1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/dma-mapping.h> 45 #include <linux/kref.h> 46 #include <linux/list.h> 47 #include <linux/rwsem.h> 48 #include <linux/workqueue.h> 49 #include <linux/irq_poll.h> 50 #include <uapi/linux/if_ether.h> 51 #include <net/ipv6.h> 52 #include <net/ip.h> 53 #include <linux/string.h> 54 #include <linux/slab.h> 55 #include <linux/netdevice.h> 56 #include <linux/refcount.h> 57 #include <linux/if_link.h> 58 #include <linux/atomic.h> 59 #include <linux/mmu_notifier.h> 60 #include <linux/uaccess.h> 61 #include <linux/cgroup_rdma.h> 62 #include <linux/irqflags.h> 63 #include <linux/preempt.h> 64 #include <linux/dim.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/rdma_counter.h> 67 #include <rdma/restrack.h> 68 #include <rdma/signature.h> 69 #include <uapi/rdma/rdma_user_ioctl.h> 70 #include <uapi/rdma/ib_user_ioctl_verbs.h> 71 72 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 73 74 struct ib_umem_odp; 75 struct ib_uqp_object; 76 struct ib_usrq_object; 77 struct ib_uwq_object; 78 79 extern struct workqueue_struct *ib_wq; 80 extern struct workqueue_struct *ib_comp_wq; 81 extern struct workqueue_struct *ib_comp_unbound_wq; 82 83 struct ib_ucq_object; 84 85 __printf(3, 4) __cold 86 void ibdev_printk(const char *level, const struct ib_device *ibdev, 87 const char *format, ...); 88 __printf(2, 3) __cold 89 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 90 __printf(2, 3) __cold 91 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 92 __printf(2, 3) __cold 93 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 94 __printf(2, 3) __cold 95 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 96 __printf(2, 3) __cold 97 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 98 __printf(2, 3) __cold 99 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 100 __printf(2, 3) __cold 101 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 102 103 #if defined(CONFIG_DYNAMIC_DEBUG) 104 #define ibdev_dbg(__dev, format, args...) \ 105 dynamic_ibdev_dbg(__dev, format, ##args) 106 #else 107 __printf(2, 3) __cold 108 static inline 109 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 110 #endif 111 112 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 113 do { \ 114 static DEFINE_RATELIMIT_STATE(_rs, \ 115 DEFAULT_RATELIMIT_INTERVAL, \ 116 DEFAULT_RATELIMIT_BURST); \ 117 if (__ratelimit(&_rs)) \ 118 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 119 } while (0) 120 121 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 122 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 123 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 124 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 125 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 126 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 127 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 128 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 129 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 130 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 131 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 132 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 133 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 134 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 135 136 #if defined(CONFIG_DYNAMIC_DEBUG) 137 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 138 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 139 do { \ 140 static DEFINE_RATELIMIT_STATE(_rs, \ 141 DEFAULT_RATELIMIT_INTERVAL, \ 142 DEFAULT_RATELIMIT_BURST); \ 143 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 144 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 145 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 146 ##__VA_ARGS__); \ 147 } while (0) 148 #else 149 __printf(2, 3) __cold 150 static inline 151 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 152 #endif 153 154 union ib_gid { 155 u8 raw[16]; 156 struct { 157 __be64 subnet_prefix; 158 __be64 interface_id; 159 } global; 160 }; 161 162 extern union ib_gid zgid; 163 164 enum ib_gid_type { 165 /* If link layer is Ethernet, this is RoCE V1 */ 166 IB_GID_TYPE_IB = 0, 167 IB_GID_TYPE_ROCE = 0, 168 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 169 IB_GID_TYPE_SIZE 170 }; 171 172 #define ROCE_V2_UDP_DPORT 4791 173 struct ib_gid_attr { 174 struct net_device __rcu *ndev; 175 struct ib_device *device; 176 union ib_gid gid; 177 enum ib_gid_type gid_type; 178 u16 index; 179 u8 port_num; 180 }; 181 182 enum { 183 /* set the local administered indication */ 184 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 185 }; 186 187 enum rdma_transport_type { 188 RDMA_TRANSPORT_IB, 189 RDMA_TRANSPORT_IWARP, 190 RDMA_TRANSPORT_USNIC, 191 RDMA_TRANSPORT_USNIC_UDP, 192 RDMA_TRANSPORT_UNSPECIFIED, 193 }; 194 195 enum rdma_protocol_type { 196 RDMA_PROTOCOL_IB, 197 RDMA_PROTOCOL_IBOE, 198 RDMA_PROTOCOL_IWARP, 199 RDMA_PROTOCOL_USNIC_UDP 200 }; 201 202 __attribute_const__ enum rdma_transport_type 203 rdma_node_get_transport(unsigned int node_type); 204 205 enum rdma_network_type { 206 RDMA_NETWORK_IB, 207 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 208 RDMA_NETWORK_IPV4, 209 RDMA_NETWORK_IPV6 210 }; 211 212 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 213 { 214 if (network_type == RDMA_NETWORK_IPV4 || 215 network_type == RDMA_NETWORK_IPV6) 216 return IB_GID_TYPE_ROCE_UDP_ENCAP; 217 218 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 219 return IB_GID_TYPE_IB; 220 } 221 222 static inline enum rdma_network_type 223 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 224 { 225 if (attr->gid_type == IB_GID_TYPE_IB) 226 return RDMA_NETWORK_IB; 227 228 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 229 return RDMA_NETWORK_IPV4; 230 else 231 return RDMA_NETWORK_IPV6; 232 } 233 234 enum rdma_link_layer { 235 IB_LINK_LAYER_UNSPECIFIED, 236 IB_LINK_LAYER_INFINIBAND, 237 IB_LINK_LAYER_ETHERNET, 238 }; 239 240 enum ib_device_cap_flags { 241 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 242 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 243 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 244 IB_DEVICE_RAW_MULTI = (1 << 3), 245 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 246 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 247 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 248 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 249 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 250 /* Not in use, former INIT_TYPE = (1 << 9),*/ 251 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 252 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 253 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 254 IB_DEVICE_SRQ_RESIZE = (1 << 13), 255 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 256 257 /* 258 * This device supports a per-device lkey or stag that can be 259 * used without performing a memory registration for the local 260 * memory. Note that ULPs should never check this flag, but 261 * instead of use the local_dma_lkey flag in the ib_pd structure, 262 * which will always contain a usable lkey. 263 */ 264 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 265 /* Reserved, old SEND_W_INV = (1 << 16),*/ 266 IB_DEVICE_MEM_WINDOW = (1 << 17), 267 /* 268 * Devices should set IB_DEVICE_UD_IP_SUM if they support 269 * insertion of UDP and TCP checksum on outgoing UD IPoIB 270 * messages and can verify the validity of checksum for 271 * incoming messages. Setting this flag implies that the 272 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 273 */ 274 IB_DEVICE_UD_IP_CSUM = (1 << 18), 275 IB_DEVICE_UD_TSO = (1 << 19), 276 IB_DEVICE_XRC = (1 << 20), 277 278 /* 279 * This device supports the IB "base memory management extension", 280 * which includes support for fast registrations (IB_WR_REG_MR, 281 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 282 * also be set by any iWarp device which must support FRs to comply 283 * to the iWarp verbs spec. iWarp devices also support the 284 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 285 * stag. 286 */ 287 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 288 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 289 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 290 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 291 IB_DEVICE_RC_IP_CSUM = (1 << 25), 292 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 293 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 294 /* 295 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 296 * support execution of WQEs that involve synchronization 297 * of I/O operations with single completion queue managed 298 * by hardware. 299 */ 300 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 301 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 302 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 303 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 304 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 305 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 306 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 307 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 308 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 309 /* The device supports padding incoming writes to cacheline. */ 310 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 311 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 312 }; 313 314 enum ib_atomic_cap { 315 IB_ATOMIC_NONE, 316 IB_ATOMIC_HCA, 317 IB_ATOMIC_GLOB 318 }; 319 320 enum ib_odp_general_cap_bits { 321 IB_ODP_SUPPORT = 1 << 0, 322 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 323 }; 324 325 enum ib_odp_transport_cap_bits { 326 IB_ODP_SUPPORT_SEND = 1 << 0, 327 IB_ODP_SUPPORT_RECV = 1 << 1, 328 IB_ODP_SUPPORT_WRITE = 1 << 2, 329 IB_ODP_SUPPORT_READ = 1 << 3, 330 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 331 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 332 }; 333 334 struct ib_odp_caps { 335 uint64_t general_caps; 336 struct { 337 uint32_t rc_odp_caps; 338 uint32_t uc_odp_caps; 339 uint32_t ud_odp_caps; 340 uint32_t xrc_odp_caps; 341 } per_transport_caps; 342 }; 343 344 struct ib_rss_caps { 345 /* Corresponding bit will be set if qp type from 346 * 'enum ib_qp_type' is supported, e.g. 347 * supported_qpts |= 1 << IB_QPT_UD 348 */ 349 u32 supported_qpts; 350 u32 max_rwq_indirection_tables; 351 u32 max_rwq_indirection_table_size; 352 }; 353 354 enum ib_tm_cap_flags { 355 /* Support tag matching with rendezvous offload for RC transport */ 356 IB_TM_CAP_RNDV_RC = 1 << 0, 357 }; 358 359 struct ib_tm_caps { 360 /* Max size of RNDV header */ 361 u32 max_rndv_hdr_size; 362 /* Max number of entries in tag matching list */ 363 u32 max_num_tags; 364 /* From enum ib_tm_cap_flags */ 365 u32 flags; 366 /* Max number of outstanding list operations */ 367 u32 max_ops; 368 /* Max number of SGE in tag matching entry */ 369 u32 max_sge; 370 }; 371 372 struct ib_cq_init_attr { 373 unsigned int cqe; 374 u32 comp_vector; 375 u32 flags; 376 }; 377 378 enum ib_cq_attr_mask { 379 IB_CQ_MODERATE = 1 << 0, 380 }; 381 382 struct ib_cq_caps { 383 u16 max_cq_moderation_count; 384 u16 max_cq_moderation_period; 385 }; 386 387 struct ib_dm_mr_attr { 388 u64 length; 389 u64 offset; 390 u32 access_flags; 391 }; 392 393 struct ib_dm_alloc_attr { 394 u64 length; 395 u32 alignment; 396 u32 flags; 397 }; 398 399 struct ib_device_attr { 400 u64 fw_ver; 401 __be64 sys_image_guid; 402 u64 max_mr_size; 403 u64 page_size_cap; 404 u32 vendor_id; 405 u32 vendor_part_id; 406 u32 hw_ver; 407 int max_qp; 408 int max_qp_wr; 409 u64 device_cap_flags; 410 int max_send_sge; 411 int max_recv_sge; 412 int max_sge_rd; 413 int max_cq; 414 int max_cqe; 415 int max_mr; 416 int max_pd; 417 int max_qp_rd_atom; 418 int max_ee_rd_atom; 419 int max_res_rd_atom; 420 int max_qp_init_rd_atom; 421 int max_ee_init_rd_atom; 422 enum ib_atomic_cap atomic_cap; 423 enum ib_atomic_cap masked_atomic_cap; 424 int max_ee; 425 int max_rdd; 426 int max_mw; 427 int max_raw_ipv6_qp; 428 int max_raw_ethy_qp; 429 int max_mcast_grp; 430 int max_mcast_qp_attach; 431 int max_total_mcast_qp_attach; 432 int max_ah; 433 int max_fmr; 434 int max_map_per_fmr; 435 int max_srq; 436 int max_srq_wr; 437 int max_srq_sge; 438 unsigned int max_fast_reg_page_list_len; 439 unsigned int max_pi_fast_reg_page_list_len; 440 u16 max_pkeys; 441 u8 local_ca_ack_delay; 442 int sig_prot_cap; 443 int sig_guard_cap; 444 struct ib_odp_caps odp_caps; 445 uint64_t timestamp_mask; 446 uint64_t hca_core_clock; /* in KHZ */ 447 struct ib_rss_caps rss_caps; 448 u32 max_wq_type_rq; 449 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 450 struct ib_tm_caps tm_caps; 451 struct ib_cq_caps cq_caps; 452 u64 max_dm_size; 453 /* Max entries for sgl for optimized performance per READ */ 454 u32 max_sgl_rd; 455 }; 456 457 enum ib_mtu { 458 IB_MTU_256 = 1, 459 IB_MTU_512 = 2, 460 IB_MTU_1024 = 3, 461 IB_MTU_2048 = 4, 462 IB_MTU_4096 = 5 463 }; 464 465 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 466 { 467 switch (mtu) { 468 case IB_MTU_256: return 256; 469 case IB_MTU_512: return 512; 470 case IB_MTU_1024: return 1024; 471 case IB_MTU_2048: return 2048; 472 case IB_MTU_4096: return 4096; 473 default: return -1; 474 } 475 } 476 477 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 478 { 479 if (mtu >= 4096) 480 return IB_MTU_4096; 481 else if (mtu >= 2048) 482 return IB_MTU_2048; 483 else if (mtu >= 1024) 484 return IB_MTU_1024; 485 else if (mtu >= 512) 486 return IB_MTU_512; 487 else 488 return IB_MTU_256; 489 } 490 491 enum ib_port_state { 492 IB_PORT_NOP = 0, 493 IB_PORT_DOWN = 1, 494 IB_PORT_INIT = 2, 495 IB_PORT_ARMED = 3, 496 IB_PORT_ACTIVE = 4, 497 IB_PORT_ACTIVE_DEFER = 5 498 }; 499 500 enum ib_port_phys_state { 501 IB_PORT_PHYS_STATE_SLEEP = 1, 502 IB_PORT_PHYS_STATE_POLLING = 2, 503 IB_PORT_PHYS_STATE_DISABLED = 3, 504 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 505 IB_PORT_PHYS_STATE_LINK_UP = 5, 506 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 507 IB_PORT_PHYS_STATE_PHY_TEST = 7, 508 }; 509 510 enum ib_port_width { 511 IB_WIDTH_1X = 1, 512 IB_WIDTH_2X = 16, 513 IB_WIDTH_4X = 2, 514 IB_WIDTH_8X = 4, 515 IB_WIDTH_12X = 8 516 }; 517 518 static inline int ib_width_enum_to_int(enum ib_port_width width) 519 { 520 switch (width) { 521 case IB_WIDTH_1X: return 1; 522 case IB_WIDTH_2X: return 2; 523 case IB_WIDTH_4X: return 4; 524 case IB_WIDTH_8X: return 8; 525 case IB_WIDTH_12X: return 12; 526 default: return -1; 527 } 528 } 529 530 enum ib_port_speed { 531 IB_SPEED_SDR = 1, 532 IB_SPEED_DDR = 2, 533 IB_SPEED_QDR = 4, 534 IB_SPEED_FDR10 = 8, 535 IB_SPEED_FDR = 16, 536 IB_SPEED_EDR = 32, 537 IB_SPEED_HDR = 64 538 }; 539 540 /** 541 * struct rdma_hw_stats 542 * @lock - Mutex to protect parallel write access to lifespan and values 543 * of counters, which are 64bits and not guaranteeed to be written 544 * atomicaly on 32bits systems. 545 * @timestamp - Used by the core code to track when the last update was 546 * @lifespan - Used by the core code to determine how old the counters 547 * should be before being updated again. Stored in jiffies, defaults 548 * to 10 milliseconds, drivers can override the default be specifying 549 * their own value during their allocation routine. 550 * @name - Array of pointers to static names used for the counters in 551 * directory. 552 * @num_counters - How many hardware counters there are. If name is 553 * shorter than this number, a kernel oops will result. Driver authors 554 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 555 * in their code to prevent this. 556 * @value - Array of u64 counters that are accessed by the sysfs code and 557 * filled in by the drivers get_stats routine 558 */ 559 struct rdma_hw_stats { 560 struct mutex lock; /* Protect lifespan and values[] */ 561 unsigned long timestamp; 562 unsigned long lifespan; 563 const char * const *names; 564 int num_counters; 565 u64 value[]; 566 }; 567 568 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 569 /** 570 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 571 * for drivers. 