF_CONFIG_LIST
3072 	 *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
3073 	 *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
3074 	 *
3075 	 * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
3076 	 * a struct i915_engine_class_instance that references a render engine.
3077 	 */
3078 	__u32 flags;
3079 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
3080 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
3081 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
3082 
3083 	/**
3084 	 * @data_ptr:
3085 	 *
3086 	 * Data will be written at the location pointed by @data_ptr when the
3087 	 * value of @length matches the length of the data to be written by the
3088 	 * kernel.
3089 	 */
3090 	__u64 data_ptr;
3091 };
3092 
3093 /**
3094  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
3095  * kernel to fill out.
3096  *
3097  * Note that this is generally a two step process for each struct
3098  * drm_i915_query_item in the array:
3099  *
3100  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
3101  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
3102  *    kernel will then fill in the size, in bytes, which tells userspace how
3103  *    memory it needs to allocate for the blob(say for an array of properties).
3104  *
3105  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
3106  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
3107  *    the &drm_i915_query_item.length should still be the same as what the
3108  *    kernel previously set. At this point the kernel can fill in the blob.
3109  *
3110  * Note that for some query items it can make sense for userspace to just pass
3111  * in a buffer/blob equal to or larger than the required size. In this case only
3112  * a single ioctl call is needed. For some smaller query items this can work
3113  * quite well.
3114  *
3115  */
3116 struct drm_i915_query {
3117 	/** @num_items: The number of elements in the @items_ptr array */
3118 	__u32 num_items;
3119 
3120 	/**
3121 	 * @flags: Unused for now. Must be cleared to zero.
3122 	 */
3123 	__u32 flags;
3124 
3125 	/**
3126 	 * @items_ptr:
3127 	 *
3128 	 * Pointer to an array of struct drm_i915_query_item. The number of
3129 	 * array elements is @num_items.
3130 	 */
3131 	__u64 items_ptr;
3132 };
3133 
3134 /**
3135  * struct drm_i915_query_topology_info
3136  *
3137  * Describes slice/subslice/EU information queried by
3138  * %DRM_I915_QUERY_TOPOLOGY_INFO
3139  */
3140 struct drm_i915_query_topology_info {
3141 	/**
3142 	 * @flags:
3143 	 *
3144 	 * Unused for now. Must be cleared to zero.
3145 	 */
3146 	__u16 flags;
3147 
3148 	/**
3149 	 * @max_slices:
3150 	 *
3151 	 * The number of bits used to express the slice mask.
3152 	 */
3153 	__u16 max_slices;
3154 
3155 	/**
3156 	 * @max_subslices:
3157 	 *
3158 	 * The number of bits used to express the subslice mask.
3159 	 */
3160 	__u16 max_subslices;
3161 
3162 	/**
3163 	 * @max_eus_per_subslice:
3164 	 *
3165 	 * The number of bits in the EU mask that correspond to a single
3166 	 * subslice's EUs.
3167 	 */
3168 	__u16 max_eus_per_subslice;
3169 
3170 	/**
3171 	 * @subslice_offset:
3172 	 *
3173 	 * Offset in data[] at which the subslice masks are stored.
3174 	 */
3175 	__u16 subslice_offset;
3176 
3177 	/**
3178 	 * @subslice_stride:
3179 	 *
3180 	 * Stride at which each of the subslice masks for each slice are
3181 	 * stored.
3182 	 */
3183 	__u16 subslice_stride;
3184 
3185 	/**
3186 	 * @eu_offset:
3187 	 *
3188 	 * Offset in data[] at which the EU masks are stored.
3189 	 */
3190 	__u16 eu_offset;
3191 
3192 	/**
3193 	 * @eu_stride:
3194 	 *
3195 	 * Stride at which each of the EU masks for each subslice are stored.
