1 /* 2 * Copyright 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef DRM_FOURCC_H 25 #define DRM_FOURCC_H 26 27 #include "drm.h" 28 29 #if defined(__cplusplus) 30 extern "C" { 31 #endif 32 33 /** 34 * DOC: overview 35 * 36 * In the DRM subsystem, framebuffer pixel formats are described using the 37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the 38 * fourcc code, a Format Modifier may optionally be provided, in order to 39 * further describe the buffer's format - for example tiling or compression. 40 * 41 * Format Modifiers 42 * ---------------- 43 * 44 * Format modifiers are used in conjunction with a fourcc code, forming a 45 * unique fourcc:modifier pair. This format:modifier pair must fully define the 46 * format and data layout of the buffer, and should be the only way to describe 47 * that particular buffer. 48 * 49 * Having multiple fourcc:modifier pairs which describe the same layout should 50 * be avoided, as such aliases run the risk of different drivers exposing 51 * different names for the same data format, forcing userspace to understand 52 * that they are aliases. 53 * 54 * Format modifiers may change any property of the buffer, including the number 55 * of planes and/or the required allocation size. Format modifiers are 56 * vendor-namespaced, and as such the relationship between a fourcc code and a 57 * modifier is specific to the modifier being used. For example, some modifiers 58 * may preserve meaning - such as number of planes - from the fourcc code, 59 * whereas others may not. 60 * 61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must 62 * match only a single modifier. A modifier must not be a subset of layouts of 63 * another modifier. For instance, it's incorrect to encode pitch alignment in 64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel 65 * aligned modifier. That said, modifiers can have implicit minimal 66 * requirements. 67 * 68 * For modifiers where the combination of fourcc code and modifier can alias, 69 * a canonical pair needs to be defined and used by all drivers. Preferred 70 * combinations are also encouraged where all combinations might lead to 71 * confusion and unnecessarily reduced interoperability. An example for the 72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts. 73 * 74 * There are two kinds of modifier users: 75 * 76 * - Kernel and user-space drivers: for drivers it's important that modifiers 77 * don't alias, otherwise two drivers might support the same format but use 78 * different aliases, preventing them from sharing buffers in an efficient 79 * format. 80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users 81 * see modifiers as opaque tokens they can check for equality and intersect. 82 * These users mustn't need to know to reason about the modifier value 83 * (i.e. they are not expected to extract information out of the modifier). 84 * 85 * Vendors should document their modifier usage in as much detail as 86 * possible, to ensure maximum compatibility across devices, drivers and 87 * applications. 88 * 89 * The authoritative list of format modifier codes is found in 90 * `include/uapi/drm/drm_fourcc.h` 91 * 92 * Open Source User Waiver 93 * ----------------------- 94 * 95 * Because this is the authoritative source for pixel formats and modifiers 96 * referenced by GL, Vulkan extensions and other standards and hence used both 97 * by open source and closed source driver stacks, the usual requirement for an 98 * upstream in-kernel or open source userspace user does not apply. 99 * 100 * To ensure, as much as feasible, compatibility across stacks and avoid 101 * confusion with incompatible enumerations stakeholders for all relevant driver 102 * stacks should approve additions. 103 */ 104 105 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ 106 ((__u32)(c) << 16) | ((__u32)(d) << 24)) 107 108 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */ 109 110 /* Reserve 0 for the invalid format specifier */ 111 #define DRM_FORMAT_INVALID 0 112 113 /* color index */ 114 #define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */ 115 #define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */ 116 #define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */ 117 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ 118 119 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */ 120 #define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */ 121 122 /* 2 bpp Darkness (inverse relationship between channel value and brightness) */ 123 #define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */ 124 125 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */ 126 #define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */ 127 128 /* 8 bpp Darkness (inverse relationship between channel value and brightness) */ 129 #define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */ 130 131 /* 1 bpp Red (direct relationship between channel value and brightness) */ 132 #define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */ 133 134 /* 2 bpp Red (direct relationship between channel value and brightness) */ 135 #define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */ 136 137 /* 4 bpp Red (direct relationship between channel value and brightness) */ 138 #define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */ 139 140 /* 8 bpp Red (direct relationship between channel value and brightness) */ 141 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ 142 143 /* 10 bpp Red (direct relationship between channel value and brightness) */ 144 #define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */ 145 146 /* 12 bpp Red (direct relationship between channel value and brightness) */ 147 #define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */ 148 149 /* 16 bpp Red (direct relationship between channel value and brightness) */ 150 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ 151 152 /* 16 bpp RG */ 153 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ 154 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ 155 156 /* 32 bpp RG */ 157 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ 158 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ 159 160 /* 8 bpp RGB */ 161 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ 162 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ 163 164 /* 16 bpp RGB */ 165 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ 166 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ 167 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ 168 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ 169 170 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ 171 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ 172 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ 173 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ 174 175 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ 176 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ 177 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ 178 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ 179 180 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ 181 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ 182 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ 183 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ 184 185 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ 186 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ 187 188 /* 24 bpp RGB */ 189 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ 190 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ 191 192 /* 32 bpp RGB */ 193 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ 194 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ 195 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ 196 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ 197 198 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ 199 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ 200 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ 201 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ 202 203 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ 204 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ 205 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ 206 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ 207 208 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ 209 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ 210 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ 211 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ 212 213 /* 64 bpp RGB */ 214 #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */ 215 #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */ 216 217 #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */ 218 #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */ 219 220 /* 221 * Floating point 64bpp RGB 222 * IEEE 754-2008 binary16 half-precision float 223 * [15:0] sign:exponent:mantissa 1:5:10 224 */ 225 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */ 226 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */ 227 228 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */ 229 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */ 230 231 /* 232 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits 233 * of unused padding per component: 234 */ 235 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */ 236 237 /* packed YCbCr */ 238 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ 239 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ 240 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ 241 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ 242 243 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ 244 #define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */ 245 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ 246 #define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */ 247 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */ 248 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */ 249 250 /* 251 * packed Y2xx indicate for each component, xx valid data occupy msb 252 * 16-xx padding occupy lsb 253 */ 254 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */ 255 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */ 256 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */ 257 258 /* 259 * packed Y4xx indicate for each component, xx valid data occupy msb 260 * 16-xx padding occupy lsb except Y410 261 */ 262 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */ 263 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 264 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */ 265 266 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */ 267 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 268 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */ 269 270 /* 271 * packed YCbCr420 2x2 tiled formats 272 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile 273 */ 274 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 275 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') 276 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 277 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') 278 279 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 280 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') 281 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 282 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') 283 284 /* 285 * 1-plane YUV 4:2:0 286 * In these formats, the component ordering is specified (Y, followed by U 287 * then V), but the exact Linear layout is undefined. 288 * These formats can only be used with a non-Linear modifier. 289 */ 290 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8') 291 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0') 292 293 /* 294 * 2 plane RGB + A 295 * index 0 = RGB plane, same format as the corresponding non _A8 format has 296 * index 1 = A plane, [7:0] A 297 */ 298 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') 299 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') 300 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') 301 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') 302 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') 303 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') 304 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') 305 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') 306 307 /* 308 * 2 plane YCbCr 309 * index 0 = Y plane, [7:0] Y 310 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian 311 * or 312 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian 313 */ 314 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ 315 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ 316 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ 317 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ 318 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ 319 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ 320 /* 321 * 2 plane YCbCr 322 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian 323 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian 324 */ 325 #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */ 326 #define DRM_FORMAT_NV20 fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */ 327 #define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */ 328 329 /* 330 * 2 plane YCbCr MSB aligned 331 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 332 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 333 */ 334 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */ 335 336 /* 337 * 2 plane YCbCr MSB aligned 338 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 339 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 340 */ 341 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ 342 343 /* 344 * 2 plane YCbCr MSB aligned 345 * index 0 = Y plane, [15:0] Y:x [12:4] little endian 346 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian 347 */ 348 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ 349 350 /* 351 * 2 plane YCbCr MSB aligned 352 * index 0 = Y plane, [15:0] Y little endian 353 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian 354 */ 355 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ 356 357 /* 2 plane YCbCr420. 358 * 3 10 bit components and 2 padding bits packed into 4 bytes. 359 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian 360 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian 361 */ 362 #define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */ 363 364 /* 3 plane non-subsampled (444) YCbCr 365 * 16 bits per component, but only 10 bits are used and 6 bits are padded 366 * index 0: Y plane, [15:0] Y:x [10:6] little endian 367 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian 368 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian 369 */ 370 #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0') 371 372 /* 3 plane non-subsampled (444) YCrCb 373 * 16 bits per component, but only 10 bits are used and 6 bits are padded 374 * index 0: Y plane, [15:0] Y:x [10:6] little endian 375 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian 376 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian 377 */ 378 #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1') 379 380 /* 381 * 3 plane YCbCr 382 * index 0: Y plane, [7:0] Y 383 * index 1: Cb plane, [7:0] Cb 384 * index 2: Cr plane, [7:0] Cr 385 * or 386 * index 1: Cr plane, [7:0] Cr 387 * index 2: Cb plane, [7:0] Cb 388 */ 389 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ 390 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ 391 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ 392 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ 393 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ 394 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ 395 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ 396 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ 397 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ 398 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ 399 400 401 /* 402 * Format Modifiers: 403 * 404 * Format modifiers describe, typically, a re-ordering or modification 405 * of the data in a plane of an FB. This can be used to express tiled/ 406 * swizzled formats, or compression, or a combination of the two. 407 * 408 * The upper 8 