1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc. 2 * 3 * Redistribution and use in source and binary forms, with or without 4 * modification, are permitted provided that the following conditions are met: 5 * * Redistributions of source code must retain the above copyright 6 * notice, this list of conditions and the following disclaimer. 7 * * Redistributions in binary form must reproduce the above copyright 8 * notice, this list of conditions and the following disclaimer in the 9 * documentation and/or other materials provided with the distribution. 10 * * Neither the name of Freescale Semiconductor nor the 11 * names of its contributors may be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * ALTERNATIVELY, this software may be distributed under the terms of the 15 * GNU General Public License ("GPL") as published by the Free Software 16 * Foundation, either version 2 of that License or (at your option) any 17 * later version. 18 * 19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY 20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY 23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #ifndef __FSL_QMAN_H 32 #define __FSL_QMAN_H 33 34 #include <linux/bitops.h> 35 #include <linux/device.h> 36 37 /* Hardware constants */ 38 #define QM_CHANNEL_SWPORTAL0 0 39 #define QMAN_CHANNEL_POOL1 0x21 40 #define QMAN_CHANNEL_CAAM 0x80 41 #define QMAN_CHANNEL_POOL1_REV3 0x401 42 #define QMAN_CHANNEL_CAAM_REV3 0x840 43 extern u16 qm_channel_pool1; 44 extern u16 qm_channel_caam; 45 46 /* Portal processing (interrupt) sources */ 47 #define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */ 48 #define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */ 49 #define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */ 50 #define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */ 51 #define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */ 52 /* 53 * This mask contains all the interrupt sources that need handling except DQRI, 54 * ie. that if present should trigger slow-path processing. 55 */ 56 #define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \ 57 QM_PIRQ_MRI) 58 59 /* For qman_static_dequeue_*** APIs */ 60 #define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff 61 /* for n in [1,15] */ 62 #define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n)) 63 /* for conversion from n of qm_channel */ 64 static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel) 65 { 66 return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1); 67 } 68 69 /* --- QMan data structures (and associated constants) --- */ 70 71 /* "Frame Descriptor (FD)" */ 72 struct qm_fd { 73 union { 74 struct { 75 u8 cfg8b_w1; 76 u8 bpid; /* Buffer Pool ID */ 77 u8 cfg8b_w3; 78 u8 addr_hi; /* high 8-bits of 40-bit address */ 79 __be32 addr_lo; /* low 32-bits of 40-bit address */ 80 } __packed; 81 __be64 data; 82 }; 83 __be32 cfg; /* format, offset, length / congestion */ 84 union { 85 __be32 cmd; 86 __be32 status; 87 }; 88 } __aligned(8); 89 90 #define QM_FD_FORMAT_SG BIT(31) 91 #define QM_FD_FORMAT_LONG BIT(30) 92 #define QM_FD_FORMAT_COMPOUND BIT(29) 93 #define QM_FD_FORMAT_MASK GENMASK(31, 29) 94 #define QM_FD_OFF_SHIFT 20 95 #define QM_FD_OFF_MASK GENMASK(28, 20) 96 #define QM_FD_LEN_MASK GENMASK(19, 0) 97 #define QM_FD_LEN_BIG_MASK GENMASK(28, 0) 98 99 enum qm_fd_format { 100 /* 101 * 'contig' implies a contiguous buffer, whereas 'sg' implies a 102 * scatter-gather table. 'big' implies a 29-bit length with no offset 103 * field, otherwise length is 20-bit and offset is 9-bit. 'compound' 104 * implies a s/g-like table, where each entry itself represents a frame 105 * (contiguous or scatter-gather) and the 29-bit "length" is 106 * interpreted purely for congestion calculations, ie. a "congestion 107 * weight". 108 */ 109 qm_fd_contig = 0, 110 qm_fd_contig_big = QM_FD_FORMAT_LONG, 111 qm_fd_sg = QM_FD_FORMAT_SG, 112 qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG, 113 qm_fd_compound = QM_FD_FORMAT_COMPOUND 114 }; 115 116 static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd) 117 { 118 return be64_to_cpu(fd->data) & 0xffffffffffLLU; 119 } 120 121 static inline u64 qm_fd_addr_get64(const struct qm_fd *fd) 122 { 123 return be64_to_cpu(fd->data) & 0xffffffffffLLU; 124 } 125 126 static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr) 127 { 128 fd->addr_hi = upper_32_bits(addr); 129 fd->addr_lo = cpu_to_be32(lower_32_bits(addr)); 130 } 131 132 /* 133 * The 'format' field indicates the interpretation of the remaining 134 * 29 bits of the 32-bit word. 135 * If 'format' is _contig or _sg, 20b length and 9b offset. 136 * If 'format' is _contig_big or _sg_big, 29b length. 137 * If 'format' is _compound, 29b "congestion weight". 138 */ 139 static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd) 140 { 141 return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK; 142 } 143 144 static inline int qm_fd_get_offset(const struct qm_fd *fd) 145 { 146 return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT; 147 } 148 149 static inline int qm_fd_get_length(const struct qm_fd *fd) 150 { 151 return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK; 152 } 153 154 static inline int qm_fd_get_len_big(const struct qm_fd *fd) 155 { 156 return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK; 157 } 158 159 static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt, 160 int off, int len) 161 { 162 fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) | 163 ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK)); 164 } 165 166 #define qm_fd_set_contig(fd, off, len) \ 167 qm_fd_set_param(fd, qm_fd_contig, off, len) 168 #define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len) 169 #define