1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note 2 * 3 * Copyright 2016-2023 HabanaLabs, Ltd. 4 * All Rights Reserved. 5 * 6 */ 7 8 #ifndef HABANALABS_H_ 9 #define HABANALABS_H_ 10 11 #include <drm/drm.h> 12 13 /* 14 * Defines that are asic-specific but constitutes as ABI between kernel driver 15 * and userspace 16 */ 17 #define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START 0x8000 /* 32KB */ 18 #define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START 0x80 /* 128 bytes */ 19 20 /* 21 * 128 SOBs reserved for collective wait 22 * 16 SOBs reserved for sync stream 23 */ 24 #define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT 144 25 26 /* 27 * 64 monitors reserved for collective wait 28 * 8 monitors reserved for sync stream 29 */ 30 #define GAUDI_FIRST_AVAILABLE_W_S_MONITOR 72 31 32 /* Max number of elements in timestamps registration buffers */ 33 #define TS_MAX_ELEMENTS_NUM (1 << 20) /* 1MB */ 34 35 /* 36 * Goya queue Numbering 37 * 38 * The external queues (PCI DMA channels) MUST be before the internal queues 39 * and each group (PCI DMA channels and internal) must be contiguous inside 40 * itself but there can be a gap between the two groups (although not 41 * recommended) 42 */ 43 44 enum goya_queue_id { 45 GOYA_QUEUE_ID_DMA_0 = 0, 46 GOYA_QUEUE_ID_DMA_1 = 1, 47 GOYA_QUEUE_ID_DMA_2 = 2, 48 GOYA_QUEUE_ID_DMA_3 = 3, 49 GOYA_QUEUE_ID_DMA_4 = 4, 50 GOYA_QUEUE_ID_CPU_PQ = 5, 51 GOYA_QUEUE_ID_MME = 6, /* Internal queues start here */ 52 GOYA_QUEUE_ID_TPC0 = 7, 53 GOYA_QUEUE_ID_TPC1 = 8, 54 GOYA_QUEUE_ID_TPC2 = 9, 55 GOYA_QUEUE_ID_TPC3 = 10, 56 GOYA_QUEUE_ID_TPC4 = 11, 57 GOYA_QUEUE_ID_TPC5 = 12, 58 GOYA_QUEUE_ID_TPC6 = 13, 59 GOYA_QUEUE_ID_TPC7 = 14, 60 GOYA_QUEUE_ID_SIZE 61 }; 62 63 /* 64 * Gaudi queue Numbering 65 * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*. 66 * Except one CPU queue, all the rest are internal queues. 67 */ 68 69 enum gaudi_queue_id { 70 GAUDI_QUEUE_ID_DMA_0_0 = 0, /* external */ 71 GAUDI_QUEUE_ID_DMA_0_1 = 1, /* external */ 72 GAUDI_QUEUE_ID_DMA_0_2 = 2, /* external */ 73 GAUDI_QUEUE_ID_DMA_0_3 = 3, /* external */ 74 GAUDI_QUEUE_ID_DMA_1_0 = 4, /* external */ 75 GAUDI_QUEUE_ID_DMA_1_1 = 5, /* external */ 76 GAUDI_QUEUE_ID_DMA_1_2 = 6, /* external */ 77 GAUDI_QUEUE_ID_DMA_1_3 = 7, /* external */ 78 GAUDI_QUEUE_ID_CPU_PQ = 8, /* CPU */ 79 GAUDI_QUEUE_ID_DMA_2_0 = 9, /* internal */ 80 GAUDI_QUEUE_ID_DMA_2_1 = 10, /* internal */ 81 GAUDI_QUEUE_ID_DMA_2_2 = 11, /* internal */ 82 GAUDI_QUEUE_ID_DMA_2_3 = 12, /* internal */ 83 GAUDI_QUEUE_ID_DMA_3_0 = 13, /* internal */ 84 GAUDI_QUEUE_ID_DMA_3_1 = 14, /* internal */ 85 GAUDI_QUEUE_ID_DMA_3_2 = 15, /* internal */ 86 GAUDI_QUEUE_ID_DMA_3_3 = 16, /* internal */ 87 GAUDI_QUEUE_ID_DMA_4_0 = 17, /* internal */ 88 GAUDI_QUEUE_ID_DMA_4_1 = 18, /* internal */ 89 GAUDI_QUEUE_ID_DMA_4_2 = 19, /* internal */ 90 GAUDI_QUEUE_ID_DMA_4_3 = 20, /* internal */ 91 GAUDI_QUEUE_ID_DMA_5_0 = 21, /* internal */ 92 GAUDI_QUEUE_ID_DMA_5_1 = 22, /* internal */ 93 GAUDI_QUEUE_ID_DMA_5_2 = 23, /* internal */ 94 GAUDI_QUEUE_ID_DMA_5_3 = 24, /* internal */ 95 GAUDI_QUEUE_ID_DMA_6_0 = 25, /* internal */ 96 GAUDI_QUEUE_ID_DMA_6_1 = 26, /* internal */ 97 GAUDI_QUEUE_ID_DMA_6_2 = 27, /* internal */ 98 GAUDI_QUEUE_ID_DMA_6_3 = 28, /* internal */ 99 GAUDI_QUEUE_ID_DMA_7_0 = 29, /* internal */ 100 GAUDI_QUEUE_ID_DMA_7_1 = 30, /* internal */ 101 GAUDI_QUEUE_ID_DMA_7_2 = 31, /* internal */ 102 GAUDI_QUEUE_ID_DMA_7_3 = 32, /* internal */ 103 GAUDI_QUEUE_ID_MME_0_0 = 33, /* internal */ 104 GAUDI_QUEUE_ID_MME_0_1 = 34, /* internal */ 105 GAUDI_QUEUE_ID_MME_0_2 = 35, /* internal */ 106 GAUDI_QUEUE_ID_MME_0_3 = 36, /* internal */ 107 GAUDI_QUEUE_ID_MME_1_0 = 37, /* internal */ 108 GAUDI_QUEUE_ID_MME_1_1 = 38, /* internal */ 109 GAUDI_QUEUE_ID_MME_1_2 = 39, /* internal */ 110 GAUDI_QUEUE_ID_MME_1_3 = 40, /* internal */ 111 GAUDI_QUEUE_ID_TPC_0_0 = 41, /* internal */ 112 GAUDI_QUEUE_ID_TPC_0_1 = 42, /* internal */ 113 GAUDI_QUEUE_ID_TPC_0_2 = 43, /* internal */ 114 GAUDI_QUEUE_ID_TPC_0_3 = 44, /* internal */ 115 GAUDI_QUEUE_ID_TPC_1_0 = 45, /* internal */ 116 GAUDI_QUEUE_ID_TPC_1_1 = 46, /* internal */ 117 GAUDI_QUEUE_ID_TPC_1_2 = 47, /* internal */ 118 GAUDI_QUEUE_ID_TPC_1_3 = 48, /* internal */ 119 GAUDI_QUEUE_ID_TPC_2_0 = 49, /* internal */ 120 GAUDI_QUEUE_ID_TPC_2_1 = 50, /* internal */ 121 GAUDI_QUEUE_ID_TPC_2_2 = 51, /* internal */ 122 GAUDI_QUEUE_ID_TPC_2_3 = 52, /* internal */ 123 GAUDI_QUEUE_ID_TPC_3_0 = 53, /* internal */ 124 GAUDI_QUEUE_ID_TPC_3_1 = 54, /* internal */ 125 GAUDI_QUEUE_ID_TPC_3_2 = 55, /* internal */ 126 GAUDI_QUEUE_ID_TPC_3_3 = 56, /* internal */ 127 GAUDI_QUEUE_ID_TPC_4_0 = 57, /* internal */ 128 GAUDI_QUEUE_ID_TPC_4_1 = 58, /* internal */ 129 GAUDI_QUEUE_ID_TPC_4_2 = 59, /* internal */ 130 GAUDI_QUEUE_ID_TPC_4_3 = 60, /* internal */ 131 GAUDI_QUEUE_ID_TPC_5_0 = 61, /* internal */ 132 GAUDI_QUEUE_ID_TPC_5_1 = 62, /* internal */ 133 GAUDI_QUEUE_ID_TPC_5_2 = 63, /* internal */ 134 GAUDI_QUEUE_ID_TPC_5_3 = 64, /* internal */ 135 GAUDI_QUEUE_ID_TPC_6_0 = 65, /* internal */ 136 GAUDI_QUEUE_ID_TPC_6_1 = 66, /* internal */ 137 GAUDI_QUEUE_ID_TPC_6_2 = 67, /* internal */ 138 GAUDI_QUEUE_ID_TPC_6_3 = 68, /* internal */ 139 GAUDI_QUEUE_ID_TPC_7_0 = 69, /* internal */ 140 GAUDI_QUEUE_ID_TPC_7_1 = 70, /* internal */ 141 GAUDI_QUEUE_ID_TPC_7_2 = 71, /* internal */ 142 GAUDI_QUEUE_ID_TPC_7_3 = 72, /* internal */ 143 GAUDI_QUEUE_ID_NIC_0_0 = 73, /* internal */ 144 GAUDI_QUEUE_ID_NIC_0_1 = 74, /* internal */ 145 GAUDI_QUEUE_ID_NIC_0_2 = 75, /* internal */ 146 GAUDI_QUEUE_ID_NIC_0_3 = 76, /* internal */ 147 GAUDI_QUEUE_ID_NIC_1_0 = 77, /* internal */ 148 GAUDI_QUEUE_ID_NIC_1_1 = 78, /* internal */ 149 GAUDI_QUEUE_ID_NIC_1_2 = 79, /* internal */ 150 GAUDI_QUEUE_ID_NIC_1_3 = 80, /* internal */ 151 GAUDI_QUEUE_ID_NIC_2_0 = 81, /* internal */ 152 GAUDI_QUEUE_ID_NIC_2_1 = 82, /* internal */ 153 GAUDI_QUEUE_ID_NIC_2_2 = 83, /* internal */ 154 GAUDI_QUEUE_ID_NIC_2_3 = 84, /* internal */ 155 GAUDI_QUEUE_ID_NIC_3_0 = 85, /* internal */ 156 GAUDI_QUEUE_ID_NIC_3_1 = 86, /* internal */ 157 GAUDI_QUEUE_ID_NIC_3_2 = 87, /* internal */ 158 GAUDI_QUEUE_ID_NIC_3_3 = 88, /* internal */ 159 GAUDI_QUEUE_ID_NIC_4_0 = 89, /* internal */ 160 GAUDI_QUEUE_ID_NIC_4_1 = 90, /* internal */ 161 GAUDI_QUEUE_ID_NIC_4_2 = 91, /* internal */ 162 GAUDI_QUEUE_ID_NIC_4_3 = 92, /* internal */ 163 GAUDI_QUEUE_ID_NIC_5_0 = 93, /* internal */ 164 GAUDI_QUEUE_ID_NIC_5_1 = 94, /* internal */ 165 GAUDI_QUEUE_ID_NIC_5_2 = 95, /* internal */ 166 GAUDI_QUEUE_ID_NIC_5_3 = 96, /* internal */ 167 GAUDI_QUEUE_ID_NIC_6_0 = 97, /* internal */ 168 GAUDI_QUEUE_ID_NIC_6_1 = 98, /* internal */ 169 GAUDI_QUEUE_ID_NIC_6_2 = 99, /* internal */ 170 GAUDI_QUEUE_ID_NIC_6_3 = 100, /* internal */ 171 GAUDI_QUEUE_ID_NIC_7_0 = 101, /* internal */ 172 GAUDI_QUEUE_ID_NIC_7_1 = 102, /* internal */ 173 GAUDI_QUEUE_ID_NIC_7_2 = 103, /* internal */ 174 GAUDI_QUEUE_ID_NIC_7_3 = 104, /* internal */ 175 GAUDI_QUEUE_ID_NIC_8_0 = 105, /* internal */ 176 GAUDI_QUEUE_ID_NIC_8_1 = 106, /* internal */ 177 GAUDI_QUEUE_ID_NIC_8_2 = 107, /* internal */ 178 GAUDI_QUEUE_ID_NIC_8_3 = 108, /* internal */ 179 GAUDI_QUEUE_ID_NIC_9_0 = 109, /* internal */ 180 GAUDI_QUEUE_ID_NIC_9_1 = 110, /* internal */ 181 GAUDI_QUEUE_ID_NIC_9_2 = 111, /* internal */ 182 GAUDI_QUEUE_ID_NIC_9_3 = 112, /* internal */ 183 GAUDI_QUEUE_ID_SIZE 184 }; 185 186 /* 187 * In GAUDI2 we have two modes of operation in regard to queues: 188 * 1. Legacy mode, where each QMAN exposes 4 streams to the user 189 * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues. 190 * 191 * When in legacy mode, the user sends the queue id per JOB according to 192 * enum gaudi2_queue_id below. 193 * 194 * When in F/W mode, the user sends a stream id per Command Submission. The 195 * stream id is a running number from 0 up to (N-1), where N is the number 196 * of streams the F/W exposes and is passed to the user in 197 * struct hl_info_hw_ip_info 198 */ 199 200 enum gaudi2_queue_id { 201 GAUDI2_QUEUE_ID_PDMA_0_0 = 0, 202 GAUDI2_QUEUE_ID_PDMA_0_1 = 1, 203 GAUDI2_QUEUE_ID_PDMA_0_2 = 2, 204 GAUDI2_QUEUE_ID_PDMA_0_3 = 3, 205 GAUDI2_QUEUE_ID_PDMA_1_0 = 4, 206 GAUDI2_QUEUE_ID_PDMA_1_1 = 5, 207 GAUDI2_QUEUE_ID_PDMA_1_2 = 6, 208 GAUDI2_QUEUE_ID_PDMA_1_3 = 7, 209 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8, 210 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9, 211 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10, 212 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11, 213 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12, 214 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13, 215 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14, 216 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15, 217 GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16, 218 GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17, 219 GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18, 220 GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19, 221 GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20, 222 GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21, 223 GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22, 224 GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23, 225 GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24, 226 GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25, 227 GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26, 228 GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27, 229 GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28, 230 GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29, 231 GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30, 232 GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31, 233 GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32, 234 GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33, 235 GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34, 236 GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35, 237 GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36, 238 GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37, 239 GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38, 240 GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39, 241 GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40, 242 GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41, 243 GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42, 244 GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43, 245 GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44, 246 GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45, 247 GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46, 248 GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47, 249 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48, 250 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49, 251 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50, 252 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51, 253 