572 * @names - Array of static const char * 573 * @num_counters - How many elements in array 574 * @lifespan - How many milliseconds between updates 575 */ 576 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 577 const char * const *names, int num_counters, 578 unsigned long lifespan) 579 { 580 struct rdma_hw_stats *stats; 581 582 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 583 GFP_KERNEL); 584 if (!stats) 585 return NULL; 586 stats->names = names; 587 stats->num_counters = num_counters; 588 stats->lifespan = msecs_to_jiffies(lifespan); 589 590 return stats; 591 } 592 593 594 /* Define bits for the various functionality this port needs to be supported by 595 * the core. 596 */ 597 /* Management 0x00000FFF */ 598 #define RDMA_CORE_CAP_IB_MAD 0x00000001 599 #define RDMA_CORE_CAP_IB_SMI 0x00000002 600 #define RDMA_CORE_CAP_IB_CM 0x00000004 601 #define RDMA_CORE_CAP_IW_CM 0x00000008 602 #define RDMA_CORE_CAP_IB_SA 0x00000010 603 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 604 605 /* Address format 0x000FF000 */ 606 #define RDMA_CORE_CAP_AF_IB 0x00001000 607 #define RDMA_CORE_CAP_ETH_AH 0x00002000 608 #define RDMA_CORE_CAP_OPA_AH 0x00004000 609 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 610 611 /* Protocol 0xFFF00000 */ 612 #define RDMA_CORE_CAP_PROT_IB 0x00100000 613 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 614 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 615 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 616 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 617 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 618 619 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 620 | RDMA_CORE_CAP_PROT_ROCE \ 621 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 622 623 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 624 | RDMA_CORE_CAP_IB_MAD \ 625 | RDMA_CORE_CAP_IB_SMI \ 626 | RDMA_CORE_CAP_IB_CM \ 627 | RDMA_CORE_CAP_IB_SA \ 628 | RDMA_CORE_CAP_AF_IB) 629 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 630 | RDMA_CORE_CAP_IB_MAD \ 631 | RDMA_CORE_CAP_IB_CM \ 632 | RDMA_CORE_CAP_AF_IB \ 633 | RDMA_CORE_CAP_ETH_AH) 634 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 635 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 636 | RDMA_CORE_CAP_IB_MAD \ 637 | RDMA_CORE_CAP_IB_CM \ 638 | RDMA_CORE_CAP_AF_IB \ 639 | RDMA_CORE_CAP_ETH_AH) 640 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 641 | RDMA_CORE_CAP_IW_CM) 642 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 643 | RDMA_CORE_CAP_OPA_MAD) 644 645 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 646 647 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 648 649 struct ib_port_attr { 650 u64 subnet_prefix; 651 enum ib_port_state state; 652 enum ib_mtu max_mtu; 653 enum ib_mtu active_mtu; 654 int gid_tbl_len; 655 unsigned int ip_gids:1; 656 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 657 u32 port_cap_flags; 658 u32 max_msg_sz; 659 u32 bad_pkey_cntr; 660 u32 qkey_viol_cntr; 661 u16 pkey_tbl_len; 662 u32 sm_lid; 663 u32 lid; 664 u8 lmc; 665 u8 max_vl_num; 666 u8 sm_sl; 667 u8 subnet_timeout; 668 u8 init_type_reply; 669 u8 active_width; 670 u8 active_speed; 671 u8 phys_state; 672 u16 port_cap_flags2; 673 }; 674 675 enum ib_device_modify_flags { 676 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 677 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 678 }; 679 680 #define IB_DEVICE_NODE_DESC_MAX 64 681 682 struct ib_device_modify { 683 u64 sys_image_guid; 684 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 685 }; 686 687 enum ib_port_modify_flags { 688 IB_PORT_SHUTDOWN = 1, 689 IB_PORT_INIT_TYPE = (1<<2), 690 IB_PORT_RESET_QKEY_CNTR = (1<<3), 691 IB_PORT_OPA_MASK_CHG = (1<<4) 692 }; 693 694 struct ib_port_modify { 695 u32 set_port_cap_mask; 696 u32 clr_port_cap_mask; 697 u8 init_type; 698 }; 699 700 enum ib_event_type { 701 IB_EVENT_CQ_ERR, 702 IB_EVENT_QP_FATAL, 703 IB_EVENT_QP_REQ_ERR, 704 IB_EVENT_QP_ACCESS_ERR, 705 IB_EVENT_COMM_EST, 706 IB_EVENT_SQ_DRAINED, 707 IB_EVENT_PATH_MIG, 708 IB_EVENT_PATH_MIG_ERR, 709 IB_EVENT_DEVICE_FATAL, 710 IB_EVENT_PORT_ACTIVE, 711 IB_EVENT_PORT_ERR, 712 IB_EVENT_LID_CHANGE, 713 IB_EVENT_PKEY_CHANGE, 714 IB_EVENT_SM_CHANGE, 715 IB_EVENT_SRQ_ERR, 716 IB_EVENT_SRQ_LIMIT_REACHED, 717 IB_EVENT_QP_LAST_WQE_REACHED, 718 IB_EVENT_CLIENT_REREGISTER, 719 IB_EVENT_GID_CHANGE, 720 IB_EVENT_WQ_FATAL, 721 }; 722 723 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 724 725 struct ib_event { 726 struct ib_device *device; 727 union { 728 struct ib_cq *cq; 729 struct ib_qp *qp; 730 struct ib_srq *srq; 731 struct ib_wq *wq; 732 u8 port_num; 733 } element; 734 enum ib_event_type event; 735 }; 736 737 struct ib_event_handler { 738 struct ib_device *device; 739 void (*handler)(struct ib_event_handler *, struct ib_event *); 740 struct list_head list; 741 }; 742 743 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 744 do { \ 745 (_ptr)->device = _device; \ 746 (_ptr)->handler = _handler; \ 747 INIT_LIST_HEAD(&(_ptr)->list); \ 748 } while (0) 749 750 struct ib_global_route { 751 const struct ib_gid_attr *sgid_attr; 752 union ib_gid dgid; 753 u32 flow_label; 754 u8 sgid_index; 755 u8 hop_limit; 756 u8 traffic_class; 757 }; 758 759 struct ib_grh { 760 __be32 version_tclass_flow; 761 __be16 paylen; 762 u8 next_hdr; 763 u8 hop_limit; 764 union ib_gid sgid; 765 union ib_gid dgid; 766 }; 767 768 union rdma_network_hdr { 769 struct ib_grh ibgrh; 770 struct { 771 /* The IB spec states that if it's IPv4, the header 772 * is located in the last 20 bytes of the header. 773 */ 774 u8 reserved[20]; 775 struct iphdr roce4grh; 776 }; 777 }; 778 779 #define IB_QPN_MASK 0xFFFFFF 780 781 enum { 782 IB_MULTICAST_QPN = 0xffffff 783 }; 784 785 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 786 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 787 788 enum ib_ah_flags { 789 IB_AH_GRH = 1 790 }; 791 792 enum ib_rate { 793 IB_RATE_PORT_CURRENT = 0, 794 IB_RATE_2_5_GBPS = 2, 795 IB_RATE_5_GBPS = 5, 796 IB_RATE_10_GBPS = 3, 797 IB_RATE_20_GBPS = 6, 798 IB_RATE_30_GBPS = 4, 799 IB_RATE_40_GBPS = 7, 800 IB_RATE_60_GBPS = 8, 801 IB_RATE_80_GBPS = 9, 802 IB_RATE_120_GBPS = 10, 803 IB_RATE_14_GBPS = 11, 804 IB_RATE_56_GBPS = 12, 805 IB_RATE_112_GBPS = 13, 806 IB_RATE_168_GBPS = 14, 807 IB_RATE_25_GBPS = 15, 808 IB_RATE_100_GBPS = 16, 809 IB_RATE_200_GBPS = 17, 810 IB_RATE_300_GBPS = 18, 811 IB_RATE_28_GBPS = 19, 812 IB_RATE_50_GBPS = 20, 813 IB_RATE_400_GBPS = 21, 814 IB_RATE_600_GBPS = 22, 815 }; 816 817 /** 818 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 819 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 820 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 821 * @rate: rate to convert. 822 */ 823 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 824 825 /** 826 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 827 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 828 * @rate: rate to convert. 829 */ 830 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 831 832 833 /** 834 * enum ib_mr_type - memory region type 835 * @IB_MR_TYPE_MEM_REG: memory region that is used for 836 * normal registration 837 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 838 * register any arbitrary sg lists (without 839 * the normal mr constraints - see 840 * ib_map_mr_sg) 841 * @IB_MR_TYPE_DM: memory region that is used for device 842 * memory registration 843 * @IB_MR_TYPE_USER: memory region that is used for the user-space 844 * application 845 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 846 * without address translations (VA=PA) 847 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 848 * data integrity operations 849 */ 850 enum ib_mr_type { 851 IB_MR_TYPE_MEM_REG, 852 IB_MR_TYPE_SG_GAPS, 853 IB_MR_TYPE_DM, 854 IB_MR_TYPE_USER, 855 IB_MR_TYPE_DMA, 856 IB_MR_TYPE_INTEGRITY, 857 }; 858 859 enum ib_mr_status_check { 860 IB_MR_CHECK_SIG_STATUS = 1, 861 }; 862 863 /** 864 * struct ib_mr_status - Memory region status container 865 * 866 * @fail_status: Bitmask of MR checks status. For each 867 * failed check a corresponding status bit is set. 868 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 869 * failure. 870 */ 871 struct ib_mr_status { 872 u32 fail_status; 873 struct ib_sig_err sig_err; 874 }; 875 876 /** 877 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 878 * enum. 879 * @mult: multiple to convert. 880 */ 881 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 882 883 struct rdma_ah_init_attr { 884 struct rdma_ah_attr *ah_attr; 885 u32 flags; 886 struct net_device *xmit_slave; 887 }; 888 889 enum rdma_ah_attr_type { 890 RDMA_AH_ATTR_TYPE_UNDEFINED, 891 RDMA_AH_ATTR_TYPE_IB, 892 RDMA_AH_ATTR_TYPE_ROCE, 893 RDMA_AH_ATTR_TYPE_OPA, 894 }; 895 896 struct ib_ah_attr { 897 u16 dlid; 898 u8 src_path_bits; 899 }; 900 901 struct roce_ah_attr { 902 u8 dmac[ETH_ALEN]; 903 }; 904 905 struct opa_ah_attr { 906 u32 dlid; 907 u8 src_path_bits; 908 bool make_grd; 909 }; 910 911 struct rdma_ah_attr { 912 struct ib_global_route grh; 913 u8 sl; 914 u8 static_rate; 915 u8 port_num; 916 u8 ah_flags; 917 enum rdma_ah_attr_type type; 918 union { 919 struct ib_ah_attr ib; 920 struct roce_ah_attr roce; 921 struct opa_ah_attr opa; 922 }; 923 }; 924 925 enum ib_wc_status { 926 IB_WC_SUCCESS, 927 IB_WC_LOC_LEN_ERR, 928 IB_WC_LOC_QP_OP_ERR, 929 IB_WC_LOC_EEC_OP_ERR, 930 IB_WC_LOC_PROT_ERR, 931 IB_WC_WR_FLUSH_ERR, 932 IB_WC_MW_BIND_ERR, 933 IB_WC_BAD_RESP_ERR, 934 IB_WC_LOC_ACCESS_ERR, 935 IB_WC_REM_INV_REQ_ERR, 936 IB_WC_REM_ACCESS_ERR, 937 IB_WC_REM_OP_ERR, 938 IB_WC_RETRY_EXC_ERR, 939 IB_WC_RNR_RETRY_EXC_ERR, 940 IB_WC_LOC_RDD_VIOL_ERR, 941 IB_WC_REM_INV_RD_REQ_ERR, 942 IB_WC_REM_ABORT_ERR, 943 IB_WC_INV_EECN_ERR, 944 IB_WC_INV_EEC_STATE_ERR, 945 IB_WC_FATAL_ERR, 946 IB_WC_RESP_TIMEOUT_ERR, 947 IB_WC_GENERAL_ERR 948 }; 949 950 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 951 952 enum ib_wc_opcode { 953 IB_WC_SEND, 954 IB_WC_RDMA_WRITE, 955 IB_WC_RDMA_READ, 956 IB_WC_COMP_SWAP, 957 IB_WC_FETCH_ADD, 958 IB_WC_LSO, 959 IB_WC_LOCAL_INV, 960 IB_WC_REG_MR, 961 IB_WC_MASKED_COMP_SWAP, 962 IB_WC_MASKED_FETCH_ADD, 963 /* 964 * Set value of IB_WC_RECV so consumers can test if a completion is a 965 * receive by testing (opcode & IB_WC_RECV). 966 */ 967 IB_WC_RECV = 1 << 7, 968 IB_WC_RECV_RDMA_WITH_IMM 969 }; 970 971 enum ib_wc_flags { 972 IB_WC_GRH = 1, 973 IB_WC_WITH_IMM = (1<<1), 974 IB_WC_WITH_INVALIDATE = (1<<2), 975 IB_WC_IP_CSUM_OK = (1<<3), 976 IB_WC_WITH_SMAC = (1<<4), 977 IB_WC_WITH_VLAN = (1<<5), 978 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 979 }; 980 981 struct ib_wc { 982 union { 983 u64 wr_id; 984 struct ib_cqe *wr_cqe; 985 }; 986 enum ib_wc_status status; 987 enum ib_wc_opcode opcode; 988 u32 vendor_err; 989 u32 byte_len; 990 struct ib_qp *qp; 991 union { 992 __be32 imm_data; 993 u32 invalidate_rkey; 994 } ex; 995 u32 src_qp; 996 u32 slid; 997 int wc_flags; 998 u16 pkey_index; 999 u8 sl; 1000 u8 dlid_path_bits; 1001 u8 port_num; /* valid only for DR SMPs on switches */ 1002 u8 smac[ETH_ALEN]; 1003 u16 vlan_id; 1004 u8 network_hdr_type; 1005 }; 1006 1007 enum ib_cq_notify_flags { 1008 IB_CQ_SOLICITED = 1 << 0, 1009 IB_CQ_NEXT_COMP = 1 << 1, 1010 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1011 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1012 }; 1013 1014 enum ib_srq_type { 1015 IB_SRQT_BASIC, 1016 IB_SRQT_XRC, 1017 IB_SRQT_TM, 1018 }; 1019 1020 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1021 { 1022 return srq_type == IB_SRQT_XRC || 1023 srq_type == IB_SRQT_TM; 1024 } 1025 1026 enum ib_srq_attr_mask { 1027 IB_SRQ_MAX_WR = 1 << 0, 1028 IB_SRQ_LIMIT = 1 << 1, 1029 }; 1030 1031 struct ib_srq_attr { 1032 u32 max_wr; 1033 u32 max_sge; 1034 u32 srq_limit; 1035 }; 1036 1037 struct ib_srq_init_attr { 1038 void (*event_handler)(struct ib_event *, void *); 1039 void *srq_context; 1040 struct ib_srq_attr attr; 1041 enum ib_srq_type srq_type; 1042 1043 struct { 1044 struct ib_cq *cq; 1045 union { 1046 struct { 1047 struct ib_xrcd *xrcd; 1048 } xrc; 1049 1050 struct { 1051 u32 max_num_tags; 1052 } tag_matching; 1053 }; 1054 } ext; 1055 }; 1056 1057 struct ib_qp_cap { 1058 u32 max_send_wr; 1059 u32 max_recv_wr; 1060 u32 max_send_sge; 1061 u32 max_recv_sge; 1062 u32 max_inline_data; 1063 1064 /* 1065 * Maximum number of rdma_rw_ctx structures in flight at a time. 1066 * ib_create_qp() will calculate the right amount of neededed WRs 1067 * and MRs based on this. 1068 */ 1069 u32 max_rdma_ctxs; 1070 }; 1071 1072 enum ib_sig_type { 1073 IB_SIGNAL_ALL_WR, 1074 IB_SIGNAL_REQ_WR 1075 }; 1076 1077 enum ib_qp_type { 1078 /* 1079 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1080 * here (and in that order) since the MAD layer uses them as 1081 * indices into a 2-entry table. 1082 */ 1083 IB_QPT_SMI, 1084 IB_QPT_GSI, 1085 1086 IB_QPT_RC, 1087 IB_QPT_UC, 1088 IB_QPT_UD, 1089 IB_QPT_RAW_IPV6, 1090 IB_QPT_RAW_ETHERTYPE, 1091 IB_QPT_RAW_PACKET = 8, 1092 IB_QPT_XRC_INI = 9, 1093 IB_QPT_XRC_TGT, 1094 IB_QPT_MAX, 1095 IB_QPT_DRIVER = 0xFF, 1096 /* Reserve a range for qp types internal to the low level driver. 1097 * These qp types will not be visible at the IB core layer, so the 1098 * IB_QPT_MAX usages should not be affected in the core layer 1099 */ 1100 IB_QPT_RESERVED1 = 0x1000, 1101 IB_QPT_RESERVED2, 1102 IB_QPT_RESERVED3, 1103 IB_QPT_RESERVED4, 1104 IB_QPT_RESERVED5, 1105 IB_QPT_RESERVED6, 1106 IB_QPT_RESERVED7, 1107 IB_QPT_RESERVED8, 1108 IB_QPT_RESERVED9, 1109 IB_QPT_RESERVED10, 1110 }; 1111 1112 enum ib_qp_create_flags { 1113 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1114 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1115 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1116 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1117 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1118 IB_QP_CREATE_NETIF_QP = 1 << 5, 1119 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1120 /* FREE = 1 << 7, */ 1121 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1122 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1123 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1124 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1125 /* reserve bits 26-31 for low level drivers' internal use */ 1126 IB_QP_CREATE_RESERVED_START = 1 << 26, 1127 IB_QP_CREATE_RESERVED_END = 1 << 31, 1128 }; 1129 1130 /* 1131 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1132 * callback to destroy the passed in QP. 1133 */ 1134 1135 struct ib_qp_init_attr { 1136 /* Consumer's event_handler callback must not block */ 1137 void (*event_handler)(struct ib_event *, void *); 1138 1139 void *qp_context; 1140 struct ib_cq *send_cq; 1141 struct ib_cq *recv_cq; 1142 struct ib_srq *srq; 1143 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1144 struct ib_qp_cap cap; 1145 enum ib_sig_type sq_sig_type; 1146 enum ib_qp_type qp_type; 1147 u32 create_flags; 1148 1149 /* 1150 * Only needed for special QP types, or when using the RW API. 1151 */ 1152 u8 port_num; 1153 struct ib_rwq_ind_table *rwq_ind_tbl; 1154 u32 source_qpn; 1155 }; 1156 1157 struct ib_qp_open_attr { 1158 void (*event_handler)(struct ib_event *, void *); 1159 void *qp_context; 1160 u32 qp_num; 1161 enum ib_qp_type qp_type; 1162 }; 1163 1164 enum ib_rnr_timeout { 1165 IB_RNR_TIMER_655_36 = 0, 1166 IB_RNR_TIMER_000_01 = 1, 1167 IB_RNR_TIMER_000_02 = 2, 1168 IB_RNR_TIMER_000_03 = 3, 1169 IB_RNR_TIMER_000_04 = 4, 1170 IB_RNR_TIMER_000_06 = 5, 1171 IB_RNR_TIMER_000_08 = 6, 1172 IB_RNR_TIMER_000_12 = 7, 1173 IB_RNR_TIMER_000_16 = 8, 1174 IB_RNR_TIMER_000_24 = 9, 1175 IB_RNR_TIMER_000_32 = 10, 1176 IB_RNR_TIMER_000_48 = 11, 1177 IB_RNR_TIMER_000_64 = 12, 1178 IB_RNR_TIMER_000_96 = 13, 1179 IB_RNR_TIMER_001_28 = 14, 1180 IB_RNR_TIMER_001_92 = 15, 1181 IB_RNR_TIMER_002_56 = 16, 1182 IB_RNR_TIMER_003_84 = 17, 1183 IB_RNR_TIMER_005_12 = 18, 1184 IB_RNR_TIMER_007_68 = 19, 1185 IB_RNR_TIMER_010_24 = 20, 1186 IB_RNR_TIMER_015_36 = 21, 1187 IB_RNR_TIMER_020_48 = 22, 1188 IB_RNR_TIMER_030_72 = 23, 1189 IB_RNR_TIMER_040_96 = 24, 1190 IB_RNR_TIMER_061_44 = 25, 1191 IB_RNR_TIMER_081_92 = 26, 1192 IB_RNR_TIMER_122_88 = 27, 1193 IB_RNR_TIMER_163_84 = 28, 1194 IB_RNR_TIMER_245_76 = 29, 1195 IB_RNR_TIMER_327_68 = 30, 1196 IB_RNR_TIMER_491_52 = 31 1197 }; 1198 1199 enum ib_qp_attr_mask { 1200 IB_QP_STATE = 1, 1201 IB_QP_CUR_STATE = (1<<1), 1202 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1203 IB_QP_ACCESS_FLAGS = (1<<3), 1204 IB_QP_PKEY_INDEX = (1<<4), 1205 IB_QP_PORT = (1<<5), 1206 IB_QP_QKEY = (1<<6), 1207 IB_QP_AV = (1<<7), 1208 IB_QP_PATH_MTU = (1<<8), 1209 IB_QP_TIMEOUT = (1<<9), 1210 IB_QP_RETRY_CNT = (1<<10), 1211 IB_QP_RNR_RETRY = (1<<11), 1212 IB_QP_RQ_PSN = (1<<12), 1213 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1214 IB_QP_ALT_PATH = (1<<14), 1215 IB_QP_MIN_RNR_TIMER = (1<<15), 1216 IB_QP_SQ_PSN = (1<<16), 1217 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1218 IB_QP_PATH_MIG_STATE = (1<<18), 1219 IB_QP_CAP = (1<<19), 1220 IB_QP_DEST_QPN = (1<<20), 1221 IB_QP_RESERVED1 = (1<<21), 1222 IB_QP_RESERVED2 = (1<<22), 1223 IB_QP_RESERVED3 = (1<<23), 1224 IB_QP_RESERVED4 = (1<<24), 1225 IB_QP_RATE_LIMIT = (1<<25), 1226 }; 1227 1228 enum ib_qp_state { 1229 IB_QPS_RESET, 1230 IB_QPS_INIT, 1231 IB_QPS_RTR, 1232 IB_QPS_RTS, 1233 IB_QPS_SQD, 1234 IB_QPS_SQE, 1235 IB_QPS_ERR 1236 }; 1237 1238 enum ib_mig_state { 1239 IB_MIG_MIGRATED, 1240 IB_MIG_REARM, 1241 IB_MIG_ARMED 1242 }; 1243 1244 enum ib_mw_type { 1245 IB_MW_TYPE_1 = 1, 1246 IB_MW_TYPE_2 = 2 1247 }; 1248 1249 struct ib_qp_attr { 1250 enum ib_qp_state qp_state; 1251 enum ib_qp_state cur_qp_state; 1252 enum ib_mtu path_mtu; 1253 enum ib_mig_state path_mig_state; 1254 u32 qkey; 1255 u32 rq_psn; 1256 u32 sq_psn; 1257 u32 dest_qp_num; 1258 int qp_access_flags; 1259 struct ib_qp_cap cap; 1260 struct rdma_ah_attr ah_attr; 1261 struct rdma_ah_attr alt_ah_attr; 1262 u16 pkey_index; 1263 u16 alt_pkey_index; 1264 u8 en_sqd_async_notify; 1265 u8 sq_draining; 1266 u8 max_rd_atomic; 1267 u8 max_dest_rd_atomic; 1268 u8 min_rnr_timer; 1269 u8 port_num; 1270 u8 timeout; 1271 u8 retry_cnt; 1272 u8 rnr_retry; 1273 u8 alt_port_num; 1274 u8 alt_timeout; 1275 u32 rate_limit; 1276 struct net_device *xmit_slave; 1277 }; 1278 1279 enum ib_wr_opcode { 1280 /* These are shared with userspace */ 1281 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1282 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1283 IB_WR_SEND = IB_UVERBS_WR_SEND, 1284 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1285 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1286 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1287 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1288 IB_WR_LSO = IB_UVERBS_WR_TSO, 1289 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1290 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1291 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1292 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1293 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1294 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1295 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1296 1297 /* These are kernel only and can not be issued by userspace */ 1298 IB_WR_REG_MR = 0x20, 1299 IB_WR_REG_MR_INTEGRITY, 1300 1301 /* reserve values for low level drivers' internal use. 1302 * These values will not be used at all in the ib core layer. 1303 */ 1304 IB_WR_RESERVED1 = 0xf0, 1305 IB_WR_RESERVED2, 1306 IB_WR_RESERVED3, 1307 IB_WR_RESERVED4, 1308 IB_WR_RESERVED5, 1309 IB_WR_RESERVED6, 1310 IB_WR_RESERVED7, 1311 IB_WR_RESERVED8, 1312 IB_WR_RESERVED9, 1313 IB_WR_RESERVED10, 1314 }; 1315 1316 enum ib_send_flags { 1317 IB_SEND_FENCE = 1, 1318 IB_SEND_SIGNALED = (1<<1), 1319 IB_SEND_SOLICITED = (1<<2), 1320 IB_SEND_INLINE = (1<<3), 1321 IB_SEND_IP_CSUM = (1<<4), 1322 1323 /* reserve bits 26-31 for low level drivers' internal use */ 1324 IB_SEND_RESERVED_START = (1 << 26), 1325 IB_SEND_RESERVED_END = (1 << 31), 1326 }; 1327 1328 struct ib_sge { 1329 u64 addr; 1330 u32 length; 1331 u32 lkey; 1332 }; 1333 1334 struct ib_cqe { 1335 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1336 }; 1337 1338 struct ib_send_wr { 1339 struct ib_send_wr *next; 1340 union { 1341 u64 wr_id; 1342 struct ib_cqe *wr_cqe; 1343 }; 1344 struct ib_sge *sg_list; 1345 int num_sge; 1346 enum ib_wr_opcode opcode; 1347 int send_flags; 1348 union { 1349 __be32 imm_data; 1350 u32 invalidate_rkey; 1351 } ex; 1352 }; 1353 1354 struct ib_rdma_wr { 1355 struct ib_send_wr wr; 1356 u64 remote_addr; 1357 u32 rkey; 1358 }; 1359 1360 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1361 { 1362 return container_of(wr, struct ib_rdma_wr, wr); 1363 } 1364 1365 struct ib_atomic_wr { 1366 struct ib_send_wr wr; 1367 u64 remote_addr; 1368 u64 compare_add; 1369 u64 swap; 1370 u64 compare_add_mask; 1371 u64 swap_mask; 1372 u32 rkey; 1373 }; 1374 1375 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1376 { 1377 return container_of(wr, struct ib_atomic_wr, wr); 1378 } 1379 1380 struct ib_ud_wr { 1381 struct ib_send_wr wr; 1382 struct ib_ah *ah; 1383 void *header; 1384 int hlen; 1385 int mss; 1386 u32 remote_qpn; 1387 u32 remote_qkey; 1388 u16 pkey_index; /* valid for GSI only */ 1389 u8 port_num; /* valid for DR SMPs on switch only */ 1390 }; 1391 1392 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1393 { 1394 return container_of(wr, struct ib_ud_wr, wr); 1395 } 1396 1397 struct ib_reg_wr { 1398 struct ib_send_wr wr; 1399 struct ib_mr *mr; 1400 u32 key; 1401 int access; 1402 }; 1403 1404 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1405 { 1406 return container_of(wr, struct ib_reg_wr, wr); 1407 } 1408 1409 struct ib_recv_wr { 1410 struct ib_recv_wr *next; 1411 union { 1412 u64 wr_id; 1413 struct ib_cqe *wr_cqe; 1414 }; 1415 struct ib_sge *sg_list; 1416 int num_sge; 1417 }; 1418 1419 enum ib_access_flags { 1420 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1421 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1422 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1423 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1424 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1425 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1426 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1427 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1428 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1429 1430 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1431 IB_ACCESS_SUPPORTED = 1432 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1433 }; 1434 1435 /* 1436 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1437 * are hidden here instead of a uapi header! 