xref: /linux/include/uapi/drm/drm_fourcc.h (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifier being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62  * match only a single modifier. A modifier must not be a subset of layouts of
63  * another modifier. For instance, it's incorrect to encode pitch alignment in
64  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65  * aligned modifier. That said, modifiers can have implicit minimal
66  * requirements.
67  *
68  * For modifiers where the combination of fourcc code and modifier can alias,
69  * a canonical pair needs to be defined and used by all drivers. Preferred
70  * combinations are also encouraged where all combinations might lead to
71  * confusion and unnecessarily reduced interoperability. An example for the
72  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73  *
74  * There are two kinds of modifier users:
75  *
76  * - Kernel and user-space drivers: for drivers it's important that modifiers
77  *   don't alias, otherwise two drivers might support the same format but use
78  *   different aliases, preventing them from sharing buffers in an efficient
79  *   format.
80  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81  *   see modifiers as opaque tokens they can check for equality and intersect.
82  *   These users mustn't need to know to reason about the modifier value
83  *   (i.e. they are not expected to extract information out of the modifier).
84  *
85  * Vendors should document their modifier usage in as much detail as
86  * possible, to ensure maximum compatibility across devices, drivers and
87  * applications.
88  *
89  * The authoritative list of format modifier codes is found in
90  * `include/uapi/drm/drm_fourcc.h`
91  *
92  * Open Source User Waiver
93  * -----------------------
94  *
95  * Because this is the authoritative source for pixel formats and modifiers
96  * referenced by GL, Vulkan extensions and other standards and hence used both
97  * by open source and closed source driver stacks, the usual requirement for an
98  * upstream in-kernel or open source userspace user does not apply.
99  *
100  * To ensure, as much as feasible, compatibility across stacks and avoid
101  * confusion with incompatible enumerations stakeholders for all relevant driver
102  * stacks should approve additions.
103  */
104 
105 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
106 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
107 
108 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
109 
110 /* Reserve 0 for the invalid format specifier */
111 #define DRM_FORMAT_INVALID	0
112 
113 /* color index */
114 #define DRM_FORMAT_C1		fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
115 #define DRM_FORMAT_C2		fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
116 #define DRM_FORMAT_C4		fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
117 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
118 
119 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
120 #define DRM_FORMAT_D1		fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
121 
122 /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
123 #define DRM_FORMAT_D2		fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
124 
125 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
126 #define DRM_FORMAT_D4		fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
127 
128 /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
129 #define DRM_FORMAT_D8		fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
130 
131 /* 1 bpp Red (direct relationship between channel value and brightness) */
132 #define DRM_FORMAT_R1		fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
133 
134 /* 2 bpp Red (direct relationship between channel value and brightness) */
135 #define DRM_FORMAT_R2		fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
136 
137 /* 4 bpp Red (direct relationship between channel value and brightness) */
138 #define DRM_FORMAT_R4		fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
139 
140 /* 8 bpp Red (direct relationship between channel value and brightness) */
141 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
142 
143 /* 10 bpp Red (direct relationship between channel value and brightness) */
144 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
145 
146 /* 12 bpp Red (direct relationship between channel value and brightness) */
147 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
148 
149 /* 16 bpp Red (direct relationship between channel value and brightness) */
150 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
151 
152 /* 16 bpp RG */
153 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
154 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
155 
156 /* 32 bpp RG */
157 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
158 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
159 
160 /* 8 bpp RGB */
161 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
162 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
163 
164 /* 16 bpp RGB */
165 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
166 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
167 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
168 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
169 
170 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
171 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
172 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
173 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
174 
175 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
176 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
177 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
178 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
179 
180 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
181 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
182 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
183 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
184 
185 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
186 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
187 
188 /* 24 bpp RGB */
189 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
190 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
191 
192 /* 32 bpp RGB */
193 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
194 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
195 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
196 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
197 
198 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
199 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
200 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
201 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
202 
203 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
204 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
205 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
206 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
207 
208 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
209 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
210 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
211 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
212 
213 /* 64 bpp RGB */
214 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
215 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
216 
217 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
218 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
219 
220 /*
221  * Floating point 64bpp RGB
222  * IEEE 754-2008 binary16 half-precision float
223  * [15:0] sign:exponent:mantissa 1:5:10
224  */
225 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
226 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
227 
228 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
229 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
230 
231 /*
232  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
233  * of unused padding per component:
234  */
235 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
236 
237 /* packed YCbCr */
238 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
239 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
240 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
241 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
242 
243 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
244 #define DRM_FORMAT_AVUY8888	fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
245 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
246 #define DRM_FORMAT_XVUY8888	fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
247 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
248 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
249 
250 /*
251  * packed Y2xx indicate for each component, xx valid data occupy msb
252  * 16-xx padding occupy lsb
253  */
254 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
255 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
256 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
257 
258 /*
259  * packed Y4xx indicate for each component, xx valid data occupy msb
260  * 16-xx padding occupy lsb except Y410
261  */
262 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
263 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
264 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
265 
266 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
267 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
268 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
269 
270 /*
271  * packed YCbCr420 2x2 tiled formats
272  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
273  */
274 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
275 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
276 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
277 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
278 
279 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
280 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
281 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
282 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
283 
284 /*
285  * 1-plane YUV 4:2:0
286  * In these formats, the component ordering is specified (Y, followed by U
287  * then V), but the exact Linear layout is undefined.
288  * These formats can only be used with a non-Linear modifier.
