1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * linux/sound/soc.h -- ALSA SoC Layer 4 * 5 * Author: Liam Girdwood 6 * Created: Aug 11th 2005 7 * Copyright: Wolfson Microelectronics. PLC. 8 */ 9 10 #ifndef __LINUX_SND_SOC_H 11 #define __LINUX_SND_SOC_H 12 13 #include <linux/args.h> 14 #include <linux/array_size.h> 15 #include <linux/device.h> 16 #include <linux/errno.h> 17 #include <linux/interrupt.h> 18 #include <linux/lockdep.h> 19 #include <linux/log2.h> 20 #include <linux/mutex.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/types.h> 24 #include <linux/workqueue.h> 25 26 #include <sound/ac97_codec.h> 27 #include <sound/compress_driver.h> 28 #include <sound/control.h> 29 #include <sound/core.h> 30 #include <sound/pcm.h> 31 32 struct module; 33 struct platform_device; 34 35 /* For the current users of sound/soc.h to avoid build issues */ 36 #include <linux/platform_device.h> 37 #include <linux/regmap.h> 38 39 /* 40 * Convenience kcontrol builders 41 */ 42 #define SOC_DOUBLE_VALUE(xreg, shift_left, shift_right, xmax, xinvert, xautodisable) \ 43 ((unsigned long)&(struct soc_mixer_control) \ 44 {.reg = xreg, .rreg = xreg, .shift = shift_left, \ 45 .rshift = shift_right, .max = xmax, \ 46 .invert = xinvert, .autodisable = xautodisable}) 47 #define SOC_DOUBLE_S_VALUE(xreg, shift_left, shift_right, xmin, xmax, xsign_bit, xinvert, xautodisable) \ 48 ((unsigned long)&(struct soc_mixer_control) \ 49 {.reg = xreg, .rreg = xreg, .shift = shift_left, \ 50 .rshift = shift_right, .min = xmin, .max = xmax, \ 51 .sign_bit = xsign_bit, .invert = xinvert, .autodisable = xautodisable}) 52 #define SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert, xautodisable) \ 53 SOC_DOUBLE_VALUE(xreg, xshift, xshift, xmax, xinvert, xautodisable) 54 #define SOC_SINGLE_VALUE_EXT(xreg, xmax, xinvert) \ 55 ((unsigned long)&(struct soc_mixer_control) \ 56 {.reg = xreg, .max = xmax, .invert = xinvert}) 57 #define SOC_DOUBLE_R_VALUE(xlreg, xrreg, xshift, xmax, xinvert) \ 58 ((unsigned long)&(struct soc_mixer_control) \ 59 {.reg = xlreg, .rreg = xrreg, .shift = xshift, .rshift = xshift, \ 60 .max = xmax, .invert = xinvert}) 61 #define SOC_DOUBLE_R_S_VALUE(xlreg, xrreg, xshift, xmin, xmax, xsign_bit, xinvert) \ 62 ((unsigned long)&(struct soc_mixer_control) \ 63 {.reg = xlreg, .rreg = xrreg, .shift = xshift, .rshift = xshift, \ 64 .max = xmax, .min = xmin, .sign_bit = xsign_bit, \ 65 .invert = xinvert}) 66 #define SOC_DOUBLE_R_RANGE_VALUE(xlreg, xrreg, xshift, xmin, xmax, xinvert) \ 67 ((unsigned long)&(struct soc_mixer_control) \ 68 {.reg = xlreg, .rreg = xrreg, .shift = xshift, .rshift = xshift, \ 69 .min = xmin, .max = xmax, .invert = xinvert}) 70 #define SOC_SINGLE(xname, reg, shift, max, invert) \ 71 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 72 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ 73 .put = snd_soc_put_volsw, \ 74 .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert, 0) } 75 #define SOC_SINGLE_RANGE(xname, xreg, xshift, xmin, xmax, xinvert) \ 76 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 77 .info = snd_soc_info_volsw_range, .get = snd_soc_get_volsw_range, \ 78 .put = snd_soc_put_volsw_range, \ 79 .private_value = (unsigned long)&(struct soc_mixer_control) \ 80 {.reg = xreg, .rreg = xreg, .shift = xshift, \ 81 .rshift = xshift, .min = xmin, .max = xmax, \ 82 .invert = xinvert} } 83 #define SOC_SINGLE_TLV(xname, reg, shift, max, invert, tlv_array) \ 84 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 85 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 86 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 87 .tlv.p = (tlv_array), \ 88 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ 89 .put = snd_soc_put_volsw, \ 90 .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert, 0) } 91 #define SOC_SINGLE_SX_TLV(xname, xreg, xshift, xmin, xmax, tlv_array) \ 92 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 93 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 94 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 95 .tlv.p = (tlv_array),\ 96 .info = snd_soc_info_volsw_sx, \ 97 .get = snd_soc_get_volsw_sx,\ 98 .put = snd_soc_put_volsw_sx, \ 99 .private_value = (unsigned long)&(struct soc_mixer_control) \ 100 {.reg = xreg, .rreg = xreg, \ 101 .shift = xshift, .rshift = xshift, \ 102 .max = xmax, .min = xmin} } 103 #define SOC_SINGLE_RANGE_TLV(xname, xreg, xshift, xmin, xmax, xinvert, tlv_array) \ 104 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 105 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 106 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 107 .tlv.p = (tlv_array), \ 108 .info = snd_soc_info_volsw_range, \ 109 .get = snd_soc_get_volsw_range, .put = snd_soc_put_volsw_range, \ 110 .private_value = (unsigned long)&(struct soc_mixer_control) \ 111 {.reg = xreg, .rreg = xreg, .shift = xshift, \ 112 .rshift = xshift, .min = xmin, .max = xmax, \ 113 .invert = xinvert} } 114 #define SOC_DOUBLE(xname, reg, shift_left, shift_right, max, invert) \ 115 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 116 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw, \ 117 .put = snd_soc_put_volsw, \ 118 .private_value = SOC_DOUBLE_VALUE(reg, shift_left, shift_right, \ 119 max, invert, 0) } 120 #define SOC_DOUBLE_STS(xname, reg, shift_left, shift_right, max, invert) \ 121 { \ 122 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 123 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw, \ 124 .access = SNDRV_CTL_ELEM_ACCESS_READ | \ 125 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 126 .private_value = SOC_DOUBLE_VALUE(reg, shift_left, shift_right, \ 127 max, invert, 0) } 128 #define SOC_DOUBLE_R(xname, reg_left, reg_right, xshift, xmax, xinvert) \ 129 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 130 .info = snd_soc_info_volsw, \ 131 .get = snd_soc_get_volsw, .put = snd_soc_put_volsw, \ 132 .private_value = SOC_DOUBLE_R_VALUE(reg_left, reg_right, xshift, \ 133 xmax, xinvert) } 134 #define SOC_DOUBLE_R_RANGE(xname, reg_left, reg_right, xshift, xmin, \ 135 xmax, xinvert) \ 136 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 137 .info = snd_soc_info_volsw_range, \ 138 .get = snd_soc_get_volsw_range, .put = snd_soc_put_volsw_range, \ 139 .private_value = SOC_DOUBLE_R_RANGE_VALUE(reg_left, reg_right, \ 140 xshift, xmin, xmax, xinvert) } 141 #define SOC_DOUBLE_TLV(xname, reg, shift_left, shift_right, max, invert, tlv_array) \ 142 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 143 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 144 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 145 .tlv.p = (tlv_array), \ 146 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw, \ 147 .put = snd_soc_put_volsw, \ 148 .private_value = SOC_DOUBLE_VALUE(reg, shift_left, shift_right, \ 149 max, invert, 0) } 150 #define SOC_DOUBLE_SX_TLV(xname, xreg, shift_left, shift_right, xmin, xmax, tlv_array) \ 151 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 152 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 153 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 154 .tlv.p = (tlv_array), \ 155 .info = snd_soc_info_volsw_sx, \ 156 .get = snd_soc_get_volsw_sx, \ 157 .put = snd_soc_put_volsw_sx, \ 158 .private_value = (unsigned long)&(struct soc_mixer_control) \ 159 {.reg = xreg, .rreg = xreg, \ 160 .shift = shift_left, .rshift = shift_right, \ 161 .max = xmax, .min = xmin} } 162 #define SOC_DOUBLE_RANGE_TLV(xname, xreg, xshift_left, xshift_right, xmin, xmax, \ 163 xinvert, tlv_array) \ 164 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 165 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 166 