1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 * 38 * $Id: ib_verbs.h 1349 2004-12-16 21:09:43Z roland $ 39 */ 40 41 #if !defined(IB_VERBS_H) 42 #define IB_VERBS_H 43 44 #include <linux/types.h> 45 #include <linux/device.h> 46 #include <linux/mm.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/kref.h> 49 #include <linux/list.h> 50 #include <linux/rwsem.h> 51 #include <linux/scatterlist.h> 52 53 #include <asm/atomic.h> 54 #include <asm/uaccess.h> 55 56 union ib_gid { 57 u8 raw[16]; 58 struct { 59 __be64 subnet_prefix; 60 __be64 interface_id; 61 } global; 62 }; 63 64 enum rdma_node_type { 65 /* IB values map to NodeInfo:NodeType. */ 66 RDMA_NODE_IB_CA = 1, 67 RDMA_NODE_IB_SWITCH, 68 RDMA_NODE_IB_ROUTER, 69 RDMA_NODE_RNIC 70 }; 71 72 enum rdma_transport_type { 73 RDMA_TRANSPORT_IB, 74 RDMA_TRANSPORT_IWARP 75 }; 76 77 enum rdma_transport_type 78 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 79 80 enum ib_device_cap_flags { 81 IB_DEVICE_RESIZE_MAX_WR = 1, 82 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 83 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 84 IB_DEVICE_RAW_MULTI = (1<<3), 85 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 86 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 87 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 88 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 89 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 90 IB_DEVICE_INIT_TYPE = (1<<9), 91 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 92 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 93 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 94 IB_DEVICE_SRQ_RESIZE = (1<<13), 95 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 96 IB_DEVICE_ZERO_STAG = (1<<15), 97 IB_DEVICE_SEND_W_INV = (1<<16), 98 IB_DEVICE_MEM_WINDOW = (1<<17), 99 /* 100 * Devices should set IB_DEVICE_UD_IP_SUM if they support 101 * insertion of UDP and TCP checksum on outgoing UD IPoIB 102 * messages and can verify the validity of checksum for 103 * incoming messages. Setting this flag implies that the 104 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 105 */ 106 IB_DEVICE_UD_IP_CSUM = (1<<18), 107 }; 108 109 enum ib_atomic_cap { 110 IB_ATOMIC_NONE, 111 IB_ATOMIC_HCA, 112 IB_ATOMIC_GLOB 113 }; 114 115 struct ib_device_attr { 116 u64 fw_ver; 117 __be64 sys_image_guid; 118 u64 max_mr_size; 119 u64 page_size_cap; 120 u32 vendor_id; 121 u32 vendor_part_id; 122 u32 hw_ver; 123 int max_qp; 124 int max_qp_wr; 125 int device_cap_flags; 126 int max_sge; 127 int max_sge_rd; 128 int max_cq; 129 int max_cqe; 130 int max_mr; 131 int max_pd; 132 int max_qp_rd_atom; 133 int max_ee_rd_atom; 134 int max_res_rd_atom; 135 int max_qp_init_rd_atom; 136 int max_ee_init_rd_atom; 137 enum ib_atomic_cap atomic_cap; 138 int max_ee; 139 int max_rdd; 140 int max_mw; 141 int max_raw_ipv6_qp; 142 int max_raw_ethy_qp; 143 int max_mcast_grp; 144 int max_mcast_qp_attach; 145 int max_total_mcast_qp_attach; 146 int max_ah; 147 int max_fmr; 148 int max_map_per_fmr; 149 int max_srq; 150 int max_srq_wr; 151 int max_srq_sge; 152 u16 max_pkeys; 153 u8 local_ca_ack_delay; 154 }; 155 156 enum ib_mtu { 157 IB_MTU_256 = 1, 158 IB_MTU_512 = 2, 159 IB_MTU_1024 = 3, 160 IB_MTU_2048 = 4, 161 IB_MTU_4096 = 5 162 }; 163 164 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 165 { 166 switch (mtu) { 167 case IB_MTU_256: return 256; 168 case IB_MTU_512: return 512; 169 case IB_MTU_1024: return 1024; 170 case IB_MTU_2048: return 2048; 171 case IB_MTU_4096: return 4096; 172 default: return -1; 173 } 174 } 175 176 enum ib_port_state { 177 IB_PORT_NOP = 0, 178 IB_PORT_DOWN = 1, 179 IB_PORT_INIT = 2, 180 IB_PORT_ARMED = 3, 181 IB_PORT_ACTIVE = 4, 182 IB_PORT_ACTIVE_DEFER = 5 183 }; 184 185 enum ib_port_cap_flags { 186 IB_PORT_SM = 1 << 1, 187 IB_PORT_NOTICE_SUP = 1 << 2, 188 IB_PORT_TRAP_SUP = 1 << 3, 189 IB_PORT_OPT_IPD_SUP = 1 << 4, 190 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 191 IB_PORT_SL_MAP_SUP = 1 << 6, 192 IB_PORT_MKEY_NVRAM = 1 << 7, 193 IB_PORT_PKEY_NVRAM = 1 << 8, 194 IB_PORT_LED_INFO_SUP = 1 << 9, 195 IB_PORT_SM_DISABLED = 1 << 10, 196 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 197 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 198 IB_PORT_CM_SUP = 1 << 16, 199 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 200 IB_PORT_REINIT_SUP = 1 << 18, 201 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 202 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 203 IB_PORT_DR_NOTICE_SUP = 1 << 21, 204 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 205 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 206 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 207 IB_PORT_CLIENT_REG_SUP = 1 << 25 208 }; 209 210 enum ib_port_width { 211 IB_WIDTH_1X = 1, 212 IB_WIDTH_4X = 2, 213 IB_WIDTH_8X = 4, 214 IB_WIDTH_12X = 8 215 }; 216 217 static inline int ib_width_enum_to_int(enum ib_port_width width) 218 { 219 switch (width) { 220 case IB_WIDTH_1X: return 1; 221 case IB_WIDTH_4X: return 4; 222 case IB_WIDTH_8X: return 8; 223 case IB_WIDTH_12X: return 12; 224 default: return -1; 225 } 226 } 227 228 struct ib_port_attr { 229 enum ib_port_state state; 230 enum ib_mtu max_mtu; 231 enum ib_mtu active_mtu; 232 int gid_tbl_len; 233 u32 port_cap_flags; 234 u32 max_msg_sz; 235 u32 bad_pkey_cntr; 236 u32 qkey_viol_cntr; 237 u16 pkey_tbl_len; 238 u16 lid; 239 u16 sm_lid; 240 u8 lmc; 241 u8 max_vl_num; 242 u8 sm_sl; 243 u8 subnet_timeout; 244 u8 init_type_reply; 245 u8 active_width; 246 u8 active_speed; 247 u8 phys_state; 248 }; 249 250 enum ib_device_modify_flags { 251 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 252 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 253 }; 254 255 struct ib_device_modify { 256 u64 sys_image_guid; 257 char node_desc[64]; 258 }; 259 260 enum ib_port_modify_flags { 261 IB_PORT_SHUTDOWN = 1, 262 IB_PORT_INIT_TYPE = (1<<2), 263 IB_PORT_RESET_QKEY_CNTR = (1<<3) 264 }; 265 266 struct ib_port_modify { 267 u32 set_port_cap_mask; 268 u32 clr_port_cap_mask; 269 u8 init_type; 270 }; 271 272 enum ib_event_type { 273 IB_EVENT_CQ_ERR, 274 IB_EVENT_QP_FATAL, 275 IB_EVENT_QP_REQ_ERR, 276 IB_EVENT_QP_ACCESS_ERR, 277 IB_EVENT_COMM_EST, 278 IB_EVENT_SQ_DRAINED, 279 IB_EVENT_PATH_MIG, 280 IB_EVENT_PATH_MIG_ERR, 281 IB_EVENT_DEVICE_FATAL, 282 IB_EVENT_PORT_ACTIVE, 283 IB_EVENT_PORT_ERR, 284 IB_EVENT_LID_CHANGE, 285 IB_EVENT_PKEY_CHANGE, 286 IB_EVENT_SM_CHANGE, 287 IB_EVENT_SRQ_ERR, 288 IB_EVENT_SRQ_LIMIT_REACHED, 289 IB_EVENT_QP_LAST_WQE_REACHED, 290 IB_EVENT_CLIENT_REREGISTER 291 }; 292 293 struct ib_event { 294 struct ib_device *device; 295 union { 296 struct ib_cq *cq; 297 struct ib_qp *qp; 298 struct ib_srq *srq; 299 u8 port_num; 300 } element; 301 enum ib_event_type event; 302 }; 303 304 struct ib_event_handler { 305 struct ib_device *device; 306 void (*handler)(struct ib_event_handler *, struct