289  */
290 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
291 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
292 
293 /*
294  * 2 plane RGB + A
295  * index 0 = RGB plane, same format as the corresponding non _A8 format has
296  * index 1 = A plane, [7:0] A
297  */
298 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
299 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
300 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
301 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
302 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
303 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
304 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
305 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
306 
307 /*
308  * 2 plane YCbCr
309  * index 0 = Y plane, [7:0] Y
310  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
311  * or
312  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
313  */
314 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
315 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
316 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
317 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
318 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
319 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
320 /*
321  * 2 plane YCbCr
322  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
323  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
324  */
325 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
326 #define DRM_FORMAT_NV20		fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
327 #define DRM_FORMAT_NV30		fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
328 
329 /*
330  * 2 plane YCbCr MSB aligned
331  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
332  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
333  */
334 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
335 
336 /*
337  * 2 plane YCbCr MSB aligned
338  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
339  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
340  */
341 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
342 
343 /*
344  * 2 plane YCbCr MSB aligned
345  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
346  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
347  */
348 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
349 
350 /*
351  * 2 plane YCbCr MSB aligned
352  * index 0 = Y plane, [15:0] Y little endian
353  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
354  */
355 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
356 
357 /* 2 plane YCbCr420.
358  * 3 10 bit components and 2 padding bits packed into 4 bytes.
359  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
360  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
361  */
362 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
363 
364 /* 3 plane non-subsampled (444) YCbCr
365  * 16 bits per component, but only 10 bits are used and 6 bits are padded
366  * index 0: Y plane, [15:0] Y:x [10:6] little endian
367  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
368  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
369  */
370 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
371 
372 /* 3 plane non-subsampled (444) YCrCb
373  * 16 bits per component, but only 10 bits are used and 6 bits are padded
374  * index 0: Y plane, [15:0] Y:x [10:6] little endian
375  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
376  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
377  */
378 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
379 
380 /*
381  * 3 plane YCbCr
382  * index 0: Y plane, [7:0] Y
383  * index 1: Cb plane, [7:0] Cb
384  * index 2: Cr plane, [7:0] Cr
385  * or
386  * index 1: Cr plane, [7:0] Cr
387  * index 2: Cb plane, [7:0] Cb
388  */
389 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
390 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
391 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
392 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
393 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
394 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
395 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
396 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
397 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
398 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
399 
400 
401 /*
402  * Format Modifiers:
403  *
404  * Format modifiers describe, typically, a re-ordering or modification
405  * of the data in a plane of an FB.  This can be used to express tiled/
406  * swizzled formats, or compression, or a combination of the two.
407  *
408  * The upper 8 bits of the format modifier are a vendor-id as assigned
409  * below.  The lower 56 bits are assigned as vendor sees fit.
410  */
411 
412 /* Vendor Ids: */
413 #define DRM_FORMAT_MOD_VENDOR_NONE    0
414 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
415 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
416 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
417 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
418 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
419 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
420 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
421 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
422 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
423 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
424 
425 /* add more to the end as needed */
426 
427 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
428 
429 #define fourcc_mod_get_vendor(modifier) \
430 	(((modifier) >> 56) & 0xff)
431 
432 #define fourcc_mod_is_vendor(modifier, vendor) \
433 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
434 
435 #define fourcc_mod_code(vendor, val) \
436 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
437 
438 /*
439  * Format Modifier tokens:
440  *
441  * When adding a new token please document the layout with a code comment,
442  * similar to the fourcc codes above. drm_fourcc.h is considered the
443  * authoritative source for all of these.
444  *
445  * Generic modifier names:
446  *
447  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
448  * for layouts which are common across multiple vendors. To preserve
449  * compatibility, in cases where a vendor-specific definition already exists and
450  * a generic name for it is desired, the common name is a purely symbolic alias
451  * and must use the same numerical value as the original definition.
452  *
453  * Note that generic names should only be used for modifiers which describe
454  * generic layouts (such as pixel re-ordering), which may have
455  * independently-developed support across multiple vendors.
456  *
457  * In future cases where a generic layout is identified before merging with a
458  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
459  * 'NONE' could be considered. This should only be for obvious, exceptional
460  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
461  * apply to a single vendor.
462  *
463  * Generic names should not be used for cases where multiple hardware vendors
464  * have implementations of the same standardised compression scheme (such as
465  * AFBC). In those cases, all implementations should use the same format
466  * modifier(s), reflecting the vendor of the standard.
467  */
468 
469 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
470 
471 /*
472  * Invalid Modifier
473  *
474  * This modifier can be used as a sentinel to terminate the format modifiers
475  * list, or to initialize a variable with an invalid modifier. It might also be
476  * used to report an error back to userspace for certain APIs.
477  */
478 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
479 
480 /*
481  * Linear Layout
482  *
483  * Just plain linear layout. Note that this is different from no specifying any
484  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
485  * which tells the driver to also take driver-internal information into account
486  * and so might actually result in a tiled framebuffer.
487  */
488 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
489 
490 /*
491  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
492  *
493  * The "none" format modifier doesn't actually mean that the modifier is
494  * implicit, instead it means that the layout is linear. Whether modifiers are
495  * used is out-of-band information carried in an API-specific way (e.g. in a
496  * flag for drm_mode_fb_cmd2).
497  */
498 #define DRM_FORMAT_MOD_NONE	0
499 
500 /* Intel framebuffer modifiers */
501 
502 /*
503  * Intel X-tiling layout
504  *
505  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
506  * in row-major layout. Within the tile bytes are laid out row-major, with
507  * a platform-dependent stride. On top of that the memory can apply
508  * platform-depending swizzling of some higher address bits into bit6.