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52, 254 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53, 255 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54, 256 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55, 257 GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56, 258 GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57, 259 GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58, 260 GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59, 261 GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60, 262 GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61, 263 GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62, 264 GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63, 265 GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64, 266 GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65, 267 GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66, 268 GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67, 269 GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68, 270 GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69, 271 GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70, 272 GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71, 273 GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72, 274 GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73, 275 GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74, 276 GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75, 277 GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76, 278 GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77, 279 GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78, 280 GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79, 281 GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80, 282 GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81, 283 GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82, 284 GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83, 285 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84, 286 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85, 287 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86, 288 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87, 289 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88, 290 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89, 291 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90, 292 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91, 293 GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92, 294 GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93, 295 GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94, 296 GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95, 297 GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96, 298 GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97, 299 GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98, 300 GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99, 301 GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100, 302 GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101, 303 GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102, 304 GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103, 305 GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104, 306 GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105, 307 GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106, 308 GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107, 309 GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108, 310 GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109, 311 GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110, 312 GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111, 313 GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112, 314 GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113, 315 GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114, 316 GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115, 317 GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116, 318 GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117, 319 GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118, 320 GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119, 321 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120, 322 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121, 323 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122, 324 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123, 325 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124, 326 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125, 327 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126, 328 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127, 329 GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128, 330 GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129, 331 GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130, 332 GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131, 333 GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132, 334 GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133, 335 GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134, 336 GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135, 337 GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136, 338 GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137, 339 GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138, 340 GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139, 341 GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140, 342 GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141, 343 GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142, 344 GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143, 345 GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144, 346 GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145, 347 GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146, 348 GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147, 349 GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148, 350 GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149, 351 GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150, 352 GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151, 353 GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152, 354 GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153, 355 GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154, 356 GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155, 357 GAUDI2_QUEUE_ID_NIC_0_0 = 156, 358 GAUDI2_QUEUE_ID_NIC_0_1 = 157, 359 GAUDI2_QUEUE_ID_NIC_0_2 = 158, 360 GAUDI2_QUEUE_ID_NIC_0_3 = 159, 361 GAUDI2_QUEUE_ID_NIC_1_0 = 160, 362 GAUDI2_QUEUE_ID_NIC_1_1 = 161, 363 GAUDI2_QUEUE_ID_NIC_1_2 = 162, 364 GAUDI2_QUEUE_ID_NIC_1_3 = 163, 365 GAUDI2_QUEUE_ID_NIC_2_0 = 164, 366 GAUDI2_QUEUE_ID_NIC_2_1 = 165, 367 GAUDI2_QUEUE_ID_NIC_2_2 = 166, 368 GAUDI2_QUEUE_ID_NIC_2_3 = 167, 369 GAUDI2_QUEUE_ID_NIC_3_0 = 168, 370 GAUDI2_QUEUE_ID_NIC_3_1 = 169, 371 GAUDI2_QUEUE_ID_NIC_3_2 = 170, 372 GAUDI2_QUEUE_ID_NIC_3_3 = 171, 373 GAUDI2_QUEUE_ID_NIC_4_0 = 172, 374 GAUDI2_QUEUE_ID_NIC_4_1 = 173, 375 GAUDI2_QUEUE_ID_NIC_4_2 = 174, 376 GAUDI2_QUEUE_ID_NIC_4_3 = 175, 377 GAUDI2_QUEUE_ID_NIC_5_0 = 176, 378 GAUDI2_QUEUE_ID_NIC_5_1 = 177, 379 GAUDI2_QUEUE_ID_NIC_5_2 = 178, 380 GAUDI2_QUEUE_ID_NIC_5_3 = 179, 381 GAUDI2_QUEUE_ID_NIC_6_0 = 180, 382 GAUDI2_QUEUE_ID_NIC_6_1 = 181, 383 GAUDI2_QUEUE_ID_NIC_6_2 = 182, 384 GAUDI2_QUEUE_ID_NIC_6_3 = 183, 385 GAUDI2_QUEUE_ID_NIC_7_0 = 184, 386 GAUDI2_QUEUE_ID_NIC_7_1 = 185, 387 GAUDI2_QUEUE_ID_NIC_7_2 = 186, 388 GAUDI2_QUEUE_ID_NIC_7_3 = 187, 389 GAUDI2_QUEUE_ID_NIC_8_0 = 188, 390 GAUDI2_QUEUE_ID_NIC_8_1 = 189, 391 GAUDI2_QUEUE_ID_NIC_8_2 = 190, 392 GAUDI2_QUEUE_ID_NIC_8_3 = 191, 393 GAUDI2_QUEUE_ID_NIC_9_0 = 192, 394 GAUDI2_QUEUE_ID_NIC_9_1 = 193, 395 GAUDI2_QUEUE_ID_NIC_9_2 = 194, 396 GAUDI2_QUEUE_ID_NIC_9_3 = 195, 397 GAUDI2_QUEUE_ID_NIC_10_0 = 196, 398 GAUDI2_QUEUE_ID_NIC_10_1 = 197, 399 GAUDI2_QUEUE_ID_NIC_10_2 = 198, 400 GAUDI2_QUEUE_ID_NIC_10_3 = 199, 401 GAUDI2_QUEUE_ID_NIC_11_0 = 200, 402 GAUDI2_QUEUE_ID_NIC_11_1 = 201, 403 GAUDI2_QUEUE_ID_NIC_11_2 = 202, 404 GAUDI2_QUEUE_ID_NIC_11_3 = 203, 405 GAUDI2_QUEUE_ID_NIC_12_0 = 204, 406 GAUDI2_QUEUE_ID_NIC_12_1 = 205, 407 GAUDI2_QUEUE_ID_NIC_12_2 = 206, 408 GAUDI2_QUEUE_ID_NIC_12_3 = 207, 409 GAUDI2_QUEUE_ID_NIC_13_0 = 208, 410 GAUDI2_QUEUE_ID_NIC_13_1 = 209, 411 GAUDI2_QUEUE_ID_NIC_13_2 = 210, 412 GAUDI2_QUEUE_ID_NIC_13_3 = 211, 413 GAUDI2_QUEUE_ID_NIC_14_0 = 212, 414 GAUDI2_QUEUE_ID_NIC_14_1 = 213, 415 GAUDI2_QUEUE_ID_NIC_14_2 = 214, 416 GAUDI2_QUEUE_ID_NIC_14_3 = 215, 417 GAUDI2_QUEUE_ID_NIC_15_0 = 216, 418 GAUDI2_QUEUE_ID_NIC_15_1 = 217, 419 GAUDI2_QUEUE_ID_NIC_15_2 = 218, 420 GAUDI2_QUEUE_ID_NIC_15_3 = 219, 421 GAUDI2_QUEUE_ID_NIC_16_0 = 220, 422 GAUDI2_QUEUE_ID_NIC_16_1 = 221, 423 GAUDI2_QUEUE_ID_NIC_16_2 = 222, 424 GAUDI2_QUEUE_ID_NIC_16_3 = 223, 425 GAUDI2_QUEUE_ID_NIC_17_0 = 224, 426 GAUDI2_QUEUE_ID_NIC_17_1 = 225, 427 GAUDI2_QUEUE_ID_NIC_17_2 = 226, 428 GAUDI2_QUEUE_ID_NIC_17_3 = 227, 429 GAUDI2_QUEUE_ID_NIC_18_0 = 228, 430 GAUDI2_QUEUE_ID_NIC_18_1 = 229, 431 GAUDI2_QUEUE_ID_NIC_18_2 = 230, 432 GAUDI2_QUEUE_ID_NIC_18_3 = 231, 433 GAUDI2_QUEUE_ID_NIC_19_0 = 232, 434 GAUDI2_QUEUE_ID_NIC_19_1 = 233, 435 GAUDI2_QUEUE_ID_NIC_19_2 = 234, 436 GAUDI2_QUEUE_ID_NIC_19_3 = 235, 437 GAUDI2_QUEUE_ID_NIC_20_0 = 236, 438 GAUDI2_QUEUE_ID_NIC_20_1 = 237, 439 GAUDI2_QUEUE_ID_NIC_20_2 = 238, 440 GAUDI2_QUEUE_ID_NIC_20_3 = 239, 441 GAUDI2_QUEUE_ID_NIC_21_0 = 240, 442 GAUDI2_QUEUE_ID_NIC_21_1 = 241, 443 GAUDI2_QUEUE_ID_NIC_21_2 = 242, 444 GAUDI2_QUEUE_ID_NIC_21_3 = 243, 445 GAUDI2_QUEUE_ID_NIC_22_0 = 244, 446 GAUDI2_QUEUE_ID_NIC_22_1 = 245, 447 GAUDI2_QUEUE_ID_NIC_22_2 = 246, 448 GAUDI2_QUEUE_ID_NIC_22_3 = 247, 449 GAUDI2_QUEUE_ID_NIC_23_0 = 248, 450 GAUDI2_QUEUE_ID_NIC_23_1 = 249, 451 GAUDI2_QUEUE_ID_NIC_23_2 = 250, 452 GAUDI2_QUEUE_ID_NIC_23_3 = 251, 453 GAUDI2_QUEUE_ID_ROT_0_0 = 252, 454 GAUDI2_QUEUE_ID_ROT_0_1 = 253, 455 GAUDI2_QUEUE_ID_ROT_0_2 = 254, 456 GAUDI2_QUEUE_ID_ROT_0_3 = 255, 457 GAUDI2_QUEUE_ID_ROT_1_0 = 256, 458 GAUDI2_QUEUE_ID_ROT_1_1 = 257, 459 GAUDI2_QUEUE_ID_ROT_1_2 = 258, 460 GAUDI2_QUEUE_ID_ROT_1_3 = 259, 461 GAUDI2_QUEUE_ID_CPU_PQ = 260, 462 GAUDI2_QUEUE_ID_SIZE 463 }; 464 465 /* 466 * Engine Numbering 467 * 468 * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle' 469 */ 470 471 enum goya_engine_id { 472 GOYA_ENGINE_ID_DMA_0 = 0, 473 GOYA_ENGINE_ID_DMA_1, 474 GOYA_ENGINE_ID_DMA_2, 475 GOYA_ENGINE_ID_DMA_3, 476 GOYA_ENGINE_ID_DMA_4, 477 GOYA_ENGINE_ID_MME_0, 478 GOYA_ENGINE_ID_TPC_0, 479 GOYA_ENGINE_ID_TPC_1, 480 GOYA_ENGINE_ID_TPC_2, 481 GOYA_ENGINE_ID_TPC_3, 482 GOYA_ENGINE_ID_TPC_4, 483 GOYA_ENGINE_ID_TPC_5, 484 GOYA_ENGINE_ID_TPC_6, 485 GOYA_ENGINE_ID_TPC_7, 486 GOYA_ENGINE_ID_SIZE 487 }; 488 489 enum gaudi_engine_id { 490 GAUDI_ENGINE_ID_DMA_0 = 0, 491 GAUDI_ENGINE_ID_DMA_1, 492 GAUDI_ENGINE_ID_DMA_2, 493 GAUDI_ENGINE_ID_DMA_3, 494 GAUDI_ENGINE_ID_DMA_4, 495 GAUDI_ENGINE_ID_DMA_5, 496 GAUDI_ENGINE_ID_DMA_6, 