3196 	 */
3197 	__u16 eu_stride;
3198 
3199 	/**
3200 	 * @data:
3201 	 *
3202 	 * Contains 3 pieces of information :
3203 	 *
3204 	 * - The slice mask with one bit per slice telling whether a slice is
3205 	 *   available. The availability of slice X can be queried with the
3206 	 *   following formula :
3207 	 *
3208 	 *   .. code:: c
3209 	 *
3210 	 *      (data[X / 8] >> (X % 8)) & 1
3211 	 *
3212 	 *   Starting with Xe_HP platforms, Intel hardware no longer has
3213 	 *   traditional slices so i915 will always report a single slice
3214 	 *   (hardcoded slicemask = 0x1) which contains all of the platform's
3215 	 *   subslices.  I.e., the mask here does not reflect any of the newer
3216 	 *   hardware concepts such as "gslices" or "cslices" since userspace
3217 	 *   is capable of inferring those from the subslice mask.
3218 	 *
3219 	 * - The subslice mask for each slice with one bit per subslice telling
3220 	 *   whether a subslice is available.  Starting with Gen12 we use the
3221 	 *   term "subslice" to refer to what the hardware documentation
3222 	 *   describes as a "dual-subslices."  The availability of subslice Y
3223 	 *   in slice X can be queried with the following formula :
3224 	 *
3225 	 *   .. code:: c
3226 	 *
3227 	 *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
3228 	 *
3229 	 * - The EU mask for each subslice in each slice, with one bit per EU
3230 	 *   telling whether an EU is available. The availability of EU Z in
3231 	 *   subslice Y in slice X can be queried with the following formula :
3232 	 *
3233 	 *   .. code:: c
3234 	 *
3235 	 *      (data[eu_offset +
3236 	 *            (X * max_subslices + Y) * eu_stride +
3237 	 *            Z / 8
3238 	 *       ] >> (Z % 8)) & 1
3239 	 */
3240 	__u8 data[];
3241 };
3242 
3243 /**
3244  * DOC: Engine Discovery uAPI
3245  *
3246  * Engine discovery uAPI is a way of enumerating physical engines present in a
3247  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
3248  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
3249  * `I915_PARAM_HAS_BLT`.
3250  *
3251  * The need for this interface came starting with Icelake and newer GPUs, which
3252  * started to establish a pattern of having multiple engines of a same class,
3253  * where not all instances were always completely functionally equivalent.
3254  *
3255  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
3256  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
3257  *
3258  * Example for getting the list of engines:
3259  *
3260  * .. code-block:: C
3261  *
3262  * 	struct drm_i915_query_engine_info *info;
3263  * 	struct drm_i915_query_item item = {
3264  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
3265  * 	};
3266  * 	struct drm_i915_query query = {
3267  * 		.num_items = 1,
3268  * 		.items_ptr = (uintptr_t)&item,
3269  * 	};
3270  * 	int err, i;
3271  *
3272  * 	// First query the size of the blob we need, this needs to be large
3273  * 	// enough to hold our array of engines. The kernel will fill out the
3274  * 	// item.length for us, which is the number of bytes we need.
3275  * 	//
3276  *	// Alternatively a large buffer can be allocated straightaway enabling
3277  * 	// querying in one pass, in which case item.length should contain the
3278  * 	// length of the provided buffer.
3279  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3280  * 	if (err) ...
3281  *
3282  * 	info = calloc(1, item.length);
3283  * 	// Now that we allocated the required number of bytes, we call the ioctl
3284  * 	// again, this time with the data_ptr pointing to our newly allocated
3285  * 	// blob, which the kernel can then populate with info on all engines.
3286  *	item.data_ptr = (uintptr_t)&info;
3287  *
3288  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3289  * 	if (err) ...
3290  *
3291  * 	// We can now access each engine in the array
3292  * 	for (i = 0; i < info->num_engines; i++) {
3293  * 		struct drm_i915_engine_info einfo = info->engines[i];
3294  * 		u16 class = einfo.engine.class;
3295  * 		u16 instance = einfo.engine.instance;
3296  * 		....
3297  * 	}
3298  *
3299  * 	free(info);
3300  *
3301  * Each of the enumerated engines, apart from being defined by its class and
3302  * instance (see `struct i915_engine_class_instance`), also can have flags and
3303  * capabilities defined as documented in i915_drm.h.
3304  *
3305  * For instance video engines which support HEVC encoding will have the
3306  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3307  *
3308  * Engine discovery only fully comes to its own when combined with the new way
3309  * of addressing engines when submitting batch buffers using contexts with
3310  * engine maps configured.
