xref: /linux/include/rdma/ib_verbs.h (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59 
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 
67 extern struct workqueue_struct *ib_wq;
68 extern struct workqueue_struct *ib_comp_wq;
69 
70 union ib_gid {
71 	u8	raw[16];
72 	struct {
73 		__be64	subnet_prefix;
74 		__be64	interface_id;
75 	} global;
76 };
77 
78 extern union ib_gid zgid;
79 
80 enum ib_gid_type {
81 	/* If link layer is Ethernet, this is RoCE V1 */
82 	IB_GID_TYPE_IB        = 0,
83 	IB_GID_TYPE_ROCE      = 0,
84 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
85 	IB_GID_TYPE_SIZE
86 };
87 
88 #define ROCE_V2_UDP_DPORT      4791
89 struct ib_gid_attr {
90 	enum ib_gid_type	gid_type;
91 	struct net_device	*ndev;
92 };
93 
94 enum rdma_node_type {
95 	/* IB values map to NodeInfo:NodeType. */
96 	RDMA_NODE_IB_CA 	= 1,
97 	RDMA_NODE_IB_SWITCH,
98 	RDMA_NODE_IB_ROUTER,
99 	RDMA_NODE_RNIC,
100 	RDMA_NODE_USNIC,
101 	RDMA_NODE_USNIC_UDP,
102 };
103 
104 enum {
105 	/* set the local administered indication */
106 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
107 };
108 
109 enum rdma_transport_type {
110 	RDMA_TRANSPORT_IB,
111 	RDMA_TRANSPORT_IWARP,
112 	RDMA_TRANSPORT_USNIC,
113 	RDMA_TRANSPORT_USNIC_UDP
114 };
115 
116 enum rdma_protocol_type {
117 	RDMA_PROTOCOL_IB,
118 	RDMA_PROTOCOL_IBOE,
119 	RDMA_PROTOCOL_IWARP,
120 	RDMA_PROTOCOL_USNIC_UDP
121 };
122 
123 __attribute_const__ enum rdma_transport_type
124 rdma_node_get_transport(enum rdma_node_type node_type);
125 
126 enum rdma_network_type {
127 	RDMA_NETWORK_IB,
128 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
129 	RDMA_NETWORK_IPV4,
130 	RDMA_NETWORK_IPV6
131 };
132 
133 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
134 {
135 	if (network_type == RDMA_NETWORK_IPV4 ||
136 	    network_type == RDMA_NETWORK_IPV6)
137 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
138 
139 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
140 	return IB_GID_TYPE_IB;
141 }
142 
143 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
144 							    union ib_gid *gid)
145 {
146 	if (gid_type == IB_GID_TYPE_IB)
147 		return RDMA_NETWORK_IB;
148 
149 	if (ipv6_addr_v4mapped((struct in6_addr *)gid))
150 		return RDMA_NETWORK_IPV4;
151 	else
152 		return RDMA_NETWORK_IPV6;
153 }
154 
155 enum rdma_link_layer {
156 	IB_LINK_LAYER_UNSPECIFIED,
157 	IB_LINK_LAYER_INFINIBAND,
158 	IB_LINK_LAYER_ETHERNET,
159 };
160 
161 enum ib_device_cap_flags {
162 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
163 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
164 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
165 	IB_DEVICE_RAW_MULTI			= (1 << 3),
166 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
167 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
168 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
169 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
170 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
171 	IB_DEVICE_INIT_TYPE			= (1 << 9),
172 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
173 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
174 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
175 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
176 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
177 
178 	/*
179 	 * This device supports a per-device lkey or stag that can be
180 	 * used without performing a memory registration for the local
181 	 * memory.  Note that ULPs should never check this flag, but
182 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
183 	 * which will always contain a usable lkey.
184 	 */
185 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
186 	IB_DEVICE_RESERVED /* old SEND_W_INV */	= (1 << 16),
187 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
188 	/*
189 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
190 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
191 	 * messages and can verify the validity of checksum for
192 	 * incoming messages.  Setting this flag implies that the
193 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
194 	 */
195 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
196 	IB_DEVICE_UD_TSO			= (1 << 19),
197 	IB_DEVICE_XRC				= (1 << 20),
198 
199 	/*
200 	 * This device supports the IB "base memory management extension",
201 	 * which includes support for fast registrations (IB_WR_REG_MR,
202 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
203 	 * also be set by any iWarp device which must support FRs to comply
204 	 * to the iWarp verbs spec.  iWarp devices also support the
205 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
206 	 * stag.
207 	 */
208 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
209 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
210 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
211 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
212 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
213 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
214 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
215 	/*
216 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
217 	 * support execution of WQEs that involve synchronization
218 	 * of I/O operations with single completion queue managed
219 	 * by hardware.
220 	 */
221 	IB_DEVICE_CROSS_CHANNEL		= (1 << 27),
222 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
223 	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
224 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
225 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
226 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
227 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
228 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
229 	IB_DEVICE_RDMA_NETDEV_OPA_VNIC		= (1ULL << 35),
230 };
231 
232 enum ib_signature_prot_cap {
233 	IB_PROT_T10DIF_TYPE_1 = 1,
234 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
235 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
236 };
237 
238 enum ib_signature_guard_cap {
239 	IB_GUARD_T10DIF_CRC	= 1,
240 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
241 };
242 
243 enum ib_atomic_cap {
244 	IB_ATOMIC_NONE,
245 	IB_ATOMIC_HCA,
246 	IB_ATOMIC_GLOB
247 };
248 
249 enum ib_odp_general_cap_bits {
250 	IB_ODP_SUPPORT		= 1 << 0,
251 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
252 };
253 
254 enum ib_odp_transport_cap_bits {
255 	IB_ODP_SUPPORT_SEND	= 1 << 0,
256 	IB_ODP_SUPPORT_RECV	= 1 << 1,
257 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
258 	IB_ODP_SUPPORT_READ	= 1 << 3,
259 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
260 };
261 
262 struct ib_odp_caps {
263 	uint64_t general_caps;
264 	struct {
265 		uint32_t  rc_odp_caps;
266 		uint32_t  uc_odp_caps;
267 		uint32_t  ud_odp_caps;
268 	} per_transport_caps;
269 };
270 
271 struct ib_rss_caps {
272 	/* Corresponding bit will be set if qp type from
273 	 * 'enum ib_qp_type' is supported, e.g.