497 GAUDI_ENGINE_ID_DMA_7, 498 GAUDI_ENGINE_ID_MME_0, 499 GAUDI_ENGINE_ID_MME_1, 500 GAUDI_ENGINE_ID_MME_2, 501 GAUDI_ENGINE_ID_MME_3, 502 GAUDI_ENGINE_ID_TPC_0, 503 GAUDI_ENGINE_ID_TPC_1, 504 GAUDI_ENGINE_ID_TPC_2, 505 GAUDI_ENGINE_ID_TPC_3, 506 GAUDI_ENGINE_ID_TPC_4, 507 GAUDI_ENGINE_ID_TPC_5, 508 GAUDI_ENGINE_ID_TPC_6, 509 GAUDI_ENGINE_ID_TPC_7, 510 GAUDI_ENGINE_ID_NIC_0, 511 GAUDI_ENGINE_ID_NIC_1, 512 GAUDI_ENGINE_ID_NIC_2, 513 GAUDI_ENGINE_ID_NIC_3, 514 GAUDI_ENGINE_ID_NIC_4, 515 GAUDI_ENGINE_ID_NIC_5, 516 GAUDI_ENGINE_ID_NIC_6, 517 GAUDI_ENGINE_ID_NIC_7, 518 GAUDI_ENGINE_ID_NIC_8, 519 GAUDI_ENGINE_ID_NIC_9, 520 GAUDI_ENGINE_ID_SIZE 521 }; 522 523 enum gaudi2_engine_id { 524 GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0, 525 GAUDI2_DCORE0_ENGINE_ID_EDMA_1, 526 GAUDI2_DCORE0_ENGINE_ID_MME, 527 GAUDI2_DCORE0_ENGINE_ID_TPC_0, 528 GAUDI2_DCORE0_ENGINE_ID_TPC_1, 529 GAUDI2_DCORE0_ENGINE_ID_TPC_2, 530 GAUDI2_DCORE0_ENGINE_ID_TPC_3, 531 GAUDI2_DCORE0_ENGINE_ID_TPC_4, 532 GAUDI2_DCORE0_ENGINE_ID_TPC_5, 533 GAUDI2_DCORE0_ENGINE_ID_DEC_0, 534 GAUDI2_DCORE0_ENGINE_ID_DEC_1, 535 GAUDI2_DCORE1_ENGINE_ID_EDMA_0, 536 GAUDI2_DCORE1_ENGINE_ID_EDMA_1, 537 GAUDI2_DCORE1_ENGINE_ID_MME, 538 GAUDI2_DCORE1_ENGINE_ID_TPC_0, 539 GAUDI2_DCORE1_ENGINE_ID_TPC_1, 540 GAUDI2_DCORE1_ENGINE_ID_TPC_2, 541 GAUDI2_DCORE1_ENGINE_ID_TPC_3, 542 GAUDI2_DCORE1_ENGINE_ID_TPC_4, 543 GAUDI2_DCORE1_ENGINE_ID_TPC_5, 544 GAUDI2_DCORE1_ENGINE_ID_DEC_0, 545 GAUDI2_DCORE1_ENGINE_ID_DEC_1, 546 GAUDI2_DCORE2_ENGINE_ID_EDMA_0, 547 GAUDI2_DCORE2_ENGINE_ID_EDMA_1, 548 GAUDI2_DCORE2_ENGINE_ID_MME, 549 GAUDI2_DCORE2_ENGINE_ID_TPC_0, 550 GAUDI2_DCORE2_ENGINE_ID_TPC_1, 551 GAUDI2_DCORE2_ENGINE_ID_TPC_2, 552 GAUDI2_DCORE2_ENGINE_ID_TPC_3, 553 GAUDI2_DCORE2_ENGINE_ID_TPC_4, 554 GAUDI2_DCORE2_ENGINE_ID_TPC_5, 555 GAUDI2_DCORE2_ENGINE_ID_DEC_0, 556 GAUDI2_DCORE2_ENGINE_ID_DEC_1, 557 GAUDI2_DCORE3_ENGINE_ID_EDMA_0, 558 GAUDI2_DCORE3_ENGINE_ID_EDMA_1, 559 GAUDI2_DCORE3_ENGINE_ID_MME, 560 GAUDI2_DCORE3_ENGINE_ID_TPC_0, 561 GAUDI2_DCORE3_ENGINE_ID_TPC_1, 562 GAUDI2_DCORE3_ENGINE_ID_TPC_2, 563 GAUDI2_DCORE3_ENGINE_ID_TPC_3, 564 GAUDI2_DCORE3_ENGINE_ID_TPC_4, 565 GAUDI2_DCORE3_ENGINE_ID_TPC_5, 566 GAUDI2_DCORE3_ENGINE_ID_DEC_0, 567 GAUDI2_DCORE3_ENGINE_ID_DEC_1, 568 GAUDI2_DCORE0_ENGINE_ID_TPC_6, 569 GAUDI2_ENGINE_ID_PDMA_0, 570 GAUDI2_ENGINE_ID_PDMA_1, 571 GAUDI2_ENGINE_ID_ROT_0, 572 GAUDI2_ENGINE_ID_ROT_1, 573 GAUDI2_PCIE_ENGINE_ID_DEC_0, 574 GAUDI2_PCIE_ENGINE_ID_DEC_1, 575 GAUDI2_ENGINE_ID_NIC0_0, 576 GAUDI2_ENGINE_ID_NIC0_1, 577 GAUDI2_ENGINE_ID_NIC1_0, 578 GAUDI2_ENGINE_ID_NIC1_1, 579 GAUDI2_ENGINE_ID_NIC2_0, 580 GAUDI2_ENGINE_ID_NIC2_1, 581 GAUDI2_ENGINE_ID_NIC3_0, 582 GAUDI2_ENGINE_ID_NIC3_1, 583 GAUDI2_ENGINE_ID_NIC4_0, 584 GAUDI2_ENGINE_ID_NIC4_1, 585 GAUDI2_ENGINE_ID_NIC5_0, 586 GAUDI2_ENGINE_ID_NIC5_1, 587 GAUDI2_ENGINE_ID_NIC6_0, 588 GAUDI2_ENGINE_ID_NIC6_1, 589 GAUDI2_ENGINE_ID_NIC7_0, 590 GAUDI2_ENGINE_ID_NIC7_1, 591 GAUDI2_ENGINE_ID_NIC8_0, 592 GAUDI2_ENGINE_ID_NIC8_1, 593 GAUDI2_ENGINE_ID_NIC9_0, 594 GAUDI2_ENGINE_ID_NIC9_1, 595 GAUDI2_ENGINE_ID_NIC10_0, 596 GAUDI2_ENGINE_ID_NIC10_1, 597 GAUDI2_ENGINE_ID_NIC11_0, 598 GAUDI2_ENGINE_ID_NIC11_1, 599 GAUDI2_ENGINE_ID_PCIE, 600 GAUDI2_ENGINE_ID_PSOC, 601 GAUDI2_ENGINE_ID_ARC_FARM, 602 GAUDI2_ENGINE_ID_KDMA, 603 GAUDI2_ENGINE_ID_SIZE 604 }; 605 606 /* 607 * ASIC specific PLL index 608 * 609 * Used to retrieve in frequency info of different IPs via HL_INFO_PLL_FREQUENCY under 610 * DRM_IOCTL_HL_INFO IOCTL. 611 * The enums need to be used as an index in struct hl_pll_frequency_info. 612 */ 613 614 enum hl_goya_pll_index { 615 HL_GOYA_CPU_PLL = 0, 616 HL_GOYA_IC_PLL, 617 HL_GOYA_MC_PLL, 618 HL_GOYA_MME_PLL, 619 HL_GOYA_PCI_PLL, 620 HL_GOYA_EMMC_PLL, 621 HL_GOYA_TPC_PLL, 622 HL_GOYA_PLL_MAX 623 }; 624 625 enum hl_gaudi_pll_index { 626 HL_GAUDI_CPU_PLL = 0, 627 HL_GAUDI_PCI_PLL, 628 HL_GAUDI_SRAM_PLL, 629 HL_GAUDI_HBM_PLL, 630 HL_GAUDI_NIC_PLL, 631 HL_GAUDI_DMA_PLL, 632 HL_GAUDI_MESH_PLL, 633 HL_GAUDI_MME_PLL, 634 HL_GAUDI_TPC_PLL, 635 HL_GAUDI_IF_PLL, 636 HL_GAUDI_PLL_MAX 637 }; 638 639 enum hl_gaudi2_pll_index { 640 HL_GAUDI2_CPU_PLL = 0, 641 HL_GAUDI2_PCI_PLL, 642 HL_GAUDI2_SRAM_PLL, 643 HL_GAUDI2_HBM_PLL, 644 HL_GAUDI2_NIC_PLL, 645 HL_GAUDI2_DMA_PLL, 646 HL_GAUDI2_MESH_PLL, 647 HL_GAUDI2_MME_PLL, 648 HL_GAUDI2_TPC_PLL, 649 HL_GAUDI2_IF_PLL, 650 HL_GAUDI2_VID_PLL, 651 HL_GAUDI2_MSS_PLL, 652 HL_GAUDI2_PLL_MAX 653 }; 654 655 /** 656 * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is 657 * submitted to the GOYA's DMA QMAN. This attribute is not relevant 658 * to the H/W but the kernel driver use it to parse the packet's 659 * addresses and patch/validate them. 660 * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR. 661 * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM. 662 * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM. 663 * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR. 664 * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory. 665 * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory. 666 * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR. 667 * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM. 668 * @HL_DMA_ENUM_MAX: number of values in enum 669 */ 670 enum hl_goya_dma_direction { 671 HL_DMA_HOST_TO_DRAM, 672 HL_DMA_HOST_TO_SRAM, 673 HL_DMA_DRAM_TO_SRAM, 674 HL_DMA_SRAM_TO_DRAM, 675 HL_DMA_SRAM_TO_HOST, 676 HL_DMA_DRAM_TO_HOST, 677 HL_DMA_DRAM_TO_DRAM, 678 HL_DMA_SRAM_TO_SRAM, 679 HL_DMA_ENUM_MAX 680 }; 681 682 /** 683 * enum hl_device_status - Device status information. 684 * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational. 685 * @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset. 686 * @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable. 687 * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled. 688 * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in 689 * progress. 690 * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was 691 * triggered because the user released the device 692 * @HL_DEVICE_STATUS_LAST: Last status. 693 */ 694 enum hl_device_status { 695 HL_DEVICE_STATUS_OPERATIONAL, 696 HL_DEVICE_STATUS_IN_RESET, 697 HL_DEVICE_STATUS_MALFUNCTION, 698 HL_DEVICE_STATUS_NEEDS_RESET, 699 HL_DEVICE_STATUS_IN_DEVICE_CREATION, 700 HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE, 701 HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE 702 }; 703 704 enum hl_server_type { 705 HL_SERVER_TYPE_UNKNOWN = 0, 706 HL_SERVER_GAUDI_HLS1 = 1, 707 HL_SERVER_GAUDI_HLS1H = 2, 708 HL_SERVER_GAUDI_TYPE1 = 3, 709 HL_SERVER_GAUDI_TYPE2 = 4, 710 HL_SERVER_GAUDI2_HLS2 = 5, 711 HL_SERVER_GAUDI2_TYPE1 = 7 712 }; 713 714 /* 715 * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command 716 * 717 * HL_NOTIFIER_EVENT_TPC_ASSERT - Indicates TPC assert event 718 * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE - Indicates undefined operation code 719 * HL_NOTIFIER_EVENT_DEVICE_RESET - Indicates device requires a reset 720 * HL_NOTIFIER_EVENT_CS_TIMEOUT - Indicates CS timeout error 721 * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE - Indicates device is unavailable 722 * HL_NOTIFIER_EVENT_USER_ENGINE_ERR - Indicates device engine in error state 723 * HL_NOTIFIER_EVENT_GENERAL_HW_ERR - Indicates device HW error 724 * HL_NOTIFIER_EVENT_RAZWI - Indicates razwi happened 725 * HL_NOTIFIER_EVENT_PAGE_FAULT - Indicates page fault happened 726 * HL_NOTIFIER_EVENT_CRITICAL_HW_ERR - Indicates a HW error that requires SW abort and 727 * HW reset 728 * HL_NOTIFIER_EVENT_CRITICAL_FW_ERR - Indicates a FW error that requires SW abort and 729 * HW reset 730 */ 731 #define HL_NOTIFIER_EVENT_TPC_ASSERT (1ULL << 0) 732 #define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE (1ULL << 1) 733 #define HL_NOTIFIER_EVENT_DEVICE_RESET (1ULL << 2) 734 #define HL_NOTIFIER_EVENT_CS_TIMEOUT (1ULL << 3) 735 #define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE (1ULL << 4) 736 #define HL_NOTIFIER_EVENT_USER_ENGINE_ERR (1ULL << 5) 737 #define HL_NOTIFIER_EVENT_GENERAL_HW_ERR (1ULL << 6) 738 #define HL_NOTIFIER_EVENT_RAZWI (1ULL << 7) 739 #define HL_NOTIFIER_EVENT_PAGE_FAULT (1ULL << 8) 740 #define HL_NOTIFIER_EVENT_CRITICL_HW_ERR (1ULL << 9) 741 #define HL_NOTIFIER_EVENT_CRITICL_FW_ERR (1ULL << 10) 742 743 /* Opcode for management ioctl 744 * 745 * HW_IP_INFO - Receive information about different IP blocks in the 746 * device. 747 * HL_INFO_HW_EVENTS - Receive an array describing how many times each event 748 * occurred since the last hard reset. 749 * HL_INFO_DRAM_USAGE - Retrieve the dram usage inside the device and of the 750 * specific context. This is relevant only for devices 751 * where the dram is managed by the kernel driver 752 * HL_INFO_HW_IDLE - Retrieve information about the idle status of each 753 * internal engine. 754 * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't 755 * require an open context. 756 * HL_INFO_DEVICE_UTILIZATION - Retrieve the total utilization of the device 757 * over the last period specified by the user. 758 * The period can be between 100ms to 1s, in 759 * resolution of 100ms. The return value is a 760 * percentage of the utilization rate. 761 * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each 762 * event occurred since the driver was loaded. 763 * HL_INFO_CLK_RATE - Retrieve the current and maximum clock rate 764 * of the device in MHz. The maximum clock rate is 765 * configurable via sysfs parameter 766 * HL_INFO_RESET_COUNT - Retrieve the counts of the soft and hard reset 767 * operations performed on the device since the last 768 * time the driver was loaded. 769 * HL_INFO_TIME_SYNC - Retrieve the device's time alongside the host's time 770 * for synchronization. 771 * HL_INFO_CS_COUNTERS - Retrieve command submission counters 772 * HL_INFO_PCI_COUNTERS - Retrieve PCI counters 773 * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason 774 * HL_INFO_SYNC_MANAGER - Retrieve sync manager info per dcore 775 * HL_INFO_TOTAL_ENERGY - Retrieve total energy consumption 776 * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency 777 * HL_INFO_POWER - Retrieve power information 778 * HL_INFO_OPEN_STATS - Retrieve info regarding recent device open calls 779 * HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info 780 * HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num 781 * HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened 782 * and CS timeout or razwi error occurred. 783 * HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number. 784 * HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi: 785 * Timestamp of razwi. 786 * The address which accessing it caused the razwi. 787 * Razwi initiator. 788 * Razwi cause, was it a page fault or MMU access error. 789 * May return 0 even though no new data is available, in that case 790 * timestamp will be 0. 791 * HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation 792 * HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot. 793 * HL_INFO_REGISTER_EVENTFD - Register eventfd for event notifications. 