bits of the format modifier are a vendor-id as assigned 409 * below. The lower 56 bits are assigned as vendor sees fit. 410 */ 411 412 /* Vendor Ids: */ 413 #define DRM_FORMAT_MOD_VENDOR_NONE 0 414 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 415 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 416 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 417 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 418 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 419 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 420 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 421 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 422 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 423 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a 424 425 /* add more to the end as needed */ 426 427 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) 428 429 #define fourcc_mod_get_vendor(modifier) \ 430 (((modifier) >> 56) & 0xff) 431 432 #define fourcc_mod_is_vendor(modifier, vendor) \ 433 (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor) 434 435 #define fourcc_mod_code(vendor, val) \ 436 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) 437 438 /* 439 * Format Modifier tokens: 440 * 441 * When adding a new token please document the layout with a code comment, 442 * similar to the fourcc codes above. drm_fourcc.h is considered the 443 * authoritative source for all of these. 444 * 445 * Generic modifier names: 446 * 447 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names 448 * for layouts which are common across multiple vendors. To preserve 449 * compatibility, in cases where a vendor-specific definition already exists and 450 * a generic name for it is desired, the common name is a purely symbolic alias 451 * and must use the same numerical value as the original definition. 452 * 453 * Note that generic names should only be used for modifiers which describe 454 * generic layouts (such as pixel re-ordering), which may have 455 * independently-developed support across multiple vendors. 456 * 457 * In future cases where a generic layout is identified before merging with a 458 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor 459 * 'NONE' could be considered. This should only be for obvious, exceptional 460 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only 461 * apply to a single vendor. 462 * 463 * Generic names should not be used for cases where multiple hardware vendors 464 * have implementations of the same standardised compression scheme (such as 465 * AFBC). In those cases, all implementations should use the same format 466 * modifier(s), reflecting the vendor of the standard. 467 */ 468 469 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE 470 471 /* 472 * Invalid Modifier 473 * 474 * This modifier can be used as a sentinel to terminate the format modifiers 475 * list, or to initialize a variable with an invalid modifier. It might also be 476 * used to report an error back to userspace for certain APIs. 477 */ 478 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) 479 480 /* 481 * Linear Layout 482 * 483 * Just plain linear layout. Note that this is different from no specifying any 484 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), 485 * which tells the driver to also take driver-internal information into account 486 * and so might actually result in a tiled framebuffer. 487 */ 488 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) 489 490 /* 491 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead 492 * 493 * The "none" format modifier doesn't actually mean that the modifier is 494 * implicit, instead it means that the layout is linear. Whether modifiers are 495 * used is out-of-band information carried in an API-specific way (e.g. in a 496 * flag for drm_mode_fb_cmd2). 497 */ 498 #define DRM_FORMAT_MOD_NONE 0 499 500 /* Intel framebuffer modifiers */ 501 502 /* 503 * Intel X-tiling layout 504 * 505 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 506 * in row-major layout. Within the tile bytes are laid out row-major, with 507 * a platform-dependent stride. On top of that the memory can apply 508 * platform-depending swizzling of some higher address bits into bit6. 509 * 510 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. 511 * On earlier platforms the is highly platforms specific and not useful for 512 * cross-driver sharing. It exists since on a given platform it does uniquely 513 * identify the layout in a simple way for i915-specific userspace, which 514 * facilitated conversion of userspace to modifiers. Additionally the exact 515 * format on some really old platforms is not known. 516 */ 517 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) 518 519 /* 520 * Intel Y-tiling layout 521 * 522 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 523 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) 524 * chunks column-major, with a platform-dependent height. On top of that the 525 * memory can apply platform-depending swizzling of some higher address bits 526 * into bit6. 527 * 528 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. 529 * On earlier platforms the is highly platforms specific and not useful for 530 * cross-driver sharing. It exists since on a given platform it does uniquely 531 * identify the layout in a simple way for i915-specific userspace, which 532 * facilitated conversion of userspace to modifiers. Additionally the exact 533 * format on some really old platforms is not known. 534 */ 535 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) 536 537 /* 538 * Intel Yf-tiling layout 539 * 540 * This is a tiled layout using 4Kb tiles in row-major layout. 541 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which 542 * are arranged in four groups (two wide, two high) with column-major layout. 543 * Each group therefore consists out of four 256 byte units, which are also laid 544 * out as 2x2 column-major. 545 * 256 byte units are made out of four 64 byte blocks of pixels, producing 546 * either a square block or a 2:1 unit. 547 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width 548 * in pixel depends on the pixel depth. 549 */ 550 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) 551 552 /* 553 * Intel color control surface (CCS) for render compression 554 * 555 * The framebuffer format must be one of the 8:8:8:8 RGB formats. 556 * The main surface will be plane index 0 and must be Y/Yf-tiled, 557 * the CCS will be plane index 1. 558 * 559 * Each CCS tile matches a 1024x512 pixel area of the main surface. 560 * To match certain aspects of the 3D hardware the CCS is 561 * considered to be made up of normal 128Bx32 Y tiles, Thus 562 * the CCS pitch must be specified in multiples of 128 bytes. 563 * 564 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed 565 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. 566 * But that fact is not relevant unless the memory is accessed 567 * directly. 568 */ 569 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) 570 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) 571 572 /* 573 * Intel color control surfaces (CCS) for Gen-12 render compression. 574 * 575 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 576 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 577 * main surface. In other words, 4 bits in CCS map to a main surface cache 578 * line pair. The main surface pitch is required to be a multiple of four 579 * Y-tile widths. 580 */ 581 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6) 582 583 /* 584 * Intel color control surfaces (CCS) for Gen-12 media compression 585 * 586 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 587 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 588 * main surface. In other words, 4 bits in CCS map to a main surface cache 589 * line pair. The main surface pitch is required to be a multiple of four 590 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the 591 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, 592 * planes 2 and 3 for the respective CCS. 593 */ 594 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7) 595 596 /* 597 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render 598 * compression. 