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 167 .tlv.p = (tlv_array), \ 168 .info = snd_soc_info_volsw, \ 169 .get = snd_soc_get_volsw, .put = snd_soc_put_volsw, \ 170 .private_value = (unsigned long)&(struct soc_mixer_control) \ 171 {.reg = xreg, .rreg = xreg, \ 172 .shift = xshift_left, .rshift = xshift_right, \ 173 .min = xmin, .max = xmax, .invert = xinvert} } 174 #define SOC_DOUBLE_R_TLV(xname, reg_left, reg_right, xshift, xmax, xinvert, tlv_array) \ 175 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 176 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 177 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 178 .tlv.p = (tlv_array), \ 179 .info = snd_soc_info_volsw, \ 180 .get = snd_soc_get_volsw, .put = snd_soc_put_volsw, \ 181 .private_value = SOC_DOUBLE_R_VALUE(reg_left, reg_right, xshift, \ 182 xmax, xinvert) } 183 #define SOC_DOUBLE_R_RANGE_TLV(xname, reg_left, reg_right, xshift, xmin, \ 184 xmax, xinvert, tlv_array) \ 185 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 186 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 187 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 188 .tlv.p = (tlv_array), \ 189 .info = snd_soc_info_volsw_range, \ 190 .get = snd_soc_get_volsw_range, .put = snd_soc_put_volsw_range, \ 191 .private_value = SOC_DOUBLE_R_RANGE_VALUE(reg_left, reg_right, \ 192 xshift, xmin, xmax, xinvert) } 193 #define SOC_DOUBLE_R_SX_TLV(xname, xreg, xrreg, xshift, xmin, xmax, tlv_array) \ 194 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 195 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 196 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 197 .tlv.p = (tlv_array), \ 198 .info = snd_soc_info_volsw_sx, \ 199 .get = snd_soc_get_volsw_sx, \ 200 .put = snd_soc_put_volsw_sx, \ 201 .private_value = (unsigned long)&(struct soc_mixer_control) \ 202 {.reg = xreg, .rreg = xrreg, \ 203 .shift = xshift, .rshift = xshift, \ 204 .max = xmax, .min = xmin} } 205 #define SOC_DOUBLE_R_S_TLV(xname, reg_left, reg_right, xshift, xmin, xmax, xsign_bit, xinvert, tlv_array) \ 206 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 207 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 208 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 209 .tlv.p = (tlv_array), \ 210 .info = snd_soc_info_volsw, \ 211 .get = snd_soc_get_volsw, .put = snd_soc_put_volsw, \ 212 .private_value = SOC_DOUBLE_R_S_VALUE(reg_left, reg_right, xshift, \ 213 xmin, xmax, xsign_bit, xinvert) } 214 #define SOC_SINGLE_S_TLV(xname, xreg, xshift, xmin, xmax, xsign_bit, xinvert, tlv_array) \ 215 SOC_DOUBLE_R_S_TLV(xname, xreg, xreg, xshift, xmin, xmax, xsign_bit, xinvert, tlv_array) 216 #define SOC_SINGLE_S8_TLV(xname, xreg, xmin, xmax, tlv_array) \ 217 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 218 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 219 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 220 .tlv.p = (tlv_array), \ 221 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ 222 .put = snd_soc_put_volsw, \ 223 .private_value = (unsigned long)&(struct soc_mixer_control) \ 224 {.reg = xreg, .rreg = xreg, \ 225 .min = xmin, .max = xmax, \ 226 .sign_bit = 7,} } 227 #define SOC_DOUBLE_S8_TLV(xname, xreg, xmin, xmax, tlv_array) \ 228 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 229 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 230 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 231 .tlv.p = (tlv_array), \ 232 .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ 233 .put = snd_soc_put_volsw, \ 234 .private_value = SOC_DOUBLE_S_VALUE(xreg, 0, 8, xmin, xmax, 7, 0, 0) } 235 #define SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xitems, xtexts) \ 236 { .reg = xreg, .shift_l = xshift_l, .shift_r = xshift_r, \ 237 .items = xitems, .texts = xtexts, \ 238 .mask = xitems ? roundup_pow_of_two(xitems) - 1 : 0} 239 #define SOC_ENUM_SINGLE(xreg, xshift, xitems, xtexts) \ 240 SOC_ENUM_DOUBLE(xreg, xshift, xshift, xitems, xtexts) 241 #define SOC_ENUM_SINGLE_EXT(xitems, xtexts) \ 242 { .items = xitems, .texts = xtexts } 243 #define SOC_VALUE_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmask, xitems, xtexts, xvalues) \ 244 { .reg = xreg, .shift_l = xshift_l, .shift_r = xshift_r, \ 245 .mask = xmask, .items = xitems, .texts = xtexts, .values = xvalues} 246 #define SOC_VALUE_ENUM_SINGLE(xreg, xshift, xmask, xitems, xtexts, xvalues) \ 247 SOC_VALUE_ENUM_DOUBLE(xreg, xshift, xshift, xmask, xitems, xtexts, xvalues) 248 #define SOC_VALUE_ENUM_SINGLE_AUTODISABLE(xreg, xshift, xmask, xitems, xtexts, xvalues) \ 249 { .reg = xreg, .shift_l = xshift, .shift_r = xshift, \ 250 .mask = xmask, .items = xitems, .texts = xtexts, \ 251 .values = xvalues, .autodisable = 1} 252 #define SOC_ENUM_SINGLE_VIRT(xitems, xtexts) \ 253 SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, xitems, xtexts) 254 #define SOC_ENUM(xname, xenum) \ 255 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname,\ 256 .info = snd_soc_info_enum_double, \ 257 .get = snd_soc_get_enum_double, .put = snd_soc_put_enum_double, \ 258 .private_value = (unsigned long)&xenum } 259 #define SOC_SINGLE_EXT(xname, xreg, xshift, xmax, xinvert,\ 260 xhandler_get, xhandler_put) \ 261 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 262 .info = snd_soc_info_volsw, \ 263 .get = xhandler_get, .put = xhandler_put, \ 264 .private_value = SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert, 0) } 265 #define SOC_DOUBLE_EXT(xname, reg, shift_left, shift_right, max, invert,\ 266 xhandler_get, xhandler_put) \ 267 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 268 .info = snd_soc_info_volsw, \ 269 .get = xhandler_get, .put = xhandler_put, \ 270 .private_value = \ 271 SOC_DOUBLE_VALUE(reg, shift_left, shift_right, max, invert, 0) } 272 #define SOC_DOUBLE_R_EXT(xname, reg_left, reg_right, xshift, xmax, xinvert,\ 273 xhandler_get, xhandler_put) \ 274 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 275 .info = snd_soc_info_volsw, \ 276 .get = xhandler_get, .put = xhandler_put, \ 277 .private_value = SOC_DOUBLE_R_VALUE(reg_left, reg_right, xshift, \ 278 xmax, xinvert) } 279 #define SOC_SINGLE_EXT_TLV(xname, xreg, xshift, xmax, xinvert,\ 280 xhandler_get, xhandler_put, tlv_array) \ 281 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 282 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 283 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 284 .tlv.p = (tlv_array), \ 285 .info = snd_soc_info_volsw, \ 286 .get = xhandler_get, .put = xhandler_put, \ 287 .private_value = SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert, 0) } 288 #define SOC_SINGLE_RANGE_EXT_TLV(xname, xreg, xshift, xmin, xmax, xinvert, \ 289 xhandler_get, xhandler_put, tlv_array) \ 290 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ 291 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ 292 SNDRV_CTL_ELEM_ACCESS_READWRITE,\ 293 .tlv.p = (tlv_array), \ 294 .info = snd_soc_info_volsw_range, \ 295 .get = xhandler_get, .put = xhandler_put, \ 296 .private_value = (unsigned long)&(struct soc_mixer_control) \ 297 {.reg = xreg, .rreg = xreg, .shift = xshift, \ 298 .rshift = xshift, .min = xmin, .max = xmax, \ 299 .invert = xinvert} } 300 #define SOC_DOUBLE_EXT_TLV(xname, xreg, shift_left, shift_right, xmax, xinvert,\ 301 xhandler_get, xhandler_put, tlv_array) \ 302 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 303 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 304 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 305 .tlv.p = (tlv_array), \ 306 .info = snd_soc_info_volsw, \ 307 .get = xhandler_get, .put = xhandler_put, \ 308 .private_value = SOC_DOUBLE_VALUE(xreg, shift_left, shift_right, \ 