3311  */
3312 
3313 /**
3314  * struct drm_i915_engine_info
3315  *
3316  * Describes one engine and its capabilities as known to the driver.
3317  */
3318 struct drm_i915_engine_info {
3319 	/** @engine: Engine class and instance. */
3320 	struct i915_engine_class_instance engine;
3321 
3322 	/** @rsvd0: Reserved field. */
3323 	__u32 rsvd0;
3324 
3325 	/** @flags: Engine flags. */
3326 	__u64 flags;
3327 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE		(1 << 0)
3328 
3329 	/** @capabilities: Capabilities of this engine. */
3330 	__u64 capabilities;
3331 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
3332 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
3333 
3334 	/** @logical_instance: Logical instance of engine */
3335 	__u16 logical_instance;
3336 
3337 	/** @rsvd1: Reserved fields. */
3338 	__u16 rsvd1[3];
3339 	/** @rsvd2: Reserved fields. */
3340 	__u64 rsvd2[3];
3341 };
3342 
3343 /**
3344  * struct drm_i915_query_engine_info
3345  *
3346  * Engine info query enumerates all engines known to the driver by filling in
3347  * an array of struct drm_i915_engine_info structures.
3348  */
3349 struct drm_i915_query_engine_info {
3350 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
3351 	__u32 num_engines;
3352 
3353 	/** @rsvd: MBZ */
3354 	__u32 rsvd[3];
3355 
3356 	/** @engines: Marker for drm_i915_engine_info structures. */
3357 	struct drm_i915_engine_info engines[];
3358 };
3359 
3360 /**
3361  * struct drm_i915_query_perf_config
3362  *
3363  * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3364  * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
3365  */
3366 struct drm_i915_query_perf_config {
3367 	union {
3368 		/**
3369 		 * @n_configs:
3370 		 *
3371 		 * When &drm_i915_query_item.flags ==
3372 		 * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3373 		 * the number of configurations available.
3374 		 */
3375 		__u64 n_configs;
3376 
3377 		/**
3378 		 * @config:
3379 		 *
3380 		 * When &drm_i915_query_item.flags ==
3381 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3382 		 * value in this field as configuration identifier to decide
3383 		 * what data to write into config_ptr.
3384 		 */
3385 		__u64 config;
3386 
3387 		/**
3388 		 * @uuid:
3389 		 *
3390 		 * When &drm_i915_query_item.flags ==
3391 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3392 		 * value in this field as configuration identifier to decide
3393 		 * what data to write into config_ptr.
3394 		 *
3395 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
3396 		 */
3397 		char uuid[36];
3398 	};
3399 
3400 	/**
3401 	 * @flags:
3402 	 *
3403 	 * Unused for now. Must be cleared to zero.
3404 	 */
3405 	__u32 flags;
3406 
3407 	/**
3408 	 * @data:
3409 	 *
3410 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3411 	 * i915 will write an array of __u64 of configuration identifiers.
3412 	 *
3413 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3414 	 * i915 will write a struct drm_i915_perf_oa_config. If the following
3415 	 * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3416 	 * write into the associated pointers the values of submitted when the
3417 	 * configuration was created :
3418 	 *
3419 	 *  - &drm_i915_perf_oa_config.n_mux_regs
3420 	 *  - &drm_i915_perf_oa_config.n_boolean_regs
3421 	 *  - &drm_i915_perf_oa_config.n_flex_regs
3422 	 */
3423 	__u8 data[];
3424 };
3425 
3426 /**
3427  * enum drm_i915_gem_memory_class - Supported memory classes
3428  */
3429 enum drm_i915_gem_memory_class {
3430 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
3431 	I915_MEMORY_CLASS_SYSTEM = 0,
3432 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3433 	I915_MEMORY_CLASS_DEVICE,
3434 };
3435 
3436 /**
3437  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3438  */
3439 struct drm_i915_gem_memory_class_instance {
3440 	/** @memory_class: See enum drm_i915_gem_memory_class */
3441 	__u16 memory_class;
3442 
3443 	/** @memory_instance: Which instance */
3444 	__u16 memory_instance;
3445 };
3446 
3447 /**
3448  * struct drm_i915_memory_region_info - Describes one region as known to the
3449  * driver.