274 	 * supported_qpts |= 1 << IB_QPT_UD
275 	 */
276 	u32 supported_qpts;
277 	u32 max_rwq_indirection_tables;
278 	u32 max_rwq_indirection_table_size;
279 };
280 
281 enum ib_cq_creation_flags {
282 	IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
283 	IB_CQ_FLAGS_IGNORE_OVERRUN	   = 1 << 1,
284 };
285 
286 struct ib_cq_init_attr {
287 	unsigned int	cqe;
288 	int		comp_vector;
289 	u32		flags;
290 };
291 
292 struct ib_device_attr {
293 	u64			fw_ver;
294 	__be64			sys_image_guid;
295 	u64			max_mr_size;
296 	u64			page_size_cap;
297 	u32			vendor_id;
298 	u32			vendor_part_id;
299 	u32			hw_ver;
300 	int			max_qp;
301 	int			max_qp_wr;
302 	u64			device_cap_flags;
303 	int			max_sge;
304 	int			max_sge_rd;
305 	int			max_cq;
306 	int			max_cqe;
307 	int			max_mr;
308 	int			max_pd;
309 	int			max_qp_rd_atom;
310 	int			max_ee_rd_atom;
311 	int			max_res_rd_atom;
312 	int			max_qp_init_rd_atom;
313 	int			max_ee_init_rd_atom;
314 	enum ib_atomic_cap	atomic_cap;
315 	enum ib_atomic_cap	masked_atomic_cap;
316 	int			max_ee;
317 	int			max_rdd;
318 	int			max_mw;
319 	int			max_raw_ipv6_qp;
320 	int			max_raw_ethy_qp;
321 	int			max_mcast_grp;
322 	int			max_mcast_qp_attach;
323 	int			max_total_mcast_qp_attach;
324 	int			max_ah;
325 	int			max_fmr;
326 	int			max_map_per_fmr;
327 	int			max_srq;
328 	int			max_srq_wr;
329 	int			max_srq_sge;
330 	unsigned int		max_fast_reg_page_list_len;
331 	u16			max_pkeys;
332 	u8			local_ca_ack_delay;
333 	int			sig_prot_cap;
334 	int			sig_guard_cap;
335 	struct ib_odp_caps	odp_caps;
336 	uint64_t		timestamp_mask;
337 	uint64_t		hca_core_clock; /* in KHZ */
338 	struct ib_rss_caps	rss_caps;
339 	u32			max_wq_type_rq;
340 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
341 };
342 
343 enum ib_mtu {
344 	IB_MTU_256  = 1,
345 	IB_MTU_512  = 2,
346 	IB_MTU_1024 = 3,
347 	IB_MTU_2048 = 4,
348 	IB_MTU_4096 = 5
349 };
350 
351 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
352 {
353 	switch (mtu) {
354 	case IB_MTU_256:  return  256;
355 	case IB_MTU_512:  return  512;
356 	case IB_MTU_1024: return 1024;
357 	case IB_MTU_2048: return 2048;
358 	case IB_MTU_4096: return 4096;
359 	default: 	  return -1;
360 	}
361 }
362 
363 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
364 {
365 	if (mtu >= 4096)
366 		return IB_MTU_4096;
367 	else if (mtu >= 2048)
368 		return IB_MTU_2048;
369 	else if (mtu >= 1024)
370 		return IB_MTU_1024;
371 	else if (mtu >= 512)
372 		return IB_MTU_512;
373 	else
374 		return IB_MTU_256;
375 }
376 
377 enum ib_port_state {
378 	IB_PORT_NOP		= 0,
379 	IB_PORT_DOWN		= 1,
380 	IB_PORT_INIT		= 2,
381 	IB_PORT_ARMED		= 3,
382 	IB_PORT_ACTIVE		= 4,
383 	IB_PORT_ACTIVE_DEFER	= 5
384 };
385 
386 enum ib_port_cap_flags {
387 	IB_PORT_SM				= 1 <<  1,
388 	IB_PORT_NOTICE_SUP			= 1 <<  2,
389 	IB_PORT_TRAP_SUP			= 1 <<  3,
390 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
391 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
392 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
393 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
394 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
395 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
396 	IB_PORT_SM_DISABLED			= 1 << 10,
397 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
398 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
399 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
400 	IB_PORT_CM_SUP				= 1 << 16,
401 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
402 	IB_PORT_REINIT_SUP			= 1 << 18,
403 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
404 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
405 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
406 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
407 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
408 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
409 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
410 	IB_PORT_IP_BASED_GIDS			= 1 << 26,
411 };
412 
413 enum ib_port_width {
414 	IB_WIDTH_1X	= 1,
415 	IB_WIDTH_4X	= 2,
416 	IB_WIDTH_8X	= 4,
417 	IB_WIDTH_12X	= 8
418 };
419 
420 static inline int ib_width_enum_to_int(enum ib_port_width width)
421 {
422 	switch (width) {
423 	case IB_WIDTH_1X:  return  1;
424 	case IB_WIDTH_4X:  return  4;
425 	case IB_WIDTH_8X:  return  8;
426 	case IB_WIDTH_12X: return 12;
427 	default: 	  return -1;
428 	}
429 }
430 
431 enum ib_port_speed {
432 	IB_SPEED_SDR	= 1,
433 	IB_SPEED_DDR	= 2,
434 	IB_SPEED_QDR	= 4,
435 	IB_SPEED_FDR10	= 8,
436 	IB_SPEED_FDR	= 16,
437 	IB_SPEED_EDR	= 32,
438 	IB_SPEED_HDR	= 64
439 };
440 
441 /**
442  * struct rdma_hw_stats
443  * @timestamp - Used by the core code to track when the last update was
444  * @lifespan - Used by the core code to determine how old the counters
445  *   should be before being updated again.  Stored in jiffies, defaults
446  *   to 10 milliseconds, drivers can override the default be specifying
447  *   their own value during their allocation routine.
448  * @name - Array of pointers to static names used for the counters in
449  *   directory.
450  * @num_counters - How many hardware counters there are.  If name is
451  *   shorter than this number, a kernel oops will result.  Driver authors
452  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
453  *   in their code to prevent this.
454  * @value - Array of u64 counters that are accessed by the sysfs code and
455  *   filled in by the drivers get_stats routine
456  */
457 struct rdma_hw_stats {
458 	unsigned long	timestamp;
459 	unsigned long	lifespan;
460 	const char * const *names;
461 	int		num_counters;
462 	u64		value[];
463 };
464 
465 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
466 /**
467  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
468  *   for drivers.
469  * @names - Array of static const char *
470  * @num_counters - How many elements in array
471  * @lifespan - How many milliseconds between updates
472  */
473 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
474 		const char * const *names, int num_counters,
475 		unsigned long lifespan)
476 {
477 	struct rdma_hw_stats *stats;
478 
479 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
480 			GFP_KERNEL);
481 	if (!stats)
482 		return NULL;
483 	stats->names = names;
484 	stats->num_counters = num_counters;
485 	stats->lifespan = msecs_to_jiffies(lifespan);
486 
487 	return stats;
488 }
489 
490 
491 /* Define bits for the various functionality this port needs to be supported by
492  * the core.
493  */
494 /* Management                           0x00000FFF */
495 #define RDMA_CORE_CAP_IB_MAD            0x00000001
496 #define RDMA_CORE_CAP_IB_SMI            0x00000002
497 #define RDMA_CORE_CAP_IB_CM             0x00000004
498 #define RDMA_CORE_CAP_IW_CM             0x00000008
499 #define RDMA_CORE_CAP_IB_SA             0x00000010
500 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
501 
502 /* Address format                       0x000FF000 */
503 #define RDMA_CORE_CAP_AF_IB             0x00001000
504 #define RDMA_CORE_CAP_ETH_AH            0x00002000
505 #define RDMA_CORE_CAP_OPA_AH            0x00004000
506 
507 /* Protocol                             0xFFF00000 */
508 #define RDMA_CORE_CAP_PROT_IB           0x00100000
509 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
510 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
511 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
512 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
513 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
514 
515 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
516 					| RDMA_CORE_CAP_IB_MAD \
517 					| RDMA_CORE_CAP_IB_SMI \
518 					| RDMA_CORE_CAP_IB_CM  \
519 					| RDMA_CORE_CAP_IB_SA  \
520 					| RDMA_CORE_CAP_AF_IB)
521 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
522 					| RDMA_CORE_CAP_IB_MAD  \
523 					| RDMA_CORE_CAP_IB_CM   \
524 					| RDMA_CORE_CAP_AF_IB   \
525 					| RDMA_CORE_CAP_ETH_AH)
526 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
527 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
528 					| RDMA_CORE_CAP_IB_MAD  \
529 					| RDMA_CORE_CAP_IB_CM   \
530 					| RDMA_CORE_CAP_AF_IB   \
531 					| RDMA_CORE_CAP_ETH_AH)
532 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
533 					| RDMA_CORE_CAP_IW_CM)
534 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
535 					| RDMA_CORE_CAP_OPA_MAD)
536 
537 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
538 
539 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
540 
541 struct ib_port_attr {
542 	u64			subnet_prefix;
543 	enum ib_port_state	state;
544 	enum ib_mtu		max_mtu;
545 	enum ib_mtu		active_mtu;
546 	int			gid_tbl_len;
547 	u32			port_cap_flags;
548 	u32			max_msg_sz;
549 	u32			bad_pkey_cntr;
550 	u32			qkey_viol_cntr;
551 	u16			pkey_tbl_len;
552 	u16			lid;
553 	u16			sm_lid;
554 	u8			lmc;
555 	u8			max_vl_num;
556 	u8			sm_sl;
557 	u8			subnet_timeout;
558 	u8			init_type_reply;
559 	u8			active_width;
560 	u8			active_speed;
561 	u8                      phys_state;
562 	bool			grh_required;
563 };
564 
565 enum ib_device_modify_flags {
566 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
567 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
568 };
569 
570 #define IB_DEVICE_NODE_DESC_MAX 64
571 
572 struct ib_device_modify {
573 	u64	sys_image_guid;
574 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
575 };
576 
577 enum ib_port_modify_flags {
578 	IB_PORT_SHUTDOWN		= 1,
579 	IB_PORT_INIT_TYPE		= (1<<2),
580 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
581 };
582 
583 struct ib_port_modify {
584 	u32	set_port_cap_mask;
585 	u32	clr_port_cap_mask;
586 	u8	init_type;
587 };
588 
589 enum ib_event_type {
590 	IB_EVENT_CQ_ERR,
591 	IB_EVENT_QP_FATAL,
592 	IB_EVENT_QP_REQ_ERR,
593 	IB_EVENT_QP_ACCESS_ERR,
594 	IB_EVENT_COMM_EST,
595 	IB_EVENT_SQ_DRAINED,
596 	IB_EVENT_PATH_MIG,
597 	IB_EVENT_PATH_MIG_ERR,
598 	IB_EVENT_DEVICE_FATAL,
599 	IB_EVENT_PORT_ACTIVE,
600 	IB_EVENT_PORT_ERR,
601 	IB_EVENT_LID_CHANGE,
602 	IB_EVENT_PKEY_CHANGE,
603 	IB_EVENT_SM_CHANGE,
604 	IB_EVENT_SRQ_ERR,
605 	IB_EVENT_SRQ_LIMIT_REACHED,
606 	IB_EVENT_QP_LAST_WQE_REACHED,
607 	IB_EVENT_CLIENT_REREGISTER,
608 	IB_EVENT_GID_CHANGE,
609 	IB_EVENT_WQ_FATAL,
610 };
611 
612 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
613 
614 struct ib_event {
615 	struct ib_device	*device;
616 	union {
617 		struct ib_cq	*cq;
618 		struct ib_qp	*qp;
619 		struct ib_srq	*srq;
620 		struct ib_wq	*wq;
621 		u8		port_num;
622 	} element;
623 	enum ib_event_type	event;
624 };
625 
626 struct ib_event_handler {
627 	struct ib_device *device;
628 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
629 	struct list_head  list;
630 };
631 
632 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
633 	do {							\
634 		(_ptr)->device  = _device;			\
635 		(_ptr)->handler = _handler;			\
636 		INIT_LIST_HEAD(&(_ptr)->list);			\
637 	} while (0)
638 
639 struct ib_global_route {
640 	union ib_gid	dgid;
641 	u32		flow_label;
642 	u8		sgid_index;
643 	u8		hop_limit;
644 	u8		traffic_class;
645 };
646 
647 struct ib_grh {
648 	__be32		version_tclass_flow;
649 	__be16		paylen;
650 	u8		next_hdr;
651 	u8		hop_limit;
652 	union ib_gid	sgid;
653 	union ib_gid	dgid;
654 };
655 
656 union rdma_network_hdr {
657 	struct ib_grh ibgrh;
658 	struct {
659 		/* The IB spec states that if it's IPv4, the header
660 		 * is located in the last 20 bytes of the header.