ib_event *); 307 struct list_head list; 308 }; 309 310 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 311 do { \ 312 (_ptr)->device = _device; \ 313 (_ptr)->handler = _handler; \ 314 INIT_LIST_HEAD(&(_ptr)->list); \ 315 } while (0) 316 317 struct ib_global_route { 318 union ib_gid dgid; 319 u32 flow_label; 320 u8 sgid_index; 321 u8 hop_limit; 322 u8 traffic_class; 323 }; 324 325 struct ib_grh { 326 __be32 version_tclass_flow; 327 __be16 paylen; 328 u8 next_hdr; 329 u8 hop_limit; 330 union ib_gid sgid; 331 union ib_gid dgid; 332 }; 333 334 enum { 335 IB_MULTICAST_QPN = 0xffffff 336 }; 337 338 #define IB_LID_PERMISSIVE __constant_htons(0xFFFF) 339 340 enum ib_ah_flags { 341 IB_AH_GRH = 1 342 }; 343 344 enum ib_rate { 345 IB_RATE_PORT_CURRENT = 0, 346 IB_RATE_2_5_GBPS = 2, 347 IB_RATE_5_GBPS = 5, 348 IB_RATE_10_GBPS = 3, 349 IB_RATE_20_GBPS = 6, 350 IB_RATE_30_GBPS = 4, 351 IB_RATE_40_GBPS = 7, 352 IB_RATE_60_GBPS = 8, 353 IB_RATE_80_GBPS = 9, 354 IB_RATE_120_GBPS = 10 355 }; 356 357 /** 358 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 359 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 360 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 361 * @rate: rate to convert. 362 */ 363 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 364 365 /** 366 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 367 * enum. 368 * @mult: multiple to convert. 369 */ 370 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 371 372 struct ib_ah_attr { 373 struct ib_global_route grh; 374 u16 dlid; 375 u8 sl; 376 u8 src_path_bits; 377 u8 static_rate; 378 u8 ah_flags; 379 u8 port_num; 380 }; 381 382 enum ib_wc_status { 383 IB_WC_SUCCESS, 384 IB_WC_LOC_LEN_ERR, 385 IB_WC_LOC_QP_OP_ERR, 386 IB_WC_LOC_EEC_OP_ERR, 387 IB_WC_LOC_PROT_ERR, 388 IB_WC_WR_FLUSH_ERR, 389 IB_WC_MW_BIND_ERR, 390 IB_WC_BAD_RESP_ERR, 391 IB_WC_LOC_ACCESS_ERR, 392 IB_WC_REM_INV_REQ_ERR, 393 IB_WC_REM_ACCESS_ERR, 394 IB_WC_REM_OP_ERR, 395 IB_WC_RETRY_EXC_ERR, 396 IB_WC_RNR_RETRY_EXC_ERR, 397 IB_WC_LOC_RDD_VIOL_ERR, 398 IB_WC_REM_INV_RD_REQ_ERR, 399 IB_WC_REM_ABORT_ERR, 400 IB_WC_INV_EECN_ERR, 401 IB_WC_INV_EEC_STATE_ERR, 402 IB_WC_FATAL_ERR, 403 IB_WC_RESP_TIMEOUT_ERR, 404 IB_WC_GENERAL_ERR 405 }; 406 407 enum ib_wc_opcode { 408 IB_WC_SEND, 409 IB_WC_RDMA_WRITE, 410 IB_WC_RDMA_READ, 411 IB_WC_COMP_SWAP, 412 IB_WC_FETCH_ADD, 413 IB_WC_BIND_MW, 414 /* 415 * Set value of IB_WC_RECV so consumers can test if a completion is a 416 * receive by testing (opcode & IB_WC_RECV). 417 */ 418 IB_WC_RECV = 1 << 7, 419 IB_WC_RECV_RDMA_WITH_IMM 420 }; 421 422 enum ib_wc_flags { 423 IB_WC_GRH = 1, 424 IB_WC_WITH_IMM = (1<<1) 425 }; 426 427 struct ib_wc { 428 u64 wr_id; 429 enum ib_wc_status status; 430 enum ib_wc_opcode opcode; 431 u32 vendor_err; 432 u32 byte_len; 433 struct ib_qp *qp; 434 __be32 imm_data; 435 u32 src_qp; 436 int wc_flags; 437 u16 pkey_index; 438 u16 slid; 439 u8 sl; 440 u8 dlid_path_bits; 441 u8 port_num; /* valid only for DR SMPs on switches */ 442 int csum_ok; 443 }; 444 445 enum ib_cq_notify_flags { 446 IB_CQ_SOLICITED = 1 << 0, 447 IB_CQ_NEXT_COMP = 1 << 1, 448 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 449 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 450 }; 451 452 enum ib_srq_attr_mask { 453 IB_SRQ_MAX_WR = 1 << 0, 454 IB_SRQ_LIMIT = 1 << 1, 455 }; 456 457 struct ib_srq_attr { 458 u32 max_wr; 459 u32 max_sge; 460 u32 srq_limit; 461 }; 462 463 struct ib_srq_init_attr { 464 void (*event_handler)(struct ib_event *, void *); 465 void *srq_context; 466 struct ib_srq_attr attr; 467 }; 468 469 struct ib_qp_cap { 470 u32 max_send_wr; 471 u32 max_recv_wr; 472 u32 max_send_sge; 473 u32 max_recv_sge; 474 u32 max_inline_data; 475 }; 476 477 enum ib_sig_type { 478 IB_SIGNAL_ALL_WR, 479 IB_SIGNAL_REQ_WR 480 }; 481 482 enum ib_qp_type { 483 /* 484 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 485 * here (and in that order) since the MAD layer uses them as 486 * indices into a 2-entry table. 487 */ 488 IB_QPT_SMI, 489 IB_QPT_GSI, 490 491 IB_QPT_RC, 492 IB_QPT_UC, 493 IB_QPT_UD, 494 IB_QPT_RAW_IPV6, 495 IB_QPT_RAW_ETY 496 }; 497 498 struct ib_qp_init_attr { 499 void (*event_handler)(struct ib_event *, void *); 500 void *qp_context; 501 struct ib_cq *send_cq; 502 struct ib_cq *recv_cq; 503 struct ib_srq *srq; 504 struct ib_qp_cap cap; 505 enum ib_sig_type sq_sig_type; 506 enum ib_qp_type qp_type; 507 u8 port_num; /* special QP types only */ 508 }; 509 510 enum ib_rnr_timeout { 511 IB_RNR_TIMER_655_36 = 0, 512 IB_RNR_TIMER_000_01 = 1, 513 IB_RNR_TIMER_000_02 = 2, 514 IB_RNR_TIMER_000_03 = 3, 515 IB_RNR_TIMER_000_04 = 4, 516 IB_RNR_TIMER_000_06 = 5, 517 IB_RNR_TIMER_000_08 = 6, 518 IB_RNR_TIMER_000_12 = 7, 519 IB_RNR_TIMER_000_16 = 8, 520 IB_RNR_TIMER_000_24 = 9, 521 IB_RNR_TIMER_000_32 = 10, 522 IB_RNR_TIMER_000_48 = 11, 523 IB_RNR_TIMER_000_64 = 12, 524 IB_RNR_TIMER_000_96 = 13, 525 IB_RNR_TIMER_001_28 = 14, 526 IB_RNR_TIMER_001_92 = 15, 527 IB_RNR_TIMER_002_56 = 16, 528 IB_RNR_TIMER_003_84 = 17, 529 IB_RNR_TIMER_005_12 = 18, 530 IB_RNR_TIMER_007_68 = 19, 531 IB_RNR_TIMER_010_24 = 20, 532 IB_RNR_TIMER_015_36 = 21, 533 IB_RNR_TIMER_020_48 = 22, 534 IB_RNR_TIMER_030_72 = 23, 535 IB_RNR_TIMER_040_96 = 24, 536 IB_RNR_TIMER_061_44 = 25, 537 IB_RNR_TIMER_081_92 = 26, 538 IB_RNR_TIMER_122_88 = 27, 539 IB_RNR_TIMER_163_84 = 28, 540 IB_RNR_TIMER_245_76 = 29, 541 IB_RNR_TIMER_327_68 = 30, 542 IB_RNR_TIMER_491_52 = 31 543 }; 544 545 enum ib_qp_attr_mask { 546 IB_QP_STATE = 1, 547 IB_QP_CUR_STATE = (1<<1), 548 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 549 IB_QP_ACCESS_FLAGS = (1<<3), 550 IB_QP_PKEY_INDEX = (1<<4), 551 IB_QP_PORT = (1<<5), 552 IB_QP_QKEY = (1<<6), 553 IB_QP_AV = (1<<7), 554 IB_QP_PATH_MTU = (1<<8), 555 IB_QP_TIMEOUT = (1<<9), 556 IB_QP_RETRY_CNT = (1<<10), 557 IB_QP_RNR_RETRY = (1<<11), 558 IB_QP_RQ_PSN = (1<<12), 559 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 560 IB_QP_ALT_PATH = (1<<14), 561 IB_QP_MIN_RNR_TIMER = (1<<15), 562 IB_QP_SQ_PSN = (1<<16), 563 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 564 IB_QP_PATH_MIG_STATE = (1<<18), 565 IB_QP_CAP = (1<<19), 566 IB_QP_DEST_QPN = (1<<20) 567 }; 568 569 enum ib_qp_state { 570 IB_QPS_RESET, 571 IB_QPS_INIT, 572 IB_QPS_RTR, 573 IB_QPS_RTS, 574 IB_QPS_SQD, 575 IB_QPS_SQE, 576 IB_QPS_ERR 577 }; 578 579 enum ib_mig_state { 580 IB_MIG_MIGRATED, 581 IB_MIG_REARM, 582 IB_MIG_ARMED 583 }; 584 585 struct ib_qp_attr { 586 enum ib_qp_state qp_state; 587 enum ib_qp_state cur_qp_state; 588 enum ib_mtu path_mtu; 589 enum ib_mig_state path_mig_state; 590 u32 qkey; 591 u32 rq_psn; 592 u32 sq_psn; 593 u32 dest_qp_num; 594 int qp_access_flags; 595 struct ib_qp_cap cap; 596 struct ib_ah_attr ah_attr; 597 struct ib_ah_attr alt_ah_attr; 598 u16 pkey_index; 599 u16 alt_pkey_index; 600 u8 en_sqd_async_notify; 601 u8 sq_draining; 602 u8 max_rd_atomic; 603 u8 max_dest_rd_atomic; 604 