1438 */ 1439 enum ib_mr_rereg_flags { 1440 IB_MR_REREG_TRANS = 1, 1441 IB_MR_REREG_PD = (1<<1), 1442 IB_MR_REREG_ACCESS = (1<<2), 1443 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1444 }; 1445 1446 struct ib_fmr_attr { 1447 int max_pages; 1448 int max_maps; 1449 u8 page_shift; 1450 }; 1451 1452 struct ib_umem; 1453 1454 enum rdma_remove_reason { 1455 /* 1456 * Userspace requested uobject deletion or initial try 1457 * to remove uobject via cleanup. Call could fail 1458 */ 1459 RDMA_REMOVE_DESTROY, 1460 /* Context deletion. This call should delete the actual object itself */ 1461 RDMA_REMOVE_CLOSE, 1462 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1463 RDMA_REMOVE_DRIVER_REMOVE, 1464 /* uobj is being cleaned-up before being committed */ 1465 RDMA_REMOVE_ABORT, 1466 }; 1467 1468 struct ib_rdmacg_object { 1469 #ifdef CONFIG_CGROUP_RDMA 1470 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1471 #endif 1472 }; 1473 1474 struct ib_ucontext { 1475 struct ib_device *device; 1476 struct ib_uverbs_file *ufile; 1477 /* 1478 * 'closing' can be read by the driver only during a destroy callback, 1479 * it is set when we are closing the file descriptor and indicates 1480 * that mm_sem may be locked. 1481 */ 1482 bool closing; 1483 1484 bool cleanup_retryable; 1485 1486 struct ib_rdmacg_object cg_obj; 1487 /* 1488 * Implementation details of the RDMA core, don't use in drivers: 1489 */ 1490 struct rdma_restrack_entry res; 1491 struct xarray mmap_xa; 1492 }; 1493 1494 struct ib_uobject { 1495 u64 user_handle; /* handle given to us by userspace */ 1496 /* ufile & ucontext owning this object */ 1497 struct ib_uverbs_file *ufile; 1498 /* FIXME, save memory: ufile->context == context */ 1499 struct ib_ucontext *context; /* associated user context */ 1500 void *object; /* containing object */ 1501 struct list_head list; /* link to context's list */ 1502 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1503 int id; /* index into kernel idr */ 1504 struct kref ref; 1505 atomic_t usecnt; /* protects exclusive access */ 1506 struct rcu_head rcu; /* kfree_rcu() overhead */ 1507 1508 const struct uverbs_api_object *uapi_object; 1509 }; 1510 1511 struct ib_udata { 1512 const void __user *inbuf; 1513 void __user *outbuf; 1514 size_t inlen; 1515 size_t outlen; 1516 }; 1517 1518 struct ib_pd { 1519 u32 local_dma_lkey; 1520 u32 flags; 1521 struct ib_device *device; 1522 struct ib_uobject *uobject; 1523 atomic_t usecnt; /* count all resources */ 1524 1525 u32 unsafe_global_rkey; 1526 1527 /* 1528 * Implementation details of the RDMA core, don't use in drivers: 1529 */ 1530 struct ib_mr *__internal_mr; 1531 struct rdma_restrack_entry res; 1532 }; 1533 1534 struct ib_xrcd { 1535 struct ib_device *device; 1536 atomic_t usecnt; /* count all exposed resources */ 1537 struct inode *inode; 1538 1539 struct mutex tgt_qp_mutex; 1540 struct list_head tgt_qp_list; 1541 }; 1542 1543 struct ib_ah { 1544 struct ib_device *device; 1545 struct ib_pd *pd; 1546 struct ib_uobject *uobject; 1547 const struct ib_gid_attr *sgid_attr; 1548 enum rdma_ah_attr_type type; 1549 }; 1550 1551 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1552 1553 enum ib_poll_context { 1554 IB_POLL_DIRECT, /* caller context, no hw completions */ 1555 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1556 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1557 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1558 }; 1559 1560 struct ib_cq { 1561 struct ib_device *device; 1562 struct ib_ucq_object *uobject; 1563 ib_comp_handler comp_handler; 1564 void (*event_handler)(struct ib_event *, void *); 1565 void *cq_context; 1566 int cqe; 1567 atomic_t usecnt; /* count number of work queues */ 1568 enum ib_poll_context poll_ctx; 1569 struct ib_wc *wc; 1570 union { 1571 struct irq_poll iop; 1572 struct work_struct work; 1573 }; 1574 struct workqueue_struct *comp_wq; 1575 struct dim *dim; 1576 1577 /* updated only by trace points */ 1578 ktime_t timestamp; 1579 bool interrupt; 1580 1581 /* 1582 * Implementation details of the RDMA core, don't use in drivers: 1583 */ 1584 struct rdma_restrack_entry res; 1585 }; 1586 1587 struct ib_srq { 1588 struct ib_device *device; 1589 struct ib_pd *pd; 1590 struct ib_usrq_object *uobject; 1591 void (*event_handler)(struct ib_event *, void *); 1592 void *srq_context; 1593 enum ib_srq_type srq_type; 1594 atomic_t usecnt; 1595 1596 struct { 1597 struct ib_cq *cq; 1598 union { 1599 struct { 1600 struct ib_xrcd *xrcd; 1601 u32 srq_num; 1602 } xrc; 1603 }; 1604 } ext; 1605 }; 1606 1607 enum ib_raw_packet_caps { 1608 /* Strip cvlan from incoming packet and report it in the matching work 1609 * completion is supported. 1610 */ 1611 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1612 /* Scatter FCS field of an incoming packet to host memory is supported. 1613 */ 1614 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1615 /* Checksum offloads are supported (for both send and receive). */ 1616 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1617 /* When a packet is received for an RQ with no receive WQEs, the 1618 * packet processing is delayed. 1619 */ 1620 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1621 }; 1622 1623 enum ib_wq_type { 1624 IB_WQT_RQ 1625 }; 1626 1627 enum ib_wq_state { 1628 IB_WQS_RESET, 1629 IB_WQS_RDY, 1630 IB_WQS_ERR 1631 }; 1632 1633 struct ib_wq { 1634 struct ib_device *device; 1635 struct ib_uwq_object *uobject; 1636 void *wq_context; 1637 void (*event_handler)(struct ib_event *, void *); 1638 struct ib_pd *pd; 1639 struct ib_cq *cq; 1640 u32 wq_num; 1641 enum ib_wq_state state; 1642 enum ib_wq_type wq_type; 1643 atomic_t usecnt; 1644 }; 1645 1646 enum ib_wq_flags { 1647 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1648 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1649 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1650 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1651 }; 1652 1653 struct ib_wq_init_attr { 1654 void *wq_context; 1655 enum ib_wq_type wq_type; 1656 u32 max_wr; 1657 u32 max_sge; 1658 struct ib_cq *cq; 1659 void (*event_handler)(struct ib_event *, void *); 1660 u32 create_flags; /* Use enum ib_wq_flags */ 1661 }; 1662 1663 enum ib_wq_attr_mask { 1664 IB_WQ_STATE = 1 << 0, 1665 IB_WQ_CUR_STATE = 1 << 1, 1666 IB_WQ_FLAGS = 1 << 2, 1667 }; 1668 1669 struct ib_wq_attr { 1670 enum ib_wq_state wq_state; 1671 enum ib_wq_state curr_wq_state; 1672 u32 flags; /* Use enum ib_wq_flags */ 1673 u32 flags_mask; /* Use enum ib_wq_flags */ 1674 }; 1675 1676 struct ib_rwq_ind_table { 1677 struct ib_device *device; 1678 struct ib_uobject *uobject; 1679 atomic_t usecnt; 1680 u32 ind_tbl_num; 1681 u32 log_ind_tbl_size; 1682 struct ib_wq **ind_tbl; 1683 }; 1684 1685 struct ib_rwq_ind_table_init_attr { 1686 u32 log_ind_tbl_size; 1687 /* Each entry is a pointer to Receive Work Queue */ 1688 struct ib_wq **ind_tbl; 1689 }; 1690 1691 enum port_pkey_state { 1692 IB_PORT_PKEY_NOT_VALID = 0, 1693 IB_PORT_PKEY_VALID = 1, 1694 IB_PORT_PKEY_LISTED = 2, 1695 }; 1696 1697 struct ib_qp_security; 1698 1699 struct ib_port_pkey { 1700 enum port_pkey_state state; 1701 u16 pkey_index; 1702 u8 port_num; 1703 struct list_head qp_list; 1704 struct list_head to_error_list; 1705 struct ib_qp_security *sec; 1706 }; 1707 1708 struct ib_ports_pkeys { 1709 struct ib_port_pkey main; 1710 struct ib_port_pkey alt; 1711 }; 1712 1713 struct ib_qp_security { 1714 struct ib_qp *qp; 1715 struct ib_device *dev; 1716 /* Hold this mutex when changing port and pkey settings. */ 1717 struct mutex mutex; 1718 struct ib_ports_pkeys *ports_pkeys; 1719 /* A list of all open shared QP handles. Required to enforce security 1720 * properly for all users of a shared QP. 1721 */ 1722 struct list_head shared_qp_list; 1723 void *security; 1724 bool destroying; 1725 atomic_t error_list_count; 1726 struct completion error_complete; 1727 int error_comps_pending; 1728 }; 1729 1730 /* 1731 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1732 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1733 */ 1734 struct ib_qp { 1735 struct ib_device *device; 1736 struct ib_pd *pd; 1737 struct ib_cq *send_cq; 1738 struct ib_cq *recv_cq; 1739 spinlock_t mr_lock; 1740 int mrs_used; 1741 struct list_head rdma_mrs; 1742 struct list_head sig_mrs; 1743 struct ib_srq *srq; 1744 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1745 struct list_head xrcd_list; 1746 1747 /* count times opened, mcast attaches, flow attaches */ 1748 atomic_t usecnt; 1749 struct list_head open_list; 1750 struct ib_qp *real_qp; 1751 struct ib_uqp_object *uobject; 1752 void (*event_handler)(struct ib_event *, void *); 1753 void *qp_context; 1754 /* sgid_attrs associated with the AV's */ 1755 const struct ib_gid_attr *av_sgid_attr; 1756 const struct ib_gid_attr *alt_path_sgid_attr; 1757 u32 qp_num; 1758 u32 max_write_sge; 1759 u32 max_read_sge; 1760 enum ib_qp_type qp_type; 1761 struct ib_rwq_ind_table *rwq_ind_tbl; 1762 struct ib_qp_security *qp_sec; 1763 u8 port; 1764 1765 bool integrity_en; 1766 /* 1767 * Implementation details of the RDMA core, don't use in drivers: 1768 */ 1769 struct rdma_restrack_entry res; 1770 1771 /* The counter the qp is bind to */ 1772 struct rdma_counter *counter; 1773 }; 1774 1775 struct ib_dm { 1776 struct ib_device *device; 1777 u32 length; 1778 u32 flags; 1779 struct ib_uobject *uobject; 1780 atomic_t usecnt; 1781 }; 1782 1783 struct ib_mr { 1784 struct ib_device *device; 1785 struct ib_pd *pd; 1786 u32 lkey; 1787 u32 rkey; 1788 u64 iova; 1789 u64 length; 1790 unsigned int page_size; 1791 enum ib_mr_type type; 1792 bool need_inval; 1793 union { 1794 struct ib_uobject *uobject; /* user */ 1795 struct list_head qp_entry; /* FR */ 1796 }; 1797 1798 struct ib_dm *dm; 1799 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1800 /* 1801 * Implementation details of the RDMA core, don't use in drivers: 1802 */ 1803 struct rdma_restrack_entry res; 1804 }; 1805 1806 struct ib_mw { 1807 struct ib_device *device; 1808 struct ib_pd *pd; 1809 struct ib_uobject *uobject; 1810 u32 rkey; 1811 enum ib_mw_type type; 1812 }; 1813 1814 struct ib_fmr { 1815 struct ib_device *device; 1816 struct ib_pd *pd; 1817 struct list_head list; 1818 u32 lkey; 1819 u32 rkey; 1820 }; 1821 1822 /* Supported steering options */ 1823 enum ib_flow_attr_type { 1824 /* steering according to rule specifications */ 1825 IB_FLOW_ATTR_NORMAL = 0x0, 1826 /* default unicast and multicast rule - 1827 * receive all Eth traffic which isn't steered to any QP 1828 */ 1829 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1830 /* default multicast rule - 1831 * receive all Eth multicast traffic which isn't steered to any QP 1832 */ 1833 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1834 /* sniffer rule - receive all port traffic */ 1835 IB_FLOW_ATTR_SNIFFER = 0x3 1836 }; 1837 1838 /* Supported steering header types */ 1839 enum ib_flow_spec_type { 1840 /* L2 headers*/ 1841 IB_FLOW_SPEC_ETH = 0x20, 1842 IB_FLOW_SPEC_IB = 0x22, 1843 /* L3 header*/ 1844 IB_FLOW_SPEC_IPV4 = 0x30, 1845 IB_FLOW_SPEC_IPV6 = 0x31, 1846 IB_FLOW_SPEC_ESP = 0x34, 1847 /* L4 headers*/ 1848 IB_FLOW_SPEC_TCP = 0x40, 1849 IB_FLOW_SPEC_UDP = 0x41, 1850 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1851 IB_FLOW_SPEC_GRE = 0x51, 1852 IB_FLOW_SPEC_MPLS = 0x60, 1853 IB_FLOW_SPEC_INNER = 0x100, 1854 /* Actions */ 1855 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1856 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1857 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1858 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1859 }; 1860 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1861 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1862 1863 /* Flow steering rule priority is set according to it's domain. 1864 * Lower domain value means higher priority. 1865 */ 1866 enum ib_flow_domain { 1867 IB_FLOW_DOMAIN_USER, 1868 IB_FLOW_DOMAIN_ETHTOOL, 1869 IB_FLOW_DOMAIN_RFS, 1870 IB_FLOW_DOMAIN_NIC, 1871 IB_FLOW_DOMAIN_NUM /* Must be last */ 1872 }; 1873 1874 enum ib_flow_flags { 1875 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1876 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1877 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1878 }; 1879 1880 struct ib_flow_eth_filter { 1881 u8 dst_mac[6]; 1882 u8 src_mac[6]; 1883 __be16 ether_type; 1884 __be16 vlan_tag; 1885 /* Must be last */ 1886 u8 real_sz[]; 1887 }; 1888 1889 struct ib_flow_spec_eth { 1890 u32 type; 1891 u16 size; 1892 struct ib_flow_eth_filter val; 1893 struct ib_flow_eth_filter mask; 1894 }; 1895 1896 struct ib_flow_ib_filter { 1897 __be16 dlid; 1898 __u8 sl; 1899 /* Must be last */ 1900 u8 real_sz[]; 1901 }; 1902 1903 struct ib_flow_spec_ib { 1904 u32 type; 1905 u16 size; 1906 struct ib_flow_ib_filter val; 1907 struct ib_flow_ib_filter mask; 1908 }; 1909 1910 /* IPv4 header flags */ 1911 enum ib_ipv4_flags { 1912 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1913 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1914 last have this flag set */ 1915 }; 1916 1917 struct ib_flow_ipv4_filter { 1918 __be32 src_ip; 1919 __be32 dst_ip; 1920 u8 proto; 1921 u8 tos; 1922 u8 ttl; 1923 u8 flags; 1924 /* Must be last */ 1925 u8 real_sz[]; 1926 }; 1927 1928 struct ib_flow_spec_ipv4 { 1929 u32 type; 1930 u16 size; 1931 struct ib_flow_ipv4_filter val; 1932 struct ib_flow_ipv4_filter mask; 1933 }; 1934 1935 struct ib_flow_ipv6_filter { 1936 u8 src_ip[16]; 1937 u8 dst_ip[16]; 1938 __be32 flow_label; 1939 u8 next_hdr; 1940 u8 traffic_class; 1941 u8 hop_limit; 1942 /* Must be last */ 1943 u8 real_sz[]; 1944 }; 1945 1946 struct ib_flow_spec_ipv6 { 1947 u32 type; 1948 u16 size; 1949 struct ib_flow_ipv6_filter val; 1950 struct ib_flow_ipv6_filter mask; 1951 }; 1952 1953 struct ib_flow_tcp_udp_filter { 1954 __be16 dst_port; 1955 __be16 src_port; 1956 /* Must be last */ 1957 u8 real_sz[]; 1958 }; 1959 1960 struct ib_flow_spec_tcp_udp { 1961 u32 type; 1962 u16 size; 1963 struct ib_flow_tcp_udp_filter val; 1964 struct ib_flow_tcp_udp_filter mask; 1965 }; 1966 1967 struct ib_flow_tunnel_filter { 1968 __be32 tunnel_id; 1969 u8 real_sz[]; 1970 }; 1971 1972 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1973 * the tunnel_id from val has the vni value 1974 */ 1975 struct ib_flow_spec_tunnel { 1976 u32 type; 1977 u16 size; 1978 struct ib_flow_tunnel_filter val; 1979 struct ib_flow_tunnel_filter mask; 1980 }; 1981 1982 struct ib_flow_esp_filter { 1983 __be32 spi; 1984 __be32 seq; 1985 /* Must be last */ 1986 u8 real_sz[]; 1987 }; 1988 1989 struct ib_flow_spec_esp { 1990 u32 type; 1991 u16 size; 1992 struct ib_flow_esp_filter val; 1993 struct ib_flow_esp_filter mask; 1994 }; 1995 1996 struct ib_flow_gre_filter { 1997 __be16 c_ks_res0_ver; 1998 __be16 protocol; 1999 __be32 key; 2000 /* Must be last */ 2001 u8 real_sz[]; 2002 }; 2003 2004 struct ib_flow_spec_gre { 2005 u32 type; 2006 u16 size; 2007 struct ib_flow_gre_filter val; 2008 struct ib_flow_gre_filter mask; 2009 }; 2010 2011 struct ib_flow_mpls_filter { 2012 __be32 tag; 2013 /* Must be last */ 2014 u8 real_sz[]; 2015 }; 2016 2017 struct ib_flow_spec_mpls { 2018 u32 type; 2019 u16 size; 2020 struct ib_flow_mpls_filter val; 2021 struct ib_flow_mpls_filter mask; 2022 }; 2023 2024 struct ib_flow_spec_action_tag { 2025 enum ib_flow_spec_type type; 2026 u16 size; 2027 u32 tag_id; 2028 }; 2029 2030 struct ib_flow_spec_action_drop { 2031 enum ib_flow_spec_type type; 2032 u16 size; 2033 }; 2034 2035 struct ib_flow_spec_action_handle { 2036 enum ib_flow_spec_type type; 2037 u16 size; 2038 struct ib_flow_action *act; 2039 }; 2040 2041 enum ib_counters_description { 2042 IB_COUNTER_PACKETS, 2043 IB_COUNTER_BYTES, 2044 }; 2045 2046 struct ib_flow_spec_action_count { 2047 enum ib_flow_spec_type type; 2048 u16 size; 2049 struct ib_counters *counters; 2050 }; 2051 2052 union ib_flow_spec { 2053 struct { 2054 u32 type; 2055 u16 size; 2056 }; 2057 struct ib_flow_spec_eth eth; 2058 struct ib_flow_spec_ib ib; 2059 struct ib_flow_spec_ipv4 ipv4; 2060 struct ib_flow_spec_tcp_udp tcp_udp; 2061 struct ib_flow_spec_ipv6 ipv6; 2062 struct ib_flow_spec_tunnel tunnel; 2063 struct ib_flow_spec_esp esp; 2064 struct ib_flow_spec_gre gre; 2065 struct ib_flow_spec_mpls mpls; 2066 struct ib_flow_spec_action_tag flow_tag; 2067 struct ib_flow_spec_action_drop drop; 2068 struct ib_flow_spec_action_handle action; 2069 struct ib_flow_spec_action_count flow_count; 2070 }; 2071 2072 struct ib_flow_attr { 2073 enum ib_flow_attr_type type; 2074 u16 size; 2075 u16 priority; 2076 u32 flags; 2077 u8 num_of_specs; 2078 u8 port; 2079 union ib_flow_spec flows[]; 2080 }; 2081 2082 struct ib_flow { 2083 struct ib_qp *qp; 2084 struct ib_device *device; 2085 struct ib_uobject *uobject; 2086 }; 2087 2088 enum ib_flow_action_type { 2089 IB_FLOW_ACTION_UNSPECIFIED, 2090 IB_FLOW_ACTION_ESP = 1, 2091 }; 2092 2093 struct ib_flow_action_attrs_esp_keymats { 2094 enum ib_uverbs_flow_action_esp_keymat protocol; 2095 union { 2096 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2097 } keymat; 2098 }; 2099 2100 struct ib_flow_action_attrs_esp_replays { 2101 enum ib_uverbs_flow_action_esp_replay protocol; 2102 union { 2103 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2104 } replay; 2105 }; 2106 2107 enum ib_flow_action_attrs_esp_flags { 2108 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2109 * This is done in order to share the same flags between user-space and 2110 * kernel and spare an unnecessary translation. 