xref: /linux/include/uapi/drm/habanalabs_accel.h (revision c5dbf04160005e07e8ca7232a7faa77ab1547ae0)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2  *
3  * Copyright 2016-2023 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABS_H_
9 #define HABANALABS_H_
10 
11 #include <drm/drm.h>
12 
13 /*
14  * Defines that are asic-specific but constitutes as ABI between kernel driver
15  * and userspace
16  */
17 #define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START		0x8000	/* 32KB */
18 #define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START	0x80	/* 128 bytes */
19 
20 /*
21  * 128 SOBs reserved for collective wait
22  * 16 SOBs reserved for sync stream
23  */
24 #define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT		144
25 
26 /*
27  * 64 monitors reserved for collective wait
28  * 8 monitors reserved for sync stream
29  */
30 #define GAUDI_FIRST_AVAILABLE_W_S_MONITOR		72
31 
32 /* Max number of elements in timestamps registration buffers */
33 #define	TS_MAX_ELEMENTS_NUM				(1 << 20) /* 1MB */
34 
35 /*
36  * Goya queue Numbering
37  *
38  * The external queues (PCI DMA channels) MUST be before the internal queues
39  * and each group (PCI DMA channels and internal) must be contiguous inside
40  * itself but there can be a gap between the two groups (although not
41  * recommended)
42  */
43 
44 enum goya_queue_id {
45 	GOYA_QUEUE_ID_DMA_0 = 0,
46 	GOYA_QUEUE_ID_DMA_1 = 1,
47 	GOYA_QUEUE_ID_DMA_2 = 2,
48 	GOYA_QUEUE_ID_DMA_3 = 3,
49 	GOYA_QUEUE_ID_DMA_4 = 4,
50 	GOYA_QUEUE_ID_CPU_PQ = 5,
51 	GOYA_QUEUE_ID_MME = 6,	/* Internal queues start here */
52 	GOYA_QUEUE_ID_TPC0 = 7,
53 	GOYA_QUEUE_ID_TPC1 = 8,
54 	GOYA_QUEUE_ID_TPC2 = 9,
55 	GOYA_QUEUE_ID_TPC3 = 10,
56 	GOYA_QUEUE_ID_TPC4 = 11,
57 	GOYA_QUEUE_ID_TPC5 = 12,
58 	GOYA_QUEUE_ID_TPC6 = 13,
59 	GOYA_QUEUE_ID_TPC7 = 14,
60 	GOYA_QUEUE_ID_SIZE
61 };
62 
63 /*
64  * Gaudi queue Numbering
65  * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
66  * Except one CPU queue, all the rest are internal queues.
67  */
68 
69 enum gaudi_queue_id {
70 	GAUDI_QUEUE_ID_DMA_0_0 = 0,	/* external */
71 	GAUDI_QUEUE_ID_DMA_0_1 = 1,	/* external */
72 	GAUDI_QUEUE_ID_DMA_0_2 = 2,	/* external */
73 	GAUDI_QUEUE_ID_DMA_0_3 = 3,	/* external */
74 	GAUDI_QUEUE_ID_DMA_1_0 = 4,	/* external */
75 	GAUDI_QUEUE_ID_DMA_1_1 = 5,	/* external */
76 	GAUDI_QUEUE_ID_DMA_1_2 = 6,	/* external */
77 	GAUDI_QUEUE_ID_DMA_1_3 = 7,	/* external */
78 	GAUDI_QUEUE_ID_CPU_PQ = 8,	/* CPU */
79 	GAUDI_QUEUE_ID_DMA_2_0 = 9,	/* internal */
80 	GAUDI_QUEUE_ID_DMA_2_1 = 10,	/* internal */
81 	GAUDI_QUEUE_ID_DMA_2_2 = 11,	/* internal */
82 	GAUDI_QUEUE_ID_DMA_2_3 = 12,	/* internal */
83 	GAUDI_QUEUE_ID_DMA_3_0 = 13,	/* internal */
84 	GAUDI_QUEUE_ID_DMA_3_1 = 14,	/* internal */
85 	GAUDI_QUEUE_ID_DMA_3_2 = 15,	/* internal */
86 	GAUDI_QUEUE_ID_DMA_3_3 = 16,	/* internal */
87 	GAUDI_QUEUE_ID_DMA_4_0 = 17,	/* internal */
88 	GAUDI_QUEUE_ID_DMA_4_1 = 18,	/* internal */
89 	GAUDI_QUEUE_ID_DMA_4_2 = 19,	/* internal */
90 	GAUDI_QUEUE_ID_DMA_4_3 = 20,	/* internal */
91 	GAUDI_QUEUE_ID_DMA_5_0 = 21,	/* internal */
92 	GAUDI_QUEUE_ID_DMA_5_1 = 22,	/* internal */
93 	GAUDI_QUEUE_ID_DMA_5_2 = 23,	/* internal */
94 	GAUDI_QUEUE_ID_DMA_5_3 = 24,	/* internal */
95 	GAUDI_QUEUE_ID_DMA_6_0 = 25,	/* internal */
96 	GAUDI_QUEUE_ID_DMA_6_1 = 26,	/* internal */
97 	GAUDI_QUEUE_ID_DMA_6_2 = 27,	/* internal */
98 	GAUDI_QUEUE_ID_DMA_6_3 = 28,	/* internal */
99 	GAUDI_QUEUE_ID_DMA_7_0 = 29,	/* internal */
100 	GAUDI_QUEUE_ID_DMA_7_1 = 30,	/* internal */
101 	GAUDI_QUEUE_ID_DMA_7_2 = 31,	/* internal */
102 	GAUDI_QUEUE_ID_DMA_7_3 = 32,	/* internal */
103 	GAUDI_QUEUE_ID_MME_0_0 = 33,	/* internal */
104 	GAUDI_QUEUE_ID_MME_0_1 = 34,	/* internal */
105 	GAUDI_QUEUE_ID_MME_0_2 = 35,	/* internal */
106 	GAUDI_QUEUE_ID_MME_0_3 = 36,	/* internal */
107 	GAUDI_QUEUE_ID_MME_1_0 = 37,	/* internal */
108 	GAUDI_QUEUE_ID_MME_1_1 = 38,	/* internal */
109 	GAUDI_QUEUE_ID_MME_1_2 = 39,	/* internal */
110 	GAUDI_QUEUE_ID_MME_1_3 = 40,	/* internal */
111 	GAUDI_QUEUE_ID_TPC_0_0 = 41,	/* internal */
112 	GAUDI_QUEUE_ID_TPC_0_1 = 42,	/* internal */
113 	GAUDI_QUEUE_ID_TPC_0_2 = 43,	/* internal */
114 	GAUDI_QUEUE_ID_TPC_0_3 = 44,	/* internal */
115 	GAUDI_QUEUE_ID_TPC_1_0 = 45,	/* internal */
116 	GAUDI_QUEUE_ID_TPC_1_1 = 46,	/* internal */
117 	GAUDI_QUEUE_ID_TPC_1_2 = 47,	/* internal */
118 	GAUDI_QUEUE_ID_TPC_1_3 = 48,	/* internal */
119 	GAUDI_QUEUE_ID_TPC_2_0 = 49,	/* internal */
120 	GAUDI_QUEUE_ID_TPC_2_1 = 50,	/* internal */
121 	GAUDI_QUEUE_ID_TPC_2_2 = 51,	/* internal */
122 	GAUDI_QUEUE_ID_TPC_2_3 = 52,	/* internal */
123 	GAUDI_QUEUE_ID_TPC_3_0 = 53,	/* internal */
124 	GAUDI_QUEUE_ID_TPC_3_1 = 54,	/* internal */
125 	GAUDI_QUEUE_ID_TPC_3_2 = 55,	/* internal */
126 	GAUDI_QUEUE_ID_TPC_3_3 = 56,	/* internal */
127 	GAUDI_QUEUE_ID_TPC_4_0 = 57,	/* internal */
128 	GAUDI_QUEUE_ID_TPC_4_1 = 58,	/* internal */
129 	GAUDI_QUEUE_ID_TPC_4_2 = 59,	/* internal */
130 	GAUDI_QUEUE_ID_TPC_4_3 = 60,	/* internal */
131 	GAUDI_QUEUE_ID_TPC_5_0 = 61,	/* internal */
132 	GAUDI_QUEUE_ID_TPC_5_1 = 62,	/* internal */
133 	GAUDI_QUEUE_ID_TPC_5_2 = 63,	/* internal */
134 	GAUDI_QUEUE_ID_TPC_5_3 = 64,	/* internal */
135 	GAUDI_QUEUE_ID_TPC_6_0 = 65,	/* internal */
136 	GAUDI_QUEUE_ID_TPC_6_1 = 66,	/* internal */
137 	GAUDI_QUEUE_ID_TPC_6_2 = 67,	/* internal */
138 	GAUDI_QUEUE_ID_TPC_6_3 = 68,	/* internal */
139 	GAUDI_QUEUE_ID_TPC_7_0 = 69,	/* internal */
140 	GAUDI_QUEUE_ID_TPC_7_1 = 70,	/* internal */
141 	GAUDI_QUEUE_ID_TPC_7_2 = 71,	/* internal */
142 	GAUDI_QUEUE_ID_TPC_7_3 = 72,	/* internal */
143 	GAUDI_QUEUE_ID_NIC_0_0 = 73,	/* internal */
144 	GAUDI_QUEUE_ID_NIC_0_1 = 74,	/* internal */
145 	GAUDI_QUEUE_ID_NIC_0_2 = 75,	/* internal */
146 	GAUDI_QUEUE_ID_NIC_0_3 = 76,	/* internal */
147 	GAUDI_QUEUE_ID_NIC_1_0 = 77,	/* internal */
148 	GAUDI_QUEUE_ID_NIC_1_1 = 78,	/* internal */
149 	GAUDI_QUEUE_ID_NIC_1_2 = 79,	/* internal */
150 	GAUDI_QUEUE_ID_NIC_1_3 = 80,	/* internal */
151 	GAUDI_QUEUE_ID_NIC_2_0 = 81,	/* internal */
152 	GAUDI_QUEUE_ID_NIC_2_1 = 82,	/* internal */
153 	GAUDI_QUEUE_ID_NIC_2_2 = 83,	/* internal */
154 	GAUDI_QUEUE_ID_NIC_2_3 = 84,	/* internal */
155 	GAUDI_QUEUE_ID_NIC_3_0 = 85,	/* internal */
156 	GAUDI_QUEUE_ID_NIC_3_1 = 86,	/* internal */
157 	GAUDI_QUEUE_ID_NIC_3_2 = 87,	/* internal */
158 	GAUDI_QUEUE_ID_NIC_3_3 = 88,	/* internal */
159 	GAUDI_QUEUE_ID_NIC_4_0 = 89,	/* internal */
160 	GAUDI_QUEUE_ID_NIC_4_1 = 90,	/* internal */
161 	GAUDI_QUEUE_ID_NIC_4_2 = 91,	/* internal */
162 	GAUDI_QUEUE_ID_NIC_4_3 = 92,	/* internal */
163 	GAUDI_QUEUE_ID_NIC_5_0 = 93,	/* internal */
164 	GAUDI_QUEUE_ID_NIC_5_1 = 94,	/* internal */
165 	GAUDI_QUEUE_ID_NIC_5_2 = 95,	/* internal */
166 	GAUDI_QUEUE_ID_NIC_5_3 = 96,	/* internal */
167 	GAUDI_QUEUE_ID_NIC_6_0 = 97,	/* internal */
168 	GAUDI_QUEUE_ID_NIC_6_1 = 98,	/* internal */
169 	GAUDI_QUEUE_ID_NIC_6_2 = 99,	/* internal */
170 	GAUDI_QUEUE_ID_NIC_6_3 = 100,	/* internal */
171 	GAUDI_QUEUE_ID_NIC_7_0 = 101,	/* internal */
172 	GAUDI_QUEUE_ID_NIC_7_1 = 102,	/* internal */
173 	GAUDI_QUEUE_ID_NIC_7_2 = 103,	/* internal */
174 	GAUDI_QUEUE_ID_NIC_7_3 = 104,	/* internal */
175 	GAUDI_QUEUE_ID_NIC_8_0 = 105,	/* internal */
176 	GAUDI_QUEUE_ID_NIC_8_1 = 106,	/* internal */
177 	GAUDI_QUEUE_ID_NIC_8_2 = 107,	/* internal */
178 	GAUDI_QUEUE_ID_NIC_8_3 = 108,	/* internal */
179 	GAUDI_QUEUE_ID_NIC_9_0 = 109,	/* internal */
180 	GAUDI_QUEUE_ID_NIC_9_1 = 110,	/* internal */
181 	GAUDI_QUEUE_ID_NIC_9_2 = 111,	/* internal */
182 	GAUDI_QUEUE_ID_NIC_9_3 = 112,	/* internal */
183 	GAUDI_QUEUE_ID_SIZE
184 };
185 
186 /*
187  * In GAUDI2 we have two modes of operation in regard to queues:
188  * 1. Legacy mode, where each QMAN exposes 4 streams to the user
189  * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues.