qm_fd_set_contig_big(fd, len) \ 170 qm_fd_set_param(fd, qm_fd_contig_big, 0, len) 171 #define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len) 172 #define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len) 173 174 static inline void qm_fd_clear_fd(struct qm_fd *fd) 175 { 176 fd->data = 0; 177 fd->cfg = 0; 178 fd->cmd = 0; 179 } 180 181 /* Scatter/Gather table entry */ 182 struct qm_sg_entry { 183 union { 184 struct { 185 u8 __reserved1[3]; 186 u8 addr_hi; /* high 8-bits of 40-bit address */ 187 __be32 addr_lo; /* low 32-bits of 40-bit address */ 188 }; 189 __be64 data; 190 }; 191 __be32 cfg; /* E bit, F bit, length */ 192 u8 __reserved2; 193 u8 bpid; 194 __be16 offset; /* 13-bit, _res[13-15]*/ 195 } __packed; 196 197 #define QM_SG_LEN_MASK GENMASK(29, 0) 198 #define QM_SG_OFF_MASK GENMASK(12, 0) 199 #define QM_SG_FIN BIT(30) 200 #define QM_SG_EXT BIT(31) 201 202 static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg) 203 { 204 return be64_to_cpu(sg->data) & 0xffffffffffLLU; 205 } 206 207 static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg) 208 { 209 return be64_to_cpu(sg->data) & 0xffffffffffLLU; 210 } 211 212 static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr) 213 { 214 sg->addr_hi = upper_32_bits(addr); 215 sg->addr_lo = cpu_to_be32(lower_32_bits(addr)); 216 } 217 218 static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg) 219 { 220 return be32_to_cpu(sg->cfg) & QM_SG_FIN; 221 } 222 223 static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg) 224 { 225 return be32_to_cpu(sg->cfg) & QM_SG_EXT; 226 } 227 228 static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg) 229 { 230 return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK; 231 } 232 233 static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len) 234 { 235 sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK); 236 } 237 238 static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len) 239 { 240 sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK)); 241 } 242 243 static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg) 244 { 245 return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK; 246 } 247 248 /* "Frame Dequeue Response" */ 249 struct qm_dqrr_entry { 250 u8 verb; 251 u8 stat; 252 __be16 seqnum; /* 15-bit */ 253 u8 tok; 254 u8 __reserved2[3]; 255 __be32 fqid; /* 24-bit */ 256 __be32 context_b; 257 struct qm_fd fd; 258 u8 __reserved4[32]; 259 } __packed; 260 #define QM_DQRR_VERB_VBIT 0x80 261 #define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */ 262 #define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */ 263 #define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */ 264 #define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */ 265 #define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */ 266 #define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */ 267 #define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */ 268 #define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/ 269 270 /* 'fqid' is a 24-bit field in every h/w descriptor */ 271 #define QM_FQID_MASK GENMASK(23, 0) 272 #define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK)) 273 #define qm_fqid_get(p) (be32_to_cpu((p)->fqid) & QM_FQID_MASK) 274 275 /* "ERN Message Response" */ 276 /* "FQ State Change Notification" */ 277 union qm_mr_entry { 278 struct { 279 u8 verb; 280 u8 __reserved[63]; 281 }; 282 struct { 283 u8 verb; 284 u8 dca; 285 __be16 seqnum; 286 u8 rc; /* Rej Code: 8-bit */ 287 u8 __reserved[3]; 288 __be32 fqid; /* 24-bit */ 289 __be32 tag; 290 struct qm_fd fd; 291 u8 __reserved1[32]; 292 } __packed ern; 293 struct { 294 u8 verb; 295 u8 fqs; /* Frame Queue Status */ 296 u8 __reserved1[6]; 297 __be32 fqid; /* 24-bit */ 298 __be32 context_b; 299 u8 __reserved2[48]; 300 } __packed fq; /* FQRN/FQRNI/FQRL/FQPN */ 301 }; 302 #define QM_MR_VERB_VBIT 0x80 303 /* 304 * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb 305 * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished 306 * from the other MR types by noting if the 0x20 bit is unset. 307 */ 308 #define QM_MR_VERB_TYPE_MASK 0x27 309 #define QM_MR_VERB_DC_ERN 0x20 310 #define QM_MR_VERB_FQRN 0x21 311 #define QM_MR_VERB_FQRNI 0x22 312 #define QM_MR_VERB_FQRL 0x23 313 #define QM_MR_VERB_FQPN 0x24 314 #define QM_MR_RC_MASK 0xf0 /* contains one of; */ 315 #define QM_MR_RC_CGR_TAILDROP 0x00 316 #define QM_MR_RC_WRED 0x10 317 #define QM_MR_RC_ERROR 0x20 318 #define QM_MR_RC_ORPWINDOW_EARLY 0x30 319 #define QM_MR_RC_ORPWINDOW_LATE 0x40 320 #define QM_MR_RC_FQ_TAILDROP 0x50 321 #define QM_MR_RC_ORPWINDOW_RETIRED 0x60 322 #define QM_MR_RC_ORP_ZERO 0x70 323 #define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ 324 #define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ 325 326 /* 327 * An identical structure of FQD fields is present in the "Init FQ" command and 328 * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type. 329 * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the 330 * latter has two inlines to assist with converting to/from the mant+exp 331 * representation. 332 */ 333 struct qm_fqd_stashing { 334 /* See QM_STASHING_EXCL_<...> */ 335 u8 exclusive; 336 /* Numbers of cachelines */ 337 u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */ 338 }; 339 340 struct qm_fqd_oac { 341 /* "Overhead Accounting Control", see QM_OAC_<...> */ 342 u8 oac; /* oac[6-7], _res[0-5] */ 343 /* Two's-complement value (-128 to +127) */ 344 s8 oal; /* "Overhead Accounting Length" */ 345 }; 346 347 struct qm_fqd { 348 /* _res[6-7], orprws[3-5], oa[2], olws[0-1] */ 349 u8 orpc; 350 u8 cgid; 351 __be16 fq_ctrl; /* See QM_FQCTRL_<...