794 * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd 795 * HL_INFO_GET_EVENTS - Retrieve the last occurred events 796 * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information. 797 * May return 0 even though no new data is available, in that case 798 * timestamp will be 0. 799 * HL_INFO_ENGINE_STATUS - Retrieve the status of all the h/w engines in the asic. 800 * HL_INFO_PAGE_FAULT_EVENT - Retrieve parameters of captured page fault. 801 * May return 0 even though no new data is available, in that case 802 * timestamp will be 0. 803 * HL_INFO_USER_MAPPINGS - Retrieve user mappings, captured after page fault event. 804 * HL_INFO_FW_GENERIC_REQ - Send generic request to FW. 805 * HL_INFO_HW_ERR_EVENT - Retrieve information on the reported HW error. 806 * May return 0 even though no new data is available, in that case 807 * timestamp will be 0. 808 * HL_INFO_FW_ERR_EVENT - Retrieve information on the reported FW error. 809 * May return 0 even though no new data is available, in that case 810 * timestamp will be 0. 811 * HL_INFO_USER_ENGINE_ERR_EVENT - Retrieve the last engine id that reported an error. 812 */ 813 #define HL_INFO_HW_IP_INFO 0 814 #define HL_INFO_HW_EVENTS 1 815 #define HL_INFO_DRAM_USAGE 2 816 #define HL_INFO_HW_IDLE 3 817 #define HL_INFO_DEVICE_STATUS 4 818 #define HL_INFO_DEVICE_UTILIZATION 6 819 #define HL_INFO_HW_EVENTS_AGGREGATE 7 820 #define HL_INFO_CLK_RATE 8 821 #define HL_INFO_RESET_COUNT 9 822 #define HL_INFO_TIME_SYNC 10 823 #define HL_INFO_CS_COUNTERS 11 824 #define HL_INFO_PCI_COUNTERS 12 825 #define HL_INFO_CLK_THROTTLE_REASON 13 826 #define HL_INFO_SYNC_MANAGER 14 827 #define HL_INFO_TOTAL_ENERGY 15 828 #define HL_INFO_PLL_FREQUENCY 16 829 #define HL_INFO_POWER 17 830 #define HL_INFO_OPEN_STATS 18 831 #define HL_INFO_DRAM_REPLACED_ROWS 21 832 #define HL_INFO_DRAM_PENDING_ROWS 22 833 #define HL_INFO_LAST_ERR_OPEN_DEV_TIME 23 834 #define HL_INFO_CS_TIMEOUT_EVENT 24 835 #define HL_INFO_RAZWI_EVENT 25 836 #define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES 26 837 #define HL_INFO_SECURED_ATTESTATION 27 838 #define HL_INFO_REGISTER_EVENTFD 28 839 #define HL_INFO_UNREGISTER_EVENTFD 29 840 #define HL_INFO_GET_EVENTS 30 841 #define HL_INFO_UNDEFINED_OPCODE_EVENT 31 842 #define HL_INFO_ENGINE_STATUS 32 843 #define HL_INFO_PAGE_FAULT_EVENT 33 844 #define HL_INFO_USER_MAPPINGS 34 845 #define HL_INFO_FW_GENERIC_REQ 35 846 #define HL_INFO_HW_ERR_EVENT 36 847 #define HL_INFO_FW_ERR_EVENT 37 848 #define HL_INFO_USER_ENGINE_ERR_EVENT 38 849 850 #define HL_INFO_VERSION_MAX_LEN 128 851 #define HL_INFO_CARD_NAME_MAX_LEN 16 852 853 /* Maximum buffer size for retrieving engines status */ 854 #define HL_ENGINES_DATA_MAX_SIZE SZ_1M 855 856 /** 857 * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC 858 * @sram_base_address: The first SRAM physical base address that is free to be 859 * used by the user. 860 * @dram_base_address: The first DRAM virtual or physical base address that is 861 * free to be used by the user. 862 * @dram_size: The DRAM size that is available to the user. 863 * @sram_size: The SRAM size that is available to the user. 864 * @num_of_events: The number of events that can be received from the f/w. This 865 * is needed so the user can what is the size of the h/w events 866 * array he needs to pass to the kernel when he wants to fetch 867 * the event counters. 868 * @device_id: PCI device ID of the ASIC. 869 * @module_id: Module ID of the ASIC for mezzanine cards in servers 870 * (From OCP spec). 871 * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled. 872 * @first_available_interrupt_id: The first available interrupt ID for the user 873 * to be used when it works with user interrupts. 874 * Relevant for Gaudi2 and later. 875 * @server_type: Server type that the Gaudi ASIC is currently installed in. 876 * The value is according to enum hl_server_type 877 * @cpld_version: CPLD version on the board. 878 * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs. 879 * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs. 880 * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs. 881 * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler 882 * in some ASICs. 883 * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant 884 * for Goya/Gaudi only. 885 * @dram_enabled: Whether the DRAM is enabled. 886 * @security_enabled: Whether security is enabled on device. 887 * @mme_master_slave_mode: Indicate whether the MME is working in master/slave 888 * configuration. Relevant for Gaudi2 and later. 889 * @cpucp_version: The CPUCP f/w version. 890 * @card_name: The card name as passed by the f/w. 891 * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled. 892 * Relevant for Gaudi2 and later. 893 * @dram_page_size: The DRAM physical page size. 894 * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled. 895 * Relevant for Gaudi2 and later. 896 * @number_of_user_interrupts: The number of interrupts that are available to the userspace 897 * application to use. Relevant for Gaudi2 and later. 898 * @device_mem_alloc_default_page_size: default page size used in device memory allocation. 899 * @revision_id: PCI revision ID of the ASIC. 900 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host. 901 * @rotator_enabled_mask: Bit-mask that represents which rotators are enabled. 902 * Relevant for Gaudi3 and later. 903 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use 904 * in order to raise events toward FW. 905 * @reserved_dram_size: DRAM size reserved for driver and firmware. 906 */ 907 struct hl_info_hw_ip_info { 908 __u64 sram_base_address; 909 __u64 dram_base_address; 910 __u64 dram_size; 911 __u32 sram_size; 912 __u32 num_of_events; 913 __u32 device_id; 914 __u32 module_id; 915 __u32 decoder_enabled_mask; 916 __u16 first_available_interrupt_id; 917 __u16 server_type; 918 __u32 cpld_version; 919 __u32 psoc_pci_pll_nr; 920 __u32 psoc_pci_pll_nf; 921 __u32 psoc_pci_pll_od; 922 __u32 psoc_pci_pll_div_factor; 923 __u8 tpc_enabled_mask; 924 __u8 dram_enabled; 925 __u8 security_enabled; 926 __u8 mme_master_slave_mode; 927 __u8 cpucp_version[HL_INFO_VERSION_MAX_LEN]; 928 __u8 card_name[HL_INFO_CARD_NAME_MAX_LEN]; 929 __u64 tpc_enabled_mask_ext; 930 __u64 dram_page_size; 931 __u32 edma_enabled_mask; 932 __u16 number_of_user_interrupts; 933 __u8 reserved1; 934 __u8 reserved2; 935 __u64 reserved3; 936 __u64 device_mem_alloc_default_page_size; 937 __u64 reserved4; 938 __u64 reserved5; 939 __u32 reserved6; 940 __u8 reserved7; 941 __u8 revision_id; 942 __u16 tpc_interrupt_id; 943 __u32 rotator_enabled_mask; 944 __u32 reserved9; 945 __u64 engine_core_interrupt_reg_addr; 946 __u64 reserved_dram_size; 947 }; 948 949 struct hl_info_dram_usage { 950 __u64 dram_free_mem; 951 __u64 ctx_dram_mem; 952 }; 953 954 #define HL_BUSY_ENGINES_MASK_EXT_SIZE 4 955 956 struct hl_info_hw_idle { 957 __u32 is_idle; 958 /* 959 * Bitmask of busy engines. 960 * Bits definition is according to `enum <chip>_engine_id'. 961 */ 962 __u32 busy_engines_mask; 963 964 /* 965 * Extended Bitmask of busy engines. 966 * Bits definition is according to `enum <chip>_engine_id'. 967 */ 968 __u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE]; 969 }; 970 971 struct hl_info_device_status { 972 __u32 status; 973 __u32 pad; 974 }; 975 976 struct hl_info_device_utilization { 977 __u32 utilization; 978 __u32 pad; 979 }; 980 981 struct hl_info_clk_rate { 982 __u32 cur_clk_rate_mhz; 983 __u32 max_clk_rate_mhz; 984 }; 985 986 struct hl_info_reset_count { 987 __u32 hard_reset_cnt; 988 __u32 soft_reset_cnt; 989 }; 990 991 struct hl_info_time_sync { 992 __u64 device_time; 993 __u64 host_time; 994 __u64 tsc_time; 995 }; 996 997 /** 998 * struct hl_info_pci_counters - pci counters 999 * @rx_throughput: PCI rx throughput KBps 1000 * @tx_throughput: PCI tx throughput KBps 1001 * @replay_cnt: PCI replay counter 1002 */ 1003 struct hl_info_pci_counters { 1004 __u64 rx_throughput; 1005 __u64 tx_throughput; 1006 __u64 replay_cnt; 1007 }; 1008 1009 enum hl_clk_throttling_type { 1010 HL_CLK_THROTTLE_TYPE_POWER, 1011 HL_CLK_THROTTLE_TYPE_THERMAL, 1012 HL_CLK_THROTTLE_TYPE_MAX 1013 }; 1014 1015 /* clk_throttling_reason masks */ 1016 #define HL_CLK_THROTTLE_POWER (1 << HL_CLK_THROTTLE_TYPE_POWER) 1017 #define HL_CLK_THROTTLE_THERMAL (1 << HL_CLK_THROTTLE_TYPE_THERMAL) 1018 1019 /** 1020 * struct hl_info_clk_throttle - clock throttling reason 1021 * @clk_throttling_reason: each bit represents a clk throttling reason 1022 * @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event 1023 * @clk_throttling_duration_ns: the clock throttle time in nanosec 1024 */ 1025 struct hl_info_clk_throttle { 1026 __u32 clk_throttling_reason; 1027 __u32 pad; 1028 __u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX]; 1029 __u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX]; 1030 }; 1031 1032 /** 1033 * struct hl_info_energy - device energy information 1034 * @total_energy_consumption: total device energy consumption 1035 */ 1036 struct hl_info_energy { 1037 __u64 total_energy_consumption; 1038 }; 1039 1040 #define HL_PLL_NUM_OUTPUTS 4 1041 1042 struct hl_pll_frequency_info { 1043 __u16 output[HL_PLL_NUM_OUTPUTS]; 1044 }; 1045 1046 /** 1047 * struct hl_open_stats_info - device open statistics information 1048 * @open_counter: ever growing counter, increased on each successful dev open 1049 * @last_open_period_ms: duration (ms) device was open last time 1050 * @is_compute_ctx_active: Whether there is an active compute context executing 1051 * @compute_ctx_in_release: true if the current compute context is being released 1052 */ 1053 struct hl_open_stats_info { 1054 __u64 open_counter; 1055 __u64 last_open_period_ms; 1056 __u8 is_compute_ctx_active; 1057 __u8 compute_ctx_in_release; 1058 __u8 pad[6]; 1059 }; 1060 1061 /** 1062 * struct hl_power_info - power information 1063 * @power: power consumption 1064 */ 1065 struct hl_power_info { 1066 __u64 power; 1067 }; 1068 1069 /** 1070 * struct hl_info_sync_manager - sync manager information 1071 * @first_available_sync_object: first available sob 1072 * @first_available_monitor: first available monitor 1073 * @first_available_cq: first available cq 1074 */ 1075 struct hl_info_sync_manager { 1076 __u32 first_available_sync_object; 1077 __u32 first_available_monitor; 1078 __u32 first_available_cq; 1079 __u32 reserved; 1080 }; 1081 1082 /** 1083 * struct hl_info_cs_counters - command submission counters 1084 * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue 1085 * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue 1086 * @total_parsing_drop_cnt: total dropped due to error in packet parsing 1087 * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing 1088 * @total_queue_full_drop_cnt: total dropped due to queue full 1089 * @ctx_queue_full_drop_cnt: context dropped due to queue full 1090 * @total_device_in_reset_drop_cnt: total dropped due to device in reset 1091 * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset 1092 * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight 1093 * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight 1094 * @total_validation_drop_cnt: total dropped due to validation error 1095 * @ctx_validation_drop_cnt: context dropped due to validation error 1096 */ 1097 struct hl_info_cs_counters { 1098 __u64 total_out_of_mem_drop_cnt; 1099 __u64 ctx_out_of_mem_drop_cnt; 1100 __u64 total_parsing_drop_cnt; 1101 __u64 ctx_parsing_drop_cnt; 1102 __u64 total_queue_full_drop_cnt; 1103 __u64 ctx_queue_full_drop_cnt; 1104 __u64 total_device_in_reset_drop_cnt; 1105 __u64 ctx_device_in_reset_drop_cnt; 1106 __u64 total_max_cs_in_flight_drop_cnt; 1107 __u64 ctx_max_cs_in_flight_drop_cnt; 1108 __u64 total_validation_drop_cnt; 1109 __u64 ctx_validation_drop_cnt; 1110 }; 1111 1112 /** 1113 * struct hl_info_last_err_open_dev_time - last error boot information. 