661 		 */
662 		u8		reserved[20];
663 		struct iphdr	roce4grh;
664 	};
665 };
666 
667 enum {
668 	IB_MULTICAST_QPN = 0xffffff
669 };
670 
671 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
672 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
673 
674 enum ib_ah_flags {
675 	IB_AH_GRH	= 1
676 };
677 
678 enum ib_rate {
679 	IB_RATE_PORT_CURRENT = 0,
680 	IB_RATE_2_5_GBPS = 2,
681 	IB_RATE_5_GBPS   = 5,
682 	IB_RATE_10_GBPS  = 3,
683 	IB_RATE_20_GBPS  = 6,
684 	IB_RATE_30_GBPS  = 4,
685 	IB_RATE_40_GBPS  = 7,
686 	IB_RATE_60_GBPS  = 8,
687 	IB_RATE_80_GBPS  = 9,
688 	IB_RATE_120_GBPS = 10,
689 	IB_RATE_14_GBPS  = 11,
690 	IB_RATE_56_GBPS  = 12,
691 	IB_RATE_112_GBPS = 13,
692 	IB_RATE_168_GBPS = 14,
693 	IB_RATE_25_GBPS  = 15,
694 	IB_RATE_100_GBPS = 16,
695 	IB_RATE_200_GBPS = 17,
696 	IB_RATE_300_GBPS = 18
697 };
698 
699 /**
700  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
701  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
702  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
703  * @rate: rate to convert.
704  */
705 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
706 
707 /**
708  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
709  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
710  * @rate: rate to convert.
711  */
712 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
713 
714 
715 /**
716  * enum ib_mr_type - memory region type
717  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
718  *                            normal registration
719  * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
720  *                            signature operations (data-integrity
721  *                            capable regions)
722  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
723  *                            register any arbitrary sg lists (without
724  *                            the normal mr constraints - see
725  *                            ib_map_mr_sg)
726  */
727 enum ib_mr_type {
728 	IB_MR_TYPE_MEM_REG,
729 	IB_MR_TYPE_SIGNATURE,
730 	IB_MR_TYPE_SG_GAPS,
731 };
732 
733 /**
734  * Signature types
735  * IB_SIG_TYPE_NONE: Unprotected.
736  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
737  */
738 enum ib_signature_type {
739 	IB_SIG_TYPE_NONE,
740 	IB_SIG_TYPE_T10_DIF,
741 };
742 
743 /**
744  * Signature T10-DIF block-guard types
745  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
746  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
747  */
748 enum ib_t10_dif_bg_type {
749 	IB_T10DIF_CRC,
750 	IB_T10DIF_CSUM
751 };
752 
753 /**
754  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
755  *     domain.
756  * @bg_type: T10-DIF block guard type (CRC|CSUM)
757  * @pi_interval: protection information interval.
758  * @bg: seed of guard computation.
759  * @app_tag: application tag of guard block
760  * @ref_tag: initial guard block reference tag.
761  * @ref_remap: Indicate wethear the reftag increments each block
762  * @app_escape: Indicate to skip block check if apptag=0xffff
763  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
764  * @apptag_check_mask: check bitmask of application tag.
765  */
766 struct ib_t10_dif_domain {
767 	enum ib_t10_dif_bg_type bg_type;
768 	u16			pi_interval;
769 	u16			bg;
770 	u16			app_tag;
771 	u32			ref_tag;
772 	bool			ref_remap;
773 	bool			app_escape;
774 	bool			ref_escape;
775 	u16			apptag_check_mask;
776 };
777 
778 /**
779  * struct ib_sig_domain - Parameters for signature domain
780  * @sig_type: specific signauture type
781  * @sig: union of all signature domain attributes that may
782  *     be used to set domain layout.
783  */
784 struct ib_sig_domain {
785 	enum ib_signature_type sig_type;
786 	union {
787 		struct ib_t10_dif_domain dif;
788 	} sig;
789 };
790 
791 /**
792  * struct ib_sig_attrs - Parameters for signature handover operation
793  * @check_mask: bitmask for signature byte check (8 bytes)
794  * @mem: memory domain layout desciptor.
795  * @wire: wire domain layout desciptor.
796  */
797 struct ib_sig_attrs {
798 	u8			check_mask;
799 	struct ib_sig_domain	mem;
800 	struct ib_sig_domain	wire;
801 };
802 
803 enum ib_sig_err_type {
804 	IB_SIG_BAD_GUARD,
805 	IB_SIG_BAD_REFTAG,
806 	IB_SIG_BAD_APPTAG,
807 };
808 
809 /**
810  * struct ib_sig_err - signature error descriptor
811  */
812 struct ib_sig_err {
813 	enum ib_sig_err_type	err_type;
814 	u32			expected;
815 	u32			actual;
816 	u64			sig_err_offset;
817 	u32			key;
818 };
819 
820 enum ib_mr_status_check {
821 	IB_MR_CHECK_SIG_STATUS = 1,
822 };
823 
824 /**
825  * struct ib_mr_status - Memory region status container
826  *
827  * @fail_status: Bitmask of MR checks status. For each
828  *     failed check a corresponding status bit is set.
829  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
830  *     failure.
831  */
832 struct ib_mr_status {
833 	u32		    fail_status;
834 	struct ib_sig_err   sig_err;
835 };
836 
837 /**
838  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
839  * enum.
840  * @mult: multiple to convert.
841  */
842 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
843 
844 enum rdma_ah_attr_type {
845 	RDMA_AH_ATTR_TYPE_IB,
846 	RDMA_AH_ATTR_TYPE_ROCE,
847 	RDMA_AH_ATTR_TYPE_OPA,
848 };
849 
850 struct ib_ah_attr {
851 	u16			dlid;
852 	u8			src_path_bits;
853 };
854 
855 struct roce_ah_attr {
856 	u8			dmac[ETH_ALEN];
857 };
858 
859 struct opa_ah_attr {
860 	u32			dlid;
861 	u8			src_path_bits;
862 };
863 
864 struct rdma_ah_attr {
865 	struct ib_global_route	grh;
866 	u8			sl;
867 	u8			static_rate;
868 	u8			port_num;
869 	u8			ah_flags;
870 	enum rdma_ah_attr_type type;
871 	union {
872 		struct ib_ah_attr ib;
873 		struct roce_ah_attr roce;
874 		struct opa_ah_attr opa;
875 	};
876 };
877 
878 enum ib_wc_status {
879 	IB_WC_SUCCESS,
880 	IB_WC_LOC_LEN_ERR,
881 	IB_WC_LOC_QP_OP_ERR,
882 	IB_WC_LOC_EEC_OP_ERR,
883 	IB_WC_LOC_PROT_ERR,
884 	IB_WC_WR_FLUSH_ERR,
885 	IB_WC_MW_BIND_ERR,
886 	IB_WC_BAD_RESP_ERR,
887 	IB_WC_LOC_ACCESS_ERR,
888 	IB_WC_REM_INV_REQ_ERR,
889 	IB_WC_REM_ACCESS_ERR,
890 	IB_WC_REM_OP_ERR,
891 	IB_WC_RETRY_EXC_ERR,
892 	IB_WC_RNR_RETRY_EXC_ERR,
893 	IB_WC_LOC_RDD_VIOL_ERR,
894 	IB_WC_REM_INV_RD_REQ_ERR,
895 	IB_WC_REM_ABORT_ERR,
896 	IB_WC_INV_EECN_ERR,
897 	IB_WC_INV_EEC_STATE_ERR,
898 	IB_WC_FATAL_ERR,
899 	IB_WC_RESP_TIMEOUT_ERR,
900 	IB_WC_GENERAL_ERR
901 };
902 
903 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
904 
905 enum ib_wc_opcode {
906 	IB_WC_SEND,
907 	IB_WC_RDMA_WRITE,
908 	IB_WC_RDMA_READ,
909 	IB_WC_COMP_SWAP,
910 	IB_WC_FETCH_ADD,
911 	IB_WC_LSO,
912 	IB_WC_LOCAL_INV,
913 	IB_WC_REG_MR,
914 	IB_WC_MASKED_COMP_SWAP,
915 	IB_WC_MASKED_FETCH_ADD,
916 /*
917  * Set value of IB_WC_RECV so consumers can test if a completion is a
918  * receive by testing (opcode & IB_WC_RECV).