190  *
191  * When in legacy mode, the user sends the queue id per JOB according to
192  * enum gaudi2_queue_id below.
193  *
194  * When in F/W mode, the user sends a stream id per Command Submission. The
195  * stream id is a running number from 0 up to (N-1), where N is the number
196  * of streams the F/W exposes and is passed to the user in
197  * struct hl_info_hw_ip_info
198  */
199 
200 enum gaudi2_queue_id {
201 	GAUDI2_QUEUE_ID_PDMA_0_0 = 0,
202 	GAUDI2_QUEUE_ID_PDMA_0_1 = 1,
203 	GAUDI2_QUEUE_ID_PDMA_0_2 = 2,
204 	GAUDI2_QUEUE_ID_PDMA_0_3 = 3,
205 	GAUDI2_QUEUE_ID_PDMA_1_0 = 4,
206 	GAUDI2_QUEUE_ID_PDMA_1_1 = 5,
207 	GAUDI2_QUEUE_ID_PDMA_1_2 = 6,
208 	GAUDI2_QUEUE_ID_PDMA_1_3 = 7,
209 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8,
210 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9,
211 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10,
212 	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11,
213 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12,
214 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13,
215 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14,
216 	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15,
217 	GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16,
218 	GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17,
219 	GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18,
220 	GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19,
221 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20,
222 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21,
223 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22,
224 	GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23,
225 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24,
226 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25,
227 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26,
228 	GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27,
229 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28,
230 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29,
231 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30,
232 	GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31,
233 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32,
234 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33,
235 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34,
236 	GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35,
237 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36,
238 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37,
239 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38,
240 	GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39,
241 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40,
242 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41,
243 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42,
244 	GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43,
245 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44,
246 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45,
247 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46,
248 	GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47,
249 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48,
250 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49,
251 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50,
252 	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51,
253 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52,
254 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53,
255 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54,
256 	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55,
257 	GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56,
258 	GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57,
259 	GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58,
260 	GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59,
261 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60,
262 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61,
263 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62,
264 	GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63,
265 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64,
266 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65,
267 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66,
268 	GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67,
269 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68,
270 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69,
271 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70,
272 	GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71,
273 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72,
274 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73,
275 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74,
276 	GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75,
277 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76,
278 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77,
279 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78,
280 	GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79,
281 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80,
282 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81,
283 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82,
284 	GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83,
285 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84,
286 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85,
287 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86,
288 	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87,
289 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88,
290 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89,
291 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90,
292 	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91,
293 	GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92,
294 	GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93,
295 	GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94,
296 	GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95,
297 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96,
298 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97,
299 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98,
300 	GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99,
301 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100,
302 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101,
303 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102,
304 	GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103,
305 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104,
306 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105,
307 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106,
308 	GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107,
309 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108,
310 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109,
311 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110,
312 	GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111,
313 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112,
314 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113,
315 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114,
316 	GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115,
317 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116,
318 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117,
319 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118,
320 	GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119,
321 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120,
322 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121,
323 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122,
324 	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123,
325 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124,
326 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125,
327 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126,
328 	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127,
329 	GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128,
330 	GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129,
331 	GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130,
332 	GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131,
333 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132,
334 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133,
335 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134,
336 	GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135,
337 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136,
338 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137,
339 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138,
340 	GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139,
341 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140,
342 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141,
343 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142,
344 	GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143,
345 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144,
346 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145,
347 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146,
348 	GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147,
349 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148,
350 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149,
351 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150,
352 	GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151,
353 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152,
354 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153,
355 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154,
356 	GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155,
357 	GAUDI2_QUEUE_ID_NIC_0_0 = 156,
358 	GAUDI2_QUEUE_ID_NIC_0_1 = 157,
359 	GAUDI2_QUEUE_ID_NIC_0_2 = 158,
360 	GAUDI2_QUEUE_ID_NIC_0_3 = 159,
361 	GAUDI2_QUEUE_ID_NIC_1_0 = 160,
362 	GAUDI2_QUEUE_ID_NIC_1_1 = 161,
363 	GAUDI2_QUEUE_ID_NIC_1_2 = 162,
364 	GAUDI2_QUEUE_ID_NIC_1_3 = 163,
365 	GAUDI2_QUEUE_ID_NIC_2_0 = 164,
366 	GAUDI2_QUEUE_ID_NIC_2_1 = 165,
367 	GAUDI2_QUEUE_ID_NIC_2_2 = 166,
368 	GAUDI2_QUEUE_ID_NIC_2_3 = 167,
369 	GAUDI2_QUEUE_ID_NIC_3_0 = 168,
370 	GAUDI2_QUEUE_ID_NIC_3_1 = 169,
371 	GAUDI2_QUEUE_ID_NIC_3_2 = 170,
372 	GAUDI2_QUEUE_ID_NIC_3_3 = 171,