309 xmax, xinvert, 0) } 310 #define SOC_DOUBLE_R_EXT_TLV(xname, reg_left, reg_right, xshift, xmax, xinvert,\ 311 xhandler_get, xhandler_put, tlv_array) \ 312 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 313 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 314 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 315 .tlv.p = (tlv_array), \ 316 .info = snd_soc_info_volsw, \ 317 .get = xhandler_get, .put = xhandler_put, \ 318 .private_value = SOC_DOUBLE_R_VALUE(reg_left, reg_right, xshift, \ 319 xmax, xinvert) } 320 #define SOC_DOUBLE_R_S_EXT_TLV(xname, reg_left, reg_right, xshift, xmin, xmax, \ 321 xsign_bit, xinvert, xhandler_get, xhandler_put, \ 322 tlv_array) \ 323 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 324 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ 325 SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 326 .tlv.p = (tlv_array), \ 327 .info = snd_soc_info_volsw, \ 328 .get = xhandler_get, .put = xhandler_put, \ 329 .private_value = SOC_DOUBLE_R_S_VALUE(reg_left, reg_right, xshift, \ 330 xmin, xmax, xsign_bit, xinvert) } 331 #define SOC_SINGLE_S_EXT_TLV(xname, xreg, xshift, xmin, xmax, \ 332 xsign_bit, xinvert, xhandler_get, xhandler_put, \ 333 tlv_array) \ 334 SOC_DOUBLE_R_S_EXT_TLV(xname, xreg, xreg, xshift, xmin, xmax, \ 335 xsign_bit, xinvert, xhandler_get, xhandler_put, \ 336 tlv_array) 337 #define SOC_SINGLE_BOOL_EXT(xname, xdata, xhandler_get, xhandler_put) \ 338 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 339 .info = snd_soc_info_bool_ext, \ 340 .get = xhandler_get, .put = xhandler_put, \ 341 .private_value = xdata } 342 #define SOC_ENUM_EXT(xname, xenum, xhandler_get, xhandler_put) \ 343 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 344 .info = snd_soc_info_enum_double, \ 345 .get = xhandler_get, .put = xhandler_put, \ 346 .private_value = (unsigned long)&xenum } 347 #define SOC_VALUE_ENUM_EXT(xname, xenum, xhandler_get, xhandler_put) \ 348 SOC_ENUM_EXT(xname, xenum, xhandler_get, xhandler_put) 349 350 #define SND_SOC_BYTES(xname, xbase, xregs) \ 351 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 352 .info = snd_soc_bytes_info, .get = snd_soc_bytes_get, \ 353 .put = snd_soc_bytes_put, .private_value = \ 354 ((unsigned long)&(struct soc_bytes) \ 355 {.base = xbase, .num_regs = xregs }) } 356 #define SND_SOC_BYTES_E(xname, xbase, xregs, xhandler_get, xhandler_put) \ 357 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 358 .info = snd_soc_bytes_info, .get = xhandler_get, \ 359 .put = xhandler_put, .private_value = \ 360 ((unsigned long)&(struct soc_bytes) \ 361 {.base = xbase, .num_regs = xregs }) } 362 363 #define SND_SOC_BYTES_MASK(xname, xbase, xregs, xmask) \ 364 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 365 .info = snd_soc_bytes_info, .get = snd_soc_bytes_get, \ 366 .put = snd_soc_bytes_put, .private_value = \ 367 ((unsigned long)&(struct soc_bytes) \ 368 {.base = xbase, .num_regs = xregs, \ 369 .mask = xmask }) } 370 371 /* 372 * SND_SOC_BYTES_EXT is deprecated, please USE SND_SOC_BYTES_TLV instead 373 */ 374 #define SND_SOC_BYTES_EXT(xname, xcount, xhandler_get, xhandler_put) \ 375 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 376 .info = snd_soc_bytes_info_ext, \ 377 .get = xhandler_get, .put = xhandler_put, \ 378 .private_value = (unsigned long)&(struct soc_bytes_ext) \ 379 {.max = xcount} } 380 #define SND_SOC_BYTES_TLV(xname, xcount, xhandler_get, xhandler_put) \ 381 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 382 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READWRITE | \ 383 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, \ 384 .tlv.c = (snd_soc_bytes_tlv_callback), \ 385 .info = snd_soc_bytes_info_ext, \ 386 .private_value = (unsigned long)&(struct soc_bytes_ext) \ 387 {.max = xcount, .get = xhandler_get, .put = xhandler_put, } } 388 #define SOC_SINGLE_XR_SX(xname, xregbase, xregcount, xnbits, \ 389 xmin, xmax, xinvert) \ 390 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ 391 .info = snd_soc_info_xr_sx, .get = snd_soc_get_xr_sx, \ 392 .put = snd_soc_put_xr_sx, \ 393 .private_value = (unsigned long)&(struct soc_mreg_control) \ 394 {.regbase = xregbase, .regcount = xregcount, .nbits = xnbits, \ 395 .invert = xinvert, .min = xmin, .max = xmax} } 396 397 #define SOC_SINGLE_STROBE(xname, xreg, xshift, xinvert) \ 398 SOC_SINGLE_EXT(xname, xreg, xshift, 1, xinvert, \ 399 snd_soc_get_strobe, snd_soc_put_strobe) 400 401 /* 402 * Simplified versions of above macros, declaring a struct and calculating 403 * ARRAY_SIZE internally 404 */ 405 #define SOC_ENUM_DOUBLE_DECL(name, xreg, xshift_l, xshift_r, xtexts) \ 406 const struct soc_enum name = SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, \ 407 ARRAY_SIZE(xtexts), xtexts) 408 #define SOC_ENUM_SINGLE_DECL(name, xreg, xshift, xtexts) \ 409 SOC_ENUM_DOUBLE_DECL(name, xreg, xshift, xshift, xtexts) 410 #define SOC_ENUM_SINGLE_EXT_DECL(name, xtexts) \ 411 const struct soc_enum name = SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(xtexts), xtexts) 412 #define SOC_VALUE_ENUM_DOUBLE_DECL(name, xreg, xshift_l, xshift_r, xmask, xtexts, xvalues) \ 413 const struct soc_enum name = SOC_VALUE_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmask, \ 414 ARRAY_SIZE(xtexts), xtexts, xvalues) 415 #define SOC_VALUE_ENUM_SINGLE_DECL(name, xreg, xshift, xmask, xtexts, xvalues) \ 416 SOC_VALUE_ENUM_DOUBLE_DECL(name, xreg, xshift, xshift, xmask, xtexts, xvalues) 417 418 #define SOC_VALUE_ENUM_SINGLE_AUTODISABLE_DECL(name, xreg, xshift, xmask, xtexts, xvalues) \ 419 const struct soc_enum name = SOC_VALUE_ENUM_SINGLE_AUTODISABLE(xreg, \ 420 xshift, xmask, ARRAY_SIZE(xtexts), xtexts, xvalues) 421 422 #define SOC_ENUM_SINGLE_VIRT_DECL(name, xtexts) \ 423 const struct soc_enum name = SOC_ENUM_SINGLE_VIRT(ARRAY_SIZE(xtexts), xtexts) 424 425 struct snd_jack; 426 struct snd_soc_card; 427 struct snd_soc_pcm_stream; 428 struct snd_soc_ops; 429 struct snd_soc_pcm_runtime; 430 struct snd_soc_dai; 431 struct snd_soc_dai_driver; 432 struct snd_soc_dai_link; 433 struct snd_soc_component; 434 struct snd_soc_component_driver; 435 struct soc_enum; 436 struct snd_soc_jack; 437 struct snd_soc_jack_zone; 438 struct snd_soc_jack_pin; 439 440 #include <sound/soc-dapm.h> 441 #include <sound/soc-dpcm.h> 442 #include <sound/soc-topology.h> 443 444 struct snd_soc_jack_gpio; 445 446 enum snd_soc_pcm_subclass { 447 SND_SOC_PCM_CLASS_PCM = 0, 448 SND_SOC_PCM_CLASS_BE = 1, 449 }; 450 451 int snd_soc_register_card(struct snd_soc_card *card); 452 void snd_soc_unregister_card(struct snd_soc_card *card); 453 int devm_snd_soc_register_card(struct device *dev, struct snd_soc_card *card); 454 #ifdef CONFIG_PM_SLEEP 455 int snd_soc_suspend(struct device *dev); 456 int snd_soc_resume(struct device *dev); 457 #else 458 static inline int snd_soc_suspend(struct device *dev) 459 { 460 return 0; 461 } 462 463 static inline int snd_soc_resume(struct device *dev) 464 { 465 return 0; 466 } 467 #endif 468 int snd_soc_poweroff(struct device *dev); 469 int snd_soc_component_initialize(struct snd_soc_component *component, 470 const struct snd_soc_component_driver *driver, 471 struct device *dev); 472 int snd_soc_add_component(struct snd_soc_component *component, 473 struct snd_soc_dai_driver *dai_drv, 474 int num_dai); 475 int snd_soc_register_component(struct device *dev, 476 const struct snd_soc_component_driver *component_driver, 477 struct snd_soc_dai_driver *dai_drv, int num_dai); 478 int devm_snd_soc_register_component(struct device *dev, 479 const struct snd_soc_component_driver *component_driver, 480 struct snd_soc_dai_driver *dai_drv, int num_dai); 