919  */
920 	IB_WC_RECV			= 1 << 7,
921 	IB_WC_RECV_RDMA_WITH_IMM
922 };
923 
924 enum ib_wc_flags {
925 	IB_WC_GRH		= 1,
926 	IB_WC_WITH_IMM		= (1<<1),
927 	IB_WC_WITH_INVALIDATE	= (1<<2),
928 	IB_WC_IP_CSUM_OK	= (1<<3),
929 	IB_WC_WITH_SMAC		= (1<<4),
930 	IB_WC_WITH_VLAN		= (1<<5),
931 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
932 };
933 
934 struct ib_wc {
935 	union {
936 		u64		wr_id;
937 		struct ib_cqe	*wr_cqe;
938 	};
939 	enum ib_wc_status	status;
940 	enum ib_wc_opcode	opcode;
941 	u32			vendor_err;
942 	u32			byte_len;
943 	struct ib_qp	       *qp;
944 	union {
945 		__be32		imm_data;
946 		u32		invalidate_rkey;
947 	} ex;
948 	u32			src_qp;
949 	int			wc_flags;
950 	u16			pkey_index;
951 	u16			slid;
952 	u8			sl;
953 	u8			dlid_path_bits;
954 	u8			port_num;	/* valid only for DR SMPs on switches */
955 	u8			smac[ETH_ALEN];
956 	u16			vlan_id;
957 	u8			network_hdr_type;
958 };
959 
960 enum ib_cq_notify_flags {
961 	IB_CQ_SOLICITED			= 1 << 0,
962 	IB_CQ_NEXT_COMP			= 1 << 1,
963 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
964 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
965 };
966 
967 enum ib_srq_type {
968 	IB_SRQT_BASIC,
969 	IB_SRQT_XRC
970 };
971 
972 enum ib_srq_attr_mask {
973 	IB_SRQ_MAX_WR	= 1 << 0,
974 	IB_SRQ_LIMIT	= 1 << 1,
975 };
976 
977 struct ib_srq_attr {
978 	u32	max_wr;
979 	u32	max_sge;
980 	u32	srq_limit;
981 };
982 
983 struct ib_srq_init_attr {
984 	void		      (*event_handler)(struct ib_event *, void *);
985 	void		       *srq_context;
986 	struct ib_srq_attr	attr;
987 	enum ib_srq_type	srq_type;
988 
989 	union {
990 		struct {
991 			struct ib_xrcd *xrcd;
992 			struct ib_cq   *cq;
993 		} xrc;
994 	} ext;
995 };
996 
997 struct ib_qp_cap {
998 	u32	max_send_wr;
999 	u32	max_recv_wr;
1000 	u32	max_send_sge;
1001 	u32	max_recv_sge;
1002 	u32	max_inline_data;
1003 
1004 	/*
1005 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1006 	 * ib_create_qp() will calculate the right amount of neededed WRs
1007 	 * and MRs based on this.
1008 	 */
1009 	u32	max_rdma_ctxs;
1010 };
1011 
1012 enum ib_sig_type {
1013 	IB_SIGNAL_ALL_WR,
1014 	IB_SIGNAL_REQ_WR
1015 };
1016 
1017 enum ib_qp_type {
1018 	/*
1019 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1020 	 * here (and in that order) since the MAD layer uses them as
1021 	 * indices into a 2-entry table.
1022 	 */
1023 	IB_QPT_SMI,
1024 	IB_QPT_GSI,
1025 
1026 	IB_QPT_RC,
1027 	IB_QPT_UC,
1028 	IB_QPT_UD,
1029 	IB_QPT_RAW_IPV6,
1030 	IB_QPT_RAW_ETHERTYPE,
1031 	IB_QPT_RAW_PACKET = 8,
1032 	IB_QPT_XRC_INI = 9,
1033 	IB_QPT_XRC_TGT,
1034 	IB_QPT_MAX,
1035 	/* Reserve a range for qp types internal to the low level driver.
1036 	 * These qp types will not be visible at the IB core layer, so the
1037 	 * IB_QPT_MAX usages should not be affected in the core layer
1038 	 */
1039 	IB_QPT_RESERVED1 = 0x1000,
1040 	IB_QPT_RESERVED2,
1041 	IB_QPT_RESERVED3,
1042 	IB_QPT_RESERVED4,
1043 	IB_QPT_RESERVED5,
1044 	IB_QPT_RESERVED6,
1045 	IB_QPT_RESERVED7,
1046 	IB_QPT_RESERVED8,
1047 	IB_QPT_RESERVED9,
1048 	IB_QPT_RESERVED10,
1049 };
1050 
1051 enum ib_qp_create_flags {
1052 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1053 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1054 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1055 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1056 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1057 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1058 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1059 	IB_QP_CREATE_USE_GFP_NOIO		= 1 << 7,
1060 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1061 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1062 	/* reserve bits 26-31 for low level drivers' internal use */
1063 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1064 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1065 };
1066 
1067 /*
1068  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1069  * callback to destroy the passed in QP.
1070  */
1071 
1072 struct ib_qp_init_attr {
1073 	void                  (*event_handler)(struct ib_event *, void *);
1074 	void		       *qp_context;
1075 	struct ib_cq	       *send_cq;
1076 	struct ib_cq	       *recv_cq;
1077 	struct ib_srq	       *srq;
1078 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1079 	struct ib_qp_cap	cap;
1080 	enum ib_sig_type	sq_sig_type;
1081 	enum ib_qp_type		qp_type;
1082 	enum ib_qp_create_flags	create_flags;
1083 
1084 	/*
1085 	 * Only needed for special QP types, or when using the RW API.
