1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/dma-mapping.h> 45 #include <linux/kref.h> 46 #include <linux/list.h> 47 #include <linux/rwsem.h> 48 #include <linux/workqueue.h> 49 #include <linux/irq_poll.h> 50 #include <uapi/linux/if_ether.h> 51 #include <net/ipv6.h> 52 #include <net/ip.h> 53 #include <linux/string.h> 54 #include <linux/slab.h> 55 #include <linux/netdevice.h> 56 #include <linux/refcount.h> 57 #include <linux/if_link.h> 58 #include <linux/atomic.h> 59 #include <linux/mmu_notifier.h> 60 #include <linux/uaccess.h> 61 #include <linux/cgroup_rdma.h> 62 #include <linux/irqflags.h> 63 #include <linux/preempt.h> 64 #include <uapi/rdma/ib_user_verbs.h> 65 #include <rdma/rdma_counter.h> 66 #include <rdma/restrack.h> 67 #include <rdma/signature.h> 68 #include <uapi/rdma/rdma_user_ioctl.h> 69 #include <uapi/rdma/ib_user_ioctl_verbs.h> 70 71 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 72 73 struct ib_umem_odp; 74 75 extern struct workqueue_struct *ib_wq; 76 extern struct workqueue_struct *ib_comp_wq; 77 extern struct workqueue_struct *ib_comp_unbound_wq; 78 79 __printf(3, 4) __cold 80 void ibdev_printk(const char *level, const struct ib_device *ibdev, 81 const char *format, ...); 82 __printf(2, 3) __cold 83 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 84 __printf(2, 3) __cold 85 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 86 __printf(2, 3) __cold 87 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 88 __printf(2, 3) __cold 89 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 90 __printf(2, 3) __cold 91 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 92 __printf(2, 3) __cold 93 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 94 __printf(2, 3) __cold 95 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 96 97 #if defined(CONFIG_DYNAMIC_DEBUG) 98 #define ibdev_dbg(__dev, format, args...) \ 99 dynamic_ibdev_dbg(__dev, format, ##args) 100 #elif defined(DEBUG) 101 #define ibdev_dbg(__dev, format, args...) \ 102 ibdev_printk(KERN_DEBUG, __dev, format, ##args) 103 #else 104 __printf(2, 3) __cold 105 static inline 106 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 107 #endif 108 109 union ib_gid { 110 u8 raw[16]; 111 struct { 112 __be64 subnet_prefix; 113 __be64 interface_id; 114 } global; 115 }; 116 117 extern union ib_gid zgid; 118 119 enum ib_gid_type { 120 /* If link layer is Ethernet, this is RoCE V1 */ 121 IB_GID_TYPE_IB = 0, 122 IB_GID_TYPE_ROCE = 0, 123 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 124 IB_GID_TYPE_SIZE 125 }; 126 127 #define ROCE_V2_UDP_DPORT 4791 128 struct ib_gid_attr { 129 struct net_device __rcu *ndev; 130 struct ib_device *device; 131 union ib_gid gid; 132 enum ib_gid_type gid_type; 133 u16 index; 134 u8 port_num; 135 }; 136 137 enum { 138 /* set the local administered indication */ 139 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 140 }; 141 142 enum rdma_transport_type { 143 RDMA_TRANSPORT_IB, 144 RDMA_TRANSPORT_IWARP, 145 RDMA_TRANSPORT_USNIC, 146 RDMA_TRANSPORT_USNIC_UDP, 147 RDMA_TRANSPORT_UNSPECIFIED, 148 }; 149 150 enum rdma_protocol_type { 151 RDMA_PROTOCOL_IB, 152 RDMA_PROTOCOL_IBOE, 153 RDMA_PROTOCOL_IWARP, 154 RDMA_PROTOCOL_USNIC_UDP 155 }; 156 157 __attribute_const__ enum rdma_transport_type 158 rdma_node_get_transport(unsigned int node_type); 159 160 enum rdma_network_type { 161 RDMA_NETWORK_IB, 162 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 163 RDMA_NETWORK_IPV4, 164 RDMA_NETWORK_IPV6 165 }; 166 167 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 168 { 169 if (network_type == RDMA_NETWORK_IPV4 || 170 network_type == RDMA_NETWORK_IPV6) 171 return IB_GID_TYPE_ROCE_UDP_ENCAP; 172 173 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 174 return IB_GID_TYPE_IB; 175 } 176 177 static inline enum rdma_network_type 178 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 179 { 180 if (attr->gid_type == IB_GID_TYPE_IB) 181 return RDMA_NETWORK_IB; 182 183 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 184 return RDMA_NETWORK_IPV4; 185 else 186 return RDMA_NETWORK_IPV6; 187 } 188 189 enum rdma_link_layer { 190 IB_LINK_LAYER_UNSPECIFIED, 191 IB_LINK_LAYER_INFINIBAND, 192 IB_LINK_LAYER_ETHERNET, 193 }; 194 195 enum ib_device_cap_flags { 196 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 197 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 198 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 199 IB_DEVICE_RAW_MULTI = (1 << 3), 200 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 201 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 202 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 203 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 204 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 205 /* Not in use, former INIT_TYPE = (1 << 9),*/ 206 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 207 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 208 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 209 IB_DEVICE_SRQ_RESIZE = (1 << 13), 210 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 211 212 /* 213 * This device supports a per-device lkey or stag that can be 214 * used without performing a memory registration for the local 215 * memory. Note that ULPs should never check this flag, but 216 * instead of use the local_dma_lkey flag in the ib_pd structure, 217 * which will always contain a usable lkey. 218 */ 219 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 220 /* Reserved, old SEND_W_INV = (1 << 16),*/ 221 IB_DEVICE_MEM_WINDOW = (1 << 17), 222 /* 223 * Devices should set IB_DEVICE_UD_IP_SUM if they support 224 * insertion of UDP and TCP checksum on outgoing UD IPoIB 225 * messages and can verify the validity of checksum for 226 * incoming messages. Setting this flag implies that the 227 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 228 */ 229 IB_DEVICE_UD_IP_CSUM = (1 << 18), 230 IB_DEVICE_UD_TSO = (1 << 19), 231 IB_DEVICE_XRC = (1 << 20), 232 233 /* 234 * This device supports the IB "base memory management extension", 235 * which includes support for fast registrations (IB_WR_REG_MR, 236 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 237 * also be set by any iWarp device which must support FRs to comply 238 * to the iWarp verbs spec. iWarp devices also support the 239 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 240 * stag. 241 */ 242 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 243 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 244 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 245 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 246 IB_DEVICE_RC_IP_CSUM = (1 << 25), 247 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 248 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 249 /* 250 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 251 * support execution of WQEs that involve synchronization 252 * of I/O operations with single completion queue managed 253 * by hardware. 254 */ 255 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 256 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 257 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 258 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 259 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 260 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 261 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 262 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 263 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 264 /* The device supports padding incoming writes to cacheline. */ 265 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 266 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 267 }; 268 269 enum ib_atomic_cap { 270 IB_ATOMIC_NONE, 271 IB_ATOMIC_HCA, 272 IB_ATOMIC_GLOB 273 }; 274 275 enum ib_odp_general_cap_bits { 276 IB_ODP_SUPPORT = 1 << 0, 277 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 278 }; 279 280 enum ib_odp_transport_cap_bits { 281 IB_ODP_SUPPORT_SEND = 1 << 0, 282 IB_ODP_SUPPORT_RECV = 1 << 1, 283 IB_ODP_SUPPORT_WRITE = 1 << 2, 284 IB_ODP_SUPPORT_READ = 1 << 3, 285 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 286 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 287 }; 288 289 struct ib_odp_caps { 290 uint64_t general_caps; 291 struct { 292 uint32_t rc_odp_caps; 293 uint32_t uc_odp_caps; 294 uint32_t ud_odp_caps; 295 uint32_t xrc_odp_caps; 296 } per_transport_caps; 297 }; 298 299 struct ib_rss_caps { 300 /* Corresponding bit will be set if qp type from 301 * 'enum ib_qp_type' is supported, e.g. 302 * supported_qpts |= 1 << IB_QPT_UD 303 */ 304 u32 supported_qpts; 305 u32 max_rwq_indirection_tables; 306 u32 max_rwq_indirection_table_size; 307 }; 308 309 enum ib_tm_cap_flags { 310 /* Support tag matching with rendezvous offload for RC transport */ 311 IB_TM_CAP_RNDV_RC = 1 << 0, 312 }; 313 314 struct ib_tm_caps { 315 /* Max size of RNDV header */ 316 u32 max_rndv_hdr_size; 317 /* Max number of entries in tag matching list */ 318 u32 max_num_tags; 319 /* From enum ib_tm_cap_flags */ 320 u32 flags; 321 /* Max number of outstanding list operations */ 322 u32 max_ops; 323 /* Max number of SGE in tag matching entry */ 324 u32 max_sge; 325 }; 326 327 struct ib_cq_init_attr { 328 unsigned int cqe; 329 int comp_vector; 330 u32 flags; 331 }; 332 333 enum ib_cq_attr_mask { 334 IB_CQ_MODERATE = 1 << 0, 335 }; 336 337 struct ib_cq_caps { 338 u16 max_cq_moderation_count; 339 u16 max_cq_moderation_period; 340 }; 341 342 struct ib_dm_mr_attr { 343 u64 length; 344 u64 offset; 345 u32 access_flags; 346 }; 347 348 struct ib_dm_alloc_attr { 349 u64 length; 350 u32 alignment; 351 u32 flags; 352 }; 353 354 struct ib_device_attr { 355 u64 fw_ver; 356 __be64 sys_image_guid; 357 u64 max_mr_size; 358 u64 page_size_cap; 359 u32 vendor_id; 360 u32 vendor_part_id; 361 u32 hw_ver; 362 int max_qp; 363 int max_qp_wr; 364 u64 device_cap_flags; 365 int max_send_sge; 366 int max_recv_sge; 367 int max_sge_rd; 368 int max_cq; 369 int max_cqe; 370 int max_mr; 371 int max_pd; 372 int max_qp_rd_atom; 373 int max_ee_rd_atom; 374 int max_res_rd_atom; 375 int max_qp_init_rd_atom; 376 int max_ee_init_rd_atom; 377 enum ib_atomic_cap atomic_cap; 378 enum ib_atomic_cap masked_atomic_cap; 379 int max_ee; 380 int max_rdd; 381 int max_mw; 382 int max_raw_ipv6_qp; 383 int max_raw_ethy_qp; 384 int max_mcast_grp; 385 int max_mcast_qp_attach; 386 int max_total_mcast_qp_attach; 387 int max_ah; 388 int max_fmr; 389 int max_map_per_fmr; 390 int max_srq; 391 int max_srq_wr; 392 int max_srq_sge; 393 unsigned int max_fast_reg_page_list_len; 394 unsigned int max_pi_fast_reg_page_list_len; 395 u16 max_pkeys; 396 u8 local_ca_ack_delay; 397 int sig_prot_cap; 398 int sig_guard_cap; 399 struct ib_odp_caps odp_caps; 400 uint64_t timestamp_mask; 401 uint64_t hca_core_clock; /* in KHZ */ 402 struct ib_rss_caps rss_caps; 403 u32 max_wq_type_rq; 404 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 405 struct ib_tm_caps tm_caps; 406 struct ib_cq_caps cq_caps; 407 u64 max_dm_size; 408 }; 409 410 enum ib_mtu { 411 IB_MTU_256 = 1, 412 IB_MTU_512 = 2, 413 IB_MTU_1024 = 3, 414 IB_MTU_2048 = 4, 415 IB_MTU_4096 = 5 416 }; 417 418 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 419 { 420 switch (mtu) { 421 case IB_MTU_256: return 256; 422 case IB_MTU_512: return 512; 423 case IB_MTU_1024: return 1024; 424 case IB_MTU_2048: return 2048; 425 case IB_MTU_4096: return 4096; 426 default: return -1; 427 } 428 } 429 430 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 431 { 432 if (mtu >= 4096) 433 return IB_MTU_4096; 434 else if (mtu >= 2048) 435 return IB_MTU_2048; 436 else if (mtu >= 1024) 437 return IB_MTU_1024; 438 else if (mtu >= 512) 439 return IB_MTU_512; 440 else 441 return IB_MTU_256; 442 } 443 444 enum ib_port_state { 445 IB_PORT_NOP = 0, 446 IB_PORT_DOWN = 1, 447 IB_PORT_INIT = 2, 448 IB_PORT_ARMED = 3, 449 IB_PORT_ACTIVE = 4, 450 IB_PORT_ACTIVE_DEFER = 5 451 }; 452 453 enum ib_port_width { 454 IB_WIDTH_1X = 1, 455 IB_WIDTH_2X = 16, 456 IB_WIDTH_4X = 2, 457 IB_WIDTH_8X = 4, 458 IB_WIDTH_12X = 8 459 }; 460 461 static inline int ib_width_enum_to_int(enum ib_port_width width) 462 { 463 switch (width) { 464 case IB_WIDTH_1X: return 1; 465 case IB_WIDTH_2X: return 2; 466 case IB_WIDTH_4X: return 4; 467 case IB_WIDTH_8X: return 8; 468 case IB_WIDTH_12X: return 12; 469 default: return -1; 470 } 471 } 472 473 enum ib_port_speed { 474 IB_SPEED_SDR = 1, 475 IB_SPEED_DDR = 2, 476 IB_SPEED_QDR = 4, 477 IB_SPEED_FDR10 = 8, 478 IB_SPEED_FDR = 16, 479 IB_SPEED_EDR = 32, 480 IB_SPEED_HDR = 64 481 }; 482 483 /** 484 * struct rdma_hw_stats 485 * @lock - Mutex to protect parallel write access to lifespan and values 486 * of counters, which are 64bits and not guaranteeed to be written 487 * atomicaly on 32bits systems. 488 * @timestamp - Used by the core code to track when the last update was 489 * @lifespan - Used by the core code to determine how old the counters 490 * should be before being updated again. Stored in jiffies, defaults 491 * to 10 milliseconds, drivers can override the default be specifying 492 * their own value during their allocation routine. 493 * @name - Array of pointers to static names used for the counters in 494 * directory. 495 * @num_counters - How many hardware counters there are. If name is 496 * shorter than this number, a kernel oops will result. Driver authors 497 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 498 * in their code to prevent this. 499 * @value - Array of u64 counters that are accessed by the sysfs code and 500 * filled in by the drivers get_stats routine 501 */ 502 struct rdma_hw_stats { 503 struct mutex lock; /* Protect lifespan and values[] */ 504 unsigned long timestamp; 505 unsigned long lifespan; 506 const char * const *names; 507 int num_counters; 508 u64 value[]; 509 }; 510 511 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 512 /** 513 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 514 * for drivers. 515 * @names - Array of static const char * 516 * @num_counters - How many elements in array 517 * @lifespan - How many milliseconds between updates 518 */ 519 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 520 const char * const *names, int num_counters, 521 unsigned long lifespan) 522 { 523 struct rdma_hw_stats *stats; 524 525 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 526 GFP_KERNEL); 527 if (!stats) 528 return NULL; 529 stats->names = names; 530 stats->num_counters = num_counters; 531 stats->lifespan = msecs_to_jiffies(lifespan); 532 533 return stats; 534 } 535 536 537 /* Define bits for the various functionality this port needs to be supported by 538 * the core. 539 */ 540 /* Management 0x00000FFF */ 541 #define RDMA_CORE_CAP_IB_MAD 0x00000001 542 #define RDMA_CORE_CAP_IB_SMI 0x00000002 543 #define RDMA_CORE_CAP_IB_CM 0x00000004 544 #define RDMA_CORE_CAP_IW_CM 0x00000008 545 #define RDMA_CORE_CAP_IB_SA 0x00000010 546 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 547 548 /* Address format 0x000FF000 */ 549 #define RDMA_CORE_CAP_AF_IB 0x00001000 550 #define RDMA_CORE_CAP_ETH_AH 0x00002000 551 #define RDMA_CORE_CAP_OPA_AH 0x00004000 552 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 553 554 /* Protocol 0xFFF00000 */ 555 #define RDMA_CORE_CAP_PROT_IB 0x00100000 556 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 557 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 558 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 559 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 560 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 561 562 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 563 | RDMA_CORE_CAP_PROT_ROCE \ 564 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 565 566 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 567 | RDMA_CORE_CAP_IB_MAD \ 568 | RDMA_CORE_CAP_IB_SMI \ 569 | RDMA_CORE_CAP_IB_CM \ 570 | RDMA_CORE_CAP_IB_SA \ 571 | RDMA_CORE_CAP_AF_IB) 572 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 573 | RDMA_CORE_CAP_IB_MAD \ 574 | RDMA_CORE_CAP_IB_CM \ 575 | RDMA_CORE_CAP_AF_IB \ 576 | RDMA_CORE_CAP_ETH_AH) 577 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 578 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 579 | RDMA_CORE_CAP_IB_MAD \ 580 | RDMA_CORE_CAP_IB_CM \ 581 | RDMA_CORE_CAP_AF_IB \ 582 | RDMA_CORE_CAP_ETH_AH) 583 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 584 | RDMA_CORE_CAP_IW_CM) 585 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 586 | RDMA_CORE_CAP_OPA_MAD) 587 588 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 589 590 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 591 592 struct ib_port_attr { 593 u64 subnet_prefix; 594 enum ib_port_state state; 595 enum ib_mtu max_mtu; 596 enum ib_mtu active_mtu; 597 int gid_tbl_len; 598 unsigned int ip_gids:1; 599 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 600 u32 port_cap_flags; 601 u32 max_msg_sz; 602 u32 bad_pkey_cntr; 603 u32 qkey_viol_cntr; 604 u16 pkey_tbl_len; 605 u32 sm_lid; 606 u32 lid; 607 u8 lmc; 608 u8 max_vl_num; 609 u8 sm_sl; 610 u8 subnet_timeout; 611 u8 init_type_reply; 612 u8 active_width; 613 u8 active_speed; 614 u8 phys_state; 615 u16 port_cap_flags2; 616 }; 617 618 enum ib_device_modify_flags { 619 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 620 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 621 }; 622 623 #define IB_DEVICE_NODE_DESC_MAX 64 624 625 struct ib_device_modify { 626 u64 sys_image_guid; 627 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 628 }; 629 630 enum ib_port_modify_flags { 631 IB_PORT_SHUTDOWN = 1, 632 IB_PORT_INIT_TYPE = (1<<2), 633 IB_PORT_RESET_QKEY_CNTR = (1<<3), 634 IB_PORT_OPA_MASK_CHG = (1<<4) 635 }; 636 637 struct ib_port_modify { 638 u32 set_port_cap_mask; 639 u32 clr_port_cap_mask; 640 u8 init_type; 641 }; 642 643 enum ib_event_type { 644 IB_EVENT_CQ_ERR, 645 IB_EVENT_QP_FATAL, 646 IB_EVENT_QP_REQ_ERR, 647 IB_EVENT_QP_ACCESS_ERR, 648 IB_EVENT_COMM_EST, 649 IB_EVENT_SQ_DRAINED, 650 IB_EVENT_PATH_MIG, 651 IB_EVENT_PATH_MIG_ERR, 652 IB_EVENT_DEVICE_FATAL, 653 IB_EVENT_PORT_ACTIVE, 654 IB_EVENT_PORT_ERR, 655 IB_EVENT_LID_CHANGE, 656 IB_EVENT_PKEY_CHANGE, 657 IB_EVENT_SM_CHANGE, 658 IB_EVENT_SRQ_ERR, 659 IB_EVENT_SRQ_LIMIT_REACHED, 660 IB_EVENT_QP_LAST_WQE_REACHED, 661 IB_EVENT_CLIENT_REREGISTER, 662 IB_EVENT_GID_CHANGE, 663 IB_EVENT_WQ_FATAL, 664 }; 665 666 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 667 668 struct ib_event { 669 struct ib_device *device; 670 union { 671 struct ib_cq *cq; 672 struct ib_qp *qp; 673 struct ib_srq *srq; 674 struct ib_wq *wq; 675 u8 port_num; 676 } element; 677 enum ib_event_type event; 678 }; 679 680 struct ib_event_handler { 681 struct ib_device *device; 682 void (*handler)(struct ib_event_handler *, struct ib_event *); 683 struct list_head list; 684 }; 685 686 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 687 do { \ 688 (_ptr)->device = _device; \ 689 (_ptr)->handler = _handler; \ 690 INIT_LIST_HEAD(&(_ptr)->list); \ 691 } while (0) 692 693 struct ib_global_route { 694 const struct ib_gid_attr *sgid_attr; 695 union ib_gid dgid; 696 u32 flow_label; 697 u8 sgid_index; 698 u8 hop_limit; 699 u8 traffic_class; 700 }; 701 702 struct ib_grh { 703 __be32 version_tclass_flow; 704 __be16 paylen; 705 u8 next_hdr; 706 u8 hop_limit; 707 union ib_gid sgid; 708 union ib_gid dgid; 709 }; 710 711 union rdma_network_hdr { 712 struct ib_grh ibgrh; 713 struct { 714 /* The IB spec states that if it's IPv4, the header 715 * is located in the last 20 bytes of the header. 