509  *
510  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
511  * On earlier platforms the is highly platforms specific and not useful for
512  * cross-driver sharing. It exists since on a given platform it does uniquely
513  * identify the layout in a simple way for i915-specific userspace, which
514  * facilitated conversion of userspace to modifiers. Additionally the exact
515  * format on some really old platforms is not known.
516  */
517 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
518 
519 /*
520  * Intel Y-tiling layout
521  *
522  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
523  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
524  * chunks column-major, with a platform-dependent height. On top of that the
525  * memory can apply platform-depending swizzling of some higher address bits
526  * into bit6.
527  *
528  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
529  * On earlier platforms the is highly platforms specific and not useful for
530  * cross-driver sharing. It exists since on a given platform it does uniquely
531  * identify the layout in a simple way for i915-specific userspace, which
532  * facilitated conversion of userspace to modifiers. Additionally the exact
533  * format on some really old platforms is not known.
534  */
535 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
536 
537 /*
538  * Intel Yf-tiling layout
539  *
540  * This is a tiled layout using 4Kb tiles in row-major layout.
541  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
542  * are arranged in four groups (two wide, two high) with column-major layout.
543  * Each group therefore consists out of four 256 byte units, which are also laid
544  * out as 2x2 column-major.
545  * 256 byte units are made out of four 64 byte blocks of pixels, producing
546  * either a square block or a 2:1 unit.
547  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
548  * in pixel depends on the pixel depth.
549  */
550 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
551 
552 /*
553  * Intel color control surface (CCS) for render compression
554  *
555  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
556  * The main surface will be plane index 0 and must be Y/Yf-tiled,
557  * the CCS will be plane index 1.
558  *
559  * Each CCS tile matches a 1024x512 pixel area of the main surface.
560  * To match certain aspects of the 3D hardware the CCS is
561  * considered to be made up of normal 128Bx32 Y tiles, Thus
562  * the CCS pitch must be specified in multiples of 128 bytes.
563  *
564  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
565  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
566  * But that fact is not relevant unless the memory is accessed
567  * directly.
568  */
569 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
570 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
571 
572 /*
573  * Intel color control surfaces (CCS) for Gen-12 render compression.
574  *
575  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
576  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
577  * main surface. In other words, 4 bits in CCS map to a main surface cache
578  * line pair. The main surface pitch is required to be a multiple of four
579  * Y-tile widths.
580  */
581 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
582 
583 /*
584  * Intel color control surfaces (CCS) for Gen-12 media compression
585  *
586  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
587  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
588  * main surface. In other words, 4 bits in CCS map to a main surface cache
589  * line pair. The main surface pitch is required to be a multiple of four
590  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
591  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
592  * planes 2 and 3 for the respective CCS.
593  */
594 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
595 
596 /*
597  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
598  * compression.
599  *
600  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
601  * and at index 1. The clear color is stored at index 2, and the pitch should
602  * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
603  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
604  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
605  * the converted clear color of size 64 bits. The first 32 bits store the Lower
606  * Converted Clear Color value and the next 32 bits store the Higher Converted
607  * Clear Color value when applicable. The Converted Clear Color values are
608  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
609  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
610  * corresponds to an area of 4x1 tiles in the main surface. The main surface
611  * pitch is required to be a multiple of 4 tile widths.
612  */
613 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
614 
615 /*
616  * Intel Tile 4 layout
617  *
618  * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
619  * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
620  * only differs from Tile Y at the 256B granularity in between. At this
621  * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
622  * of 64B x 8 rows.
623  */
624 #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
625 
626 /*
627  * Intel color control surfaces (CCS) for DG2 render compression.
628  *
629  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
630  * outside of the GEM object in a reserved memory area dedicated for the
631  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
632  * main surface pitch is required to be a multiple of four Tile 4 widths.
633  */
634 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
635 
636 /*
637  * Intel color control surfaces (CCS) for DG2 media compression.
638  *
639  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
640  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
641  * 0 and 1, respectively. The CCS for all planes are stored outside of the
642  * GEM object in a reserved memory area dedicated for the storage of the
643  * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
644  * pitch is required to be a multiple of four Tile 4 widths.
645  */
646 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
647 
648 /*
649  * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
650  *
651  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
652  * outside of the GEM object in a reserved memory area dedicated for the
653  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
654  * main surface pitch is required to be a multiple of four Tile 4 widths. The
655  * clear color is stored at plane index 1 and the pitch should be 64 bytes
656  * aligned. The format of the 256 bits of clear color data matches the one used
657  * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
658  * for details.
659  */
660 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
661 
662 /*
663  * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
664  *
665  * The main surface is tile4 and at plane index 0, the CCS is linear and
666  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
667  * main surface. In other words, 4 bits in CCS map to a main surface cache
668  * line pair. The main surface pitch is required to be a multiple of four
669  * tile4 widths.
670  */
671 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
672 
673 /*
674  * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
675  *
676  * The main surface is tile4 and at plane index 0, the CCS is linear and
677  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
678  * main surface. In other words, 4 bits in CCS map to a main surface cache
679  * line pair. The main surface pitch is required to be a multiple of four
680  * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
681  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
682  * planes 2 and 3 for the respective CCS.
683  */
684 #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
685 
686 /*
687  * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
688  * compression.