u8 min_rnr_timer; 605 u8 port_num; 606 u8 timeout; 607 u8 retry_cnt; 608 u8 rnr_retry; 609 u8 alt_port_num; 610 u8 alt_timeout; 611 }; 612 613 enum ib_wr_opcode { 614 IB_WR_RDMA_WRITE, 615 IB_WR_RDMA_WRITE_WITH_IMM, 616 IB_WR_SEND, 617 IB_WR_SEND_WITH_IMM, 618 IB_WR_RDMA_READ, 619 IB_WR_ATOMIC_CMP_AND_SWP, 620 IB_WR_ATOMIC_FETCH_AND_ADD 621 }; 622 623 enum ib_send_flags { 624 IB_SEND_FENCE = 1, 625 IB_SEND_SIGNALED = (1<<1), 626 IB_SEND_SOLICITED = (1<<2), 627 IB_SEND_INLINE = (1<<3), 628 IB_SEND_IP_CSUM = (1<<4) 629 }; 630 631 struct ib_sge { 632 u64 addr; 633 u32 length; 634 u32 lkey; 635 }; 636 637 struct ib_send_wr { 638 struct ib_send_wr *next; 639 u64 wr_id; 640 struct ib_sge *sg_list; 641 int num_sge; 642 enum ib_wr_opcode opcode; 643 int send_flags; 644 __be32 imm_data; 645 union { 646 struct { 647 u64 remote_addr; 648 u32 rkey; 649 } rdma; 650 struct { 651 u64 remote_addr; 652 u64 compare_add; 653 u64 swap; 654 u32 rkey; 655 } atomic; 656 struct { 657 struct ib_ah *ah; 658 u32 remote_qpn; 659 u32 remote_qkey; 660 u16 pkey_index; /* valid for GSI only */ 661 u8 port_num; /* valid for DR SMPs on switch only */ 662 } ud; 663 } wr; 664 }; 665 666 struct ib_recv_wr { 667 struct ib_recv_wr *next; 668 u64 wr_id; 669 struct ib_sge *sg_list; 670 int num_sge; 671 }; 672 673 enum ib_access_flags { 674 IB_ACCESS_LOCAL_WRITE = 1, 675 IB_ACCESS_REMOTE_WRITE = (1<<1), 676 IB_ACCESS_REMOTE_READ = (1<<2), 677 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 678 IB_ACCESS_MW_BIND = (1<<4) 679 }; 680 681 struct ib_phys_buf { 682 u64 addr; 683 u64 size; 684 }; 685 686 struct ib_mr_attr { 687 struct ib_pd *pd; 688 u64 device_virt_addr; 689 u64 size; 690 int mr_access_flags; 691 u32 lkey; 692 u32 rkey; 693 }; 694 695 enum ib_mr_rereg_flags { 696 IB_MR_REREG_TRANS = 1, 697 IB_MR_REREG_PD = (1<<1), 698 IB_MR_REREG_ACCESS = (1<<2) 699 }; 700 701 struct ib_mw_bind { 702 struct ib_mr *mr; 703 u64 wr_id; 704 u64 addr; 705 u32 length; 706 int send_flags; 707 int mw_access_flags; 708 }; 709 710 struct ib_fmr_attr { 711 int max_pages; 712 int max_maps; 713 u8 page_shift; 714 }; 715 716 struct ib_ucontext { 717 struct ib_device *device; 718 struct list_head pd_list; 719 struct list_head mr_list; 720 struct list_head mw_list; 721 struct list_head cq_list; 722 struct list_head qp_list; 723 struct list_head srq_list; 724 struct list_head ah_list; 725 int closing; 726 }; 727 728 struct ib_uobject { 729 u64 user_handle; /* handle given to us by userspace */ 730 struct ib_ucontext *context; /* associated user context */ 731 void *object; /* containing object */ 732 struct list_head list; /* link to context's list */ 733 u32 id; /* index into kernel idr */ 734 struct kref ref; 735 struct rw_semaphore mutex; /* protects .live */ 736 int live; 737 }; 738 739 struct ib_udata { 740 void __user *inbuf; 741 void __user *outbuf; 742 size_t inlen; 743 size_t outlen; 744 }; 745 746 struct ib_pd { 747 struct ib_device *device; 748 struct ib_uobject *uobject; 749 atomic_t usecnt; /* count all resources */ 750 }; 751 752 struct ib_ah { 753 struct ib_device *device; 754 struct ib_pd *pd; 755 struct ib_uobject *uobject; 756 }; 757 758 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 759 760 struct ib_cq { 761 struct ib_device *device; 762 struct ib_uobject *uobject; 763 ib_comp_handler comp_handler; 764 void (*event_handler)(struct ib_event *, void *); 765 void * cq_context; 766 int cqe; 767 atomic_t usecnt; /* count number of work queues */ 768 }; 769 770 struct ib_srq { 771 struct ib_device *device; 772 struct ib_pd *pd; 773 struct ib_uobject *uobject; 774 void (*event_handler)(struct ib_event *, void *); 775 void *srq_context; 776 atomic_t usecnt; 777 }; 778 779 struct ib_qp { 780 struct ib_device *device; 781 struct ib_pd *pd; 782 struct ib_cq *send_cq; 783 struct ib_cq *recv_cq; 784 struct ib_srq *srq; 785 struct ib_uobject *uobject; 786 void (*event_handler)(struct ib_event *, void *); 787 void *qp_context; 788 u32 qp_num; 789 enum ib_qp_type qp_type; 790 }; 791 792 struct ib_mr { 793 struct ib_device *device; 794 struct ib_pd *pd; 795 struct ib_uobject *uobject; 796 u32 lkey; 797 u32 rkey; 798 atomic_t usecnt; /* count number of MWs */ 799 }; 800 801 struct ib_mw { 802 struct ib_device *device; 803 struct ib_pd *pd; 804 struct ib_uobject *uobject; 805 u32 rkey; 806 }; 807 808 struct ib_fmr { 809 struct ib_device *device; 810 struct ib_pd *pd; 811 struct list_head list; 812 u32 lkey; 813 u32 rkey; 814 }; 815 816 struct ib_mad; 817 struct ib_grh; 818 819 enum ib_process_mad_flags { 820 IB_MAD_IGNORE_MKEY = 1, 821 IB_MAD_IGNORE_BKEY = 2, 822 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 823 }; 824 825 enum ib_mad_result { 826 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 827 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 828 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 829 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 830 }; 831 832 #define IB_DEVICE_NAME_MAX 64 833 834 struct ib_cache { 835 rwlock_t lock; 836 struct ib_event_handler event_handler; 837 struct ib_pkey_cache **pkey_cache; 838 struct ib_gid_cache **gid_cache; 839 u8 *lmc_cache; 840 }; 841 842 struct ib_dma_mapping_ops { 843 int (*mapping_error)(struct ib_device *dev, 844 u64 dma_addr); 845 u64 (*map_single)(struct ib_device *dev, 846 void *ptr, size_t size, 847 enum dma_data_direction direction); 848 void (*unmap_single)(struct ib_device *dev, 849 u64 addr, size_t size, 850 enum dma_data_direction direction); 851 u64 (*map_page)(struct ib_device *dev, 852 struct page *page, unsigned long offset, 853 size_t size, 854 enum dma_data_direction direction); 855 void (*unmap_page)(struct ib_device *dev, 856 u64 addr, size_t size, 857 enum dma_data_direction direction); 858 int (*map_sg)(struct ib_device *dev, 859 struct scatterlist *sg, int nents, 860 enum dma_data_direction direction); 861 void (*unmap_sg)(struct ib_device *dev, 862 struct scatterlist *sg, int nents, 863 enum dma_data_direction direction); 864 u64 (*dma_address)(struct ib_device *dev, 865 struct scatterlist *sg); 866 unsigned int (*dma_len)(struct ib_device *dev, 867 struct scatterlist *sg); 868 void (*sync_single_for_cpu)(struct ib_device *dev, 869 u64 dma_handle, 870 size_t size, 871 enum dma_data_direction dir); 872 void (*sync_single_for_device)(struct ib_device *dev, 873 u64 dma_handle, 874 size_t size, 875 enum dma_data_direction dir); 876 void *(*alloc_coherent)(struct ib_device *dev, 877 size_t size, 878 u64 *dma_handle, 879 gfp_t flag); 880 void (*free_coherent)(struct ib_device *dev, 881 size_t size, void *cpu_addr, 882 u64 dma_handle); 883 }; 884 885 struct iw_cm_verbs; 886 887 struct ib_device { 888 struct device *dma_device; 889 890 char name[IB_DEVICE_NAME_MAX]; 891 892 struct list_head event_handler_list; 893 spinlock_t event_handler_lock; 894 895 struct list_head core_list; 896 struct