373 	GAUDI2_QUEUE_ID_NIC_4_0 = 172,
374 	GAUDI2_QUEUE_ID_NIC_4_1 = 173,
375 	GAUDI2_QUEUE_ID_NIC_4_2 = 174,
376 	GAUDI2_QUEUE_ID_NIC_4_3 = 175,
377 	GAUDI2_QUEUE_ID_NIC_5_0 = 176,
378 	GAUDI2_QUEUE_ID_NIC_5_1 = 177,
379 	GAUDI2_QUEUE_ID_NIC_5_2 = 178,
380 	GAUDI2_QUEUE_ID_NIC_5_3 = 179,
381 	GAUDI2_QUEUE_ID_NIC_6_0 = 180,
382 	GAUDI2_QUEUE_ID_NIC_6_1 = 181,
383 	GAUDI2_QUEUE_ID_NIC_6_2 = 182,
384 	GAUDI2_QUEUE_ID_NIC_6_3 = 183,
385 	GAUDI2_QUEUE_ID_NIC_7_0 = 184,
386 	GAUDI2_QUEUE_ID_NIC_7_1 = 185,
387 	GAUDI2_QUEUE_ID_NIC_7_2 = 186,
388 	GAUDI2_QUEUE_ID_NIC_7_3 = 187,
389 	GAUDI2_QUEUE_ID_NIC_8_0 = 188,
390 	GAUDI2_QUEUE_ID_NIC_8_1 = 189,
391 	GAUDI2_QUEUE_ID_NIC_8_2 = 190,
392 	GAUDI2_QUEUE_ID_NIC_8_3 = 191,
393 	GAUDI2_QUEUE_ID_NIC_9_0 = 192,
394 	GAUDI2_QUEUE_ID_NIC_9_1 = 193,
395 	GAUDI2_QUEUE_ID_NIC_9_2 = 194,
396 	GAUDI2_QUEUE_ID_NIC_9_3 = 195,
397 	GAUDI2_QUEUE_ID_NIC_10_0 = 196,
398 	GAUDI2_QUEUE_ID_NIC_10_1 = 197,
399 	GAUDI2_QUEUE_ID_NIC_10_2 = 198,
400 	GAUDI2_QUEUE_ID_NIC_10_3 = 199,
401 	GAUDI2_QUEUE_ID_NIC_11_0 = 200,
402 	GAUDI2_QUEUE_ID_NIC_11_1 = 201,
403 	GAUDI2_QUEUE_ID_NIC_11_2 = 202,
404 	GAUDI2_QUEUE_ID_NIC_11_3 = 203,
405 	GAUDI2_QUEUE_ID_NIC_12_0 = 204,
406 	GAUDI2_QUEUE_ID_NIC_12_1 = 205,
407 	GAUDI2_QUEUE_ID_NIC_12_2 = 206,
408 	GAUDI2_QUEUE_ID_NIC_12_3 = 207,
409 	GAUDI2_QUEUE_ID_NIC_13_0 = 208,
410 	GAUDI2_QUEUE_ID_NIC_13_1 = 209,
411 	GAUDI2_QUEUE_ID_NIC_13_2 = 210,
412 	GAUDI2_QUEUE_ID_NIC_13_3 = 211,
413 	GAUDI2_QUEUE_ID_NIC_14_0 = 212,
414 	GAUDI2_QUEUE_ID_NIC_14_1 = 213,
415 	GAUDI2_QUEUE_ID_NIC_14_2 = 214,
416 	GAUDI2_QUEUE_ID_NIC_14_3 = 215,
417 	GAUDI2_QUEUE_ID_NIC_15_0 = 216,
418 	GAUDI2_QUEUE_ID_NIC_15_1 = 217,
419 	GAUDI2_QUEUE_ID_NIC_15_2 = 218,
420 	GAUDI2_QUEUE_ID_NIC_15_3 = 219,
421 	GAUDI2_QUEUE_ID_NIC_16_0 = 220,
422 	GAUDI2_QUEUE_ID_NIC_16_1 = 221,
423 	GAUDI2_QUEUE_ID_NIC_16_2 = 222,
424 	GAUDI2_QUEUE_ID_NIC_16_3 = 223,
425 	GAUDI2_QUEUE_ID_NIC_17_0 = 224,
426 	GAUDI2_QUEUE_ID_NIC_17_1 = 225,
427 	GAUDI2_QUEUE_ID_NIC_17_2 = 226,
428 	GAUDI2_QUEUE_ID_NIC_17_3 = 227,
429 	GAUDI2_QUEUE_ID_NIC_18_0 = 228,
430 	GAUDI2_QUEUE_ID_NIC_18_1 = 229,
431 	GAUDI2_QUEUE_ID_NIC_18_2 = 230,
432 	GAUDI2_QUEUE_ID_NIC_18_3 = 231,
433 	GAUDI2_QUEUE_ID_NIC_19_0 = 232,
434 	GAUDI2_QUEUE_ID_NIC_19_1 = 233,
435 	GAUDI2_QUEUE_ID_NIC_19_2 = 234,
436 	GAUDI2_QUEUE_ID_NIC_19_3 = 235,
437 	GAUDI2_QUEUE_ID_NIC_20_0 = 236,
438 	GAUDI2_QUEUE_ID_NIC_20_1 = 237,
439 	GAUDI2_QUEUE_ID_NIC_20_2 = 238,
440 	GAUDI2_QUEUE_ID_NIC_20_3 = 239,
441 	GAUDI2_QUEUE_ID_NIC_21_0 = 240,
442 	GAUDI2_QUEUE_ID_NIC_21_1 = 241,
443 	GAUDI2_QUEUE_ID_NIC_21_2 = 242,
444 	GAUDI2_QUEUE_ID_NIC_21_3 = 243,
445 	GAUDI2_QUEUE_ID_NIC_22_0 = 244,
446 	GAUDI2_QUEUE_ID_NIC_22_1 = 245,
447 	GAUDI2_QUEUE_ID_NIC_22_2 = 246,
448 	GAUDI2_QUEUE_ID_NIC_22_3 = 247,
449 	GAUDI2_QUEUE_ID_NIC_23_0 = 248,
450 	GAUDI2_QUEUE_ID_NIC_23_1 = 249,
451 	GAUDI2_QUEUE_ID_NIC_23_2 = 250,
452 	GAUDI2_QUEUE_ID_NIC_23_3 = 251,
453 	GAUDI2_QUEUE_ID_ROT_0_0 = 252,
454 	GAUDI2_QUEUE_ID_ROT_0_1 = 253,
455 	GAUDI2_QUEUE_ID_ROT_0_2 = 254,
456 	GAUDI2_QUEUE_ID_ROT_0_3 = 255,
457 	GAUDI2_QUEUE_ID_ROT_1_0 = 256,
458 	GAUDI2_QUEUE_ID_ROT_1_1 = 257,
459 	GAUDI2_QUEUE_ID_ROT_1_2 = 258,
460 	GAUDI2_QUEUE_ID_ROT_1_3 = 259,
461 	GAUDI2_QUEUE_ID_CPU_PQ = 260,
462 	GAUDI2_QUEUE_ID_SIZE
463 };
464 
465 /*
466  * Engine Numbering
467  *
468  * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
469  */
470 
471 enum goya_engine_id {
472 	GOYA_ENGINE_ID_DMA_0 = 0,
473 	GOYA_ENGINE_ID_DMA_1,
474 	GOYA_ENGINE_ID_DMA_2,
475 	GOYA_ENGINE_ID_DMA_3,
476 	GOYA_ENGINE_ID_DMA_4,
477 	GOYA_ENGINE_ID_MME_0,
478 	GOYA_ENGINE_ID_TPC_0,
479 	GOYA_ENGINE_ID_TPC_1,
480 	GOYA_ENGINE_ID_TPC_2,
481 	GOYA_ENGINE_ID_TPC_3,
482 	GOYA_ENGINE_ID_TPC_4,
483 	GOYA_ENGINE_ID_TPC_5,
484 	GOYA_ENGINE_ID_TPC_6,
485 	GOYA_ENGINE_ID_TPC_7,
486 	GOYA_ENGINE_ID_SIZE
487 };
488 
489 enum gaudi_engine_id {
490 	GAUDI_ENGINE_ID_DMA_0 = 0,
491 	GAUDI_ENGINE_ID_DMA_1,
492 	GAUDI_ENGINE_ID_DMA_2,
493 	GAUDI_ENGINE_ID_DMA_3,
494 	GAUDI_ENGINE_ID_DMA_4,
495 	GAUDI_ENGINE_ID_DMA_5,
496 	GAUDI_ENGINE_ID_DMA_6,
497 	GAUDI_ENGINE_ID_DMA_7,
498 	GAUDI_ENGINE_ID_MME_0,
499 	GAUDI_ENGINE_ID_MME_1,
500 	GAUDI_ENGINE_ID_MME_2,
501 	GAUDI_ENGINE_ID_MME_3,
502 	GAUDI_ENGINE_ID_TPC_0,
503 	GAUDI_ENGINE_ID_TPC_1,
504 	GAUDI_ENGINE_ID_TPC_2,
505 	GAUDI_ENGINE_ID_TPC_3,
506 	GAUDI_ENGINE_ID_TPC_4,
507 	GAUDI_ENGINE_ID_TPC_5,
508 	GAUDI_ENGINE_ID_TPC_6,
509 	GAUDI_ENGINE_ID_TPC_7,
510 	GAUDI_ENGINE_ID_NIC_0,
511 	GAUDI_ENGINE_ID_NIC_1,
512 	GAUDI_ENGINE_ID_NIC_2,
513 	GAUDI_ENGINE_ID_NIC_3,
514 	GAUDI_ENGINE_ID_NIC_4,
515 	GAUDI_ENGINE_ID_NIC_5,
516 	GAUDI_ENGINE_ID_NIC_6,
517 	GAUDI_ENGINE_ID_NIC_7,
518 	GAUDI_ENGINE_ID_NIC_8,
519 	GAUDI_ENGINE_ID_NIC_9,
520 	GAUDI_ENGINE_ID_SIZE
521 };
522 
523 enum gaudi2_engine_id {
524 	GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0,
525 	GAUDI2_DCORE0_ENGINE_ID_EDMA_1,
526 	GAUDI2_DCORE0_ENGINE_ID_MME,
527 	GAUDI2_DCORE0_ENGINE_ID_TPC_0,
528 	GAUDI2_DCORE0_ENGINE_ID_TPC_1,
529 	GAUDI2_DCORE0_ENGINE_ID_TPC_2,
530 	GAUDI2_DCORE0_ENGINE_ID_TPC_3,
531 	GAUDI2_DCORE0_ENGINE_ID_TPC_4,
532 	GAUDI2_DCORE0_ENGINE_ID_TPC_5,
533 	GAUDI2_DCORE0_ENGINE_ID_DEC_0,
534 	GAUDI2_DCORE0_ENGINE_ID_DEC_1,
535 	GAUDI2_DCORE1_ENGINE_ID_EDMA_0,
536 	GAUDI2_DCORE1_ENGINE_ID_EDMA_1,
537 	GAUDI2_DCORE1_ENGINE_ID_MME,
538 	GAUDI2_DCORE1_ENGINE_ID_TPC_0,
539 	GAUDI2_DCORE1_ENGINE_ID_TPC_1,
540 	GAUDI2_DCORE1_ENGINE_ID_TPC_2,
541 	GAUDI2_DCORE1_ENGINE_ID_TPC_3,
542 	GAUDI2_DCORE1_ENGINE_ID_TPC_4,
543 	GAUDI2_DCORE1_ENGINE_ID_TPC_5,
544 	GAUDI2_DCORE1_ENGINE_ID_DEC_0,
545 	GAUDI2_DCORE1_ENGINE_ID_DEC_1,
546 	GAUDI2_DCORE2_ENGINE_ID_EDMA_0,
547 	GAUDI2_DCORE2_ENGINE_ID_EDMA_1,
548 	GAUDI2_DCORE2_ENGINE_ID_MME,
549 	GAUDI2_DCORE2_ENGINE_ID_TPC_0,
550 	GAUDI2_DCORE2_ENGINE_ID_TPC_1,
551 	GAUDI2_DCORE2_ENGINE_ID_TPC_2,
552 	GAUDI2_DCORE2_ENGINE_ID_TPC_3,
553 	GAUDI2_DCORE2_ENGINE_ID_TPC_4,
554 	GAUDI2_DCORE2_ENGINE_ID_TPC_5,
555 	GAUDI2_DCORE2_ENGINE_ID_DEC_0,
556 	GAUDI2_DCORE2_ENGINE_ID_DEC_1,
557 	GAUDI2_DCORE3_ENGINE_ID_EDMA_0,
558 	GAUDI2_DCORE3_ENGINE_ID_EDMA_1,
559 	GAUDI2_DCORE3_ENGINE_ID_MME,
560 	GAUDI2_DCORE3_ENGINE_ID_TPC_0,
561 	GAUDI2_DCORE3_ENGINE_ID_TPC_1,
562 	GAUDI2_DCORE3_ENGINE_ID_TPC_2,
563 	GAUDI2_DCORE3_ENGINE_ID_TPC_3,
564 	GAUDI2_DCORE3_ENGINE_ID_TPC_4,
565 	GAUDI2_DCORE3_ENGINE_ID_TPC_5,
566 	GAUDI2_DCORE3_ENGINE_ID_DEC_0,
567 	GAUDI2_DCORE3_ENGINE_ID_DEC_1,
568 	GAUDI2_DCORE0_ENGINE_ID_TPC_6,
569 	GAUDI2_ENGINE_ID_PDMA_0,
570 	GAUDI2_ENGINE_ID_PDMA_1,
571 	GAUDI2_ENGINE_ID_ROT_0,
572 	GAUDI2_ENGINE_ID_ROT_1,
573 	GAUDI2_PCIE_ENGINE_ID_DEC_0,
574 	GAUDI2_PCIE_ENGINE_ID_DEC_1,
575 	GAUDI2_ENGINE_ID_NIC0_0,
576 	GAUDI2_ENGINE_ID_NIC0_1,
577 	GAUDI2_ENGINE_ID_NIC1_0,
578 	GAUDI2_ENGINE_ID_NIC1_1,
579 	GAUDI2_ENGINE_ID_NIC2_0,
580 	GAUDI2_ENGINE_ID_NIC2_1,
581 	GAUDI2_ENGINE_ID_NIC3_0,
582 	GAUDI2_ENGINE_ID_NIC3_1,
583 	GAUDI2_ENGINE_ID_NIC4_0,
584 	GAUDI2_ENGINE_ID_NIC4_1,
585 	GAUDI2_ENGINE_ID_NIC5_0,
586 	GAUDI2_ENGINE_ID_NIC5_1,
587 	GAUDI2_ENGINE_ID_NIC6_0,
588 	GAUDI2_ENGINE_ID_NIC6_1,
589 	GAUDI2_ENGINE_ID_NIC7_0,
590 	GAUDI2_ENGINE_ID_NIC7_1,
591 	GAUDI2_ENGINE_ID_NIC8_0,
592 	GAUDI2_ENGINE_ID_NIC8_1,
593 	GAUDI2_ENGINE_ID_NIC9_0,
594 	GAUDI2_ENGINE_ID_NIC9_1,
595 	GAUDI2_ENGINE_ID_NIC10_0,
596 	GAUDI2_ENGINE_ID_NIC10_1,
597 	GAUDI2_ENGINE_ID_NIC11_0,
598 	GAUDI2_ENGINE_ID_NIC11_1,
599 	GAUDI2_ENGINE_ID_PCIE,
600 	GAUDI2_ENGINE_ID_PSOC,
601 	GAUDI2_ENGINE_ID_ARC_FARM,
602 	GAUDI2_ENGINE_ID_KDMA,
603 	GAUDI2_ENGINE_ID_SIZE
604 };
605 
606 /*
607  * ASIC specific PLL index
608  *
609  * Used to retrieve in frequency info of different IPs via HL_INFO_PLL_FREQUENCY under
610  * DRM_IOCTL_HL_INFO IOCTL.
611  * The enums need to be used as an index in struct hl_pll_frequency_info.
612  */
613 
614 enum hl_goya_pll_index {
615 	HL_GOYA_CPU_PLL = 0,
616 	HL_GOYA_IC_PLL,
617 	HL_GOYA_MC_PLL,
618 	HL_GOYA_MME_PLL,
619 	HL_GOYA_PCI_PLL,
620 	HL_GOYA_EMMC_PLL,
621 	HL_GOYA_TPC_PLL,
622 	HL_GOYA_PLL_MAX
623 };
624 
625 enum hl_gaudi_pll_index {
626 	HL_GAUDI_CPU_PLL = 0,
627 	HL_GAUDI_PCI_PLL,
628 	HL_GAUDI_SRAM_PLL,
629 	HL_GAUDI_HBM_PLL,
630 	HL_GAUDI_NIC_PLL,
631 	HL_GAUDI_DMA_PLL,
632 	HL_GAUDI_MESH_PLL,
633 	HL_GAUDI_MME_PLL,
634 	HL_GAUDI_TPC_PLL,
635 	HL_GAUDI_IF_PLL,
636 	HL_GAUDI_PLL_MAX
637 };
638 
639 enum hl_gaudi2_pll_index {
640 	HL_GAUDI2_CPU_PLL = 0,
641 	HL_GAUDI2_PCI_PLL,
642 	HL_GAUDI2_SRAM_PLL,
643 	HL_GAUDI2_HBM_PLL,
644 	HL_GAUDI2_NIC_PLL,
645 	HL_GAUDI2_DMA_PLL,
646 	HL_GAUDI2_MESH_PLL,
647 	HL_GAUDI2_MME_PLL,
648 	HL_GAUDI2_TPC_PLL,
649 	HL_GAUDI2_IF_PLL,
650 	HL_GAUDI2_VID_PLL,
651 	HL_GAUDI2_MSS_PLL,
652 	HL_GAUDI2_PLL_MAX
653 };
654 
655 /**
656  * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is
657  *                              submitted to the GOYA's DMA QMAN. This attribute is not relevant
658  *                              to the H/W but the kernel driver use it to parse the packet's
659  *                              addresses and patch/validate them.
660  * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR.
661  * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM.
662  * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM.
663  * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR.
664  * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory.
665  * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory.
666  * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR.
667  * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM.
668  * @HL_DMA_ENUM_MAX: number of values in enum
669  */
670 enum hl_goya_dma_direction {
671 	HL_DMA_HOST_TO_DRAM,
672 	HL_DMA_HOST_TO_SRAM,
673 	HL_DMA_DRAM_TO_SRAM,
674 	HL_DMA_SRAM_TO_DRAM,
675 	HL_DMA_SRAM_TO_HOST,
676 	HL_DMA_DRAM_TO_HOST,
677 	HL_DMA_DRAM_TO_DRAM,
678 	HL_DMA_SRAM_TO_SRAM,
679 	HL_DMA_ENUM_MAX
680 };
681 
682 /**
683  * enum hl_device_status - Device status information.
684  * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational.
685  * @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset.
686  * @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable.
687  * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled.
688  * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in
689  *                                       progress.
690  * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was
691  *                                                  triggered because the user released the device
692  * @HL_DEVICE_STATUS_LAST: Last status.