481 void snd_soc_unregister_component(struct device *dev); 482 void snd_soc_unregister_component_by_driver(struct device *dev, 483 const struct snd_soc_component_driver *component_driver); 484 struct snd_soc_component *snd_soc_lookup_component_nolocked(struct device *dev, 485 const char *driver_name); 486 struct snd_soc_component *snd_soc_lookup_component(struct device *dev, 487 const char *driver_name); 488 489 int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num); 490 #ifdef CONFIG_SND_SOC_COMPRESS 491 int snd_soc_new_compress(struct snd_soc_pcm_runtime *rtd, int num); 492 #else 493 static inline int snd_soc_new_compress(struct snd_soc_pcm_runtime *rtd, int num) 494 { 495 return 0; 496 } 497 #endif 498 499 void snd_soc_disconnect_sync(struct device *dev); 500 501 struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card, 502 struct snd_soc_dai_link *dai_link); 503 504 bool snd_soc_runtime_ignore_pmdown_time(struct snd_soc_pcm_runtime *rtd); 505 506 void snd_soc_runtime_action(struct snd_soc_pcm_runtime *rtd, 507 int stream, int action); 508 static inline void snd_soc_runtime_activate(struct snd_soc_pcm_runtime *rtd, 509 int stream) 510 { 511 snd_soc_runtime_action(rtd, stream, 1); 512 } 513 static inline void snd_soc_runtime_deactivate(struct snd_soc_pcm_runtime *rtd, 514 int stream) 515 { 516 snd_soc_runtime_action(rtd, stream, -1); 517 } 518 519 int snd_soc_runtime_calc_hw(struct snd_soc_pcm_runtime *rtd, 520 struct snd_pcm_hardware *hw, int stream); 521 522 int snd_soc_runtime_set_dai_fmt(struct snd_soc_pcm_runtime *rtd, 523 unsigned int dai_fmt); 524 525 #ifdef CONFIG_DMI 526 int snd_soc_set_dmi_name(struct snd_soc_card *card, const char *flavour); 527 #else 528 static inline int snd_soc_set_dmi_name(struct snd_soc_card *card, 529 const char *flavour) 530 { 531 return 0; 532 } 533 #endif 534 535 /* Utility functions to get clock rates from various things */ 536 int snd_soc_calc_frame_size(int sample_size, int channels, int tdm_slots); 537 int snd_soc_params_to_frame_size(const struct snd_pcm_hw_params *params); 538 int snd_soc_calc_bclk(int fs, int sample_size, int channels, int tdm_slots); 539 int snd_soc_params_to_bclk(const struct snd_pcm_hw_params *parms); 540 int snd_soc_tdm_params_to_bclk(const struct snd_pcm_hw_params *params, 541 int tdm_width, int tdm_slots, int slot_multiple); 542 543 /* set runtime hw params */ 544 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream, 545 const struct snd_pcm_hardware *hw); 546 547 struct snd_ac97 *snd_soc_alloc_ac97_component(struct snd_soc_component *component); 548 struct snd_ac97 *snd_soc_new_ac97_component(struct snd_soc_component *component, 549 unsigned int id, unsigned int id_mask); 550 void snd_soc_free_ac97_component(struct snd_ac97 *ac97); 551 552 #ifdef CONFIG_SND_SOC_AC97_BUS 553 int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops); 554 int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops, 555 struct platform_device *pdev); 556 557 extern struct snd_ac97_bus_ops *soc_ac97_ops; 558 #else 559 static inline int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops, 560 struct platform_device *pdev) 561 { 562 return 0; 563 } 564 565 static inline int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops) 566 { 567 return 0; 568 } 569 #endif 570 571 /* 572 *Controls 573 */ 574 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template, 575 void *data, const char *long_name, 576 const char *prefix); 577 int snd_soc_add_component_controls(struct snd_soc_component *component, 578 const struct snd_kcontrol_new *controls, unsigned int num_controls); 579 int snd_soc_add_card_controls(struct snd_soc_card *soc_card, 580 const struct snd_kcontrol_new *controls, int num_controls); 581 int snd_soc_add_dai_controls(struct snd_soc_dai *dai, 582 const struct snd_kcontrol_new *controls, int num_controls); 583 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, 584 struct snd_ctl_elem_info *uinfo); 585 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, 586 struct snd_ctl_elem_value *ucontrol); 587 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, 588 struct snd_ctl_elem_value *ucontrol); 589 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, 590 struct snd_ctl_elem_info *uinfo); 591 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol, 592 struct snd_ctl_elem_info *uinfo); 593 #define snd_soc_info_bool_ext snd_ctl_boolean_mono_info 594 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, 595 struct snd_ctl_elem_value *ucontrol); 596 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, 597 struct snd_ctl_elem_value *ucontrol); 598 #define snd_soc_get_volsw_2r snd_soc_get_volsw 599 #define snd_soc_put_volsw_2r snd_soc_put_volsw 600 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol, 601 struct snd_ctl_elem_value *ucontrol); 602 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol, 603 struct snd_ctl_elem_value *ucontrol); 604 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol, 605 struct snd_ctl_elem_info *uinfo); 606 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol, 607 struct snd_ctl_elem_value *ucontrol); 608 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol, 609 struct snd_ctl_elem_value *ucontrol); 610 int snd_soc_limit_volume(struct snd_soc_card *card, 611 const char *name, int max); 612 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol, 613 struct snd_ctl_elem_info *uinfo); 614 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol, 615 struct snd_ctl_elem_value *ucontrol); 616 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol, 617 struct snd_ctl_elem_value *ucontrol); 618 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol, 619 struct snd_ctl_elem_info *ucontrol); 620 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag, 621 unsigned int size, unsigned int __user *tlv); 622 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol, 623 struct snd_ctl_elem_info *uinfo); 624 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol, 625 struct snd_ctl_elem_value *ucontrol); 626 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol, 627 struct snd_ctl_elem_value *ucontrol); 628 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol, 629 struct snd_ctl_elem_value *ucontrol); 630 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol, 631 struct snd_ctl_elem_value *ucontrol); 632 633 enum snd_soc_trigger_order { 634 /* start stop */ 635 SND_SOC_TRIGGER_ORDER_DEFAULT = 0, /* Link->Component->DAI DAI->Component->Link */ 636 SND_SOC_TRIGGER_ORDER_LDC, /* Link->DAI->Component Component->DAI->Link */ 637 638 SND_SOC_TRIGGER_ORDER_MAX, 639 }; 640 641 /* SoC PCM stream information */ 642 struct snd_soc_pcm_stream { 643 const char *stream_name; 644 u64 formats; /* SNDRV_PCM_FMTBIT_* */ 645 u32 subformats; /* for S32_LE format, SNDRV_PCM_SUBFMTBIT_* */ 646 unsigned int rates; /* SNDRV_PCM_RATE_* */ 647 unsigned int rate_min; /* min rate */ 648 unsigned int rate_max; /* max rate */ 649 unsigned int channels_min; /* min channels */ 650 unsigned int channels_max; /* max channels */ 651 unsigned int sig_bits; /* number of bits of content */ 652 }; 653 654 /* SoC audio ops */ 655 struct snd_soc_ops { 656 int (*startup)(struct snd_pcm_substream *); 657 void (*shutdown)(struct snd_pcm_substream *); 658 int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_params *); 659 int (*hw_free)(struct snd_pcm_substream *); 660 int (*prepare)(struct snd_pcm_substream *); 661 int (*trigger)(struct snd_pcm_substream *, int); 662 }; 663 664 struct snd_soc_compr_ops { 665 int (*startup)(struct snd_compr_stream *); 666 void (*shutdown)(struct snd_compr_stream *); 667 int (*set_params)(struct snd_compr_stream *); 668 }; 669 670 struct snd_soc_component* 671 snd_soc_rtdcom_lookup(struct snd_soc_pcm_runtime *rtd, 672 const char *driver_name); 673 674 struct snd_soc_dai_link_component { 675 const char *name; 676 struct device_node *of_node; 677 const char *dai_name; 678 const struct of_phandle_args *dai_args; 679 }; 680 681 /* 682 * [dai_link->ch_maps Image sample] 683 * 684 *------------------------- 685 * CPU0 <---> Codec0 686 * 687 * ch-map[0].cpu = 0 ch-map[0].codec = 0 688 * 689 *------------------------- 690 * CPU0 <---> Codec0 691 * CPU1 <---> Codec1 692 * CPU2 <---> Codec2 693 * 694 * ch-map[0].cpu = 0 ch-map[0].codec = 0 695 * ch-map[1].cpu = 1 ch-map[1].codec = 1 696 * ch-map[2].cpu = 2 ch-map[2].codec = 2 697 * 698 *------------------------- 699 * CPU0 <---> Codec0 700 * CPU1 <-+-> Codec1 701 * CPU2 <-/ 702 * 703 * ch-map[0].cpu = 0 ch-map[0].codec = 0 704 * ch-map[1].cpu = 1 ch-map[1].codec = 1 705 * ch-map[2].cpu = 2 ch-map[2].codec = 1 706 * 707 *------------------------- 708 * CPU0 <---> Codec0 709 * CPU1 <-+-> Codec1 710 * \-> Codec2 711 * 712 * ch-map[0].cpu = 0 ch-map[0].codec = 0 713 * ch-map[1].cpu = 1 ch-map[1].codec = 1 714 * ch-map[2].cpu = 1 ch-map[2].codec = 2 715 * 716 */ 717 struct snd_soc_dai_link_ch_map { 718 unsigned int cpu; 719 unsigned int codec; 720 unsigned int ch_mask; 721 }; 722 723 struct snd_soc_dai_link { 724 /* config - must be set by machine driver */ 725 const char *name; /* Codec name */ 726 const char *stream_name; /* Stream name */ 727 728 /* 729 * You MAY specify the link's CPU-side device, either by device name, 730 * or by DT/OF node, but not both. If this information is omitted, 731 * the CPU-side DAI is matched using .cpu_dai_name only, which hence 732 * must be globally unique. These fields are currently typically used 733 * only for codec to codec links, or systems using device tree. 734 */ 735 /* 736 * You MAY specify the DAI name of the CPU DAI. If this information is 737 * omitted, the CPU-side DAI is matched using .cpu_name/.cpu_of_node 738 * only, which only works well when that device exposes a single DAI. 739 */ 740 struct snd_soc_dai_link_component *cpus; 741 unsigned int num_cpus; 742 743 /* 744 * You MUST specify the link's codec, either by device name, or by 745 * DT/OF node, but not both. 746 */ 747 /* You MUST specify the DAI name within the codec */ 748 struct snd_soc_dai_link_component *codecs; 749 unsigned int num_codecs; 750 751 /* num_ch_maps = max(num_cpu, num_codecs) */ 752 struct snd_soc_dai_link_ch_map *ch_maps; 753 754 /* 755 * You MAY specify the link's platform/PCM/DMA driver, either by 756 * device name, or by DT/OF node, but not both. Some forms of link 757 * do not need a platform. In such case, platforms are not mandatory. 758 */ 759 struct snd_soc_dai_link_component *platforms; 760 unsigned int num_platforms; 761 762 int id; /* optional ID for machine driver link identification */ 763 764 /* 765 * for Codec2Codec 766 */ 767 const struct snd_soc_pcm_stream *c2c_params; 768 unsigned int num_c2c_params; 769 770 unsigned int dai_fmt; /* format to set on init */ 771 772 enum snd_soc_dpcm_trigger trigger[2]; /* trigger type for DPCM */ 773 774 /* codec/machine specific init - e.g. add machine controls */ 775 int (*init)(struct snd_soc_pcm_runtime *rtd); 776 777 /* codec/machine specific exit - dual of init() */ 778 void (*exit)(struct snd_soc_pcm_runtime *rtd); 779 780 /* optional hw_params re-writing for BE and FE sync */ 781 int (*be_hw_params_fixup)(struct snd_soc_pcm_runtime *rtd, 782 struct snd_pcm_hw_params *params); 783 784 /* machine stream operations */ 785 const struct snd_soc_ops *ops; 786 const struct snd_soc_compr_ops *compr_ops; 787 788 /* 789 * soc_pcm_trigger() start/stop sequence. 790 * see also 791 * snd_soc_component_driver 792 * soc_pcm_trigger() 793 */ 794 enum snd_soc_trigger_order trigger_start; 795 enum snd_soc_trigger_order trigger_stop; 796 797 /* Mark this pcm with non atomic ops */ 798 unsigned int nonatomic:1; 799 800 /* For unidirectional dai links */ 801 unsigned int playback_only:1; 802 unsigned int capture_only:1; 803 804 /* Keep DAI active over suspend */ 805 unsigned int ignore_suspend:1; 806 807 /* Symmetry requirements */ 808 unsigned int symmetric_rate:1; 809 unsigned int symmetric_channels:1; 810 unsigned int symmetric_sample_bits:1; 811 812 /* Do not create a PCM for this DAI link (Backend link) */ 813 unsigned int no_pcm:1; 814 815 /* This DAI link can route to other DAI links at runtime (Frontend)*/ 816 unsigned int dynamic:1; 817 818 /* REMOVE ME */ 819 /* DPCM capture and Playback support */ 820 unsigned int dpcm_capture:1; 821 unsigned int dpcm_playback:1; 822 823 /* DPCM used FE & BE merged format */ 824 unsigned int dpcm_merged_format:1; 825 /* DPCM used FE & BE merged channel */ 826 unsigned int dpcm_merged_chan:1; 827 /* DPCM used FE & BE merged rate */ 828 unsigned int dpcm_merged_rate:1; 829 830 /* pmdown_time is ignored at stop */ 831 unsigned int ignore_pmdown_time:1; 832 833 /* Do not create a PCM for this DAI link (Backend link) */ 834 unsigned int ignore:1; 835 836 #ifdef CONFIG_SND_SOC_TOPOLOGY 837 struct snd_soc_dobj dobj; /* For topology */ 838 #endif 839 }; 840 841 static inline int snd_soc_link_num_ch_map(const struct snd_soc_dai_link *link) 842 { 843 return max(link->num_cpus, link->num_codecs); 844 } 845 846 static inline struct snd_soc_dai_link_component* 847 snd_soc_link_to_cpu(struct snd_soc_dai_link *link, int n) { 848 return &(link)->cpus[n]; 849 } 850 851 static inline struct snd_soc_dai_link_component* 852 snd_soc_link_to_codec(struct snd_soc_dai_link *link, int n) { 853 return &(link)->codecs[n]; 854 } 855 856 static inline struct snd_soc_dai_link_component* 857 snd_soc_link_to_platform(struct snd_soc_dai_link *link, int n) { 858 return &(link)->platforms[n]; 859 } 860 861 #define for_each_link_codecs(link, i, codec) \ 862 for ((i) = 0; \ 863 ((i) < link->num_codecs) && \ 864 ((codec) = snd_soc_link_to_codec(link, i)); \ 865 (i)++) 866 867 #define for_each_link_platforms(link, i, platform) \ 868 for ((i) = 0; \ 869 ((i) < link->num_platforms) && \ 870 ((platform) = snd_soc_link_to_platform(link, i)); \ 871 (i)++) 872 873 #define for_each_link_cpus(link, i, cpu) \ 874 for ((i) = 0; \ 875 ((i) < link->num_cpus) && \ 876 ((cpu) = snd_soc_link_to_cpu(link, i)); \ 877 (i)++) 878 879 #define for_each_link_ch_maps(link, i, ch_map) \ 880 for ((i) = 0; \ 881 ((i) < snd_soc_link_num_ch_map(link) && \ 882 ((ch_map) = link->ch_maps + i)); \ 883 (i)++) 884 885 /* 886 * Sample 1 : Single CPU/Codec/Platform 887 * 888 * SND_SOC_DAILINK_DEFS(test, 889 * DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai")), 890 * DAILINK_COMP_ARRAY(COMP_CODEC("codec", "codec_dai")), 891 * DAILINK_COMP_ARRAY(COMP_PLATFORM("platform"))); 892 * 893 * struct snd_soc_dai_link link = { 894 * ... 895 * SND_SOC_DAILINK_REG(test), 896 * }; 897 * 898 * Sample 2 : Multi CPU/Codec, no Platform 899 * 900 * SND_SOC_DAILINK_DEFS(test, 901 * DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai1"), 902 * COMP_CPU("cpu_dai2")), 903 * DAILINK_COMP_ARRAY(COMP_CODEC("codec1", "codec_dai1"), 904 * COMP_CODEC("codec2", "codec_dai2"))); 905 * 906 * struct snd_soc_dai_link link = { 907 * ... 908 * SND_SOC_DAILINK_REG(test), 909 * }; 910 * 911 * Sample 3 : Define each CPU/Codec/Platform manually 912 * 913 * SND_SOC_DAILINK_DEF(test_cpu, 914 * DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai1"), 915 * COMP_CPU("cpu_dai2"))); 916 * SND_SOC_DAILINK_DEF(test_codec, 917 * DAILINK_COMP_ARRAY(COMP_CODEC("codec1", "codec_dai1"), 918 * COMP_CODEC("codec2", "codec_dai2"))); 919 * SND_SOC_DAILINK_DEF(test_platform, 920 * DAILINK_COMP_ARRAY(COMP_PLATFORM("platform"))); 921 * 922 * struct snd_soc_dai_link link = { 923 * ... 