list_head client_data_list; 897 spinlock_t client_data_lock; 898 899 struct ib_cache cache; 900 int *pkey_tbl_len; 901 int *gid_tbl_len; 902 903 int num_comp_vectors; 904 905 struct iw_cm_verbs *iwcm; 906 907 int (*query_device)(struct ib_device *device, 908 struct ib_device_attr *device_attr); 909 int (*query_port)(struct ib_device *device, 910 u8 port_num, 911 struct ib_port_attr *port_attr); 912 int (*query_gid)(struct ib_device *device, 913 u8 port_num, int index, 914 union ib_gid *gid); 915 int (*query_pkey)(struct ib_device *device, 916 u8 port_num, u16 index, u16 *pkey); 917 int (*modify_device)(struct ib_device *device, 918 int device_modify_mask, 919 struct ib_device_modify *device_modify); 920 int (*modify_port)(struct ib_device *device, 921 u8 port_num, int port_modify_mask, 922 struct ib_port_modify *port_modify); 923 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 924 struct ib_udata *udata); 925 int (*dealloc_ucontext)(struct ib_ucontext *context); 926 int (*mmap)(struct ib_ucontext *context, 927 struct vm_area_struct *vma); 928 struct ib_pd * (*alloc_pd)(struct ib_device *device, 929 struct ib_ucontext *context, 930 struct ib_udata *udata); 931 int (*dealloc_pd)(struct ib_pd *pd); 932 struct ib_ah * (*create_ah)(struct ib_pd *pd, 933 struct ib_ah_attr *ah_attr); 934 int (*modify_ah)(struct ib_ah *ah, 935 struct ib_ah_attr *ah_attr); 936 int (*query_ah)(struct ib_ah *ah, 937 struct ib_ah_attr *ah_attr); 938 int (*destroy_ah)(struct ib_ah *ah); 939 struct ib_srq * (*create_srq)(struct ib_pd *pd, 940 struct ib_srq_init_attr *srq_init_attr, 941 struct ib_udata *udata); 942 int (*modify_srq)(struct ib_srq *srq, 943 struct ib_srq_attr *srq_attr, 944 enum ib_srq_attr_mask srq_attr_mask, 945 struct ib_udata *udata); 946 int (*query_srq)(struct ib_srq *srq, 947 struct ib_srq_attr *srq_attr); 948 int (*destroy_srq)(struct ib_srq *srq); 949 int (*post_srq_recv)(struct ib_srq *srq, 950 struct ib_recv_wr *recv_wr, 951 struct ib_recv_wr **bad_recv_wr); 952 struct ib_qp * (*create_qp)(struct ib_pd *pd, 953 struct ib_qp_init_attr *qp_init_attr, 954 struct ib_udata *udata); 955 int (*modify_qp)(struct ib_qp *qp, 956 struct ib_qp_attr *qp_attr, 957 int qp_attr_mask, 958 struct ib_udata *udata); 959 int (*query_qp)(struct ib_qp *qp, 960 struct ib_qp_attr *qp_attr, 961 int qp_attr_mask, 962 struct ib_qp_init_attr *qp_init_attr); 963 int (*destroy_qp)(struct ib_qp *qp); 964 int (*post_send)(struct ib_qp *qp, 965 struct ib_send_wr *send_wr, 966 struct ib_send_wr **bad_send_wr); 967 int (*post_recv)(struct ib_qp *qp, 968 struct ib_recv_wr *recv_wr, 969 struct ib_recv_wr **bad_recv_wr); 970 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 971 int comp_vector, 972 struct ib_ucontext *context, 973 struct ib_udata *udata); 974 int (*destroy_cq)(struct ib_cq *cq); 975 int (*resize_cq)(struct ib_cq *cq, int cqe, 976 struct ib_udata *udata); 977 int (*poll_cq)(struct ib_cq *cq, int num_entries, 978 struct ib_wc *wc); 979 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 980 int (*req_notify_cq)(struct ib_cq *cq, 981 enum ib_cq_notify_flags flags); 982 int (*req_ncomp_notif)(struct ib_cq *cq, 983 int wc_cnt); 984 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 985 int mr_access_flags); 986 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 987 struct ib_phys_buf *phys_buf_array, 988 int num_phys_buf, 989 int mr_access_flags, 990 u64 *iova_start); 991 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 992 u64 start, u64 length, 993 u64 virt_addr, 994 int mr_access_flags, 995 struct ib_udata *udata); 996 int (*query_mr)(struct ib_mr *mr, 997 struct ib_mr_attr *mr_attr); 998 int (*dereg_mr)(struct ib_mr *mr); 999 int (*rereg_phys_mr)(struct ib_mr *mr, 1000 int mr_rereg_mask, 1001 struct ib_pd *pd, 1002 struct ib_phys_buf *phys_buf_array, 1003 int num_phys_buf, 1004 int mr_access_flags, 1005 u64 *iova_start); 1006 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1007 int (*bind_mw)(struct ib_qp *qp, 1008 struct ib_mw *mw, 1009 struct ib_mw_bind *mw_bind); 1010 int (*dealloc_mw)(struct ib_mw *mw); 1011 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1012 int mr_access_flags, 1013 struct ib_fmr_attr *fmr_attr); 1014 int (*map_phys_fmr)(struct ib_fmr *fmr, 1015 u64 *page_list, int list_len, 1016 u64 iova); 1017 int (*unmap_fmr)(struct list_head *fmr_list); 1018 int (*dealloc_fmr)(struct ib_fmr *fmr); 1019 int (*attach_mcast)(struct ib_qp *qp, 1020 union ib_gid *gid, 1021 u16 lid); 1022 int (*detach_mcast)(struct ib_qp *qp, 1023 union ib_gid *gid, 1024 u16 lid); 1025 int (*process_mad)(struct ib_device *device, 1026 int process_mad_flags, 1027 u8 port_num, 1028 struct ib_wc *in_wc, 1029 struct ib_grh *in_grh, 1030 struct ib_mad *in_mad, 1031 struct ib_mad *out_mad); 1032 1033 struct ib_dma_mapping_ops *dma_ops; 1034 1035 struct module *owner; 1036 struct class_device class_dev; 1037 struct kobject *ports_parent; 1038 struct list_head port_list; 1039 1040 enum { 1041 IB_DEV_UNINITIALIZED, 1042 IB_DEV_REGISTERED, 1043 IB_DEV_UNREGISTERED 1044 } reg_state; 1045 1046 u64 uverbs_cmd_mask; 1047 int uverbs_abi_ver; 1048 1049 char node_desc[64]; 1050 __be64 node_guid; 1051 u8 node_type; 1052 u8 phys_port_cnt; 1053 }; 1054 1055 struct ib_client { 1056 char *name; 1057 void (*add) (struct ib_device *); 1058 void (*remove)(struct ib_device *); 1059 1060 struct list_head list; 1061 }; 1062 1063 struct ib_device *ib_alloc_device(size_t size); 1064 void ib_dealloc_device(struct ib_device *device); 1065 1066 int ib_register_device (struct ib_device *device); 1067 void ib_unregister_device(struct ib_device *device); 1068 1069 int ib_register_client (struct ib_client *client); 1070 void ib_unregister_client(struct ib_client *client); 1071 1072 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1073 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1074 void *data); 1075 1076 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1077 { 1078 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1079 } 1080 1081 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1082 { 1083 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1084 } 1085 1086 /** 1087 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1088 * contains all required attributes and no attributes not allowed for 1089 * the given QP state transition. 1090 * @cur_state: Current QP state 1091 * @next_state: Next QP state 1092 * @type: QP type 1093 * @mask: Mask of supplied QP attributes 1094 * 1095 * This function is a helper function that a low-level driver's 1096 * modify_qp method can use to validate the consumer's input. It 1097 * checks that cur_state and next_state are valid QP states, that a 1098 * transition from cur_state to next_state is allowed by the IB spec, 1099 * and that the attribute mask supplied is allowed for the transition. 