> */ 352 __be16 dest_wq; /* channel[3-15], wq[0-2] */ 353 __be16 ics_cred; /* 15-bit */ 354 /* 355 * For "Initialize Frame Queue" commands, the write-enable mask 356 * determines whether 'td' or 'oac_init' is observed. For query 357 * commands, this field is always 'td', and 'oac_query' (below) reflects 358 * the Overhead ACcounting values. 359 */ 360 union { 361 __be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */ 362 struct qm_fqd_oac oac_init; 363 }; 364 __be32 context_b; 365 union { 366 /* Treat it as 64-bit opaque */ 367 __be64 opaque; 368 struct { 369 __be32 hi; 370 __be32 lo; 371 }; 372 /* Treat it as s/w portal stashing config */ 373 /* see "FQD Context_A field used for [...]" */ 374 struct { 375 struct qm_fqd_stashing stashing; 376 /* 377 * 48-bit address of FQ context to 378 * stash, must be cacheline-aligned 379 */ 380 __be16 context_hi; 381 __be32 context_lo; 382 } __packed; 383 } context_a; 384 struct qm_fqd_oac oac_query; 385 } __packed; 386 387 #define QM_FQD_CHAN_OFF 3 388 #define QM_FQD_WQ_MASK GENMASK(2, 0) 389 #define QM_FQD_TD_EXP_MASK GENMASK(4, 0) 390 #define QM_FQD_TD_MANT_OFF 5 391 #define QM_FQD_TD_MANT_MASK GENMASK(12, 5) 392 #define QM_FQD_TD_MAX 0xe0000000 393 #define QM_FQD_TD_MANT_MAX 0xff 394 #define QM_FQD_OAC_OFF 6 395 #define QM_FQD_AS_OFF 4 396 #define QM_FQD_DS_OFF 2 397 #define QM_FQD_XS_MASK 0x3 398 399 /* 64-bit converters for context_hi/lo */ 400 static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd) 401 { 402 return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL; 403 } 404 405 static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd) 406 { 407 return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL; 408 } 409 410 static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd) 411 { 412 return qm_fqd_stashing_get64(fqd); 413 } 414 415 static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr) 416 { 417 fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr)); 418 fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr)); 419 } 420 421 static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr) 422 { 423 fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr)); 424 fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr)); 425 } 426 427 /* convert a threshold value into mant+exp representation */ 428 static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val, 429 int roundup) 430 { 431 u32 e = 0; 432 int td, oddbit = 0; 433 434 if (val > QM_FQD_TD_MAX) 435 return -ERANGE; 436 437 while (val > QM_FQD_TD_MANT_MAX) { 438 oddbit = val & 1; 439 val >>= 1; 440 e++; 441 if (roundup && oddbit) 442 val++; 443 } 444 445 td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK; 446 td |= (e & QM_FQD_TD_EXP_MASK); 447 fqd->td = cpu_to_be16(td); 448 return 0; 449 } 450 /* and the other direction */ 451 static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd) 452 { 453 int td = be16_to_cpu(fqd->td); 454 455 return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF) 456 << (td & QM_FQD_TD_EXP_MASK); 457 } 458 459 static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs) 460 { 461 struct qm_fqd_stashing *st = &fqd->context_a.stashing; 462 463 st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) | 464 ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) | 465 (cs & QM_FQD_XS_MASK); 466 } 467 468 static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd) 469 { 470 return fqd->context_a.stashing.cl; 471 } 472 473 static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val) 474 { 475 fqd->oac_init.oac = val << QM_FQD_OAC_OFF; 476 } 477 478 static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val) 479 { 480 fqd->oac_init.oal = val; 481 } 482 483 static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq) 484 { 485 fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) | 486 (wq & QM_FQD_WQ_MASK)); 487 } 488 489 static inline int qm_fqd_get_chan(const struct qm_fqd *fqd) 490 { 491 return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF; 492 } 493 494 static inline int qm_fqd_get_wq(const struct qm_fqd *fqd) 495 { 496 return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK; 497 } 498 499 /* See "Frame Queue Descriptor (FQD)" */ 500 /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */ 501 #define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */ 502 #define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */ 503 #define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */ 504 #define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */ 505 #define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */ 506 #define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */ 507 #define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */ 508 #define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */ 509 #define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */ 510 #define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */ 511 512 /* See "FQD Context_A field used for [...] */ 513 /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */ 514 #define QM_STASHING_EXCL_ANNOTATION 0x04 515 #define QM_STASHING_EXCL_DATA 0x02 516 #define QM_STASHING_EXCL_CTX 0x01 517 518 /* See "Intra Class Scheduling" */ 519 /* FQD field 'OAC' (Overhead ACcounting) uses these constants */ 520 #define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */ 521 #define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */ 522 523 /* 524 * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields 525 * and associated commands/responses. The WRED parameters are calculated from 526 * these fields as follows; 527 * MaxTH = MA * (2 ^ Mn) 528 * Slope = SA / (2 ^ Sn) 529 * MaxP = 4 * (Pn + 1) 530 */ 531 struct qm_cgr_wr_parm { 532 /* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */ 533 __be32 word; 534 }; 535 /* 536 * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding 537 * management commands, this is padded to a 16-bit structure field, so that's 538 * how we represent it here. The congestion state threshold is calculated from 539 * these fields as follows; 540 * CS threshold = TA * (2 ^ Tn) 541 */ 542 struct qm_cgr_cs_thres { 543 /* _res[13-15], TA[5-12], Tn[0-4] */ 544 __be16 word; 545 }; 546 /* 547 * This identical structure of CGR fields is present in the "Init/Modify CGR" 548 * commands and the "Query CGR" result. It's suctioned out here into its own 549 * struct. 