1114 * @timestamp: timestamp of last time the device was opened and error occurred. 1115 */ 1116 struct hl_info_last_err_open_dev_time { 1117 __s64 timestamp; 1118 }; 1119 1120 /** 1121 * struct hl_info_cs_timeout_event - last CS timeout information. 1122 * @timestamp: timestamp when last CS timeout event occurred. 1123 * @seq: sequence number of last CS timeout event. 1124 */ 1125 struct hl_info_cs_timeout_event { 1126 __s64 timestamp; 1127 __u64 seq; 1128 }; 1129 1130 #define HL_RAZWI_NA_ENG_ID U16_MAX 1131 #define HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR 128 1132 #define HL_RAZWI_READ BIT(0) 1133 #define HL_RAZWI_WRITE BIT(1) 1134 #define HL_RAZWI_LBW BIT(2) 1135 #define HL_RAZWI_HBW BIT(3) 1136 #define HL_RAZWI_RR BIT(4) 1137 #define HL_RAZWI_ADDR_DEC BIT(5) 1138 1139 /** 1140 * struct hl_info_razwi_event - razwi information. 1141 * @timestamp: timestamp of razwi. 1142 * @addr: address which accessing it caused razwi. 1143 * @engine_id: engine id of the razwi initiator, if it was initiated by engine that does not 1144 * have engine id it will be set to HL_RAZWI_NA_ENG_ID. If there are several possible 1145 * engines which caused the razwi, it will hold all of them. 1146 * @num_of_possible_engines: contains number of possible engine ids. In some asics, razwi indication 1147 * might be common for several engines and there is no way to get the 1148 * exact engine. In this way, engine_id array will be filled with all 1149 * possible engines caused this razwi. Also, there might be possibility 1150 * in gaudi, where we don't indication on specific engine, in that case 1151 * the value of this parameter will be zero. 1152 * @flags: bitmask for additional data: HL_RAZWI_READ - razwi caused by read operation 1153 * HL_RAZWI_WRITE - razwi caused by write operation 1154 * HL_RAZWI_LBW - razwi caused by lbw fabric transaction 1155 * HL_RAZWI_HBW - razwi caused by hbw fabric transaction 1156 * HL_RAZWI_RR - razwi caused by range register 1157 * HL_RAZWI_ADDR_DEC - razwi caused by address decode error 1158 * Note: this data is not supported by all asics, in that case the relevant bits will not 1159 * be set. 1160 */ 1161 struct hl_info_razwi_event { 1162 __s64 timestamp; 1163 __u64 addr; 1164 __u16 engine_id[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR]; 1165 __u16 num_of_possible_engines; 1166 __u8 flags; 1167 __u8 pad[5]; 1168 }; 1169 1170 #define MAX_QMAN_STREAMS_INFO 4 1171 #define OPCODE_INFO_MAX_ADDR_SIZE 8 1172 /** 1173 * struct hl_info_undefined_opcode_event - info about last undefined opcode error 1174 * @timestamp: timestamp of the undefined opcode error 1175 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ 1176 * entries. In case all streams array entries are 1177 * filled with values, it means the execution was in Lower-CP. 1178 * @cq_addr: the address of the current handled command buffer 1179 * @cq_size: the size of the current handled command buffer 1180 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. 1181 * should be equal to 1 in case of undefined opcode 1182 * in Upper-CP (specific stream) and equal to 4 incase 1183 * of undefined opcode in Lower-CP. 1184 * @engine_id: engine-id that the error occurred on 1185 * @stream_id: the stream id the error occurred on. In case the stream equals to 1186 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. 1187 */ 1188 struct hl_info_undefined_opcode_event { 1189 __s64 timestamp; 1190 __u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; 1191 __u64 cq_addr; 1192 __u32 cq_size; 1193 __u32 cb_addr_streams_len; 1194 __u32 engine_id; 1195 __u32 stream_id; 1196 }; 1197 1198 /** 1199 * struct hl_info_hw_err_event - info about HW error 1200 * @timestamp: timestamp of error occurrence 1201 * @event_id: The async event ID (specific to each device type). 1202 * @pad: size padding for u64 granularity. 1203 */ 1204 struct hl_info_hw_err_event { 1205 __s64 timestamp; 1206 __u16 event_id; 1207 __u16 pad[3]; 1208 }; 1209 1210 /* FW error definition for event_type in struct hl_info_fw_err_event */ 1211 enum hl_info_fw_err_type { 1212 HL_INFO_FW_HEARTBEAT_ERR, 1213 HL_INFO_FW_REPORTED_ERR, 1214 }; 1215 1216 /** 1217 * struct hl_info_fw_err_event - info about FW error 1218 * @timestamp: time-stamp of error occurrence 1219 * @err_type: The type of event as defined in hl_info_fw_err_type. 1220 * @event_id: The async event ID (specific to each device type, applicable only when event type is 1221 * HL_INFO_FW_REPORTED_ERR). 1222 * @pad: size padding for u64 granularity. 1223 */ 1224 struct hl_info_fw_err_event { 1225 __s64 timestamp; 1226 __u16 err_type; 1227 __u16 event_id; 1228 __u32 pad; 1229 }; 1230 1231 /** 1232 * struct hl_info_engine_err_event - engine error info 1233 * @timestamp: time-stamp of error occurrence 1234 * @engine_id: engine id who reported the error. 1235 * @error_count: Amount of errors reported. 1236 * @pad: size padding for u64 granularity. 1237 */ 1238 struct hl_info_engine_err_event { 1239 __s64 timestamp; 1240 __u16 engine_id; 1241 __u16 error_count; 1242 __u32 pad; 1243 }; 1244 1245 /** 1246 * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information. 1247 * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size 1248 * (e.g. 0x2100000 means that 1MB and 32MB pages are supported). 1249 */ 1250 struct hl_info_dev_memalloc_page_sizes { 1251 __u64 page_order_bitmask; 1252 }; 1253 1254 #define SEC_PCR_DATA_BUF_SZ 256 1255 #define SEC_PCR_QUOTE_BUF_SZ 510 /* (512 - 2) 2 bytes used for size */ 1256 #define SEC_SIGNATURE_BUF_SZ 255 /* (256 - 1) 1 byte used for size */ 1257 #define SEC_PUB_DATA_BUF_SZ 510 /* (512 - 2) 2 bytes used for size */ 1258 #define SEC_CERTIFICATE_BUF_SZ 2046 /* (2048 - 2) 2 bytes used for size */ 1259 1260 /* 1261 * struct hl_info_sec_attest - attestation report of the boot 1262 * @nonce: number only used once. random number provided by host. this also passed to the quote 1263 * command as a qualifying data. 1264 * @pcr_quote_len: length of the attestation quote data (bytes) 1265 * @pub_data_len: length of the public data (bytes) 1266 * @certificate_len: length of the certificate (bytes) 1267 * @pcr_num_reg: number of PCR registers in the pcr_data array 1268 * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes) 1269 * @quote_sig_len: length of the attestation report signature (bytes) 1270 * @pcr_data: raw values of the PCR registers 1271 * @pcr_quote: attestation report data structure 1272 * @quote_sig: signature structure of the attestation report 1273 * @public_data: public key for the signed attestation 1274 * (outPublic + name + qualifiedName) 1275 * @certificate: certificate for the attestation signing key 1276 */ 1277 struct hl_info_sec_attest { 1278 __u32 nonce; 1279 __u16 pcr_quote_len; 1280 __u16 pub_data_len; 1281 __u16 certificate_len; 1282 __u8 pcr_num_reg; 1283 __u8 pcr_reg_len; 1284 __u8 quote_sig_len; 1285 __u8 pcr_data[SEC_PCR_DATA_BUF_SZ]; 1286 __u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ]; 1287 __u8 quote_sig[SEC_SIGNATURE_BUF_SZ]; 1288 __u8 public_data[SEC_PUB_DATA_BUF_SZ]; 1289 __u8 certificate[SEC_CERTIFICATE_BUF_SZ]; 1290 __u8 pad0[2]; 1291 }; 1292 1293 /** 1294 * struct hl_page_fault_info - page fault information. 1295 * @timestamp: timestamp of page fault. 1296 * @addr: address which accessing it caused page fault. 1297 * @engine_id: engine id which caused the page fault, supported only in gaudi3. 1298 */ 1299 struct hl_page_fault_info { 1300 __s64 timestamp; 1301 __u64 addr; 1302 __u16 engine_id; 1303 __u8 pad[6]; 1304 }; 1305 1306 /** 1307 * struct hl_user_mapping - user mapping information. 1308 * @dev_va: device virtual address. 1309 * @size: virtual address mapping size. 1310 */ 1311 struct hl_user_mapping { 1312 __u64 dev_va; 1313 __u64 size; 1314 }; 1315 1316 enum gaudi_dcores { 1317 HL_GAUDI_WS_DCORE, 1318 HL_GAUDI_WN_DCORE, 1319 HL_GAUDI_EN_DCORE, 1320 HL_GAUDI_ES_DCORE 1321 }; 1322 1323 /** 1324 * struct hl_info_args - Main structure to retrieve device related information. 1325 * @return_pointer: User space address of the relevant structure related to HL_INFO_* operation 1326 * mentioned in @op. 1327 * @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it 1328 * limits how many bytes the kernel can write. For hw_events array, the size should be 1329 * hl_info_hw_ip_info.num_of_events * sizeof(__u32). 1330 * @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details. 1331 * @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores). 1332 * @ctx_id: Context ID of the user. Currently not in use. 1333 * @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms 1334 * resolution. Currently not in use. 1335 * @pll_index: Index as defined in hl_<asic type>_pll_index enumeration. 1336 * @eventfd: event file descriptor for event notifications. 1337 * @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the 1338 * driver. It is possible for the user to allocate buffer larger than 1339 * needed, hence updating this variable so user will know the exact amount 1340 * of bytes copied by the kernel to the buffer. 1341 * @sec_attest_nonce: Nonce number used for attestation report. 1342 * @array_size: Number of array members copied to user buffer. 1343 * Relevant for HL_INFO_USER_MAPPINGS info ioctl. 1344 * @fw_sub_opcode: generic requests sub opcodes. 