1100 */ 1101 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1102 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1103 1104 int ib_register_event_handler (struct ib_event_handler *event_handler); 1105 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1106 void ib_dispatch_event(struct ib_event *event); 1107 1108 int ib_query_device(struct ib_device *device, 1109 struct ib_device_attr *device_attr); 1110 1111 int ib_query_port(struct ib_device *device, 1112 u8 port_num, struct ib_port_attr *port_attr); 1113 1114 int ib_query_gid(struct ib_device *device, 1115 u8 port_num, int index, union ib_gid *gid); 1116 1117 int ib_query_pkey(struct ib_device *device, 1118 u8 port_num, u16 index, u16 *pkey); 1119 1120 int ib_modify_device(struct ib_device *device, 1121 int device_modify_mask, 1122 struct ib_device_modify *device_modify); 1123 1124 int ib_modify_port(struct ib_device *device, 1125 u8 port_num, int port_modify_mask, 1126 struct ib_port_modify *port_modify); 1127 1128 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1129 u8 *port_num, u16 *index); 1130 1131 int ib_find_pkey(struct ib_device *device, 1132 u8 port_num, u16 pkey, u16 *index); 1133 1134 /** 1135 * ib_alloc_pd - Allocates an unused protection domain. 1136 * @device: The device on which to allocate the protection domain. 1137 * 1138 * A protection domain object provides an association between QPs, shared 1139 * receive queues, address handles, memory regions, and memory windows. 1140 */ 1141 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1142 1143 /** 1144 * ib_dealloc_pd - Deallocates a protection domain. 1145 * @pd: The protection domain to deallocate. 1146 */ 1147 int ib_dealloc_pd(struct ib_pd *pd); 1148 1149 /** 1150 * ib_create_ah - Creates an address handle for the given address vector. 1151 * @pd: The protection domain associated with the address handle. 1152 * @ah_attr: The attributes of the address vector. 1153 * 1154 * The address handle is used to reference a local or global destination 1155 * in all UD QP post sends. 1156 */ 1157 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1158 1159 /** 1160 * ib_init_ah_from_wc - Initializes address handle attributes from a 1161 * work completion. 1162 * @device: Device on which the received message arrived. 1163 * @port_num: Port on which the received message arrived. 1164 * @wc: Work completion associated with the received message. 1165 * @grh: References the received global route header. This parameter is 1166 * ignored unless the work completion indicates that the GRH is valid. 1167 * @ah_attr: Returned attributes that can be used when creating an address 1168 * handle for replying to the message. 1169 */ 1170 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1171 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1172 1173 /** 1174 * ib_create_ah_from_wc - Creates an address handle associated with the 1175 * sender of the specified work completion. 1176 * @pd: The protection domain associated with the address handle. 1177 * @wc: Work completion information associated with a received message. 1178 * @grh: References the received global route header. This parameter is 1179 * ignored unless the work completion indicates that the GRH is valid. 1180 * @port_num: The outbound port number to associate with the address. 1181 * 1182 * The address handle is used to reference a local or global destination 1183 * in all UD QP post sends. 1184 */ 1185 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1186 struct ib_grh *grh, u8 port_num); 1187 1188 /** 1189 * ib_modify_ah - Modifies the address vector associated with an address 1190 * handle. 1191 * @ah: The address handle to modify. 1192 * @ah_attr: The new address vector attributes to associate with the 1193 * address handle. 1194 */ 1195 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1196 1197 /** 1198 * ib_query_ah - Queries the address vector associated with an address 1199 * handle. 1200 * @ah: The address handle to query. 1201 * @ah_attr: The address vector attributes associated with the address 1202 * handle. 1203 */ 1204 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1205 1206 /** 1207 * ib_destroy_ah - Destroys an address handle. 1208 * @ah: The address handle to destroy. 1209 */ 1210 int ib_destroy_ah(struct ib_ah *ah); 1211 1212 /** 1213 * ib_create_srq - Creates a SRQ associated with the specified protection 1214 * domain. 1215 * @pd: The protection domain associated with the SRQ. 1216 * @srq_init_attr: A list of initial attributes required to create the 1217 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1218 * the actual capabilities of the created SRQ. 1219 * 1220 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1221 * requested size of the SRQ, and set to the actual values allocated 1222 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1223 * will always be at least as large as the requested values. 1224 */ 1225 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1226 struct ib_srq_init_attr *srq_init_attr); 1227 1228 /** 1229 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1230 * @srq: The SRQ to modify. 1231 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1232 * the current values of selected SRQ attributes are returned. 1233 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1234 * are being modified. 1235 * 1236 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1237 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1238 * the number of receives queued drops below the limit. 1239 */ 1240 int ib_modify_srq(struct ib_srq *srq, 1241 struct ib_srq_attr *srq_attr, 1242 enum ib_srq_attr_mask srq_attr_mask); 1243 1244 /** 1245 * ib_query_srq - Returns the attribute list and current values for the 1246 * specified SRQ. 1247 * @srq: The SRQ to query. 1248 * @srq_attr: The attributes of the specified SRQ. 1249 */ 1250 int ib_query_srq(struct ib_srq *srq, 1251 struct ib_srq_attr *srq_attr); 1252 1253 /** 1254 * ib_destroy_srq - Destroys the specified SRQ. 1255 * @srq: The SRQ to destroy. 1256 */ 1257 int ib_destroy_srq(struct ib_srq *srq); 1258 1259 /** 1260 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1261 * @srq: The SRQ to post the work request on. 1262 * @recv_wr: A list of work requests to post on the receive queue. 1263 * @bad_recv_wr: On an immediate failure, this parameter will reference 1264 * the work request that failed to be posted on the QP. 1265 */ 1266 static inline int ib_post_srq_recv(struct ib_srq *srq, 1267 struct ib_recv_wr *recv_wr, 1268 struct ib_recv_wr **bad_recv_wr) 1269 { 1270 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1271 } 1272 1273 /** 1274 * ib_create_qp - Creates a QP associated with the specified protection 1275 * domain. 