924 * SND_SOC_DAILINK_REG(test_cpu, 925 * test_codec, 926 * test_platform), 927 * }; 928 * 929 * Sample 4 : Sample3 without platform 930 * 931 * struct snd_soc_dai_link link = { 932 * ... 933 * SND_SOC_DAILINK_REG(test_cpu, 934 * test_codec); 935 * }; 936 */ 937 938 #define SND_SOC_DAILINK_REG1(name) SND_SOC_DAILINK_REG3(name##_cpus, name##_codecs, name##_platforms) 939 #define SND_SOC_DAILINK_REG2(cpu, codec) SND_SOC_DAILINK_REG3(cpu, codec, null_dailink_component) 940 #define SND_SOC_DAILINK_REG3(cpu, codec, platform) \ 941 .cpus = cpu, \ 942 .num_cpus = ARRAY_SIZE(cpu), \ 943 .codecs = codec, \ 944 .num_codecs = ARRAY_SIZE(codec), \ 945 .platforms = platform, \ 946 .num_platforms = ARRAY_SIZE(platform) 947 948 #define SND_SOC_DAILINK_REG(...) \ 949 CONCATENATE(SND_SOC_DAILINK_REG, COUNT_ARGS(__VA_ARGS__))(__VA_ARGS__) 950 951 #define SND_SOC_DAILINK_DEF(name, def...) \ 952 static struct snd_soc_dai_link_component name[] = { def } 953 954 #define SND_SOC_DAILINK_DEFS(name, cpu, codec, platform...) \ 955 SND_SOC_DAILINK_DEF(name##_cpus, cpu); \ 956 SND_SOC_DAILINK_DEF(name##_codecs, codec); \ 957 SND_SOC_DAILINK_DEF(name##_platforms, platform) 958 959 #define DAILINK_COMP_ARRAY(param...) param 960 #define COMP_EMPTY() { } 961 #define COMP_CPU(_dai) { .dai_name = _dai, } 962 #define COMP_CODEC(_name, _dai) { .name = _name, .dai_name = _dai, } 963 #define COMP_PLATFORM(_name) { .name = _name } 964 #define COMP_AUX(_name) { .name = _name } 965 #define COMP_CODEC_CONF(_name) { .name = _name } 966 #define COMP_DUMMY() /* see snd_soc_fill_dummy_dai() */ 967 968 extern struct snd_soc_dai_link_component null_dailink_component[0]; 969 extern struct snd_soc_dai_link_component snd_soc_dummy_dlc; 970 971 972 struct snd_soc_codec_conf { 973 /* 974 * specify device either by device name, or by 975 * DT/OF node, but not both. 976 */ 977 struct snd_soc_dai_link_component dlc; 978 979 /* 980 * optional map of kcontrol, widget and path name prefixes that are 981 * associated per device 982 */ 983 const char *name_prefix; 984 }; 985 986 struct snd_soc_aux_dev { 987 /* 988 * specify multi-codec either by device name, or by 989 * DT/OF node, but not both. 990 */ 991 struct snd_soc_dai_link_component dlc; 992 993 /* codec/machine specific init - e.g. add machine controls */ 994 int (*init)(struct snd_soc_component *component); 995 }; 996 997 /* SoC card */ 998 struct snd_soc_card { 999 const char *name; 1000 const char *long_name; 1001 const char *driver_name; 1002 const char *components; 1003 #ifdef CONFIG_DMI 1004 char dmi_longname[80]; 1005 #endif /* CONFIG_DMI */ 1006 1007 #ifdef CONFIG_PCI 1008 /* 1009 * PCI does not define 0 as invalid, so pci_subsystem_set indicates 1010 * whether a value has been written to these fields. 1011 */ 1012 unsigned short pci_subsystem_vendor; 1013 unsigned short pci_subsystem_device; 1014 bool pci_subsystem_set; 1015 #endif /* CONFIG_PCI */ 1016 1017 char topology_shortname[32]; 1018 1019 struct device *dev; 1020 struct snd_card *snd_card; 1021 struct module *owner; 1022 1023 struct mutex mutex; 1024 struct mutex dapm_mutex; 1025 1026 /* Mutex for PCM operations */ 1027 struct mutex pcm_mutex; 1028 enum snd_soc_pcm_subclass pcm_subclass; 1029 1030 int (*probe)(struct snd_soc_card *card); 1031 int (*late_probe)(struct snd_soc_card *card); 1032 void (*fixup_controls)(struct snd_soc_card *card); 1033 int (*remove)(struct snd_soc_card *card); 1034 1035 /* the pre and post PM functions are used to do any PM work before and 1036 * after the codec and DAI's do any PM work. */ 1037 int (*suspend_pre)(struct snd_soc_card *card); 1038 int (*suspend_post)(struct snd_soc_card *card); 1039 int (*resume_pre)(struct snd_soc_card *card); 1040 int (*resume_post)(struct snd_soc_card *card); 1041 1042 /* callbacks */ 1043 int (*set_bias_level)(struct snd_soc_card *, 1044 struct snd_soc_dapm_context *dapm, 1045 enum snd_soc_bias_level level); 1046 int (*set_bias_level_post)(struct snd_soc_card *, 1047 struct snd_soc_dapm_context *dapm, 1048 enum snd_soc_bias_level level); 1049 1050 int (*add_dai_link)(struct snd_soc_card *, 1051 struct snd_soc_dai_link *link); 1052 void (*remove_dai_link)(struct snd_soc_card *, 1053 struct snd_soc_dai_link *link); 1054 1055 long pmdown_time; 1056 1057 /* CPU <--> Codec DAI links */ 1058 struct snd_soc_dai_link *dai_link; /* predefined links only */ 1059 int num_links; /* predefined links only */ 1060 1061 struct list_head rtd_list; 1062 int num_rtd; 1063 1064 /* optional codec specific configuration */ 1065 struct snd_soc_codec_conf *codec_conf; 1066 int num_configs; 1067 1068 /* 1069 * optional auxiliary devices such as amplifiers or codecs with DAI 1070 * link unused 1071 */ 1072 struct snd_soc_aux_dev *aux_dev; 1073 int num_aux_devs; 1074 struct list_head aux_comp_list; 1075 1076 const struct snd_kcontrol_new *controls; 1077 int num_controls; 1078 1079 /* 1080 * Card-specific routes and widgets. 1081 * Note: of_dapm_xxx for Device Tree; Otherwise for driver build-in. 1082 */ 1083 const struct snd_soc_dapm_widget *dapm_widgets; 1084 int num_dapm_widgets; 1085 const struct snd_soc_dapm_route *dapm_routes; 1086 int num_dapm_routes; 1087 const struct snd_soc_dapm_widget *of_dapm_widgets; 1088 int num_of_dapm_widgets; 1089 const struct snd_soc_dapm_route *of_dapm_routes; 1090 int num_of_dapm_routes; 1091 1092 /* lists of probed devices belonging to this card */ 1093 struct list_head component_dev_list; 1094 struct list_head list; 1095 1096 struct list_head widgets; 1097 struct list_head paths; 1098 struct list_head dapm_list; 1099 struct list_head dapm_dirty; 1100 1101 /* attached dynamic objects */ 1102 struct list_head dobj_list; 1103 1104 /* Generic DAPM context for the card */ 1105 struct snd_soc_dapm_context dapm; 1106 struct snd_soc_dapm_stats dapm_stats; 1107 struct snd_soc_dapm_update *update; 1108 1109 #ifdef CONFIG_DEBUG_FS 1110 struct dentry *debugfs_card_root; 1111 #endif 1112 #ifdef CONFIG_PM_SLEEP 1113 struct work_struct deferred_resume_work; 1114 #endif 1115 u32 pop_time; 1116 1117 /* bit field */ 1118 unsigned int instantiated:1; 1119 unsigned int topology_shortname_created:1; 1120 unsigned int fully_routed:1; 1121 unsigned int disable_route_checks:1; 1122 unsigned int probed:1; 1123 unsigned int component_chaining:1; 1124 1125 void *drvdata; 1126 }; 1127 #define for_each_card_prelinks(card, i, link) \ 1128 for ((i) = 0; \ 1129 ((i) < (card)->num_links) && ((link) = &(card)->dai_link[i]); \ 1130 (i)++) 1131 #define for_each_card_pre_auxs(card, i, aux) \ 1132 for ((i) = 0; \ 1133 ((i) < (card)->num_aux_devs) && ((aux) = &(card)->aux_dev[i]); \ 1134 (i)++) 1135 1136 #define for_each_card_rtds(card, rtd) \ 1137 list_for_each_entry(rtd, &(card)->rtd_list, list) 1138 #define for_each_card_rtds_safe(card, rtd, _rtd) \ 1139 list_for_each_entry_safe(rtd, _rtd, &(card)->rtd_list, list) 1140 1141 #define for_each_card_auxs(card, component) \ 1142 list_for_each_entry(component, &card->aux_comp_list, card_aux_list) 1143 #define for_each_card_auxs_safe(card, component, _comp) \ 1144 list_for_each_entry_safe(component, _comp, \ 1145 &card->aux_comp_list, card_aux_list) 1146 1147 #define for_each_card_components(card, component) \ 1148 list_for_each_entry(component, &(card)->component_dev_list, card_list) 1149 1150 #define for_each_card_dapms(card, dapm) \ 1151 list_for_each_entry(dapm, &card->dapm_list, list) 1152 1153 #define for_each_card_widgets(card, w)\ 1154 list_for_each_entry(w, &card->widgets, list) 1155 #define