689  *
690  * The main surface is tile4 and is at plane index 0 whereas CCS is linear
691  * and at index 1. The clear color is stored at index 2, and the pitch should
692  * be ignored. The clear color structure is 256 bits. The first 128 bits
693  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
694  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
695  * the converted clear color of size 64 bits. The first 32 bits store the Lower
696  * Converted Clear Color value and the next 32 bits store the Higher Converted
697  * Clear Color value when applicable. The Converted Clear Color values are
698  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
699  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
700  * corresponds to an area of 4x1 tiles in the main surface. The main surface
701  * pitch is required to be a multiple of 4 tile widths.
702  */
703 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
704 
705 /*
706  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
707  *
708  * Macroblocks are laid in a Z-shape, and each pixel data is following the
709  * standard NV12 style.
710  * As for NV12, an image is the result of two frame buffers: one for Y,
711  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
712  * Alignment requirements are (for each buffer):
713  * - multiple of 128 pixels for the width
714  * - multiple of  32 pixels for the height
715  *
716  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
717  */
718 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
719 
720 /*
721  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
722  *
723  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
724  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
725  * they correspond to their 16x16 luma block.
726  */
727 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
728 
729 /*
730  * Qualcomm Compressed Format
731  *
732  * Refers to a compressed variant of the base format that is compressed.
733  * Implementation may be platform and base-format specific.
734  *
735  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
736  * Pixel data pitch/stride is aligned with macrotile width.
737  * Pixel data height is aligned with macrotile height.
738  * Entire pixel data buffer is aligned with 4k(bytes).
739  */
740 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
741 
742 /*
743  * Qualcomm Tiled Format
744  *
745  * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
746  * Implementation may be platform and base-format specific.
747  *
748  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
749  * Pixel data pitch/stride is aligned with macrotile width.
750  * Pixel data height is aligned with macrotile height.
751  * Entire pixel data buffer is aligned with 4k(bytes).
752  */
753 #define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
754 
755 /*
756  * Qualcomm Alternate Tiled Format
757  *
758  * Alternate tiled format typically only used within GMEM.
759  * Implementation may be platform and base-format specific.
760  */
761 #define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
762 
763 
764 /* Vivante framebuffer modifiers */
765 
766 /*
767  * Vivante 4x4 tiling layout
768  *
769  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
770  * layout.
771  */
772 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
773 
774 /*
775  * Vivante 64x64 super-tiling layout
776  *
777  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
778  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
779  * major layout.
780  *
781  * For more information: see
782  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
783  */
784 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
785 
786 /*
787  * Vivante 4x4 tiling layout for dual-pipe
788  *
789  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
790  * different base address. Offsets from the base addresses are therefore halved
791  * compared to the non-split tiled layout.
792  */
793 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
794 
795 /*
796  * Vivante 64x64 super-tiling layout for dual-pipe
797  *
798  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
799  * starts at a different base address. Offsets from the base addresses are
800  * therefore halved compared to the non-split super-tiled layout.
801  */
802 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
803 
804 /*
805  * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
806  * the color buffer tiling modifiers defined above. When TS is present it's a
807  * separate buffer containing the clear/compression status of each tile. The
808  * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
809  * tile size in bytes covered by one entry in the status buffer and s is the
810  * number of status bits per entry.
811  * We reserve the top 8 bits of the Vivante modifier space for tile status
812  * clear/compression modifiers, as future cores might add some more TS layout
813  * variations.
814  */
815 #define VIVANTE_MOD_TS_64_4               (1ULL << 48)
816 #define VIVANTE_MOD_TS_64_2               (2ULL << 48)
817 #define VIVANTE_MOD_TS_128_4              (3ULL << 48)
818 #define VIVANTE_MOD_TS_256_4              (4ULL << 48)
819 #define VIVANTE_MOD_TS_MASK               (0xfULL << 48)
820 
821 /*
822  * Vivante compression modifiers. Those depend on a TS modifier being present
823  * as the TS bits get reinterpreted as compression tags instead of simple
824  * clear markers when compression is enabled.
825  */
826 #define VIVANTE_MOD_COMP_DEC400           (1ULL << 52)
827 #define VIVANTE_MOD_COMP_MASK             (0xfULL << 52)
828 
829 /* Masking out the extension bits will yield the base modifier. */
830 #define VIVANTE_MOD_EXT_MASK              (VIVANTE_MOD_TS_MASK | \
831                                            VIVANTE_MOD_COMP_MASK)
832 
833 /* NVIDIA frame buffer modifiers */
834 
835 /*
836  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
837  *
838  * Pixels are arranged in simple tiles of 16 x 16 bytes.
839  */
840 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
841 
842 /*
843  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
844  * and Tegra GPUs starting with Tegra K1.
845  *
846  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
847  * based on the architecture generation.  GOBs themselves are then arranged in
848  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
849  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
850  * a block depth or height of "4").
851  *
852  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
853  * in full detail.
854  *
855  *       Macro
856  * Bits  Param Description
857  * ----  ----- -----------------------------------------------------------------
858  *
859  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
860  *             compatibility with the existing
861  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
862  *
863  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
864  *             compatibility with the existing
865  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
866  *
867  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
868  *             size).  Must be zero.
869  *
870  *             Note there is no log2(width) parameter.  Some portions of the
871  *             hardware support a block width of two gobs, but it is impractical
872  *             to use due to lack of support elsewhere, and has no known
873  *             benefits.
874  *
875  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
876  *             in blocks, specified via log2(tile width in blocks)).  Must be
877  *             zero.