1276 * @pd: The protection domain associated with the QP. 1277 * @qp_init_attr: A list of initial attributes required to create the 1278 * QP. If QP creation succeeds, then the attributes are updated to 1279 * the actual capabilities of the created QP. 1280 */ 1281 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1282 struct ib_qp_init_attr *qp_init_attr); 1283 1284 /** 1285 * ib_modify_qp - Modifies the attributes for the specified QP and then 1286 * transitions the QP to the given state. 1287 * @qp: The QP to modify. 1288 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1289 * the current values of selected QP attributes are returned. 1290 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1291 * are being modified. 1292 */ 1293 int ib_modify_qp(struct ib_qp *qp, 1294 struct ib_qp_attr *qp_attr, 1295 int qp_attr_mask); 1296 1297 /** 1298 * ib_query_qp - Returns the attribute list and current values for the 1299 * specified QP. 1300 * @qp: The QP to query. 1301 * @qp_attr: The attributes of the specified QP. 1302 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1303 * @qp_init_attr: Additional attributes of the selected QP. 1304 * 1305 * The qp_attr_mask may be used to limit the query to gathering only the 1306 * selected attributes. 1307 */ 1308 int ib_query_qp(struct ib_qp *qp, 1309 struct ib_qp_attr *qp_attr, 1310 int qp_attr_mask, 1311 struct ib_qp_init_attr *qp_init_attr); 1312 1313 /** 1314 * ib_destroy_qp - Destroys the specified QP. 1315 * @qp: The QP to destroy. 1316 */ 1317 int ib_destroy_qp(struct ib_qp *qp); 1318 1319 /** 1320 * ib_post_send - Posts a list of work requests to the send queue of 1321 * the specified QP. 1322 * @qp: The QP to post the work request on. 1323 * @send_wr: A list of work requests to post on the send queue. 1324 * @bad_send_wr: On an immediate failure, this parameter will reference 1325 * the work request that failed to be posted on the QP. 1326 */ 1327 static inline int ib_post_send(struct ib_qp *qp, 1328 struct ib_send_wr *send_wr, 1329 struct ib_send_wr **bad_send_wr) 1330 { 1331 return qp->device->post_send(qp, send_wr, bad_send_wr); 1332 } 1333 1334 /** 1335 * ib_post_recv - Posts a list of work requests to the receive queue of 1336 * the specified QP. 1337 * @qp: The QP to post the work request on. 1338 * @recv_wr: A list of work requests to post on the receive queue. 1339 * @bad_recv_wr: On an immediate failure, this parameter will reference 1340 * the work request that failed to be posted on the QP. 1341 */ 1342 static inline int ib_post_recv(struct ib_qp *qp, 1343 struct ib_recv_wr *recv_wr, 1344 struct ib_recv_wr **bad_recv_wr) 1345 { 1346 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1347 } 1348 1349 /** 1350 * ib_create_cq - Creates a CQ on the specified device. 1351 * @device: The device on which to create the CQ. 1352 * @comp_handler: A user-specified callback that is invoked when a 1353 * completion event occurs on the CQ. 1354 * @event_handler: A user-specified callback that is invoked when an 1355 * asynchronous event not associated with a completion occurs on the CQ. 1356 * @cq_context: Context associated with the CQ returned to the user via 1357 * the associated completion and event handlers. 1358 * @cqe: The minimum size of the CQ. 1359 * @comp_vector - Completion vector used to signal completion events. 1360 * Must be >= 0 and < context->num_comp_vectors. 1361 * 1362 * Users can examine the cq structure to determine the actual CQ size. 1363 */ 1364 struct ib_cq *ib_create_cq(struct ib_device *device, 1365 ib_comp_handler comp_handler, 1366 void (*event_handler)(struct ib_event *, void *), 1367 void *cq_context, int cqe, int comp_vector); 1368 1369 /** 1370 * ib_resize_cq - Modifies the capacity of the CQ. 1371 * @cq: The CQ to resize. 1372 * @cqe: The minimum size of the CQ. 1373 * 1374 * Users can examine the cq structure to determine the actual CQ size. 1375 */ 1376 int ib_resize_cq(struct ib_cq *cq, int cqe); 1377 1378 /** 1379 * ib_destroy_cq - Destroys the specified CQ. 1380 * @cq: The CQ to destroy. 1381 */ 1382 int ib_destroy_cq(struct ib_cq *cq); 1383 1384 /** 1385 * ib_poll_cq - poll a CQ for completion(s) 1386 * @cq:the CQ being polled 1387 * @num_entries:maximum number of completions to return 1388 * @wc:array of at least @num_entries &struct ib_wc where completions 1389 * will be returned 1390 * 1391 * Poll a CQ for (possibly multiple) completions. If the return value 1392 * is < 0, an error occurred. If the return value is >= 0, it is the 1393 * number of completions returned. If the return value is 1394 * non-negative and < num_entries, then the CQ was emptied. 1395 */ 1396 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1397 struct ib_wc *wc) 1398 { 1399 return cq->device->poll_cq(cq, num_entries, wc); 1400 } 1401 1402 /** 1403 * ib_peek_cq - Returns the number of unreaped completions currently 1404 * on the specified CQ. 1405 * @cq: The CQ to peek. 1406 * @wc_cnt: A minimum number of unreaped completions to check for. 1407 * 1408 * If the number of unreaped completions is greater than or equal to wc_cnt, 1409 * this function returns wc_cnt, otherwise, it returns the actual number of 1410 * unreaped completions. 1411 */ 1412 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1413 1414 /** 1415 * ib_req_notify_cq - Request completion notification on a CQ. 1416 * @cq: The CQ to generate an event for. 1417 * @flags: 1418 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1419 * to request an event on the next solicited event or next work 1420 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1421 * may also be |ed in to request a hint about missed events, as 1422 * described below. 1423 * 1424 * Return Value: 1425 * < 0 means an error occurred while requesting notification 1426 * == 0 means notification was requested successfully, and if 1427 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1428 * were missed and it is safe to wait for another event. In 1429 * this case is it guaranteed that any work completions added 1430 * to the CQ since the last CQ poll will trigger a completion 1431 * notification event. 1432 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1433 * in. It means that the consumer must poll the CQ again to 1434 * make sure it is empty to avoid missing an event because of a 1435 * race between requesting notification and an entry being 1436 * added to the CQ. This return value means it is possible 1437 * (but not guaranteed) that a work completion has been added 1438 * to the CQ since the last poll without triggering a 1439 * completion notification event. 1440 */ 1441 static inline int ib_req_notify_cq(struct ib_cq *cq, 1442 enum ib_cq_notify_flags flags) 1443 { 1444 return cq->device->req_notify_cq(cq, flags); 1445 } 1446 1447 /** 1448 * ib_req_ncomp_notif - Request completion notification when there are 1449 * at least the specified number of unreaped completions on the CQ. 1450 * @cq: The CQ to generate an event for. 1451 * @wc_cnt: The number of unreaped completions that should be on the 1452 * CQ before an event is generated. 