1345 * @pad: Padding to 64 bit. 1346 */ 1347 struct hl_info_args { 1348 __u64 return_pointer; 1349 __u32 return_size; 1350 __u32 op; 1351 1352 union { 1353 __u32 dcore_id; 1354 __u32 ctx_id; 1355 __u32 period_ms; 1356 __u32 pll_index; 1357 __u32 eventfd; 1358 __u32 user_buffer_actual_size; 1359 __u32 sec_attest_nonce; 1360 __u32 array_size; 1361 __u32 fw_sub_opcode; 1362 }; 1363 1364 __u32 pad; 1365 }; 1366 1367 /* Opcode to create a new command buffer */ 1368 #define HL_CB_OP_CREATE 0 1369 /* Opcode to destroy previously created command buffer */ 1370 #define HL_CB_OP_DESTROY 1 1371 /* Opcode to retrieve information about a command buffer */ 1372 #define HL_CB_OP_INFO 2 1373 1374 /* 2MB minus 32 bytes for 2xMSG_PROT */ 1375 #define HL_MAX_CB_SIZE (0x200000 - 32) 1376 1377 /* Indicates whether the command buffer should be mapped to the device's MMU */ 1378 #define HL_CB_FLAGS_MAP 0x1 1379 1380 /* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */ 1381 #define HL_CB_FLAGS_GET_DEVICE_VA 0x2 1382 1383 struct hl_cb_in { 1384 /* Handle of CB or 0 if we want to create one */ 1385 __u64 cb_handle; 1386 /* HL_CB_OP_* */ 1387 __u32 op; 1388 1389 /* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that 1390 * will be allocated, regardless of this parameter's value, is PAGE_SIZE 1391 */ 1392 __u32 cb_size; 1393 1394 /* Context ID - Currently not in use */ 1395 __u32 ctx_id; 1396 /* HL_CB_FLAGS_* */ 1397 __u32 flags; 1398 }; 1399 1400 struct hl_cb_out { 1401 union { 1402 /* Handle of CB */ 1403 __u64 cb_handle; 1404 1405 union { 1406 /* Information about CB */ 1407 struct { 1408 /* Usage count of CB */ 1409 __u32 usage_cnt; 1410 __u32 pad; 1411 }; 1412 1413 /* CB mapped address to device MMU */ 1414 __u64 device_va; 1415 }; 1416 }; 1417 }; 1418 1419 union hl_cb_args { 1420 struct hl_cb_in in; 1421 struct hl_cb_out out; 1422 }; 1423 1424 /* HL_CS_CHUNK_FLAGS_ values 1425 * 1426 * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB: 1427 * Indicates if the CB was allocated and mapped by userspace 1428 * (relevant to Gaudi2 and later). User allocated CB is a command buffer, 1429 * allocated by the user, via malloc (or similar). After allocating the 1430 * CB, the user invokes - “memory ioctl” to map the user memory into a 1431 * device virtual address. The user provides this address via the 1432 * cb_handle field. The interface provides the ability to create a 1433 * large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it 1434 * increases the PCI-DMA queues throughput. This CB allocation method 1435 * also reduces the use of Linux DMA-able memory pool. Which are limited 1436 * and used by other Linux sub-systems. 1437 */ 1438 #define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1 1439 1440 /* 1441 * This structure size must always be fixed to 64-bytes for backward 1442 * compatibility 1443 */ 1444 struct hl_cs_chunk { 1445 union { 1446 /* Goya/Gaudi: 1447 * For external queue, this represents a Handle of CB on the 1448 * Host. 1449 * For internal queue in Goya, this represents an SRAM or 1450 * a DRAM address of the internal CB. In Gaudi, this might also 1451 * represent a mapped host address of the CB. 1452 * 1453 * Gaudi2 onwards: 1454 * For H/W queue, this represents either a Handle of CB on the 1455 * Host, or an SRAM, a DRAM, or a mapped host address of the CB. 1456 * 1457 * A mapped host address is in the device address space, after 1458 * a host address was mapped by the device MMU. 1459 */ 1460 __u64 cb_handle; 1461 1462 /* Relevant only when HL_CS_FLAGS_WAIT or 1463 * HL_CS_FLAGS_COLLECTIVE_WAIT is set 1464 * This holds address of array of u64 values that contain 1465 * signal CS sequence numbers. The wait described by 1466 * this job will listen on all those signals 1467 * (wait event per signal) 1468 */ 1469 __u64 signal_seq_arr; 1470 1471 /* 1472 * Relevant only when HL_CS_FLAGS_WAIT or 1473 * HL_CS_FLAGS_COLLECTIVE_WAIT is set 1474 * along with HL_CS_FLAGS_ENCAP_SIGNALS. 1475 * This is the CS sequence which has the encapsulated signals. 1476 */ 1477 __u64 encaps_signal_seq; 1478 }; 1479 1480 /* Index of queue to put the CB on */ 1481 __u32 queue_index; 1482 1483 union { 1484 /* 1485 * Size of command buffer with valid packets 1486 * Can be smaller then actual CB size 1487 */ 1488 __u32 cb_size; 1489 1490 /* Relevant only when HL_CS_FLAGS_WAIT or 1491 * HL_CS_FLAGS_COLLECTIVE_WAIT is set. 1492 * Number of entries in signal_seq_arr 1493 */ 1494 __u32 num_signal_seq_arr; 1495 1496 /* Relevant only when HL_CS_FLAGS_WAIT or 1497 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along 1498 * with HL_CS_FLAGS_ENCAP_SIGNALS 1499 * This set the signals range that the user want to wait for 1500 * out of the whole reserved signals range. 1501 * e.g if the signals range is 20, and user don't want 1502 * to wait for signal 8, so he set this offset to 7, then 1503 * he call the API again with 9 and so on till 20. 1504 */ 1505 __u32 encaps_signal_offset; 1506 }; 1507 1508 /* HL_CS_CHUNK_FLAGS_* */ 1509 __u32 cs_chunk_flags; 1510 1511 /* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set. 1512 * This holds the collective engine ID. The wait described by this job 1513 * will sync with this engine and with all NICs before completion. 1514 */ 1515 __u32 collective_engine_id; 1516 1517 /* Align structure to 64 bytes */ 1518 __u32 pad[10]; 1519 }; 1520 1521 /* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */ 1522 #define HL_CS_FLAGS_FORCE_RESTORE 0x1 1523 #define HL_CS_FLAGS_SIGNAL 0x2 1524 #define HL_CS_FLAGS_WAIT 0x4 1525 #define HL_CS_FLAGS_COLLECTIVE_WAIT 0x8 1526 1527 #define HL_CS_FLAGS_TIMESTAMP 0x20 1528 #define HL_CS_FLAGS_STAGED_SUBMISSION 0x40 1529 #define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST 0x80 1530 #define HL_CS_FLAGS_STAGED_SUBMISSION_LAST 0x100 1531 #define HL_CS_FLAGS_CUSTOM_TIMEOUT 0x200 1532 #define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT 0x400 1533 1534 /* 1535 * The encapsulated signals CS is merged into the existing CS ioctls. 1536 * In order to use this feature need to follow the below procedure: 1537 * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY 1538 * the output of this API will be the SOB offset from CFG_BASE. 1539 * this address will be used to patch CB cmds to do the signaling for this 1540 * SOB by incrementing it's value. 1541 * for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY 1542 * CS type, note that this might fail if out-of-sync happened to the SOB 1543 * value, in case other signaling request to the same SOB occurred between 1544 * reserve-unreserve calls. 1545 * 2. Use the staged CS to do the encapsulated signaling jobs. 1546 * use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST 1547 * along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset 1548 * field. This offset allows app to wait on part of the reserved signals. 1549 * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag 1550 * to wait for the encapsulated signals. 1551 */ 1552 #define HL_CS_FLAGS_ENCAP_SIGNALS 0x800 1553 #define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY 0x1000 1554 #define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY 0x2000 1555 1556 /* 1557 * The engine cores CS is merged into the existing CS ioctls. 1558 * Use it to control the engine cores mode. 1559 */ 1560 #define HL_CS_FLAGS_ENGINE_CORE_COMMAND 0x4000 1561 1562 /* 1563 * The flush HBW PCI writes is merged into the existing CS ioctls. 1564 * Used to flush all HBW PCI writes. 1565 * This is a blocking operation and for this reason the user shall not use 1566 * the return sequence number (which will be invalid anyway) 1567 */ 1568 #define HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES 0x8000 1569 1570 /* 1571 * The engines CS is merged into the existing CS ioctls. 1572 * Use it to control engines modes. 1573 */ 1574 #define HL_CS_FLAGS_ENGINES_COMMAND 0x10000 1575 1576 #define HL_CS_STATUS_SUCCESS 0 1577 1578 #define HL_MAX_JOBS_PER_CS 512 1579 1580 /* 1581 * enum hl_engine_command - engine command 1582 * 1583 * @HL_ENGINE_CORE_HALT: engine core halt 1584 * @HL_ENGINE_CORE_RUN: engine core run 1585 * @HL_ENGINE_STALL: user engine/s stall 1586 * @HL_ENGINE_RESUME: user engine/s resume 1587 */ 1588 enum hl_engine_command { 1589 HL_ENGINE_CORE_HALT = 1, 1590 HL_ENGINE_CORE_RUN = 2, 1591 HL_ENGINE_STALL = 3, 1592 HL_ENGINE_RESUME = 4, 1593 HL_ENGINE_COMMAND_MAX 1594 }; 1595 1596 struct hl_cs_in { 1597 1598 union { 1599 struct { 1600 /* this holds address of array of hl_cs_chunk for restore phase */ 1601 __u64 chunks_restore; 1602 1603 /* holds address of array of hl_cs_chunk for execution phase */ 1604 __u64 chunks_execute; 1605 }; 1606 1607 /* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */ 1608 struct { 1609 /* this holds address of array of uint32 for engine_cores */ 1610 __u64 engine_cores; 1611 1612 /* number of engine cores in engine_cores array */ 1613 __u32 num_engine_cores; 1614 1615 /* the core command to be sent towards engine cores */ 1616 __u32 core_command; 1617 }; 1618 1619 /* Valid only when HL_CS_FLAGS_ENGINES_COMMAND is set */ 1620 struct { 1621 /* this holds address of array of uint32 for engines */ 1622 __u64 engines; 1623 1624 /* number of engines in engines array */ 1625 __u32 num_engines; 1626 1627 /* the engine command to be sent towards engines */ 1628 __u32 engine_command; 1629 }; 1630 }; 1631 1632 union { 1633 /* 1634 * Sequence number of a staged submission CS 1635 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and 1636 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset. 1637 */ 1638 __u64 seq; 1639 1640 /* 1641 * Encapsulated signals handle id 1642 * Valid for two flows: 1643 * 1. CS with encapsulated signals: 1644 * when HL_CS_FLAGS_STAGED_SUBMISSION and 1645 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST 1646 * and HL_CS_FLAGS_ENCAP_SIGNALS are set. 1647 * 2. unreserve signals: 1648 * valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set. 1649 */ 1650 __u32 encaps_sig_handle_id; 1651 1652 /* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */ 1653 struct { 1654 /* Encapsulated signals number */ 1655 __u32 encaps_signals_count; 1656 1657 /* Encapsulated signals queue index (stream) */ 1658 __u32 encaps_signals_q_idx; 1659 }; 1660 }; 1661 1662 /* Number of chunks in restore phase array. Maximum number is 1663 * HL_MAX_JOBS_PER_CS 1664 */ 1665 __u32 num_chunks_restore; 1666 1667 /* Number of chunks in execution array. Maximum number is 1668 * HL_MAX_JOBS_PER_CS 1669 */ 1670 __u32 num_chunks_execute; 1671 1672 /* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT 1673 * is set 1674 */ 1675 __u32 timeout; 1676 1677 /* HL_CS_FLAGS_* */ 1678 __u32 cs_flags; 1679 1680 /* Context ID - Currently not in use */ 1681 __u32 ctx_id; 1682 __u8 pad[4]; 1683 }; 1684 1685 struct hl_cs_out { 1686 union { 1687 /* 1688 * seq holds the sequence number of the CS to pass to wait 1689 * ioctl. All values are valid except for 0 and ULLONG_MAX 1690 */ 1691 __u64 seq; 1692 1693 /* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */ 1694 struct { 1695 /* This is the reserved signal handle id */ 1696 __u32 handle_id; 1697 1698 /* This is the signals count */ 1699 __u32 count; 1700 }; 1701 }; 1702 1703 /* HL_CS_STATUS */ 1704 __u32 status; 1705 1706 /* 1707 * SOB base address offset 1708 * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set 1709 */ 1710 __u32 sob_base_addr_offset; 1711 1712 /* 1713 * Count of completed signals in SOB before current signal submission. 