716 */ 717 u8 reserved[20]; 718 struct iphdr roce4grh; 719 }; 720 }; 721 722 #define IB_QPN_MASK 0xFFFFFF 723 724 enum { 725 IB_MULTICAST_QPN = 0xffffff 726 }; 727 728 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 729 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 730 731 enum ib_ah_flags { 732 IB_AH_GRH = 1 733 }; 734 735 enum ib_rate { 736 IB_RATE_PORT_CURRENT = 0, 737 IB_RATE_2_5_GBPS = 2, 738 IB_RATE_5_GBPS = 5, 739 IB_RATE_10_GBPS = 3, 740 IB_RATE_20_GBPS = 6, 741 IB_RATE_30_GBPS = 4, 742 IB_RATE_40_GBPS = 7, 743 IB_RATE_60_GBPS = 8, 744 IB_RATE_80_GBPS = 9, 745 IB_RATE_120_GBPS = 10, 746 IB_RATE_14_GBPS = 11, 747 IB_RATE_56_GBPS = 12, 748 IB_RATE_112_GBPS = 13, 749 IB_RATE_168_GBPS = 14, 750 IB_RATE_25_GBPS = 15, 751 IB_RATE_100_GBPS = 16, 752 IB_RATE_200_GBPS = 17, 753 IB_RATE_300_GBPS = 18, 754 IB_RATE_28_GBPS = 19, 755 IB_RATE_50_GBPS = 20, 756 IB_RATE_400_GBPS = 21, 757 IB_RATE_600_GBPS = 22, 758 }; 759 760 /** 761 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 762 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 763 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 764 * @rate: rate to convert. 765 */ 766 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 767 768 /** 769 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 770 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 771 * @rate: rate to convert. 772 */ 773 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 774 775 776 /** 777 * enum ib_mr_type - memory region type 778 * @IB_MR_TYPE_MEM_REG: memory region that is used for 779 * normal registration 780 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 781 * register any arbitrary sg lists (without 782 * the normal mr constraints - see 783 * ib_map_mr_sg) 784 * @IB_MR_TYPE_DM: memory region that is used for device 785 * memory registration 786 * @IB_MR_TYPE_USER: memory region that is used for the user-space 787 * application 788 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 789 * without address translations (VA=PA) 790 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 791 * data integrity operations 792 */ 793 enum ib_mr_type { 794 IB_MR_TYPE_MEM_REG, 795 IB_MR_TYPE_SG_GAPS, 796 IB_MR_TYPE_DM, 797 IB_MR_TYPE_USER, 798 IB_MR_TYPE_DMA, 799 IB_MR_TYPE_INTEGRITY, 800 }; 801 802 enum ib_mr_status_check { 803 IB_MR_CHECK_SIG_STATUS = 1, 804 }; 805 806 /** 807 * struct ib_mr_status - Memory region status container 808 * 809 * @fail_status: Bitmask of MR checks status. For each 810 * failed check a corresponding status bit is set. 811 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 812 * failure. 813 */ 814 struct ib_mr_status { 815 u32 fail_status; 816 struct ib_sig_err sig_err; 817 }; 818 819 /** 820 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 821 * enum. 822 * @mult: multiple to convert. 823 */ 824 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 825 826 enum rdma_ah_attr_type { 827 RDMA_AH_ATTR_TYPE_UNDEFINED, 828 RDMA_AH_ATTR_TYPE_IB, 829 RDMA_AH_ATTR_TYPE_ROCE, 830 RDMA_AH_ATTR_TYPE_OPA, 831 }; 832 833 struct ib_ah_attr { 834 u16 dlid; 835 u8 src_path_bits; 836 }; 837 838 struct roce_ah_attr { 839 u8 dmac[ETH_ALEN]; 840 }; 841 842 struct opa_ah_attr { 843 u32 dlid; 844 u8 src_path_bits; 845 bool make_grd; 846 }; 847 848 struct rdma_ah_attr { 849 struct ib_global_route grh; 850 u8 sl; 851 u8 static_rate; 852 u8 port_num; 853 u8 ah_flags; 854 enum rdma_ah_attr_type type; 855 union { 856 struct ib_ah_attr ib; 857 struct roce_ah_attr roce; 858 struct opa_ah_attr opa; 859 }; 860 }; 861 862 enum ib_wc_status { 863 IB_WC_SUCCESS, 864 IB_WC_LOC_LEN_ERR, 865 IB_WC_LOC_QP_OP_ERR, 866 IB_WC_LOC_EEC_OP_ERR, 867 IB_WC_LOC_PROT_ERR, 868 IB_WC_WR_FLUSH_ERR, 869 IB_WC_MW_BIND_ERR, 870 IB_WC_BAD_RESP_ERR, 871 IB_WC_LOC_ACCESS_ERR, 872 IB_WC_REM_INV_REQ_ERR, 873 IB_WC_REM_ACCESS_ERR, 874 IB_WC_REM_OP_ERR, 875 IB_WC_RETRY_EXC_ERR, 876 IB_WC_RNR_RETRY_EXC_ERR, 877 IB_WC_LOC_RDD_VIOL_ERR, 878 IB_WC_REM_INV_RD_REQ_ERR, 879 IB_WC_REM_ABORT_ERR, 880 IB_WC_INV_EECN_ERR, 881 IB_WC_INV_EEC_STATE_ERR, 882 IB_WC_FATAL_ERR, 883 IB_WC_RESP_TIMEOUT_ERR, 884 IB_WC_GENERAL_ERR 885 }; 886 887 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 888 889 enum ib_wc_opcode { 890 IB_WC_SEND, 891 IB_WC_RDMA_WRITE, 892 IB_WC_RDMA_READ, 893 IB_WC_COMP_SWAP, 894 IB_WC_FETCH_ADD, 895 IB_WC_LSO, 896 IB_WC_LOCAL_INV, 897 IB_WC_REG_MR, 898 IB_WC_MASKED_COMP_SWAP, 899 IB_WC_MASKED_FETCH_ADD, 900 /* 901 * Set value of IB_WC_RECV so consumers can test if a completion is a 902 * receive by testing (opcode & IB_WC_RECV). 903 */ 904 IB_WC_RECV = 1 << 7, 905 IB_WC_RECV_RDMA_WITH_IMM 906 }; 907 908 enum ib_wc_flags { 909 IB_WC_GRH = 1, 910 IB_WC_WITH_IMM = (1<<1), 911 IB_WC_WITH_INVALIDATE = (1<<2), 912 IB_WC_IP_CSUM_OK = (1<<3), 913 IB_WC_WITH_SMAC = (1<<4), 914 IB_WC_WITH_VLAN = (1<<5), 915 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 916 }; 917 918 struct ib_wc { 919 union { 920 u64 wr_id; 921 struct ib_cqe *wr_cqe; 922 }; 923 enum ib_wc_status status; 924 enum ib_wc_opcode opcode; 925 u32 vendor_err; 926 u32 byte_len; 927 struct ib_qp *qp; 928 union { 929 __be32 imm_data; 930 u32 invalidate_rkey; 931 } ex; 932 u32 src_qp; 933 u32 slid; 934 int wc_flags; 935 u16 pkey_index; 936 u8 sl; 937 u8 dlid_path_bits; 938 u8 port_num; /* valid only for DR SMPs on switches */ 939 u8 smac[ETH_ALEN]; 940 u16 vlan_id; 941 u8 network_hdr_type; 942 }; 943 944 enum ib_cq_notify_flags { 945 IB_CQ_SOLICITED = 1 << 0, 946 IB_CQ_NEXT_COMP = 1 << 1, 947 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 948 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 949 }; 950 951 enum ib_srq_type { 952 IB_SRQT_BASIC, 953 IB_SRQT_XRC, 954 IB_SRQT_TM, 955 }; 956 957 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 958 { 959 return srq_type == IB_SRQT_XRC || 960 srq_type == IB_SRQT_TM; 961 } 962 963 enum ib_srq_attr_mask { 964 IB_SRQ_MAX_WR = 1 << 0, 965 IB_SRQ_LIMIT = 1 << 1, 966 }; 967 968 struct ib_srq_attr { 969 u32 max_wr; 970 u32 max_sge; 971 u32 srq_limit; 972 }; 973 974 struct ib_srq_init_attr { 975 void (*event_handler)(struct ib_event *, void *); 976 void *srq_context; 977 struct ib_srq_attr attr; 978 enum ib_srq_type srq_type; 979 980 struct { 981 struct ib_cq *cq; 982 union { 983 struct { 984 struct ib_xrcd *xrcd; 985 } xrc; 986 987 struct { 988 u32 max_num_tags; 989 } tag_matching; 990 }; 991 } ext; 992 }; 993 994 struct ib_qp_cap { 995 u32 max_send_wr; 996 u32 max_recv_wr; 997 u32 max_send_sge; 998 u32 max_recv_sge; 999 u32 max_inline_data; 1000 1001 /* 1002 * Maximum number of rdma_rw_ctx structures in flight at a time. 1003 * ib_create_qp() will calculate the right amount of neededed WRs 1004 * and MRs based on this. 1005 */ 1006 u32 max_rdma_ctxs; 1007 }; 1008 1009 enum ib_sig_type { 1010 IB_SIGNAL_ALL_WR, 1011 IB_SIGNAL_REQ_WR 1012 }; 1013 1014 enum ib_qp_type { 1015 /* 1016 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1017 * here (and in that order) since the MAD layer uses them as 1018 * indices into a 2-entry table. 1019 */ 1020 IB_QPT_SMI, 1021 IB_QPT_GSI, 1022 1023 IB_QPT_RC, 1024 IB_QPT_UC, 1025 IB_QPT_UD, 1026 IB_QPT_RAW_IPV6, 1027 IB_QPT_RAW_ETHERTYPE, 1028 IB_QPT_RAW_PACKET = 8, 1029 IB_QPT_XRC_INI = 9, 1030 IB_QPT_XRC_TGT, 1031 IB_QPT_MAX, 1032 IB_QPT_DRIVER = 0xFF, 1033 /* Reserve a range for qp types internal to the low level driver. 1034 * These qp types will not be visible at the IB core layer, so the 1035 * IB_QPT_MAX usages should not be affected in the core layer 1036 */ 1037 IB_QPT_RESERVED1 = 0x1000, 1038 IB_QPT_RESERVED2, 1039 IB_QPT_RESERVED3, 1040 IB_QPT_RESERVED4, 1041 IB_QPT_RESERVED5, 1042 IB_QPT_RESERVED6, 1043 IB_QPT_RESERVED7, 1044 IB_QPT_RESERVED8, 1045 IB_QPT_RESERVED9, 1046 IB_QPT_RESERVED10, 1047 }; 1048 1049 enum ib_qp_create_flags { 1050 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1051 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1052 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1053 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1054 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1055 IB_QP_CREATE_NETIF_QP = 1 << 5, 1056 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1057 /* FREE = 1 << 7, */ 1058 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1059 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1060 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1061 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1062 /* reserve bits 26-31 for low level drivers' internal use */ 1063 IB_QP_CREATE_RESERVED_START = 1 << 26, 1064 IB_QP_CREATE_RESERVED_END = 1 << 31, 1065 }; 1066 1067 /* 1068 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1069 * callback to destroy the passed in QP. 1070 */ 1071 1072 struct ib_qp_init_attr { 1073 /* Consumer's event_handler callback must not block */ 1074 void (*event_handler)(struct ib_event *, void *); 1075 1076 void *qp_context; 1077 struct ib_cq *send_cq; 1078 struct ib_cq *recv_cq; 1079 struct ib_srq *srq; 1080 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1081 struct ib_qp_cap cap; 1082 enum ib_sig_type sq_sig_type; 1083 enum ib_qp_type qp_type; 1084 u32 create_flags; 1085 1086 /* 1087 * Only needed for special QP types, or when using the RW API. 1088 */ 1089 u8 port_num; 1090 struct ib_rwq_ind_table *rwq_ind_tbl; 1091 u32 source_qpn; 1092 }; 1093 1094 struct ib_qp_open_attr { 1095 void (*event_handler)(struct ib_event *, void *); 1096 void *qp_context; 1097 u32 qp_num; 1098 enum ib_qp_type qp_type; 1099 }; 1100 1101 enum ib_rnr_timeout { 1102 IB_RNR_TIMER_655_36 = 0, 1103 IB_RNR_TIMER_000_01 = 1, 1104 IB_RNR_TIMER_000_02 = 2, 1105 IB_RNR_TIMER_000_03 = 3, 1106 IB_RNR_TIMER_000_04 = 4, 1107 IB_RNR_TIMER_000_06 = 5, 1108 IB_RNR_TIMER_000_08 = 6, 1109 IB_RNR_TIMER_000_12 = 7, 1110 IB_RNR_TIMER_000_16 = 8, 1111 IB_RNR_TIMER_000_24 = 9, 1112 IB_RNR_TIMER_000_32 = 10, 1113 IB_RNR_TIMER_000_48 = 11, 1114 IB_RNR_TIMER_000_64 = 12, 1115 IB_RNR_TIMER_000_96 = 13, 1116 IB_RNR_TIMER_001_28 = 14, 1117 IB_RNR_TIMER_001_92 = 15, 1118 IB_RNR_TIMER_002_56 = 16, 1119 IB_RNR_TIMER_003_84 = 17, 1120 IB_RNR_TIMER_005_12 = 18, 1121 IB_RNR_TIMER_007_68 = 19, 1122 IB_RNR_TIMER_010_24 = 20, 1123 IB_RNR_TIMER_015_36 = 21, 1124 IB_RNR_TIMER_020_48 = 22, 1125 IB_RNR_TIMER_030_72 = 23, 1126 IB_RNR_TIMER_040_96 = 24, 1127 IB_RNR_TIMER_061_44 = 25, 1128 IB_RNR_TIMER_081_92 = 26, 1129 IB_RNR_TIMER_122_88 = 27, 1130 IB_RNR_TIMER_163_84 = 28, 1131 IB_RNR_TIMER_245_76 = 29, 1132 IB_RNR_TIMER_327_68 = 30, 1133 IB_RNR_TIMER_491_52 = 31 1134 }; 1135 1136 enum ib_qp_attr_mask { 1137 IB_QP_STATE = 1, 1138 IB_QP_CUR_STATE = (1<<1), 1139 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1140 IB_QP_ACCESS_FLAGS = (1<<3), 1141 IB_QP_PKEY_INDEX = (1<<4), 1142 IB_QP_PORT = (1<<5), 1143 IB_QP_QKEY = (1<<6), 1144 IB_QP_AV = (1<<7), 1145 IB_QP_PATH_MTU = (1<<8), 1146 IB_QP_TIMEOUT = (1<<9), 1147 IB_QP_RETRY_CNT = (1<<10), 1148 IB_QP_RNR_RETRY = (1<<11), 1149 IB_QP_RQ_PSN = (1<<12), 1150 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1151 IB_QP_ALT_PATH = (1<<14), 1152 IB_QP_MIN_RNR_TIMER = (1<<15), 1153 IB_QP_SQ_PSN = (1<<16), 1154 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1155 IB_QP_PATH_MIG_STATE = (1<<18), 1156 IB_QP_CAP = (1<<19), 1157 IB_QP_DEST_QPN = (1<<20), 1158 IB_QP_RESERVED1 = (1<<21), 1159 IB_QP_RESERVED2 = (1<<22), 1160 IB_QP_RESERVED3 = (1<<23), 1161 IB_QP_RESERVED4 = (1<<24), 1162 IB_QP_RATE_LIMIT = (1<<25), 1163 }; 1164 1165 enum ib_qp_state { 1166 IB_QPS_RESET, 1167 IB_QPS_INIT, 1168 IB_QPS_RTR, 1169 IB_QPS_RTS, 1170 IB_QPS_SQD, 1171 IB_QPS_SQE, 1172 IB_QPS_ERR 1173 }; 1174 1175 enum ib_mig_state { 1176 IB_MIG_MIGRATED, 1177 IB_MIG_REARM, 1178 IB_MIG_ARMED 1179 }; 1180 1181 enum ib_mw_type { 1182 IB_MW_TYPE_1 = 1, 1183 IB_MW_TYPE_2 = 2 1184 }; 1185 1186 struct ib_qp_attr { 1187 enum ib_qp_state qp_state; 1188 enum ib_qp_state cur_qp_state; 1189 enum ib_mtu path_mtu; 1190 enum ib_mig_state path_mig_state; 1191 u32 qkey; 1192 u32 rq_psn; 1193 u32 sq_psn; 1194 u32 dest_qp_num; 1195 int qp_access_flags; 1196 struct ib_qp_cap cap; 1197 struct rdma_ah_attr ah_attr; 1198 struct rdma_ah_attr alt_ah_attr; 1199 u16 pkey_index; 1200 u16 alt_pkey_index; 1201 u8 en_sqd_async_notify; 1202 u8 sq_draining; 1203 u8 max_rd_atomic; 1204 u8 max_dest_rd_atomic; 1205 u8 min_rnr_timer; 1206 u8 port_num; 1207 u8 timeout; 1208 u8 retry_cnt; 1209 u8 rnr_retry; 1210 u8 alt_port_num; 1211 u8 alt_timeout; 1212 u32 rate_limit; 1213 }; 1214 1215 enum ib_wr_opcode { 1216 /* These are shared with userspace */ 1217 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1218 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1219 IB_WR_SEND = IB_UVERBS_WR_SEND, 1220 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1221 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1222 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1223 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1224 IB_WR_LSO = IB_UVERBS_WR_TSO, 1225 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1226 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1227 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1228 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1229 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1230 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1231 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1232 1233 /* These are kernel only and can not be issued by userspace */ 1234 IB_WR_REG_MR = 0x20, 1235 IB_WR_REG_MR_INTEGRITY, 1236 1237 /* reserve values for low level drivers' internal use. 1238 * These values will not be used at all in the ib core layer. 1239 */ 1240 IB_WR_RESERVED1 = 0xf0, 1241 IB_WR_RESERVED2, 1242 IB_WR_RESERVED3, 1243 IB_WR_RESERVED4, 1244 IB_WR_RESERVED5, 1245 IB_WR_RESERVED6, 1246 IB_WR_RESERVED7, 1247 IB_WR_RESERVED8, 1248 IB_WR_RESERVED9, 1249 IB_WR_RESERVED10, 1250 }; 1251 1252 enum ib_send_flags { 1253 IB_SEND_FENCE = 1, 1254 IB_SEND_SIGNALED = (1<<1), 1255 IB_SEND_SOLICITED = (1<<2), 1256 IB_SEND_INLINE = (1<<3), 1257 IB_SEND_IP_CSUM = (1<<4), 1258 1259 /* reserve bits 26-31 for low level drivers' internal use */ 1260 IB_SEND_RESERVED_START = (1 << 26), 1261 IB_SEND_RESERVED_END = (1 << 31), 1262 }; 1263 1264 struct ib_sge { 1265 u64 addr; 1266 u32 length; 1267 u32 lkey; 1268 }; 1269 1270 struct ib_cqe { 1271 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1272 }; 1273 1274 struct ib_send_wr { 1275 struct ib_send_wr *next; 1276 union { 1277 u64 wr_id; 1278 struct ib_cqe *wr_cqe; 1279 }; 1280 struct ib_sge *sg_list; 1281 int num_sge; 1282 enum ib_wr_opcode opcode; 1283 int send_flags; 1284 union { 1285 __be32 imm_data; 1286 u32 invalidate_rkey; 1287 } ex; 1288 }; 1289 1290 struct ib_rdma_wr { 1291 struct ib_send_wr wr; 1292 u64 remote_addr; 1293 u32 rkey; 1294 }; 1295 1296 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1297 { 1298 return container_of(wr, struct ib_rdma_wr, wr); 1299 } 1300 1301 struct ib_atomic_wr { 1302 struct ib_send_wr wr; 1303 u64 remote_addr; 1304 u64 compare_add; 1305 u64 swap; 1306 u64 compare_add_mask; 1307 u64 swap_mask; 1308 u32 rkey; 1309 }; 1310 1311 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1312 { 1313 return container_of(wr, struct ib_atomic_wr, wr); 1314 } 1315 1316 struct ib_ud_wr { 1317 struct ib_send_wr wr; 1318 struct ib_ah *ah; 1319 void *header; 1320 int hlen; 1321 int mss; 1322 u32 remote_qpn; 1323 u32 remote_qkey; 1324 u16 pkey_index; /* valid for GSI only */ 1325 u8 port_num; /* valid for DR SMPs on switch only */ 1326 }; 1327 1328 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1329 { 1330 return container_of(wr, struct ib_ud_wr, wr); 1331 } 1332 1333 struct ib_reg_wr { 1334 struct ib_send_wr wr; 1335 struct ib_mr *mr; 1336 u32 key; 1337 int access; 1338 }; 1339 1340 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1341 { 1342 return container_of(wr, struct ib_reg_wr, wr); 1343 } 1344 1345 struct ib_recv_wr { 1346 struct ib_recv_wr *next; 1347 union { 1348 u64 wr_id; 1349 struct ib_cqe *wr_cqe; 1350 }; 1351 struct ib_sge *sg_list; 1352 int num_sge; 1353 }; 1354 1355 enum ib_access_flags { 1356 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1357 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1358 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1359 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1360 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1361 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1362 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1363 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1364 1365 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1) 1366 }; 1367 1368 /* 1369 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1370 * are hidden here instead of a uapi header! 