878  *
879  * 19:12 k     Page Kind.  This value directly maps to a field in the page
880  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
881  *             in memory and can be derived from the tuple
882  *
883  *               (format, GPU model, compression type, samples per pixel)
884  *
885  *             Where compression type is defined below.  If GPU model were
886  *             implied by the format modifier, format, or memory buffer, page
887  *             kind would not need to be included in the modifier itself, but
888  *             since the modifier should define the layout of the associated
889  *             memory buffer independent from any device or other context, it
890  *             must be included here.
891  *
892  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
893  *             starting with Fermi GPUs.  Additionally, the mapping between page
894  *             kind and bit layout has changed at various points.
895  *
896  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
897  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
898  *               2 = Gob Height 8, Turing+ Page Kind mapping
899  *               3 = Reserved for future use.
900  *
901  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
902  *             bit remapping step that occurs at an even lower level than the
903  *             page kind and block linear swizzles.  This causes the layout of
904  *             surfaces mapped in those SOC's GPUs to be incompatible with the
905  *             equivalent mapping on other GPUs in the same system.
906  *
907  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
908  *               1 = Desktop GPU and Tegra Xavier+ Layout
909  *
910  * 25:23 c     Lossless Framebuffer Compression type.
911  *
912  *               0 = none
913  *               1 = ROP/3D, layout 1, exact compression format implied by Page
914  *                   Kind field
915  *               2 = ROP/3D, layout 2, exact compression format implied by Page
916  *                   Kind field
917  *               3 = CDE horizontal
918  *               4 = CDE vertical
919  *               5 = Reserved for future use
920  *               6 = Reserved for future use
921  *               7 = Reserved for future use
922  *
923  * 55:25 -     Reserved for future use.  Must be zero.
924  */
925 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
926 	fourcc_mod_code(NVIDIA, (0x10 | \
927 				 ((h) & 0xf) | \
928 				 (((k) & 0xff) << 12) | \
929 				 (((g) & 0x3) << 20) | \
930 				 (((s) & 0x1) << 22) | \
931 				 (((c) & 0x7) << 23)))
932 
933 /* To grandfather in prior block linear format modifiers to the above layout,
934  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
935  * with block-linear layouts, is remapped within drivers to the value 0xfe,
936  * which corresponds to the "generic" kind used for simple single-sample
937  * uncompressed color formats on Fermi - Volta GPUs.
938  */
939 static inline __u64
940 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
941 {
942 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
943 		return modifier;
944 	else
945 		return modifier | (0xfe << 12);
946 }
947 
948 /*
949  * 16Bx2 Block Linear layout, used by Tegra K1 and later
950  *
951  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
952  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
953  *
954  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
955  *
956  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
957  * Valid values are:
958  *
959  * 0 == ONE_GOB
960  * 1 == TWO_GOBS
961  * 2 == FOUR_GOBS
962  * 3 == EIGHT_GOBS
963  * 4 == SIXTEEN_GOBS
964  * 5 == THIRTYTWO_GOBS
965  *
966  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
967  * in full detail.
968  */
969 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
970 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
971 
972 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
973 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
974 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
975 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
976 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
977 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
978 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
979 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
980 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
981 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
982 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
983 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
984 
985 /*
986  * Some Broadcom modifiers take parameters, for example the number of
987  * vertical lines in the image. Reserve the lower 32 bits for modifier
988  * type, and the next 24 bits for parameters. Top 8 bits are the
989  * vendor code.
990  */
991 #define __fourcc_mod_broadcom_param_shift 8
992 #define __fourcc_mod_broadcom_param_bits 48
993 #define fourcc_mod_broadcom_code(val, params) \
994 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
995 #define fourcc_mod_broadcom_param(m) \
996 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
997 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
998 #define fourcc_mod_broadcom_mod(m) \
999 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
1000 		 __fourcc_mod_broadcom_param_shift))
1001 
1002 /*
1003  * Broadcom VC4 "T" format
1004  *
1005  * This is the primary layout that the V3D GPU can texture from (it
1006  * can't do linear).  The T format has:
1007  *
1008  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
1009  *   pixels at 32 bit depth.
1010  *
1011  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1012  *   16x16 pixels).
1013  *
1014  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
1015  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1016  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
1017  *
1018  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1019  *   tiles) or right-to-left (odd rows of 4k tiles).
1020  */
1021 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1022 
1023 /*
1024  * Broadcom SAND format
1025  *
1026  * This is the native format that the H.264 codec block uses.  For VC4
1027  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1028  *
1029  * The image can be considered to be split into columns, and the
1030  * columns are placed consecutively into memory.  The width of those
1031  * columns can be either 32, 64, 128, or 256 pixels, but in practice
1032  * only 128 pixel columns are used.
1033  *
1034  * The pitch between the start of each column is set to optimally
1035  * switch between SDRAM banks. This is passed as the number of lines
1036  * of column width in the modifier (we can't use the stride value due
1037  * to various core checks that look at it , so you should set the
1038  * stride to width*cpp).
1039  *
1040  * Note that the column height for this format modifier is the same
1041  * for all of the planes, assuming that each column contains both Y
1042  * and UV.  Some SAND-using hardware stores UV in a separate tiled
1043  * image from Y to reduce the column height, which is not supported
1044  * with these modifiers.
1045  *
1046  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1047  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1048  * wide, but as this is a 10 bpp format that translates to 96 pixels.