693  */
694 enum hl_device_status {
695 	HL_DEVICE_STATUS_OPERATIONAL,
696 	HL_DEVICE_STATUS_IN_RESET,
697 	HL_DEVICE_STATUS_MALFUNCTION,
698 	HL_DEVICE_STATUS_NEEDS_RESET,
699 	HL_DEVICE_STATUS_IN_DEVICE_CREATION,
700 	HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE,
701 	HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE
702 };
703 
704 enum hl_server_type {
705 	HL_SERVER_TYPE_UNKNOWN = 0,
706 	HL_SERVER_GAUDI_HLS1 = 1,
707 	HL_SERVER_GAUDI_HLS1H = 2,
708 	HL_SERVER_GAUDI_TYPE1 = 3,
709 	HL_SERVER_GAUDI_TYPE2 = 4,
710 	HL_SERVER_GAUDI2_HLS2 = 5,
711 	HL_SERVER_GAUDI2_TYPE1 = 7
712 };
713 
714 /*
715  * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command
716  *
717  * HL_NOTIFIER_EVENT_TPC_ASSERT		- Indicates TPC assert event
718  * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	- Indicates undefined operation code
719  * HL_NOTIFIER_EVENT_DEVICE_RESET	- Indicates device requires a reset
720  * HL_NOTIFIER_EVENT_CS_TIMEOUT		- Indicates CS timeout error
721  * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	- Indicates device is unavailable
722  * HL_NOTIFIER_EVENT_USER_ENGINE_ERR	- Indicates device engine in error state
723  * HL_NOTIFIER_EVENT_GENERAL_HW_ERR     - Indicates device HW error
724  * HL_NOTIFIER_EVENT_RAZWI              - Indicates razwi happened
725  * HL_NOTIFIER_EVENT_PAGE_FAULT         - Indicates page fault happened
726  * HL_NOTIFIER_EVENT_CRITICAL_HW_ERR    - Indicates a HW error that requires SW abort and
727  *                                        HW reset
728  * HL_NOTIFIER_EVENT_CRITICAL_FW_ERR    - Indicates a FW error that requires SW abort and
729  *                                        HW reset
730  */
731 #define HL_NOTIFIER_EVENT_TPC_ASSERT		(1ULL << 0)
732 #define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	(1ULL << 1)
733 #define HL_NOTIFIER_EVENT_DEVICE_RESET		(1ULL << 2)
734 #define HL_NOTIFIER_EVENT_CS_TIMEOUT		(1ULL << 3)
735 #define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	(1ULL << 4)
736 #define HL_NOTIFIER_EVENT_USER_ENGINE_ERR	(1ULL << 5)
737 #define HL_NOTIFIER_EVENT_GENERAL_HW_ERR	(1ULL << 6)
738 #define HL_NOTIFIER_EVENT_RAZWI			(1ULL << 7)
739 #define HL_NOTIFIER_EVENT_PAGE_FAULT		(1ULL << 8)
740 #define HL_NOTIFIER_EVENT_CRITICL_HW_ERR	(1ULL << 9)
741 #define HL_NOTIFIER_EVENT_CRITICL_FW_ERR	(1ULL << 10)
742 
743 /* Opcode for management ioctl
744  *
745  * HW_IP_INFO            - Receive information about different IP blocks in the
746  *                         device.
747  * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
748  *                         occurred since the last hard reset.
749  * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
750  *                         specific context. This is relevant only for devices
751  *                         where the dram is managed by the kernel driver
752  * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
753  *                         internal engine.
754  * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
755  *                         require an open context.
756  * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
757  *                               over the last period specified by the user.
758  *                               The period can be between 100ms to 1s, in
759  *                               resolution of 100ms. The return value is a
760  *                               percentage of the utilization rate.
761  * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
762  *                               event occurred since the driver was loaded.
763  * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
764  *                               of the device in MHz. The maximum clock rate is
765  *                               configurable via sysfs parameter
766  * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
767  *                         operations performed on the device since the last
768  *                         time the driver was loaded.
769  * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
770  *                         for synchronization.
771  * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
772  * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
773  * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
774  * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
775  * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
776  * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
777  * HL_INFO_POWER         - Retrieve power information
778  * HL_INFO_OPEN_STATS    - Retrieve info regarding recent device open calls
779  * HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info
780  * HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num
781  * HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened
782  *                                  and CS timeout or razwi error occurred.
783  * HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number.
784  * HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi:
785  *                            Timestamp of razwi.
786  *                            The address which accessing it caused the razwi.
787  *                            Razwi initiator.
788  *                            Razwi cause, was it a page fault or MMU access error.
789  *                            May return 0 even though no new data is available, in that case
790  *                            timestamp will be 0.
791  * HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation
792  * HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot.
793  * HL_INFO_REGISTER_EVENTFD   - Register eventfd for event notifications.
794  * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd
795  * HL_INFO_GET_EVENTS         - Retrieve the last occurred events
796  * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information.
797  *                                  May return 0 even though no new data is available, in that case
798  *                                  timestamp will be 0.
799  * HL_INFO_ENGINE_STATUS - Retrieve the status of all the h/w engines in the asic.
800  * HL_INFO_PAGE_FAULT_EVENT - Retrieve parameters of captured page fault.
801  *                            May return 0 even though no new data is available, in that case
802  *                            timestamp will be 0.
803  * HL_INFO_USER_MAPPINGS - Retrieve user mappings, captured after page fault event.
804  * HL_INFO_FW_GENERIC_REQ - Send generic request to FW.
805  * HL_INFO_HW_ERR_EVENT   - Retrieve information on the reported HW error.
806  *                          May return 0 even though no new data is available, in that case
807  *                          timestamp will be 0.
808  * HL_INFO_FW_ERR_EVENT   - Retrieve information on the reported FW error.
809  *                          May return 0 even though no new data is available, in that case
810  *                          timestamp will be 0.
811  * HL_INFO_USER_ENGINE_ERR_EVENT - Retrieve the last engine id that reported an error.
812  */
813 #define HL_INFO_HW_IP_INFO			0
814 #define HL_INFO_HW_EVENTS			1
815 #define HL_INFO_DRAM_USAGE			2
816 #define HL_INFO_HW_IDLE				3
817 #define HL_INFO_DEVICE_STATUS			4
818 #define HL_INFO_DEVICE_UTILIZATION		6
819 #define HL_INFO_HW_EVENTS_AGGREGATE		7
820 #define HL_INFO_CLK_RATE			8
821 #define HL_INFO_RESET_COUNT			9
822 #define HL_INFO_TIME_SYNC			10
823 #define HL_INFO_CS_COUNTERS			11
824 #define HL_INFO_PCI_COUNTERS			12
825 #define HL_INFO_CLK_THROTTLE_REASON		13
826 #define HL_INFO_SYNC_MANAGER			14
827 #define HL_INFO_TOTAL_ENERGY			15
828 #define HL_INFO_PLL_FREQUENCY			16
829 #define HL_INFO_POWER				17
830 #define HL_INFO_OPEN_STATS			18
831 #define HL_INFO_DRAM_REPLACED_ROWS		21
832 #define HL_INFO_DRAM_PENDING_ROWS		22
833 #define HL_INFO_LAST_ERR_OPEN_DEV_TIME		23
834 #define HL_INFO_CS_TIMEOUT_EVENT		24
835 #define HL_INFO_RAZWI_EVENT			25
836 #define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES	26
837 #define HL_INFO_SECURED_ATTESTATION		27
838 #define HL_INFO_REGISTER_EVENTFD		28
839 #define HL_INFO_UNREGISTER_EVENTFD		29
840 #define HL_INFO_GET_EVENTS			30
841 #define HL_INFO_UNDEFINED_OPCODE_EVENT		31
842 #define HL_INFO_ENGINE_STATUS			32
843 #define HL_INFO_PAGE_FAULT_EVENT		33
844 #define HL_INFO_USER_MAPPINGS			34
845 #define HL_INFO_FW_GENERIC_REQ			35
846 #define HL_INFO_HW_ERR_EVENT			36
847 #define HL_INFO_FW_ERR_EVENT			37
848 #define HL_INFO_USER_ENGINE_ERR_EVENT		38
849 
850 #define HL_INFO_VERSION_MAX_LEN			128
851 #define HL_INFO_CARD_NAME_MAX_LEN		16
852 
853 /* Maximum buffer size for retrieving engines status */
854 #define HL_ENGINES_DATA_MAX_SIZE	SZ_1M
855 
856 /**
857  * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
858  * @sram_base_address: The first SRAM physical base address that is free to be
859  *                     used by the user.
860  * @dram_base_address: The first DRAM virtual or physical base address that is
861  *                     free to be used by the user.
862  * @dram_size: The DRAM size that is available to the user.
863  * @sram_size: The SRAM size that is available to the user.
864  * @num_of_events: The number of events that can be received from the f/w. This
865  *                 is needed so the user can what is the size of the h/w events
866  *                 array he needs to pass to the kernel when he wants to fetch
867  *                 the event counters.
868  * @device_id: PCI device ID of the ASIC.
869  * @module_id: Module ID of the ASIC for mezzanine cards in servers
870  *             (From OCP spec).
871  * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled.
872  * @first_available_interrupt_id: The first available interrupt ID for the user
873  *                                to be used when it works with user interrupts.
874  *                                Relevant for Gaudi2 and later.
875  * @server_type: Server type that the Gaudi ASIC is currently installed in.
876  *               The value is according to enum hl_server_type
877  * @cpld_version: CPLD version on the board.
878  * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
879  * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
880  * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
881  * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
882  *                           in some ASICs.
883  * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
884  *                    for Goya/Gaudi only.
885  * @dram_enabled: Whether the DRAM is enabled.
886  * @security_enabled: Whether security is enabled on device.
887  * @mme_master_slave_mode: Indicate whether the MME is working in master/slave
888  *                         configuration. Relevant for Gaudi2 and later.
889  * @cpucp_version: The CPUCP f/w version.
890  * @card_name: The card name as passed by the f/w.
891  * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled.
892  *                        Relevant for Gaudi2 and later.
893  * @dram_page_size: The DRAM physical page size.
894  * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled.
895  *                     Relevant for Gaudi2 and later.
896  * @number_of_user_interrupts: The number of interrupts that are available to the userspace
897  *                             application to use. Relevant for Gaudi2 and later.
898  * @device_mem_alloc_default_page_size: default page size used in device memory allocation.
899  * @revision_id: PCI revision ID of the ASIC.
900  * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
901  * @rotator_enabled_mask: Bit-mask that represents which rotators are enabled.
902  *                        Relevant for Gaudi3 and later.
903  * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
904  *                                  in order to raise events toward FW.
905  * @reserved_dram_size: DRAM size reserved for driver and firmware.
906  */
907 struct hl_info_hw_ip_info {
908 	__u64 sram_base_address;
909 	__u64 dram_base_address;
910 	__u64 dram_size;
911 	__u32 sram_size;
912 	__u32 num_of_events;
913 	__u32 device_id;
914 	__u32 module_id;
915 	__u32 decoder_enabled_mask;
916 	__u16 first_available_interrupt_id;
917 	__u16 server_type;
918 	__u32 cpld_version;
919 	__u32 psoc_pci_pll_nr;
920 	__u32 psoc_pci_pll_nf;
921 	__u32 psoc_pci_pll_od;
922 	__u32 psoc_pci_pll_div_factor;
923 	__u8 tpc_enabled_mask;
924 	__u8 dram_enabled;
925 	__u8 security_enabled;
926 	__u8 mme_master_slave_mode;
927 	__u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
928 	__u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
929 	__u64 tpc_enabled_mask_ext;
930 	__u64 dram_page_size;
931 	__u32 edma_enabled_mask;
932 	__u16 number_of_user_interrupts;
933 	__u8 reserved1;
934 	__u8 reserved2;
935 	__u64 reserved3;
936 	__u64 device_mem_alloc_default_page_size;
937 	__u64 reserved4;
938 	__u64 reserved5;
939 	__u32 reserved6;
940 	__u8 reserved7;
941 	__u8 revision_id;
942 	__u16 tpc_interrupt_id;
943 	__u32 rotator_enabled_mask;
944 	__u32 reserved9;
945 	__u64 engine_core_interrupt_reg_addr;
946 	__u64 reserved_dram_size;
947 };
948 
949 struct hl_info_dram_usage {
950 	__u64 dram_free_mem;
951 	__u64 ctx_dram_mem;
952 };
953 
954 #define HL_BUSY_ENGINES_MASK_EXT_SIZE	4
955 
956 struct hl_info_hw_idle {
957 	__u32 is_idle;
958 	/*
959 	 * Bitmask of busy engines.
960 	 * Bits definition is according to `enum <chip>_engine_id'.
961 	 */
962 	__u32 busy_engines_mask;
963 
964 	/*
965 	 * Extended Bitmask of busy engines.
966 	 * Bits definition is according to `enum <chip>_engine_id'.