2111 */ 2112 2113 /* Kernel flags */ 2114 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2115 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2116 }; 2117 2118 struct ib_flow_spec_list { 2119 struct ib_flow_spec_list *next; 2120 union ib_flow_spec spec; 2121 }; 2122 2123 struct ib_flow_action_attrs_esp { 2124 struct ib_flow_action_attrs_esp_keymats *keymat; 2125 struct ib_flow_action_attrs_esp_replays *replay; 2126 struct ib_flow_spec_list *encap; 2127 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2128 * Value of 0 is a valid value. 2129 */ 2130 u32 esn; 2131 u32 spi; 2132 u32 seq; 2133 u32 tfc_pad; 2134 /* Use enum ib_flow_action_attrs_esp_flags */ 2135 u64 flags; 2136 u64 hard_limit_pkts; 2137 }; 2138 2139 struct ib_flow_action { 2140 struct ib_device *device; 2141 struct ib_uobject *uobject; 2142 enum ib_flow_action_type type; 2143 atomic_t usecnt; 2144 }; 2145 2146 struct ib_mad; 2147 struct ib_grh; 2148 2149 enum ib_process_mad_flags { 2150 IB_MAD_IGNORE_MKEY = 1, 2151 IB_MAD_IGNORE_BKEY = 2, 2152 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2153 }; 2154 2155 enum ib_mad_result { 2156 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2157 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2158 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2159 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2160 }; 2161 2162 struct ib_port_cache { 2163 u64 subnet_prefix; 2164 struct ib_pkey_cache *pkey; 2165 struct ib_gid_table *gid; 2166 u8 lmc; 2167 enum ib_port_state port_state; 2168 }; 2169 2170 struct ib_port_immutable { 2171 int pkey_tbl_len; 2172 int gid_tbl_len; 2173 u32 core_cap_flags; 2174 u32 max_mad_size; 2175 }; 2176 2177 struct ib_port_data { 2178 struct ib_device *ib_dev; 2179 2180 struct ib_port_immutable immutable; 2181 2182 spinlock_t pkey_list_lock; 2183 struct list_head pkey_list; 2184 2185 struct ib_port_cache cache; 2186 2187 spinlock_t netdev_lock; 2188 struct net_device __rcu *netdev; 2189 struct hlist_node ndev_hash_link; 2190 struct rdma_port_counter port_counter; 2191 struct rdma_hw_stats *hw_stats; 2192 }; 2193 2194 /* rdma netdev type - specifies protocol type */ 2195 enum rdma_netdev_t { 2196 RDMA_NETDEV_OPA_VNIC, 2197 RDMA_NETDEV_IPOIB, 2198 }; 2199 2200 /** 2201 * struct rdma_netdev - rdma netdev 2202 * For cases where netstack interfacing is required. 2203 */ 2204 struct rdma_netdev { 2205 void *clnt_priv; 2206 struct ib_device *hca; 2207 u8 port_num; 2208 2209 /* 2210 * cleanup function must be specified. 2211 * FIXME: This is only used for OPA_VNIC and that usage should be 2212 * removed too. 2213 */ 2214 void (*free_rdma_netdev)(struct net_device *netdev); 2215 2216 /* control functions */ 2217 void (*set_id)(struct net_device *netdev, int id); 2218 /* send packet */ 2219 int (*send)(struct net_device *dev, struct sk_buff *skb, 2220 struct ib_ah *address, u32 dqpn); 2221 /* multicast */ 2222 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2223 union ib_gid *gid, u16 mlid, 2224 int set_qkey, u32 qkey); 2225 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2226 union ib_gid *gid, u16 mlid); 2227 }; 2228 2229 struct rdma_netdev_alloc_params { 2230 size_t sizeof_priv; 2231 unsigned int txqs; 2232 unsigned int rxqs; 2233 void *param; 2234 2235 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2236 struct net_device *netdev, void *param); 2237 }; 2238 2239 struct ib_odp_counters { 2240 atomic64_t faults; 2241 atomic64_t invalidations; 2242 }; 2243 2244 struct ib_counters { 2245 struct ib_device *device; 2246 struct ib_uobject *uobject; 2247 /* num of objects attached */ 2248 atomic_t usecnt; 2249 }; 2250 2251 struct ib_counters_read_attr { 2252 u64 *counters_buff; 2253 u32 ncounters; 2254 u32 flags; /* use enum ib_read_counters_flags */ 2255 }; 2256 2257 struct uverbs_attr_bundle; 2258 struct iw_cm_id; 2259 struct iw_cm_conn_param; 2260 2261 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2262 .size_##ib_struct = \ 2263 (sizeof(struct drv_struct) + \ 2264 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2265 BUILD_BUG_ON_ZERO( \ 2266 !__same_type(((struct drv_struct *)NULL)->member, \ 2267 struct ib_struct))) 2268 2269 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2270 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2271 2272 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2273 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2274 2275 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2276 2277 struct rdma_user_mmap_entry { 2278 struct kref ref; 2279 struct ib_ucontext *ucontext; 2280 unsigned long start_pgoff; 2281 size_t npages; 2282 bool driver_removed; 2283 }; 2284 2285 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2286 static inline u64 2287 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2288 { 2289 return (u64)entry->start_pgoff << PAGE_SHIFT; 2290 } 2291 2292 /** 2293 * struct ib_device_ops - InfiniBand device operations 2294 * This structure defines all the InfiniBand device operations, providers will 2295 * need to define the supported operations, otherwise they will be set to null. 2296 */ 2297 struct ib_device_ops { 2298 struct module *owner; 2299 enum rdma_driver_id driver_id; 2300 u32 uverbs_abi_ver; 2301 unsigned int uverbs_no_driver_id_binding:1; 2302 2303 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2304 const struct ib_send_wr **bad_send_wr); 2305 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2306 const struct ib_recv_wr **bad_recv_wr); 2307 void (*drain_rq)(struct ib_qp *qp); 2308 void (*drain_sq)(struct ib_qp *qp); 2309 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2310 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2311 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2312 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); 2313 int (*post_srq_recv)(struct ib_srq *srq, 2314 const struct ib_recv_wr *recv_wr, 2315 const struct ib_recv_wr **bad_recv_wr); 2316 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2317 u8 port_num, const struct ib_wc *in_wc, 2318 const struct ib_grh *in_grh, 2319 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2320 size_t *out_mad_size, u16 *out_mad_pkey_index); 2321 int (*query_device)(struct ib_device *device, 2322 struct ib_device_attr *device_attr, 2323 struct ib_udata *udata); 2324 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2325 struct ib_device_modify *device_modify); 2326 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2327 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2328 int comp_vector); 2329 int (*query_port)(struct ib_device *device, u8 port_num, 2330 struct ib_port_attr *port_attr); 2331 int (*modify_port)(struct ib_device *device, u8 port_num, 2332 int port_modify_mask, 2333 struct ib_port_modify *port_modify); 2334 /** 2335 * The following mandatory functions are used only at device 2336 * registration. Keep functions such as these at the end of this 2337 * structure to avoid cache line misses when accessing struct ib_device 2338 * in fast paths. 2339 */ 2340 int (*get_port_immutable)(struct ib_device *device, u8 port_num, 2341 struct ib_port_immutable *immutable); 2342 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2343 u8 port_num); 2344 /** 2345 * When calling get_netdev, the HW vendor's driver should return the 2346 * net device of device @device at port @port_num or NULL if such 2347 * a net device doesn't exist. The vendor driver should call dev_hold 2348 * on this net device. The HW vendor's device driver must guarantee 2349 * that this function returns NULL before the net device has finished 2350 * NETDEV_UNREGISTER state. 2351 */ 2352 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num); 2353 /** 2354 * rdma netdev operation 2355 * 2356 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2357 * must return -EOPNOTSUPP if it doesn't support the specified type. 2358 */ 2359 struct net_device *(*alloc_rdma_netdev)( 2360 struct ib_device *device, u8 port_num, enum rdma_netdev_t type, 2361 const char *name, unsigned char name_assign_type, 2362 void (*setup)(struct net_device *)); 2363 2364 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2365 enum rdma_netdev_t type, 2366 struct rdma_netdev_alloc_params *params); 2367 /** 2368 * query_gid should be return GID value for @device, when @port_num 2369 * link layer is either IB or iWarp. It is no-op if @port_num port 2370 * is RoCE link layer. 2371 */ 2372 int (*query_gid)(struct ib_device *device, u8 port_num, int index, 2373 union ib_gid *gid); 2374 /** 2375 * When calling add_gid, the HW vendor's driver should add the gid 2376 * of device of port at gid index available at @attr. Meta-info of 2377 * that gid (for example, the network device related to this gid) is 2378 * available at @attr. @context allows the HW vendor driver to store 2379 * extra information together with a GID entry. The HW vendor driver may 2380 * allocate memory to contain this information and store it in @context 2381 * when a new GID entry is written to. Params are consistent until the 2382 * next call of add_gid or delete_gid. The function should return 0 on 2383 * success or error otherwise. The function could be called 2384 * concurrently for different ports. This function is only called when 2385 * roce_gid_table is used. 2386 */ 2387 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2388 /** 2389 * When calling del_gid, the HW vendor's driver should delete the 2390 * gid of device @device at gid index gid_index of port port_num 2391 * available in @attr. 2392 * Upon the deletion of a GID entry, the HW vendor must free any 2393 * allocated memory. The caller will clear @context afterwards. 2394 * This function is only called when roce_gid_table is used. 2395 */ 2396 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2397 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, 2398 u16 *pkey); 2399 int (*alloc_ucontext)(struct ib_ucontext *context, 2400 struct ib_udata *udata); 2401 void (*dealloc_ucontext)(struct ib_ucontext *context); 2402 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2403 /** 2404 * This will be called once refcount of an entry in mmap_xa reaches 2405 * zero. The type of the memory that was mapped may differ between 2406 * entries and is opaque to the rdma_user_mmap interface. 2407 * Therefore needs to be implemented by the driver in mmap_free. 2408 */ 2409 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2410 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2411 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2412 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2413 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2414 struct ib_udata *udata); 2415 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2416 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2417 void (*destroy_ah)(struct ib_ah *ah, u32 flags); 2418 int (*create_srq)(struct ib_srq *srq, 2419 struct ib_srq_init_attr *srq_init_attr, 2420 struct ib_udata *udata); 2421 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2422 enum ib_srq_attr_mask srq_attr_mask, 2423 struct ib_udata *udata); 2424 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2425 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2426 struct ib_qp *(*create_qp)(struct ib_pd *pd, 2427 struct ib_qp_init_attr *qp_init_attr, 2428 struct ib_udata *udata); 2429 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2430 int qp_attr_mask, struct ib_udata *udata); 2431 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2432 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2433 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2434 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2435 struct ib_udata *udata); 2436 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2437 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2438 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2439 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2440 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2441 u64 virt_addr, int mr_access_flags, 2442 struct ib_udata *udata); 2443 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length, 2444 u64 virt_addr, int mr_access_flags, 2445 struct ib_pd *pd, struct ib_udata *udata); 2446 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2447 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2448 u32 max_num_sg, struct ib_udata *udata); 2449 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2450 u32 max_num_data_sg, 2451 u32 max_num_meta_sg); 2452 int (*advise_mr)(struct ib_pd *pd, 2453 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2454 struct ib_sge *sg_list, u32 num_sge, 2455 struct uverbs_attr_bundle *attrs); 2456 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2457 unsigned int *sg_offset); 2458 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2459 struct ib_mr_status *mr_status); 2460 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type, 2461 struct ib_udata *udata); 2462 int (*dealloc_mw)(struct ib_mw *mw); 2463 struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags, 2464 struct ib_fmr_attr *fmr_attr); 2465 int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len, 2466 u64 iova); 2467 int (*unmap_fmr)(struct list_head *fmr_list); 2468 int (*dealloc_fmr)(struct ib_fmr *fmr); 2469 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2470 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2471 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device, 2472 struct ib_udata *udata); 2473 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2474 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2475 struct ib_flow_attr *flow_attr, 2476 int domain, struct ib_udata *udata); 2477 int (*destroy_flow)(struct ib_flow *flow_id); 2478 struct ib_flow_action *(*create_flow_action_esp)( 2479 struct ib_device *device, 2480 const struct ib_flow_action_attrs_esp *attr, 2481 struct uverbs_attr_bundle *attrs); 2482 int (*destroy_flow_action)(struct ib_flow_action *action); 2483 int (*modify_flow_action_esp)( 2484 struct ib_flow_action *action, 2485 const struct ib_flow_action_attrs_esp *attr, 2486 struct uverbs_attr_bundle *attrs); 2487 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2488 int state); 2489 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2490 struct ifla_vf_info *ivf); 2491 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2492 struct ifla_vf_stats *stats); 2493 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port, 2494 struct ifla_vf_guid *node_guid, 2495 struct ifla_vf_guid *port_guid); 2496 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2497 int type); 2498 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2499 struct ib_wq_init_attr *init_attr, 2500 struct ib_udata *udata); 2501 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2502 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2503 u32 wq_attr_mask, struct ib_udata *udata); 2504 struct ib_rwq_ind_table *(*create_rwq_ind_table)( 2505 struct ib_device *device, 2506 struct ib_rwq_ind_table_init_attr *init_attr, 2507 struct ib_udata *udata); 2508 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2509 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2510 struct ib_ucontext *context, 2511 struct ib_dm_alloc_attr *attr, 2512 struct uverbs_attr_bundle *attrs); 2513 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2514 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2515 struct ib_dm_mr_attr *attr, 2516 struct uverbs_attr_bundle *attrs); 2517 struct ib_counters *(*create_counters)( 2518 struct ib_device *device, struct uverbs_attr_bundle *attrs); 2519 int (*destroy_counters)(struct ib_counters *counters); 2520 int (*read_counters)(struct ib_counters *counters, 2521 struct ib_counters_read_attr *counters_read_attr, 2522 struct uverbs_attr_bundle *attrs); 2523 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2524 int data_sg_nents, unsigned int *data_sg_offset, 2525 struct scatterlist *meta_sg, int meta_sg_nents, 2526 unsigned int *meta_sg_offset); 2527 2528 /** 2529 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2530 * driver initialized data. The struct is kfree()'ed by the sysfs 2531 * core when the device is removed. A lifespan of -1 in the return 2532 * struct tells the core to set a default lifespan. 2533 */ 2534 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2535 u8 port_num); 2536 /** 2537 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2538 * @index - The index in the value array we wish to have updated, or 2539 * num_counters if we want all stats updated 2540 * Return codes - 2541 * < 0 - Error, no counters updated 2542 * index - Updated the single counter pointed to by index 2543 * num_counters - Updated all counters (will reset the timestamp 2544 * and prevent further calls for lifespan milliseconds) 2545 * Drivers are allowed to update all counters in leiu of just the 2546 * one given in index at their option 2547 */ 2548 int (*get_hw_stats)(struct ib_device *device, 2549 struct rdma_hw_stats *stats, u8 port, int index); 2550 /* 2551 * This function is called once for each port when a ib device is 2552 * registered. 2553 */ 2554 int (*init_port)(struct ib_device *device, u8 port_num, 2555 struct kobject *port_sysfs); 2556 /** 2557 * Allows rdma drivers to add their own restrack attributes. 2558 */ 2559 int (*fill_res_entry)(struct sk_buff *msg, 2560 struct rdma_restrack_entry *entry); 2561 2562 /* Device lifecycle callbacks */ 2563 /* 2564 * Called after the device becomes registered, before clients are 2565 * attached 2566 */ 2567 int (*enable_driver)(struct ib_device *dev); 2568 /* 2569 * This is called as part of ib_dealloc_device(). 2570 */ 2571 void (*dealloc_driver)(struct ib_device *dev); 2572 2573 /* iWarp CM callbacks */ 2574 void (*iw_add_ref)(struct ib_qp *qp); 2575 void (*iw_rem_ref)(struct ib_qp *qp); 2576 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2577 int (*iw_connect)(struct iw_cm_id *cm_id, 2578 struct iw_cm_conn_param *conn_param); 2579 int (*iw_accept)(struct iw_cm_id *cm_id, 2580 struct iw_cm_conn_param *conn_param); 2581 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2582 u8 pdata_len); 2583 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2584 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2585 /** 2586 * counter_bind_qp - Bind a QP to a counter. 