for_each_card_widgets_safe(card, w, _w) \ 1156 list_for_each_entry_safe(w, _w, &card->widgets, list) 1157 1158 1159 static inline int snd_soc_card_is_instantiated(struct snd_soc_card *card) 1160 { 1161 return card && card->instantiated; 1162 } 1163 1164 /* SoC machine DAI configuration, glues a codec and cpu DAI together */ 1165 struct snd_soc_pcm_runtime { 1166 struct device *dev; 1167 struct snd_soc_card *card; 1168 struct snd_soc_dai_link *dai_link; 1169 struct snd_pcm_ops ops; 1170 1171 unsigned int c2c_params_select; /* currently selected c2c_param for dai link */ 1172 1173 /* Dynamic PCM BE runtime data */ 1174 struct snd_soc_dpcm_runtime dpcm[SNDRV_PCM_STREAM_LAST + 1]; 1175 struct snd_soc_dapm_widget *c2c_widget[SNDRV_PCM_STREAM_LAST + 1]; 1176 1177 long pmdown_time; 1178 1179 /* runtime devices */ 1180 struct snd_pcm *pcm; 1181 struct snd_compr *compr; 1182 1183 /* 1184 * dais = cpu_dai + codec_dai 1185 * see 1186 * soc_new_pcm_runtime() 1187 * snd_soc_rtd_to_cpu() 1188 * snd_soc_rtd_to_codec() 1189 */ 1190 struct snd_soc_dai **dais; 1191 1192 struct delayed_work delayed_work; 1193 void (*close_delayed_work_func)(struct snd_soc_pcm_runtime *rtd); 1194 #ifdef CONFIG_DEBUG_FS 1195 struct dentry *debugfs_dpcm_root; 1196 #endif 1197 1198 unsigned int num; /* 0-based and monotonic increasing */ 1199 struct list_head list; /* rtd list of the soc card */ 1200 1201 /* function mark */ 1202 struct snd_pcm_substream *mark_startup; 1203 struct snd_pcm_substream *mark_hw_params; 1204 struct snd_pcm_substream *mark_trigger; 1205 struct snd_compr_stream *mark_compr_startup; 1206 1207 /* bit field */ 1208 unsigned int pop_wait:1; 1209 unsigned int fe_compr:1; /* for Dynamic PCM */ 1210 unsigned int initialized:1; 1211 1212 /* CPU/Codec/Platform */ 1213 int num_components; 1214 struct snd_soc_component *components[] __counted_by(num_components); 1215 }; 1216 1217 /* see soc_new_pcm_runtime() */ 1218 #define snd_soc_rtd_to_cpu(rtd, n) (rtd)->dais[n] 1219 #define snd_soc_rtd_to_codec(rtd, n) (rtd)->dais[n + (rtd)->dai_link->num_cpus] 1220 1221 static inline struct snd_soc_pcm_runtime * 1222 snd_soc_substream_to_rtd(const struct snd_pcm_substream *substream) 1223 { 1224 return snd_pcm_substream_chip(substream); 1225 } 1226 1227 #define for_each_rtd_components(rtd, i, component) \ 1228 for ((i) = 0, component = NULL; \ 1229 ((i) < rtd->num_components) && ((component) = rtd->components[i]);\ 1230 (i)++) 1231 #define for_each_rtd_cpu_dais(rtd, i, dai) \ 1232 for ((i) = 0; \ 1233 ((i) < rtd->dai_link->num_cpus) && ((dai) = snd_soc_rtd_to_cpu(rtd, i)); \ 1234 (i)++) 1235 #define for_each_rtd_codec_dais(rtd, i, dai) \ 1236 for ((i) = 0; \ 1237 ((i) < rtd->dai_link->num_codecs) && ((dai) = snd_soc_rtd_to_codec(rtd, i)); \ 1238 (i)++) 1239 #define for_each_rtd_dais(rtd, i, dai) \ 1240 for ((i) = 0; \ 1241 ((i) < (rtd)->dai_link->num_cpus + (rtd)->dai_link->num_codecs) && \ 1242 ((dai) = (rtd)->dais[i]); \ 1243 (i)++) 1244 #define for_each_rtd_dais_reverse(rtd, i, dai) \ 1245 for ((i) = (rtd)->dai_link->num_cpus + (rtd)->dai_link->num_codecs - 1; \ 1246 (i) >= 0 && ((dai) = (rtd)->dais[i]); \ 1247 (i)--) 1248 #define for_each_rtd_ch_maps(rtd, i, ch_maps) for_each_link_ch_maps(rtd->dai_link, i, ch_maps) 1249 1250 void snd_soc_close_delayed_work(struct snd_soc_pcm_runtime *rtd); 1251 1252 /* mixer control */ 1253 struct soc_mixer_control { 1254 int min, max, platform_max; 1255 int reg, rreg; 1256 unsigned int shift, rshift; 1257 unsigned int sign_bit; 1258 unsigned int invert:1; 1259 unsigned int autodisable:1; 1260 #ifdef CONFIG_SND_SOC_TOPOLOGY 1261 struct snd_soc_dobj dobj; 1262 #endif 1263 }; 1264 1265 struct soc_bytes { 1266 int base; 1267 int num_regs; 1268 u32 mask; 1269 }; 1270 1271 struct soc_bytes_ext { 1272 int max; 1273 #ifdef CONFIG_SND_SOC_TOPOLOGY 1274 struct snd_soc_dobj dobj; 1275 #endif 1276 /* used for TLV byte control */ 1277 int (*get)(struct snd_kcontrol *kcontrol, unsigned int __user *bytes, 1278 unsigned int size); 1279 int (*put)(struct snd_kcontrol *kcontrol, const unsigned int __user *bytes, 1280 unsigned int size); 1281 }; 1282 1283 /* multi register control */ 1284 struct soc_mreg_control { 1285 long min, max; 1286 unsigned int regbase, regcount, nbits, invert; 1287 }; 1288 1289 /* enumerated kcontrol */ 1290 struct soc_enum { 1291 int reg; 1292 unsigned char shift_l; 1293 unsigned char shift_r; 1294 unsigned int items; 1295 unsigned int mask; 1296 const char * const *texts; 1297 const unsigned int *values; 1298 unsigned int autodisable:1; 1299 #ifdef CONFIG_SND_SOC_TOPOLOGY 1300 struct snd_soc_dobj dobj; 1301 #endif 1302 }; 1303 1304 static inline bool snd_soc_volsw_is_stereo(const struct soc_mixer_control *mc) 1305 { 1306 if (mc->reg == mc->rreg && mc->shift == mc->rshift) 1307 return false; 1308 /* 1309 * mc->reg == mc->rreg && mc->shift != mc->rshift, or 1310 * mc->reg != mc->rreg means that the control is 1311 * stereo (bits in one register or in two registers) 1312 */ 1313 return true; 1314 } 1315 1316 static inline unsigned int snd_soc_enum_val_to_item(const struct soc_enum *e, 1317 unsigned int val) 1318 { 1319 unsigned int i; 1320 1321 if (!e->values) 1322 return val; 1323 1324 for (i = 0; i < e->items; i++) 1325 if (val == e->values[i]) 1326 return i; 1327 1328 return 0; 1329 } 1330 1331 static inline unsigned int snd_soc_enum_item_to_val(const struct soc_enum *e, 1332 unsigned int item) 1333 { 1334 if (!e->values) 1335 return item; 1336 1337 return e->values[item]; 1338 } 1339 1340 /** 1341 * snd_soc_kcontrol_component() - Returns the component that registered the 1342 * control 1343 * @kcontrol: The control for which to get the component 1344 * 1345 * Note: This function will work correctly if the control has been registered 1346 * for a component. With snd_soc_add_codec_controls() or via table based 1347 * setup for either a CODEC or component driver. Otherwise the behavior is 1348 * undefined. 1349 */ 1350 static inline struct snd_soc_component *snd_soc_kcontrol_component( 1351 struct snd_kcontrol *kcontrol) 1352 { 1353 return snd_kcontrol_chip(kcontrol); 1354 } 1355 1356 int snd_soc_util_init(void); 1357 void snd_soc_util_exit(void); 1358 1359 int snd_soc_of_parse_card_name(struct snd_soc_card *card, 1360 const char *propname); 1361 int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card, 1362 const char *propname); 1363 int snd_soc_of_parse_pin_switches(struct snd_soc_card *card, const char *prop); 1364 int snd_soc_of_get_slot_mask(struct device_node *np, 1365 const char *prop_name, 1366 unsigned int *mask); 1367 int snd_soc_of_parse_tdm_slot(struct device_node *np, 1368 unsigned int *tx_mask, 1369 unsigned int *rx_mask, 1370 unsigned int *slots, 1371 unsigned int *slot_width); 1372 void snd_soc_of_parse_node_prefix(struct device_node *np, 1373 struct snd_soc_codec_conf *codec_conf, 1374 struct device_node *of_node, 1375 const char *propname); 1376 static inline 1377 void snd_soc_of_parse_audio_prefix(struct snd_soc_card *card, 1378 struct snd_soc_codec_conf *codec_conf, 1379 struct device_node *of_node, 1380 const char *propname) 1381 { 1382 snd_soc_of_parse_node_prefix(card->dev->of_node, 1383 codec_conf, of_node, propname); 1384 } 1385 1386 int snd_soc_of_parse_audio_routing(struct snd_soc_card *card, 1387 const char *propname); 1388 int snd_soc_of_parse_aux_devs(struct snd_soc_card *card, const char *propname); 1389 1390 unsigned int snd_soc_daifmt_clock_provider_flipped(unsigned int dai_fmt); 1391 unsigned int snd_soc_daifmt_clock_provider_from_bitmap(unsigned int bit_frame); 1392 1393 unsigned int snd_soc_daifmt_parse_format(struct device_node *np, const char *prefix); 1394 