967 	 */
968 	__u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
969 };
970 
971 struct hl_info_device_status {
972 	__u32 status;
973 	__u32 pad;
974 };
975 
976 struct hl_info_device_utilization {
977 	__u32 utilization;
978 	__u32 pad;
979 };
980 
981 struct hl_info_clk_rate {
982 	__u32 cur_clk_rate_mhz;
983 	__u32 max_clk_rate_mhz;
984 };
985 
986 struct hl_info_reset_count {
987 	__u32 hard_reset_cnt;
988 	__u32 soft_reset_cnt;
989 };
990 
991 struct hl_info_time_sync {
992 	__u64 device_time;
993 	__u64 host_time;
994 	__u64 tsc_time;
995 };
996 
997 /**
998  * struct hl_info_pci_counters - pci counters
999  * @rx_throughput: PCI rx throughput KBps
1000  * @tx_throughput: PCI tx throughput KBps
1001  * @replay_cnt: PCI replay counter
1002  */
1003 struct hl_info_pci_counters {
1004 	__u64 rx_throughput;
1005 	__u64 tx_throughput;
1006 	__u64 replay_cnt;
1007 };
1008 
1009 enum hl_clk_throttling_type {
1010 	HL_CLK_THROTTLE_TYPE_POWER,
1011 	HL_CLK_THROTTLE_TYPE_THERMAL,
1012 	HL_CLK_THROTTLE_TYPE_MAX
1013 };
1014 
1015 /* clk_throttling_reason masks */
1016 #define HL_CLK_THROTTLE_POWER		(1 << HL_CLK_THROTTLE_TYPE_POWER)
1017 #define HL_CLK_THROTTLE_THERMAL		(1 << HL_CLK_THROTTLE_TYPE_THERMAL)
1018 
1019 /**
1020  * struct hl_info_clk_throttle - clock throttling reason
1021  * @clk_throttling_reason: each bit represents a clk throttling reason
1022  * @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event
1023  * @clk_throttling_duration_ns: the clock throttle time in nanosec
1024  */
1025 struct hl_info_clk_throttle {
1026 	__u32 clk_throttling_reason;
1027 	__u32 pad;
1028 	__u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX];
1029 	__u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX];
1030 };
1031 
1032 /**
1033  * struct hl_info_energy - device energy information
1034  * @total_energy_consumption: total device energy consumption
1035  */
1036 struct hl_info_energy {
1037 	__u64 total_energy_consumption;
1038 };
1039 
1040 #define HL_PLL_NUM_OUTPUTS 4
1041 
1042 struct hl_pll_frequency_info {
1043 	__u16 output[HL_PLL_NUM_OUTPUTS];
1044 };
1045 
1046 /**
1047  * struct hl_open_stats_info - device open statistics information
1048  * @open_counter: ever growing counter, increased on each successful dev open
1049  * @last_open_period_ms: duration (ms) device was open last time
1050  * @is_compute_ctx_active: Whether there is an active compute context executing
1051  * @compute_ctx_in_release: true if the current compute context is being released
1052  */
1053 struct hl_open_stats_info {
1054 	__u64 open_counter;
1055 	__u64 last_open_period_ms;
1056 	__u8 is_compute_ctx_active;
1057 	__u8 compute_ctx_in_release;
1058 	__u8 pad[6];
1059 };
1060 
1061 /**
1062  * struct hl_power_info - power information
1063  * @power: power consumption
1064  */
1065 struct hl_power_info {
1066 	__u64 power;
1067 };
1068 
1069 /**
1070  * struct hl_info_sync_manager - sync manager information
1071  * @first_available_sync_object: first available sob
1072  * @first_available_monitor: first available monitor
1073  * @first_available_cq: first available cq
1074  */
1075 struct hl_info_sync_manager {
1076 	__u32 first_available_sync_object;
1077 	__u32 first_available_monitor;
1078 	__u32 first_available_cq;
1079 	__u32 reserved;
1080 };
1081 
1082 /**
1083  * struct hl_info_cs_counters - command submission counters
1084  * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
1085  * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
1086  * @total_parsing_drop_cnt: total dropped due to error in packet parsing
1087  * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
1088  * @total_queue_full_drop_cnt: total dropped due to queue full
1089  * @ctx_queue_full_drop_cnt: context dropped due to queue full
1090  * @total_device_in_reset_drop_cnt: total dropped due to device in reset
1091  * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
1092  * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
1093  * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
1094  * @total_validation_drop_cnt: total dropped due to validation error
1095  * @ctx_validation_drop_cnt: context dropped due to validation error
1096  */
1097 struct hl_info_cs_counters {
1098 	__u64 total_out_of_mem_drop_cnt;
1099 	__u64 ctx_out_of_mem_drop_cnt;
1100 	__u64 total_parsing_drop_cnt;
1101 	__u64 ctx_parsing_drop_cnt;
1102 	__u64 total_queue_full_drop_cnt;
1103 	__u64 ctx_queue_full_drop_cnt;
1104 	__u64 total_device_in_reset_drop_cnt;
1105 	__u64 ctx_device_in_reset_drop_cnt;
1106 	__u64 total_max_cs_in_flight_drop_cnt;
1107 	__u64 ctx_max_cs_in_flight_drop_cnt;
1108 	__u64 total_validation_drop_cnt;
1109 	__u64 ctx_validation_drop_cnt;
1110 };
1111 
1112 /**
1113  * struct hl_info_last_err_open_dev_time - last error boot information.
1114  * @timestamp: timestamp of last time the device was opened and error occurred.
1115  */
1116 struct hl_info_last_err_open_dev_time {
1117 	__s64 timestamp;
1118 };
1119 
1120 /**
1121  * struct hl_info_cs_timeout_event - last CS timeout information.
1122  * @timestamp: timestamp when last CS timeout event occurred.
1123  * @seq: sequence number of last CS timeout event.
1124  */
1125 struct hl_info_cs_timeout_event {
1126 	__s64 timestamp;
1127 	__u64 seq;
1128 };
1129 
1130 #define HL_RAZWI_NA_ENG_ID U16_MAX
1131 #define HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR 128
1132 #define HL_RAZWI_READ		BIT(0)
1133 #define HL_RAZWI_WRITE		BIT(1)
1134 #define HL_RAZWI_LBW		BIT(2)
1135 #define HL_RAZWI_HBW		BIT(3)
1136 #define HL_RAZWI_RR		BIT(4)
1137 #define HL_RAZWI_ADDR_DEC	BIT(5)
1138 
1139 /**
1140  * struct hl_info_razwi_event - razwi information.
1141  * @timestamp: timestamp of razwi.
1142  * @addr: address which accessing it caused razwi.
1143  * @engine_id: engine id of the razwi initiator, if it was initiated by engine that does not
1144  *             have engine id it will be set to HL_RAZWI_NA_ENG_ID. If there are several possible
1145  *             engines which caused the razwi, it will hold all of them.
1146  * @num_of_possible_engines: contains number of possible engine ids. In some asics, razwi indication
1147  *                           might be common for several engines and there is no way to get the
1148  *                           exact engine. In this way, engine_id array will be filled with all
1149  *                           possible engines caused this razwi. Also, there might be possibility
1150  *                           in gaudi, where we don't indication on specific engine, in that case
1151  *                           the value of this parameter will be zero.
1152  * @flags: bitmask for additional data: HL_RAZWI_READ - razwi caused by read operation
1153  *                                      HL_RAZWI_WRITE - razwi caused by write operation
1154  *                                      HL_RAZWI_LBW - razwi caused by lbw fabric transaction
1155  *                                      HL_RAZWI_HBW - razwi caused by hbw fabric transaction
1156  *                                      HL_RAZWI_RR - razwi caused by range register
1157  *                                      HL_RAZWI_ADDR_DEC - razwi caused by address decode error
1158  *         Note: this data is not supported by all asics, in that case the relevant bits will not
1159  *               be set.
1160  */
1161 struct hl_info_razwi_event {
1162 	__s64 timestamp;
1163 	__u64 addr;
1164 	__u16 engine_id[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR];
1165 	__u16 num_of_possible_engines;
1166 	__u8 flags;
1167 	__u8 pad[5];
1168 };
1169 
1170 #define MAX_QMAN_STREAMS_INFO		4
1171 #define OPCODE_INFO_MAX_ADDR_SIZE	8
1172 /**
1173  * struct hl_info_undefined_opcode_event - info about last undefined opcode error
1174  * @timestamp: timestamp of the undefined opcode error
1175  * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
1176  *                   entries. In case all streams array entries are
1177  *                   filled with values, it means the execution was in Lower-CP.
1178  * @cq_addr: the address of the current handled command buffer
1179  * @cq_size: the size of the current handled command buffer
1180  * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
1181  *                       should be equal to 1 in case of undefined opcode
1182  *                       in Upper-CP (specific stream) and equal to 4 incase
1183  *                       of undefined opcode in Lower-CP.
1184  * @engine_id: engine-id that the error occurred on
1185  * @stream_id: the stream id the error occurred on. In case the stream equals to
1186  *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
1187  */
1188 struct hl_info_undefined_opcode_event {
1189 	__s64 timestamp;
1190 	__u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
1191 	__u64 cq_addr;
1192 	__u32 cq_size;
1193 	__u32 cb_addr_streams_len;
1194 	__u32 engine_id;
1195 	__u32 stream_id;
1196 };
1197 
1198 /**
1199  * struct hl_info_hw_err_event - info about HW error
1200  * @timestamp: timestamp of error occurrence
1201  * @event_id: The async event ID (specific to each device type).
1202  * @pad: size padding for u64 granularity.
1203  */
1204 struct hl_info_hw_err_event {
1205 	__s64 timestamp;
1206 	__u16 event_id;
1207 	__u16 pad[3];
1208 };
1209 
1210 /* FW error definition for event_type in struct hl_info_fw_err_event */
1211 enum hl_info_fw_err_type {
1212 	HL_INFO_FW_HEARTBEAT_ERR,
1213 	HL_INFO_FW_REPORTED_ERR,
1214 };
1215 
1216 /**
1217  * struct hl_info_fw_err_event - info about FW error
1218  * @timestamp: time-stamp of error occurrence
1219  * @err_type: The type of event as defined in hl_info_fw_err_type.
1220  * @event_id: The async event ID (specific to each device type, applicable only when event type is
1221  *             HL_INFO_FW_REPORTED_ERR).
1222  * @pad: size padding for u64 granularity.
1223  */
1224 struct hl_info_fw_err_event {
1225 	__s64 timestamp;
1226 	__u16 err_type;
1227 	__u16 event_id;
1228 	__u32 pad;
1229 };
1230 
1231 /**
1232  * struct hl_info_engine_err_event - engine error info
1233  * @timestamp: time-stamp of error occurrence
1234  * @engine_id: engine id who reported the error.
1235  * @error_count: Amount of errors reported.
1236  * @pad: size padding for u64 granularity.
1237  */
1238 struct hl_info_engine_err_event {
1239 	__s64 timestamp;
1240 	__u16 engine_id;
1241 	__u16 error_count;
1242 	__u32 pad;
1243 };
1244 
1245 /**
1246  * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information.
1247  * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size
1248  *                      (e.g. 0x2100000 means that 1MB and 32MB pages are supported).
1249  */
1250 struct hl_info_dev_memalloc_page_sizes {
1251 	__u64 page_order_bitmask;
1252 };
1253 
1254 #define SEC_PCR_DATA_BUF_SZ	256
1255 #define SEC_PCR_QUOTE_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1256 #define SEC_SIGNATURE_BUF_SZ	255	/* (256 - 1) 1 byte used for size */
1257 #define SEC_PUB_DATA_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1258 #define SEC_CERTIFICATE_BUF_SZ	2046	/* (2048 - 2) 2 bytes used for size */
1259 
1260 /*
1261  * struct hl_info_sec_attest - attestation report of the boot
1262  * @nonce: number only used once. random number provided by host. this also passed to the quote
1263  *         command as a qualifying data.
1264  * @pcr_quote_len: length of the attestation quote data (bytes)
1265  * @pub_data_len: length of the public data (bytes)
1266  * @certificate_len: length of the certificate (bytes)
1267  * @pcr_num_reg: number of PCR registers in the pcr_data array
1268  * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1269  * @quote_sig_len: length of the attestation report signature (bytes)
1270  * @pcr_data: raw values of the PCR registers
1271  * @pcr_quote: attestation report data structure
1272  * @quote_sig: signature structure of the attestation report
1273  * @public_data: public key for the signed attestation
1274  *		 (outPublic + name + qualifiedName)
1275  * @certificate: certificate for the attestation signing key
1276  */
1277 struct hl_info_sec_attest {
1278 	__u32 nonce;
1279 	__u16 pcr_quote_len;
1280 	__u16 pub_data_len;
1281 	__u16 certificate_len;
1282 	__u8 pcr_num_reg;
1283 	__u8 pcr_reg_len;
1284 	__u8 quote_sig_len;
1285 	__u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1286 	__u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1287 	__u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1288 	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1289 	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1290 	__u8 pad0[2];
1291 };
1292 
1293 /**
1294  * struct hl_page_fault_info - page fault information.
1295  * @timestamp: timestamp of page fault.
1296  * @addr: address which accessing it caused page fault.
1297  * @engine_id: engine id which caused the page fault, supported only in gaudi3.
1298  */
1299 struct hl_page_fault_info {
1300 	__s64 timestamp;
1301 	__u64 addr;
1302 	__u16 engine_id;
1303 	__u8 pad[6];
1304 };
1305 
1306 /**
1307  * struct hl_user_mapping - user mapping information.
1308  * @dev_va: device virtual address.
1309  * @size: virtual address mapping size.