550 */ 551 struct __qm_mc_cgr { 552 struct qm_cgr_wr_parm wr_parm_g; 553 struct qm_cgr_wr_parm wr_parm_y; 554 struct qm_cgr_wr_parm wr_parm_r; 555 u8 wr_en_g; /* boolean, use QM_CGR_EN */ 556 u8 wr_en_y; /* boolean, use QM_CGR_EN */ 557 u8 wr_en_r; /* boolean, use QM_CGR_EN */ 558 u8 cscn_en; /* boolean, use QM_CGR_EN */ 559 union { 560 struct { 561 __be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */ 562 __be16 cscn_targ_dcp_low; 563 }; 564 __be32 cscn_targ; /* use QM_CGR_TARG_* */ 565 }; 566 u8 cstd_en; /* boolean, use QM_CGR_EN */ 567 u8 cs; /* boolean, only used in query response */ 568 struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */ 569 u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */ 570 } __packed; 571 #define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */ 572 #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/ 573 #define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */ 574 #define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */ 575 #define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */ 576 #define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */ 577 /* Convert CGR thresholds to/from "cs_thres" format */ 578 static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th) 579 { 580 int thres = be16_to_cpu(th->word); 581 582 return ((thres >> 5) & 0xff) << (thres & 0x1f); 583 } 584 585 static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val, 586 int roundup) 587 { 588 u32 e = 0; 589 int oddbit = 0; 590 591 while (val > 0xff) { 592 oddbit = val & 1; 593 val >>= 1; 594 e++; 595 if (roundup && oddbit) 596 val++; 597 } 598 th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f)); 599 return 0; 600 } 601 602 /* "Initialize FQ" */ 603 struct qm_mcc_initfq { 604 u8 __reserved1[2]; 605 __be16 we_mask; /* Write Enable Mask */ 606 __be32 fqid; /* 24-bit */ 607 __be16 count; /* Initialises 'count+1' FQDs */ 608 struct qm_fqd fqd; /* the FQD fields go here */ 609 u8 __reserved2[30]; 610 } __packed; 611 /* "Initialize/Modify CGR" */ 612 struct qm_mcc_initcgr { 613 u8 __reserve1[2]; 614 __be16 we_mask; /* Write Enable Mask */ 615 struct __qm_mc_cgr cgr; /* CGR fields */ 616 u8 __reserved2[2]; 617 u8 cgid; 618 u8 __reserved3[32]; 619 } __packed; 620 621 /* INITFQ-specific flags */ 622 #define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */ 623 #define QM_INITFQ_WE_OAC 0x0100 624 #define QM_INITFQ_WE_ORPC 0x0080 625 #define QM_INITFQ_WE_CGID 0x0040 626 #define QM_INITFQ_WE_FQCTRL 0x0020 627 #define QM_INITFQ_WE_DESTWQ 0x0010 628 #define QM_INITFQ_WE_ICSCRED 0x0008 629 #define QM_INITFQ_WE_TDTHRESH 0x0004 630 #define QM_INITFQ_WE_CONTEXTB 0x0002 631 #define QM_INITFQ_WE_CONTEXTA 0x0001 632 /* INITCGR/MODIFYCGR-specific flags */ 633 #define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */ 634 #define QM_CGR_WE_WR_PARM_G 0x0400 635 #define QM_CGR_WE_WR_PARM_Y 0x0200 636 #define QM_CGR_WE_WR_PARM_R 0x0100 637 #define QM_CGR_WE_WR_EN_G 0x0080 638 #define QM_CGR_WE_WR_EN_Y 0x0040 639 #define QM_CGR_WE_WR_EN_R 0x0020 640 #define QM_CGR_WE_CSCN_EN 0x0010 641 #define QM_CGR_WE_CSCN_TARG 0x0008 642 #define QM_CGR_WE_CSTD_EN 0x0004 643 #define QM_CGR_WE_CS_THRES 0x0002 644 #define QM_CGR_WE_MODE 0x0001 645 646 #define QMAN_CGR_FLAG_USE_INIT 0x00000001 647 #define QMAN_CGR_MODE_FRAME 0x00000001 648 649 /* Portal and Frame Queues */ 650 /* Represents a managed portal */ 651 struct qman_portal; 652 653 /* 654 * This object type represents QMan frame queue descriptors (FQD), it is 655 * cacheline-aligned, and initialised by qman_create_fq(). The structure is 656 * defined further down. 657 */ 658 struct qman_fq; 659 660 /* 661 * This object type represents a QMan congestion group, it is defined further 662 * down. 663 */ 664 struct qman_cgr; 665 666 /* 667 * This enum, and the callback type that returns it, are used when handling 668 * dequeued frames via DQRR. Note that for "null" callbacks registered with the 669 * portal object (for handling dequeues that do not demux because context_b is 670 * NULL), the return value *MUST* be qman_cb_dqrr_consume. 671 */ 672 enum qman_cb_dqrr_result { 673 /* DQRR entry can be consumed */ 674 qman_cb_dqrr_consume, 675 /* Like _consume, but requests parking - FQ must be held-active */ 676 qman_cb_dqrr_park, 677 /* Does not consume, for DCA mode only. */ 678 qman_cb_dqrr_defer, 679 /* 680 * Stop processing without consuming this ring entry. Exits the current 681 * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within 682 * an interrupt handler, the callback would typically call 683 * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value, 684 * otherwise the interrupt will reassert immediately. 685 */ 686 qman_cb_dqrr_stop, 687 /* Like qman_cb_dqrr_stop, but consumes the current entry. */ 688 qman_cb_dqrr_consume_stop 689 }; 690 typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm, 691 struct qman_fq *fq, 692 const struct qm_dqrr_entry *dqrr); 693 694 /* 695 * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They 696 * are always consumed after the callback returns. 