2587 * @counter - The counter to be bound. If counter->id is zero then 2588 * the driver needs to allocate a new counter and set counter->id 2589 */ 2590 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2591 /** 2592 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2593 * counter and bind it onto the default one 2594 */ 2595 int (*counter_unbind_qp)(struct ib_qp *qp); 2596 /** 2597 * counter_dealloc -De-allocate the hw counter 2598 */ 2599 int (*counter_dealloc)(struct rdma_counter *counter); 2600 /** 2601 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2602 * the driver initialized data. 2603 */ 2604 struct rdma_hw_stats *(*counter_alloc_stats)( 2605 struct rdma_counter *counter); 2606 /** 2607 * counter_update_stats - Query the stats value of this counter 2608 */ 2609 int (*counter_update_stats)(struct rdma_counter *counter); 2610 2611 /** 2612 * Allows rdma drivers to add their own restrack attributes 2613 * dumped via 'rdma stat' iproute2 command. 2614 */ 2615 int (*fill_stat_entry)(struct sk_buff *msg, 2616 struct rdma_restrack_entry *entry); 2617 2618 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2619 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2620 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2621 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2622 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2623 }; 2624 2625 struct ib_core_device { 2626 /* device must be the first element in structure until, 2627 * union of ib_core_device and device exists in ib_device. 2628 */ 2629 struct device dev; 2630 possible_net_t rdma_net; 2631 struct kobject *ports_kobj; 2632 struct list_head port_list; 2633 struct ib_device *owner; /* reach back to owner ib_device */ 2634 }; 2635 2636 struct rdma_restrack_root; 2637 struct ib_device { 2638 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2639 struct device *dma_device; 2640 struct ib_device_ops ops; 2641 char name[IB_DEVICE_NAME_MAX]; 2642 struct rcu_head rcu_head; 2643 2644 struct list_head event_handler_list; 2645 /* Protects event_handler_list */ 2646 struct rw_semaphore event_handler_rwsem; 2647 2648 /* Protects QP's event_handler calls and open_qp list */ 2649 spinlock_t qp_open_list_lock; 2650 2651 struct rw_semaphore client_data_rwsem; 2652 struct xarray client_data; 2653 struct mutex unregistration_lock; 2654 2655 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2656 rwlock_t cache_lock; 2657 /** 2658 * port_data is indexed by port number 2659 */ 2660 struct ib_port_data *port_data; 2661 2662 int num_comp_vectors; 2663 2664 union { 2665 struct device dev; 2666 struct ib_core_device coredev; 2667 }; 2668 2669 /* First group for device attributes, 2670 * Second group for driver provided attributes (optional). 2671 * It is NULL terminated array. 2672 */ 2673 const struct attribute_group *groups[3]; 2674 2675 u64 uverbs_cmd_mask; 2676 u64 uverbs_ex_cmd_mask; 2677 2678 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2679 __be64 node_guid; 2680 u32 local_dma_lkey; 2681 u16 is_switch:1; 2682 /* Indicates kernel verbs support, should not be used in drivers */ 2683 u16 kverbs_provider:1; 2684 /* CQ adaptive moderation (RDMA DIM) */ 2685 u16 use_cq_dim:1; 2686 u8 node_type; 2687 u8 phys_port_cnt; 2688 struct ib_device_attr attrs; 2689 struct attribute_group *hw_stats_ag; 2690 struct rdma_hw_stats *hw_stats; 2691 2692 #ifdef CONFIG_CGROUP_RDMA 2693 struct rdmacg_device cg_device; 2694 #endif 2695 2696 u32 index; 2697 struct rdma_restrack_root *res; 2698 2699 const struct uapi_definition *driver_def; 2700 2701 /* 2702 * Positive refcount indicates that the device is currently 2703 * registered and cannot be unregistered. 2704 */ 2705 refcount_t refcount; 2706 struct completion unreg_completion; 2707 struct work_struct unregistration_work; 2708 2709 const struct rdma_link_ops *link_ops; 2710 2711 /* Protects compat_devs xarray modifications */ 2712 struct mutex compat_devs_mutex; 2713 /* Maintains compat devices for each net namespace */ 2714 struct xarray compat_devs; 2715 2716 /* Used by iWarp CM */ 2717 char iw_ifname[IFNAMSIZ]; 2718 u32 iw_driver_flags; 2719 u32 lag_flags; 2720 }; 2721 2722 struct ib_client_nl_info; 2723 struct ib_client { 2724 const char *name; 2725 int (*add)(struct ib_device *ibdev); 2726 void (*remove)(struct ib_device *, void *client_data); 2727 void (*rename)(struct ib_device *dev, void *client_data); 2728 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2729 struct ib_client_nl_info *res); 2730 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2731 2732 /* Returns the net_dev belonging to this ib_client and matching the 2733 * given parameters. 2734 * @dev: An RDMA device that the net_dev use for communication. 2735 * @port: A physical port number on the RDMA device. 2736 * @pkey: P_Key that the net_dev uses if applicable. 2737 * @gid: A GID that the net_dev uses to communicate. 2738 * @addr: An IP address the net_dev is configured with. 2739 * @client_data: The device's client data set by ib_set_client_data(). 2740 * 2741 * An ib_client that implements a net_dev on top of RDMA devices 2742 * (such as IP over IB) should implement this callback, allowing the 2743 * rdma_cm module to find the right net_dev for a given request. 2744 * 2745 * The caller is responsible for calling dev_put on the returned 2746 * netdev. */ 2747 struct net_device *(*get_net_dev_by_params)( 2748 struct ib_device *dev, 2749 u8 port, 2750 u16 pkey, 2751 const union ib_gid *gid, 2752 const struct sockaddr *addr, 2753 void *client_data); 2754 2755 refcount_t uses; 2756 struct completion uses_zero; 2757 u32 client_id; 2758 2759 /* kverbs are not required by the client */ 2760 u8 no_kverbs_req:1; 2761 }; 2762 2763 /* 2764 * IB block DMA iterator 2765 * 2766 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2767 * to a HW supported page size. 2768 */ 2769 struct ib_block_iter { 2770 /* internal states */ 2771 struct scatterlist *__sg; /* sg holding the current aligned block */ 2772 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2773 unsigned int __sg_nents; /* number of SG entries */ 2774 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2775 unsigned int __pg_bit; /* alignment of current block */ 2776 }; 2777 2778 struct ib_device *_ib_alloc_device(size_t size); 2779 #define ib_alloc_device(drv_struct, member) \ 2780 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2781 BUILD_BUG_ON_ZERO(offsetof( \ 2782 struct drv_struct, member))), \ 2783 struct drv_struct, member) 2784 2785 void ib_dealloc_device(struct ib_device *device); 2786 2787 void ib_get_device_fw_str(struct ib_device *device, char *str); 2788 2789 int ib_register_device(struct ib_device *device, const char *name); 2790 void ib_unregister_device(struct ib_device *device); 2791 void ib_unregister_driver(enum rdma_driver_id driver_id); 2792 void ib_unregister_device_and_put(struct ib_device *device); 2793 void ib_unregister_device_queued(struct ib_device *ib_dev); 2794 2795 int ib_register_client (struct ib_client *client); 2796 void ib_unregister_client(struct ib_client *client); 2797 2798 void __rdma_block_iter_start(struct ib_block_iter *biter, 2799 struct scatterlist *sglist, 2800 unsigned int nents, 2801 unsigned long pgsz); 2802 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2803 2804 /** 2805 * rdma_block_iter_dma_address - get the aligned dma address of the current 2806 * block held by the block iterator. 2807 * @biter: block iterator holding the memory block 2808 */ 2809 static inline dma_addr_t 2810 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2811 { 2812 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2813 } 2814 2815 /** 2816 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2817 * @sglist: sglist to iterate over 2818 * @biter: block iterator holding the memory block 2819 * @nents: maximum number of sg entries to iterate over 2820 * @pgsz: best HW supported page size to use 2821 * 2822 * Callers may use rdma_block_iter_dma_address() to get each 2823 * blocks aligned DMA address. 2824 */ 2825 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2826 for (__rdma_block_iter_start(biter, sglist, nents, \ 2827 pgsz); \ 2828 __rdma_block_iter_next(biter);) 2829 2830 /** 2831 * ib_get_client_data - Get IB client context 2832 * @device:Device to get context for 2833 * @client:Client to get context for 2834 * 2835 * ib_get_client_data() returns the client context data set with 2836 * ib_set_client_data(). This can only be called while the client is 2837 * registered to the device, once the ib_client remove() callback returns this 2838 * cannot be called. 2839 */ 2840 static inline void *ib_get_client_data(struct ib_device *device, 2841 struct ib_client *client) 2842 { 2843 return xa_load(&device->client_data, client->client_id); 2844 } 2845 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2846 void *data); 2847 void ib_set_device_ops(struct ib_device *device, 2848 const struct ib_device_ops *ops); 2849 2850 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2851 unsigned long pfn, unsigned long size, pgprot_t prot, 2852 struct rdma_user_mmap_entry *entry); 2853 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2854 struct rdma_user_mmap_entry *entry, 2855 size_t length); 2856 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2857 struct rdma_user_mmap_entry *entry, 2858 size_t length, u32 min_pgoff, 2859 u32 max_pgoff); 2860 2861 struct rdma_user_mmap_entry * 2862 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2863 unsigned long pgoff); 2864 struct rdma_user_mmap_entry * 2865 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2866 struct vm_area_struct *vma); 2867 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2868 2869 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2870 2871 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2872 { 2873 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2874 } 2875 2876 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2877 { 2878 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2879 } 2880 2881 static inline bool ib_is_buffer_cleared(const void __user *p, 2882 size_t len) 2883 { 2884 bool ret; 2885 u8 *buf; 2886 2887 if (len > USHRT_MAX) 2888 return false; 2889 2890 buf = memdup_user(p, len); 2891 if (IS_ERR(buf)) 2892 return false; 2893 2894 ret = !memchr_inv(buf, 0, len); 2895 kfree(buf); 2896 return ret; 2897 } 2898 2899 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2900 size_t offset, 2901 size_t len) 2902 { 2903 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2904 } 2905 2906 /** 2907 * ib_is_destroy_retryable - Check whether the uobject destruction 2908 * is retryable. 2909 * @ret: The initial destruction return code 2910 * @why: remove reason 2911 * @uobj: The uobject that is destroyed 2912 * 2913 * This function is a helper function that IB layer and low-level drivers 2914 * can use to consider whether the destruction of the given uobject is 2915 * retry-able. 2916 * It checks the original return code, if it wasn't success the destruction 2917 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2918 * the remove reason. (i.e. why). 2919 * Must be called with the object locked for destroy. 2920 */ 2921 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2922 struct ib_uobject *uobj) 2923 { 2924 return ret && (why == RDMA_REMOVE_DESTROY || 2925 uobj->context->cleanup_retryable); 2926 } 2927 2928 /** 2929 * ib_destroy_usecnt - Called during destruction to check the usecnt 2930 * @usecnt: The usecnt atomic 2931 * @why: remove reason 2932 * @uobj: The uobject that is destroyed 2933 * 2934 * Non-zero usecnts will block destruction unless destruction was triggered by 2935 * a ucontext cleanup. 2936 */ 2937 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2938 enum rdma_remove_reason why, 2939 struct ib_uobject *uobj) 2940 { 2941 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2942 return -EBUSY; 2943 return 0; 2944 } 2945 2946 /** 2947 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2948 * contains all required attributes and no attributes not allowed for 2949 * the given QP state transition. 2950 * @cur_state: Current QP state 2951 * @next_state: Next QP state 2952 * @type: QP type 2953 * @mask: Mask of supplied QP attributes 2954 * 2955 * This function is a helper function that a low-level driver's 2956 * modify_qp method can use to validate the consumer's input. It 2957 * checks that cur_state and next_state are valid QP states, that a 2958 * transition from cur_state to next_state is allowed by the IB spec, 2959 * and that the attribute mask supplied is allowed for the transition. 2960 */ 2961 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2962 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2963 2964 void ib_register_event_handler(struct ib_event_handler *event_handler); 2965 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2966 void ib_dispatch_event(const struct ib_event *event); 2967 2968 int ib_query_port(struct ib_device *device, 2969 u8 port_num, struct ib_port_attr *port_attr); 2970 2971 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2972 u8 port_num); 2973 2974 /** 2975 * rdma_cap_ib_switch - Check if the device is IB switch 2976 * @device: Device to check 2977 * 2978 * Device driver is responsible for setting is_switch bit on 2979 * in ib_device structure at init time. 2980 * 2981 * Return: true if the device is IB switch. 2982 */ 2983 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2984 { 2985 return device->is_switch; 2986 } 2987 2988 /** 2989 * rdma_start_port - Return the first valid port number for the device 2990 * specified 2991 * 2992 * @device: Device to be checked 2993 * 2994 * Return start port number 2995 */ 2996 static inline u8 rdma_start_port(const struct ib_device *device) 2997 { 2998 return rdma_cap_ib_switch(device) ? 0 : 1; 2999 } 3000 3001 /** 3002 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3003 * @device - The struct ib_device * to iterate over 3004 * @iter - The unsigned int to store the port number 3005 */ 3006 #define rdma_for_each_port(device, iter) \ 3007 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \ 3008 unsigned int, iter))); \ 3009 iter <= rdma_end_port(device); (iter)++) 3010 3011 /** 3012 * rdma_end_port - Return the last valid port number for the device 3013 * specified 3014 * 3015 * @device: Device to be checked 3016 * 3017 * Return last port number 3018 */ 3019 static inline u8 rdma_end_port(const struct ib_device *device) 3020 { 3021 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3022 } 3023 3024 static inline int rdma_is_port_valid(const struct ib_device *device, 3025 unsigned int port) 3026 { 3027 return (port >= rdma_start_port(device) && 3028 port <= rdma_end_port(device)); 3029 } 3030 3031 static inline bool rdma_is_grh_required(const struct ib_device *device, 3032 u8 port_num) 3033 { 3034 return device->port_data[port_num].immutable.core_cap_flags & 3035 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3036 } 3037 3038 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 3039 { 3040 return device->port_data[port_num].immutable.core_cap_flags & 3041 RDMA_CORE_CAP_PROT_IB; 3042 } 3043 3044 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 3045 { 3046 return device->port_data[port_num].immutable.core_cap_flags & 3047 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3048 } 3049 3050 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 3051 { 3052 return device->port_data[port_num].immutable.core_cap_flags & 3053 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3054 } 3055 3056 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 3057 { 3058 return device->port_data[port_num].immutable.core_cap_flags & 3059 RDMA_CORE_CAP_PROT_ROCE; 3060 } 3061 3062 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 3063 { 3064 return device->port_data[port_num].immutable.core_cap_flags & 3065 RDMA_CORE_CAP_PROT_IWARP; 3066 } 3067 3068 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 3069 { 3070 return rdma_protocol_ib(device, port_num) || 3071 rdma_protocol_roce(device, port_num); 3072 } 3073 3074 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 3075 { 3076 return device->port_data[port_num].immutable.core_cap_flags & 3077 RDMA_CORE_CAP_PROT_RAW_PACKET; 3078 } 3079 3080 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 3081 { 3082 return device->port_data[port_num].immutable.core_cap_flags & 3083 RDMA_CORE_CAP_PROT_USNIC; 3084 } 3085 3086 /** 3087 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3088 * Management Datagrams. 3089 * @device: Device to check 3090 * @port_num: Port number to check 3091 * 3092 * Management Datagrams (MAD) are a required part of the InfiniBand 3093 * specification and are supported on all InfiniBand devices. A slightly 3094 * extended version are also supported on OPA interfaces. 3095 * 3096 * Return: true if the port supports sending/receiving of MAD packets. 3097 */ 3098 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 3099 { 3100 return device->port_data[port_num].immutable.core_cap_flags & 3101 RDMA_CORE_CAP_IB_MAD; 3102 } 3103 3104 /** 3105 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3106 * Management Datagrams. 3107 * @device: Device to check 3108 * @port_num: Port number to check 3109 * 3110 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3111 * datagrams with their own versions. These OPA MADs share many but not all of 3112 * the characteristics of InfiniBand MADs. 3113 * 3114 * OPA MADs differ in the following ways: 3115 * 3116 * 1) MADs are variable size up to 2K 3117 * IBTA defined MADs remain fixed at 256 bytes 3118 * 2) OPA SMPs must carry valid PKeys 3119 * 3) OPA SMP packets are a different format 3120 * 3121 * Return: true if the port supports OPA MAD packet formats. 