599 * 600 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear 601 * and at index 1. The clear color is stored at index 2, and the pitch should 602 * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits 603 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented 604 * by 32 bits. The raw clear color is consumed by the 3d engine and generates 605 * the converted clear color of size 64 bits. The first 32 bits store the Lower 606 * Converted Clear Color value and the next 32 bits store the Higher Converted 607 * Clear Color value when applicable. The Converted Clear Color values are 608 * consumed by the DE. The last 64 bits are used to store Color Discard Enable 609 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line 610 * corresponds to an area of 4x1 tiles in the main surface. The main surface 611 * pitch is required to be a multiple of 4 tile widths. 612 */ 613 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8) 614 615 /* 616 * Intel Tile 4 layout 617 * 618 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same 619 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It 620 * only differs from Tile Y at the 256B granularity in between. At this 621 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape 622 * of 64B x 8 rows. 623 */ 624 #define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9) 625 626 /* 627 * Intel color control surfaces (CCS) for DG2 render compression. 628 * 629 * The main surface is Tile 4 and at plane index 0. The CCS data is stored 630 * outside of the GEM object in a reserved memory area dedicated for the 631 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The 632 * main surface pitch is required to be a multiple of four Tile 4 widths. 633 */ 634 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10) 635 636 /* 637 * Intel color control surfaces (CCS) for DG2 media compression. 638 * 639 * The main surface is Tile 4 and at plane index 0. For semi-planar formats 640 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices 641 * 0 and 1, respectively. The CCS for all planes are stored outside of the 642 * GEM object in a reserved memory area dedicated for the storage of the 643 * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface 644 * pitch is required to be a multiple of four Tile 4 widths. 645 */ 646 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11) 647 648 /* 649 * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression. 650 * 651 * The main surface is Tile 4 and at plane index 0. The CCS data is stored 652 * outside of the GEM object in a reserved memory area dedicated for the 653 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The 654 * main surface pitch is required to be a multiple of four Tile 4 widths. The 655 * clear color is stored at plane index 1 and the pitch should be 64 bytes 656 * aligned. The format of the 256 bits of clear color data matches the one used 657 * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description 658 * for details. 659 */ 660 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12) 661 662 /* 663 * Intel Color Control Surfaces (CCS) for display ver. 14 render compression. 664 * 665 * The main surface is tile4 and at plane index 0, the CCS is linear and 666 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 667 * main surface. In other words, 4 bits in CCS map to a main surface cache 668 * line pair. The main surface pitch is required to be a multiple of four 669 * tile4 widths. 670 */ 671 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13) 672 673 /* 674 * Intel Color Control Surfaces (CCS) for display ver. 14 media compression 675 * 676 * The main surface is tile4 and at plane index 0, the CCS is linear and 677 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 678 * main surface. In other words, 4 bits in CCS map to a main surface cache 679 * line pair. The main surface pitch is required to be a multiple of four 680 * tile4 widths. For semi-planar formats like NV12, CCS planes follow the 681 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, 682 * planes 2 and 3 for the respective CCS. 683 */ 684 #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14) 685 686 /* 687 * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render 688 * compression. 689 * 690 * The main surface is tile4 and is at plane index 0 whereas CCS is linear 691 * and at index 1. The clear color is stored at index 2, and the pitch should 692 * be ignored. The clear color structure is 256 bits. The first 128 bits 693 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented 694 * by 32 bits. The raw clear color is consumed by the 3d engine and generates 695 * the converted clear color of size 64 bits. The first 32 bits store the Lower 696 * Converted Clear Color value and the next 32 bits store the Higher Converted 697 * Clear Color value when applicable. The Converted Clear Color values are 698 * consumed by the DE. The last 64 bits are used to store Color Discard Enable 699 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line 700 * corresponds to an area of 4x1 tiles in the main surface. The main surface 701 * pitch is required to be a multiple of 4 tile widths. 702 */ 703 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15) 704 705 /* 706 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks 707 * 708 * Macroblocks are laid in a Z-shape, and each pixel data is following the 709 * standard NV12 style. 710 * As for NV12, an image is the result of two frame buffers: one for Y, 711 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). 712 * Alignment requirements are (for each buffer): 713 * - multiple of 128 pixels for the width 714 * - multiple of 32 pixels for the height 715 * 716 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html 717 */ 718 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) 719 720 /* 721 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks 722 * 723 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major 724 * layout. For YCbCr formats Cb/Cr components are taken in such a way that 725 * they correspond to their 16x16 luma block. 726 */ 727 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) 728 729 /* 730 * Qualcomm Compressed Format 731 * 732 * Refers to a compressed variant of the base format that is compressed. 733 * Implementation may be platform and base-format specific. 734 * 735 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 736 * Pixel data pitch/stride is aligned with macrotile width. 737 * Pixel data height is aligned with macrotile height. 738 * Entire pixel data buffer is aligned with 4k(bytes). 739 */ 740 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) 741 742 /* 743 * Qualcomm Tiled Format 744 * 745 * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed. 746 * Implementation may be platform and base-format specific. 747 * 748 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 749 * Pixel data pitch/stride is aligned with macrotile width. 750 * Pixel data height is aligned with macrotile height. 751 * Entire pixel data buffer is aligned with 4k(bytes). 752 */ 753 #define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3) 754 755 /* 756 * Qualcomm Alternate Tiled Format 757 * 758 * Alternate tiled format typically only used within GMEM. 759 * Implementation may be platform and base-format specific. 760 */ 761 #define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2) 762 763 764 /* Vivante framebuffer modifiers */ 765 766 /* 767 * Vivante 4x4 tiling layout 768 * 769 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major 770 * layout. 771 */ 772 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) 773 774 /* 775 * Vivante 64x64 super-tiling layout 776 * 777 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile 778 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- 779 * major layout. 780 * 781 * For more information: see 782 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling 783 */ 784 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) 785 786 /* 787 * Vivante 4x4 tiling layout for dual-pipe 788 * 789 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a 790 * different base address. Offsets from the base addresses are therefore halved 791 * compared to the non-split tiled layout. 