1086 	 */
1087 	u8			port_num;
1088 	struct ib_rwq_ind_table *rwq_ind_tbl;
1089 };
1090 
1091 struct ib_qp_open_attr {
1092 	void                  (*event_handler)(struct ib_event *, void *);
1093 	void		       *qp_context;
1094 	u32			qp_num;
1095 	enum ib_qp_type		qp_type;
1096 };
1097 
1098 enum ib_rnr_timeout {
1099 	IB_RNR_TIMER_655_36 =  0,
1100 	IB_RNR_TIMER_000_01 =  1,
1101 	IB_RNR_TIMER_000_02 =  2,
1102 	IB_RNR_TIMER_000_03 =  3,
1103 	IB_RNR_TIMER_000_04 =  4,
1104 	IB_RNR_TIMER_000_06 =  5,
1105 	IB_RNR_TIMER_000_08 =  6,
1106 	IB_RNR_TIMER_000_12 =  7,
1107 	IB_RNR_TIMER_000_16 =  8,
1108 	IB_RNR_TIMER_000_24 =  9,
1109 	IB_RNR_TIMER_000_32 = 10,
1110 	IB_RNR_TIMER_000_48 = 11,
1111 	IB_RNR_TIMER_000_64 = 12,
1112 	IB_RNR_TIMER_000_96 = 13,
1113 	IB_RNR_TIMER_001_28 = 14,
1114 	IB_RNR_TIMER_001_92 = 15,
1115 	IB_RNR_TIMER_002_56 = 16,
1116 	IB_RNR_TIMER_003_84 = 17,
1117 	IB_RNR_TIMER_005_12 = 18,
1118 	IB_RNR_TIMER_007_68 = 19,
1119 	IB_RNR_TIMER_010_24 = 20,
1120 	IB_RNR_TIMER_015_36 = 21,
1121 	IB_RNR_TIMER_020_48 = 22,
1122 	IB_RNR_TIMER_030_72 = 23,
1123 	IB_RNR_TIMER_040_96 = 24,
1124 	IB_RNR_TIMER_061_44 = 25,
1125 	IB_RNR_TIMER_081_92 = 26,
1126 	IB_RNR_TIMER_122_88 = 27,
1127 	IB_RNR_TIMER_163_84 = 28,
1128 	IB_RNR_TIMER_245_76 = 29,
1129 	IB_RNR_TIMER_327_68 = 30,
1130 	IB_RNR_TIMER_491_52 = 31
1131 };
1132 
1133 enum ib_qp_attr_mask {
1134 	IB_QP_STATE			= 1,
1135 	IB_QP_CUR_STATE			= (1<<1),
1136 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1137 	IB_QP_ACCESS_FLAGS		= (1<<3),
1138 	IB_QP_PKEY_INDEX		= (1<<4),
1139 	IB_QP_PORT			= (1<<5),
1140 	IB_QP_QKEY			= (1<<6),
1141 	IB_QP_AV			= (1<<7),
1142 	IB_QP_PATH_MTU			= (1<<8),
1143 	IB_QP_TIMEOUT			= (1<<9),
1144 	IB_QP_RETRY_CNT			= (1<<10),
1145 	IB_QP_RNR_RETRY			= (1<<11),
1146 	IB_QP_RQ_PSN			= (1<<12),
1147 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1148 	IB_QP_ALT_PATH			= (1<<14),
1149 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1150 	IB_QP_SQ_PSN			= (1<<16),
1151 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1152 	IB_QP_PATH_MIG_STATE		= (1<<18),
1153 	IB_QP_CAP			= (1<<19),
1154 	IB_QP_DEST_QPN			= (1<<20),
1155 	IB_QP_RESERVED1			= (1<<21),
1156 	IB_QP_RESERVED2			= (1<<22),
1157 	IB_QP_RESERVED3			= (1<<23),
1158 	IB_QP_RESERVED4			= (1<<24),
1159 	IB_QP_RATE_LIMIT		= (1<<25),
1160 };
1161 
1162 enum ib_qp_state {
1163 	IB_QPS_RESET,
1164 	IB_QPS_INIT,
1165 	IB_QPS_RTR,
1166 	IB_QPS_RTS,
1167 	IB_QPS_SQD,
1168 	IB_QPS_SQE,
1169 	IB_QPS_ERR
1170 };
1171 
1172 enum ib_mig_state {
1173 	IB_MIG_MIGRATED,
1174 	IB_MIG_REARM,
1175 	IB_MIG_ARMED
1176 };
1177 
1178 enum ib_mw_type {
1179 	IB_MW_TYPE_1 = 1,
1180 	IB_MW_TYPE_2 = 2
1181 };
1182 
1183 struct ib_qp_attr {
1184 	enum ib_qp_state	qp_state;
1185 	enum ib_qp_state	cur_qp_state;
1186 	enum ib_mtu		path_mtu;
1187 	enum ib_mig_state	path_mig_state;
1188 	u32			qkey;
1189 	u32			rq_psn;
1190 	u32			sq_psn;
1191 	u32			dest_qp_num;
1192 	int			qp_access_flags;
1193 	struct ib_qp_cap	cap;
1194 	struct rdma_ah_attr	ah_attr;
1195 	struct rdma_ah_attr	alt_ah_attr;
1196 	u16			pkey_index;
1197 	u16			alt_pkey_index;
1198 	u8			en_sqd_async_notify;
1199 	u8			sq_draining;
1200 	u8			max_rd_atomic;
1201 	u8			max_dest_rd_atomic;
1202 	u8			min_rnr_timer;
1203 	u8			port_num;
1204 	u8			timeout;
1205 	u8			retry_cnt;
1206 	u8			rnr_retry;
1207 	u8			alt_port_num;
1208 	u8			alt_timeout;
1209 	u32			rate_limit;
1210 };
1211 
1212 enum ib_wr_opcode {
1213 	IB_WR_RDMA_WRITE,
1214 	IB_WR_RDMA_WRITE_WITH_IMM,
1215 	IB_WR_SEND,
1216 	IB_WR_SEND_WITH_IMM,
1217 	IB_WR_RDMA_READ,
1218 	IB_WR_ATOMIC_CMP_AND_SWP,
1219 	IB_WR_ATOMIC_FETCH_AND_ADD,
1220 	IB_WR_LSO,
1221 	IB_WR_SEND_WITH_INV,
1222 	IB_WR_RDMA_READ_WITH_INV,
1223 	IB_WR_LOCAL_INV,
1224 	IB_WR_REG_MR,
1225 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1226 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1227 	IB_WR_REG_SIG_MR,
1228 	/* reserve values for low level drivers' internal use.
1229 	 * These values will not be used at all in the ib core layer.
1230 	 */
1231 	IB_WR_RESERVED1 = 0xf0,
1232 	IB_WR_RESERVED2,
1233 	IB_WR_RESERVED3,
1234 	IB_WR_RESERVED4,
1235 	IB_WR_RESERVED5,
1236 	IB_WR_RESERVED6,
1237 	IB_WR_RESERVED7,
1238 	IB_WR_RESERVED8,
1239 	IB_WR_RESERVED9,
1240 	IB_WR_RESERVED10,
1241 };
1242 
1243 enum ib_send_flags {
1244 	IB_SEND_FENCE		= 1,
1245 	IB_SEND_SIGNALED	= (1<<1),
1246 	IB_SEND_SOLICITED	= (1<<2),
1247 	IB_SEND_INLINE		= (1<<3),
1248 	IB_SEND_IP_CSUM		= (1<<4),
1249 
1250 	/* reserve bits 26-31 for low level drivers' internal use */
1251 	IB_SEND_RESERVED_START	= (1 << 26),
1252 	IB_SEND_RESERVED_END	= (1 << 31),
1253 };
1254 
1255 struct ib_sge {
1256 	u64	addr;
1257 	u32	length;
1258 	u32	lkey;
1259 };
1260 
1261 struct ib_cqe {
1262 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1263 };
1264 
1265 struct ib_send_wr {
1266 	struct ib_send_wr      *next;
1267 	union {
1268 		u64		wr_id;
1269 		struct ib_cqe	*wr_cqe;
1270 	};
1271 	struct ib_sge	       *sg_list;
1272 	int			num_sge;
1273 	enum ib_wr_opcode	opcode;
1274 	int			send_flags;
1275 	union {
1276 		__be32		imm_data;
1277 		u32		invalidate_rkey;
1278 	} ex;
1279 };
1280 
1281 struct ib_rdma_wr {
1282 	struct ib_send_wr	wr;
1283 	u64			remote_addr;
1284 	u32			rkey;
1285 };
1286 
1287 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1288 {
1289 	return container_of(wr, struct ib_rdma_wr, wr);
1290 }
1291 
1292 struct ib_atomic_wr {
1293 	struct ib_send_wr	wr;
1294 	u64			remote_addr;
1295 	u64			compare_add;
1296 	u64			swap;
1297 	u64			compare_add_mask;
1298 	u64			swap_mask;
1299 	u32			rkey;
1300 };
1301 
1302 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1303 {
1304 	return container_of(wr, struct ib_atomic_wr, wr);
1305 }
1306 
1307 struct ib_ud_wr {
1308 	struct ib_send_wr	wr;
1309 	struct ib_ah		*ah;
1310 	void			*header;
1311 	int			hlen;
1312 	int			mss;
1313 	u32			remote_qpn;
1314 	u32			remote_qkey;
1315 	u16			pkey_index; /* valid for GSI only */
1316 	u8			port_num;   /* valid for DR SMPs on switch only */
1317 };
1318 
1319 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1320 {
1321 	return container_of(wr, struct ib_ud_wr, wr);
1322 }
1323 
1324 struct ib_reg_wr {
1325 	struct ib_send_wr	wr;
1326 	struct ib_mr		*mr;
1327 	u32			key;
1328 	int			access;
1329 };
1330 
1331 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1332 {
1333 	return container_of(wr, struct ib_reg_wr, wr);
1334 }
1335 
1336 struct ib_sig_handover_wr {
1337 	struct ib_send_wr	wr;
1338 	struct ib_sig_attrs    *sig_attrs;
1339 	struct ib_mr	       *sig_mr;
1340 	int			access_flags;
1341 	struct ib_sge	       *prot;
1342 };
1343 
1344 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1345 {
1346 	return container_of(wr, struct ib_sig_handover_wr, wr);
1347 }
1348 
1349 struct ib_recv_wr {
1350 	struct ib_recv_wr      *next;
1351 	union {
1352 		u64		wr_id;
1353 		struct ib_cqe	*wr_cqe;
1354 	};
1355 	struct ib_sge	       *sg_list;
1356 	int			num_sge;
1357 };
1358 
1359 enum ib_access_flags {
1360 	IB_ACCESS_LOCAL_WRITE	= 1,
1361 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1362 	IB_ACCESS_REMOTE_READ	= (1<<2),
1363 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1364 	IB_ACCESS_MW_BIND	= (1<<4),
1365 	IB_ZERO_BASED		= (1<<5),
1366 	IB_ACCESS_ON_DEMAND     = (1<<6),
1367 	IB_ACCESS_HUGETLB	= (1<<7),
1368 };
1369 
1370 /*
1371  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1372  * are hidden here instead of a uapi header!