3122 */ 3123 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 3124 { 3125 return device->port_data[port_num].immutable.core_cap_flags & 3126 RDMA_CORE_CAP_OPA_MAD; 3127 } 3128 3129 /** 3130 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3131 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3132 * @device: Device to check 3133 * @port_num: Port number to check 3134 * 3135 * Each InfiniBand node is required to provide a Subnet Management Agent 3136 * that the subnet manager can access. Prior to the fabric being fully 3137 * configured by the subnet manager, the SMA is accessed via a well known 3138 * interface called the Subnet Management Interface (SMI). This interface 3139 * uses directed route packets to communicate with the SM to get around the 3140 * chicken and egg problem of the SM needing to know what's on the fabric 3141 * in order to configure the fabric, and needing to configure the fabric in 3142 * order to send packets to the devices on the fabric. These directed 3143 * route packets do not need the fabric fully configured in order to reach 3144 * their destination. The SMI is the only method allowed to send 3145 * directed route packets on an InfiniBand fabric. 3146 * 3147 * Return: true if the port provides an SMI. 3148 */ 3149 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 3150 { 3151 return device->port_data[port_num].immutable.core_cap_flags & 3152 RDMA_CORE_CAP_IB_SMI; 3153 } 3154 3155 /** 3156 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3157 * Communication Manager. 3158 * @device: Device to check 3159 * @port_num: Port number to check 3160 * 3161 * The InfiniBand Communication Manager is one of many pre-defined General 3162 * Service Agents (GSA) that are accessed via the General Service 3163 * Interface (GSI). It's role is to facilitate establishment of connections 3164 * between nodes as well as other management related tasks for established 3165 * connections. 3166 * 3167 * Return: true if the port supports an IB CM (this does not guarantee that 3168 * a CM is actually running however). 3169 */ 3170 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 3171 { 3172 return device->port_data[port_num].immutable.core_cap_flags & 3173 RDMA_CORE_CAP_IB_CM; 3174 } 3175 3176 /** 3177 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3178 * Communication Manager. 3179 * @device: Device to check 3180 * @port_num: Port number to check 3181 * 3182 * Similar to above, but specific to iWARP connections which have a different 3183 * managment protocol than InfiniBand. 3184 * 3185 * Return: true if the port supports an iWARP CM (this does not guarantee that 3186 * a CM is actually running however). 3187 */ 3188 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 3189 { 3190 return device->port_data[port_num].immutable.core_cap_flags & 3191 RDMA_CORE_CAP_IW_CM; 3192 } 3193 3194 /** 3195 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3196 * Subnet Administration. 3197 * @device: Device to check 3198 * @port_num: Port number to check 3199 * 3200 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3201 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3202 * fabrics, devices should resolve routes to other hosts by contacting the 3203 * SA to query the proper route. 3204 * 3205 * Return: true if the port should act as a client to the fabric Subnet 3206 * Administration interface. This does not imply that the SA service is 3207 * running locally. 3208 */ 3209 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 3210 { 3211 return device->port_data[port_num].immutable.core_cap_flags & 3212 RDMA_CORE_CAP_IB_SA; 3213 } 3214 3215 /** 3216 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3217 * Multicast. 3218 * @device: Device to check 3219 * @port_num: Port number to check 3220 * 3221 * InfiniBand multicast registration is more complex than normal IPv4 or 3222 * IPv6 multicast registration. Each Host Channel Adapter must register 3223 * with the Subnet Manager when it wishes to join a multicast group. It 3224 * should do so only once regardless of how many queue pairs it subscribes 3225 * to this group. And it should leave the group only after all queue pairs 3226 * attached to the group have been detached. 3227 * 3228 * Return: true if the port must undertake the additional adminstrative 3229 * overhead of registering/unregistering with the SM and tracking of the 3230 * total number of queue pairs attached to the multicast group. 3231 */ 3232 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3233 { 3234 return rdma_cap_ib_sa(device, port_num); 3235 } 3236 3237 /** 3238 * rdma_cap_af_ib - Check if the port of device has the capability 3239 * Native Infiniband Address. 3240 * @device: Device to check 3241 * @port_num: Port number to check 3242 * 3243 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3244 * GID. RoCE uses a different mechanism, but still generates a GID via 3245 * a prescribed mechanism and port specific data. 3246 * 3247 * Return: true if the port uses a GID address to identify devices on the 3248 * network. 3249 */ 3250 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3251 { 3252 return device->port_data[port_num].immutable.core_cap_flags & 3253 RDMA_CORE_CAP_AF_IB; 3254 } 3255 3256 /** 3257 * rdma_cap_eth_ah - Check if the port of device has the capability 3258 * Ethernet Address Handle. 3259 * @device: Device to check 3260 * @port_num: Port number to check 3261 * 3262 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3263 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3264 * port. Normally, packet headers are generated by the sending host 3265 * adapter, but when sending connectionless datagrams, we must manually 3266 * inject the proper headers for the fabric we are communicating over. 3267 * 3268 * Return: true if we are running as a RoCE port and must force the 3269 * addition of a Global Route Header built from our Ethernet Address 3270 * Handle into our header list for connectionless packets. 3271 */ 3272 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3273 { 3274 return device->port_data[port_num].immutable.core_cap_flags & 3275 RDMA_CORE_CAP_ETH_AH; 3276 } 3277 3278 /** 3279 * rdma_cap_opa_ah - Check if the port of device supports 3280 * OPA Address handles 3281 * @device: Device to check 3282 * @port_num: Port number to check 3283 * 3284 * Return: true if we are running on an OPA device which supports 3285 * the extended OPA addressing. 3286 */ 3287 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3288 { 3289 return (device->port_data[port_num].immutable.core_cap_flags & 3290 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3291 } 3292 3293 /** 3294 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3295 * 3296 * @device: Device 3297 * @port_num: Port number 3298 * 3299 * This MAD size includes the MAD headers and MAD payload. No other headers 3300 * are included. 3301 * 3302 * Return the max MAD size required by the Port. Will return 0 if the port 3303 * does not support MADs 3304 */ 3305 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3306 { 3307 return device->port_data[port_num].immutable.max_mad_size; 3308 } 3309 3310 /** 3311 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3312 * @device: Device to check 3313 * @port_num: Port number to check 3314 * 3315 * RoCE GID table mechanism manages the various GIDs for a device. 3316 * 3317 * NOTE: if allocating the port's GID table has failed, this call will still 3318 * return true, but any RoCE GID table API will fail. 3319 * 3320 * Return: true if the port uses RoCE GID table mechanism in order to manage 3321 * its GIDs. 3322 */ 3323 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3324 u8 port_num) 3325 { 3326 return rdma_protocol_roce(device, port_num) && 3327 device->ops.add_gid && device->ops.del_gid; 3328 } 3329 3330 /* 3331 * Check if the device supports READ W/ INVALIDATE. 3332 */ 3333 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3334 { 3335 /* 3336 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3337 * has support for it yet. 3338 */ 3339 return rdma_protocol_iwarp(dev, port_num); 3340 } 3341 3342 /** 3343 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes 3344 * 3345 * @addr: address 3346 * @pgsz_bitmap: bitmap of HW supported page sizes 3347 */ 3348 static inline unsigned int rdma_find_pg_bit(unsigned long addr, 3349 unsigned long pgsz_bitmap) 3350 { 3351 unsigned long align; 3352 unsigned long pgsz; 3353 3354 align = addr & -addr; 3355 3356 /* Find page bit such that addr is aligned to the highest supported 3357 * HW page size 3358 */ 3359 pgsz = pgsz_bitmap & ~(-align << 1); 3360 if (!pgsz) 3361 return __ffs(pgsz_bitmap); 3362 3363 return __fls(pgsz); 3364 } 3365 3366 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3367 int state); 3368 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3369 struct ifla_vf_info *info); 3370 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3371 struct ifla_vf_stats *stats); 3372 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port, 3373 struct ifla_vf_guid *node_guid, 3374 struct ifla_vf_guid *port_guid); 3375 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3376 int type); 3377 3378 int ib_query_pkey(struct ib_device *device, 3379 u8 port_num, u16 index, u16 *pkey); 3380 3381 int ib_modify_device(struct ib_device *device, 3382 int device_modify_mask, 3383 struct ib_device_modify *device_modify); 3384 3385 int ib_modify_port(struct ib_device *device, 3386 u8 port_num, int port_modify_mask, 3387 struct ib_port_modify *port_modify); 3388 3389 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3390 u8 *port_num, u16 *index); 3391 3392 int ib_find_pkey(struct ib_device *device, 3393 u8 port_num, u16 pkey, u16 *index); 3394 3395 enum ib_pd_flags { 3396 /* 3397 * Create a memory registration for all memory in the system and place 3398 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3399 * ULPs to avoid the overhead of dynamic MRs. 3400 * 3401 * This flag is generally considered unsafe and must only be used in 3402 * extremly trusted environments. Every use of it will log a warning 3403 * in the kernel log. 3404 */ 3405 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3406 }; 3407 3408 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3409 const char *caller); 3410 3411 #define ib_alloc_pd(device, flags) \ 3412 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3413 3414 /** 3415 * ib_dealloc_pd_user - Deallocate kernel/user PD 3416 * @pd: The protection domain 3417 * @udata: Valid user data or NULL for kernel objects 3418 */ 3419 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3420 3421 /** 3422 * ib_dealloc_pd - Deallocate kernel PD 3423 * @pd: The protection domain 3424 * 3425 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3426 */ 3427 static inline void ib_dealloc_pd(struct ib_pd *pd) 3428 { 3429 ib_dealloc_pd_user(pd, NULL); 3430 } 3431 3432 enum rdma_create_ah_flags { 3433 /* In a sleepable context */ 3434 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3435 }; 3436 3437 /** 3438 * rdma_create_ah - Creates an address handle for the given address vector. 3439 * @pd: The protection domain associated with the address handle. 3440 * @ah_attr: The attributes of the address vector. 3441 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3442 * 3443 * The address handle is used to reference a local or global destination 3444 * in all UD QP post sends. 3445 */ 3446 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3447 u32 flags); 3448 3449 /** 3450 * rdma_create_user_ah - Creates an address handle for the given address vector. 3451 * It resolves destination mac address for ah attribute of RoCE type. 3452 * @pd: The protection domain associated with the address handle. 3453 * @ah_attr: The attributes of the address vector. 3454 * @udata: pointer to user's input output buffer information need by 3455 * provider driver. 3456 * 3457 * It returns 0 on success and returns appropriate error code on error. 3458 * The address handle is used to reference a local or global destination 3459 * in all UD QP post sends. 3460 */ 3461 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3462 struct rdma_ah_attr *ah_attr, 3463 struct ib_udata *udata); 3464 /** 3465 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3466 * work completion. 3467 * @hdr: the L3 header to parse 3468 * @net_type: type of header to parse 3469 * @sgid: place to store source gid 3470 * @dgid: place to store destination gid 3471 */ 3472 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3473 enum rdma_network_type net_type, 3474 union ib_gid *sgid, union ib_gid *dgid); 3475 3476 /** 3477 * ib_get_rdma_header_version - Get the header version 3478 * @hdr: the L3 header to parse 3479 */ 3480 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3481 3482 /** 3483 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3484 * work completion. 3485 * @device: Device on which the received message arrived. 3486 * @port_num: Port on which the received message arrived. 3487 * @wc: Work completion associated with the received message. 3488 * @grh: References the received global route header. This parameter is 3489 * ignored unless the work completion indicates that the GRH is valid. 3490 * @ah_attr: Returned attributes that can be used when creating an address 3491 * handle for replying to the message. 3492 * When ib_init_ah_attr_from_wc() returns success, 3493 * (a) for IB link layer it optionally contains a reference to SGID attribute 3494 * when GRH is present for IB link layer. 3495 * (b) for RoCE link layer it contains a reference to SGID attribute. 3496 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3497 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3498 * 3499 */ 3500 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3501 const struct ib_wc *wc, const struct ib_grh *grh, 3502 struct rdma_ah_attr *ah_attr); 3503 3504 /** 3505 * ib_create_ah_from_wc - Creates an address handle associated with the 3506 * sender of the specified work completion. 3507 * @pd: The protection domain associated with the address handle. 3508 * @wc: Work completion information associated with a received message. 3509 * @grh: References the received global route header. This parameter is 3510 * ignored unless the work completion indicates that the GRH is valid. 3511 * @port_num: The outbound port number to associate with the address. 3512 * 3513 * The address handle is used to reference a local or global destination 3514 * in all UD QP post sends. 3515 */ 3516 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3517 const struct ib_grh *grh, u8 port_num); 3518 3519 /** 3520 * rdma_modify_ah - Modifies the address vector associated with an address 3521 * handle. 3522 * @ah: The address handle to modify. 3523 * @ah_attr: The new address vector attributes to associate with the 3524 * address handle. 3525 */ 3526 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3527 3528 /** 3529 * rdma_query_ah - Queries the address vector associated with an address 3530 * handle. 3531 * @ah: The address handle to query. 3532 * @ah_attr: The address vector attributes associated with the address 3533 * handle. 3534 */ 3535 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3536 3537 enum rdma_destroy_ah_flags { 3538 /* In a sleepable context */ 3539 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3540 }; 3541 3542 /** 3543 * rdma_destroy_ah_user - Destroys an address handle. 3544 * @ah: The address handle to destroy. 3545 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3546 * @udata: Valid user data or NULL for kernel objects 3547 */ 3548 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3549 3550 /** 3551 * rdma_destroy_ah - Destroys an kernel address handle. 3552 * @ah: The address handle to destroy. 3553 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3554 * 3555 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3556 */ 3557 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3558 { 3559 return rdma_destroy_ah_user(ah, flags, NULL); 3560 } 3561 3562 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3563 struct ib_srq_init_attr *srq_init_attr, 3564 struct ib_usrq_object *uobject, 3565 struct ib_udata *udata); 3566 static inline struct ib_srq * 3567 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3568 { 3569 if (!pd->device->ops.create_srq) 3570 return ERR_PTR(-EOPNOTSUPP); 3571 3572 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3573 } 3574 3575 /** 3576 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3577 * @srq: The SRQ to modify. 3578 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3579 * the current values of selected SRQ attributes are returned. 3580 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3581 * are being modified. 3582 * 3583 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3584 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3585 * the number of receives queued drops below the limit. 3586 */ 3587 int ib_modify_srq(struct ib_srq *srq, 3588 struct ib_srq_attr *srq_attr, 3589 enum ib_srq_attr_mask srq_attr_mask); 3590 3591 /** 3592 * ib_query_srq - Returns the attribute list and current values for the 3593 * specified SRQ. 3594 * @srq: The SRQ to query. 3595 * @srq_attr: The attributes of the specified SRQ. 3596 */ 3597 int ib_query_srq(struct ib_srq *srq, 3598 struct ib_srq_attr *srq_attr); 3599 3600 /** 3601 * ib_destroy_srq_user - Destroys the specified SRQ. 3602 * @srq: The SRQ to destroy. 3603 * @udata: Valid user data or NULL for kernel objects 3604 */ 3605 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3606 3607 /** 3608 * ib_destroy_srq - Destroys the specified kernel SRQ. 3609 * @srq: The SRQ to destroy. 3610 * 3611 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3612 */ 3613 static inline int ib_destroy_srq(struct ib_srq *srq) 3614 { 3615 return ib_destroy_srq_user(srq, NULL); 3616 } 3617 3618 /** 3619 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3620 * @srq: The SRQ to post the work request on. 3621 * @recv_wr: A list of work requests to post on the receive queue. 3622 * @bad_recv_wr: On an immediate failure, this parameter will reference 3623 * the work request that failed to be posted on the QP. 3624 */ 3625 static inline int ib_post_srq_recv(struct ib_srq *srq, 3626 const struct ib_recv_wr *recv_wr, 3627 const struct ib_recv_wr **bad_recv_wr) 3628 { 3629 const struct ib_recv_wr *dummy; 3630 3631 return srq->device->ops.post_srq_recv(srq, recv_wr, 3632 bad_recv_wr ? : &dummy); 3633 } 3634 3635 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3636 struct ib_qp_init_attr *qp_init_attr); 3637 3638 /** 3639 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3640 * @qp: The QP to modify. 3641 * @attr: On input, specifies the QP attributes to modify. On output, 3642 * the current values of selected QP attributes are returned. 3643 * @attr_mask: A bit-mask used to specify which attributes of the QP 3644 * are being modified. 3645 * @udata: pointer to user's input output buffer information 3646 * are being modified. 