792 */ 793 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) 794 795 /* 796 * Vivante 64x64 super-tiling layout for dual-pipe 797 * 798 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile 799 * starts at a different base address. Offsets from the base addresses are 800 * therefore halved compared to the non-split super-tiled layout. 801 */ 802 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) 803 804 /* 805 * Vivante TS (tile-status) buffer modifiers. They can be combined with all of 806 * the color buffer tiling modifiers defined above. When TS is present it's a 807 * separate buffer containing the clear/compression status of each tile. The 808 * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer 809 * tile size in bytes covered by one entry in the status buffer and s is the 810 * number of status bits per entry. 811 * We reserve the top 8 bits of the Vivante modifier space for tile status 812 * clear/compression modifiers, as future cores might add some more TS layout 813 * variations. 814 */ 815 #define VIVANTE_MOD_TS_64_4 (1ULL << 48) 816 #define VIVANTE_MOD_TS_64_2 (2ULL << 48) 817 #define VIVANTE_MOD_TS_128_4 (3ULL << 48) 818 #define VIVANTE_MOD_TS_256_4 (4ULL << 48) 819 #define VIVANTE_MOD_TS_MASK (0xfULL << 48) 820 821 /* 822 * Vivante compression modifiers. Those depend on a TS modifier being present 823 * as the TS bits get reinterpreted as compression tags instead of simple 824 * clear markers when compression is enabled. 825 */ 826 #define VIVANTE_MOD_COMP_DEC400 (1ULL << 52) 827 #define VIVANTE_MOD_COMP_MASK (0xfULL << 52) 828 829 /* Masking out the extension bits will yield the base modifier. */ 830 #define VIVANTE_MOD_EXT_MASK (VIVANTE_MOD_TS_MASK | \ 831 VIVANTE_MOD_COMP_MASK) 832 833 /* NVIDIA frame buffer modifiers */ 834 835 /* 836 * Tegra Tiled Layout, used by Tegra 2, 3 and 4. 837 * 838 * Pixels are arranged in simple tiles of 16 x 16 bytes. 839 */ 840 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) 841 842 /* 843 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80, 844 * and Tegra GPUs starting with Tegra K1. 845 * 846 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies 847 * based on the architecture generation. GOBs themselves are then arranged in 848 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power 849 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents 850 * a block depth or height of "4"). 851 * 852 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 853 * in full detail. 854 * 855 * Macro 856 * Bits Param Description 857 * ---- ----- ----------------------------------------------------------------- 858 * 859 * 3:0 h log2(height) of each block, in GOBs. Placed here for 860 * compatibility with the existing 861 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. 862 * 863 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for 864 * compatibility with the existing 865 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. 866 * 867 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block 868 * size). Must be zero. 869 * 870 * Note there is no log2(width) parameter. Some portions of the 871 * hardware support a block width of two gobs, but it is impractical 872 * to use due to lack of support elsewhere, and has no known 873 * benefits. 874 * 875 * 11:9 - Reserved (To support 2D-array textures with variable array stride 876 * in blocks, specified via log2(tile width in blocks)). Must be 877 * zero. 878 * 879 * 19:12 k Page Kind. This value directly maps to a field in the page 880 * tables of all GPUs >= NV50. It affects the exact layout of bits 881 * in memory and can be derived from the tuple 882 * 883 * (format, GPU model, compression type, samples per pixel) 884 * 885 * Where compression type is defined below. If GPU model were 886 * implied by the format modifier, format, or memory buffer, page 887 * kind would not need to be included in the modifier itself, but 888 * since the modifier should define the layout of the associated 889 * memory buffer independent from any device or other context, it 890 * must be included here. 891 * 892 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed 893 * starting with Fermi GPUs. Additionally, the mapping between page 894 * kind and bit layout has changed at various points. 895 * 896 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping 897 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping 898 * 2 = Gob Height 8, Turing+ Page Kind mapping 899 * 3 = Reserved for future use. 900 * 901 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further 902 * bit remapping step that occurs at an even lower level than the 903 * page kind and block linear swizzles. This causes the layout of 904 * surfaces mapped in those SOC's GPUs to be incompatible with the 905 * equivalent mapping on other GPUs in the same system. 906 * 907 * 0 = Tegra K1 - Tegra Parker/TX2 Layout. 908 * 1 = Desktop GPU and Tegra Xavier+ Layout 909 * 910 * 25:23 c Lossless Framebuffer Compression type. 911 * 912 * 0 = none 913 * 1 = ROP/3D, layout 1, exact compression format implied by Page 914 * Kind field 915 * 2 = ROP/3D, layout 2, exact compression format implied by Page 916 * Kind field 917 * 3 = CDE horizontal 918 * 4 = CDE vertical 919 * 5 = Reserved for future use 920 * 6 = Reserved for future use 921 * 7 = Reserved for future use 922 * 923 * 55:25 - Reserved for future use. Must be zero. 924 */ 925 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \ 926 fourcc_mod_code(NVIDIA, (0x10 | \ 927 ((h) & 0xf) | \ 928 (((k) & 0xff) << 12) | \ 929 (((g) & 0x3) << 20) | \ 930 (((s) & 0x1) << 22) | \ 931 (((c) & 0x7) << 23))) 932 933 /* To grandfather in prior block linear format modifiers to the above layout, 934 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable 935 * with block-linear layouts, is remapped within drivers to the value 0xfe, 936 * which corresponds to the "generic" kind used for simple single-sample 937 * uncompressed color formats on Fermi - Volta GPUs. 938 */ 939 static inline __u64 940 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier) 941 { 942 if (!(modifier & 0x10) || (modifier & (0xff << 12))) 943 return modifier; 944 else 945 return modifier | (0xfe << 12); 946 } 947 948 /* 949 * 16Bx2 Block Linear layout, used by Tegra K1 and later 950 * 951 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked 952 * vertically by a power of 2 (1 to 32 GOBs) to form a block. 953 * 954 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. 955 * 956 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. 957 * Valid values are: 958 * 959 * 0 == ONE_GOB 960 * 1 == TWO_GOBS 961 * 2 == FOUR_GOBS 962 * 3 == EIGHT_GOBS 963 * 4 == SIXTEEN_GOBS 964 * 5 == THIRTYTWO_GOBS 965 * 966 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 967 * in full detail. 968 */ 969 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ 970 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v)) 971 972 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ 973 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0) 974 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ 975 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1) 976 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ 977 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2) 978 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ 979 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3) 980 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ 981 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4) 982 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ 983 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5) 984 985 /* 986 * Some Broadcom modifiers take parameters, for example the number of 987 * vertical lines in the image. Reserve the lower 32 bits for modifier 988 * type, and the next 24 bits for parameters. Top 8 bits are the 989 * vendor code. 990 */ 991 #define __fourcc_mod_broadcom_param_shift 8 992 #define __fourcc_mod_broadcom_param_bits 48 993 #define fourcc_mod_broadcom_code(val, params) \ 994 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) 995 #define fourcc_mod_broadcom_param(m) \ 996 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ 997 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) 998 #define fourcc_mod_broadcom_mod(m) \ 999 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ 1000 __fourcc_mod_broadcom_param_shift)) 1001 1002 /* 1003 * Broadcom VC4 "T" format 1004 * 1005 * This is the primary layout that the V3D GPU can texture from (it 1006 * can't do linear). The T format has: 1007 * 1008 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 1009 * pixels at 32 bit depth. 