1373  */
1374 enum ib_mr_rereg_flags {
1375 	IB_MR_REREG_TRANS	= 1,
1376 	IB_MR_REREG_PD		= (1<<1),
1377 	IB_MR_REREG_ACCESS	= (1<<2),
1378 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1379 };
1380 
1381 struct ib_fmr_attr {
1382 	int	max_pages;
1383 	int	max_maps;
1384 	u8	page_shift;
1385 };
1386 
1387 struct ib_umem;
1388 
1389 enum rdma_remove_reason {
1390 	/* Userspace requested uobject deletion. Call could fail */
1391 	RDMA_REMOVE_DESTROY,
1392 	/* Context deletion. This call should delete the actual object itself */
1393 	RDMA_REMOVE_CLOSE,
1394 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1395 	RDMA_REMOVE_DRIVER_REMOVE,
1396 	/* Context is being cleaned-up, but commit was just completed */
1397 	RDMA_REMOVE_DURING_CLEANUP,
1398 };
1399 
1400 struct ib_rdmacg_object {
1401 #ifdef CONFIG_CGROUP_RDMA
1402 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1403 #endif
1404 };
1405 
1406 struct ib_ucontext {
1407 	struct ib_device       *device;
1408 	struct ib_uverbs_file  *ufile;
1409 	int			closing;
1410 
1411 	/* locking the uobjects_list */
1412 	struct mutex		uobjects_lock;
1413 	struct list_head	uobjects;
1414 	/* protects cleanup process from other actions */
1415 	struct rw_semaphore	cleanup_rwsem;
1416 	enum rdma_remove_reason cleanup_reason;
1417 
1418 	struct pid             *tgid;
1419 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1420 	struct rb_root      umem_tree;
1421 	/*
1422 	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1423 	 * mmu notifiers registration.
1424 	 */
1425 	struct rw_semaphore	umem_rwsem;
1426 	void (*invalidate_range)(struct ib_umem *umem,
1427 				 unsigned long start, unsigned long end);
1428 
1429 	struct mmu_notifier	mn;
1430 	atomic_t		notifier_count;
1431 	/* A list of umems that don't have private mmu notifier counters yet. */
1432 	struct list_head	no_private_counters;
1433 	int                     odp_mrs_count;
1434 #endif
1435 
1436 	struct ib_rdmacg_object	cg_obj;
1437 };
1438 
1439 struct ib_uobject {
1440 	u64			user_handle;	/* handle given to us by userspace */
1441 	struct ib_ucontext     *context;	/* associated user context */
1442 	void		       *object;		/* containing object */
1443 	struct list_head	list;		/* link to context's list */
1444 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1445 	int			id;		/* index into kernel idr */
1446 	struct kref		ref;
1447 	atomic_t		usecnt;		/* protects exclusive access */
1448 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1449 
1450 	const struct uverbs_obj_type *type;
1451 };
1452 
1453 struct ib_uobject_file {
1454 	struct ib_uobject	uobj;
1455 	/* ufile contains the lock between context release and file close */
1456 	struct ib_uverbs_file	*ufile;
1457 };
1458 
1459 struct ib_udata {
1460 	const void __user *inbuf;
1461 	void __user *outbuf;
1462 	size_t       inlen;
1463 	size_t       outlen;
1464 };
1465 
1466 struct ib_pd {
1467 	u32			local_dma_lkey;
1468 	u32			flags;
1469 	struct ib_device       *device;
1470 	struct ib_uobject      *uobject;
1471 	atomic_t          	usecnt; /* count all resources */
1472 
1473 	u32			unsafe_global_rkey;
1474 
1475 	/*
1476 	 * Implementation details of the RDMA core, don't use in drivers:
1477 	 */
1478 	struct ib_mr	       *__internal_mr;
1479 };
1480 
1481 struct ib_xrcd {
1482 	struct ib_device       *device;
1483 	atomic_t		usecnt; /* count all exposed resources */
1484 	struct inode	       *inode;
1485 
1486 	struct mutex		tgt_qp_mutex;
1487 	struct list_head	tgt_qp_list;
1488 };
1489 
1490 struct ib_ah {
1491 	struct ib_device	*device;
1492 	struct ib_pd		*pd;
1493 	struct ib_uobject	*uobject;
1494 	enum rdma_ah_attr_type	type;
1495 };
1496 
1497 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1498 
1499 enum ib_poll_context {
1500 	IB_POLL_DIRECT,		/* caller context, no hw completions */
1501 	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1502 	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1503 };
1504 
1505 struct ib_cq {
1506 	struct ib_device       *device;
1507 	struct ib_uobject      *uobject;
1508 	ib_comp_handler   	comp_handler;
1509 	void                  (*event_handler)(struct ib_event *, void *);
1510 	void                   *cq_context;
1511 	int               	cqe;
1512 	atomic_t          	usecnt; /* count number of work queues */
1513 	enum ib_poll_context	poll_ctx;
1514 	struct ib_wc		*wc;
1515 	union {
1516 		struct irq_poll		iop;
1517 		struct work_struct	work;
1518 	};
1519 };
1520 
1521 struct ib_srq {
1522 	struct ib_device       *device;
1523 	struct ib_pd	       *pd;
1524 	struct ib_uobject      *uobject;
1525 	void		      (*event_handler)(struct ib_event *, void *);
1526 	void		       *srq_context;
1527 	enum ib_srq_type	srq_type;
1528 	atomic_t		usecnt;
1529 
1530 	union {
1531 		struct {
1532 			struct ib_xrcd *xrcd;
1533 			struct ib_cq   *cq;
1534 			u32		srq_num;
1535 		} xrc;
1536 	} ext;
1537 };
1538 
1539 enum ib_raw_packet_caps {
1540 	/* Strip cvlan from incoming packet and report it in the matching work
1541 	 * completion is supported.
1542 	 */
1543 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1544 	/* Scatter FCS field of an incoming packet to host memory is supported.