1371 */ 1372 enum ib_mr_rereg_flags { 1373 IB_MR_REREG_TRANS = 1, 1374 IB_MR_REREG_PD = (1<<1), 1375 IB_MR_REREG_ACCESS = (1<<2), 1376 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1377 }; 1378 1379 struct ib_fmr_attr { 1380 int max_pages; 1381 int max_maps; 1382 u8 page_shift; 1383 }; 1384 1385 struct ib_umem; 1386 1387 enum rdma_remove_reason { 1388 /* 1389 * Userspace requested uobject deletion or initial try 1390 * to remove uobject via cleanup. Call could fail 1391 */ 1392 RDMA_REMOVE_DESTROY, 1393 /* Context deletion. This call should delete the actual object itself */ 1394 RDMA_REMOVE_CLOSE, 1395 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1396 RDMA_REMOVE_DRIVER_REMOVE, 1397 /* uobj is being cleaned-up before being committed */ 1398 RDMA_REMOVE_ABORT, 1399 }; 1400 1401 struct ib_rdmacg_object { 1402 #ifdef CONFIG_CGROUP_RDMA 1403 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1404 #endif 1405 }; 1406 1407 struct ib_ucontext { 1408 struct ib_device *device; 1409 struct ib_uverbs_file *ufile; 1410 /* 1411 * 'closing' can be read by the driver only during a destroy callback, 1412 * it is set when we are closing the file descriptor and indicates 1413 * that mm_sem may be locked. 1414 */ 1415 bool closing; 1416 1417 bool cleanup_retryable; 1418 1419 void (*invalidate_range)(struct ib_umem_odp *umem_odp, 1420 unsigned long start, unsigned long end); 1421 struct mutex per_mm_list_lock; 1422 struct list_head per_mm_list; 1423 1424 struct ib_rdmacg_object cg_obj; 1425 /* 1426 * Implementation details of the RDMA core, don't use in drivers: 1427 */ 1428 struct rdma_restrack_entry res; 1429 }; 1430 1431 struct ib_uobject { 1432 u64 user_handle; /* handle given to us by userspace */ 1433 /* ufile & ucontext owning this object */ 1434 struct ib_uverbs_file *ufile; 1435 /* FIXME, save memory: ufile->context == context */ 1436 struct ib_ucontext *context; /* associated user context */ 1437 void *object; /* containing object */ 1438 struct list_head list; /* link to context's list */ 1439 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1440 int id; /* index into kernel idr */ 1441 struct kref ref; 1442 atomic_t usecnt; /* protects exclusive access */ 1443 struct rcu_head rcu; /* kfree_rcu() overhead */ 1444 1445 const struct uverbs_api_object *uapi_object; 1446 }; 1447 1448 struct ib_udata { 1449 const void __user *inbuf; 1450 void __user *outbuf; 1451 size_t inlen; 1452 size_t outlen; 1453 }; 1454 1455 struct ib_pd { 1456 u32 local_dma_lkey; 1457 u32 flags; 1458 struct ib_device *device; 1459 struct ib_uobject *uobject; 1460 atomic_t usecnt; /* count all resources */ 1461 1462 u32 unsafe_global_rkey; 1463 1464 /* 1465 * Implementation details of the RDMA core, don't use in drivers: 1466 */ 1467 struct ib_mr *__internal_mr; 1468 struct rdma_restrack_entry res; 1469 }; 1470 1471 struct ib_xrcd { 1472 struct ib_device *device; 1473 atomic_t usecnt; /* count all exposed resources */ 1474 struct inode *inode; 1475 1476 struct mutex tgt_qp_mutex; 1477 struct list_head tgt_qp_list; 1478 }; 1479 1480 struct ib_ah { 1481 struct ib_device *device; 1482 struct ib_pd *pd; 1483 struct ib_uobject *uobject; 1484 const struct ib_gid_attr *sgid_attr; 1485 enum rdma_ah_attr_type type; 1486 }; 1487 1488 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1489 1490 enum ib_poll_context { 1491 IB_POLL_DIRECT, /* caller context, no hw completions */ 1492 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1493 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1494 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1495 }; 1496 1497 struct ib_cq { 1498 struct ib_device *device; 1499 struct ib_uobject *uobject; 1500 ib_comp_handler comp_handler; 1501 void (*event_handler)(struct ib_event *, void *); 1502 void *cq_context; 1503 int cqe; 1504 atomic_t usecnt; /* count number of work queues */ 1505 enum ib_poll_context poll_ctx; 1506 struct ib_wc *wc; 1507 union { 1508 struct irq_poll iop; 1509 struct work_struct work; 1510 }; 1511 struct workqueue_struct *comp_wq; 1512 /* 1513 * Implementation details of the RDMA core, don't use in drivers: 1514 */ 1515 struct rdma_restrack_entry res; 1516 }; 1517 1518 struct ib_srq { 1519 struct ib_device *device; 1520 struct ib_pd *pd; 1521 struct ib_uobject *uobject; 1522 void (*event_handler)(struct ib_event *, void *); 1523 void *srq_context; 1524 enum ib_srq_type srq_type; 1525 atomic_t usecnt; 1526 1527 struct { 1528 struct ib_cq *cq; 1529 union { 1530 struct { 1531 struct ib_xrcd *xrcd; 1532 u32 srq_num; 1533 } xrc; 1534 }; 1535 } ext; 1536 }; 1537 1538 enum ib_raw_packet_caps { 1539 /* Strip cvlan from incoming packet and report it in the matching work 1540 * completion is supported. 1541 */ 1542 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1543 /* Scatter FCS field of an incoming packet to host memory is supported. 1544 */ 1545 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1546 /* Checksum offloads are supported (for both send and receive). */ 1547 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1548 /* When a packet is received for an RQ with no receive WQEs, the 1549 * packet processing is delayed. 1550 */ 1551 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1552 }; 1553 1554 enum ib_wq_type { 1555 IB_WQT_RQ 1556 }; 1557 1558 enum ib_wq_state { 1559 IB_WQS_RESET, 1560 IB_WQS_RDY, 1561 IB_WQS_ERR 1562 }; 1563 1564 struct ib_wq { 1565 struct ib_device *device; 1566 struct ib_uobject *uobject; 1567 void *wq_context; 1568 void (*event_handler)(struct ib_event *, void *); 1569 struct ib_pd *pd; 1570 struct ib_cq *cq; 1571 u32 wq_num; 1572 enum ib_wq_state state; 1573 enum ib_wq_type wq_type; 1574 atomic_t usecnt; 1575 }; 1576 1577 enum ib_wq_flags { 1578 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1579 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1580 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1581 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1582 }; 1583 1584 struct ib_wq_init_attr { 1585 void *wq_context; 1586 enum ib_wq_type wq_type; 1587 u32 max_wr; 1588 u32 max_sge; 1589 struct ib_cq *cq; 1590 void (*event_handler)(struct ib_event *, void *); 1591 u32 create_flags; /* Use enum ib_wq_flags */ 1592 }; 1593 1594 enum ib_wq_attr_mask { 1595 IB_WQ_STATE = 1 << 0, 1596 IB_WQ_CUR_STATE = 1 << 1, 1597 IB_WQ_FLAGS = 1 << 2, 1598 }; 1599 1600 struct ib_wq_attr { 1601 enum ib_wq_state wq_state; 1602 enum ib_wq_state curr_wq_state; 1603 u32 flags; /* Use enum ib_wq_flags */ 1604 u32 flags_mask; /* Use enum ib_wq_flags */ 1605 }; 1606 1607 struct ib_rwq_ind_table { 1608 struct ib_device *device; 1609 struct ib_uobject *uobject; 1610 atomic_t usecnt; 1611 u32 ind_tbl_num; 1612 u32 log_ind_tbl_size; 1613 struct ib_wq **ind_tbl; 1614 }; 1615 1616 struct ib_rwq_ind_table_init_attr { 1617 u32 log_ind_tbl_size; 1618 /* Each entry is a pointer to Receive Work Queue */ 1619 struct ib_wq **ind_tbl; 1620 }; 1621 1622 enum port_pkey_state { 1623 IB_PORT_PKEY_NOT_VALID = 0, 1624 IB_PORT_PKEY_VALID = 1, 1625 IB_PORT_PKEY_LISTED = 2, 1626 }; 1627 1628 struct ib_qp_security; 1629 1630 struct ib_port_pkey { 1631 enum port_pkey_state state; 1632 u16 pkey_index; 1633 u8 port_num; 1634 struct list_head qp_list; 1635 struct list_head to_error_list; 1636 struct ib_qp_security *sec; 1637 }; 1638 1639 struct ib_ports_pkeys { 1640 struct ib_port_pkey main; 1641 struct ib_port_pkey alt; 1642 }; 1643 1644 struct ib_qp_security { 1645 struct ib_qp *qp; 1646 struct ib_device *dev; 1647 /* Hold this mutex when changing port and pkey settings. */ 1648 struct mutex mutex; 1649 struct ib_ports_pkeys *ports_pkeys; 1650 /* A list of all open shared QP handles. Required to enforce security 1651 * properly for all users of a shared QP. 1652 */ 1653 struct list_head shared_qp_list; 1654 void *security; 1655 bool destroying; 1656 atomic_t error_list_count; 1657 struct completion error_complete; 1658 int error_comps_pending; 1659 }; 1660 1661 /* 1662 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1663 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1664 */ 1665 struct ib_qp { 1666 struct ib_device *device; 1667 struct ib_pd *pd; 1668 struct ib_cq *send_cq; 1669 struct ib_cq *recv_cq; 1670 spinlock_t mr_lock; 1671 int mrs_used; 1672 struct list_head rdma_mrs; 1673 struct list_head sig_mrs; 1674 struct ib_srq *srq; 1675 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1676 struct list_head xrcd_list; 1677 1678 /* count times opened, mcast attaches, flow attaches */ 1679 atomic_t usecnt; 1680 struct list_head open_list; 1681 struct ib_qp *real_qp; 1682 struct ib_uobject *uobject; 1683 void (*event_handler)(struct ib_event *, void *); 1684 void *qp_context; 1685 /* sgid_attrs associated with the AV's */ 1686 const struct ib_gid_attr *av_sgid_attr; 1687 const struct ib_gid_attr *alt_path_sgid_attr; 1688 u32 qp_num; 1689 u32 max_write_sge; 1690 u32 max_read_sge; 1691 enum ib_qp_type qp_type; 1692 struct ib_rwq_ind_table *rwq_ind_tbl; 1693 struct ib_qp_security *qp_sec; 1694 u8 port; 1695 1696 bool integrity_en; 1697 /* 1698 * Implementation details of the RDMA core, don't use in drivers: 1699 */ 1700 struct rdma_restrack_entry res; 1701 1702 /* The counter the qp is bind to */ 1703 struct rdma_counter *counter; 1704 }; 1705 1706 struct ib_dm { 1707 struct ib_device *device; 1708 u32 length; 1709 u32 flags; 1710 struct ib_uobject *uobject; 1711 atomic_t usecnt; 1712 }; 1713 1714 struct ib_mr { 1715 struct ib_device *device; 1716 struct ib_pd *pd; 1717 u32 lkey; 1718 u32 rkey; 1719 u64 iova; 1720 u64 length; 1721 unsigned int page_size; 1722 enum ib_mr_type type; 1723 bool need_inval; 1724 union { 1725 struct ib_uobject *uobject; /* user */ 1726 struct list_head qp_entry; /* FR */ 1727 }; 1728 1729 struct ib_dm *dm; 1730 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1731 /* 1732 * Implementation details of the RDMA core, don't use in drivers: 1733 */ 1734 struct rdma_restrack_entry res; 1735 }; 1736 1737 struct ib_mw { 1738 struct ib_device *device; 1739 struct ib_pd *pd; 1740 struct ib_uobject *uobject; 1741 u32 rkey; 1742 enum ib_mw_type type; 1743 }; 1744 1745 struct ib_fmr { 1746 struct ib_device *device; 1747 struct ib_pd *pd; 1748 struct list_head list; 1749 u32 lkey; 1750 u32 rkey; 1751 }; 1752 1753 /* Supported steering options */ 1754 enum ib_flow_attr_type { 1755 /* steering according to rule specifications */ 1756 IB_FLOW_ATTR_NORMAL = 0x0, 1757 /* default unicast and multicast rule - 1758 * receive all Eth traffic which isn't steered to any QP 1759 */ 1760 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1761 /* default multicast rule - 1762 * receive all Eth multicast traffic which isn't steered to any QP 1763 */ 1764 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1765 /* sniffer rule - receive all port traffic */ 1766 IB_FLOW_ATTR_SNIFFER = 0x3 1767 }; 1768 1769 /* Supported steering header types */ 1770 enum ib_flow_spec_type { 1771 /* L2 headers*/ 1772 IB_FLOW_SPEC_ETH = 0x20, 1773 IB_FLOW_SPEC_IB = 0x22, 1774 /* L3 header*/ 1775 IB_FLOW_SPEC_IPV4 = 0x30, 1776 IB_FLOW_SPEC_IPV6 = 0x31, 1777 IB_FLOW_SPEC_ESP = 0x34, 1778 /* L4 headers*/ 1779 IB_FLOW_SPEC_TCP = 0x40, 1780 IB_FLOW_SPEC_UDP = 0x41, 1781 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1782 IB_FLOW_SPEC_GRE = 0x51, 1783 IB_FLOW_SPEC_MPLS = 0x60, 1784 IB_FLOW_SPEC_INNER = 0x100, 1785 /* Actions */ 1786 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1787 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1788 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1789 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1790 }; 1791 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1792 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1793 1794 /* Flow steering rule priority is set according to it's domain. 1795 * Lower domain value means higher priority. 1796 */ 1797 enum ib_flow_domain { 1798 IB_FLOW_DOMAIN_USER, 1799 IB_FLOW_DOMAIN_ETHTOOL, 1800 IB_FLOW_DOMAIN_RFS, 1801 IB_FLOW_DOMAIN_NIC, 1802 IB_FLOW_DOMAIN_NUM /* Must be last */ 1803 }; 1804 1805 enum ib_flow_flags { 1806 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1807 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1808 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1809 }; 1810 1811 struct ib_flow_eth_filter { 1812 u8 dst_mac[6]; 1813 u8 src_mac[6]; 1814 __be16 ether_type; 1815 __be16 vlan_tag; 1816 /* Must be last */ 1817 u8 real_sz[0]; 1818 }; 1819 1820 struct ib_flow_spec_eth { 1821 u32 type; 1822 u16 size; 1823 struct ib_flow_eth_filter val; 1824 struct ib_flow_eth_filter mask; 1825 }; 1826 1827 struct ib_flow_ib_filter { 1828 __be16 dlid; 1829 __u8 sl; 1830 /* Must be last */ 1831 u8 real_sz[0]; 1832 }; 1833 1834 struct ib_flow_spec_ib { 1835 u32 type; 1836 u16 size; 1837 struct ib_flow_ib_filter val; 1838 struct ib_flow_ib_filter mask; 1839 }; 1840 1841 /* IPv4 header flags */ 1842 enum ib_ipv4_flags { 1843 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1844 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1845 last have this flag set */ 1846 }; 1847 1848 struct ib_flow_ipv4_filter { 1849 __be32 src_ip; 1850 __be32 dst_ip; 1851 u8 proto; 1852 u8 tos; 1853 u8 ttl; 1854 u8 flags; 1855 /* Must be last */ 1856 u8 real_sz[0]; 1857 }; 1858 1859 struct ib_flow_spec_ipv4 { 1860 u32 type; 1861 u16 size; 1862 struct ib_flow_ipv4_filter val; 1863 struct ib_flow_ipv4_filter mask; 1864 }; 1865 1866 struct ib_flow_ipv6_filter { 1867 u8 src_ip[16]; 1868 u8 dst_ip[16]; 1869 __be32 flow_label; 1870 u8 next_hdr; 1871 u8 traffic_class; 1872 u8 hop_limit; 1873 /* Must be last */ 1874 u8 real_sz[0]; 1875 }; 1876 1877 struct ib_flow_spec_ipv6 { 1878 u32 type; 1879 u16 size; 1880 struct ib_flow_ipv6_filter val; 1881 struct ib_flow_ipv6_filter mask; 1882 }; 1883 1884 struct ib_flow_tcp_udp_filter { 1885 __be16 dst_port; 1886 __be16 src_port; 1887 /* Must be last */ 1888 u8 real_sz[0]; 1889 }; 1890 1891 struct ib_flow_spec_tcp_udp { 1892 u32 type; 1893 u16 size; 1894 struct ib_flow_tcp_udp_filter val; 1895 struct ib_flow_tcp_udp_filter mask; 1896 }; 1897 1898 struct ib_flow_tunnel_filter { 1899 __be32 tunnel_id; 1900 u8 real_sz[0]; 1901 }; 1902 1903 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1904 * the tunnel_id from val has the vni value 1905 */ 1906 struct ib_flow_spec_tunnel { 1907 u32 type; 1908 u16 size; 1909 struct ib_flow_tunnel_filter val; 1910 struct ib_flow_tunnel_filter mask; 1911 }; 1912 1913 struct ib_flow_esp_filter { 1914 __be32 spi; 1915 __be32 seq; 1916 /* Must be last */ 1917 u8 real_sz[0]; 1918 }; 1919 1920 struct ib_flow_spec_esp { 1921 u32 type; 1922 u16 size; 1923 struct ib_flow_esp_filter val; 1924 struct ib_flow_esp_filter mask; 1925 }; 1926 1927 struct ib_flow_gre_filter { 1928 __be16 c_ks_res0_ver; 1929 __be16 protocol; 1930 __be32 key; 1931 /* Must be last */ 1932 u8 real_sz[0]; 1933 }; 1934 1935 struct ib_flow_spec_gre { 1936 u32 type; 1937 u16 size; 1938 struct ib_flow_gre_filter val; 1939 struct ib_flow_gre_filter mask; 1940 }; 1941 1942 struct ib_flow_mpls_filter { 1943 __be32 tag; 1944 /* Must be last */ 1945 u8 real_sz[0]; 1946 }; 1947 1948 struct ib_flow_spec_mpls { 1949 u32 type; 1950 u16 size; 1951 struct ib_flow_mpls_filter val; 1952 struct ib_flow_mpls_filter mask; 1953 }; 1954 1955 struct ib_flow_spec_action_tag { 1956 enum ib_flow_spec_type type; 1957 u16 size; 1958 u32 tag_id; 1959 }; 1960 1961 struct ib_flow_spec_action_drop { 1962 enum ib_flow_spec_type type; 1963 u16 size; 1964 }; 1965 1966 struct ib_flow_spec_action_handle { 1967 enum ib_flow_spec_type type; 1968 u16 size; 1969 struct ib_flow_action *act; 1970 }; 1971 1972 enum ib_counters_description { 1973 IB_COUNTER_PACKETS, 1974 IB_COUNTER_BYTES, 1975 }; 1976 1977 struct ib_flow_spec_action_count { 1978 enum ib_flow_spec_type type; 1979 u16 size; 1980 struct ib_counters *counters; 1981 }; 1982 1983 union ib_flow_spec { 1984 struct { 1985 u32 type; 1986 u16 size; 1987 }; 1988 struct ib_flow_spec_eth eth; 1989 struct ib_flow_spec_ib ib; 1990 struct ib_flow_spec_ipv4 ipv4; 1991 struct ib_flow_spec_tcp_udp tcp_udp; 1992 struct ib_flow_spec_ipv6 ipv6; 1993 struct ib_flow_spec_tunnel tunnel; 1994 struct ib_flow_spec_esp esp; 1995 struct ib_flow_spec_gre gre; 1996 struct ib_flow_spec_mpls mpls; 1997 struct ib_flow_spec_action_tag flow_tag; 1998 struct ib_flow_spec_action_drop drop; 1999 struct ib_flow_spec_action_handle action; 2000 struct ib_flow_spec_action_count flow_count; 2001 }; 2002 2003 struct ib_flow_attr { 2004 enum ib_flow_attr_type type; 2005 u16 size; 2006 u16 priority; 2007 u32 flags; 2008 u8 num_of_specs; 2009 u8 port; 2010 union ib_flow_spec flows[]; 2011 }; 2012 2013 struct ib_flow { 2014 struct ib_qp *qp; 2015 struct ib_device *device; 2016 struct ib_uobject *uobject; 2017 }; 2018 2019 enum ib_flow_action_type { 2020 IB_FLOW_ACTION_UNSPECIFIED, 2021 IB_FLOW_ACTION_ESP = 1, 2022 }; 2023 2024 struct ib_flow_action_attrs_esp_keymats { 2025 enum ib_uverbs_flow_action_esp_keymat protocol; 2026 union { 2027 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2028 } keymat; 2029 }; 2030 2031 struct ib_flow_action_attrs_esp_replays { 2032 enum ib_uverbs_flow_action_esp_replay protocol; 2033 union { 2034 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2035 } replay; 2036 }; 2037 2038 enum ib_flow_action_attrs_esp_flags { 2039 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2040 * This is done in order to share the same flags between user-space and 2041 * kernel and spare an unnecessary translation. 