3450  *
3451  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3452  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3453  * at &drm_i915_query_item.query_id.
3454  */
3455 struct drm_i915_memory_region_info {
3456 	/** @region: The class:instance pair encoding */
3457 	struct drm_i915_gem_memory_class_instance region;
3458 
3459 	/** @rsvd0: MBZ */
3460 	__u32 rsvd0;
3461 
3462 	/**
3463 	 * @probed_size: Memory probed by the driver
3464 	 *
3465 	 * Note that it should not be possible to ever encounter a zero value
3466 	 * here, also note that no current region type will ever return -1 here.
3467 	 * Although for future region types, this might be a possibility. The
3468 	 * same applies to the other size fields.
3469 	 */
3470 	__u64 probed_size;
3471 
3472 	/**
3473 	 * @unallocated_size: Estimate of memory remaining
3474 	 *
3475 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting.
3476 	 * Without this (or if this is an older kernel) the value here will
3477 	 * always equal the @probed_size. Note this is only currently tracked
3478 	 * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here
3479 	 * will always equal the @probed_size).
3480 	 */
3481 	__u64 unallocated_size;
3482 
3483 	union {
3484 		/** @rsvd1: MBZ */
3485 		__u64 rsvd1[8];
3486 		struct {
3487 			/**
3488 			 * @probed_cpu_visible_size: Memory probed by the driver
3489 			 * that is CPU accessible.
3490 			 *
3491 			 * This will be always be <= @probed_size, and the
3492 			 * remainder (if there is any) will not be CPU
3493 			 * accessible.
3494 			 *
3495 			 * On systems without small BAR, the @probed_size will
3496 			 * always equal the @probed_cpu_visible_size, since all
3497 			 * of it will be CPU accessible.
3498 			 *
3499 			 * Note this is only tracked for
3500 			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3501 			 * value here will always equal the @probed_size).
3502 			 *
3503 			 * Note that if the value returned here is zero, then
3504 			 * this must be an old kernel which lacks the relevant
3505 			 * small-bar uAPI support (including
3506 			 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on
3507 			 * such systems we should never actually end up with a
3508 			 * small BAR configuration, assuming we are able to load
3509 			 * the kernel module. Hence it should be safe to treat
3510 			 * this the same as when @probed_cpu_visible_size ==
3511 			 * @probed_size.
3512 			 */
3513 			__u64 probed_cpu_visible_size;
3514 
3515 			/**
3516 			 * @unallocated_cpu_visible_size: Estimate of CPU
3517 			 * visible memory remaining.
3518 			 *
3519 			 * Note this is only tracked for
3520 			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3521 			 * value here will always equal the
3522 			 * @probed_cpu_visible_size).
3523 			 *
3524 			 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
3525 			 * accounting.  Without this the value here will always
3526 			 * equal the @probed_cpu_visible_size. Note this is only
3527 			 * currently tracked for I915_MEMORY_CLASS_DEVICE
3528 			 * regions (for other types the value here will also
3529 			 * always equal the @probed_cpu_visible_size).
3530 			 *
3531 			 * If this is an older kernel the value here will be
3532 			 * zero, see also @probed_cpu_visible_size.
3533 			 */
3534 			__u64 unallocated_cpu_visible_size;
3535 		};
3536 	};
3537 };
3538 
3539 /**
3540  * struct drm_i915_query_memory_regions
3541  *
3542  * The region info query enumerates all regions known to the driver by filling
3543  * in an array of struct drm_i915_memory_region_info structures.
3544  *
3545  * Example for getting the list of supported regions:
3546  *
3547  * .. code-block:: C
3548  *
3549  *	struct drm_i915_query_memory_regions *info;
3550  *	struct drm_i915_query_item item = {
3551  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3552  *	};
3553  *	struct drm_i915_query query = {
3554  *		.num_items = 1,
3555  *		.items_ptr = (uintptr_t)&item,
3556  *	};
3557  *	int err, i;
3558  *
3559  *	// First query the size of the blob we need, this needs to be large
3560  *	// enough to hold our array of regions. The kernel will fill out the
3561  *	// item.length for us, which is the number of bytes we need.