1310  */
1311 struct hl_user_mapping {
1312 	__u64 dev_va;
1313 	__u64 size;
1314 };
1315 
1316 enum gaudi_dcores {
1317 	HL_GAUDI_WS_DCORE,
1318 	HL_GAUDI_WN_DCORE,
1319 	HL_GAUDI_EN_DCORE,
1320 	HL_GAUDI_ES_DCORE
1321 };
1322 
1323 /**
1324  * struct hl_info_args - Main structure to retrieve device related information.
1325  * @return_pointer: User space address of the relevant structure related to HL_INFO_* operation
1326  *                  mentioned in @op.
1327  * @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it
1328  *               limits how many bytes the kernel can write. For hw_events array, the size should be
1329  *               hl_info_hw_ip_info.num_of_events * sizeof(__u32).
1330  * @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details.
1331  * @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores).
1332  * @ctx_id: Context ID of the user. Currently not in use.
1333  * @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms
1334  *             resolution. Currently not in use.
1335  * @pll_index: Index as defined in hl_<asic type>_pll_index enumeration.
1336  * @eventfd: event file descriptor for event notifications.
1337  * @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the
1338  *                           driver. It is possible for the user to allocate buffer larger than
1339  *                           needed, hence updating this variable so user will know the exact amount
1340  *                           of bytes copied by the kernel to the buffer.
1341  * @sec_attest_nonce: Nonce number used for attestation report.
1342  * @array_size: Number of array members copied to user buffer.
1343  *              Relevant for HL_INFO_USER_MAPPINGS info ioctl.
1344  * @fw_sub_opcode: generic requests sub opcodes.
1345  * @pad: Padding to 64 bit.
1346  */
1347 struct hl_info_args {
1348 	__u64 return_pointer;
1349 	__u32 return_size;
1350 	__u32 op;
1351 
1352 	union {
1353 		__u32 dcore_id;
1354 		__u32 ctx_id;
1355 		__u32 period_ms;
1356 		__u32 pll_index;
1357 		__u32 eventfd;
1358 		__u32 user_buffer_actual_size;
1359 		__u32 sec_attest_nonce;
1360 		__u32 array_size;
1361 		__u32 fw_sub_opcode;
1362 	};
1363 
1364 	__u32 pad;
1365 };
1366 
1367 /* Opcode to create a new command buffer */
1368 #define HL_CB_OP_CREATE		0
1369 /* Opcode to destroy previously created command buffer */
1370 #define HL_CB_OP_DESTROY	1
1371 /* Opcode to retrieve information about a command buffer */
1372 #define HL_CB_OP_INFO		2
1373 
1374 /* 2MB minus 32 bytes for 2xMSG_PROT */
1375 #define HL_MAX_CB_SIZE		(0x200000 - 32)
1376 
1377 /* Indicates whether the command buffer should be mapped to the device's MMU */
1378 #define HL_CB_FLAGS_MAP			0x1
1379 
1380 /* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */
1381 #define HL_CB_FLAGS_GET_DEVICE_VA	0x2
1382 
1383 struct hl_cb_in {
1384 	/* Handle of CB or 0 if we want to create one */
1385 	__u64 cb_handle;
1386 	/* HL_CB_OP_* */
1387 	__u32 op;
1388 
1389 	/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
1390 	 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
1391 	 */
1392 	__u32 cb_size;
1393 
1394 	/* Context ID - Currently not in use */
1395 	__u32 ctx_id;
1396 	/* HL_CB_FLAGS_* */
1397 	__u32 flags;
1398 };
1399 
1400 struct hl_cb_out {
1401 	union {
1402 		/* Handle of CB */
1403 		__u64 cb_handle;
1404 
1405 		union {
1406 			/* Information about CB */
1407 			struct {
1408 				/* Usage count of CB */
1409 				__u32 usage_cnt;
1410 				__u32 pad;
1411 			};
1412 
1413 			/* CB mapped address to device MMU */
1414 			__u64 device_va;
1415 		};
1416 	};
1417 };
1418 
1419 union hl_cb_args {
1420 	struct hl_cb_in in;
1421 	struct hl_cb_out out;
1422 };
1423 
1424 /* HL_CS_CHUNK_FLAGS_ values
1425  *
1426  * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
1427  *      Indicates if the CB was allocated and mapped by userspace
1428  *      (relevant to Gaudi2 and later). User allocated CB is a command buffer,
1429  *      allocated by the user, via malloc (or similar). After allocating the
1430  *      CB, the user invokes - “memory ioctl” to map the user memory into a
1431  *      device virtual address. The user provides this address via the
1432  *      cb_handle field. The interface provides the ability to create a
1433  *      large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it
1434  *      increases the PCI-DMA queues throughput. This CB allocation method
1435  *      also reduces the use of Linux DMA-able memory pool. Which are limited
1436  *      and used by other Linux sub-systems.
1437  */
1438 #define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
1439 
1440 /*
1441  * This structure size must always be fixed to 64-bytes for backward
1442  * compatibility
1443  */
1444 struct hl_cs_chunk {
1445 	union {
1446 		/* Goya/Gaudi:
1447 		 * For external queue, this represents a Handle of CB on the
1448 		 * Host.
1449 		 * For internal queue in Goya, this represents an SRAM or
1450 		 * a DRAM address of the internal CB. In Gaudi, this might also
1451 		 * represent a mapped host address of the CB.
1452 		 *
1453 		 * Gaudi2 onwards:
1454 		 * For H/W queue, this represents either a Handle of CB on the
1455 		 * Host, or an SRAM, a DRAM, or a mapped host address of the CB.
1456 		 *
1457 		 * A mapped host address is in the device address space, after
1458 		 * a host address was mapped by the device MMU.
1459 		 */
1460 		__u64 cb_handle;
1461 
1462 		/* Relevant only when HL_CS_FLAGS_WAIT or
1463 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1464 		 * This holds address of array of u64 values that contain
1465 		 * signal CS sequence numbers. The wait described by
1466 		 * this job will listen on all those signals
1467 		 * (wait event per signal)
1468 		 */
1469 		__u64 signal_seq_arr;
1470 
1471 		/*
1472 		 * Relevant only when HL_CS_FLAGS_WAIT or
1473 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1474 		 * along with HL_CS_FLAGS_ENCAP_SIGNALS.
1475 		 * This is the CS sequence which has the encapsulated signals.
1476 		 */
1477 		__u64 encaps_signal_seq;
1478 	};
1479 
1480 	/* Index of queue to put the CB on */
1481 	__u32 queue_index;
1482 
1483 	union {
1484 		/*
1485 		 * Size of command buffer with valid packets
1486 		 * Can be smaller then actual CB size
1487 		 */
1488 		__u32 cb_size;
1489 
1490 		/* Relevant only when HL_CS_FLAGS_WAIT or
1491 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1492 		 * Number of entries in signal_seq_arr
1493 		 */
1494 		__u32 num_signal_seq_arr;
1495 
1496 		/* Relevant only when HL_CS_FLAGS_WAIT or
1497 		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along
1498 		 * with HL_CS_FLAGS_ENCAP_SIGNALS
1499 		 * This set the signals range that the user want to wait for
1500 		 * out of the whole reserved signals range.
1501 		 * e.g if the signals range is 20, and user don't want
1502 		 * to wait for signal 8, so he set this offset to 7, then
1503 		 * he call the API again with 9 and so on till 20.
1504 		 */
1505 		__u32 encaps_signal_offset;
1506 	};
1507 
1508 	/* HL_CS_CHUNK_FLAGS_* */
1509 	__u32 cs_chunk_flags;
1510 
1511 	/* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1512 	 * This holds the collective engine ID. The wait described by this job
1513 	 * will sync with this engine and with all NICs before completion.
1514 	 */
1515 	__u32 collective_engine_id;
1516 
1517 	/* Align structure to 64 bytes */
1518 	__u32 pad[10];
1519 };
1520 
1521 /* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
1522 #define HL_CS_FLAGS_FORCE_RESTORE		0x1
1523 #define HL_CS_FLAGS_SIGNAL			0x2
1524 #define HL_CS_FLAGS_WAIT			0x4
1525 #define HL_CS_FLAGS_COLLECTIVE_WAIT		0x8
1526 
1527 #define HL_CS_FLAGS_TIMESTAMP			0x20
1528 #define HL_CS_FLAGS_STAGED_SUBMISSION		0x40
1529 #define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST	0x80
1530 #define HL_CS_FLAGS_STAGED_SUBMISSION_LAST	0x100
1531 #define HL_CS_FLAGS_CUSTOM_TIMEOUT		0x200
1532 #define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT	0x400
1533 
1534 /*
1535  * The encapsulated signals CS is merged into the existing CS ioctls.
1536  * In order to use this feature need to follow the below procedure:
1537  * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
1538  *    the output of this API will be the SOB offset from CFG_BASE.
1539  *    this address will be used to patch CB cmds to do the signaling for this
1540  *    SOB by incrementing it's value.
1541  *    for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
1542  *    CS type, note that this might fail if out-of-sync happened to the SOB
1543  *    value, in case other signaling request to the same SOB occurred between
1544  *    reserve-unreserve calls.
1545  * 2. Use the staged CS to do the encapsulated signaling jobs.
1546  *    use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1547  *    along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
1548  *    field. This offset allows app to wait on part of the reserved signals.
1549  * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
1550  *    to wait for the encapsulated signals.
1551  */
1552 #define HL_CS_FLAGS_ENCAP_SIGNALS		0x800
1553 #define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY	0x1000
1554 #define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY	0x2000
1555 
1556 /*
1557  * The engine cores CS is merged into the existing CS ioctls.
1558  * Use it to control the engine cores mode.
1559  */
1560 #define HL_CS_FLAGS_ENGINE_CORE_COMMAND		0x4000
1561 
1562 /*
1563  * The flush HBW PCI writes is merged into the existing CS ioctls.
1564  * Used to flush all HBW PCI writes.
1565  * This is a blocking operation and for this reason the user shall not use
1566  * the return sequence number (which will be invalid anyway)
1567  */
1568 #define HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES	0x8000
1569 
1570 /*
1571  * The engines CS is merged into the existing CS ioctls.
1572  * Use it to control engines modes.
1573  */
1574 #define HL_CS_FLAGS_ENGINES_COMMAND		0x10000
1575 
1576 #define HL_CS_STATUS_SUCCESS		0
1577 
1578 #define HL_MAX_JOBS_PER_CS		512
1579 
1580 /*
1581  * enum hl_engine_command - engine command
1582  *
1583  * @HL_ENGINE_CORE_HALT: engine core halt
1584  * @HL_ENGINE_CORE_RUN: engine core run
1585  * @HL_ENGINE_STALL: user engine/s stall
1586  * @HL_ENGINE_RESUME: user engine/s resume
1587  */
1588 enum hl_engine_command {
1589 	HL_ENGINE_CORE_HALT = 1,
1590 	HL_ENGINE_CORE_RUN = 2,
1591 	HL_ENGINE_STALL = 3,
1592 	HL_ENGINE_RESUME = 4,
1593 	HL_ENGINE_COMMAND_MAX
1594 };
1595 
1596 struct hl_cs_in {
1597 
1598 	union {
1599 		struct {
1600 			/* this holds address of array of hl_cs_chunk for restore phase */
1601 			__u64 chunks_restore;
1602 
1603 			/* holds address of array of hl_cs_chunk for execution phase */
1604 			__u64 chunks_execute;
1605 		};
1606 
1607 		/* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */
1608 		struct {
1609 			/* this holds address of array of uint32 for engine_cores */
1610 			__u64 engine_cores;
1611 
1612 			/* number of engine cores in engine_cores array */
1613 			__u32 num_engine_cores;
1614 
1615 			/* the core command to be sent towards engine cores */
1616 			__u32 core_command;
1617 		};
1618 
1619 		/* Valid only when HL_CS_FLAGS_ENGINES_COMMAND is set */
1620 		struct {
1621 			/* this holds address of array of uint32 for engines */
1622 			__u64 engines;
1623 
1624 			/* number of engines in engines array */
1625 			__u32 num_engines;
1626 
1627 			/* the engine command to be sent towards engines */
1628 			__u32 engine_command;
1629 		};
1630 	};
1631 
1632 	union {
1633 		/*
1634 		 * Sequence number of a staged submission CS
1635 		 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
1636 		 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
1637 		 */
1638 		__u64 seq;
1639 
1640 		/*
1641 		 * Encapsulated signals handle id
1642 		 * Valid for two flows:
1643 		 * 1. CS with encapsulated signals:
1644 		 *    when HL_CS_FLAGS_STAGED_SUBMISSION and
1645 		 *    HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1646 		 *    and HL_CS_FLAGS_ENCAP_SIGNALS are set.