1010 * 1011 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually 1012 * 16x16 pixels). 1013 * 1014 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On 1015 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows 1016 * they're (TR, BR, BL, TL), where bottom left is start of memory. 1017 * 1018 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k 1019 * tiles) or right-to-left (odd rows of 4k tiles). 1020 */ 1021 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) 1022 1023 /* 1024 * Broadcom SAND format 1025 * 1026 * This is the native format that the H.264 codec block uses. For VC4 1027 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. 1028 * 1029 * The image can be considered to be split into columns, and the 1030 * columns are placed consecutively into memory. The width of those 1031 * columns can be either 32, 64, 128, or 256 pixels, but in practice 1032 * only 128 pixel columns are used. 1033 * 1034 * The pitch between the start of each column is set to optimally 1035 * switch between SDRAM banks. This is passed as the number of lines 1036 * of column width in the modifier (we can't use the stride value due 1037 * to various core checks that look at it , so you should set the 1038 * stride to width*cpp). 1039 * 1040 * Note that the column height for this format modifier is the same 1041 * for all of the planes, assuming that each column contains both Y 1042 * and UV. Some SAND-using hardware stores UV in a separate tiled 1043 * image from Y to reduce the column height, which is not supported 1044 * with these modifiers. 1045 * 1046 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also 1047 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes 1048 * wide, but as this is a 10 bpp format that translates to 96 pixels. 1049 */ 1050 1051 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ 1052 fourcc_mod_broadcom_code(2, v) 1053 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ 1054 fourcc_mod_broadcom_code(3, v) 1055 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ 1056 fourcc_mod_broadcom_code(4, v) 1057 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ 1058 fourcc_mod_broadcom_code(5, v) 1059 1060 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ 1061 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) 1062 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ 1063 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) 1064 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ 1065 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) 1066 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ 1067 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) 1068 1069 /* Broadcom UIF format 1070 * 1071 * This is the common format for the current Broadcom multimedia 1072 * blocks, including V3D 3.x and newer, newer video codecs, and 1073 * displays. 1074 * 1075 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), 1076 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are 1077 * stored in columns, with padding between the columns to ensure that 1078 * moving from one column to the next doesn't hit the same SDRAM page 1079 * bank. 1080 * 1081 * To calculate the padding, it is assumed that each hardware block 1082 * and the software driving it knows the platform's SDRAM page size, 1083 * number of banks, and XOR address, and that it's identical between 1084 * all blocks using the format. This tiling modifier will use XOR as 1085 * necessary to reduce the padding. If a hardware block can't do XOR, 1086 * the assumption is that a no-XOR tiling modifier will be created. 1087 */ 1088 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) 1089 1090 /* 1091 * Arm Framebuffer Compression (AFBC) modifiers 1092 * 1093 * AFBC is a proprietary lossless image compression protocol and format. 1094 * It provides fine-grained random access and minimizes the amount of data 1095 * transferred between IP blocks. 1096 * 1097 * AFBC has several features which may be supported and/or used, which are 1098 * represented using bits in the modifier. Not all combinations are valid, 1099 * and different devices or use-cases may support different combinations. 1100 * 1101 * Further information on the use of AFBC modifiers can be found in 1102 * Documentation/gpu/afbc.rst 1103 */ 1104 1105 /* 1106 * The top 4 bits (out of the 56 bits allotted for specifying vendor specific 1107 * modifiers) denote the category for modifiers. Currently we have three 1108 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of 1109 * sixteen different categories. 1110 */ 1111 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \ 1112 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL)) 1113 1114 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00 1115 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01 1116 1117 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \ 1118 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode) 1119 1120 /* 1121 * AFBC superblock size 1122 * 1123 * Indicates the superblock size(s) used for the AFBC buffer. The buffer 1124 * size (in pixels) must be aligned to a multiple of the superblock size. 1125 * Four lowest significant bits(LSBs) are reserved for block size. 1126 * 1127 * Where one superblock size is specified, it applies to all planes of the 1128 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, 1129 * the first applies to the Luma plane and the second applies to the Chroma 1130 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). 1131 * Multiple superblock sizes are only valid for multi-plane YCbCr formats. 1132 */ 1133 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf 1134 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) 1135 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) 1136 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) 1137 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) 1138 1139 /* 1140 * AFBC lossless colorspace transform 1141 * 1142 * Indicates that the buffer makes use of the AFBC lossless colorspace 1143 * transform. 1144 */ 1145 #define AFBC_FORMAT_MOD_YTR (1ULL << 4) 1146 1147 /* 1148 * AFBC block-split 1149 * 1150 * Indicates that the payload of each superblock is split. The second 1151 * half of the payload is positioned at a predefined offset from the start 1152 * of the superblock payload. 1153 */ 1154 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) 1155 1156 /* 1157 * AFBC sparse layout 1158 * 1159 * This flag indicates that the payload of each superblock must be stored at a 1160 * predefined position relative to the other superblocks in the same AFBC 1161 * buffer. This order is the same order used by the header buffer. In this mode 1162 * each superblock is given the same amount of space as an uncompressed 1163 * superblock of the particular format would require, rounding up to the next 1164 * multiple of 128 bytes in size. 1165 */ 1166 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) 1167 1168 /* 1169 * AFBC copy-block restrict 1170 * 1171 * Buffers with this flag must obey the copy-block restriction. The restriction 1172 * is such that there are no copy-blocks referring across the border of 8x8 1173 * blocks. For the subsampled data the 8x8 limitation is also subsampled. 1174 */ 1175 #define AFBC_FORMAT_MOD_CBR (1ULL << 7) 1176 1177 /* 1178 * AFBC tiled layout 1179 * 1180 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all 1181 * superblocks inside a tile are stored together in memory. 