697 */ 698 typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq, 699 const union qm_mr_entry *msg); 700 701 /* 702 * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active + 703 * held-active + held-suspended are just "sched". Things like "retired" will not 704 * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until 705 * then, to indicate it's completing and to gate attempts to retry the retire 706 * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's 707 * technically impossible in the case of enqueue DCAs (which refer to DQRR ring 708 * index rather than the FQ that ring entry corresponds to), so repeated park 709 * commands are allowed (if you're silly enough to try) but won't change FQ 710 * state, and the resulting park notifications move FQs from "sched" to 711 * "parked". 712 */ 713 enum qman_fq_state { 714 qman_fq_state_oos, 715 qman_fq_state_parked, 716 qman_fq_state_sched, 717 qman_fq_state_retired 718 }; 719 720 #define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */ 721 #define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */ 722 #define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */ 723 #define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */ 724 #define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */ 725 #define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */ 726 727 /* 728 * Frame queue objects (struct qman_fq) are stored within memory passed to 729 * qman_create_fq(), as this allows stashing of caller-provided demux callback 730 * pointers at no extra cost to stashing of (driver-internal) FQ state. If the 731 * caller wishes to add per-FQ state and have it benefit from dequeue-stashing, 732 * they should; 733 * 734 * (a) extend the qman_fq structure with their state; eg. 735 * 736 * // myfq is allocated and driver_fq callbacks filled in; 737 * struct my_fq { 738 * struct qman_fq base; 739 * int an_extra_field; 740 * [ ... add other fields to be associated with each FQ ...] 741 * } *myfq = some_my_fq_allocator(); 742 * struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base); 743 * 744 * // in a dequeue callback, access extra fields from 'fq' via a cast; 745 * struct my_fq *myfq = (struct my_fq *)fq; 746 * do_something_with(myfq->an_extra_field); 747 * [...] 748 * 749 * (b) when and if configuring the FQ for context stashing, specify how ever 750 * many cachelines are required to stash 'struct my_fq', to accelerate not 751 * only the QMan driver but the callback as well. 752 */ 753 754 struct qman_fq_cb { 755 qman_cb_dqrr dqrr; /* for dequeued frames */ 756 qman_cb_mr ern; /* for s/w ERNs */ 757 qman_cb_mr fqs; /* frame-queue state changes*/ 758 }; 759 760 struct qman_fq { 761 /* Caller of qman_create_fq() provides these demux callbacks */ 762 struct qman_fq_cb cb; 763 /* 764 * These are internal to the driver, don't touch. In particular, they 765 * may change, be removed, or extended (so you shouldn't rely on 766 * sizeof(qman_fq) being a constant). 767 */ 768 u32 fqid, idx; 769 unsigned long flags; 770 enum qman_fq_state state; 771 int cgr_groupid; 772 }; 773 774 /* 775 * This callback type is used when handling congestion group entry/exit. 776 * 'congested' is non-zero on congestion-entry, and zero on congestion-exit. 777 */ 778 typedef void (*qman_cb_cgr)(struct qman_portal *qm, 779 struct qman_cgr *cgr, int congested); 780 781 struct qman_cgr { 782 /* Set these prior to qman_create_cgr() */ 783 u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/ 784 qman_cb_cgr cb; 785 /* These are private to the driver */ 786 u16 chan; /* portal channel this object is created on */ 787 struct list_head node; 788 }; 789 790 /* Flags to qman_create_fq() */ 791 #define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */ 792 #define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */ 793 #define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */ 794 #define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */ 795 796 /* Flags to qman_init_fq() */ 797 #define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */ 798 #define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */ 799 800 /* 801 * For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use 802 * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use 803 * FQID(n) to fill in the frame queue ID. 804 */ 805 #define QM_VDQCR_PRECEDENCE_VDQCR 0x0 806 #define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000 807 #define QM_VDQCR_EXACT 0x40000000 808 #define QM_VDQCR_NUMFRAMES_MASK 0x3f000000 809 #define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24) 810 #define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f) 811 #define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0) 812 813 #define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */ 814 #define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */ 815 #define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */ 816 817 /* "Query FQ Non-Programmable Fields" */ 818 struct qm_mcr_queryfq_np { 819 u8 verb; 820 u8 result; 821 u8 __reserved1; 822 u8 state; /* QM_MCR_NP_STATE_*** */ 823 u32 fqd_link; /* 24-bit, _res2[24-31] */ 824 u16 odp_seq; /* 14-bit, _res3[14-15] */ 825 u16 orp_nesn; /* 14-bit, _res4[14-15] */ 826 u16 orp_ea_hseq; /* 15-bit, _res5[15] */ 827 u16 orp_ea_tseq; /* 15-bit, _res6[15] */ 828 u32 orp_ea_hptr; /* 24-bit, _res7[24-31] */ 829 u32 orp_ea_tptr; /* 24-bit, _res8[24-31] */ 830 u32 pfdr_hptr; /* 24-bit, _res9[24-31] */ 831 u32 pfdr_tptr; /* 24-bit, _res10[24-31] */ 832 u8 __reserved2[5]; 833 u8 is; /* 1-bit, _res12[1-7] */ 834 u16 ics_surp; 835 u32 byte_cnt; 836 u32 frm_cnt; /* 24-bit, _res13[24-31] */ 837 u32 __reserved3; 838 u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */ 839 u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */ 840 u16 __reserved4; 841 u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */ 842 u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */ 843 u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */ 844 } __packed; 845 846 #define QM_MCR_NP_STATE_FE 0x10 847 #define QM_MCR_NP_STATE_R 0x08 848 #define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */ 849 #define QM_MCR_NP_STATE_OOS 0x00 850 #define QM_MCR_NP_STATE_RETIRED 0x01 851 #define QM_MCR_NP_STATE_TEN_SCHED 0x02 852 #define QM_MCR_NP_STATE_TRU_SCHED 0x03 853 #define QM_MCR_NP_STATE_PARKED 0x04 854 #define QM_MCR_NP_STATE_ACTIVE 0x05 855 #define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */ 856 #define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */ 857 #define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */ 858 #define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */ 859 #define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */ 860 861 enum qm_mcr_queryfq_np_masks { 862 qm_mcr_fqd_link_mask = BIT(24) - 1, 863 qm_mcr_odp_seq_mask = BIT(14) - 1, 864 qm_mcr_orp_nesn_mask = BIT(14) - 1, 865 qm_mcr_orp_ea_hseq_mask = BIT(15) - 1, 866 qm_mcr_orp_ea_tseq_mask = BIT(15) - 1, 867 qm_mcr_orp_ea_hptr_mask = BIT(24) - 1, 868 qm_mcr_orp_ea_tptr_mask = BIT(24) - 1, 869 qm_mcr_pfdr_hptr_mask = BIT(24) - 1, 870 qm_mcr_pfdr_tptr_mask = BIT(24) - 1, 871 qm_mcr_is_mask = BIT(1) - 1, 872 qm_mcr_frm_cnt_mask = BIT(24) - 1, 873 }; 874 875 #define qm_mcr_np_get(np, field) \ 876 ((np)->field & (qm_mcr_##field##_mask)) 877 878 /* Portal Management */ 879 /** 880 * qman_p_irqsource_add - add processing sources to be interrupt-driven 881 * @bits: bitmask of QM_PIRQ_**I processing sources 882 * 883 * Adds processing sources that should be interrupt-driven (rather than 884 * processed via qman_poll_***() functions). 885 */ 886 void qman_p_irqsource_add(struct qman_portal *p, u32 bits); 887 888 /** 889 * qman_p_irqsource_remove - remove processing sources from being int-driven 890 * @bits: bitmask of QM_PIRQ_**I processing sources 891 * 892 * Removes processing sources from being interrupt-driven, so that they will 893 * instead be processed via qman_poll_***() functions. 894 */ 895 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits); 896 897 /** 898 * qman_affine_cpus - return a mask of cpus that have affine portals 899 */ 900 const cpumask_t *qman_affine_cpus(void); 901 902 /** 903 * qman_affine_channel - return the channel ID of an portal 904 * @cpu: the cpu whose affine portal is the subject of the query 905 * 906 * If @cpu is -1, the affine portal for the current CPU will be used. It is a 907 * bug to call this function for any value of @cpu (other than -1) that is not a 908 * member of the mask returned from qman_affine_cpus(). 909 */ 910 u16 qman_affine_channel(int cpu); 911 912 /** 913 * qman_get_affine_portal - return the portal pointer affine to cpu 914 * @cpu: the cpu whose affine portal is the subject of the query 915 */ 916 struct qman_portal *qman_get_affine_portal(int cpu); 917 918 /** 919 * qman_start_using_portal - register a device link for the portal user 920 * @p: the portal that will be in use 921 * @dev: the device that will use the portal 922 * 923 * Makes sure that the devices that use the portal are unbound when the 924 * portal is unbound 925 */ 926 int qman_start_using_portal(struct qman_portal *p, struct device *dev); 927 928 /** 929 * qman_p_poll_dqrr - process DQRR (fast-path) entries 930 * @limit: the maximum number of DQRR entries to process 931 * 932 * Use of this function requires that DQRR processing not be interrupt-driven. 933 * The return value represents the number of DQRR entries processed. 934 */ 935 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit); 936 937 /** 938 * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR 939 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n) 940 * 941 * Adds a set of pool channels to the portal's static dequeue command register 942 * (SDQCR). The requested pools are limited to those the portal has dequeue 943 * access to. 944 */ 945 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools); 946 947 /* FQ management */ 948 /** 949 * qman_create_fq - Allocates a FQ 950 * @fqid: the index of the FQD to encapsulate, must be "Out of Service" 951 * @flags: bit-mask of QMAN_FQ_FLAG_*** options 952 * @fq: memory for storing the 'fq', with callbacks filled in 953 * 954 * Creates a frame queue object for the given @fqid, unless the 955 * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is 956 * dynamically allocated (or the function fails if none are available). Once 957 * created, the caller should not touch the memory at 'fq' except as extended to 958 * adjacent memory for user-defined fields (see the definition of "struct 959 * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to 960 * pre-existing frame-queues that aren't to be otherwise interfered with, it 961 * prevents all other modifications to the frame queue. The TO_DCPORTAL flag 962 * causes the driver to honour any context_b modifications requested in the 963 * qm_init_fq() API, as this indicates the frame queue will be consumed by a 964 * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by 965 * software portals, the context_b field is controlled by the driver and can't 966 * be modified by the caller. 967 */ 968 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq); 969 970 /** 971 * qman_destroy_fq - Deallocates a FQ 972 * @fq: the frame queue object to release 973 * 974 * The memory for this frame queue object ('fq' provided in qman_create_fq()) is 975 * not deallocated but the caller regains ownership, to do with as desired. The 976 * FQ must be in the 'out-of-service' or in the 'parked' state. 