1647 		 * 2. unreserve signals:
1648 		 *    valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
1649 		 */
1650 		__u32 encaps_sig_handle_id;
1651 
1652 		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1653 		struct {
1654 			/* Encapsulated signals number */
1655 			__u32 encaps_signals_count;
1656 
1657 			/* Encapsulated signals queue index (stream) */
1658 			__u32 encaps_signals_q_idx;
1659 		};
1660 	};
1661 
1662 	/* Number of chunks in restore phase array. Maximum number is
1663 	 * HL_MAX_JOBS_PER_CS
1664 	 */
1665 	__u32 num_chunks_restore;
1666 
1667 	/* Number of chunks in execution array. Maximum number is
1668 	 * HL_MAX_JOBS_PER_CS
1669 	 */
1670 	__u32 num_chunks_execute;
1671 
1672 	/* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
1673 	 * is set
1674 	 */
1675 	__u32 timeout;
1676 
1677 	/* HL_CS_FLAGS_* */
1678 	__u32 cs_flags;
1679 
1680 	/* Context ID - Currently not in use */
1681 	__u32 ctx_id;
1682 	__u8 pad[4];
1683 };
1684 
1685 struct hl_cs_out {
1686 	union {
1687 		/*
1688 		 * seq holds the sequence number of the CS to pass to wait
1689 		 * ioctl. All values are valid except for 0 and ULLONG_MAX
1690 		 */
1691 		__u64 seq;
1692 
1693 		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1694 		struct {
1695 			/* This is the reserved signal handle id */
1696 			__u32 handle_id;
1697 
1698 			/* This is the signals count */
1699 			__u32 count;
1700 		};
1701 	};
1702 
1703 	/* HL_CS_STATUS */
1704 	__u32 status;
1705 
1706 	/*
1707 	 * SOB base address offset
1708 	 * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set
1709 	 */
1710 	__u32 sob_base_addr_offset;
1711 
1712 	/*
1713 	 * Count of completed signals in SOB before current signal submission.
1714 	 * Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION)
1715 	 * or HL_CS_FLAGS_SIGNAL is set
1716 	 */
1717 	__u16 sob_count_before_submission;
1718 	__u16 pad[3];
1719 };
1720 
1721 union hl_cs_args {
1722 	struct hl_cs_in in;
1723 	struct hl_cs_out out;
1724 };
1725 
1726 #define HL_WAIT_CS_FLAGS_INTERRUPT		0x2
1727 #define HL_WAIT_CS_FLAGS_INTERRUPT_MASK		0xFFF00000
1728 #define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT	0xFFF00000
1729 #define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT	0xFFE00000
1730 #define HL_WAIT_CS_FLAGS_MULTI_CS		0x4
1731 #define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ	0x10
1732 #define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT	0x20
1733 
1734 #define HL_WAIT_MULTI_CS_LIST_MAX_LEN	32
1735 
1736 struct hl_wait_cs_in {
1737 	union {
1738 		struct {
1739 			/*
1740 			 * In case of wait_cs holds the CS sequence number.
1741 			 * In case of wait for multi CS hold a user pointer to
1742 			 * an array of CS sequence numbers
1743 			 */
1744 			__u64 seq;
1745 			/* Absolute timeout to wait for command submission
1746 			 * in microseconds
1747 			 */
1748 			__u64 timeout_us;
1749 		};
1750 
1751 		struct {
1752 			union {
1753 				/* User address for completion comparison.
1754 				 * upon interrupt, driver will compare the value pointed
1755 				 * by this address with the supplied target value.
1756 				 * in order not to perform any comparison, set address
1757 				 * to all 1s.
1758 				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1759 				 */
1760 				__u64 addr;
1761 
1762 				/* cq_counters_handle to a kernel mapped cb which contains
1763 				 * cq counters.
1764 				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1765 				 */
1766 				__u64 cq_counters_handle;
1767 			};
1768 
1769 			/* Target value for completion comparison */
1770 			__u64 target;
1771 		};
1772 	};
1773 
1774 	/* Context ID - Currently not in use */
1775 	__u32 ctx_id;
1776 
1777 	/* HL_WAIT_CS_FLAGS_*
1778 	 * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
1779 	 * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK
1780 	 *
1781 	 * in order to wait for any CQ interrupt, set interrupt value to
1782 	 * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT.
1783 	 *
1784 	 * in order to wait for any decoder interrupt, set interrupt value to
1785 	 * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT.
1786 	 */
1787 	__u32 flags;
1788 
1789 	union {
1790 		struct {
1791 			/* Multi CS API info- valid entries in multi-CS array */
1792 			__u8 seq_arr_len;
1793 			__u8 pad[7];
1794 		};
1795 
1796 		/* Absolute timeout to wait for an interrupt in microseconds.
1797 		 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1798 		 */
1799 		__u64 interrupt_timeout_us;
1800 	};
1801 
1802 	/*
1803 	 * cq counter offset inside the counters cb pointed by cq_counters_handle above.
1804 	 * upon interrupt, driver will compare the value pointed
1805 	 * by this address (cq_counters_handle + cq_counters_offset)
1806 	 * with the supplied target value.
1807 	 * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1808 	 */
1809 	__u64 cq_counters_offset;
1810 
1811 	/*
1812 	 * Timestamp_handle timestamps buffer handle.
1813 	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1814 	 */
1815 	__u64 timestamp_handle;
1816 
1817 	/*
1818 	 * Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
1819 	 * upon interrupt, if the cq reached the target value then driver will write
1820 	 * timestamp to this offset.
1821 	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1822 	 */
1823 	__u64 timestamp_offset;
1824 };
1825 
1826 #define HL_WAIT_CS_STATUS_COMPLETED	0
1827 #define HL_WAIT_CS_STATUS_BUSY		1
1828 #define HL_WAIT_CS_STATUS_TIMEDOUT	2
1829 #define HL_WAIT_CS_STATUS_ABORTED	3
1830 
1831 #define HL_WAIT_CS_STATUS_FLAG_GONE		0x1
1832 #define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD	0x2
1833 
1834 struct hl_wait_cs_out {
1835 	/* HL_WAIT_CS_STATUS_* */
1836 	__u32 status;
1837 	/* HL_WAIT_CS_STATUS_FLAG* */
1838 	__u32 flags;
1839 	/*
1840 	 * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
1841 	 * for wait_cs: timestamp of CS completion
1842 	 * for wait_multi_cs: timestamp of FIRST CS completion
1843 	 */
1844 	__s64 timestamp_nsec;
1845 	/* multi CS completion bitmap */
1846 	__u32 cs_completion_map;
1847 	__u32 pad;
1848 };
1849 
1850 union hl_wait_cs_args {
1851 	struct hl_wait_cs_in in;
1852 	struct hl_wait_cs_out out;
1853 };
1854 
1855 /* Opcode to allocate device memory */
1856 #define HL_MEM_OP_ALLOC			0
1857 
1858 /* Opcode to free previously allocated device memory */
1859 #define HL_MEM_OP_FREE			1
1860 
1861 /* Opcode to map host and device memory */
1862 #define HL_MEM_OP_MAP			2
1863 
1864 /* Opcode to unmap previously mapped host and device memory */
1865 #define HL_MEM_OP_UNMAP			3
1866 
1867 /* Opcode to map a hw block */
1868 #define HL_MEM_OP_MAP_BLOCK		4
1869 
1870 /* Opcode to create DMA-BUF object for an existing device memory allocation
1871  * and to export an FD of that DMA-BUF back to the caller
1872  */
1873 #define HL_MEM_OP_EXPORT_DMABUF_FD	5
1874 
1875 /* Opcode to create timestamps pool for user interrupts registration support
1876  * The memory will be allocated by the kernel driver, A timestamp buffer which the user
1877  * will get handle to it for mmap, and another internal buffer used by the
1878  * driver for registration management
1879  * The memory will be freed when the user closes the file descriptor(ctx close)
1880  */
1881 #define HL_MEM_OP_TS_ALLOC		6
1882 
1883 /* Memory flags */
1884 #define HL_MEM_CONTIGUOUS	0x1
1885 #define HL_MEM_SHARED		0x2
1886 #define HL_MEM_USERPTR		0x4
1887 #define HL_MEM_FORCE_HINT	0x8
1888 #define HL_MEM_PREFETCH		0x40
1889 
1890 /**
1891  * structure hl_mem_in - structure that handle input args for memory IOCTL
1892  * @union arg: union of structures to be used based on the input operation
1893  * @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions).
1894  * @flags: flags for the memory operation (one of the HL_MEM_* definitions).
1895  *         For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags.
1896  * @ctx_id: context ID - currently not in use.
1897  * @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode.
1898  */
1899 struct hl_mem_in {
1900 	union {
1901 		/**
1902 		 * structure for device memory allocation (used with the HL_MEM_OP_ALLOC op)
1903 		 * @mem_size: memory size to allocate
1904 		 * @page_size: page size to use on allocation. when the value is 0 the default page
1905 		 *             size will be taken.
1906 		 */
1907 		struct {
1908 			__u64 mem_size;
1909 			__u64 page_size;
1910 		} alloc;
1911 
1912 		/**
1913 		 * structure for free-ing device memory (used with the HL_MEM_OP_FREE op)
1914 		 * @handle: handle returned from HL_MEM_OP_ALLOC
1915 		 */
1916 		struct {
1917 			__u64 handle;
1918 		} free;
1919 
1920 		/**
1921 		 * structure for mapping device memory (used with the HL_MEM_OP_MAP op)
1922 		 * @hint_addr: requested virtual address of mapped memory.
1923 		 *             the driver will try to map the requested region to this hint
1924 		 *             address, as long as the address is valid and not already mapped.
1925 		 *             the user should check the returned address of the IOCTL to make
1926 		 *             sure he got the hint address.
1927 		 *             passing 0 here means that the driver will choose the address itself.
1928 		 * @handle: handle returned from HL_MEM_OP_ALLOC.
1929 		 */
1930 		struct {
1931 			__u64 hint_addr;
1932 			__u64 handle;
1933 		} map_device;
1934 
1935 		/**
1936 		 * structure for mapping host memory (used with the HL_MEM_OP_MAP op)
1937 		 * @host_virt_addr: address of allocated host memory.
1938 		 * @hint_addr: requested virtual address of mapped memory.
1939 		 *             the driver will try to map the requested region to this hint
1940 		 *             address, as long as the address is valid and not already mapped.
1941 		 *             the user should check the returned address of the IOCTL to make
1942 		 *             sure he got the hint address.
1943 		 *             passing 0 here means that the driver will choose the address itself.
1944 		 * @size: size of allocated host memory.
1945 		 */
1946 		struct {
1947 			__u64 host_virt_addr;
1948 			__u64 hint_addr;
1949 			__u64 mem_size;
1950 		} map_host;
1951 
1952 		/**
1953 		 * structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op)
1954 		 * @block_addr:HW block address to map, a handle and size will be returned
1955 		 *             to the user and will be used to mmap the relevant block.
1956 		 *             only addresses from configuration space are allowed.
1957 		 */
1958 		struct {
1959 			__u64 block_addr;
1960 		} map_block;
1961 
1962 		/**
1963 		 * structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op)
1964 		 * @device_virt_addr: virtual address returned from HL_MEM_OP_MAP
1965 		 */
1966 		struct {
1967 			__u64 device_virt_addr;
1968 		} unmap;
1969 
1970 		/**
1971 		 * structure for exporting DMABUF object (used with
1972 		 * the HL_MEM_OP_EXPORT_DMABUF_FD op)
1973 		 * @addr: for Gaudi1, the driver expects a physical address
1974 		 *        inside the device's DRAM. this is because in Gaudi1
1975 		 *        we don't have MMU that covers the device's DRAM.
1976 		 *        for all other ASICs, the driver expects a device
1977 		 *        virtual address that represents the start address of
1978 		 *        a mapped DRAM memory area inside the device.
1979 		 *        the address must be the same as was received from the
1980 		 *        driver during a previous HL_MEM_OP_MAP operation.
1981 		 * @mem_size: size of memory to export.
1982 		 * @offset: for Gaudi1, this value must be 0. For all other ASICs,
1983 		 *          the driver expects an offset inside of the memory area
1984 		 *          describe by addr. the offset represents the start
1985 		 *          address of that the exported dma-buf object describes.
1986 		 */
1987 		struct {
1988 			__u64 addr;
1989 			__u64 mem_size;
1990 			__u64 offset;
1991 		} export_dmabuf_fd;
1992 	};
1993 
1994 	__u32 op;
1995 	__u32 flags;
1996 	__u32 ctx_id;
1997 	__u32 num_of_elements;
1998 };
1999 
2000 struct hl_mem_out {
2001 	union {
2002 		/*
2003 		 * Used for HL_MEM_OP_MAP as the virtual address that was
2004 		 * assigned in the device VA space.
2005 		 * A value of 0 means the requested operation failed.