8x8 tiles are used 1182 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for 1183 * larger bpp formats. The order between the tiles is scan line. 1184 * When the tiled layout is used, the buffer size (in pixels) must be aligned 1185 * to the tile size. 1186 */ 1187 #define AFBC_FORMAT_MOD_TILED (1ULL << 8) 1188 1189 /* 1190 * AFBC solid color blocks 1191 * 1192 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth 1193 * can be reduced if a whole superblock is a single color. 1194 */ 1195 #define AFBC_FORMAT_MOD_SC (1ULL << 9) 1196 1197 /* 1198 * AFBC double-buffer 1199 * 1200 * Indicates that the buffer is allocated in a layout safe for front-buffer 1201 * rendering. 1202 */ 1203 #define AFBC_FORMAT_MOD_DB (1ULL << 10) 1204 1205 /* 1206 * AFBC buffer content hints 1207 * 1208 * Indicates that the buffer includes per-superblock content hints. 1209 */ 1210 #define AFBC_FORMAT_MOD_BCH (1ULL << 11) 1211 1212 /* AFBC uncompressed storage mode 1213 * 1214 * Indicates that the buffer is using AFBC uncompressed storage mode. 1215 * In this mode all superblock payloads in the buffer use the uncompressed 1216 * storage mode, which is usually only used for data which cannot be compressed. 1217 * The buffer layout is the same as for AFBC buffers without USM set, this only 1218 * affects the storage mode of the individual superblocks. Note that even a 1219 * buffer without USM set may use uncompressed storage mode for some or all 1220 * superblocks, USM just guarantees it for all. 1221 */ 1222 #define AFBC_FORMAT_MOD_USM (1ULL << 12) 1223 1224 /* 1225 * Arm Fixed-Rate Compression (AFRC) modifiers 1226 * 1227 * AFRC is a proprietary fixed rate image compression protocol and format, 1228 * designed to provide guaranteed bandwidth and memory footprint 1229 * reductions in graphics and media use-cases. 1230 * 1231 * AFRC buffers consist of one or more planes, with the same components 1232 * and meaning as an uncompressed buffer using the same pixel format. 1233 * 1234 * Within each plane, the pixel/luma/chroma values are grouped into 1235 * "coding unit" blocks which are individually compressed to a 1236 * fixed size (in bytes). All coding units within a given plane of a buffer 1237 * store the same number of values, and have the same compressed size. 1238 * 1239 * The coding unit size is configurable, allowing different rates of compression. 1240 * 1241 * The start of each AFRC buffer plane must be aligned to an alignment granule which 1242 * depends on the coding unit size. 1243 * 1244 * Coding Unit Size Plane Alignment 1245 * ---------------- --------------- 1246 * 16 bytes 1024 bytes 1247 * 24 bytes 512 bytes 1248 * 32 bytes 2048 bytes 1249 * 1250 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned 1251 * to a multiple of the paging tile dimensions. 1252 * The dimensions of each paging tile depend on whether the buffer is optimised for 1253 * scanline (SCAN layout) or rotated (ROT layout) access. 1254 * 1255 * Layout Paging Tile Width Paging Tile Height 1256 * ------ ----------------- ------------------ 1257 * SCAN 16 coding units 4 coding units 1258 * ROT 8 coding units 8 coding units 1259 * 1260 * The dimensions of each coding unit depend on the number of components 1261 * in the compressed plane and whether the buffer is optimised for 1262 * scanline (SCAN layout) or rotated (ROT layout) access. 1263 * 1264 * Number of Components in Plane Layout Coding Unit Width Coding Unit Height 1265 * ----------------------------- --------- ----------------- ------------------ 1266 * 1 SCAN 16 samples 4 samples 1267 * Example: 16x4 luma samples in a 'Y' plane 1268 * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer 1269 * ----------------------------- --------- ----------------- ------------------ 1270 * 1 ROT 8 samples 8 samples 1271 * Example: 8x8 luma samples in a 'Y' plane 1272 * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer 1273 * ----------------------------- --------- ----------------- ------------------ 1274 * 2 DONT CARE 8 samples 4 samples 1275 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer 1276 * ----------------------------- --------- ----------------- ------------------ 1277 * 3 DONT CARE 4 samples 4 samples 1278 * Example: 4x4 pixels in an RGB buffer without alpha 1279 * ----------------------------- --------- ----------------- ------------------ 1280 * 4 DONT CARE 4 samples 4 samples 1281 * Example: 4x4 pixels in an RGB buffer with alpha 1282 */ 1283 1284 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02 1285 1286 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \ 1287 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode) 1288 1289 /* 1290 * AFRC coding unit size modifier. 1291 * 1292 * Indicates the number of bytes used to store each compressed coding unit for 1293 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance 1294 * is the same for both Cb and Cr, which may be stored in separate planes. 1295 * 1296 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store 1297 * each compressed coding unit in the first plane of the buffer. For RGBA buffers 1298 * this is the only plane, while for semi-planar and fully-planar YUV buffers, 1299 * this corresponds to the luma plane. 1300 * 1301 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store 1302 * each compressed coding unit in the second and third planes in the buffer. 1303 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s). 1304 * 1305 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified 1306 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero. 1307 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and 1308 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified. 1309 */ 1310 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf 1311 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL) 1312 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL) 1313 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL) 1314 1315 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size) 1316 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4) 1317 1318 /* 1319 * AFRC scanline memory layout. 1320 * 1321 * Indicates if the buffer uses the scanline-optimised layout 1322 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout. 1323 * The memory layout is the same for all planes. 1324 */ 1325 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8) 1326 1327 /* 1328 * Arm 16x16 Block U-Interleaved modifier 1329 * 1330 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image 1331 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels 1332 * in the block are reordered. 1333 */ 1334 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \ 1335 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL) 1336 1337 /* 1338 * Allwinner tiled modifier 1339 * 1340 * This tiling mode is implemented by the VPU found on all Allwinner platforms, 1341 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 1342 * planes. 1343 * 1344 * With this tiling, the luminance samples are disposed in tiles representing 1345 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. 1346 * The pixel order in each tile is linear and the tiles are disposed linearly, 1347 * both in row-major order. 1348 */ 1349 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) 1350 1351 /* 1352 * Amlogic Video Framebuffer Compression modifiers 1353 * 1354 * Amlogic uses a proprietary lossless image compression protocol and format 1355 * for their hardware video codec accelerators, either video decoders or 1356 * video input encoders. 1357 * 1358 * It considerably reduces memory bandwidth while writing and reading 1359 * frames in memory. 1360 * 1361 * The underlying storage is considered to be 3 components, 8bit or 10-bit 1362 * per component YCbCr 420, single plane : 1363 * - DRM_FORMAT_YUV420_8BIT 1364 * - DRM_FORMAT_YUV420_10BIT 1365 * 1366 * The first 8 bits of the mode defines the layout, then the following 8 bits 1367 * defines the options changing the layout. 1368 * 1369 * Not all combinations are valid, and different SoCs may support different 1370 * combinations of layout and options. 