unsigned int snd_soc_daifmt_parse_clock_provider_raw(struct device_node *np, 1395 const char *prefix, 1396 struct device_node **bitclkmaster, 1397 struct device_node **framemaster); 1398 #define snd_soc_daifmt_parse_clock_provider_as_bitmap(np, prefix) \ 1399 snd_soc_daifmt_parse_clock_provider_raw(np, prefix, NULL, NULL) 1400 #define snd_soc_daifmt_parse_clock_provider_as_phandle \ 1401 snd_soc_daifmt_parse_clock_provider_raw 1402 #define snd_soc_daifmt_parse_clock_provider_as_flag(np, prefix) \ 1403 snd_soc_daifmt_clock_provider_from_bitmap( \ 1404 snd_soc_daifmt_parse_clock_provider_as_bitmap(np, prefix)) 1405 1406 int snd_soc_get_stream_cpu(const struct snd_soc_dai_link *dai_link, int stream); 1407 int snd_soc_get_dlc(const struct of_phandle_args *args, 1408 struct snd_soc_dai_link_component *dlc); 1409 int snd_soc_of_get_dlc(struct device_node *of_node, 1410 struct of_phandle_args *args, 1411 struct snd_soc_dai_link_component *dlc, 1412 int index); 1413 int snd_soc_get_dai_id(struct device_node *ep); 1414 int snd_soc_get_dai_name(const struct of_phandle_args *args, 1415 const char **dai_name); 1416 int snd_soc_of_get_dai_name(struct device_node *of_node, 1417 const char **dai_name, int index); 1418 int snd_soc_of_get_dai_link_codecs(struct device *dev, 1419 struct device_node *of_node, 1420 struct snd_soc_dai_link *dai_link); 1421 void snd_soc_of_put_dai_link_codecs(struct snd_soc_dai_link *dai_link); 1422 int snd_soc_of_get_dai_link_cpus(struct device *dev, 1423 struct device_node *of_node, 1424 struct snd_soc_dai_link *dai_link); 1425 void snd_soc_of_put_dai_link_cpus(struct snd_soc_dai_link *dai_link); 1426 1427 int snd_soc_add_pcm_runtimes(struct snd_soc_card *card, 1428 struct snd_soc_dai_link *dai_link, 1429 int num_dai_link); 1430 void snd_soc_remove_pcm_runtime(struct snd_soc_card *card, 1431 struct snd_soc_pcm_runtime *rtd); 1432 1433 void snd_soc_dlc_use_cpu_as_platform(struct snd_soc_dai_link_component *platforms, 1434 struct snd_soc_dai_link_component *cpus); 1435 struct of_phandle_args *snd_soc_copy_dai_args(struct device *dev, 1436 const struct of_phandle_args *args); 1437 struct snd_soc_dai *snd_soc_get_dai_via_args(const struct of_phandle_args *dai_args); 1438 struct snd_soc_dai *snd_soc_register_dai(struct snd_soc_component *component, 1439 struct snd_soc_dai_driver *dai_drv, 1440 bool legacy_dai_naming); 1441 struct snd_soc_dai *devm_snd_soc_register_dai(struct device *dev, 1442 struct snd_soc_component *component, 1443 struct snd_soc_dai_driver *dai_drv, 1444 bool legacy_dai_naming); 1445 void snd_soc_unregister_dai(struct snd_soc_dai *dai); 1446 1447 struct snd_soc_dai *snd_soc_find_dai( 1448 const struct snd_soc_dai_link_component *dlc); 1449 struct snd_soc_dai *snd_soc_find_dai_with_mutex( 1450 const struct snd_soc_dai_link_component *dlc); 1451 1452 #include <sound/soc-dai.h> 1453 1454 static inline 1455 int snd_soc_fixup_dai_links_platform_name(struct snd_soc_card *card, 1456 const char *platform_name) 1457 { 1458 struct snd_soc_dai_link *dai_link; 1459 const char *name; 1460 int i; 1461 1462 if (!platform_name) /* nothing to do */ 1463 return 0; 1464 1465 /* set platform name for each dailink */ 1466 for_each_card_prelinks(card, i, dai_link) { 1467 /* only single platform is supported for now */ 1468 if (dai_link->num_platforms != 1) 1469 return -EINVAL; 1470 1471 if (!dai_link->platforms) 1472 return -EINVAL; 1473 1474 name = devm_kstrdup(card->dev, platform_name, GFP_KERNEL); 1475 if (!name) 1476 return -ENOMEM; 1477 1478 /* only single platform is supported for now */ 1479 dai_link->platforms->name = name; 1480 } 1481 1482 return 0; 1483 } 1484 1485 #ifdef CONFIG_DEBUG_FS 1486 extern struct dentry *snd_soc_debugfs_root; 1487 #endif 1488 1489 extern const struct dev_pm_ops snd_soc_pm_ops; 1490 1491 /* 1492 * DAPM helper functions 1493 */ 1494 enum snd_soc_dapm_subclass { 1495 SND_SOC_DAPM_CLASS_ROOT = 0, 1496 SND_SOC_DAPM_CLASS_RUNTIME = 1, 1497 }; 1498 1499 static inline void _snd_soc_dapm_mutex_lock_root_c(struct snd_soc_card *card) 1500 { 1501 mutex_lock_nested(&card->dapm_mutex, SND_SOC_DAPM_CLASS_ROOT); 1502 } 1503 1504 static inline void _snd_soc_dapm_mutex_lock_c(struct snd_soc_card *card) 1505 { 1506 mutex_lock_nested(&card->dapm_mutex, SND_SOC_DAPM_CLASS_RUNTIME); 1507 } 1508 1509 static inline void _snd_soc_dapm_mutex_unlock_c(struct snd_soc_card *card) 1510 { 1511 mutex_unlock(&card->dapm_mutex); 1512 } 1513 1514 static inline void _snd_soc_dapm_mutex_assert_held_c(struct snd_soc_card *card) 1515 { 1516 lockdep_assert_held(&card->dapm_mutex); 1517 } 1518 1519 static inline void _snd_soc_dapm_mutex_lock_root_d(struct snd_soc_dapm_context *dapm) 1520 { 1521 _snd_soc_dapm_mutex_lock_root_c(dapm->card); 1522 } 1523 1524 static inline void _snd_soc_dapm_mutex_lock_d(struct snd_soc_dapm_context *dapm) 1525 { 1526 _snd_soc_dapm_mutex_lock_c(dapm->card); 1527 } 1528 1529 static inline void _snd_soc_dapm_mutex_unlock_d(struct snd_soc_dapm_context *dapm) 1530 { 1531 _snd_soc_dapm_mutex_unlock_c(dapm->card); 1532 } 1533 1534 static inline void _snd_soc_dapm_mutex_assert_held_d(struct snd_soc_dapm_context *dapm) 1535 { 1536 _snd_soc_dapm_mutex_assert_held_c(dapm->card); 1537 } 1538 1539 #define snd_soc_dapm_mutex_lock_root(x) _Generic((x), \ 1540 struct snd_soc_card * : _snd_soc_dapm_mutex_lock_root_c, \ 1541 struct snd_soc_dapm_context * : _snd_soc_dapm_mutex_lock_root_d)(x) 1542 #define snd_soc_dapm_mutex_lock(x) _Generic((x), \ 1543 struct snd_soc_card * : _snd_soc_dapm_mutex_lock_c, \ 1544 struct snd_soc_dapm_context * : _snd_soc_dapm_mutex_lock_d)(x) 1545 #define snd_soc_dapm_mutex_unlock(x) _Generic((x), \ 1546 struct snd_soc_card * : _snd_soc_dapm_mutex_unlock_c, \ 1547 struct snd_soc_dapm_context * : _snd_soc_dapm_mutex_unlock_d)(x) 1548 #define snd_soc_dapm_mutex_assert_held(x) _Generic((x), \ 1549 struct snd_soc_card * : _snd_soc_dapm_mutex_assert_held_c, \ 1550 struct snd_soc_dapm_context * : _snd_soc_dapm_mutex_assert_held_d)(x) 1551 1552 /* 1553 * PCM helper functions 1554 */ 1555 static inline void _snd_soc_dpcm_mutex_lock_c(struct snd_soc_card *card) 1556 { 1557 mutex_lock_nested(&card->pcm_mutex, card->pcm_subclass); 1558 } 1559 1560 static inline void _snd_soc_dpcm_mutex_unlock_c(struct snd_soc_card *card) 1561 { 1562 mutex_unlock(&card->pcm_mutex); 1563 } 1564 1565 static inline void _snd_soc_dpcm_mutex_assert_held_c(struct snd_soc_card *card) 1566 { 1567 lockdep_assert_held(&card->pcm_mutex); 1568 } 1569 1570 static inline void _snd_soc_dpcm_mutex_lock_r(struct snd_soc_pcm_runtime *rtd) 1571 { 1572 _snd_soc_dpcm_mutex_lock_c(rtd->card); 1573 } 1574 1575 static inline void _snd_soc_dpcm_mutex_unlock_r(struct snd_soc_pcm_runtime *rtd) 1576 { 1577 _snd_soc_dpcm_mutex_unlock_c(rtd->card); 1578 } 1579 1580 static inline void _snd_soc_dpcm_mutex_assert_held_r(struct snd_soc_pcm_runtime *rtd) 1581 { 1582 _snd_soc_dpcm_mutex_assert_held_c(rtd->card); 1583 } 1584 1585 #define snd_soc_dpcm_mutex_lock(x) _Generic((x), \ 1586 struct snd_soc_card * : _snd_soc_dpcm_mutex_lock_c, \ 1587 struct snd_soc_pcm_runtime * : _snd_soc_dpcm_mutex_lock_r)(x) 1588 1589 #define snd_soc_dpcm_mutex_unlock(x) _Generic((x), \ 1590 struct snd_soc_card * : _snd_soc_dpcm_mutex_unlock_c, \ 1591 struct snd_soc_pcm_runtime * : _snd_soc_dpcm_mutex_unlock_r)(x) 1592 1593 #define snd_soc_dpcm_mutex_assert_held(x) _Generic((x), \ 1594 struct snd_soc_card * : _snd_soc_dpcm_mutex_assert_held_c, \ 1595 struct snd_soc_pcm_runtime * : _snd_soc_dpcm_mutex_assert_held_r)(x) 1596 1597 #include <sound/soc-component.h> 1598 #include <sound/soc-card.h> 1599 #include <sound/soc-jack.h> 1600 1601 #endif 1602