2042 */ 2043 2044 /* Kernel flags */ 2045 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2046 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2047 }; 2048 2049 struct ib_flow_spec_list { 2050 struct ib_flow_spec_list *next; 2051 union ib_flow_spec spec; 2052 }; 2053 2054 struct ib_flow_action_attrs_esp { 2055 struct ib_flow_action_attrs_esp_keymats *keymat; 2056 struct ib_flow_action_attrs_esp_replays *replay; 2057 struct ib_flow_spec_list *encap; 2058 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2059 * Value of 0 is a valid value. 2060 */ 2061 u32 esn; 2062 u32 spi; 2063 u32 seq; 2064 u32 tfc_pad; 2065 /* Use enum ib_flow_action_attrs_esp_flags */ 2066 u64 flags; 2067 u64 hard_limit_pkts; 2068 }; 2069 2070 struct ib_flow_action { 2071 struct ib_device *device; 2072 struct ib_uobject *uobject; 2073 enum ib_flow_action_type type; 2074 atomic_t usecnt; 2075 }; 2076 2077 struct ib_mad_hdr; 2078 struct ib_grh; 2079 2080 enum ib_process_mad_flags { 2081 IB_MAD_IGNORE_MKEY = 1, 2082 IB_MAD_IGNORE_BKEY = 2, 2083 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2084 }; 2085 2086 enum ib_mad_result { 2087 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2088 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2089 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2090 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2091 }; 2092 2093 struct ib_port_cache { 2094 u64 subnet_prefix; 2095 struct ib_pkey_cache *pkey; 2096 struct ib_gid_table *gid; 2097 u8 lmc; 2098 enum ib_port_state port_state; 2099 }; 2100 2101 struct ib_cache { 2102 rwlock_t lock; 2103 struct ib_event_handler event_handler; 2104 }; 2105 2106 struct ib_port_immutable { 2107 int pkey_tbl_len; 2108 int gid_tbl_len; 2109 u32 core_cap_flags; 2110 u32 max_mad_size; 2111 }; 2112 2113 struct ib_port_data { 2114 struct ib_device *ib_dev; 2115 2116 struct ib_port_immutable immutable; 2117 2118 spinlock_t pkey_list_lock; 2119 struct list_head pkey_list; 2120 2121 struct ib_port_cache cache; 2122 2123 spinlock_t netdev_lock; 2124 struct net_device __rcu *netdev; 2125 struct hlist_node ndev_hash_link; 2126 struct rdma_port_counter port_counter; 2127 struct rdma_hw_stats *hw_stats; 2128 }; 2129 2130 /* rdma netdev type - specifies protocol type */ 2131 enum rdma_netdev_t { 2132 RDMA_NETDEV_OPA_VNIC, 2133 RDMA_NETDEV_IPOIB, 2134 }; 2135 2136 /** 2137 * struct rdma_netdev - rdma netdev 2138 * For cases where netstack interfacing is required. 2139 */ 2140 struct rdma_netdev { 2141 void *clnt_priv; 2142 struct ib_device *hca; 2143 u8 port_num; 2144 2145 /* 2146 * cleanup function must be specified. 2147 * FIXME: This is only used for OPA_VNIC and that usage should be 2148 * removed too. 2149 */ 2150 void (*free_rdma_netdev)(struct net_device *netdev); 2151 2152 /* control functions */ 2153 void (*set_id)(struct net_device *netdev, int id); 2154 /* send packet */ 2155 int (*send)(struct net_device *dev, struct sk_buff *skb, 2156 struct ib_ah *address, u32 dqpn); 2157 /* multicast */ 2158 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2159 union ib_gid *gid, u16 mlid, 2160 int set_qkey, u32 qkey); 2161 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2162 union ib_gid *gid, u16 mlid); 2163 }; 2164 2165 struct rdma_netdev_alloc_params { 2166 size_t sizeof_priv; 2167 unsigned int txqs; 2168 unsigned int rxqs; 2169 void *param; 2170 2171 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2172 struct net_device *netdev, void *param); 2173 }; 2174 2175 struct ib_counters { 2176 struct ib_device *device; 2177 struct ib_uobject *uobject; 2178 /* num of objects attached */ 2179 atomic_t usecnt; 2180 }; 2181 2182 struct ib_counters_read_attr { 2183 u64 *counters_buff; 2184 u32 ncounters; 2185 u32 flags; /* use enum ib_read_counters_flags */ 2186 }; 2187 2188 struct uverbs_attr_bundle; 2189 struct iw_cm_id; 2190 struct iw_cm_conn_param; 2191 2192 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2193 .size_##ib_struct = \ 2194 (sizeof(struct drv_struct) + \ 2195 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2196 BUILD_BUG_ON_ZERO( \ 2197 !__same_type(((struct drv_struct *)NULL)->member, \ 2198 struct ib_struct))) 2199 2200 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2201 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2202 2203 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2204 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2205 2206 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2207 2208 /** 2209 * struct ib_device_ops - InfiniBand device operations 2210 * This structure defines all the InfiniBand device operations, providers will 2211 * need to define the supported operations, otherwise they will be set to null. 2212 */ 2213 struct ib_device_ops { 2214 struct module *owner; 2215 enum rdma_driver_id driver_id; 2216 u32 uverbs_abi_ver; 2217 unsigned int uverbs_no_driver_id_binding:1; 2218 2219 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2220 const struct ib_send_wr **bad_send_wr); 2221 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2222 const struct ib_recv_wr **bad_recv_wr); 2223 void (*drain_rq)(struct ib_qp *qp); 2224 void (*drain_sq)(struct ib_qp *qp); 2225 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2226 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2227 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2228 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); 2229 int (*post_srq_recv)(struct ib_srq *srq, 2230 const struct ib_recv_wr *recv_wr, 2231 const struct ib_recv_wr **bad_recv_wr); 2232 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2233 u8 port_num, const struct ib_wc *in_wc, 2234 const struct ib_grh *in_grh, 2235 const struct ib_mad_hdr *in_mad, size_t in_mad_size, 2236 struct ib_mad_hdr *out_mad, size_t *out_mad_size, 2237 u16 *out_mad_pkey_index); 2238 int (*query_device)(struct ib_device *device, 2239 struct ib_device_attr *device_attr, 2240 struct ib_udata *udata); 2241 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2242 struct ib_device_modify *device_modify); 2243 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2244 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2245 int comp_vector); 2246 int (*query_port)(struct ib_device *device, u8 port_num, 2247 struct ib_port_attr *port_attr); 2248 int (*modify_port)(struct ib_device *device, u8 port_num, 2249 int port_modify_mask, 2250 struct ib_port_modify *port_modify); 2251 /** 2252 * The following mandatory functions are used only at device 2253 * registration. Keep functions such as these at the end of this 2254 * structure to avoid cache line misses when accessing struct ib_device 2255 * in fast paths. 2256 */ 2257 int (*get_port_immutable)(struct ib_device *device, u8 port_num, 2258 struct ib_port_immutable *immutable); 2259 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2260 u8 port_num); 2261 /** 2262 * When calling get_netdev, the HW vendor's driver should return the 2263 * net device of device @device at port @port_num or NULL if such 2264 * a net device doesn't exist. The vendor driver should call dev_hold 2265 * on this net device. The HW vendor's device driver must guarantee 2266 * that this function returns NULL before the net device has finished 2267 * NETDEV_UNREGISTER state. 2268 */ 2269 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num); 2270 /** 2271 * rdma netdev operation 2272 * 2273 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2274 * must return -EOPNOTSUPP if it doesn't support the specified type. 2275 */ 2276 struct net_device *(*alloc_rdma_netdev)( 2277 struct ib_device *device, u8 port_num, enum rdma_netdev_t type, 2278 const char *name, unsigned char name_assign_type, 2279 void (*setup)(struct net_device *)); 2280 2281 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2282 enum rdma_netdev_t type, 2283 struct rdma_netdev_alloc_params *params); 2284 /** 2285 * query_gid should be return GID value for @device, when @port_num 2286 * link layer is either IB or iWarp. It is no-op if @port_num port 2287 * is RoCE link layer. 2288 */ 2289 int (*query_gid)(struct ib_device *device, u8 port_num, int index, 2290 union ib_gid *gid); 2291 /** 2292 * When calling add_gid, the HW vendor's driver should add the gid 2293 * of device of port at gid index available at @attr. Meta-info of 2294 * that gid (for example, the network device related to this gid) is 2295 * available at @attr. @context allows the HW vendor driver to store 2296 * extra information together with a GID entry. The HW vendor driver may 2297 * allocate memory to contain this information and store it in @context 2298 * when a new GID entry is written to. Params are consistent until the 2299 * next call of add_gid or delete_gid. The function should return 0 on 2300 * success or error otherwise. The function could be called 2301 * concurrently for different ports. This function is only called when 2302 * roce_gid_table is used. 2303 */ 2304 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2305 /** 2306 * When calling del_gid, the HW vendor's driver should delete the 2307 * gid of device @device at gid index gid_index of port port_num 2308 * available in @attr. 2309 * Upon the deletion of a GID entry, the HW vendor must free any 2310 * allocated memory. The caller will clear @context afterwards. 2311 * This function is only called when roce_gid_table is used. 2312 */ 2313 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2314 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, 2315 u16 *pkey); 2316 int (*alloc_ucontext)(struct ib_ucontext *context, 2317 struct ib_udata *udata); 2318 void (*dealloc_ucontext)(struct ib_ucontext *context); 2319 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2320 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2321 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2322 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2323 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr, 2324 u32 flags, struct ib_udata *udata); 2325 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2326 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2327 void (*destroy_ah)(struct ib_ah *ah, u32 flags); 2328 int (*create_srq)(struct ib_srq *srq, 2329 struct ib_srq_init_attr *srq_init_attr, 2330 struct ib_udata *udata); 2331 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2332 enum ib_srq_attr_mask srq_attr_mask, 2333 struct ib_udata *udata); 2334 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2335 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2336 struct ib_qp *(*create_qp)(struct ib_pd *pd, 2337 struct ib_qp_init_attr *qp_init_attr, 2338 struct ib_udata *udata); 2339 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2340 int qp_attr_mask, struct ib_udata *udata); 2341 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2342 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2343 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2344 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2345 struct ib_udata *udata); 2346 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2347 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2348 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2349 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2350 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2351 u64 virt_addr, int mr_access_flags, 2352 struct ib_udata *udata); 2353 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length, 2354 u64 virt_addr, int mr_access_flags, 2355 struct ib_pd *pd, struct ib_udata *udata); 2356 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2357 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2358 u32 max_num_sg, struct ib_udata *udata); 2359 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2360 u32 max_num_data_sg, 2361 u32 max_num_meta_sg); 2362 int (*advise_mr)(struct ib_pd *pd, 2363 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2364 struct ib_sge *sg_list, u32 num_sge, 2365 struct uverbs_attr_bundle *attrs); 2366 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2367 unsigned int *sg_offset); 2368 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2369 struct ib_mr_status *mr_status); 2370 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type, 2371 struct ib_udata *udata); 2372 int (*dealloc_mw)(struct ib_mw *mw); 2373 struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags, 2374 struct ib_fmr_attr *fmr_attr); 2375 int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len, 2376 u64 iova); 2377 int (*unmap_fmr)(struct list_head *fmr_list); 2378 int (*dealloc_fmr)(struct ib_fmr *fmr); 2379 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2380 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2381 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device, 2382 struct ib_udata *udata); 2383 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2384 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2385 struct ib_flow_attr *flow_attr, 2386 int domain, struct ib_udata *udata); 2387 int (*destroy_flow)(struct ib_flow *flow_id); 2388 struct ib_flow_action *(*create_flow_action_esp)( 2389 struct ib_device *device, 2390 const struct ib_flow_action_attrs_esp *attr, 2391 struct uverbs_attr_bundle *attrs); 2392 int (*destroy_flow_action)(struct ib_flow_action *action); 2393 int (*modify_flow_action_esp)( 2394 struct ib_flow_action *action, 2395 const struct ib_flow_action_attrs_esp *attr, 2396 struct uverbs_attr_bundle *attrs); 2397 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2398 int state); 2399 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2400 struct ifla_vf_info *ivf); 2401 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2402 struct ifla_vf_stats *stats); 2403 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2404 int type); 2405 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2406 struct ib_wq_init_attr *init_attr, 2407 struct ib_udata *udata); 2408 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2409 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2410 u32 wq_attr_mask, struct ib_udata *udata); 2411 struct ib_rwq_ind_table *(*create_rwq_ind_table)( 2412 struct ib_device *device, 2413 struct ib_rwq_ind_table_init_attr *init_attr, 2414 struct ib_udata *udata); 2415 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2416 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2417 struct ib_ucontext *context, 2418 struct ib_dm_alloc_attr *attr, 2419 struct uverbs_attr_bundle *attrs); 2420 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2421 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2422 struct ib_dm_mr_attr *attr, 2423 struct uverbs_attr_bundle *attrs); 2424 struct ib_counters *(*create_counters)( 2425 struct ib_device *device, struct uverbs_attr_bundle *attrs); 2426 int (*destroy_counters)(struct ib_counters *counters); 2427 int (*read_counters)(struct ib_counters *counters, 2428 struct ib_counters_read_attr *counters_read_attr, 2429 struct uverbs_attr_bundle *attrs); 2430 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2431 int data_sg_nents, unsigned int *data_sg_offset, 2432 struct scatterlist *meta_sg, int meta_sg_nents, 2433 unsigned int *meta_sg_offset); 2434 2435 /** 2436 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2437 * driver initialized data. The struct is kfree()'ed by the sysfs 2438 * core when the device is removed. A lifespan of -1 in the return 2439 * struct tells the core to set a default lifespan. 2440 */ 2441 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2442 u8 port_num); 2443 /** 2444 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2445 * @index - The index in the value array we wish to have updated, or 2446 * num_counters if we want all stats updated 2447 * Return codes - 2448 * < 0 - Error, no counters updated 2449 * index - Updated the single counter pointed to by index 2450 * num_counters - Updated all counters (will reset the timestamp 2451 * and prevent further calls for lifespan milliseconds) 2452 * Drivers are allowed to update all counters in leiu of just the 2453 * one given in index at their option 2454 */ 2455 int (*get_hw_stats)(struct ib_device *device, 2456 struct rdma_hw_stats *stats, u8 port, int index); 2457 /* 2458 * This function is called once for each port when a ib device is 2459 * registered. 2460 */ 2461 int (*init_port)(struct ib_device *device, u8 port_num, 2462 struct kobject *port_sysfs); 2463 /** 2464 * Allows rdma drivers to add their own restrack attributes. 2465 */ 2466 int (*fill_res_entry)(struct sk_buff *msg, 2467 struct rdma_restrack_entry *entry); 2468 2469 /* Device lifecycle callbacks */ 2470 /* 2471 * Called after the device becomes registered, before clients are 2472 * attached 2473 */ 2474 int (*enable_driver)(struct ib_device *dev); 2475 /* 2476 * This is called as part of ib_dealloc_device(). 2477 */ 2478 void (*dealloc_driver)(struct ib_device *dev); 2479 2480 /* iWarp CM callbacks */ 2481 void (*iw_add_ref)(struct ib_qp *qp); 2482 void (*iw_rem_ref)(struct ib_qp *qp); 2483 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2484 int (*iw_connect)(struct iw_cm_id *cm_id, 2485 struct iw_cm_conn_param *conn_param); 2486 int (*iw_accept)(struct iw_cm_id *cm_id, 2487 struct iw_cm_conn_param *conn_param); 2488 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2489 u8 pdata_len); 2490 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2491 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2492 /** 2493 * counter_bind_qp - Bind a QP to a counter. 