1545 	 */
1546 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1547 	/* Checksum offloads are supported (for both send and receive). */
1548 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1549 };
1550 
1551 enum ib_wq_type {
1552 	IB_WQT_RQ
1553 };
1554 
1555 enum ib_wq_state {
1556 	IB_WQS_RESET,
1557 	IB_WQS_RDY,
1558 	IB_WQS_ERR
1559 };
1560 
1561 struct ib_wq {
1562 	struct ib_device       *device;
1563 	struct ib_uobject      *uobject;
1564 	void		    *wq_context;
1565 	void		    (*event_handler)(struct ib_event *, void *);
1566 	struct ib_pd	       *pd;
1567 	struct ib_cq	       *cq;
1568 	u32		wq_num;
1569 	enum ib_wq_state       state;
1570 	enum ib_wq_type	wq_type;
1571 	atomic_t		usecnt;
1572 };
1573 
1574 enum ib_wq_flags {
1575 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1576 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1577 };
1578 
1579 struct ib_wq_init_attr {
1580 	void		       *wq_context;
1581 	enum ib_wq_type	wq_type;
1582 	u32		max_wr;
1583 	u32		max_sge;
1584 	struct	ib_cq	       *cq;
1585 	void		    (*event_handler)(struct ib_event *, void *);
1586 	u32		create_flags; /* Use enum ib_wq_flags */
1587 };
1588 
1589 enum ib_wq_attr_mask {
1590 	IB_WQ_STATE		= 1 << 0,
1591 	IB_WQ_CUR_STATE		= 1 << 1,
1592 	IB_WQ_FLAGS		= 1 << 2,
1593 };
1594 
1595 struct ib_wq_attr {
1596 	enum	ib_wq_state	wq_state;
1597 	enum	ib_wq_state	curr_wq_state;
1598 	u32			flags; /* Use enum ib_wq_flags */
1599 	u32			flags_mask; /* Use enum ib_wq_flags */
1600 };
1601 
1602 struct ib_rwq_ind_table {
1603 	struct ib_device	*device;
1604 	struct ib_uobject      *uobject;
1605 	atomic_t		usecnt;
1606 	u32		ind_tbl_num;
1607 	u32		log_ind_tbl_size;
1608 	struct ib_wq	**ind_tbl;
1609 };
1610 
1611 struct ib_rwq_ind_table_init_attr {
1612 	u32		log_ind_tbl_size;
1613 	/* Each entry is a pointer to Receive Work Queue */
1614 	struct ib_wq	**ind_tbl;
1615 };
1616 
1617 /*
1618  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1619  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1620  */
1621 struct ib_qp {
1622 	struct ib_device       *device;
1623 	struct ib_pd	       *pd;
1624 	struct ib_cq	       *send_cq;
1625 	struct ib_cq	       *recv_cq;
1626 	spinlock_t		mr_lock;
1627 	int			mrs_used;
1628 	struct list_head	rdma_mrs;
1629 	struct list_head	sig_mrs;
1630 	struct ib_srq	       *srq;
1631 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1632 	struct list_head	xrcd_list;
1633 
1634 	/* count times opened, mcast attaches, flow attaches */
1635 	atomic_t		usecnt;
1636 	struct list_head	open_list;
1637 	struct ib_qp           *real_qp;
1638 	struct ib_uobject      *uobject;
1639 	void                  (*event_handler)(struct ib_event *, void *);
1640 	void		       *qp_context;
1641 	u32			qp_num;
1642 	u32			max_write_sge;
1643 	u32			max_read_sge;
1644 	enum ib_qp_type		qp_type;
1645 	struct ib_rwq_ind_table *rwq_ind_tbl;
1646 };
1647 
1648 struct ib_mr {
1649 	struct ib_device  *device;
1650 	struct ib_pd	  *pd;
1651 	u32		   lkey;
1652 	u32		   rkey;
1653 	u64		   iova;
1654 	u32		   length;
1655 	unsigned int	   page_size;
1656 	bool		   need_inval;
1657 	union {
1658 		struct ib_uobject	*uobject;	/* user */
1659 		struct list_head	qp_entry;	/* FR */
1660 	};
1661 };
1662 
1663 struct ib_mw {
1664 	struct ib_device	*device;
1665 	struct ib_pd		*pd;
1666 	struct ib_uobject	*uobject;
1667 	u32			rkey;
1668 	enum ib_mw_type         type;
1669 };
1670 
1671 struct ib_fmr {
1672 	struct ib_device	*device;
1673 	struct ib_pd		*pd;
1674 	struct list_head	list;
1675 	u32			lkey;
1676 	u32			rkey;
1677 };
1678 
1679 /* Supported steering options */
1680 enum ib_flow_attr_type {
1681 	/* steering according to rule specifications */
1682 	IB_FLOW_ATTR_NORMAL		= 0x0,
1683 	/* default unicast and multicast rule -
1684 	 * receive all Eth traffic which isn't steered to any QP
1685 	 */
1686 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1687 	/* default multicast rule -
1688 	 * receive all Eth multicast traffic which isn't steered to any QP
1689 	 */
1690 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1691 	/* sniffer rule - receive all port traffic */
1692 	IB_FLOW_ATTR_SNIFFER		= 0x3
1693 };
1694 
1695 /* Supported steering header types */
1696 enum ib_flow_spec_type {
1697 	/* L2 headers*/
1698 	IB_FLOW_SPEC_ETH		= 0x20,
1699 	IB_FLOW_SPEC_IB			= 0x22,
1700 	/* L3 header*/
1701 	IB_FLOW_SPEC_IPV4		= 0x30,
1702 	IB_FLOW_SPEC_IPV6		= 0x31,
1703 	/* L4 headers*/
1704 	IB_FLOW_SPEC_TCP		= 0x40,
1705 	IB_FLOW_SPEC_UDP		= 0x41,
1706 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1707 	IB_FLOW_SPEC_INNER		= 0x100,
1708 	/* Actions */
1709 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1710 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1711 };
1712 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1713 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1714 
1715 /* Flow steering rule priority is set according to it's domain.
1716  * Lower domain value means higher priority.
1717  */
1718 enum ib_flow_domain {
1719 	IB_FLOW_DOMAIN_USER,
1720 	IB_FLOW_DOMAIN_ETHTOOL,
1721 	IB_FLOW_DOMAIN_RFS,
1722 	IB_FLOW_DOMAIN_NIC,
1723 	IB_FLOW_DOMAIN_NUM /* Must be last */
1724 };
1725 
1726 enum ib_flow_flags {
1727 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1728 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 2  /* Must be last */
1729 };
1730 
1731 struct ib_flow_eth_filter {
1732 	u8	dst_mac[6];
1733 	u8	src_mac[6];
1734 	__be16	ether_type;
1735 	__be16	vlan_tag;
1736 	/* Must be last */
1737 	u8	real_sz[0];
1738 };
1739 
1740 struct ib_flow_spec_eth {
1741 	u32			  type;
1742 	u16			  size;
1743 	struct ib_flow_eth_filter val;
1744 	struct ib_flow_eth_filter mask;
1745 };
1746 
1747 struct ib_flow_ib_filter {
1748 	__be16 dlid;
1749 	__u8   sl;
1750 	/* Must be last */
1751 	u8	real_sz[0];
1752 };
1753 
1754 struct ib_flow_spec_ib {
1755 	u32			 type;
1756 	u16			 size;
1757 	struct ib_flow_ib_filter val;
1758 	struct ib_flow_ib_filter mask;
1759 };
1760 
1761 /* IPv4 header flags */
1762 enum ib_ipv4_flags {
1763 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1764 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1765 				    last have this flag set */
1766 };
1767 
1768 struct ib_flow_ipv4_filter {
1769 	__be32	src_ip;
1770 	__be32	dst_ip;
1771 	u8	proto;
1772 	u8	tos;
1773 	u8	ttl;
1774 	u8	flags;
1775 	/* Must be last */
1776 	u8	real_sz[0];
1777 };
1778 
1779 struct ib_flow_spec_ipv4 {
1780 	u32			   type;
1781 	u16			   size;
1782 	struct ib_flow_ipv4_filter val;
1783 	struct ib_flow_ipv4_filter mask;
1784 };
1785 
1786 struct ib_flow_ipv6_filter {
1787 	u8	src_ip[16];
1788 	u8	dst_ip[16];
1789 	__be32	flow_label;
1790 	u8	next_hdr;
1791 	u8	traffic_class;
1792 	u8	hop_limit;
1793 	/* Must be last */
1794 	u8	real_sz[0];
1795 };
1796 
1797 struct ib_flow_spec_ipv6 {
1798 	u32			   type;
1799 	u16			   size;
1800 	struct ib_flow_ipv6_filter val;
1801 	struct ib_flow_ipv6_filter mask;
1802 };
1803 
1804 struct ib_flow_tcp_udp_filter {
1805 	__be16	dst_port;
1806 	__be16	src_port;
1807 	/* Must be last */
1808 	u8	real_sz[0];
1809 };
1810 
1811 struct ib_flow_spec_tcp_udp {
1812 	u32			      type;
1813 	u16			      size;
1814 	struct ib_flow_tcp_udp_filter val;
1815 	struct ib_flow_tcp_udp_filter mask;
1816 };
1817 
1818 struct ib_flow_tunnel_filter {
1819 	__be32	tunnel_id;
1820 	u8	real_sz[0];
1821 };
1822 
1823 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1824  * the tunnel_id from val has the vni value
1825  */
1826 struct ib_flow_spec_tunnel {
1827 	u32			      type;
1828 	u16			      size;
1829 	struct ib_flow_tunnel_filter  val;
1830 	struct ib_flow_tunnel_filter  mask;
1831 };
1832 
1833 struct ib_flow_spec_action_tag {
1834 	enum ib_flow_spec_type	      type;
1835 	u16			      size;
1836 	u32                           tag_id;
1837 };
1838 
1839 struct ib_flow_spec_action_drop {
1840 	enum ib_flow_spec_type	      type;
1841 	u16			      size;
1842 };
1843 
1844 union ib_flow_spec {
1845 	struct {
1846 		u32			type;
1847 		u16			size;
1848 	};
1849 	struct ib_flow_spec_eth		eth;
1850 	struct ib_flow_spec_ib		ib;
1851 	struct ib_flow_spec_ipv4        ipv4;
1852 	struct ib_flow_spec_tcp_udp	tcp_udp;
1853 	struct ib_flow_spec_ipv6        ipv6;
1854 	struct ib_flow_spec_tunnel      tunnel;
1855 	struct ib_flow_spec_action_tag  flow_tag;
1856 	struct ib_flow_spec_action_drop drop;
1857 };
1858 
1859 struct ib_flow_attr {
1860 	enum ib_flow_attr_type type;
1861 	u16	     size;
1862 	u16	     priority;
1863 	u32	     flags;
1864 	u8	     num_of_specs;
1865 	u8	     port;
1866 	/* Following are the optional layers according to user request
1867 	 * struct ib_flow_spec_xxx
1868 	 * struct ib_flow_spec_yyy
1869 	 */
1870 };
1871 
1872 struct ib_flow {
1873 	struct ib_qp		*qp;
1874 	struct ib_uobject	*uobject;
1875 };
1876 
1877 struct ib_mad_hdr;
1878 struct ib_grh;
1879 
1880 enum ib_process_mad_flags {
1881 	IB_MAD_IGNORE_MKEY	= 1,
1882 	IB_MAD_IGNORE_BKEY	= 2,
1883 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1884 };
1885 
1886 enum ib_mad_result {
1887 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1888 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1889 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1890 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1891 };
1892 
1893 struct ib_port_cache {
1894 	struct ib_pkey_cache  *pkey;
1895 	struct ib_gid_table   *gid;
1896 	u8                     lmc;
1897 	enum ib_port_state     port_state;
1898 };
1899 
1900 struct ib_cache {
1901 	rwlock_t                lock;
1902 	struct ib_event_handler event_handler;
1903 	struct ib_port_cache   *ports;
1904 };
1905 
1906 struct iw_cm_verbs;
1907 
1908 struct ib_port_immutable {
1909 	int                           pkey_tbl_len;
1910 	int                           gid_tbl_len;
1911 	u32                           core_cap_flags;
1912 	u32                           max_mad_size;
1913 };
1914 
1915 /* rdma netdev type - specifies protocol type */
1916 enum rdma_netdev_t {
1917 	RDMA_NETDEV_OPA_VNIC,
1918 	RDMA_NETDEV_IPOIB,
1919 };
1920 
1921 /**
1922  * struct rdma_netdev - rdma netdev
1923  * For cases where netstack interfacing is required.