1049  */
1050 
1051 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1052 	fourcc_mod_broadcom_code(2, v)
1053 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1054 	fourcc_mod_broadcom_code(3, v)
1055 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1056 	fourcc_mod_broadcom_code(4, v)
1057 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1058 	fourcc_mod_broadcom_code(5, v)
1059 
1060 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1061 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1062 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1063 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1064 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1065 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1066 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1067 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1068 
1069 /* Broadcom UIF format
1070  *
1071  * This is the common format for the current Broadcom multimedia
1072  * blocks, including V3D 3.x and newer, newer video codecs, and
1073  * displays.
1074  *
1075  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1076  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
1077  * stored in columns, with padding between the columns to ensure that
1078  * moving from one column to the next doesn't hit the same SDRAM page
1079  * bank.
1080  *
1081  * To calculate the padding, it is assumed that each hardware block
1082  * and the software driving it knows the platform's SDRAM page size,
1083  * number of banks, and XOR address, and that it's identical between
1084  * all blocks using the format.  This tiling modifier will use XOR as
1085  * necessary to reduce the padding.  If a hardware block can't do XOR,
1086  * the assumption is that a no-XOR tiling modifier will be created.
1087  */
1088 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1089 
1090 /*
1091  * Arm Framebuffer Compression (AFBC) modifiers
1092  *
1093  * AFBC is a proprietary lossless image compression protocol and format.
1094  * It provides fine-grained random access and minimizes the amount of data
1095  * transferred between IP blocks.
1096  *
1097  * AFBC has several features which may be supported and/or used, which are
1098  * represented using bits in the modifier. Not all combinations are valid,
1099  * and different devices or use-cases may support different combinations.
1100  *
1101  * Further information on the use of AFBC modifiers can be found in
1102  * Documentation/gpu/afbc.rst
1103  */
1104 
1105 /*
1106  * The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1107  * modifiers) denote the category for modifiers. Currently we have three
1108  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1109  * sixteen different categories.
1110  */
1111 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1112 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1113 
1114 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1115 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1116 
1117 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1118 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1119 
1120 /*
1121  * AFBC superblock size
1122  *
1123  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1124  * size (in pixels) must be aligned to a multiple of the superblock size.
1125  * Four lowest significant bits(LSBs) are reserved for block size.
1126  *
1127  * Where one superblock size is specified, it applies to all planes of the
1128  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1129  * the first applies to the Luma plane and the second applies to the Chroma
1130  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1131  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1132  */
1133 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1134 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1135 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1136 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1137 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1138 
1139 /*
1140  * AFBC lossless colorspace transform
1141  *
1142  * Indicates that the buffer makes use of the AFBC lossless colorspace
1143  * transform.
1144  */
1145 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1146 
1147 /*
1148  * AFBC block-split
1149  *
1150  * Indicates that the payload of each superblock is split. The second
1151  * half of the payload is positioned at a predefined offset from the start
1152  * of the superblock payload.
1153  */
1154 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1155 
1156 /*
1157  * AFBC sparse layout
1158  *
1159  * This flag indicates that the payload of each superblock must be stored at a
1160  * predefined position relative to the other superblocks in the same AFBC
1161  * buffer. This order is the same order used by the header buffer. In this mode
1162  * each superblock is given the same amount of space as an uncompressed
1163  * superblock of the particular format would require, rounding up to the next
1164  * multiple of 128 bytes in size.
1165  */
1166 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1167 
1168 /*
1169  * AFBC copy-block restrict
1170  *
1171  * Buffers with this flag must obey the copy-block restriction. The restriction
1172  * is such that there are no copy-blocks referring across the border of 8x8
1173  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1174  */
1175 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1176 
1177 /*
1178  * AFBC tiled layout
1179  *
1180  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1181  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1182  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1183  * larger bpp formats. The order between the tiles is scan line.
1184  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1185  * to the tile size.
1186  */
1187 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1188 
1189 /*
1190  * AFBC solid color blocks
1191  *
1192  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1193  * can be reduced if a whole superblock is a single color.
1194  */
1195 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1196 
1197 /*
1198  * AFBC double-buffer
1199  *
1200  * Indicates that the buffer is allocated in a layout safe for front-buffer
1201  * rendering.
1202  */
1203 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1204 
1205 /*
1206  * AFBC buffer content hints
1207  *
1208  * Indicates that the buffer includes per-superblock content hints.
1209  */
1210 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1211 
1212 /* AFBC uncompressed storage mode
1213  *
1214  * Indicates that the buffer is using AFBC uncompressed storage mode.
1215  * In this mode all superblock payloads in the buffer use the uncompressed
1216  * storage mode, which is usually only used for data which cannot be compressed.
1217  * The buffer layout is the same as for AFBC buffers without USM set, this only
1218  * affects the storage mode of the individual superblocks. Note that even a
1219  * buffer without USM set may use uncompressed storage mode for some or all
1220  * superblocks, USM just guarantees it for all.
1221  */
1222 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1223 
1224 /*
1225  * Arm Fixed-Rate Compression (AFRC) modifiers
1226  *
1227  * AFRC is a proprietary fixed rate image compression protocol and format,
1228  * designed to provide guaranteed bandwidth and memory footprint
1229  * reductions in graphics and media use-cases.
1230  *
1231  * AFRC buffers consist of one or more planes, with the same components
1232  * and meaning as an uncompressed buffer using the same pixel format.
1233  *
1234  * Within each plane, the pixel/luma/chroma values are grouped into
1235  * "coding unit" blocks which are individually compressed to a
1236  * fixed size (in bytes). All coding units within a given plane of a buffer
1237  * store the same number of values, and have the same compressed size.