977 */ 978 void qman_destroy_fq(struct qman_fq *fq); 979 980 /** 981 * qman_fq_fqid - Queries the frame queue ID of a FQ object 982 * @fq: the frame queue object to query 983 */ 984 u32 qman_fq_fqid(struct qman_fq *fq); 985 986 /** 987 * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled" 988 * @fq: the frame queue object to modify, must be 'parked' or new. 989 * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options 990 * @opts: the FQ-modification settings, as defined in the low-level API 991 * 992 * The @opts parameter comes from the low-level portal API. Select 993 * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled 994 * rather than parked. NB, @opts can be NULL. 995 * 996 * Note that some fields and options within @opts may be ignored or overwritten 997 * by the driver; 998 * 1. the 'count' and 'fqid' fields are always ignored (this operation only 999 * affects one frame queue: @fq). 1000 * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated 1001 * 'fqd' structure's 'context_b' field are sometimes overwritten; 1002 * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is 1003 * initialised to a value used by the driver for demux. 1004 * - if context_b is initialised for demux, so is context_a in case stashing 1005 * is requested (see item 4). 1006 * (So caller control of context_b is only possible for TO_DCPORTAL frame queue 1007 * objects.) 1008 * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's 1009 * 'dest::channel' field will be overwritten to match the portal used to issue 1010 * the command. If the WE_DESTWQ write-enable bit had already been set by the 1011 * caller, the channel workqueue will be left as-is, otherwise the write-enable 1012 * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag 1013 * isn't set, the destination channel/workqueue fields and the write-enable bit 1014 * are left as-is. 1015 * 4. if the driver overwrites context_a/b for demux, then if 1016 * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite 1017 * context_a.address fields and will leave the stashing fields provided by the 1018 * user alone, otherwise it will zero out the context_a.stashing fields. 1019 */ 1020 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts); 1021 1022 /** 1023 * qman_schedule_fq - Schedules a FQ 1024 * @fq: the frame queue object to schedule, must be 'parked' 1025 * 1026 * Schedules the frame queue, which must be Parked, which takes it to 1027 * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level. 1028 */ 1029 int qman_schedule_fq(struct qman_fq *fq); 1030 1031 /** 1032 * qman_retire_fq - Retires a FQ 1033 * @fq: the frame queue object to retire 1034 * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately 1035 * 1036 * Retires the frame queue. This returns zero if it succeeds immediately, +1 if 1037 * the retirement was started asynchronously, otherwise it returns negative for 1038 * failure. When this function returns zero, @flags is set to indicate whether 1039 * the retired FQ is empty and/or whether it has any ORL fragments (to show up 1040 * as ERNs). Otherwise the corresponding flags will be known when a subsequent 1041 * FQRN message shows up on the portal's message ring. 1042 * 1043 * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or 1044 * Active state), the completion will be via the message ring as a FQRN - but 1045 * the corresponding callback may occur before this function returns!! Ie. the 1046 * caller should be prepared to accept the callback as the function is called, 1047 * not only once it has returned. 1048 */ 1049 int qman_retire_fq(struct qman_fq *fq, u32 *flags); 1050 1051 /** 1052 * qman_oos_fq - Puts a FQ "out of service" 1053 * @fq: the frame queue object to be put out-of-service, must be 'retired' 1054 * 1055 * The frame queue must be retired and empty, and if any order restoration list 1056 * was released as ERNs at the time of retirement, they must all be consumed. 1057 */ 1058 int qman_oos_fq(struct qman_fq *fq); 1059 1060 /* 1061 * qman_volatile_dequeue - Issue a volatile dequeue command 1062 * @fq: the frame queue object to dequeue from 1063 * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options 1064 * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set() 1065 * 1066 * Attempts to lock access to the portal's VDQCR volatile dequeue functionality. 1067 * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and 1068 * the VDQCR is already in use, otherwise returns non-zero for failure. If 1069 * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once 1070 * the VDQCR command has finished executing (ie. once the callback for the last 1071 * DQRR entry resulting from the VDQCR command has been called). If not using 1072 * the FINISH flag, completion can be determined either by detecting the 1073 * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits 1074 * in the "stat" parameter passed to the FQ's dequeue callback, or by waiting 1075 * for the QMAN_FQ_STATE_VDQCR bit to disappear. 