1453 */ 1454 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1455 { 1456 return cq->device->req_ncomp_notif ? 1457 cq->device->req_ncomp_notif(cq, wc_cnt) : 1458 -ENOSYS; 1459 } 1460 1461 /** 1462 * ib_get_dma_mr - Returns a memory region for system memory that is 1463 * usable for DMA. 1464 * @pd: The protection domain associated with the memory region. 1465 * @mr_access_flags: Specifies the memory access rights. 1466 * 1467 * Note that the ib_dma_*() functions defined below must be used 1468 * to create/destroy addresses used with the Lkey or Rkey returned 1469 * by ib_get_dma_mr(). 1470 */ 1471 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1472 1473 /** 1474 * ib_dma_mapping_error - check a DMA addr for error 1475 * @dev: The device for which the dma_addr was created 1476 * @dma_addr: The DMA address to check 1477 */ 1478 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1479 { 1480 if (dev->dma_ops) 1481 return dev->dma_ops->mapping_error(dev, dma_addr); 1482 return dma_mapping_error(dma_addr); 1483 } 1484 1485 /** 1486 * ib_dma_map_single - Map a kernel virtual address to DMA address 1487 * @dev: The device for which the dma_addr is to be created 1488 * @cpu_addr: The kernel virtual address 1489 * @size: The size of the region in bytes 1490 * @direction: The direction of the DMA 1491 */ 1492 static inline u64 ib_dma_map_single(struct ib_device *dev, 1493 void *cpu_addr, size_t size, 1494 enum dma_data_direction direction) 1495 { 1496 if (dev->dma_ops) 1497 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1498 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1499 } 1500 1501 /** 1502 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1503 * @dev: The device for which the DMA address was created 1504 * @addr: The DMA address 1505 * @size: The size of the region in bytes 1506 * @direction: The direction of the DMA 1507 */ 1508 static inline void ib_dma_unmap_single(struct ib_device *dev, 1509 u64 addr, size_t size, 1510 enum dma_data_direction direction) 1511 { 1512 if (dev->dma_ops) 1513 dev->dma_ops->unmap_single(dev, addr, size, direction); 1514 else 1515 dma_unmap_single(dev->dma_device, addr, size, direction); 1516 } 1517 1518 /** 1519 * ib_dma_map_page - Map a physical page to DMA address 1520 * @dev: The device for which the dma_addr is to be created 1521 * @page: The page to be mapped 1522 * @offset: The offset within the page 1523 * @size: The size of the region in bytes 1524 * @direction: The direction of the DMA 1525 */ 1526 static inline u64 ib_dma_map_page(struct ib_device *dev, 1527 struct page *page, 1528 unsigned long offset, 1529 size_t size, 1530 enum dma_data_direction direction) 1531 { 1532 if (dev->dma_ops) 1533 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1534 return dma_map_page(dev->dma_device, page, offset, size, direction); 1535 } 1536 1537 /** 1538 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1539 * @dev: The device for which the DMA address was created 1540 * @addr: The DMA address 1541 * @size: The size of the region in bytes 1542 * @direction: The direction of the DMA 1543 */ 1544 static inline void ib_dma_unmap_page(struct ib_device *dev, 1545 u64 addr, size_t size, 1546 enum dma_data_direction direction) 1547 { 1548 if (dev->dma_ops) 1549 dev->dma_ops->unmap_page(dev, addr, size, direction); 1550 else 1551 dma_unmap_page(dev->dma_device, addr, size, direction); 1552 } 1553 1554 /** 1555 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1556 * @dev: The device for which the DMA addresses are to be created 1557 * @sg: The array of scatter/gather entries 1558 * @nents: The number of scatter/gather entries 1559 * @direction: The direction of the DMA 1560 */ 1561 static inline int ib_dma_map_sg(struct ib_device *dev, 1562 struct scatterlist *sg, int nents, 1563 enum dma_data_direction direction) 1564 { 1565 if (dev->dma_ops) 1566 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1567 return dma_map_sg(dev->dma_device, sg, nents, direction); 1568 } 1569 1570 /** 1571 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1572 * @dev: The device for which the DMA addresses were created 1573 * @sg: The array of scatter/gather entries 1574 * @nents: The number of scatter/gather entries 1575 * @direction: The direction of the DMA 1576 */ 1577 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1578 struct scatterlist *sg, int nents, 1579 enum dma_data_direction direction) 1580 { 1581 if (dev->dma_ops) 1582 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1583 else 1584 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1585 } 1586 1587 /** 1588 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1589 * @dev: The device for which the DMA addresses were created 1590 * @sg: The scatter/gather entry 1591 */ 1592 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1593 struct scatterlist *sg) 1594 { 1595 if (dev->dma_ops) 1596 return dev->dma_ops->dma_address(dev, sg); 1597 return sg_dma_address(sg); 1598 } 1599 1600 /** 1601 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1602 * @dev: The device for which the DMA addresses were created 1603 * @sg: The scatter/gather entry 1604 */ 1605 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1606 struct scatterlist *sg) 1607 { 1608 if (dev->dma_ops) 1609 return dev->dma_ops->dma_len(dev, sg); 1610 return sg_dma_len(sg); 1611 } 1612 1613 /** 1614 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1615 * @dev: The device for which the DMA address was created 1616 * @addr: The DMA address 1617 * @size: The size of the region in bytes 1618 * @dir: The direction of the DMA 1619 */ 1620 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1621 u64 addr, 1622 size_t size, 1623 enum dma_data_direction dir) 1624 { 1625 if (dev->dma_ops) 1626 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1627 else 1628 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1629 } 1630 1631 /** 1632 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1633 * @dev: The device for which the DMA address was created 1634 * @addr: The DMA address 1635 * @size: The size of the region in bytes 1636 * @dir: The direction of the DMA 1637 */ 1638 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1639 u64 addr, 1640 size_t size, 1641 enum dma_data_direction dir) 1642 { 1643 if (dev->dma_ops) 1644 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1645 else 1646 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1647 } 1648 1649 /** 1650 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1651 * @dev: The device for which the DMA address is requested 1652 * @size: The size of the region to allocate in bytes 1653 * @dma_handle: A pointer for returning the DMA address of the region 1654 * @flag: memory allocator flags 1655 */ 1656 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1657 