1238  *
1239  * The coding unit size is configurable, allowing different rates of compression.
1240  *
1241  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1242  * depends on the coding unit size.
1243  *
1244  * Coding Unit Size   Plane Alignment
1245  * ----------------   ---------------
1246  * 16 bytes           1024 bytes
1247  * 24 bytes           512  bytes
1248  * 32 bytes           2048 bytes
1249  *
1250  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1251  * to a multiple of the paging tile dimensions.
1252  * The dimensions of each paging tile depend on whether the buffer is optimised for
1253  * scanline (SCAN layout) or rotated (ROT layout) access.
1254  *
1255  * Layout   Paging Tile Width   Paging Tile Height
1256  * ------   -----------------   ------------------
1257  * SCAN     16 coding units     4 coding units
1258  * ROT      8  coding units     8 coding units
1259  *
1260  * The dimensions of each coding unit depend on the number of components
1261  * in the compressed plane and whether the buffer is optimised for
1262  * scanline (SCAN layout) or rotated (ROT layout) access.
1263  *
1264  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1265  * -----------------------------   ---------   -----------------   ------------------
1266  * 1                               SCAN        16 samples          4 samples
1267  * Example: 16x4 luma samples in a 'Y' plane
1268  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1269  * -----------------------------   ---------   -----------------   ------------------
1270  * 1                               ROT         8 samples           8 samples
1271  * Example: 8x8 luma samples in a 'Y' plane
1272  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1273  * -----------------------------   ---------   -----------------   ------------------
1274  * 2                               DONT CARE   8 samples           4 samples
1275  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1276  * -----------------------------   ---------   -----------------   ------------------
1277  * 3                               DONT CARE   4 samples           4 samples
1278  * Example: 4x4 pixels in an RGB buffer without alpha
1279  * -----------------------------   ---------   -----------------   ------------------
1280  * 4                               DONT CARE   4 samples           4 samples
1281  * Example: 4x4 pixels in an RGB buffer with alpha
1282  */
1283 
1284 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1285 
1286 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1287 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1288 
1289 /*
1290  * AFRC coding unit size modifier.
1291  *
1292  * Indicates the number of bytes used to store each compressed coding unit for
1293  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1294  * is the same for both Cb and Cr, which may be stored in separate planes.
1295  *
1296  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1297  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1298  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1299  * this corresponds to the luma plane.
1300  *
1301  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1302  * each compressed coding unit in the second and third planes in the buffer.
1303  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1304  *
1305  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1306  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1307  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1308  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1309  */
1310 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1311 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1312 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1313 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1314 
1315 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1316 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1317 
1318 /*
1319  * AFRC scanline memory layout.
1320  *
1321  * Indicates if the buffer uses the scanline-optimised layout
1322  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1323  * The memory layout is the same for all planes.
1324  */
1325 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1326 
1327 /*
1328  * Arm 16x16 Block U-Interleaved modifier
1329  *
1330  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1331  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1332  * in the block are reordered.
1333  */
1334 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1335 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1336 
1337 /*
1338  * Allwinner tiled modifier
1339  *
1340  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1341  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1342  * planes.
1343  *
1344  * With this tiling, the luminance samples are disposed in tiles representing
1345  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1346  * The pixel order in each tile is linear and the tiles are disposed linearly,
1347  * both in row-major order.
1348  */
1349 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1350 
1351 /*
1352  * Amlogic Video Framebuffer Compression modifiers
1353  *
1354  * Amlogic uses a proprietary lossless image compression protocol and format
1355  * for their hardware video codec accelerators, either video decoders or
1356  * video input encoders.
1357  *
1358  * It considerably reduces memory bandwidth while writing and reading
1359  * frames in memory.
1360  *
1361  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1362  * per component YCbCr 420, single plane :
1363  * - DRM_FORMAT_YUV420_8BIT
1364  * - DRM_FORMAT_YUV420_10BIT
1365  *
1366  * The first 8 bits of the mode defines the layout, then the following 8 bits
1367  * defines the options changing the layout.
1368  *
1369  * Not all combinations are valid, and different SoCs may support different
1370  * combinations of layout and options.
1371  */
1372 #define __fourcc_mod_amlogic_layout_mask 0xff
1373 #define __fourcc_mod_amlogic_options_shift 8
1374 #define __fourcc_mod_amlogic_options_mask 0xff
1375 
1376 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1377 	fourcc_mod_code(AMLOGIC, \
1378 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1379 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1380 			 << __fourcc_mod_amlogic_options_shift))
1381 
1382 /* Amlogic FBC Layouts */
1383 
1384 /*
1385  * Amlogic FBC Basic Layout
1386  *
1387  * The basic layout is composed of:
1388  * - a body content organized in 64x32 superblocks with 4096 bytes per
1389  *   superblock in default mode.
1390  * - a 32 bytes per 128x64 header block
1391  *
1392  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1393  */
1394 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1395 
1396 /*
1397  * Amlogic FBC Scatter Memory layout
1398  *
1399  * Indicates the header contains IOMMU references to the compressed
1400  * frames content to optimize memory access and layout.
1401  *
1402  * In this mode, only the header memory address is needed, thus the
1403  * content memory organization is tied to the current producer
1404  * execution and cannot be saved/dumped neither transferrable between
1405  * Amlogic SoCs supporting this modifier.