1714 * Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION) 1715 * or HL_CS_FLAGS_SIGNAL is set 1716 */ 1717 __u16 sob_count_before_submission; 1718 __u16 pad[3]; 1719 }; 1720 1721 union hl_cs_args { 1722 struct hl_cs_in in; 1723 struct hl_cs_out out; 1724 }; 1725 1726 #define HL_WAIT_CS_FLAGS_INTERRUPT 0x2 1727 #define HL_WAIT_CS_FLAGS_INTERRUPT_MASK 0xFFF00000 1728 #define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT 0xFFF00000 1729 #define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT 0xFFE00000 1730 #define HL_WAIT_CS_FLAGS_MULTI_CS 0x4 1731 #define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ 0x10 1732 #define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT 0x20 1733 1734 #define HL_WAIT_MULTI_CS_LIST_MAX_LEN 32 1735 1736 struct hl_wait_cs_in { 1737 union { 1738 struct { 1739 /* 1740 * In case of wait_cs holds the CS sequence number. 1741 * In case of wait for multi CS hold a user pointer to 1742 * an array of CS sequence numbers 1743 */ 1744 __u64 seq; 1745 /* Absolute timeout to wait for command submission 1746 * in microseconds 1747 */ 1748 __u64 timeout_us; 1749 }; 1750 1751 struct { 1752 union { 1753 /* User address for completion comparison. 1754 * upon interrupt, driver will compare the value pointed 1755 * by this address with the supplied target value. 1756 * in order not to perform any comparison, set address 1757 * to all 1s. 1758 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set 1759 */ 1760 __u64 addr; 1761 1762 /* cq_counters_handle to a kernel mapped cb which contains 1763 * cq counters. 1764 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set 1765 */ 1766 __u64 cq_counters_handle; 1767 }; 1768 1769 /* Target value for completion comparison */ 1770 __u64 target; 1771 }; 1772 }; 1773 1774 /* Context ID - Currently not in use */ 1775 __u32 ctx_id; 1776 1777 /* HL_WAIT_CS_FLAGS_* 1778 * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include 1779 * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK 1780 * 1781 * in order to wait for any CQ interrupt, set interrupt value to 1782 * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT. 1783 * 1784 * in order to wait for any decoder interrupt, set interrupt value to 1785 * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT. 1786 */ 1787 __u32 flags; 1788 1789 union { 1790 struct { 1791 /* Multi CS API info- valid entries in multi-CS array */ 1792 __u8 seq_arr_len; 1793 __u8 pad[7]; 1794 }; 1795 1796 /* Absolute timeout to wait for an interrupt in microseconds. 1797 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set 1798 */ 1799 __u64 interrupt_timeout_us; 1800 }; 1801 1802 /* 1803 * cq counter offset inside the counters cb pointed by cq_counters_handle above. 1804 * upon interrupt, driver will compare the value pointed 1805 * by this address (cq_counters_handle + cq_counters_offset) 1806 * with the supplied target value. 1807 * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set 1808 */ 1809 __u64 cq_counters_offset; 1810 1811 /* 1812 * Timestamp_handle timestamps buffer handle. 1813 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set 1814 */ 1815 __u64 timestamp_handle; 1816 1817 /* 1818 * Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above. 1819 * upon interrupt, if the cq reached the target value then driver will write 1820 * timestamp to this offset. 1821 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set 1822 */ 1823 __u64 timestamp_offset; 1824 }; 1825 1826 #define HL_WAIT_CS_STATUS_COMPLETED 0 1827 #define HL_WAIT_CS_STATUS_BUSY 1 1828 #define HL_WAIT_CS_STATUS_TIMEDOUT 2 1829 #define HL_WAIT_CS_STATUS_ABORTED 3 1830 1831 #define HL_WAIT_CS_STATUS_FLAG_GONE 0x1 1832 #define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD 0x2 1833 1834 struct hl_wait_cs_out { 1835 /* HL_WAIT_CS_STATUS_* */ 1836 __u32 status; 1837 /* HL_WAIT_CS_STATUS_FLAG* */ 1838 __u32 flags; 1839 /* 1840 * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set 1841 * for wait_cs: timestamp of CS completion 1842 * for wait_multi_cs: timestamp of FIRST CS completion 1843 */ 1844 __s64 timestamp_nsec; 1845 /* multi CS completion bitmap */ 1846 __u32 cs_completion_map; 1847 __u32 pad; 1848 }; 1849 1850 union hl_wait_cs_args { 1851 struct hl_wait_cs_in in; 1852 struct hl_wait_cs_out out; 1853 }; 1854 1855 /* Opcode to allocate device memory */ 1856 #define HL_MEM_OP_ALLOC 0 1857 1858 /* Opcode to free previously allocated device memory */ 1859 #define HL_MEM_OP_FREE 1 1860 1861 /* Opcode to map host and device memory */ 1862 #define HL_MEM_OP_MAP 2 1863 1864 /* Opcode to unmap previously mapped host and device memory */ 1865 #define HL_MEM_OP_UNMAP 3 1866 1867 /* Opcode to map a hw block */ 1868 #define HL_MEM_OP_MAP_BLOCK 4 1869 1870 /* Opcode to create DMA-BUF object for an existing device memory allocation 1871 * and to export an FD of that DMA-BUF back to the caller 1872 */ 1873 #define HL_MEM_OP_EXPORT_DMABUF_FD 5 1874 1875 /* Opcode to create timestamps pool for user interrupts registration support 1876 * The memory will be allocated by the kernel driver, A timestamp buffer which the user 1877 * will get handle to it for mmap, and another internal buffer used by the 1878 * driver for registration management 1879 * The memory will be freed when the user closes the file descriptor(ctx close) 1880 */ 1881 #define HL_MEM_OP_TS_ALLOC 6 1882 1883 /* Memory flags */ 1884 #define HL_MEM_CONTIGUOUS 0x1 1885 #define HL_MEM_SHARED 0x2 1886 #define HL_MEM_USERPTR 0x4 1887 #define HL_MEM_FORCE_HINT 0x8 1888 #define HL_MEM_PREFETCH 0x40 1889 1890 /** 1891 * structure hl_mem_in - structure that handle input args for memory IOCTL 1892 * @union arg: union of structures to be used based on the input operation 1893 * @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions). 1894 * @flags: flags for the memory operation (one of the HL_MEM_* definitions). 1895 * For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags. 1896 * @ctx_id: context ID - currently not in use. 1897 * @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode. 1898 */ 1899 struct hl_mem_in { 1900 union { 1901 /** 1902 * structure for device memory allocation (used with the HL_MEM_OP_ALLOC op) 1903 * @mem_size: memory size to allocate 1904 * @page_size: page size to use on allocation. when the value is 0 the default page 1905 * size will be taken. 1906 */ 1907 struct { 1908 __u64 mem_size; 1909 __u64 page_size; 1910 } alloc; 1911 1912 /** 1913 * structure for free-ing device memory (used with the HL_MEM_OP_FREE op) 1914 * @handle: handle returned from HL_MEM_OP_ALLOC 1915 */ 1916 struct { 1917 __u64 handle; 1918 } free; 1919 1920 /** 1921 * structure for mapping device memory (used with the HL_MEM_OP_MAP op) 1922 * @hint_addr: requested virtual address of mapped memory. 1923 * the driver will try to map the requested region to this hint 1924 * address, as long as the address is valid and not already mapped. 1925 * the user should check the returned address of the IOCTL to make 1926 * sure he got the hint address. 1927 * passing 0 here means that the driver will choose the address itself. 1928 * @handle: handle returned from HL_MEM_OP_ALLOC. 1929 */ 1930 struct { 1931 __u64 hint_addr; 1932 __u64 handle; 1933 } map_device; 1934 1935 /** 1936 * structure for mapping host memory (used with the HL_MEM_OP_MAP op) 1937 * @host_virt_addr: address of allocated host memory. 1938 * @hint_addr: requested virtual address of mapped memory. 1939 * the driver will try to map the requested region to this hint 1940 * address, as long as the address is valid and not already mapped. 1941 * the user should check the returned address of the IOCTL to make 1942 * sure he got the hint address. 1943 * passing 0 here means that the driver will choose the address itself. 1944 * @size: size of allocated host memory. 1945 */ 1946 struct { 1947 __u64 host_virt_addr; 1948 __u64 hint_addr; 1949 __u64 mem_size; 1950 } map_host; 1951 1952 /** 1953 * structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op) 1954 * @block_addr:HW block address to map, a handle and size will be returned 1955 * to the user and will be used to mmap the relevant block. 1956 * only addresses from configuration space are allowed. 1957 */ 1958 struct { 1959 __u64 block_addr; 1960 } map_block; 1961 1962 /** 1963 * structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op) 1964 * @device_virt_addr: virtual address returned from HL_MEM_OP_MAP 1965 */ 1966 struct { 1967 __u64 device_virt_addr; 1968 } unmap; 1969 1970 /** 1971 * structure for exporting DMABUF object (used with 1972 * the HL_MEM_OP_EXPORT_DMABUF_FD op) 1973 * @addr: for Gaudi1, the driver expects a physical address 1974 * inside the device's DRAM. this is because in Gaudi1 1975 * we don't have MMU that covers the device's DRAM. 1976 * for all other ASICs, the driver expects a device 1977 * virtual address that represents the start address of 1978 * a mapped DRAM memory area inside the device. 1979 * the address must be the same as was received from the 1980 * driver during a previous HL_MEM_OP_MAP operation. 1981 * @mem_size: size of memory to export. 1982 * @offset: for Gaudi1, this value must be 0. For all other ASICs, 1983 * the driver expects an offset inside of the memory area 1984 * describe by addr. the offset represents the start 1985 * address of that the exported dma-buf object describes. 1986 */ 1987 struct { 1988 __u64 addr; 1989 __u64 mem_size; 1990 __u64 offset; 1991 } export_dmabuf_fd; 1992 }; 1993 1994 __u32 op; 1995 __u32 flags; 1996 __u32 ctx_id; 1997 __u32 num_of_elements; 1998 }; 1999 2000 struct hl_mem_out { 2001 union { 2002 /* 2003 * Used for HL_MEM_OP_MAP as the virtual address that was 2004 * assigned in the device VA space. 2005 * A value of 0 means the requested operation failed. 2006 */ 2007 __u64 device_virt_addr; 2008 2009 /* 2010 * Used in HL_MEM_OP_ALLOC 2011 * This is the assigned handle for the allocated memory 2012 */ 2013 __u64 handle; 2014 2015 struct { 2016 /* 2017 * Used in HL_MEM_OP_MAP_BLOCK. 