3562  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3563  *	if (err) ...
3564  *
3565  *	info = calloc(1, item.length);
3566  *	// Now that we allocated the required number of bytes, we call the ioctl
3567  *	// again, this time with the data_ptr pointing to our newly allocated
3568  *	// blob, which the kernel can then populate with the all the region info.
3569  *	item.data_ptr = (uintptr_t)&info,
3570  *
3571  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3572  *	if (err) ...
3573  *
3574  *	// We can now access each region in the array
3575  *	for (i = 0; i < info->num_regions; i++) {
3576  *		struct drm_i915_memory_region_info mr = info->regions[i];
3577  *		u16 class = mr.region.class;
3578  *		u16 instance = mr.region.instance;
3579  *
3580  *		....
3581  *	}
3582  *
3583  *	free(info);
3584  */
3585 struct drm_i915_query_memory_regions {
3586 	/** @num_regions: Number of supported regions */
3587 	__u32 num_regions;
3588 
3589 	/** @rsvd: MBZ */
3590 	__u32 rsvd[3];
3591 
3592 	/** @regions: Info about each supported region */
3593 	struct drm_i915_memory_region_info regions[];
3594 };
3595 
3596 /**
3597  * struct drm_i915_query_guc_submission_version - query GuC submission interface version
3598  */
3599 struct drm_i915_query_guc_submission_version {
3600 	/** @branch: Firmware branch version. */
3601 	__u32 branch;
3602 	/** @major: Firmware major version. */
3603 	__u32 major;
3604 	/** @minor: Firmware minor version. */
3605 	__u32 minor;
3606 	/** @patch: Firmware patch version. */
3607 	__u32 patch;
3608 };
3609 
3610 /**
3611  * DOC: GuC HWCONFIG blob uAPI
3612  *
3613  * The GuC produces a blob with information about the current device.
3614  * i915 reads this blob from GuC and makes it available via this uAPI.
3615  *
3616  * The format and meaning of the blob content are documented in the
3617  * Programmer's Reference Manual.
3618  */
3619 
3620 /**
3621  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3622  * extension support using struct i915_user_extension.
3623  *
3624  * Note that new buffer flags should be added here, at least for the stuff that
3625  * is immutable. Previously we would have two ioctls, one to create the object
3626  * with gem_create, and another to apply various parameters, however this
3627  * creates some ambiguity for the params which are considered immutable. Also in
3628  * general we're phasing out the various SET/GET ioctls.
3629  */
3630 struct drm_i915_gem_create_ext {
3631 	/**
3632 	 * @size: Requested size for the object.
3633 	 *
3634 	 * The (page-aligned) allocated size for the object will be returned.
3635 	 *
3636 	 * On platforms like DG2/ATS the kernel will always use 64K or larger
3637 	 * pages for I915_MEMORY_CLASS_DEVICE. The kernel also requires a
3638 	 * minimum of 64K GTT alignment for such objects.
3639 	 *
3640 	 * NOTE: Previously the ABI here required a minimum GTT alignment of 2M
3641 	 * on DG2/ATS, due to how the hardware implemented 64K GTT page support,
3642 	 * where we had the following complications:
3643 	 *
3644 	 *   1) The entire PDE (which covers a 2MB virtual address range), must
3645 	 *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3646 	 *   PDE is forbidden by the hardware.
3647 	 *
3648 	 *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3649 	 *   objects.
3650 	 *
3651 	 * However on actual production HW this was completely changed to now
3652 	 * allow setting a TLB hint at the PTE level (see PS64), which is a lot
3653 	 * more flexible than the above. With this the 2M restriction was
3654 	 * dropped where we now only require 64K.
3655 	 */
3656 	__u64 size;
3657 
3658 	/**
3659 	 * @handle: Returned handle for the object.
3660 	 *
3661 	 * Object handles are nonzero.
3662 	 */
3663 	__u32 handle;
3664 
3665 	/**
3666 	 * @flags: Optional flags.
3667 	 *
3668 	 * Supported values:
3669 	 *
3670 	 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
3671 	 * the object will need to be accessed via the CPU.