1076 */ 1077 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr); 1078 1079 /** 1080 * qman_enqueue - Enqueue a frame to a frame queue 1081 * @fq: the frame queue object to enqueue to 1082 * @fd: a descriptor of the frame to be enqueued 1083 * 1084 * Fills an entry in the EQCR of portal @qm to enqueue the frame described by 1085 * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid' 1086 * field is ignored. The return value is non-zero on error, such as ring full. 1087 */ 1088 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd); 1089 1090 /** 1091 * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs 1092 * @result: is set by the API to the base FQID of the allocated range 1093 * @count: the number of FQIDs required 1094 * 1095 * Returns 0 on success, or a negative error code. 1096 */ 1097 int qman_alloc_fqid_range(u32 *result, u32 count); 1098 #define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1) 1099 1100 /** 1101 * qman_release_fqid - Release the specified frame queue ID 1102 * @fqid: the FQID to be released back to the resource pool 1103 * 1104 * This function can also be used to seed the allocator with 1105 * FQID ranges that it can subsequently allocate from. 1106 * Returns 0 on success, or a negative error code. 1107 */ 1108 int qman_release_fqid(u32 fqid); 1109 1110 /** 1111 * qman_query_fq_np - Queries non-programmable FQD fields 1112 * @fq: the frame queue object to be queried 1113 * @np: storage for the queried FQD fields 1114 */ 1115 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np); 1116 1117 /* Pool-channel management */ 1118 /** 1119 * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs 1120 * @result: is set by the API to the base pool-channel ID of the allocated range 1121 * @count: the number of pool-channel IDs required 1122 * 1123 * Returns 0 on success, or a negative error code. 1124 */ 1125 int qman_alloc_pool_range(u32 *result, u32 count); 1126 #define qman_alloc_pool(result) qman_alloc_pool_range(result, 1) 1127 1128 /** 1129 * qman_release_pool - Release the specified pool-channel ID 1130 * @id: the pool-chan ID to be released back to the resource pool 1131 * 1132 * This function can also be used to seed the allocator with 1133 * pool-channel ID ranges that it can subsequently allocate from. 1134 * Returns 0 on success, or a negative error code. 1135 */ 1136 int qman_release_pool(u32 id); 1137 1138 /* CGR management */ 1139 /** 1140 * qman_create_cgr - Register a congestion group object 1141 * @cgr: the 'cgr' object, with fields filled in 1142 * @flags: QMAN_CGR_FLAG_* values 1143 * @opts: optional state of CGR settings 1144 * 1145 * Registers this object to receiving congestion entry/exit callbacks on the 1146 * portal affine to the cpu portal on which this API is executed. If opts is 1147 * NULL then only the callback (cgr->cb) function is registered. If @flags 1148 * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset 1149 * any unspecified parameters) will be used rather than a modify hw hardware 1150 * (which only modifies the specified parameters). 1151 */ 1152 int qman_create_cgr(struct qman_cgr *cgr, u32 flags, 1153 struct qm_mcc_initcgr *opts); 1154 1155 /** 1156 * qman_delete_cgr - Deregisters a congestion group object 1157 * @cgr: the 'cgr' object to deregister 1158 * 1159 * "Unplugs" this CGR object from the portal affine to the cpu on which this API 1160 * is executed. This must be excuted on the same affine portal on which it was 1161 * created. 1162 */ 1163 int qman_delete_cgr(struct qman_cgr *cgr); 1164 1165 /** 1166 * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU 1167 * @cgr: the 'cgr' object to deregister 1168 * 1169 * This will select the proper CPU and run there qman_delete_cgr(). 1170 */ 1171 void qman_delete_cgr_safe(struct qman_cgr *cgr); 1172 1173 /** 1174 * qman_query_cgr_congested - Queries CGR's congestion status 1175 * @cgr: the 'cgr' object to query 1176 * @result: returns 'cgr's congestion status, 1 (true) if congested 1177 */ 1178 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result); 1179 1180 /** 1181 * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs 1182 * @result: is set by the API to the base CGR ID of the allocated range 1183 * @count: the number of CGR IDs required 1184 * 1185 * Returns 0 on success, or a negative error code. 1186 */ 1187 int qman_alloc_cgrid_range(u32 *result, u32 count); 1188 #define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1) 1189 1190 /** 1191 * qman_release_cgrid - Release the specified CGR ID 1192 * @id: the CGR ID to be released back to the resource pool 1193 * 1194 * This function can also be used to seed the allocator with 1195 * CGR ID ranges that it can subsequently allocate from. 1196 * Returns 0 on success, or a negative error code. 1197 */ 1198 int qman_release_cgrid(u32 id); 1199 1200 /** 1201 * qman_is_probed - Check if qman is probed 1202 * 1203 * Returns 1 if the qman driver successfully probed, -1 if the qman driver 1204 * failed to probe or 0 if the qman driver did not probed yet. 1205 */ 1206 int qman_is_probed(void); 1207 1208 /** 1209 * qman_portals_probed - Check if all cpu bound qman portals are probed 1210 * 1211 * Returns 1 if all the required cpu bound qman portals successfully probed, 1212 * -1 if probe errors appeared or 0 if the qman portals did not yet finished 1213 * probing. 1214 */ 1215 int qman_portals_probed(void); 1216 1217 /** 1218 * qman_dqrr_get_ithresh - Get coalesce interrupt threshold 1219 * @portal: portal to get the value for 1220 * @ithresh: threshold pointer 1221 */ 1222 void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh); 1223 1224 /** 1225 * qman_dqrr_set_ithresh - Set coalesce interrupt threshold 1226 * @portal: portal to set the new value on 1227 * @ithresh: new threshold value 1228 * 1229 * Returns 0 on success, or a negative error code. 1230 */ 1231 int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh); 1232 1233 /** 1234 * qman_dqrr_get_iperiod - Get coalesce interrupt period 1235 * @portal: portal to get the value for 1236 * @iperiod: period pointer 1237 */ 1238 void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod); 1239 1240 /** 1241 * qman_dqrr_set_iperiod - Set coalesce interrupt period 1242 * @portal: portal to set the new value on 1243 * @ithresh: new period value 1244 * 1245 * Returns 0 on success, or a negative error code. 1246 */ 1247 int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod); 1248 1249 #endif /* __FSL_QMAN_H */ 1250