2006 		 */
2007 		__u64 device_virt_addr;
2008 
2009 		/*
2010 		 * Used in HL_MEM_OP_ALLOC
2011 		 * This is the assigned handle for the allocated memory
2012 		 */
2013 		__u64 handle;
2014 
2015 		struct {
2016 			/*
2017 			 * Used in HL_MEM_OP_MAP_BLOCK.
2018 			 * This is the assigned handle for the mapped block
2019 			 */
2020 			__u64 block_handle;
2021 
2022 			/*
2023 			 * Used in HL_MEM_OP_MAP_BLOCK
2024 			 * This is the size of the mapped block
2025 			 */
2026 			__u32 block_size;
2027 
2028 			__u32 pad;
2029 		};
2030 
2031 		/* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the
2032 		 * DMA-BUF object that was created to describe a memory
2033 		 * allocation on the device's memory space. The FD should be
2034 		 * passed to the importer driver
2035 		 */
2036 		__s32 fd;
2037 	};
2038 };
2039 
2040 union hl_mem_args {
2041 	struct hl_mem_in in;
2042 	struct hl_mem_out out;
2043 };
2044 
2045 #define HL_DEBUG_MAX_AUX_VALUES		10
2046 
2047 struct hl_debug_params_etr {
2048 	/* Address in memory to allocate buffer */
2049 	__u64 buffer_address;
2050 
2051 	/* Size of buffer to allocate */
2052 	__u64 buffer_size;
2053 
2054 	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2055 	__u32 sink_mode;
2056 	__u32 pad;
2057 };
2058 
2059 struct hl_debug_params_etf {
2060 	/* Address in memory to allocate buffer */
2061 	__u64 buffer_address;
2062 
2063 	/* Size of buffer to allocate */
2064 	__u64 buffer_size;
2065 
2066 	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2067 	__u32 sink_mode;
2068 	__u32 pad;
2069 };
2070 
2071 struct hl_debug_params_stm {
2072 	/* Two bit masks for HW event and Stimulus Port */
2073 	__u64 he_mask;
2074 	__u64 sp_mask;
2075 
2076 	/* Trace source ID */
2077 	__u32 id;
2078 
2079 	/* Frequency for the timestamp register */
2080 	__u32 frequency;
2081 };
2082 
2083 struct hl_debug_params_bmon {
2084 	/* Two address ranges that the user can request to filter */
2085 	__u64 start_addr0;
2086 	__u64 addr_mask0;
2087 
2088 	__u64 start_addr1;
2089 	__u64 addr_mask1;
2090 
2091 	/* Capture window configuration */
2092 	__u32 bw_win;
2093 	__u32 win_capture;
2094 
2095 	/* Trace source ID */
2096 	__u32 id;
2097 
2098 	/* Control register */
2099 	__u32 control;
2100 
2101 	/* Two more address ranges that the user can request to filter */
2102 	__u64 start_addr2;
2103 	__u64 end_addr2;
2104 
2105 	__u64 start_addr3;
2106 	__u64 end_addr3;
2107 };
2108 
2109 struct hl_debug_params_spmu {
2110 	/* Event types selection */
2111 	__u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
2112 
2113 	/* Number of event types selection */
2114 	__u32 event_types_num;
2115 
2116 	/* TRC configuration register values */
2117 	__u32 pmtrc_val;
2118 	__u32 trc_ctrl_host_val;
2119 	__u32 trc_en_host_val;
2120 };
2121 
2122 /* Opcode for ETR component */
2123 #define HL_DEBUG_OP_ETR		0
2124 /* Opcode for ETF component */
2125 #define HL_DEBUG_OP_ETF		1
2126 /* Opcode for STM component */
2127 #define HL_DEBUG_OP_STM		2
2128 /* Opcode for FUNNEL component */
2129 #define HL_DEBUG_OP_FUNNEL	3
2130 /* Opcode for BMON component */
2131 #define HL_DEBUG_OP_BMON	4
2132 /* Opcode for SPMU component */
2133 #define HL_DEBUG_OP_SPMU	5
2134 /* Opcode for timestamp (deprecated) */
2135 #define HL_DEBUG_OP_TIMESTAMP	6
2136 /* Opcode for setting the device into or out of debug mode. The enable
2137  * variable should be 1 for enabling debug mode and 0 for disabling it
2138  */
2139 #define HL_DEBUG_OP_SET_MODE	7
2140 
2141 struct hl_debug_args {
2142 	/*
2143 	 * Pointer to user input structure.
2144 	 * This field is relevant to specific opcodes.
2145 	 */
2146 	__u64 input_ptr;
2147 	/* Pointer to user output structure */
2148 	__u64 output_ptr;
2149 	/* Size of user input structure */
2150 	__u32 input_size;
2151 	/* Size of user output structure */
2152 	__u32 output_size;
2153 	/* HL_DEBUG_OP_* */
2154 	__u32 op;
2155 	/*
2156 	 * Register index in the component, taken from the debug_regs_index enum
2157 	 * in the various ASIC header files
2158 	 */
2159 	__u32 reg_idx;
2160 	/* Enable/disable */
2161 	__u32 enable;
2162 	/* Context ID - Currently not in use */
2163 	__u32 ctx_id;
2164 };
2165 
2166 #define HL_IOCTL_INFO		0x00
2167 #define HL_IOCTL_CB		0x01
2168 #define HL_IOCTL_CS		0x02
2169 #define HL_IOCTL_WAIT_CS	0x03
2170 #define HL_IOCTL_MEMORY		0x04
2171 #define HL_IOCTL_DEBUG		0x05
2172 
2173 /*
2174  * Various information operations such as:
2175  * - H/W IP information
2176  * - Current dram usage
2177  *
2178  * The user calls this IOCTL with an opcode that describes the required
2179  * information. The user should supply a pointer to a user-allocated memory
2180  * chunk, which will be filled by the driver with the requested information.
2181  *
2182  * The user supplies the maximum amount of size to copy into the user's memory,
2183  * in order to prevent data corruption in case of differences between the
2184  * definitions of structures in kernel and userspace, e.g. in case of old
2185  * userspace and new kernel driver
2186  */
2187 #define DRM_IOCTL_HL_INFO	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_INFO, struct hl_info_args)
2188 
2189 /*
2190  * Command Buffer
2191  * - Request a Command Buffer
2192  * - Destroy a Command Buffer
2193  *
2194  * The command buffers are memory blocks that reside in DMA-able address
2195  * space and are physically contiguous so they can be accessed by the device
2196  * directly. They are allocated using the coherent DMA API.
2197  *
2198  * When creating a new CB, the IOCTL returns a handle of it, and the user-space
2199  * process needs to use that handle to mmap the buffer so it can access them.
2200  *
2201  * In some instances, the device must access the command buffer through the
2202  * device's MMU, and thus its memory should be mapped. In these cases, user can
2203  * indicate the driver that such a mapping is required.
2204  * The resulting device virtual address will be used internally by the driver,
2205  * and won't be returned to user.
2206  *
2207  */
2208 #define DRM_IOCTL_HL_CB		DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CB, union hl_cb_args)
2209 
2210 /*
2211  * Command Submission
2212  *
2213  * To submit work to the device, the user need to call this IOCTL with a set
2214  * of JOBS. That set of JOBS constitutes a CS object.
2215  * Each JOB will be enqueued on a specific queue, according to the user's input.
2216  * There can be more then one JOB per queue.
2217  *
2218  * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
2219  * and a second set is for "execution" phase.
2220  * The JOBS on the "restore" phase are enqueued only after context-switch
2221  * (or if its the first CS for this context). The user can also order the
2222  * driver to run the "restore" phase explicitly
2223  *
2224  * Goya/Gaudi:
2225  * There are two types of queues - external and internal. External queues
2226  * are DMA queues which transfer data from/to the Host. All other queues are
2227  * internal. The driver will get completion notifications from the device only
2228  * on JOBS which are enqueued in the external queues.
2229  *
2230  * Gaudi2 onwards:
2231  * There is a single type of queue for all types of engines, either DMA engines
2232  * for transfers from/to the host or inside the device, or compute engines.
2233  * The driver will get completion notifications from the device for all queues.
2234  *
2235  * For jobs on external queues, the user needs to create command buffers
2236  * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
2237  * internal queues, the user needs to prepare a "command buffer" with packets
2238  * on either the device SRAM/DRAM or the host, and give the device address of
2239  * that buffer to the CS ioctl.
2240  * For jobs on H/W queues both options of command buffers are valid.
2241  *
2242  * This IOCTL is asynchronous in regard to the actual execution of the CS. This
2243  * means it returns immediately after ALL the JOBS were enqueued on their
2244  * relevant queues. Therefore, the user mustn't assume the CS has been completed
2245  * or has even started to execute.
2246  *
2247  * Upon successful enqueue, the IOCTL returns a sequence number which the user
2248  * can use with the "Wait for CS" IOCTL to check whether the handle's CS
2249  * non-internal JOBS have been completed. Note that if the CS has internal JOBS
2250  * which can execute AFTER the external JOBS have finished, the driver might
2251  * report that the CS has finished executing BEFORE the internal JOBS have
2252  * actually finished executing.
2253  *
2254  * Even though the sequence number increments per CS, the user can NOT
2255  * automatically assume that if CS with sequence number N finished, then CS
2256  * with sequence number N-1 also finished. The user can make this assumption if
2257  * and only if CS N and CS N-1 are exactly the same (same CBs for the same
2258  * queues).
2259  */
2260 #define DRM_IOCTL_HL_CS		DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CS, union hl_cs_args)
2261 
2262 /*
2263  * Wait for Command Submission
2264  *
2265  * The user can call this IOCTL with a handle it received from the CS IOCTL
2266  * to wait until the handle's CS has finished executing. The user will wait
2267  * inside the kernel until the CS has finished or until the user-requested
2268  * timeout has expired.
2269  *
2270  * If the timeout value is 0, the driver won't sleep at all. It will check
2271  * the status of the CS and return immediately
2272  *
2273  * The return value of the IOCTL is a standard Linux error code. The possible
2274  * values are:
2275  *
2276  * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
2277  *             that the user process received
2278  * ETIMEDOUT - The CS has caused a timeout on the device
2279  * EIO       - The CS was aborted (usually because the device was reset)
2280  * ENODEV    - The device wants to do hard-reset (so user need to close FD)
2281  *
2282  * The driver also returns a custom define in case the IOCTL call returned 0.
2283  * The define can be one of the following:
2284  *
2285  * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
2286  * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
2287  * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
2288  *                                 (ETIMEDOUT)
2289  * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
2290  *                                 device was reset (EIO)
2291  */
2292 #define DRM_IOCTL_HL_WAIT_CS	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_WAIT_CS, union hl_wait_cs_args)
2293 
2294 /*
2295  * Memory
2296  * - Map host memory to device MMU
2297  * - Unmap host memory from device MMU
2298  *
2299  * This IOCTL allows the user to map host memory to the device MMU
2300  *
2301  * For host memory, the IOCTL doesn't allocate memory. The user is supposed
2302  * to allocate the memory in user-space (malloc/new). The driver pins the
2303  * physical pages (up to the allowed limit by the OS), assigns a virtual
2304  * address in the device VA space and initializes the device MMU.
2305  *
2306  * There is an option for the user to specify the requested virtual address.
2307  *
2308  */
2309 #define DRM_IOCTL_HL_MEMORY	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_MEMORY, union hl_mem_args)
2310 
2311 /*
2312  * Debug
2313  * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
2314  *
2315  * This IOCTL allows the user to get debug traces from the chip.
2316  *
2317  * Before the user can send configuration requests of the various
2318  * debug/profile engines, it needs to set the device into debug mode.
2319  * This is because the debug/profile infrastructure is shared component in the
2320  * device and we can't allow multiple users to access it at the same time.
2321  *
2322  * Once a user set the device into debug mode, the driver won't allow other
2323  * users to "work" with the device, i.e. open a FD. If there are multiple users
2324  * opened on the device, the driver won't allow any user to debug the device.
2325  *
2326  * For each configuration request, the user needs to provide the register index
2327  * and essential data such as buffer address and size.
2328  *
2329  * Once the user has finished using the debug/profile engines, he should
2330  * set the device into non-debug mode, i.e. disable debug mode.
2331  *
2332  * The driver can decide to "kick out" the user if he abuses this interface.
2333  *
2334  */
2335 #define DRM_IOCTL_HL_DEBUG	DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_DEBUG, struct hl_debug_args)
2336 
2337 #define HL_COMMAND_START	(DRM_COMMAND_BASE + HL_IOCTL_INFO)
2338 #define HL_COMMAND_END		(DRM_COMMAND_BASE + HL_IOCTL_DEBUG + 1)
2339 
2340 #endif /* HABANALABS_H_ */
2341