2494 * @counter - The counter to be bound. If counter->id is zero then 2495 * the driver needs to allocate a new counter and set counter->id 2496 */ 2497 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2498 /** 2499 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2500 * counter and bind it onto the default one 2501 */ 2502 int (*counter_unbind_qp)(struct ib_qp *qp); 2503 /** 2504 * counter_dealloc -De-allocate the hw counter 2505 */ 2506 int (*counter_dealloc)(struct rdma_counter *counter); 2507 /** 2508 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2509 * the driver initialized data. 2510 */ 2511 struct rdma_hw_stats *(*counter_alloc_stats)( 2512 struct rdma_counter *counter); 2513 /** 2514 * counter_update_stats - Query the stats value of this counter 2515 */ 2516 int (*counter_update_stats)(struct rdma_counter *counter); 2517 2518 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2519 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2520 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2521 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2522 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2523 }; 2524 2525 struct ib_core_device { 2526 /* device must be the first element in structure until, 2527 * union of ib_core_device and device exists in ib_device. 2528 */ 2529 struct device dev; 2530 possible_net_t rdma_net; 2531 struct kobject *ports_kobj; 2532 struct list_head port_list; 2533 struct ib_device *owner; /* reach back to owner ib_device */ 2534 }; 2535 2536 struct rdma_restrack_root; 2537 struct ib_device { 2538 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2539 struct device *dma_device; 2540 struct ib_device_ops ops; 2541 char name[IB_DEVICE_NAME_MAX]; 2542 struct rcu_head rcu_head; 2543 2544 struct list_head event_handler_list; 2545 spinlock_t event_handler_lock; 2546 2547 struct rw_semaphore client_data_rwsem; 2548 struct xarray client_data; 2549 struct mutex unregistration_lock; 2550 2551 struct ib_cache cache; 2552 /** 2553 * port_data is indexed by port number 2554 */ 2555 struct ib_port_data *port_data; 2556 2557 int num_comp_vectors; 2558 2559 union { 2560 struct device dev; 2561 struct ib_core_device coredev; 2562 }; 2563 2564 /* First group for device attributes, 2565 * Second group for driver provided attributes (optional). 2566 * It is NULL terminated array. 2567 */ 2568 const struct attribute_group *groups[3]; 2569 2570 u64 uverbs_cmd_mask; 2571 u64 uverbs_ex_cmd_mask; 2572 2573 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2574 __be64 node_guid; 2575 u32 local_dma_lkey; 2576 u16 is_switch:1; 2577 /* Indicates kernel verbs support, should not be used in drivers */ 2578 u16 kverbs_provider:1; 2579 u8 node_type; 2580 u8 phys_port_cnt; 2581 struct ib_device_attr attrs; 2582 struct attribute_group *hw_stats_ag; 2583 struct rdma_hw_stats *hw_stats; 2584 2585 #ifdef CONFIG_CGROUP_RDMA 2586 struct rdmacg_device cg_device; 2587 #endif 2588 2589 u32 index; 2590 struct rdma_restrack_root *res; 2591 2592 const struct uapi_definition *driver_def; 2593 2594 /* 2595 * Positive refcount indicates that the device is currently 2596 * registered and cannot be unregistered. 2597 */ 2598 refcount_t refcount; 2599 struct completion unreg_completion; 2600 struct work_struct unregistration_work; 2601 2602 const struct rdma_link_ops *link_ops; 2603 2604 /* Protects compat_devs xarray modifications */ 2605 struct mutex compat_devs_mutex; 2606 /* Maintains compat devices for each net namespace */ 2607 struct xarray compat_devs; 2608 2609 /* Used by iWarp CM */ 2610 char iw_ifname[IFNAMSIZ]; 2611 u32 iw_driver_flags; 2612 }; 2613 2614 struct ib_client_nl_info; 2615 struct ib_client { 2616 const char *name; 2617 void (*add) (struct ib_device *); 2618 void (*remove)(struct ib_device *, void *client_data); 2619 void (*rename)(struct ib_device *dev, void *client_data); 2620 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2621 struct ib_client_nl_info *res); 2622 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2623 2624 /* Returns the net_dev belonging to this ib_client and matching the 2625 * given parameters. 2626 * @dev: An RDMA device that the net_dev use for communication. 2627 * @port: A physical port number on the RDMA device. 2628 * @pkey: P_Key that the net_dev uses if applicable. 2629 * @gid: A GID that the net_dev uses to communicate. 2630 * @addr: An IP address the net_dev is configured with. 2631 * @client_data: The device's client data set by ib_set_client_data(). 2632 * 2633 * An ib_client that implements a net_dev on top of RDMA devices 2634 * (such as IP over IB) should implement this callback, allowing the 2635 * rdma_cm module to find the right net_dev for a given request. 2636 * 2637 * The caller is responsible for calling dev_put on the returned 2638 * netdev. */ 2639 struct net_device *(*get_net_dev_by_params)( 2640 struct ib_device *dev, 2641 u8 port, 2642 u16 pkey, 2643 const union ib_gid *gid, 2644 const struct sockaddr *addr, 2645 void *client_data); 2646 struct list_head list; 2647 u32 client_id; 2648 2649 /* kverbs are not required by the client */ 2650 u8 no_kverbs_req:1; 2651 }; 2652 2653 /* 2654 * IB block DMA iterator 2655 * 2656 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2657 * to a HW supported page size. 2658 */ 2659 struct ib_block_iter { 2660 /* internal states */ 2661 struct scatterlist *__sg; /* sg holding the current aligned block */ 2662 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2663 unsigned int __sg_nents; /* number of SG entries */ 2664 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2665 unsigned int __pg_bit; /* alignment of current block */ 2666 }; 2667 2668 struct ib_device *_ib_alloc_device(size_t size); 2669 #define ib_alloc_device(drv_struct, member) \ 2670 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2671 BUILD_BUG_ON_ZERO(offsetof( \ 2672 struct drv_struct, member))), \ 2673 struct drv_struct, member) 2674 2675 void ib_dealloc_device(struct ib_device *device); 2676 2677 void ib_get_device_fw_str(struct ib_device *device, char *str); 2678 2679 int ib_register_device(struct ib_device *device, const char *name); 2680 void ib_unregister_device(struct ib_device *device); 2681 void ib_unregister_driver(enum rdma_driver_id driver_id); 2682 void ib_unregister_device_and_put(struct ib_device *device); 2683 void ib_unregister_device_queued(struct ib_device *ib_dev); 2684 2685 int ib_register_client (struct ib_client *client); 2686 void ib_unregister_client(struct ib_client *client); 2687 2688 void __rdma_block_iter_start(struct ib_block_iter *biter, 2689 struct scatterlist *sglist, 2690 unsigned int nents, 2691 unsigned long pgsz); 2692 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2693 2694 /** 2695 * rdma_block_iter_dma_address - get the aligned dma address of the current 2696 * block held by the block iterator. 2697 * @biter: block iterator holding the memory block 2698 */ 2699 static inline dma_addr_t 2700 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2701 { 2702 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2703 } 2704 2705 /** 2706 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2707 * @sglist: sglist to iterate over 2708 * @biter: block iterator holding the memory block 2709 * @nents: maximum number of sg entries to iterate over 2710 * @pgsz: best HW supported page size to use 2711 * 2712 * Callers may use rdma_block_iter_dma_address() to get each 2713 * blocks aligned DMA address. 2714 */ 2715 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2716 for (__rdma_block_iter_start(biter, sglist, nents, \ 2717 pgsz); \ 2718 __rdma_block_iter_next(biter);) 2719 2720 /** 2721 * ib_get_client_data - Get IB client context 2722 * @device:Device to get context for 2723 * @client:Client to get context for 2724 * 2725 * ib_get_client_data() returns the client context data set with 2726 * ib_set_client_data(). This can only be called while the client is 2727 * registered to the device, once the ib_client remove() callback returns this 2728 * cannot be called. 2729 */ 2730 static inline void *ib_get_client_data(struct ib_device *device, 2731 struct ib_client *client) 2732 { 2733 return xa_load(&device->client_data, client->client_id); 2734 } 2735 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2736 void *data); 2737 void ib_set_device_ops(struct ib_device *device, 2738 const struct ib_device_ops *ops); 2739 2740 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 2741 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2742 unsigned long pfn, unsigned long size, pgprot_t prot); 2743 #else 2744 static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext, 2745 struct vm_area_struct *vma, 2746 unsigned long pfn, unsigned long size, 2747 pgprot_t prot) 2748 { 2749 return -EINVAL; 2750 } 2751 #endif 2752 2753 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2754 { 2755 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2756 } 2757 2758 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2759 { 2760 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2761 } 2762 2763 static inline bool ib_is_buffer_cleared(const void __user *p, 2764 size_t len) 2765 { 2766 bool ret; 2767 u8 *buf; 2768 2769 if (len > USHRT_MAX) 2770 return false; 2771 2772 buf = memdup_user(p, len); 2773 if (IS_ERR(buf)) 2774 return false; 2775 2776 ret = !memchr_inv(buf, 0, len); 2777 kfree(buf); 2778 return ret; 2779 } 2780 2781 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2782 size_t offset, 2783 size_t len) 2784 { 2785 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2786 } 2787 2788 /** 2789 * ib_is_destroy_retryable - Check whether the uobject destruction 2790 * is retryable. 2791 * @ret: The initial destruction return code 2792 * @why: remove reason 2793 * @uobj: The uobject that is destroyed 2794 * 2795 * This function is a helper function that IB layer and low-level drivers 2796 * can use to consider whether the destruction of the given uobject is 2797 * retry-able. 2798 * It checks the original return code, if it wasn't success the destruction 2799 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2800 * the remove reason. (i.e. why). 2801 * Must be called with the object locked for destroy. 2802 */ 2803 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2804 struct ib_uobject *uobj) 2805 { 2806 return ret && (why == RDMA_REMOVE_DESTROY || 2807 uobj->context->cleanup_retryable); 2808 } 2809 2810 /** 2811 * ib_destroy_usecnt - Called during destruction to check the usecnt 2812 * @usecnt: The usecnt atomic 2813 * @why: remove reason 2814 * @uobj: The uobject that is destroyed 2815 * 2816 * Non-zero usecnts will block destruction unless destruction was triggered by 2817 * a ucontext cleanup. 2818 */ 2819 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2820 enum rdma_remove_reason why, 2821 struct ib_uobject *uobj) 2822 { 2823 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2824 return -EBUSY; 2825 return 0; 2826 } 2827 2828 /** 2829 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2830 * contains all required attributes and no attributes not allowed for 2831 * the given QP state transition. 2832 * @cur_state: Current QP state 2833 * @next_state: Next QP state 2834 * @type: QP type 2835 * @mask: Mask of supplied QP attributes 2836 * 2837 * This function is a helper function that a low-level driver's 2838 * modify_qp method can use to validate the consumer's input. It 2839 * checks that cur_state and next_state are valid QP states, that a 2840 * transition from cur_state to next_state is allowed by the IB spec, 2841 * and that the attribute mask supplied is allowed for the transition. 2842 */ 2843 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2844 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2845 2846 void ib_register_event_handler(struct ib_event_handler *event_handler); 2847 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2848 void ib_dispatch_event(struct ib_event *event); 2849 2850 int ib_query_port(struct ib_device *device, 2851 u8 port_num, struct ib_port_attr *port_attr); 2852 2853 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2854 u8 port_num); 2855 2856 /** 2857 * rdma_cap_ib_switch - Check if the device is IB switch 2858 * @device: Device to check 2859 * 2860 * Device driver is responsible for setting is_switch bit on 2861 * in ib_device structure at init time. 2862 * 2863 * Return: true if the device is IB switch. 2864 */ 2865 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2866 { 2867 return device->is_switch; 2868 } 2869 2870 /** 2871 * rdma_start_port - Return the first valid port number for the device 2872 * specified 2873 * 2874 * @device: Device to be checked 2875 * 2876 * Return start port number 2877 */ 2878 static inline u8 rdma_start_port(const struct ib_device *device) 2879 { 2880 return rdma_cap_ib_switch(device) ? 0 : 1; 2881 } 2882 2883 /** 2884 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 2885 * @device - The struct ib_device * to iterate over 2886 * @iter - The unsigned int to store the port number 2887 */ 2888 #define rdma_for_each_port(device, iter) \ 2889 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \ 2890 unsigned int, iter))); \ 2891 iter <= rdma_end_port(device); (iter)++) 2892 2893 /** 2894 * rdma_end_port - Return the last valid port number for the device 2895 * specified 2896 * 2897 * @device: Device to be checked 2898 * 2899 * Return last port number 2900 */ 2901 static inline u8 rdma_end_port(const struct ib_device *device) 2902 { 2903 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2904 } 2905 2906 static inline int rdma_is_port_valid(const struct ib_device *device, 2907 unsigned int port) 2908 { 2909 return (port >= rdma_start_port(device) && 2910 port <= rdma_end_port(device)); 2911 } 2912 2913 static inline bool rdma_is_grh_required(const struct ib_device *device, 2914 u8 port_num) 2915 { 2916 return device->port_data[port_num].immutable.core_cap_flags & 2917 RDMA_CORE_PORT_IB_GRH_REQUIRED; 2918 } 2919 2920 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2921 { 2922 return device->port_data[port_num].immutable.core_cap_flags & 2923 RDMA_CORE_CAP_PROT_IB; 2924 } 2925 2926 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2927 { 2928 return device->port_data[port_num].immutable.core_cap_flags & 2929 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2930 } 2931 2932 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2933 { 2934 return device->port_data[port_num].immutable.core_cap_flags & 2935 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2936 } 2937 2938 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2939 { 2940 return device->port_data[port_num].immutable.core_cap_flags & 2941 RDMA_CORE_CAP_PROT_ROCE; 2942 } 2943 2944 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2945 { 2946 return device->port_data[port_num].immutable.core_cap_flags & 2947 RDMA_CORE_CAP_PROT_IWARP; 2948 } 2949 2950 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2951 { 2952 return rdma_protocol_ib(device, port_num) || 2953 rdma_protocol_roce(device, port_num); 2954 } 2955 2956 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2957 { 2958 return device->port_data[port_num].immutable.core_cap_flags & 2959 RDMA_CORE_CAP_PROT_RAW_PACKET; 2960 } 2961 2962 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2963 { 2964 return device->port_data[port_num].immutable.core_cap_flags & 2965 RDMA_CORE_CAP_PROT_USNIC; 2966 } 2967 2968 /** 2969 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2970 * Management Datagrams. 2971 * @device: Device to check 2972 * @port_num: Port number to check 2973 * 2974 * Management Datagrams (MAD) are a required part of the InfiniBand 2975 * specification and are supported on all InfiniBand devices. A slightly 2976 * extended version are also supported on OPA interfaces. 2977 * 2978 * Return: true if the port supports sending/receiving of MAD packets. 2979 */ 2980 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2981 { 2982 return device->port_data[port_num].immutable.core_cap_flags & 2983 RDMA_CORE_CAP_IB_MAD; 2984 } 2985 2986 /** 2987 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2988 * Management Datagrams. 2989 * @device: Device to check 2990 * @port_num: Port number to check 2991 * 2992 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2993 * datagrams with their own versions. These OPA MADs share many but not all of 2994 * the characteristics of InfiniBand MADs. 2995 * 2996 * OPA MADs differ in the following ways: 2997 * 2998 * 1) MADs are variable size up to 2K 2999 * IBTA defined MADs remain fixed at 256 bytes 3000 * 2) OPA SMPs must carry valid PKeys 3001 * 3) OPA SMP packets are a different format 3002 * 3003 * Return: true if the port supports OPA MAD packet formats. 3004 */ 3005 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 3006 { 3007 return device->port_data[port_num].immutable.core_cap_flags & 3008 RDMA_CORE_CAP_OPA_MAD; 3009 } 3010 3011 /** 3012 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3013 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3014 * @device: Device to check 3015 * @port_num: Port number to check 3016 * 3017 * Each InfiniBand node is required to provide a Subnet Management Agent 3018 * that the subnet manager can access. Prior to the fabric being fully 3019 * configured by the subnet manager, the SMA is accessed via a well known 3020 * interface called the Subnet Management Interface (SMI). This interface 3021 * uses directed route packets to communicate with the SM to get around the 3022 * chicken and egg problem of the SM needing to know what's on the fabric 3023 * in order to configure the fabric, and needing to configure the fabric in 3024 * order to send packets to the devices on the fabric. These directed 3025 * route packets do not need the fabric fully configured in order to reach 3026 * their destination. The SMI is the only method allowed to send 3027 * directed route packets on an InfiniBand fabric. 