1371 */ 1372 #define __fourcc_mod_amlogic_layout_mask 0xff 1373 #define __fourcc_mod_amlogic_options_shift 8 1374 #define __fourcc_mod_amlogic_options_mask 0xff 1375 1376 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \ 1377 fourcc_mod_code(AMLOGIC, \ 1378 ((__layout) & __fourcc_mod_amlogic_layout_mask) | \ 1379 (((__options) & __fourcc_mod_amlogic_options_mask) \ 1380 << __fourcc_mod_amlogic_options_shift)) 1381 1382 /* Amlogic FBC Layouts */ 1383 1384 /* 1385 * Amlogic FBC Basic Layout 1386 * 1387 * The basic layout is composed of: 1388 * - a body content organized in 64x32 superblocks with 4096 bytes per 1389 * superblock in default mode. 1390 * - a 32 bytes per 128x64 header block 1391 * 1392 * This layout is transferrable between Amlogic SoCs supporting this modifier. 1393 */ 1394 #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL) 1395 1396 /* 1397 * Amlogic FBC Scatter Memory layout 1398 * 1399 * Indicates the header contains IOMMU references to the compressed 1400 * frames content to optimize memory access and layout. 1401 * 1402 * In this mode, only the header memory address is needed, thus the 1403 * content memory organization is tied to the current producer 1404 * execution and cannot be saved/dumped neither transferrable between 1405 * Amlogic SoCs supporting this modifier. 1406 * 1407 * Due to the nature of the layout, these buffers are not expected to 1408 * be accessible by the user-space clients, but only accessible by the 1409 * hardware producers and consumers. 1410 * 1411 * The user-space clients should expect a failure while trying to mmap 1412 * the DMA-BUF handle returned by the producer. 1413 */ 1414 #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL) 1415 1416 /* Amlogic FBC Layout Options Bit Mask */ 1417 1418 /* 1419 * Amlogic FBC Memory Saving mode 1420 * 1421 * Indicates the storage is packed when pixel size is multiple of word 1422 * boundaries, i.e. 8bit should be stored in this mode to save allocation 1423 * memory. 1424 * 1425 * This mode reduces body layout to 3072 bytes per 64x32 superblock with 1426 * the basic layout and 3200 bytes per 64x32 superblock combined with 1427 * the scatter layout. 1428 */ 1429 #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0) 1430 1431 /* 1432 * AMD modifiers 1433 * 1434 * Memory layout: 1435 * 1436 * without DCC: 1437 * - main surface 1438 * 1439 * with DCC & without DCC_RETILE: 1440 * - main surface in plane 0 1441 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set) 1442 * 1443 * with DCC & DCC_RETILE: 1444 * - main surface in plane 0 1445 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned) 1446 * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned) 1447 * 1448 * For multi-plane formats the above surfaces get merged into one plane for 1449 * each format plane, based on the required alignment only. 1450 * 1451 * Bits Parameter Notes 1452 * ----- ------------------------ --------------------------------------------- 1453 * 1454 * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_* 1455 * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_* 1456 * 13 DCC 1457 * 14 DCC_RETILE 1458 * 15 DCC_PIPE_ALIGN 1459 * 16 DCC_INDEPENDENT_64B 1460 * 17 DCC_INDEPENDENT_128B 1461 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_* 1462 * 20 DCC_CONSTANT_ENCODE 1463 * 23:21 PIPE_XOR_BITS Only for some chips 1464 * 26:24 BANK_XOR_BITS Only for some chips 1465 * 29:27 PACKERS Only for some chips 1466 * 32:30 RB Only for some chips 1467 * 35:33 PIPE Only for some chips 1468 * 55:36 - Reserved for future use, must be zero 1469 */ 1470 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0) 1471 1472 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD) 1473 1474 /* Reserve 0 for GFX8 and older */ 1475 #define AMD_FMT_MOD_TILE_VER_GFX9 1 1476 #define AMD_FMT_MOD_TILE_VER_GFX10 2 1477 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3 1478 #define AMD_FMT_MOD_TILE_VER_GFX11 4 1479 #define AMD_FMT_MOD_TILE_VER_GFX12 5 1480 1481 /* 1482 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical 1483 * version. 1484 */ 1485 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9 1486 1487 /* 1488 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has 1489 * GFX9 as canonical version. 1490 * 1491 * 64K_D_2D on GFX12 is identical to 64K_D on GFX11. 1492 */ 1493 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10 1494 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25 1495 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26 1496 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27 1497 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31 1498 1499 /* Gfx12 swizzle modes: 1500 * 0 - LINEAR 1501 * 1 - 256B_2D - 2D block dimensions 1502 * 2 - 4KB_2D 1503 * 3 - 64KB_2D 1504 * 4 - 256KB_2D 1505 * 5 - 4KB_3D - 3D block dimensions 1506 * 6 - 64KB_3D 1507 * 7 - 256KB_3D 1508 */ 1509 #define AMD_FMT_MOD_TILE_GFX12_256B_2D 1 1510 #define AMD_FMT_MOD_TILE_GFX12_4K_2D 2 1511 #define AMD_FMT_MOD_TILE_GFX12_64K_2D 3 1512 #define AMD_FMT_MOD_TILE_GFX12_256K_2D 4 1513 1514 #define AMD_FMT_MOD_DCC_BLOCK_64B 0 1515 #define AMD_FMT_MOD_DCC_BLOCK_128B 1 1516 #define AMD_FMT_MOD_DCC_BLOCK_256B 2 1517 1518 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0 1519 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF 1520 #define AMD_FMT_MOD_TILE_SHIFT 8 1521 #define AMD_FMT_MOD_TILE_MASK 0x1F 1522 1523 /* Whether DCC compression is enabled. */ 1524 #define AMD_FMT_MOD_DCC_SHIFT 13 1525 #define AMD_FMT_MOD_DCC_MASK 0x1 1526 1527 /* 1528 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and 1529 * one which is not-aligned. 1530 */ 1531 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14 1532 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1 1533 1534 /* Only set if DCC_RETILE = false */ 1535 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15 1536 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1 1537 1538 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16 1539 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1 1540 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17 1541 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1 1542 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18 1543 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3 1544 1545 /* 1546 * DCC supports embedding some clear colors directly in the DCC surface. 1547 * However, on older GPUs the rendering HW ignores the embedded clear color 1548 * and prefers the driver provided color. This necessitates doing a fastclear 1549 * eliminate operation before a process transfers control. 1550 * 1551 * If this bit is set that means the fastclear eliminate is not needed for these 1552 * embeddable colors. 1553 */ 1554 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20 1555 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1 1556 1557 /* 1558 * The below fields are for accounting for per GPU differences. These are only 1559 * relevant for GFX9 and later and if the tile field is *_X/_T. 1560 * 1561 * PIPE_XOR_BITS = always needed 1562 * BANK_XOR_BITS = only for TILE_VER_GFX9 1563 * PACKERS = only for TILE_VER_GFX10_RBPLUS 1564 * RB = only for TILE_VER_GFX9 & DCC 1565 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN) 1566 */ 1567 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21 1568 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7 1569 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24 1570 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7 1571 #define AMD_FMT_MOD_PACKERS_SHIFT 27 1572 #define AMD_FMT_MOD_PACKERS_MASK 0x7 1573 #define AMD_FMT_MOD_RB_SHIFT 30 1574 #define AMD_FMT_MOD_RB_MASK 0x7 1575 #define AMD_FMT_MOD_PIPE_SHIFT 33 1576 #define AMD_FMT_MOD_PIPE_MASK 0x7 1577 1578 #define AMD_FMT_MOD_SET(field, value) \ 1579 ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT) 1580 #define AMD_FMT_MOD_GET(field, value) \ 1581 (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK) 1582 #define AMD_FMT_MOD_CLEAR(field) \ 1583 (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT)) 1584 1585 #if defined(__cplusplus) 1586 } 1587 #endif 1588 1589 #endif /* DRM_FOURCC_H */ 1590