3647 * It returns 0 on success and returns appropriate error code on error. 3648 */ 3649 int ib_modify_qp_with_udata(struct ib_qp *qp, 3650 struct ib_qp_attr *attr, 3651 int attr_mask, 3652 struct ib_udata *udata); 3653 3654 /** 3655 * ib_modify_qp - Modifies the attributes for the specified QP and then 3656 * transitions the QP to the given state. 3657 * @qp: The QP to modify. 3658 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3659 * the current values of selected QP attributes are returned. 3660 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3661 * are being modified. 3662 */ 3663 int ib_modify_qp(struct ib_qp *qp, 3664 struct ib_qp_attr *qp_attr, 3665 int qp_attr_mask); 3666 3667 /** 3668 * ib_query_qp - Returns the attribute list and current values for the 3669 * specified QP. 3670 * @qp: The QP to query. 3671 * @qp_attr: The attributes of the specified QP. 3672 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3673 * @qp_init_attr: Additional attributes of the selected QP. 3674 * 3675 * The qp_attr_mask may be used to limit the query to gathering only the 3676 * selected attributes. 3677 */ 3678 int ib_query_qp(struct ib_qp *qp, 3679 struct ib_qp_attr *qp_attr, 3680 int qp_attr_mask, 3681 struct ib_qp_init_attr *qp_init_attr); 3682 3683 /** 3684 * ib_destroy_qp - Destroys the specified QP. 3685 * @qp: The QP to destroy. 3686 * @udata: Valid udata or NULL for kernel objects 3687 */ 3688 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3689 3690 /** 3691 * ib_destroy_qp - Destroys the specified kernel QP. 3692 * @qp: The QP to destroy. 3693 * 3694 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3695 */ 3696 static inline int ib_destroy_qp(struct ib_qp *qp) 3697 { 3698 return ib_destroy_qp_user(qp, NULL); 3699 } 3700 3701 /** 3702 * ib_open_qp - Obtain a reference to an existing sharable QP. 3703 * @xrcd - XRC domain 3704 * @qp_open_attr: Attributes identifying the QP to open. 3705 * 3706 * Returns a reference to a sharable QP. 3707 */ 3708 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3709 struct ib_qp_open_attr *qp_open_attr); 3710 3711 /** 3712 * ib_close_qp - Release an external reference to a QP. 3713 * @qp: The QP handle to release 3714 * 3715 * The opened QP handle is released by the caller. The underlying 3716 * shared QP is not destroyed until all internal references are released. 3717 */ 3718 int ib_close_qp(struct ib_qp *qp); 3719 3720 /** 3721 * ib_post_send - Posts a list of work requests to the send queue of 3722 * the specified QP. 3723 * @qp: The QP to post the work request on. 3724 * @send_wr: A list of work requests to post on the send queue. 3725 * @bad_send_wr: On an immediate failure, this parameter will reference 3726 * the work request that failed to be posted on the QP. 3727 * 3728 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3729 * error is returned, the QP state shall not be affected, 3730 * ib_post_send() will return an immediate error after queueing any 3731 * earlier work requests in the list. 3732 */ 3733 static inline int ib_post_send(struct ib_qp *qp, 3734 const struct ib_send_wr *send_wr, 3735 const struct ib_send_wr **bad_send_wr) 3736 { 3737 const struct ib_send_wr *dummy; 3738 3739 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3740 } 3741 3742 /** 3743 * ib_post_recv - Posts a list of work requests to the receive queue of 3744 * the specified QP. 3745 * @qp: The QP to post the work request on. 3746 * @recv_wr: A list of work requests to post on the receive queue. 3747 * @bad_recv_wr: On an immediate failure, this parameter will reference 3748 * the work request that failed to be posted on the QP. 3749 */ 3750 static inline int ib_post_recv(struct ib_qp *qp, 3751 const struct ib_recv_wr *recv_wr, 3752 const struct ib_recv_wr **bad_recv_wr) 3753 { 3754 const struct ib_recv_wr *dummy; 3755 3756 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3757 } 3758 3759 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private, 3760 int nr_cqe, int comp_vector, 3761 enum ib_poll_context poll_ctx, 3762 const char *caller, struct ib_udata *udata); 3763 3764 /** 3765 * ib_alloc_cq_user: Allocate kernel/user CQ 3766 * @dev: The IB device 3767 * @private: Private data attached to the CQE 3768 * @nr_cqe: Number of CQEs in the CQ 3769 * @comp_vector: Completion vector used for the IRQs 3770 * @poll_ctx: Context used for polling the CQ 3771 * @udata: Valid user data or NULL for kernel objects 3772 */ 3773 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev, 3774 void *private, int nr_cqe, 3775 int comp_vector, 3776 enum ib_poll_context poll_ctx, 3777 struct ib_udata *udata) 3778 { 3779 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3780 KBUILD_MODNAME, udata); 3781 } 3782 3783 /** 3784 * ib_alloc_cq: Allocate kernel CQ 3785 * @dev: The IB device 3786 * @private: Private data attached to the CQE 3787 * @nr_cqe: Number of CQEs in the CQ 3788 * @comp_vector: Completion vector used for the IRQs 3789 * @poll_ctx: Context used for polling the CQ 3790 * 3791 * NOTE: for user cq use ib_alloc_cq_user with valid udata! 3792 */ 3793 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3794 int nr_cqe, int comp_vector, 3795 enum ib_poll_context poll_ctx) 3796 { 3797 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3798 NULL); 3799 } 3800 3801 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3802 int nr_cqe, enum ib_poll_context poll_ctx, 3803 const char *caller); 3804 3805 /** 3806 * ib_alloc_cq_any: Allocate kernel CQ 3807 * @dev: The IB device 3808 * @private: Private data attached to the CQE 3809 * @nr_cqe: Number of CQEs in the CQ 3810 * @poll_ctx: Context used for polling the CQ 3811 */ 3812 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3813 void *private, int nr_cqe, 3814 enum ib_poll_context poll_ctx) 3815 { 3816 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3817 KBUILD_MODNAME); 3818 } 3819 3820 /** 3821 * ib_free_cq_user - Free kernel/user CQ 3822 * @cq: The CQ to free 3823 * @udata: Valid user data or NULL for kernel objects 3824 */ 3825 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3826 3827 /** 3828 * ib_free_cq - Free kernel CQ 3829 * @cq: The CQ to free 3830 * 3831 * NOTE: for user cq use ib_free_cq_user with valid udata! 3832 */ 3833 static inline void ib_free_cq(struct ib_cq *cq) 3834 { 3835 ib_free_cq_user(cq, NULL); 3836 } 3837 3838 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3839 3840 /** 3841 * ib_create_cq - Creates a CQ on the specified device. 3842 * @device: The device on which to create the CQ. 3843 * @comp_handler: A user-specified callback that is invoked when a 3844 * completion event occurs on the CQ. 3845 * @event_handler: A user-specified callback that is invoked when an 3846 * asynchronous event not associated with a completion occurs on the CQ. 3847 * @cq_context: Context associated with the CQ returned to the user via 3848 * the associated completion and event handlers. 3849 * @cq_attr: The attributes the CQ should be created upon. 3850 * 3851 * Users can examine the cq structure to determine the actual CQ size. 3852 */ 3853 struct ib_cq *__ib_create_cq(struct ib_device *device, 3854 ib_comp_handler comp_handler, 3855 void (*event_handler)(struct ib_event *, void *), 3856 void *cq_context, 3857 const struct ib_cq_init_attr *cq_attr, 3858 const char *caller); 3859 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3860 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3861 3862 /** 3863 * ib_resize_cq - Modifies the capacity of the CQ. 3864 * @cq: The CQ to resize. 3865 * @cqe: The minimum size of the CQ. 3866 * 3867 * Users can examine the cq structure to determine the actual CQ size. 3868 */ 3869 int ib_resize_cq(struct ib_cq *cq, int cqe); 3870 3871 /** 3872 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3873 * @cq: The CQ to modify. 3874 * @cq_count: number of CQEs that will trigger an event 3875 * @cq_period: max period of time in usec before triggering an event 3876 * 3877 */ 3878 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3879 3880 /** 3881 * ib_destroy_cq_user - Destroys the specified CQ. 3882 * @cq: The CQ to destroy. 3883 * @udata: Valid user data or NULL for kernel objects 3884 */ 3885 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3886 3887 /** 3888 * ib_destroy_cq - Destroys the specified kernel CQ. 3889 * @cq: The CQ to destroy. 3890 * 3891 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3892 */ 3893 static inline void ib_destroy_cq(struct ib_cq *cq) 3894 { 3895 ib_destroy_cq_user(cq, NULL); 3896 } 3897 3898 /** 3899 * ib_poll_cq - poll a CQ for completion(s) 3900 * @cq:the CQ being polled 3901 * @num_entries:maximum number of completions to return 3902 * @wc:array of at least @num_entries &struct ib_wc where completions 3903 * will be returned 3904 * 3905 * Poll a CQ for (possibly multiple) completions. If the return value 3906 * is < 0, an error occurred. If the return value is >= 0, it is the 3907 * number of completions returned. If the return value is 3908 * non-negative and < num_entries, then the CQ was emptied. 3909 */ 3910 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3911 struct ib_wc *wc) 3912 { 3913 return cq->device->ops.poll_cq(cq, num_entries, wc); 3914 } 3915 3916 /** 3917 * ib_req_notify_cq - Request completion notification on a CQ. 3918 * @cq: The CQ to generate an event for. 3919 * @flags: 3920 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3921 * to request an event on the next solicited event or next work 3922 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3923 * may also be |ed in to request a hint about missed events, as 3924 * described below. 3925 * 3926 * Return Value: 3927 * < 0 means an error occurred while requesting notification 3928 * == 0 means notification was requested successfully, and if 3929 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3930 * were missed and it is safe to wait for another event. In 3931 * this case is it guaranteed that any work completions added 3932 * to the CQ since the last CQ poll will trigger a completion 3933 * notification event. 3934 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3935 * in. It means that the consumer must poll the CQ again to 3936 * make sure it is empty to avoid missing an event because of a 3937 * race between requesting notification and an entry being 3938 * added to the CQ. This return value means it is possible 3939 * (but not guaranteed) that a work completion has been added 3940 * to the CQ since the last poll without triggering a 3941 * completion notification event. 3942 */ 3943 static inline int ib_req_notify_cq(struct ib_cq *cq, 3944 enum ib_cq_notify_flags flags) 3945 { 3946 return cq->device->ops.req_notify_cq(cq, flags); 3947 } 3948 3949 /** 3950 * ib_req_ncomp_notif - Request completion notification when there are 3951 * at least the specified number of unreaped completions on the CQ. 3952 * @cq: The CQ to generate an event for. 3953 * @wc_cnt: The number of unreaped completions that should be on the 3954 * CQ before an event is generated. 3955 */ 3956 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3957 { 3958 return cq->device->ops.req_ncomp_notif ? 3959 cq->device->ops.req_ncomp_notif(cq, wc_cnt) : 3960 -ENOSYS; 3961 } 3962 3963 /** 3964 * ib_dma_mapping_error - check a DMA addr for error 3965 * @dev: The device for which the dma_addr was created 3966 * @dma_addr: The DMA address to check 3967 */ 3968 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3969 { 3970 return dma_mapping_error(dev->dma_device, dma_addr); 3971 } 3972 3973 /** 3974 * ib_dma_map_single - Map a kernel virtual address to DMA address 3975 * @dev: The device for which the dma_addr is to be created 3976 * @cpu_addr: The kernel virtual address 3977 * @size: The size of the region in bytes 3978 * @direction: The direction of the DMA 3979 */ 3980 static inline u64 ib_dma_map_single(struct ib_device *dev, 3981 void *cpu_addr, size_t size, 3982 enum dma_data_direction direction) 3983 { 3984 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3985 } 3986 3987 /** 3988 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3989 * @dev: The device for which the DMA address was created 3990 * @addr: The DMA address 3991 * @size: The size of the region in bytes 3992 * @direction: The direction of the DMA 3993 */ 3994 static inline void ib_dma_unmap_single(struct ib_device *dev, 3995 u64 addr, size_t size, 3996 enum dma_data_direction direction) 3997 { 3998 dma_unmap_single(dev->dma_device, addr, size, direction); 3999 } 4000 4001 /** 4002 * ib_dma_map_page - Map a physical page to DMA address 4003 * @dev: The device for which the dma_addr is to be created 4004 * @page: The page to be mapped 4005 * @offset: The offset within the page 4006 * @size: The size of the region in bytes 4007 * @direction: The direction of the DMA 4008 */ 4009 static inline u64 ib_dma_map_page(struct ib_device *dev, 4010 struct page *page, 4011 unsigned long offset, 4012 size_t size, 4013 enum dma_data_direction direction) 4014 { 4015 return dma_map_page(dev->dma_device, page, offset, size, direction); 4016 } 4017 4018 /** 4019 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4020 * @dev: The device for which the DMA address was created 4021 * @addr: The DMA address 4022 * @size: The size of the region in bytes 4023 * @direction: The direction of the DMA 4024 */ 4025 static inline void ib_dma_unmap_page(struct ib_device *dev, 4026 u64 addr, size_t size, 4027 enum dma_data_direction direction) 4028 { 4029 dma_unmap_page(dev->dma_device, addr, size, direction); 4030 } 4031 4032 /** 4033 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4034 * @dev: The device for which the DMA addresses are to be created 4035 * @sg: The array of scatter/gather entries 4036 * @nents: The number of scatter/gather entries 4037 * @direction: The direction of the DMA 4038 */ 4039 static inline int ib_dma_map_sg(struct ib_device *dev, 4040 struct scatterlist *sg, int nents, 4041 enum dma_data_direction direction) 4042 { 4043 return dma_map_sg(dev->dma_device, sg, nents, direction); 4044 } 4045 4046 /** 4047 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4048 * @dev: The device for which the DMA addresses were created 4049 * @sg: The array of scatter/gather entries 4050 * @nents: The number of scatter/gather entries 4051 * @direction: The direction of the DMA 4052 */ 4053 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4054 struct scatterlist *sg, int nents, 4055 enum dma_data_direction direction) 4056 { 4057 dma_unmap_sg(dev->dma_device, sg, nents, direction); 4058 } 4059 4060 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4061 struct scatterlist *sg, int nents, 4062 enum dma_data_direction direction, 4063 unsigned long dma_attrs) 4064 { 4065 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4066 dma_attrs); 4067 } 4068 4069 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4070 struct scatterlist *sg, int nents, 4071 enum dma_data_direction direction, 4072 unsigned long dma_attrs) 4073 { 4074 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 4075 } 4076 4077 /** 4078 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4079 * @dev: The device to query 4080 * 4081 * The returned value represents a size in bytes. 4082 */ 4083 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4084 { 4085 return dma_get_max_seg_size(dev->dma_device); 4086 } 4087 4088 /** 4089 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4090 * @dev: The device for which the DMA address was created 4091 * @addr: The DMA address 4092 * @size: The size of the region in bytes 4093 * @dir: The direction of the DMA 4094 */ 4095 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4096 u64 addr, 4097 size_t size, 4098 enum dma_data_direction dir) 4099 { 4100 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4101 } 4102 4103 /** 4104 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4105 * @dev: The device for which the DMA address was created 4106 * @addr: The DMA address 4107 * @size: The size of the region in bytes 4108 * @dir: The direction of the DMA 4109 */ 4110 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4111 u64 addr, 4112 size_t size, 4113 enum dma_data_direction dir) 4114 { 4115 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4116 } 4117 4118 /** 4119 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 4120 * @dev: The device for which the DMA address is requested 4121 * @size: The size of the region to allocate in bytes 4122 * @dma_handle: A pointer for returning the DMA address of the region 4123 * @flag: memory allocator flags 4124 */ 4125 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 4126 size_t size, 4127 dma_addr_t *dma_handle, 4128 gfp_t flag) 4129 { 4130 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 4131 } 4132 4133 /** 4134 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 4135 * @dev: The device for which the DMA addresses were allocated 4136 * @size: The size of the region 4137 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 4138 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 4139 */ 4140 static inline void ib_dma_free_coherent(struct ib_device *dev, 4141 size_t size, void *cpu_addr, 4142 dma_addr_t dma_handle) 4143 { 4144 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 4145 } 4146 4147 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4148 * space. This function should be called when 'current' is the owning MM. 4149 */ 4150 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4151 u64 virt_addr, int mr_access_flags); 4152 4153 /* ib_advise_mr - give an advice about an address range in a memory region */ 4154 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4155 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4156 /** 4157 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4158 * HCA translation table. 4159 * @mr: The memory region to deregister. 4160 * @udata: Valid user data or NULL for kernel object 4161 * 4162 * This function can fail, if the memory region has memory windows bound to it. 4163 */ 4164 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4165 4166 /** 4167 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4168 * HCA translation table. 4169 * @mr: The memory region to deregister. 