3028 * 3029 * Return: true if the port provides an SMI. 3030 */ 3031 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 3032 { 3033 return device->port_data[port_num].immutable.core_cap_flags & 3034 RDMA_CORE_CAP_IB_SMI; 3035 } 3036 3037 /** 3038 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3039 * Communication Manager. 3040 * @device: Device to check 3041 * @port_num: Port number to check 3042 * 3043 * The InfiniBand Communication Manager is one of many pre-defined General 3044 * Service Agents (GSA) that are accessed via the General Service 3045 * Interface (GSI). It's role is to facilitate establishment of connections 3046 * between nodes as well as other management related tasks for established 3047 * connections. 3048 * 3049 * Return: true if the port supports an IB CM (this does not guarantee that 3050 * a CM is actually running however). 3051 */ 3052 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 3053 { 3054 return device->port_data[port_num].immutable.core_cap_flags & 3055 RDMA_CORE_CAP_IB_CM; 3056 } 3057 3058 /** 3059 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3060 * Communication Manager. 3061 * @device: Device to check 3062 * @port_num: Port number to check 3063 * 3064 * Similar to above, but specific to iWARP connections which have a different 3065 * managment protocol than InfiniBand. 3066 * 3067 * Return: true if the port supports an iWARP CM (this does not guarantee that 3068 * a CM is actually running however). 3069 */ 3070 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 3071 { 3072 return device->port_data[port_num].immutable.core_cap_flags & 3073 RDMA_CORE_CAP_IW_CM; 3074 } 3075 3076 /** 3077 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3078 * Subnet Administration. 3079 * @device: Device to check 3080 * @port_num: Port number to check 3081 * 3082 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3083 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3084 * fabrics, devices should resolve routes to other hosts by contacting the 3085 * SA to query the proper route. 3086 * 3087 * Return: true if the port should act as a client to the fabric Subnet 3088 * Administration interface. This does not imply that the SA service is 3089 * running locally. 3090 */ 3091 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 3092 { 3093 return device->port_data[port_num].immutable.core_cap_flags & 3094 RDMA_CORE_CAP_IB_SA; 3095 } 3096 3097 /** 3098 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3099 * Multicast. 3100 * @device: Device to check 3101 * @port_num: Port number to check 3102 * 3103 * InfiniBand multicast registration is more complex than normal IPv4 or 3104 * IPv6 multicast registration. Each Host Channel Adapter must register 3105 * with the Subnet Manager when it wishes to join a multicast group. It 3106 * should do so only once regardless of how many queue pairs it subscribes 3107 * to this group. And it should leave the group only after all queue pairs 3108 * attached to the group have been detached. 3109 * 3110 * Return: true if the port must undertake the additional adminstrative 3111 * overhead of registering/unregistering with the SM and tracking of the 3112 * total number of queue pairs attached to the multicast group. 3113 */ 3114 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3115 { 3116 return rdma_cap_ib_sa(device, port_num); 3117 } 3118 3119 /** 3120 * rdma_cap_af_ib - Check if the port of device has the capability 3121 * Native Infiniband Address. 3122 * @device: Device to check 3123 * @port_num: Port number to check 3124 * 3125 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3126 * GID. RoCE uses a different mechanism, but still generates a GID via 3127 * a prescribed mechanism and port specific data. 3128 * 3129 * Return: true if the port uses a GID address to identify devices on the 3130 * network. 3131 */ 3132 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3133 { 3134 return device->port_data[port_num].immutable.core_cap_flags & 3135 RDMA_CORE_CAP_AF_IB; 3136 } 3137 3138 /** 3139 * rdma_cap_eth_ah - Check if the port of device has the capability 3140 * Ethernet Address Handle. 3141 * @device: Device to check 3142 * @port_num: Port number to check 3143 * 3144 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3145 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3146 * port. Normally, packet headers are generated by the sending host 3147 * adapter, but when sending connectionless datagrams, we must manually 3148 * inject the proper headers for the fabric we are communicating over. 3149 * 3150 * Return: true if we are running as a RoCE port and must force the 3151 * addition of a Global Route Header built from our Ethernet Address 3152 * Handle into our header list for connectionless packets. 3153 */ 3154 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3155 { 3156 return device->port_data[port_num].immutable.core_cap_flags & 3157 RDMA_CORE_CAP_ETH_AH; 3158 } 3159 3160 /** 3161 * rdma_cap_opa_ah - Check if the port of device supports 3162 * OPA Address handles 3163 * @device: Device to check 3164 * @port_num: Port number to check 3165 * 3166 * Return: true if we are running on an OPA device which supports 3167 * the extended OPA addressing. 3168 */ 3169 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3170 { 3171 return (device->port_data[port_num].immutable.core_cap_flags & 3172 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3173 } 3174 3175 /** 3176 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3177 * 3178 * @device: Device 3179 * @port_num: Port number 3180 * 3181 * This MAD size includes the MAD headers and MAD payload. No other headers 3182 * are included. 3183 * 3184 * Return the max MAD size required by the Port. Will return 0 if the port 3185 * does not support MADs 3186 */ 3187 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3188 { 3189 return device->port_data[port_num].immutable.max_mad_size; 3190 } 3191 3192 /** 3193 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3194 * @device: Device to check 3195 * @port_num: Port number to check 3196 * 3197 * RoCE GID table mechanism manages the various GIDs for a device. 3198 * 3199 * NOTE: if allocating the port's GID table has failed, this call will still 3200 * return true, but any RoCE GID table API will fail. 3201 * 3202 * Return: true if the port uses RoCE GID table mechanism in order to manage 3203 * its GIDs. 3204 */ 3205 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3206 u8 port_num) 3207 { 3208 return rdma_protocol_roce(device, port_num) && 3209 device->ops.add_gid && device->ops.del_gid; 3210 } 3211 3212 /* 3213 * Check if the device supports READ W/ INVALIDATE. 3214 */ 3215 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3216 { 3217 /* 3218 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3219 * has support for it yet. 3220 */ 3221 return rdma_protocol_iwarp(dev, port_num); 3222 } 3223 3224 /** 3225 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes 3226 * 3227 * @addr: address 3228 * @pgsz_bitmap: bitmap of HW supported page sizes 3229 */ 3230 static inline unsigned int rdma_find_pg_bit(unsigned long addr, 3231 unsigned long pgsz_bitmap) 3232 { 3233 unsigned long align; 3234 unsigned long pgsz; 3235 3236 align = addr & -addr; 3237 3238 /* Find page bit such that addr is aligned to the highest supported 3239 * HW page size 3240 */ 3241 pgsz = pgsz_bitmap & ~(-align << 1); 3242 if (!pgsz) 3243 return __ffs(pgsz_bitmap); 3244 3245 return __fls(pgsz); 3246 } 3247 3248 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3249 int state); 3250 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3251 struct ifla_vf_info *info); 3252 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3253 struct ifla_vf_stats *stats); 3254 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3255 int type); 3256 3257 int ib_query_pkey(struct ib_device *device, 3258 u8 port_num, u16 index, u16 *pkey); 3259 3260 int ib_modify_device(struct ib_device *device, 3261 int device_modify_mask, 3262 struct ib_device_modify *device_modify); 3263 3264 int ib_modify_port(struct ib_device *device, 3265 u8 port_num, int port_modify_mask, 3266 struct ib_port_modify *port_modify); 3267 3268 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3269 u8 *port_num, u16 *index); 3270 3271 int ib_find_pkey(struct ib_device *device, 3272 u8 port_num, u16 pkey, u16 *index); 3273 3274 enum ib_pd_flags { 3275 /* 3276 * Create a memory registration for all memory in the system and place 3277 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3278 * ULPs to avoid the overhead of dynamic MRs. 3279 * 3280 * This flag is generally considered unsafe and must only be used in 3281 * extremly trusted environments. Every use of it will log a warning 3282 * in the kernel log. 3283 */ 3284 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3285 }; 3286 3287 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3288 const char *caller); 3289 3290 #define ib_alloc_pd(device, flags) \ 3291 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3292 3293 /** 3294 * ib_dealloc_pd_user - Deallocate kernel/user PD 3295 * @pd: The protection domain 3296 * @udata: Valid user data or NULL for kernel objects 3297 */ 3298 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3299 3300 /** 3301 * ib_dealloc_pd - Deallocate kernel PD 3302 * @pd: The protection domain 3303 * 3304 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3305 */ 3306 static inline void ib_dealloc_pd(struct ib_pd *pd) 3307 { 3308 ib_dealloc_pd_user(pd, NULL); 3309 } 3310 3311 enum rdma_create_ah_flags { 3312 /* In a sleepable context */ 3313 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3314 }; 3315 3316 /** 3317 * rdma_create_ah - Creates an address handle for the given address vector. 3318 * @pd: The protection domain associated with the address handle. 3319 * @ah_attr: The attributes of the address vector. 3320 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3321 * 3322 * The address handle is used to reference a local or global destination 3323 * in all UD QP post sends. 3324 */ 3325 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3326 u32 flags); 3327 3328 /** 3329 * rdma_create_user_ah - Creates an address handle for the given address vector. 3330 * It resolves destination mac address for ah attribute of RoCE type. 3331 * @pd: The protection domain associated with the address handle. 3332 * @ah_attr: The attributes of the address vector. 3333 * @udata: pointer to user's input output buffer information need by 3334 * provider driver. 3335 * 3336 * It returns 0 on success and returns appropriate error code on error. 3337 * The address handle is used to reference a local or global destination 3338 * in all UD QP post sends. 3339 */ 3340 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3341 struct rdma_ah_attr *ah_attr, 3342 struct ib_udata *udata); 3343 /** 3344 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3345 * work completion. 3346 * @hdr: the L3 header to parse 3347 * @net_type: type of header to parse 3348 * @sgid: place to store source gid 3349 * @dgid: place to store destination gid 3350 */ 3351 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3352 enum rdma_network_type net_type, 3353 union ib_gid *sgid, union ib_gid *dgid); 3354 3355 /** 3356 * ib_get_rdma_header_version - Get the header version 3357 * @hdr: the L3 header to parse 3358 */ 3359 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3360 3361 /** 3362 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3363 * work completion. 3364 * @device: Device on which the received message arrived. 3365 * @port_num: Port on which the received message arrived. 3366 * @wc: Work completion associated with the received message. 3367 * @grh: References the received global route header. This parameter is 3368 * ignored unless the work completion indicates that the GRH is valid. 3369 * @ah_attr: Returned attributes that can be used when creating an address 3370 * handle for replying to the message. 3371 * When ib_init_ah_attr_from_wc() returns success, 3372 * (a) for IB link layer it optionally contains a reference to SGID attribute 3373 * when GRH is present for IB link layer. 3374 * (b) for RoCE link layer it contains a reference to SGID attribute. 3375 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3376 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3377 * 3378 */ 3379 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3380 const struct ib_wc *wc, const struct ib_grh *grh, 3381 struct rdma_ah_attr *ah_attr); 3382 3383 /** 3384 * ib_create_ah_from_wc - Creates an address handle associated with the 3385 * sender of the specified work completion. 3386 * @pd: The protection domain associated with the address handle. 3387 * @wc: Work completion information associated with a received message. 3388 * @grh: References the received global route header. This parameter is 3389 * ignored unless the work completion indicates that the GRH is valid. 3390 * @port_num: The outbound port number to associate with the address. 3391 * 3392 * The address handle is used to reference a local or global destination 3393 * in all UD QP post sends. 3394 */ 3395 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3396 const struct ib_grh *grh, u8 port_num); 3397 3398 /** 3399 * rdma_modify_ah - Modifies the address vector associated with an address 3400 * handle. 3401 * @ah: The address handle to modify. 3402 * @ah_attr: The new address vector attributes to associate with the 3403 * address handle. 3404 */ 3405 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3406 3407 /** 3408 * rdma_query_ah - Queries the address vector associated with an address 3409 * handle. 3410 * @ah: The address handle to query. 3411 * @ah_attr: The address vector attributes associated with the address 3412 * handle. 3413 */ 3414 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3415 3416 enum rdma_destroy_ah_flags { 3417 /* In a sleepable context */ 3418 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3419 }; 3420 3421 /** 3422 * rdma_destroy_ah_user - Destroys an address handle. 3423 * @ah: The address handle to destroy. 3424 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3425 * @udata: Valid user data or NULL for kernel objects 3426 */ 3427 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3428 3429 /** 3430 * rdma_destroy_ah - Destroys an kernel address handle. 3431 * @ah: The address handle to destroy. 3432 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3433 * 3434 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3435 */ 3436 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3437 { 3438 return rdma_destroy_ah_user(ah, flags, NULL); 3439 } 3440 3441 /** 3442 * ib_create_srq - Creates a SRQ associated with the specified protection 3443 * domain. 3444 * @pd: The protection domain associated with the SRQ. 3445 * @srq_init_attr: A list of initial attributes required to create the 3446 * SRQ. If SRQ creation succeeds, then the attributes are updated to 3447 * the actual capabilities of the created SRQ. 3448 * 3449 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 3450 * requested size of the SRQ, and set to the actual values allocated 3451 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 3452 * will always be at least as large as the requested values. 3453 */ 3454 struct ib_srq *ib_create_srq(struct ib_pd *pd, 3455 struct ib_srq_init_attr *srq_init_attr); 3456 3457 /** 3458 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3459 * @srq: The SRQ to modify. 3460 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3461 * the current values of selected SRQ attributes are returned. 3462 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3463 * are being modified. 3464 * 3465 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3466 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3467 * the number of receives queued drops below the limit. 3468 */ 3469 int ib_modify_srq(struct ib_srq *srq, 3470 struct ib_srq_attr *srq_attr, 3471 enum ib_srq_attr_mask srq_attr_mask); 3472 3473 /** 3474 * ib_query_srq - Returns the attribute list and current values for the 3475 * specified SRQ. 3476 * @srq: The SRQ to query. 3477 * @srq_attr: The attributes of the specified SRQ. 3478 */ 3479 int ib_query_srq(struct ib_srq *srq, 3480 struct ib_srq_attr *srq_attr); 3481 3482 /** 3483 * ib_destroy_srq_user - Destroys the specified SRQ. 3484 * @srq: The SRQ to destroy. 3485 * @udata: Valid user data or NULL for kernel objects 3486 */ 3487 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3488 3489 /** 3490 * ib_destroy_srq - Destroys the specified kernel SRQ. 3491 * @srq: The SRQ to destroy. 3492 * 3493 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3494 */ 3495 static inline int ib_destroy_srq(struct ib_srq *srq) 3496 { 3497 return ib_destroy_srq_user(srq, NULL); 3498 } 3499 3500 /** 3501 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3502 * @srq: The SRQ to post the work request on. 3503 * @recv_wr: A list of work requests to post on the receive queue. 3504 * @bad_recv_wr: On an immediate failure, this parameter will reference 3505 * the work request that failed to be posted on the QP. 3506 */ 3507 static inline int ib_post_srq_recv(struct ib_srq *srq, 3508 const struct ib_recv_wr *recv_wr, 3509 const struct ib_recv_wr **bad_recv_wr) 3510 { 3511 const struct ib_recv_wr *dummy; 3512 3513 return srq->device->ops.post_srq_recv(srq, recv_wr, 3514 bad_recv_wr ? : &dummy); 3515 } 3516 3517 /** 3518 * ib_create_qp_user - Creates a QP associated with the specified protection 3519 * domain. 3520 * @pd: The protection domain associated with the QP. 3521 * @qp_init_attr: A list of initial attributes required to create the 3522 * QP. If QP creation succeeds, then the attributes are updated to 3523 * the actual capabilities of the created QP. 3524 * @udata: Valid user data or NULL for kernel objects 3525 */ 3526 struct ib_qp *ib_create_qp_user(struct ib_pd *pd, 3527 struct ib_qp_init_attr *qp_init_attr, 3528 struct ib_udata *udata); 3529 3530 /** 3531 * ib_create_qp - Creates a kernel QP associated with the specified protection 3532 * domain. 