size_t size, 1658 u64 *dma_handle, 1659 gfp_t flag) 1660 { 1661 if (dev->dma_ops) 1662 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1663 else { 1664 dma_addr_t handle; 1665 void *ret; 1666 1667 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1668 *dma_handle = handle; 1669 return ret; 1670 } 1671 } 1672 1673 /** 1674 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1675 * @dev: The device for which the DMA addresses were allocated 1676 * @size: The size of the region 1677 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1678 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1679 */ 1680 static inline void ib_dma_free_coherent(struct ib_device *dev, 1681 size_t size, void *cpu_addr, 1682 u64 dma_handle) 1683 { 1684 if (dev->dma_ops) 1685 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1686 else 1687 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 1688 } 1689 1690 /** 1691 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1692 * by an HCA. 1693 * @pd: The protection domain associated assigned to the registered region. 1694 * @phys_buf_array: Specifies a list of physical buffers to use in the 1695 * memory region. 1696 * @num_phys_buf: Specifies the size of the phys_buf_array. 1697 * @mr_access_flags: Specifies the memory access rights. 1698 * @iova_start: The offset of the region's starting I/O virtual address. 1699 */ 1700 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1701 struct ib_phys_buf *phys_buf_array, 1702 int num_phys_buf, 1703 int mr_access_flags, 1704 u64 *iova_start); 1705 1706 /** 1707 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1708 * Conceptually, this call performs the functions deregister memory region 1709 * followed by register physical memory region. Where possible, 1710 * resources are reused instead of deallocated and reallocated. 1711 * @mr: The memory region to modify. 1712 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1713 * properties of the memory region are being modified. 1714 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1715 * the new protection domain to associated with the memory region, 1716 * otherwise, this parameter is ignored. 1717 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1718 * field specifies a list of physical buffers to use in the new 1719 * translation, otherwise, this parameter is ignored. 1720 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1721 * field specifies the size of the phys_buf_array, otherwise, this 1722 * parameter is ignored. 1723 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1724 * field specifies the new memory access rights, otherwise, this 1725 * parameter is ignored. 1726 * @iova_start: The offset of the region's starting I/O virtual address. 1727 */ 1728 int ib_rereg_phys_mr(struct ib_mr *mr, 1729 int mr_rereg_mask, 1730 struct ib_pd *pd, 1731 struct ib_phys_buf *phys_buf_array, 1732 int num_phys_buf, 1733 int mr_access_flags, 1734 u64 *iova_start); 1735 1736 /** 1737 * ib_query_mr - Retrieves information about a specific memory region. 1738 * @mr: The memory region to retrieve information about. 1739 * @mr_attr: The attributes of the specified memory region. 1740 */ 1741 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 1742 1743 /** 1744 * ib_dereg_mr - Deregisters a memory region and removes it from the 1745 * HCA translation table. 1746 * @mr: The memory region to deregister. 1747 */ 1748 int ib_dereg_mr(struct ib_mr *mr); 1749 1750 /** 1751 * ib_alloc_mw - Allocates a memory window. 1752 * @pd: The protection domain associated with the memory window. 1753 */ 1754 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 1755 1756 /** 1757 * ib_bind_mw - Posts a work request to the send queue of the specified 1758 * QP, which binds the memory window to the given address range and 1759 * remote access attributes. 1760 * @qp: QP to post the bind work request on. 1761 * @mw: The memory window to bind. 1762 * @mw_bind: Specifies information about the memory window, including 1763 * its address range, remote access rights, and associated memory region. 1764 */ 1765 static inline int ib_bind_mw(struct ib_qp *qp, 1766 struct ib_mw *mw, 1767 struct ib_mw_bind *mw_bind) 1768 { 1769 /* XXX reference counting in corresponding MR? */ 1770 return mw->device->bind_mw ? 1771 mw->device->bind_mw(qp, mw, mw_bind) : 1772 -ENOSYS; 1773 } 1774 1775 /** 1776 * ib_dealloc_mw - Deallocates a memory window. 1777 * @mw: The memory window to deallocate. 1778 */ 1779 int ib_dealloc_mw(struct ib_mw *mw); 1780 1781 /** 1782 * ib_alloc_fmr - Allocates a unmapped fast memory region. 1783 * @pd: The protection domain associated with the unmapped region. 1784 * @mr_access_flags: Specifies the memory access rights. 1785 * @fmr_attr: Attributes of the unmapped region. 1786 * 1787 * A fast memory region must be mapped before it can be used as part of 1788 * a work request. 1789 */ 1790 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1791 int mr_access_flags, 1792 struct ib_fmr_attr *fmr_attr); 1793 1794 /** 1795 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 1796 * @fmr: The fast memory region to associate with the pages. 1797 * @page_list: An array of physical pages to map to the fast memory region. 1798 * @list_len: The number of pages in page_list. 1799 * @iova: The I/O virtual address to use with the mapped region. 1800 */ 1801 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 1802 u64 *page_list, int list_len, 1803 u64 iova) 1804 { 1805 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 1806 } 1807 1808 /** 1809 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 1810 * @fmr_list: A linked list of fast memory regions to unmap. 1811 */ 1812 int ib_unmap_fmr(struct list_head *fmr_list); 1813 1814 /** 1815 * ib_dealloc_fmr - Deallocates a fast memory region. 1816 * @fmr: The fast memory region to deallocate. 1817 */ 1818 int ib_dealloc_fmr(struct ib_fmr *fmr); 1819 1820 /** 1821 * ib_attach_mcast - Attaches the specified QP to a multicast group. 1822 * @qp: QP to attach to the multicast group. The QP must be type 1823 * IB_QPT_UD. 1824 * @gid: Multicast group GID. 1825 * @lid: Multicast group LID in host byte order. 1826 * 1827 * In order to send and receive multicast packets, subnet 1828 * administration must have created the multicast group and configured 1829 * the fabric appropriately. The port associated with the specified 1830 * QP must also be a member of the multicast group. 1831 */ 1832 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1833 1834 /** 1835 * ib_detach_mcast - Detaches the specified QP from a multicast group. 1836 * @qp: QP to detach from the multicast group. 1837 * @gid: Multicast group GID. 1838 * @lid: Multicast group LID in host byte order. 1839 */ 1840 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1841 1842 #endif /* IB_VERBS_H */ 1843