3672 	 *
3673 	 * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only
3674 	 * strictly required on configurations where some subset of the device
3675 	 * memory is directly visible/mappable through the CPU (which we also
3676 	 * call small BAR), like on some DG2+ systems. Note that this is quite
3677 	 * undesirable, but due to various factors like the client CPU, BIOS etc
3678 	 * it's something we can expect to see in the wild. See
3679 	 * &drm_i915_memory_region_info.probed_cpu_visible_size for how to
3680 	 * determine if this system applies.
3681 	 *
3682 	 * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to
3683 	 * ensure the kernel can always spill the allocation to system memory,
3684 	 * if the object can't be allocated in the mappable part of
3685 	 * I915_MEMORY_CLASS_DEVICE.
3686 	 *
3687 	 * Also note that since the kernel only supports flat-CCS on objects
3688 	 * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore
3689 	 * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with
3690 	 * flat-CCS.
3691 	 *
3692 	 * Without this hint, the kernel will assume that non-mappable
3693 	 * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
3694 	 * kernel can still migrate the object to the mappable part, as a last
3695 	 * resort, if userspace ever CPU faults this object, but this might be
3696 	 * expensive, and so ideally should be avoided.
3697 	 *
3698 	 * On older kernels which lack the relevant small-bar uAPI support (see
3699 	 * also &drm_i915_memory_region_info.probed_cpu_visible_size),
3700 	 * usage of the flag will result in an error, but it should NEVER be
3701 	 * possible to end up with a small BAR configuration, assuming we can
3702 	 * also successfully load the i915 kernel module. In such cases the
3703 	 * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as
3704 	 * such there are zero restrictions on where the object can be placed.
3705 	 */
3706 #define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
3707 	__u32 flags;
3708 
3709 	/**
3710 	 * @extensions: The chain of extensions to apply to this object.
3711 	 *
3712 	 * This will be useful in the future when we need to support several
3713 	 * different extensions, and we need to apply more than one when
3714 	 * creating the object. See struct i915_user_extension.
3715 	 *
3716 	 * If we don't supply any extensions then we get the same old gem_create
3717 	 * behaviour.
3718 	 *
3719 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3720 	 * struct drm_i915_gem_create_ext_memory_regions.
3721 	 *
3722 	 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3723 	 * struct drm_i915_gem_create_ext_protected_content.
3724 	 *
3725 	 * For I915_GEM_CREATE_EXT_SET_PAT usage see
3726 	 * struct drm_i915_gem_create_ext_set_pat.
3727 	 */
3728 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3729 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3730 #define I915_GEM_CREATE_EXT_SET_PAT 2
3731 	__u64 extensions;
3732 };
3733 
3734 /**
3735  * struct drm_i915_gem_create_ext_memory_regions - The
3736  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3737  *
3738  * Set the object with the desired set of placements/regions in priority
3739  * order. Each entry must be unique and supported by the device.
3740  *
3741  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3742  * an equivalent layout of class:instance pair encodings. See struct
3743  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3744  * query the supported regions for a device.
3745  *
3746  * As an example, on discrete devices, if we wish to set the placement as
3747  * device local-memory we can do something like:
3748  *
3749  * .. code-block:: C
3750  *
3751  *	struct drm_i915_gem_memory_class_instance region_lmem = {
3752  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3753  *              .memory_instance = 0,
3754  *      };
3755  *      struct drm_i915_gem_create_ext_memory_regions regions = {
3756  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3757  *              .regions = (uintptr_t)&region_lmem,
3758  *              .num_regions = 1,
3759  *      };
3760  *      struct drm_i915_gem_create_ext create_ext = {
3761  *              .size = 16 * PAGE_SIZE,
3762  *              .extensions = (uintptr_t)&regions,
3763  *      };
3764  *
3765  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3766  *      if (err) ...
3767  *
3768  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3769  * along with the final object size in &drm_i915_gem_create_ext.size, which
3770  * should account for any rounding up, if required.
3771  *
3772  * Note that userspace has no means of knowing the current backing region
3773  * for objects where @num_regions is larger than one. The kernel will only
3774  * ensure that the priority order of the @regions array is honoured, either
3775  * when initially placing the object, or when moving memory around due to
3776  * memory pressure
3777  *
3778  * On Flat-CCS capable HW, compression is supported for the objects residing
3779  * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other
3780  * memory class in @regions and migrated (by i915, due to memory
3781  * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to
3782  * decompress the content. But i915 doesn't have the required information to
3783  * decompress the userspace compressed objects.