3533 * @pd: The protection domain associated with the QP. 3534 * @qp_init_attr: A list of initial attributes required to create the 3535 * QP. If QP creation succeeds, then the attributes are updated to 3536 * the actual capabilities of the created QP. 3537 * @udata: Valid user data or NULL for kernel objects 3538 * 3539 * NOTE: for user qp use ib_create_qp_user with valid udata! 3540 */ 3541 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3542 struct ib_qp_init_attr *qp_init_attr) 3543 { 3544 return ib_create_qp_user(pd, qp_init_attr, NULL); 3545 } 3546 3547 /** 3548 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3549 * @qp: The QP to modify. 3550 * @attr: On input, specifies the QP attributes to modify. On output, 3551 * the current values of selected QP attributes are returned. 3552 * @attr_mask: A bit-mask used to specify which attributes of the QP 3553 * are being modified. 3554 * @udata: pointer to user's input output buffer information 3555 * are being modified. 3556 * It returns 0 on success and returns appropriate error code on error. 3557 */ 3558 int ib_modify_qp_with_udata(struct ib_qp *qp, 3559 struct ib_qp_attr *attr, 3560 int attr_mask, 3561 struct ib_udata *udata); 3562 3563 /** 3564 * ib_modify_qp - Modifies the attributes for the specified QP and then 3565 * transitions the QP to the given state. 3566 * @qp: The QP to modify. 3567 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3568 * the current values of selected QP attributes are returned. 3569 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3570 * are being modified. 3571 */ 3572 int ib_modify_qp(struct ib_qp *qp, 3573 struct ib_qp_attr *qp_attr, 3574 int qp_attr_mask); 3575 3576 /** 3577 * ib_query_qp - Returns the attribute list and current values for the 3578 * specified QP. 3579 * @qp: The QP to query. 3580 * @qp_attr: The attributes of the specified QP. 3581 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3582 * @qp_init_attr: Additional attributes of the selected QP. 3583 * 3584 * The qp_attr_mask may be used to limit the query to gathering only the 3585 * selected attributes. 3586 */ 3587 int ib_query_qp(struct ib_qp *qp, 3588 struct ib_qp_attr *qp_attr, 3589 int qp_attr_mask, 3590 struct ib_qp_init_attr *qp_init_attr); 3591 3592 /** 3593 * ib_destroy_qp - Destroys the specified QP. 3594 * @qp: The QP to destroy. 3595 * @udata: Valid udata or NULL for kernel objects 3596 */ 3597 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3598 3599 /** 3600 * ib_destroy_qp - Destroys the specified kernel QP. 3601 * @qp: The QP to destroy. 3602 * 3603 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3604 */ 3605 static inline int ib_destroy_qp(struct ib_qp *qp) 3606 { 3607 return ib_destroy_qp_user(qp, NULL); 3608 } 3609 3610 /** 3611 * ib_open_qp - Obtain a reference to an existing sharable QP. 3612 * @xrcd - XRC domain 3613 * @qp_open_attr: Attributes identifying the QP to open. 3614 * 3615 * Returns a reference to a sharable QP. 3616 */ 3617 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3618 struct ib_qp_open_attr *qp_open_attr); 3619 3620 /** 3621 * ib_close_qp - Release an external reference to a QP. 3622 * @qp: The QP handle to release 3623 * 3624 * The opened QP handle is released by the caller. The underlying 3625 * shared QP is not destroyed until all internal references are released. 3626 */ 3627 int ib_close_qp(struct ib_qp *qp); 3628 3629 /** 3630 * ib_post_send - Posts a list of work requests to the send queue of 3631 * the specified QP. 3632 * @qp: The QP to post the work request on. 3633 * @send_wr: A list of work requests to post on the send queue. 3634 * @bad_send_wr: On an immediate failure, this parameter will reference 3635 * the work request that failed to be posted on the QP. 3636 * 3637 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3638 * error is returned, the QP state shall not be affected, 3639 * ib_post_send() will return an immediate error after queueing any 3640 * earlier work requests in the list. 3641 */ 3642 static inline int ib_post_send(struct ib_qp *qp, 3643 const struct ib_send_wr *send_wr, 3644 const struct ib_send_wr **bad_send_wr) 3645 { 3646 const struct ib_send_wr *dummy; 3647 3648 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3649 } 3650 3651 /** 3652 * ib_post_recv - Posts a list of work requests to the receive queue of 3653 * the specified QP. 3654 * @qp: The QP to post the work request on. 3655 * @recv_wr: A list of work requests to post on the receive queue. 3656 * @bad_recv_wr: On an immediate failure, this parameter will reference 3657 * the work request that failed to be posted on the QP. 3658 */ 3659 static inline int ib_post_recv(struct ib_qp *qp, 3660 const struct ib_recv_wr *recv_wr, 3661 const struct ib_recv_wr **bad_recv_wr) 3662 { 3663 const struct ib_recv_wr *dummy; 3664 3665 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3666 } 3667 3668 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private, 3669 int nr_cqe, int comp_vector, 3670 enum ib_poll_context poll_ctx, 3671 const char *caller, struct ib_udata *udata); 3672 3673 /** 3674 * ib_alloc_cq_user: Allocate kernel/user CQ 3675 * @dev: The IB device 3676 * @private: Private data attached to the CQE 3677 * @nr_cqe: Number of CQEs in the CQ 3678 * @comp_vector: Completion vector used for the IRQs 3679 * @poll_ctx: Context used for polling the CQ 3680 * @udata: Valid user data or NULL for kernel objects 3681 */ 3682 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev, 3683 void *private, int nr_cqe, 3684 int comp_vector, 3685 enum ib_poll_context poll_ctx, 3686 struct ib_udata *udata) 3687 { 3688 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3689 KBUILD_MODNAME, udata); 3690 } 3691 3692 /** 3693 * ib_alloc_cq: Allocate kernel CQ 3694 * @dev: The IB device 3695 * @private: Private data attached to the CQE 3696 * @nr_cqe: Number of CQEs in the CQ 3697 * @comp_vector: Completion vector used for the IRQs 3698 * @poll_ctx: Context used for polling the CQ 3699 * 3700 * NOTE: for user cq use ib_alloc_cq_user with valid udata! 3701 */ 3702 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3703 int nr_cqe, int comp_vector, 3704 enum ib_poll_context poll_ctx) 3705 { 3706 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3707 NULL); 3708 } 3709 3710 /** 3711 * ib_free_cq_user - Free kernel/user CQ 3712 * @cq: The CQ to free 3713 * @udata: Valid user data or NULL for kernel objects 3714 */ 3715 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3716 3717 /** 3718 * ib_free_cq - Free kernel CQ 3719 * @cq: The CQ to free 3720 * 3721 * NOTE: for user cq use ib_free_cq_user with valid udata! 3722 */ 3723 static inline void ib_free_cq(struct ib_cq *cq) 3724 { 3725 ib_free_cq_user(cq, NULL); 3726 } 3727 3728 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3729 3730 /** 3731 * ib_create_cq - Creates a CQ on the specified device. 3732 * @device: The device on which to create the CQ. 3733 * @comp_handler: A user-specified callback that is invoked when a 3734 * completion event occurs on the CQ. 3735 * @event_handler: A user-specified callback that is invoked when an 3736 * asynchronous event not associated with a completion occurs on the CQ. 3737 * @cq_context: Context associated with the CQ returned to the user via 3738 * the associated completion and event handlers. 3739 * @cq_attr: The attributes the CQ should be created upon. 3740 * 3741 * Users can examine the cq structure to determine the actual CQ size. 3742 */ 3743 struct ib_cq *__ib_create_cq(struct ib_device *device, 3744 ib_comp_handler comp_handler, 3745 void (*event_handler)(struct ib_event *, void *), 3746 void *cq_context, 3747 const struct ib_cq_init_attr *cq_attr, 3748 const char *caller); 3749 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3750 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3751 3752 /** 3753 * ib_resize_cq - Modifies the capacity of the CQ. 3754 * @cq: The CQ to resize. 3755 * @cqe: The minimum size of the CQ. 3756 * 3757 * Users can examine the cq structure to determine the actual CQ size. 3758 */ 3759 int ib_resize_cq(struct ib_cq *cq, int cqe); 3760 3761 /** 3762 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3763 * @cq: The CQ to modify. 3764 * @cq_count: number of CQEs that will trigger an event 3765 * @cq_period: max period of time in usec before triggering an event 3766 * 3767 */ 3768 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3769 3770 /** 3771 * ib_destroy_cq_user - Destroys the specified CQ. 3772 * @cq: The CQ to destroy. 3773 * @udata: Valid user data or NULL for kernel objects 3774 */ 3775 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3776 3777 /** 3778 * ib_destroy_cq - Destroys the specified kernel CQ. 3779 * @cq: The CQ to destroy. 3780 * 3781 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3782 */ 3783 static inline void ib_destroy_cq(struct ib_cq *cq) 3784 { 3785 ib_destroy_cq_user(cq, NULL); 3786 } 3787 3788 /** 3789 * ib_poll_cq - poll a CQ for completion(s) 3790 * @cq:the CQ being polled 3791 * @num_entries:maximum number of completions to return 3792 * @wc:array of at least @num_entries &struct ib_wc where completions 3793 * will be returned 3794 * 3795 * Poll a CQ for (possibly multiple) completions. If the return value 3796 * is < 0, an error occurred. If the return value is >= 0, it is the 3797 * number of completions returned. If the return value is 3798 * non-negative and < num_entries, then the CQ was emptied. 3799 */ 3800 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3801 struct ib_wc *wc) 3802 { 3803 return cq->device->ops.poll_cq(cq, num_entries, wc); 3804 } 3805 3806 /** 3807 * ib_req_notify_cq - Request completion notification on a CQ. 3808 * @cq: The CQ to generate an event for. 3809 * @flags: 3810 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3811 * to request an event on the next solicited event or next work 3812 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3813 * may also be |ed in to request a hint about missed events, as 3814 * described below. 3815 * 3816 * Return Value: 3817 * < 0 means an error occurred while requesting notification 3818 * == 0 means notification was requested successfully, and if 3819 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3820 * were missed and it is safe to wait for another event. In 3821 * this case is it guaranteed that any work completions added 3822 * to the CQ since the last CQ poll will trigger a completion 3823 * notification event. 3824 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3825 * in. It means that the consumer must poll the CQ again to 3826 * make sure it is empty to avoid missing an event because of a 3827 * race between requesting notification and an entry being 3828 * added to the CQ. This return value means it is possible 3829 * (but not guaranteed) that a work completion has been added 3830 * to the CQ since the last poll without triggering a 3831 * completion notification event. 3832 */ 3833 static inline int ib_req_notify_cq(struct ib_cq *cq, 3834 enum ib_cq_notify_flags flags) 3835 { 3836 return cq->device->ops.req_notify_cq(cq, flags); 3837 } 3838 3839 /** 3840 * ib_req_ncomp_notif - Request completion notification when there are 3841 * at least the specified number of unreaped completions on the CQ. 3842 * @cq: The CQ to generate an event for. 3843 * @wc_cnt: The number of unreaped completions that should be on the 3844 * CQ before an event is generated. 3845 */ 3846 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3847 { 3848 return cq->device->ops.req_ncomp_notif ? 3849 cq->device->ops.req_ncomp_notif(cq, wc_cnt) : 3850 -ENOSYS; 3851 } 3852 3853 /** 3854 * ib_dma_mapping_error - check a DMA addr for error 3855 * @dev: The device for which the dma_addr was created 3856 * @dma_addr: The DMA address to check 3857 */ 3858 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3859 { 3860 return dma_mapping_error(dev->dma_device, dma_addr); 3861 } 3862 3863 /** 3864 * ib_dma_map_single - Map a kernel virtual address to DMA address 3865 * @dev: The device for which the dma_addr is to be created 3866 * @cpu_addr: The kernel virtual address 3867 * @size: The size of the region in bytes 3868 * @direction: The direction of the DMA 3869 */ 3870 static inline u64 ib_dma_map_single(struct ib_device *dev, 3871 void *cpu_addr, size_t size, 3872 enum dma_data_direction direction) 3873 { 3874 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3875 } 3876 3877 /** 3878 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3879 * @dev: The device for which the DMA address was created 3880 * @addr: The DMA address 3881 * @size: The size of the region in bytes 3882 * @direction: The direction of the DMA 3883 */ 3884 static inline void ib_dma_unmap_single(struct ib_device *dev, 3885 u64 addr, size_t size, 3886 enum dma_data_direction direction) 3887 { 3888 dma_unmap_single(dev->dma_device, addr, size, direction); 3889 } 3890 3891 /** 3892 * ib_dma_map_page - Map a physical page to DMA address 3893 * @dev: The device for which the dma_addr is to be created 3894 * @page: The page to be mapped 3895 * @offset: The offset within the page 3896 * @size: The size of the region in bytes 3897 * @direction: The direction of the DMA 3898 */ 3899 static inline u64 ib_dma_map_page(struct ib_device *dev, 3900 struct page *page, 3901 unsigned long offset, 3902 size_t size, 3903 enum dma_data_direction direction) 3904 { 3905 return dma_map_page(dev->dma_device, page, offset, size, direction); 3906 } 3907 3908 /** 3909 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3910 * @dev: The device for which the DMA address was created 3911 * @addr: The DMA address 3912 * @size: The size of the region in bytes 3913 * @direction: The direction of the DMA 3914 */ 3915 static inline void ib_dma_unmap_page(struct ib_device *dev, 3916 u64 addr, size_t size, 3917 enum dma_data_direction direction) 3918 { 3919 dma_unmap_page(dev->dma_device, addr, size, direction); 3920 } 3921 3922 /** 3923 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3924 * @dev: The device for which the DMA addresses are to be created 3925 * @sg: The array of scatter/gather entries 3926 * @nents: The number of scatter/gather entries 3927 * @direction: The direction of the DMA 3928 */ 3929 static inline int ib_dma_map_sg(struct ib_device *dev, 3930 struct scatterlist *sg, int nents, 3931 enum dma_data_direction direction) 3932 { 3933 return dma_map_sg(dev->dma_device, sg, nents, direction); 3934 } 3935 3936 /** 3937 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3938 * @dev: The device for which the DMA addresses were created 3939 * @sg: The array of scatter/gather entries 3940 * @nents: The number of scatter/gather entries 3941 * @direction: The direction of the DMA 3942 */ 3943 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3944 struct scatterlist *sg, int nents, 3945 enum dma_data_direction direction) 3946 { 3947 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3948 } 3949 3950 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3951 struct scatterlist *sg, int nents, 3952 enum dma_data_direction direction, 3953 unsigned long dma_attrs) 3954 { 3955 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3956 dma_attrs); 3957 } 3958 3959 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3960 struct scatterlist *sg, int nents, 3961 enum dma_data_direction direction, 3962 unsigned long dma_attrs) 3963 { 3964 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3965 } 3966 3967 /** 3968 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 3969 * @dev: The device to query 3970 * 3971 * The returned value represents a size in bytes. 3972 */ 3973 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 3974 { 3975 struct device_dma_parameters *p = dev->dma_device->dma_parms; 3976 3977 return p ? p->max_segment_size : UINT_MAX; 3978 } 3979 3980 /** 3981 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3982 * @dev: The device for which the DMA address was created 3983 * @addr: The DMA address 3984 * @size: The size of the region in bytes 3985 * @dir: The direction of the DMA 3986 */ 3987 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3988 u64 addr, 3989 size_t size, 3990 enum dma_data_direction dir) 3991 { 3992 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3993 } 3994 3995 /** 3996 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3997 * @dev: The device for which the DMA address was created 3998 * @addr: The DMA address 3999 * @size: The size of the region in bytes 4000 * @dir: The direction of the DMA 4001 */ 4002 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4003 u64 addr, 4004 size_t size, 4005 enum dma_data_direction dir) 4006 { 4007 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4008 } 4009 4010 /** 4011 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 4012 * @dev: The device for which the DMA address is requested 4013 * @size: The size of the region to allocate in bytes 4014 * @dma_handle: A pointer for returning the DMA address of the region 4015 * @flag: memory allocator flags 4016 */ 4017 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 4018 size_t size, 4019 dma_addr_t *dma_handle, 4020 gfp_t flag) 4021 { 4022 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 4023 } 4024 4025 /** 4026 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 4027 * @dev: The device for which the DMA addresses were allocated 4028 * @size: The size of the region 4029 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 4030 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 4031 */ 4032 static inline void ib_dma_free_coherent(struct ib_device *dev, 4033 size_t size, void *cpu_addr, 4034 dma_addr_t dma_handle) 4035 { 4036 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 4037 } 4038 4039 /** 4040 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4041 * HCA translation table. 