1406  *
1407  * Due to the nature of the layout, these buffers are not expected to
1408  * be accessible by the user-space clients, but only accessible by the
1409  * hardware producers and consumers.
1410  *
1411  * The user-space clients should expect a failure while trying to mmap
1412  * the DMA-BUF handle returned by the producer.
1413  */
1414 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1415 
1416 /* Amlogic FBC Layout Options Bit Mask */
1417 
1418 /*
1419  * Amlogic FBC Memory Saving mode
1420  *
1421  * Indicates the storage is packed when pixel size is multiple of word
1422  * boundaries, i.e. 8bit should be stored in this mode to save allocation
1423  * memory.
1424  *
1425  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1426  * the basic layout and 3200 bytes per 64x32 superblock combined with
1427  * the scatter layout.
1428  */
1429 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1430 
1431 /*
1432  * AMD modifiers
1433  *
1434  * Memory layout:
1435  *
1436  * without DCC:
1437  *   - main surface
1438  *
1439  * with DCC & without DCC_RETILE:
1440  *   - main surface in plane 0
1441  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1442  *
1443  * with DCC & DCC_RETILE:
1444  *   - main surface in plane 0
1445  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1446  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1447  *
1448  * For multi-plane formats the above surfaces get merged into one plane for
1449  * each format plane, based on the required alignment only.
1450  *
1451  * Bits  Parameter                Notes
1452  * ----- ------------------------ ---------------------------------------------
1453  *
1454  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1455  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1456  *    13 DCC
1457  *    14 DCC_RETILE
1458  *    15 DCC_PIPE_ALIGN
1459  *    16 DCC_INDEPENDENT_64B
1460  *    17 DCC_INDEPENDENT_128B
1461  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1462  *    20 DCC_CONSTANT_ENCODE
1463  * 23:21 PIPE_XOR_BITS            Only for some chips
1464  * 26:24 BANK_XOR_BITS            Only for some chips
1465  * 29:27 PACKERS                  Only for some chips
1466  * 32:30 RB                       Only for some chips
1467  * 35:33 PIPE                     Only for some chips
1468  * 55:36 -                        Reserved for future use, must be zero
1469  */
1470 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1471 
1472 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1473 
1474 /* Reserve 0 for GFX8 and older */
1475 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1476 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1477 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1478 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1479 #define AMD_FMT_MOD_TILE_VER_GFX12 5
1480 
1481 /*
1482  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1483  * version.
1484  */
1485 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1486 
1487 /*
1488  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1489  * GFX9 as canonical version.
1490  *
1491  * 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
1492  */
1493 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1494 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1495 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1496 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1497 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1498 
1499 /* Gfx12 swizzle modes:
1500  *    0 - LINEAR
1501  *    1 - 256B_2D  - 2D block dimensions
1502  *    2 - 4KB_2D
1503  *    3 - 64KB_2D
1504  *    4 - 256KB_2D
1505  *    5 - 4KB_3D   - 3D block dimensions
1506  *    6 - 64KB_3D
1507  *    7 - 256KB_3D
1508  */
1509 #define AMD_FMT_MOD_TILE_GFX12_256B_2D 1
1510 #define AMD_FMT_MOD_TILE_GFX12_4K_2D 2
1511 #define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
1512 #define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1513 
1514 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1515 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1516 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1517 
1518 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1519 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1520 #define AMD_FMT_MOD_TILE_SHIFT 8
1521 #define AMD_FMT_MOD_TILE_MASK 0x1F
1522 
1523 /* Whether DCC compression is enabled. */
1524 #define AMD_FMT_MOD_DCC_SHIFT 13
1525 #define AMD_FMT_MOD_DCC_MASK 0x1
1526 
1527 /*
1528  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1529  * one which is not-aligned.
1530  */
1531 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1532 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1533 
1534 /* Only set if DCC_RETILE = false */
1535 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1536 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1537 
1538 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1539 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1540 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1541 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1542 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1543 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1544 
1545 /*
1546  * DCC supports embedding some clear colors directly in the DCC surface.
1547  * However, on older GPUs the rendering HW ignores the embedded clear color
1548  * and prefers the driver provided color. This necessitates doing a fastclear
1549  * eliminate operation before a process transfers control.
1550  *
1551  * If this bit is set that means the fastclear eliminate is not needed for these
1552  * embeddable colors.
1553  */
1554 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1555 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1556 
1557 /*
1558  * The below fields are for accounting for per GPU differences. These are only
1559  * relevant for GFX9 and later and if the tile field is *_X/_T.
1560  *
1561  * PIPE_XOR_BITS = always needed
1562  * BANK_XOR_BITS = only for TILE_VER_GFX9
1563  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1564  * RB = only for TILE_VER_GFX9 & DCC
1565  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1566  */
1567 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1568 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1569 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1570 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1571 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1572 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1573 #define AMD_FMT_MOD_RB_SHIFT 30
1574 #define AMD_FMT_MOD_RB_MASK 0x7
1575 #define AMD_FMT_MOD_PIPE_SHIFT 33
1576 #define AMD_FMT_MOD_PIPE_MASK 0x7
1577 
1578 #define AMD_FMT_MOD_SET(field, value) \
1579 	((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1580 #define AMD_FMT_MOD_GET(field, value) \
1581 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1582 #define AMD_FMT_MOD_CLEAR(field) \
1583 	(~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1584 
1585 #if defined(__cplusplus)
1586 }
1587 #endif
1588 
1589 #endif /* DRM_FOURCC_H */
1590