3784  *
3785  * So i915 supports Flat-CCS, on the objects which can reside only on
3786  * I915_MEMORY_CLASS_DEVICE regions.
3787  */
3788 struct drm_i915_gem_create_ext_memory_regions {
3789 	/** @base: Extension link. See struct i915_user_extension. */
3790 	struct i915_user_extension base;
3791 
3792 	/** @pad: MBZ */
3793 	__u32 pad;
3794 	/** @num_regions: Number of elements in the @regions array. */
3795 	__u32 num_regions;
3796 	/**
3797 	 * @regions: The regions/placements array.
3798 	 *
3799 	 * An array of struct drm_i915_gem_memory_class_instance.
3800 	 */
3801 	__u64 regions;
3802 };
3803 
3804 /**
3805  * struct drm_i915_gem_create_ext_protected_content - The
3806  * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3807  *
3808  * If this extension is provided, buffer contents are expected to be protected
3809  * by PXP encryption and require decryption for scan out and processing. This
3810  * is only possible on platforms that have PXP enabled, on all other scenarios
3811  * using this extension will cause the ioctl to fail and return -ENODEV. The
3812  * flags parameter is reserved for future expansion and must currently be set
3813  * to zero.
3814  *
3815  * The buffer contents are considered invalid after a PXP session teardown.
3816  *
3817  * The encryption is guaranteed to be processed correctly only if the object
3818  * is submitted with a context created using the
3819  * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3820  * at submission time on the validity of the objects involved.
3821  *
3822  * Below is an example on how to create a protected object:
3823  *
3824  * .. code-block:: C
3825  *
3826  *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3827  *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3828  *              .flags = 0,
3829  *      };
3830  *      struct drm_i915_gem_create_ext create_ext = {
3831  *              .size = PAGE_SIZE,
3832  *              .extensions = (uintptr_t)&protected_ext,
3833  *      };
3834  *
3835  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3836  *      if (err) ...
3837  */
3838 struct drm_i915_gem_create_ext_protected_content {
3839 	/** @base: Extension link. See struct i915_user_extension. */
3840 	struct i915_user_extension base;
3841 	/** @flags: reserved for future usage, currently MBZ */
3842 	__u32 flags;
3843 };
3844 
3845 /**
3846  * struct drm_i915_gem_create_ext_set_pat - The
3847  * I915_GEM_CREATE_EXT_SET_PAT extension.
3848  *
3849  * If this extension is provided, the specified caching policy (PAT index) is
3850  * applied to the buffer object.
3851  *
3852  * Below is an example on how to create an object with specific caching policy:
3853  *
3854  * .. code-block:: C
3855  *
3856  *      struct drm_i915_gem_create_ext_set_pat set_pat_ext = {
3857  *              .base = { .name = I915_GEM_CREATE_EXT_SET_PAT },
3858  *              .pat_index = 0,
3859  *      };
3860  *      struct drm_i915_gem_create_ext create_ext = {
3861  *              .size = PAGE_SIZE,
3862  *              .extensions = (uintptr_t)&set_pat_ext,
3863  *      };
3864  *
3865  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3866  *      if (err) ...
3867  */
3868 struct drm_i915_gem_create_ext_set_pat {
3869 	/** @base: Extension link. See struct i915_user_extension. */
3870 	struct i915_user_extension base;
3871 	/**
3872 	 * @pat_index: PAT index to be set
3873 	 * PAT index is a bit field in Page Table Entry to control caching
3874 	 * behaviors for GPU accesses. The definition of PAT index is
3875 	 * platform dependent and can be found in hardware specifications,
3876 	 */
3877 	__u32 pat_index;
3878 	/** @rsvd: reserved for future use */
3879 	__u32 rsvd;
3880 };
3881 
3882 /* ID of the protected content session managed by i915 when PXP is active */
3883 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3884 
3885 #if defined(__cplusplus)
3886 }
3887 #endif
3888 
3889 #endif /* _UAPI_I915_DRM_H_ */
3890