2018 * This is the assigned handle for the mapped block 2019 */ 2020 __u64 block_handle; 2021 2022 /* 2023 * Used in HL_MEM_OP_MAP_BLOCK 2024 * This is the size of the mapped block 2025 */ 2026 __u32 block_size; 2027 2028 __u32 pad; 2029 }; 2030 2031 /* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the 2032 * DMA-BUF object that was created to describe a memory 2033 * allocation on the device's memory space. The FD should be 2034 * passed to the importer driver 2035 */ 2036 __s32 fd; 2037 }; 2038 }; 2039 2040 union hl_mem_args { 2041 struct hl_mem_in in; 2042 struct hl_mem_out out; 2043 }; 2044 2045 #define HL_DEBUG_MAX_AUX_VALUES 10 2046 2047 struct hl_debug_params_etr { 2048 /* Address in memory to allocate buffer */ 2049 __u64 buffer_address; 2050 2051 /* Size of buffer to allocate */ 2052 __u64 buffer_size; 2053 2054 /* Sink operation mode: SW fifo, HW fifo, Circular buffer */ 2055 __u32 sink_mode; 2056 __u32 pad; 2057 }; 2058 2059 struct hl_debug_params_etf { 2060 /* Address in memory to allocate buffer */ 2061 __u64 buffer_address; 2062 2063 /* Size of buffer to allocate */ 2064 __u64 buffer_size; 2065 2066 /* Sink operation mode: SW fifo, HW fifo, Circular buffer */ 2067 __u32 sink_mode; 2068 __u32 pad; 2069 }; 2070 2071 struct hl_debug_params_stm { 2072 /* Two bit masks for HW event and Stimulus Port */ 2073 __u64 he_mask; 2074 __u64 sp_mask; 2075 2076 /* Trace source ID */ 2077 __u32 id; 2078 2079 /* Frequency for the timestamp register */ 2080 __u32 frequency; 2081 }; 2082 2083 struct hl_debug_params_bmon { 2084 /* Two address ranges that the user can request to filter */ 2085 __u64 start_addr0; 2086 __u64 addr_mask0; 2087 2088 __u64 start_addr1; 2089 __u64 addr_mask1; 2090 2091 /* Capture window configuration */ 2092 __u32 bw_win; 2093 __u32 win_capture; 2094 2095 /* Trace source ID */ 2096 __u32 id; 2097 2098 /* Control register */ 2099 __u32 control; 2100 2101 /* Two more address ranges that the user can request to filter */ 2102 __u64 start_addr2; 2103 __u64 end_addr2; 2104 2105 __u64 start_addr3; 2106 __u64 end_addr3; 2107 }; 2108 2109 struct hl_debug_params_spmu { 2110 /* Event types selection */ 2111 __u64 event_types[HL_DEBUG_MAX_AUX_VALUES]; 2112 2113 /* Number of event types selection */ 2114 __u32 event_types_num; 2115 2116 /* TRC configuration register values */ 2117 __u32 pmtrc_val; 2118 __u32 trc_ctrl_host_val; 2119 __u32 trc_en_host_val; 2120 }; 2121 2122 /* Opcode for ETR component */ 2123 #define HL_DEBUG_OP_ETR 0 2124 /* Opcode for ETF component */ 2125 #define HL_DEBUG_OP_ETF 1 2126 /* Opcode for STM component */ 2127 #define HL_DEBUG_OP_STM 2 2128 /* Opcode for FUNNEL component */ 2129 #define HL_DEBUG_OP_FUNNEL 3 2130 /* Opcode for BMON component */ 2131 #define HL_DEBUG_OP_BMON 4 2132 /* Opcode for SPMU component */ 2133 #define HL_DEBUG_OP_SPMU 5 2134 /* Opcode for timestamp (deprecated) */ 2135 #define HL_DEBUG_OP_TIMESTAMP 6 2136 /* Opcode for setting the device into or out of debug mode. The enable 2137 * variable should be 1 for enabling debug mode and 0 for disabling it 2138 */ 2139 #define HL_DEBUG_OP_SET_MODE 7 2140 2141 struct hl_debug_args { 2142 /* 2143 * Pointer to user input structure. 2144 * This field is relevant to specific opcodes. 2145 */ 2146 __u64 input_ptr; 2147 /* Pointer to user output structure */ 2148 __u64 output_ptr; 2149 /* Size of user input structure */ 2150 __u32 input_size; 2151 /* Size of user output structure */ 2152 __u32 output_size; 2153 /* HL_DEBUG_OP_* */ 2154 __u32 op; 2155 /* 2156 * Register index in the component, taken from the debug_regs_index enum 2157 * in the various ASIC header files 2158 */ 2159 __u32 reg_idx; 2160 /* Enable/disable */ 2161 __u32 enable; 2162 /* Context ID - Currently not in use */ 2163 __u32 ctx_id; 2164 }; 2165 2166 #define HL_IOCTL_INFO 0x00 2167 #define HL_IOCTL_CB 0x01 2168 #define HL_IOCTL_CS 0x02 2169 #define HL_IOCTL_WAIT_CS 0x03 2170 #define HL_IOCTL_MEMORY 0x04 2171 #define HL_IOCTL_DEBUG 0x05 2172 2173 /* 2174 * Various information operations such as: 2175 * - H/W IP information 2176 * - Current dram usage 2177 * 2178 * The user calls this IOCTL with an opcode that describes the required 2179 * information. The user should supply a pointer to a user-allocated memory 2180 * chunk, which will be filled by the driver with the requested information. 2181 * 2182 * The user supplies the maximum amount of size to copy into the user's memory, 2183 * in order to prevent data corruption in case of differences between the 2184 * definitions of structures in kernel and userspace, e.g. in case of old 2185 * userspace and new kernel driver 2186 */ 2187 #define DRM_IOCTL_HL_INFO DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_INFO, struct hl_info_args) 2188 2189 /* 2190 * Command Buffer 2191 * - Request a Command Buffer 2192 * - Destroy a Command Buffer 2193 * 2194 * The command buffers are memory blocks that reside in DMA-able address 2195 * space and are physically contiguous so they can be accessed by the device 2196 * directly. They are allocated using the coherent DMA API. 2197 * 2198 * When creating a new CB, the IOCTL returns a handle of it, and the user-space 2199 * process needs to use that handle to mmap the buffer so it can access them. 2200 * 2201 * In some instances, the device must access the command buffer through the 2202 * device's MMU, and thus its memory should be mapped. In these cases, user can 2203 * indicate the driver that such a mapping is required. 2204 * The resulting device virtual address will be used internally by the driver, 2205 * and won't be returned to user. 2206 * 2207 */ 2208 #define DRM_IOCTL_HL_CB DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CB, union hl_cb_args) 2209 2210 /* 2211 * Command Submission 2212 * 2213 * To submit work to the device, the user need to call this IOCTL with a set 2214 * of JOBS. That set of JOBS constitutes a CS object. 2215 * Each JOB will be enqueued on a specific queue, according to the user's input. 2216 * There can be more then one JOB per queue. 2217 * 2218 * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase 2219 * and a second set is for "execution" phase. 2220 * The JOBS on the "restore" phase are enqueued only after context-switch 2221 * (or if its the first CS for this context). The user can also order the 2222 * driver to run the "restore" phase explicitly 2223 * 2224 * Goya/Gaudi: 2225 * There are two types of queues - external and internal. External queues 2226 * are DMA queues which transfer data from/to the Host. All other queues are 2227 * internal. The driver will get completion notifications from the device only 2228 * on JOBS which are enqueued in the external queues. 2229 * 2230 * Gaudi2 onwards: 2231 * There is a single type of queue for all types of engines, either DMA engines 2232 * for transfers from/to the host or inside the device, or compute engines. 2233 * The driver will get completion notifications from the device for all queues. 2234 * 2235 * For jobs on external queues, the user needs to create command buffers 2236 * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on 2237 * internal queues, the user needs to prepare a "command buffer" with packets 2238 * on either the device SRAM/DRAM or the host, and give the device address of 2239 * that buffer to the CS ioctl. 2240 * For jobs on H/W queues both options of command buffers are valid. 2241 * 2242 * This IOCTL is asynchronous in regard to the actual execution of the CS. This 2243 * means it returns immediately after ALL the JOBS were enqueued on their 2244 * relevant queues. Therefore, the user mustn't assume the CS has been completed 2245 * or has even started to execute. 2246 * 2247 * Upon successful enqueue, the IOCTL returns a sequence number which the user 2248 * can use with the "Wait for CS" IOCTL to check whether the handle's CS 2249 * non-internal JOBS have been completed. Note that if the CS has internal JOBS 2250 * which can execute AFTER the external JOBS have finished, the driver might 2251 * report that the CS has finished executing BEFORE the internal JOBS have 2252 * actually finished executing. 2253 * 2254 * Even though the sequence number increments per CS, the user can NOT 2255 * automatically assume that if CS with sequence number N finished, then CS 2256 * with sequence number N-1 also finished. The user can make this assumption if 2257 * and only if CS N and CS N-1 are exactly the same (same CBs for the same 2258 * queues). 2259 */ 2260 #define DRM_IOCTL_HL_CS DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CS, union hl_cs_args) 2261 2262 /* 2263 * Wait for Command Submission 2264 * 2265 * The user can call this IOCTL with a handle it received from the CS IOCTL 2266 * to wait until the handle's CS has finished executing. The user will wait 2267 * inside the kernel until the CS has finished or until the user-requested 2268 * timeout has expired. 2269 * 2270 * If the timeout value is 0, the driver won't sleep at all. It will check 2271 * the status of the CS and return immediately 2272 * 2273 * The return value of the IOCTL is a standard Linux error code. The possible 2274 * values are: 2275 * 2276 * EINTR - Kernel waiting has been interrupted, e.g. due to OS signal 2277 * that the user process received 2278 * ETIMEDOUT - The CS has caused a timeout on the device 2279 * EIO - The CS was aborted (usually because the device was reset) 2280 * ENODEV - The device wants to do hard-reset (so user need to close FD) 2281 * 2282 * The driver also returns a custom define in case the IOCTL call returned 0. 2283 * The define can be one of the following: 2284 * 2285 * HL_WAIT_CS_STATUS_COMPLETED - The CS has been completed successfully (0) 2286 * HL_WAIT_CS_STATUS_BUSY - The CS is still executing (0) 2287 * HL_WAIT_CS_STATUS_TIMEDOUT - The CS has caused a timeout on the device 2288 * (ETIMEDOUT) 2289 * HL_WAIT_CS_STATUS_ABORTED - The CS was aborted, usually because the 2290 * device was reset (EIO) 2291 */ 2292 #define DRM_IOCTL_HL_WAIT_CS DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_WAIT_CS, union hl_wait_cs_args) 2293 2294 /* 2295 * Memory 2296 * - Map host memory to device MMU 2297 * - Unmap host memory from device MMU 2298 * 2299 * This IOCTL allows the user to map host memory to the device MMU 2300 * 2301 * For host memory, the IOCTL doesn't allocate memory. The user is supposed 2302 * to allocate the memory in user-space (malloc/new). The driver pins the 2303 * physical pages (up to the allowed limit by the OS), assigns a virtual 2304 * address in the device VA space and initializes the device MMU. 2305 * 2306 * There is an option for the user to specify the requested virtual address. 2307 * 2308 */ 2309 #define DRM_IOCTL_HL_MEMORY DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_MEMORY, union hl_mem_args) 2310 2311 /* 2312 * Debug 2313 * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces 2314 * 2315 * This IOCTL allows the user to get debug traces from the chip. 2316 * 2317 * Before the user can send configuration requests of the various 2318 * debug/profile engines, it needs to set the device into debug mode. 2319 * This is because the debug/profile infrastructure is shared component in the 2320 * device and we can't allow multiple users to access it at the same time. 2321 * 2322 * Once a user set the device into debug mode, the driver won't allow other 2323 * users to "work" with the device, i.e. open a FD. If there are multiple users 2324 * opened on the device, the driver won't allow any user to debug the device. 2325 * 2326 * For each configuration request, the user needs to provide the register index 2327 * and essential data such as buffer address and size. 2328 * 2329 * Once the user has finished using the debug/profile engines, he should 2330 * set the device into non-debug mode, i.e. disable debug mode. 2331 * 2332 * The driver can decide to "kick out" the user if he abuses this interface. 2333 * 2334 */ 2335 #define DRM_IOCTL_HL_DEBUG DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_DEBUG, struct hl_debug_args) 2336 2337 #define HL_COMMAND_START (DRM_COMMAND_BASE + HL_IOCTL_INFO) 2338 #define HL_COMMAND_END (DRM_COMMAND_BASE + HL_IOCTL_DEBUG + 1) 2339 2340 #endif /* HABANALABS_H_ */ 2341