4170 * 4171 * This function can fail, if the memory region has memory windows bound to it. 4172 * 4173 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4174 */ 4175 static inline int ib_dereg_mr(struct ib_mr *mr) 4176 { 4177 return ib_dereg_mr_user(mr, NULL); 4178 } 4179 4180 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 4181 u32 max_num_sg, struct ib_udata *udata); 4182 4183 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 4184 enum ib_mr_type mr_type, u32 max_num_sg) 4185 { 4186 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL); 4187 } 4188 4189 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4190 u32 max_num_data_sg, 4191 u32 max_num_meta_sg); 4192 4193 /** 4194 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4195 * R_Key and L_Key. 4196 * @mr - struct ib_mr pointer to be updated. 4197 * @newkey - new key to be used. 4198 */ 4199 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4200 { 4201 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4202 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4203 } 4204 4205 /** 4206 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4207 * for calculating a new rkey for type 2 memory windows. 4208 * @rkey - the rkey to increment. 4209 */ 4210 static inline u32 ib_inc_rkey(u32 rkey) 4211 { 4212 const u32 mask = 0x000000ff; 4213 return ((rkey + 1) & mask) | (rkey & ~mask); 4214 } 4215 4216 /** 4217 * ib_alloc_fmr - Allocates a unmapped fast memory region. 4218 * @pd: The protection domain associated with the unmapped region. 4219 * @mr_access_flags: Specifies the memory access rights. 4220 * @fmr_attr: Attributes of the unmapped region. 4221 * 4222 * A fast memory region must be mapped before it can be used as part of 4223 * a work request. 4224 */ 4225 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 4226 int mr_access_flags, 4227 struct ib_fmr_attr *fmr_attr); 4228 4229 /** 4230 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 4231 * @fmr: The fast memory region to associate with the pages. 4232 * @page_list: An array of physical pages to map to the fast memory region. 4233 * @list_len: The number of pages in page_list. 4234 * @iova: The I/O virtual address to use with the mapped region. 4235 */ 4236 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 4237 u64 *page_list, int list_len, 4238 u64 iova) 4239 { 4240 return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova); 4241 } 4242 4243 /** 4244 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 4245 * @fmr_list: A linked list of fast memory regions to unmap. 4246 */ 4247 int ib_unmap_fmr(struct list_head *fmr_list); 4248 4249 /** 4250 * ib_dealloc_fmr - Deallocates a fast memory region. 4251 * @fmr: The fast memory region to deallocate. 4252 */ 4253 int ib_dealloc_fmr(struct ib_fmr *fmr); 4254 4255 /** 4256 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4257 * @qp: QP to attach to the multicast group. The QP must be type 4258 * IB_QPT_UD. 4259 * @gid: Multicast group GID. 4260 * @lid: Multicast group LID in host byte order. 4261 * 4262 * In order to send and receive multicast packets, subnet 4263 * administration must have created the multicast group and configured 4264 * the fabric appropriately. The port associated with the specified 4265 * QP must also be a member of the multicast group. 4266 */ 4267 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4268 4269 /** 4270 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4271 * @qp: QP to detach from the multicast group. 4272 * @gid: Multicast group GID. 4273 * @lid: Multicast group LID in host byte order. 4274 */ 4275 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4276 4277 /** 4278 * ib_alloc_xrcd - Allocates an XRC domain. 4279 * @device: The device on which to allocate the XRC domain. 4280 * @caller: Module name for kernel consumers 4281 */ 4282 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 4283 #define ib_alloc_xrcd(device) \ 4284 __ib_alloc_xrcd((device), KBUILD_MODNAME) 4285 4286 /** 4287 * ib_dealloc_xrcd - Deallocates an XRC domain. 4288 * @xrcd: The XRC domain to deallocate. 4289 * @udata: Valid user data or NULL for kernel object 4290 */ 4291 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata); 4292 4293 static inline int ib_check_mr_access(int flags) 4294 { 4295 /* 4296 * Local write permission is required if remote write or 4297 * remote atomic permission is also requested. 4298 */ 4299 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4300 !(flags & IB_ACCESS_LOCAL_WRITE)) 4301 return -EINVAL; 4302 4303 if (flags & ~IB_ACCESS_SUPPORTED) 4304 return -EINVAL; 4305 4306 return 0; 4307 } 4308 4309 static inline bool ib_access_writable(int access_flags) 4310 { 4311 /* 4312 * We have writable memory backing the MR if any of the following 4313 * access flags are set. "Local write" and "remote write" obviously 4314 * require write access. "Remote atomic" can do things like fetch and 4315 * add, which will modify memory, and "MW bind" can change permissions 4316 * by binding a window. 4317 */ 4318 return access_flags & 4319 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4320 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4321 } 4322 4323 /** 4324 * ib_check_mr_status: lightweight check of MR status. 4325 * This routine may provide status checks on a selected 4326 * ib_mr. first use is for signature status check. 4327 * 4328 * @mr: A memory region. 4329 * @check_mask: Bitmask of which checks to perform from 4330 * ib_mr_status_check enumeration. 4331 * @mr_status: The container of relevant status checks. 4332 * failed checks will be indicated in the status bitmask 4333 * and the relevant info shall be in the error item. 4334 */ 4335 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4336 struct ib_mr_status *mr_status); 4337 4338 /** 4339 * ib_device_try_get: Hold a registration lock 4340 * device: The device to lock 4341 * 4342 * A device under an active registration lock cannot become unregistered. It 4343 * is only possible to obtain a registration lock on a device that is fully 4344 * registered, otherwise this function returns false. 4345 * 4346 * The registration lock is only necessary for actions which require the 4347 * device to still be registered. Uses that only require the device pointer to 4348 * be valid should use get_device(&ibdev->dev) to hold the memory. 4349 * 4350 */ 4351 static inline bool ib_device_try_get(struct ib_device *dev) 4352 { 4353 return refcount_inc_not_zero(&dev->refcount); 4354 } 4355 4356 void ib_device_put(struct ib_device *device); 4357 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4358 enum rdma_driver_id driver_id); 4359 struct ib_device *ib_device_get_by_name(const char *name, 4360 enum rdma_driver_id driver_id); 4361 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 4362 u16 pkey, const union ib_gid *gid, 4363 const struct sockaddr *addr); 4364 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4365 unsigned int port); 4366 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port); 4367 4368 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4369 struct ib_wq_init_attr *init_attr); 4370 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata); 4371 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 4372 u32 wq_attr_mask); 4373 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 4374 struct ib_rwq_ind_table_init_attr* 4375 wq_ind_table_init_attr); 4376 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 4377 4378 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4379 unsigned int *sg_offset, unsigned int page_size); 4380 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4381 int data_sg_nents, unsigned int *data_sg_offset, 4382 struct scatterlist *meta_sg, int meta_sg_nents, 4383 unsigned int *meta_sg_offset, unsigned int page_size); 4384 4385 static inline int 4386 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4387 unsigned int *sg_offset, unsigned int page_size) 4388 { 4389 int n; 4390 4391 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4392 mr->iova = 0; 4393 4394 return n; 4395 } 4396 4397 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4398 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4399 4400 void ib_drain_rq(struct ib_qp *qp); 4401 void ib_drain_sq(struct ib_qp *qp); 4402 void ib_drain_qp(struct ib_qp *qp); 4403 4404 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 4405 4406 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4407 { 4408 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4409 return attr->roce.dmac; 4410 return NULL; 4411 } 4412 4413 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4414 { 4415 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4416 attr->ib.dlid = (u16)dlid; 4417 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4418 attr->opa.dlid = dlid; 4419 } 4420 4421 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4422 { 4423 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4424 return attr->ib.dlid; 4425 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4426 return attr->opa.dlid; 4427 return 0; 4428 } 4429 4430 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4431 { 4432 attr->sl = sl; 4433 } 4434 4435 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4436 { 4437 return attr->sl; 4438 } 4439 4440 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4441 u8 src_path_bits) 4442 { 4443 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4444 attr->ib.src_path_bits = src_path_bits; 4445 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4446 attr->opa.src_path_bits = src_path_bits; 4447 } 4448 4449 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4450 { 4451 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4452 return attr->ib.src_path_bits; 4453 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4454 return attr->opa.src_path_bits; 4455 return 0; 4456 } 4457 4458 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4459 bool make_grd) 4460 { 4461 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4462 attr->opa.make_grd = make_grd; 4463 } 4464 4465 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4466 { 4467 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4468 return attr->opa.make_grd; 4469 return false; 4470 } 4471 4472 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4473 { 4474 attr->port_num = port_num; 4475 } 4476 4477 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4478 { 4479 return attr->port_num; 4480 } 4481 4482 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4483 u8 static_rate) 4484 { 4485 attr->static_rate = static_rate; 4486 } 4487 4488 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4489 { 4490 return attr->static_rate; 4491 } 4492 4493 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4494 enum ib_ah_flags flag) 4495 { 4496 attr->ah_flags = flag; 4497 } 4498 4499 static inline enum ib_ah_flags 4500 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4501 { 4502 return attr->ah_flags; 4503 } 4504 4505 static inline const struct ib_global_route 4506 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4507 { 4508 return &attr->grh; 4509 } 4510 4511 /*To retrieve and modify the grh */ 4512 static inline struct ib_global_route 4513 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4514 { 4515 return &attr->grh; 4516 } 4517 4518 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4519 { 4520 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4521 4522 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4523 } 4524 4525 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4526 __be64 prefix) 4527 { 4528 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4529 4530 grh->dgid.global.subnet_prefix = prefix; 4531 } 4532 4533 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4534 __be64 if_id) 4535 { 4536 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4537 4538 grh->dgid.global.interface_id = if_id; 4539 } 4540 4541 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4542 union ib_gid *dgid, u32 flow_label, 4543 u8 sgid_index, u8 hop_limit, 4544 u8 traffic_class) 4545 { 4546 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4547 4548 attr->ah_flags = IB_AH_GRH; 4549 if (dgid) 4550 grh->dgid = *dgid; 4551 grh->flow_label = flow_label; 4552 grh->sgid_index = sgid_index; 4553 grh->hop_limit = hop_limit; 4554 grh->traffic_class = traffic_class; 4555 grh->sgid_attr = NULL; 4556 } 4557 4558 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4559 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4560 u32 flow_label, u8 hop_limit, u8 traffic_class, 4561 const struct ib_gid_attr *sgid_attr); 4562 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4563 const struct rdma_ah_attr *src); 4564 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4565 const struct rdma_ah_attr *new); 4566 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4567 4568 /** 4569 * rdma_ah_find_type - Return address handle type. 4570 * 4571 * @dev: Device to be checked 4572 * @port_num: Port number 4573 */ 4574 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4575 u8 port_num) 4576 { 4577 if (rdma_protocol_roce(dev, port_num)) 4578 return RDMA_AH_ATTR_TYPE_ROCE; 4579 if (rdma_protocol_ib(dev, port_num)) { 4580 if (rdma_cap_opa_ah(dev, port_num)) 4581 return RDMA_AH_ATTR_TYPE_OPA; 4582 return RDMA_AH_ATTR_TYPE_IB; 4583 } 4584 4585 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4586 } 4587 4588 /** 4589 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4590 * In the current implementation the only way to get 4591 * get the 32bit lid is from other sources for OPA. 4592 * For IB, lids will always be 16bits so cast the 4593 * value accordingly. 4594 * 4595 * @lid: A 32bit LID 4596 */ 4597 static inline u16 ib_lid_cpu16(u32 lid) 4598 { 4599 WARN_ON_ONCE(lid & 0xFFFF0000); 4600 return (u16)lid; 4601 } 4602 4603 /** 4604 * ib_lid_be16 - Return lid in 16bit BE encoding. 4605 * 4606 * @lid: A 32bit LID 4607 */ 4608 static inline __be16 ib_lid_be16(u32 lid) 4609 { 4610 WARN_ON_ONCE(lid & 0xFFFF0000); 4611 return cpu_to_be16((u16)lid); 4612 } 4613 4614 /** 4615 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4616 * vector 4617 * @device: the rdma device 4618 * @comp_vector: index of completion vector 4619 * 4620 * Returns NULL on failure, otherwise a corresponding cpu map of the 4621 * completion vector (returns all-cpus map if the device driver doesn't 4622 * implement get_vector_affinity). 4623 */ 4624 static inline const struct cpumask * 4625 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4626 { 4627 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4628 !device->ops.get_vector_affinity) 4629 return NULL; 4630 4631 return device->ops.get_vector_affinity(device, comp_vector); 4632 4633 } 4634 4635 /** 4636 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4637 * and add their gids, as needed, to the relevant RoCE devices. 4638 * 4639 * @device: the rdma device 4640 */ 4641 void rdma_roce_rescan_device(struct ib_device *ibdev); 4642 4643 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4644 4645 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4646 4647 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4648 enum rdma_netdev_t type, const char *name, 4649 unsigned char name_assign_type, 4650 void (*setup)(struct net_device *)); 4651 4652 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4653 enum rdma_netdev_t type, const char *name, 4654 unsigned char name_assign_type, 4655 void (*setup)(struct net_device *), 4656 struct net_device *netdev); 4657 4658 /** 4659 * rdma_set_device_sysfs_group - Set device attributes group to have 4660 * driver specific sysfs entries at 4661 * for infiniband class. 4662 * 4663 * @device: device pointer for which attributes to be created 4664 * @group: Pointer to group which should be added when device 4665 * is registered with sysfs. 4666 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4667 * group per device to have sysfs attributes. 4668 * 4669 * NOTE: New drivers should not make use of this API; instead new device 4670 * parameter should be exposed via netlink command. This API and mechanism 4671 * exist only for existing drivers. 4672 */ 4673 static inline void 4674 rdma_set_device_sysfs_group(struct ib_device *dev, 4675 const struct attribute_group *group) 4676 { 4677 dev->groups[1] = group; 4678 } 4679 4680 /** 4681 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4682 * 4683 * @device: device pointer for which ib_device pointer to retrieve 4684 * 4685 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4686 * 4687 */ 4688 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4689 { 4690 struct ib_core_device *coredev = 4691 container_of(device, struct ib_core_device, dev); 4692 4693 return coredev->owner; 4694 } 4695 4696 /** 4697 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4698 * ib_device holder structure from device pointer. 4699 * 4700 * NOTE: New drivers should not make use of this API; This API is only for 4701 * existing drivers who have exposed sysfs entries using 4702 * rdma_set_device_sysfs_group(). 4703 */ 4704 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4705 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4706 4707 bool rdma_dev_access_netns(const struct ib_device *device, 4708 const struct net *net); 4709 4710 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4711 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4712 4713 /** 4714 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4715 * on the flow_label 4716 * 4717 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4718 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4719 * convention. 4720 */ 4721 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4722 { 4723 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4724 4725 fl_low ^= fl_high >> 14; 4726 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4727 } 4728 4729 /** 4730 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4731 * local and remote qpn values 4732 * 4733 * This function folded the multiplication results of two qpns, 24 bit each, 4734 * fields, and converts it to a 20 bit results. 4735 * 4736 * This function will create symmetric flow_label value based on the local 4737 * and remote qpn values. this will allow both the requester and responder 4738 * to calculate the same flow_label for a given connection. 4739 * 4740 * This helper function should be used by driver in case the upper layer 4741 * provide a zero flow_label value. This is to improve entropy of RDMA 4742 * traffic in the network. 4743 */ 4744 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4745 { 4746 u64 v = (u64)lqpn * rqpn; 4747 4748 v ^= v >> 20; 4749 v ^= v >> 40; 4750 4751 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4752 } 4753 #endif /* IB_VERBS_H */ 4754