4042 * @mr: The memory region to deregister. 4043 * @udata: Valid user data or NULL for kernel object 4044 * 4045 * This function can fail, if the memory region has memory windows bound to it. 4046 */ 4047 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4048 4049 /** 4050 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4051 * HCA translation table. 4052 * @mr: The memory region to deregister. 4053 * 4054 * This function can fail, if the memory region has memory windows bound to it. 4055 * 4056 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4057 */ 4058 static inline int ib_dereg_mr(struct ib_mr *mr) 4059 { 4060 return ib_dereg_mr_user(mr, NULL); 4061 } 4062 4063 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 4064 u32 max_num_sg, struct ib_udata *udata); 4065 4066 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 4067 enum ib_mr_type mr_type, u32 max_num_sg) 4068 { 4069 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL); 4070 } 4071 4072 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4073 u32 max_num_data_sg, 4074 u32 max_num_meta_sg); 4075 4076 /** 4077 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4078 * R_Key and L_Key. 4079 * @mr - struct ib_mr pointer to be updated. 4080 * @newkey - new key to be used. 4081 */ 4082 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4083 { 4084 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4085 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4086 } 4087 4088 /** 4089 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4090 * for calculating a new rkey for type 2 memory windows. 4091 * @rkey - the rkey to increment. 4092 */ 4093 static inline u32 ib_inc_rkey(u32 rkey) 4094 { 4095 const u32 mask = 0x000000ff; 4096 return ((rkey + 1) & mask) | (rkey & ~mask); 4097 } 4098 4099 /** 4100 * ib_alloc_fmr - Allocates a unmapped fast memory region. 4101 * @pd: The protection domain associated with the unmapped region. 4102 * @mr_access_flags: Specifies the memory access rights. 4103 * @fmr_attr: Attributes of the unmapped region. 4104 * 4105 * A fast memory region must be mapped before it can be used as part of 4106 * a work request. 4107 */ 4108 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 4109 int mr_access_flags, 4110 struct ib_fmr_attr *fmr_attr); 4111 4112 /** 4113 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 4114 * @fmr: The fast memory region to associate with the pages. 4115 * @page_list: An array of physical pages to map to the fast memory region. 4116 * @list_len: The number of pages in page_list. 4117 * @iova: The I/O virtual address to use with the mapped region. 4118 */ 4119 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 4120 u64 *page_list, int list_len, 4121 u64 iova) 4122 { 4123 return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova); 4124 } 4125 4126 /** 4127 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 4128 * @fmr_list: A linked list of fast memory regions to unmap. 4129 */ 4130 int ib_unmap_fmr(struct list_head *fmr_list); 4131 4132 /** 4133 * ib_dealloc_fmr - Deallocates a fast memory region. 4134 * @fmr: The fast memory region to deallocate. 4135 */ 4136 int ib_dealloc_fmr(struct ib_fmr *fmr); 4137 4138 /** 4139 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4140 * @qp: QP to attach to the multicast group. The QP must be type 4141 * IB_QPT_UD. 4142 * @gid: Multicast group GID. 4143 * @lid: Multicast group LID in host byte order. 4144 * 4145 * In order to send and receive multicast packets, subnet 4146 * administration must have created the multicast group and configured 4147 * the fabric appropriately. The port associated with the specified 4148 * QP must also be a member of the multicast group. 4149 */ 4150 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4151 4152 /** 4153 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4154 * @qp: QP to detach from the multicast group. 4155 * @gid: Multicast group GID. 4156 * @lid: Multicast group LID in host byte order. 4157 */ 4158 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4159 4160 /** 4161 * ib_alloc_xrcd - Allocates an XRC domain. 4162 * @device: The device on which to allocate the XRC domain. 4163 * @caller: Module name for kernel consumers 4164 */ 4165 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 4166 #define ib_alloc_xrcd(device) \ 4167 __ib_alloc_xrcd((device), KBUILD_MODNAME) 4168 4169 /** 4170 * ib_dealloc_xrcd - Deallocates an XRC domain. 4171 * @xrcd: The XRC domain to deallocate. 4172 * @udata: Valid user data or NULL for kernel object 4173 */ 4174 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata); 4175 4176 static inline int ib_check_mr_access(int flags) 4177 { 4178 /* 4179 * Local write permission is required if remote write or 4180 * remote atomic permission is also requested. 4181 */ 4182 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4183 !(flags & IB_ACCESS_LOCAL_WRITE)) 4184 return -EINVAL; 4185 4186 return 0; 4187 } 4188 4189 static inline bool ib_access_writable(int access_flags) 4190 { 4191 /* 4192 * We have writable memory backing the MR if any of the following 4193 * access flags are set. "Local write" and "remote write" obviously 4194 * require write access. "Remote atomic" can do things like fetch and 4195 * add, which will modify memory, and "MW bind" can change permissions 4196 * by binding a window. 4197 */ 4198 return access_flags & 4199 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4200 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4201 } 4202 4203 /** 4204 * ib_check_mr_status: lightweight check of MR status. 4205 * This routine may provide status checks on a selected 4206 * ib_mr. first use is for signature status check. 4207 * 4208 * @mr: A memory region. 4209 * @check_mask: Bitmask of which checks to perform from 4210 * ib_mr_status_check enumeration. 4211 * @mr_status: The container of relevant status checks. 4212 * failed checks will be indicated in the status bitmask 4213 * and the relevant info shall be in the error item. 4214 */ 4215 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4216 struct ib_mr_status *mr_status); 4217 4218 /** 4219 * ib_device_try_get: Hold a registration lock 4220 * device: The device to lock 4221 * 4222 * A device under an active registration lock cannot become unregistered. It 4223 * is only possible to obtain a registration lock on a device that is fully 4224 * registered, otherwise this function returns false. 4225 * 4226 * The registration lock is only necessary for actions which require the 4227 * device to still be registered. Uses that only require the device pointer to 4228 * be valid should use get_device(&ibdev->dev) to hold the memory. 4229 * 4230 */ 4231 static inline bool ib_device_try_get(struct ib_device *dev) 4232 { 4233 return refcount_inc_not_zero(&dev->refcount); 4234 } 4235 4236 void ib_device_put(struct ib_device *device); 4237 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4238 enum rdma_driver_id driver_id); 4239 struct ib_device *ib_device_get_by_name(const char *name, 4240 enum rdma_driver_id driver_id); 4241 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 4242 u16 pkey, const union ib_gid *gid, 4243 const struct sockaddr *addr); 4244 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4245 unsigned int port); 4246 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port); 4247 4248 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4249 struct ib_wq_init_attr *init_attr); 4250 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata); 4251 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 4252 u32 wq_attr_mask); 4253 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 4254 struct ib_rwq_ind_table_init_attr* 4255 wq_ind_table_init_attr); 4256 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 4257 4258 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4259 unsigned int *sg_offset, unsigned int page_size); 4260 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4261 int data_sg_nents, unsigned int *data_sg_offset, 4262 struct scatterlist *meta_sg, int meta_sg_nents, 4263 unsigned int *meta_sg_offset, unsigned int page_size); 4264 4265 static inline int 4266 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4267 unsigned int *sg_offset, unsigned int page_size) 4268 { 4269 int n; 4270 4271 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4272 mr->iova = 0; 4273 4274 return n; 4275 } 4276 4277 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4278 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4279 4280 void ib_drain_rq(struct ib_qp *qp); 4281 void ib_drain_sq(struct ib_qp *qp); 4282 void ib_drain_qp(struct ib_qp *qp); 4283 4284 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 4285 4286 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4287 { 4288 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4289 return attr->roce.dmac; 4290 return NULL; 4291 } 4292 4293 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4294 { 4295 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4296 attr->ib.dlid = (u16)dlid; 4297 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4298 attr->opa.dlid = dlid; 4299 } 4300 4301 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4302 { 4303 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4304 return attr->ib.dlid; 4305 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4306 return attr->opa.dlid; 4307 return 0; 4308 } 4309 4310 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4311 { 4312 attr->sl = sl; 4313 } 4314 4315 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4316 { 4317 return attr->sl; 4318 } 4319 4320 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4321 u8 src_path_bits) 4322 { 4323 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4324 attr->ib.src_path_bits = src_path_bits; 4325 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4326 attr->opa.src_path_bits = src_path_bits; 4327 } 4328 4329 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4330 { 4331 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4332 return attr->ib.src_path_bits; 4333 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4334 return attr->opa.src_path_bits; 4335 return 0; 4336 } 4337 4338 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4339 bool make_grd) 4340 { 4341 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4342 attr->opa.make_grd = make_grd; 4343 } 4344 4345 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4346 { 4347 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4348 return attr->opa.make_grd; 4349 return false; 4350 } 4351 4352 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4353 { 4354 attr->port_num = port_num; 4355 } 4356 4357 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4358 { 4359 return attr->port_num; 4360 } 4361 4362 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4363 u8 static_rate) 4364 { 4365 attr->static_rate = static_rate; 4366 } 4367 4368 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4369 { 4370 return attr->static_rate; 4371 } 4372 4373 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4374 enum ib_ah_flags flag) 4375 { 4376 attr->ah_flags = flag; 4377 } 4378 4379 static inline enum ib_ah_flags 4380 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4381 { 4382 return attr->ah_flags; 4383 } 4384 4385 static inline const struct ib_global_route 4386 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4387 { 4388 return &attr->grh; 4389 } 4390 4391 /*To retrieve and modify the grh */ 4392 static inline struct ib_global_route 4393 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4394 { 4395 return &attr->grh; 4396 } 4397 4398 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4399 { 4400 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4401 4402 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4403 } 4404 4405 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4406 __be64 prefix) 4407 { 4408 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4409 4410 grh->dgid.global.subnet_prefix = prefix; 4411 } 4412 4413 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4414 __be64 if_id) 4415 { 4416 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4417 4418 grh->dgid.global.interface_id = if_id; 4419 } 4420 4421 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4422 union ib_gid *dgid, u32 flow_label, 4423 u8 sgid_index, u8 hop_limit, 4424 u8 traffic_class) 4425 { 4426 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4427 4428 attr->ah_flags = IB_AH_GRH; 4429 if (dgid) 4430 grh->dgid = *dgid; 4431 grh->flow_label = flow_label; 4432 grh->sgid_index = sgid_index; 4433 grh->hop_limit = hop_limit; 4434 grh->traffic_class = traffic_class; 4435 grh->sgid_attr = NULL; 4436 } 4437 4438 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4439 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4440 u32 flow_label, u8 hop_limit, u8 traffic_class, 4441 const struct ib_gid_attr *sgid_attr); 4442 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4443 const struct rdma_ah_attr *src); 4444 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4445 const struct rdma_ah_attr *new); 4446 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4447 4448 /** 4449 * rdma_ah_find_type - Return address handle type. 4450 * 4451 * @dev: Device to be checked 4452 * @port_num: Port number 4453 */ 4454 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4455 u8 port_num) 4456 { 4457 if (rdma_protocol_roce(dev, port_num)) 4458 return RDMA_AH_ATTR_TYPE_ROCE; 4459 if (rdma_protocol_ib(dev, port_num)) { 4460 if (rdma_cap_opa_ah(dev, port_num)) 4461 return RDMA_AH_ATTR_TYPE_OPA; 4462 return RDMA_AH_ATTR_TYPE_IB; 4463 } 4464 4465 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4466 } 4467 4468 /** 4469 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4470 * In the current implementation the only way to get 4471 * get the 32bit lid is from other sources for OPA. 4472 * For IB, lids will always be 16bits so cast the 4473 * value accordingly. 4474 * 4475 * @lid: A 32bit LID 4476 */ 4477 static inline u16 ib_lid_cpu16(u32 lid) 4478 { 4479 WARN_ON_ONCE(lid & 0xFFFF0000); 4480 return (u16)lid; 4481 } 4482 4483 /** 4484 * ib_lid_be16 - Return lid in 16bit BE encoding. 4485 * 4486 * @lid: A 32bit LID 4487 */ 4488 static inline __be16 ib_lid_be16(u32 lid) 4489 { 4490 WARN_ON_ONCE(lid & 0xFFFF0000); 4491 return cpu_to_be16((u16)lid); 4492 } 4493 4494 /** 4495 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4496 * vector 4497 * @device: the rdma device 4498 * @comp_vector: index of completion vector 4499 * 4500 * Returns NULL on failure, otherwise a corresponding cpu map of the 4501 * completion vector (returns all-cpus map if the device driver doesn't 4502 * implement get_vector_affinity). 4503 */ 4504 static inline const struct cpumask * 4505 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4506 { 4507 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4508 !device->ops.get_vector_affinity) 4509 return NULL; 4510 4511 return device->ops.get_vector_affinity(device, comp_vector); 4512 4513 } 4514 4515 /** 4516 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4517 * and add their gids, as needed, to the relevant RoCE devices. 4518 * 4519 * @device: the rdma device 4520 */ 4521 void rdma_roce_rescan_device(struct ib_device *ibdev); 4522 4523 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4524 4525 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4526 4527 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4528 enum rdma_netdev_t type, const char *name, 4529 unsigned char name_assign_type, 4530 void (*setup)(struct net_device *)); 4531 4532 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4533 enum rdma_netdev_t type, const char *name, 4534 unsigned char name_assign_type, 4535 void (*setup)(struct net_device *), 4536 struct net_device *netdev); 4537 4538 /** 4539 * rdma_set_device_sysfs_group - Set device attributes group to have 4540 * driver specific sysfs entries at 4541 * for infiniband class. 4542 * 4543 * @device: device pointer for which attributes to be created 4544 * @group: Pointer to group which should be added when device 4545 * is registered with sysfs. 4546 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4547 * group per device to have sysfs attributes. 4548 * 4549 * NOTE: New drivers should not make use of this API; instead new device 4550 * parameter should be exposed via netlink command. This API and mechanism 4551 * exist only for existing drivers. 4552 */ 4553 static inline void 4554 rdma_set_device_sysfs_group(struct ib_device *dev, 4555 const struct attribute_group *group) 4556 { 4557 dev->groups[1] = group; 4558 } 4559 4560 /** 4561 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4562 * 4563 * @device: device pointer for which ib_device pointer to retrieve 4564 * 4565 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4566 * 4567 */ 4568 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4569 { 4570 struct ib_core_device *coredev = 4571 container_of(device, struct ib_core_device, dev); 4572 4573 return coredev->owner; 4574 } 4575 4576 /** 4577 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4578 * ib_device holder structure from device pointer. 4579 * 4580 * NOTE: New drivers should not make use of this API; This API is only for 4581 * existing drivers who have exposed sysfs entries using 4582 * rdma_set_device_sysfs_group(). 4583 */ 4584 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4585 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4586 4587 bool rdma_dev_access_netns(const struct ib_device *device, 4588 const struct net *net); 4589 #endif /* IB_VERBS_H */ 4590