1924  */
1925 struct rdma_netdev {
1926 	void              *clnt_priv;
1927 	struct ib_device  *hca;
1928 	u8                 port_num;
1929 
1930 	/* control functions */
1931 	void (*set_id)(struct net_device *netdev, int id);
1932 	/* send packet */
1933 	int (*send)(struct net_device *dev, struct sk_buff *skb,
1934 		    struct ib_ah *address, u32 dqpn);
1935 	/* multicast */
1936 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
1937 			    union ib_gid *gid, u16 mlid,
1938 			    int set_qkey, u32 qkey);
1939 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
1940 			    union ib_gid *gid, u16 mlid);
1941 };
1942 
1943 struct ib_device {
1944 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
1945 	struct device                *dma_device;
1946 
1947 	char                          name[IB_DEVICE_NAME_MAX];
1948 
1949 	struct list_head              event_handler_list;
1950 	spinlock_t                    event_handler_lock;
1951 
1952 	spinlock_t                    client_data_lock;
1953 	struct list_head              core_list;
1954 	/* Access to the client_data_list is protected by the client_data_lock
1955 	 * spinlock and the lists_rwsem read-write semaphore */
1956 	struct list_head              client_data_list;
1957 
1958 	struct ib_cache               cache;
1959 	/**
1960 	 * port_immutable is indexed by port number
1961 	 */
1962 	struct ib_port_immutable     *port_immutable;
1963 
1964 	int			      num_comp_vectors;
1965 
1966 	struct iw_cm_verbs	     *iwcm;
1967 
1968 	/**
1969 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1970 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
1971 	 *   core when the device is removed.  A lifespan of -1 in the return
1972 	 *   struct tells the core to set a default lifespan.
1973 	 */
1974 	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
1975 						     u8 port_num);
1976 	/**
1977 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1978 	 * @index - The index in the value array we wish to have updated, or
1979 	 *   num_counters if we want all stats updated
1980 	 * Return codes -
1981 	 *   < 0 - Error, no counters updated
1982 	 *   index - Updated the single counter pointed to by index
1983 	 *   num_counters - Updated all counters (will reset the timestamp
1984 	 *     and prevent further calls for lifespan milliseconds)
1985 	 * Drivers are allowed to update all counters in leiu of just the
1986 	 *   one given in index at their option
1987 	 */
1988 	int		           (*get_hw_stats)(struct ib_device *device,
1989 						   struct rdma_hw_stats *stats,
1990 						   u8 port, int index);
1991 	int		           (*query_device)(struct ib_device *device,
1992 						   struct ib_device_attr *device_attr,
1993 						   struct ib_udata *udata);
1994 	int		           (*query_port)(struct ib_device *device,
1995 						 u8 port_num,
1996 						 struct ib_port_attr *port_attr);
1997 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1998 						     u8 port_num);
1999 	/* When calling get_netdev, the HW vendor's driver should return the
2000 	 * net device of device @device at port @port_num or NULL if such
2001 	 * a net device doesn't exist. The vendor driver should call dev_hold
2002 	 * on this net device. The HW vendor's device driver must guarantee
2003 	 * that this function returns NULL before the net device reaches
2004 	 * NETDEV_UNREGISTER_FINAL state.
2005 	 */
2006 	struct net_device	  *(*get_netdev)(struct ib_device *device,
2007 						 u8 port_num);
2008 	int		           (*query_gid)(struct ib_device *device,
2009 						u8 port_num, int index,
2010 						union ib_gid *gid);
2011 	/* When calling add_gid, the HW vendor's driver should
2012 	 * add the gid of device @device at gid index @index of
2013 	 * port @port_num to be @gid. Meta-info of that gid (for example,
2014 	 * the network device related to this gid is available
2015 	 * at @attr. @context allows the HW vendor driver to store extra
2016 	 * information together with a GID entry. The HW vendor may allocate
2017 	 * memory to contain this information and store it in @context when a
2018 	 * new GID entry is written to. Params are consistent until the next
2019 	 * call of add_gid or delete_gid. The function should return 0 on
2020 	 * success or error otherwise. The function could be called
2021 	 * concurrently for different ports. This function is only called
2022 	 * when roce_gid_table is used.
2023 	 */
2024 	int		           (*add_gid)(struct ib_device *device,
2025 					      u8 port_num,
2026 					      unsigned int index,
2027 					      const union ib_gid *gid,
2028 					      const struct ib_gid_attr *attr,
2029 					      void **context);
2030 	/* When calling del_gid, the HW vendor's driver should delete the
2031 	 * gid of device @device at gid index @index of port @port_num.
2032 	 * Upon the deletion of a GID entry, the HW vendor must free any
2033 	 * allocated memory. The caller will clear @context afterwards.
2034 	 * This function is only called when roce_gid_table is used.
2035 	 */
2036 	int		           (*del_gid)(struct ib_device *device,
2037 					      u8 port_num,
2038 					      unsigned int index,
2039 					      void **context);
2040 	int		           (*query_pkey)(struct ib_device *device,
2041 						 u8 port_num, u16 index, u16 *pkey);
2042 	int		           (*modify_device)(struct ib_device *device,
2043 						    int device_modify_mask,
2044 						    struct ib_device_modify *device_modify);
2045 	int		           (*modify_port)(struct ib_device *device,
2046 						  u8 port_num, int port_modify_mask,
2047 						  struct ib_port_modify *port_modify);
2048 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
2049 						     struct ib_udata *udata);
2050 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
2051 	int                        (*mmap)(struct ib_ucontext *context,
2052 					   struct vm_area_struct *vma);
2053 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
2054 					       struct ib_ucontext *context,
2055 					       struct ib_udata *udata);
2056 	int                        (*dealloc_pd)(struct ib_pd *pd);
2057 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
2058 						struct rdma_ah_attr *ah_attr,
2059 						struct ib_udata *udata);
2060 	int                        (*modify_ah)(struct ib_ah *ah,
2061 						struct rdma_ah_attr *ah_attr);
2062 	int                        (*query_ah)(struct ib_ah *ah,
2063 					       struct rdma_ah_attr *ah_attr);
2064 	int                        (*destroy_ah)(struct ib_ah *ah);
2065 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
2066 						 struct ib_srq_init_attr *srq_init_attr,
2067 						 struct ib_udata *udata);
2068 	int                        (*modify_srq)(struct ib_srq *srq,
2069 						 struct ib_srq_attr *srq_attr,
2070 						 enum ib_srq_attr_mask srq_attr_mask,
2071 						 struct ib_udata *udata);
2072 	int                        (*query_srq)(struct ib_srq *srq,
2073 						struct ib_srq_attr *srq_attr);
2074 	int                        (*destroy_srq)(struct ib_srq *srq);
2075 	int                        (*post_srq_recv)(struct ib_srq *srq,
2076 						    struct ib_recv_wr *recv_wr,
2077 						    struct ib_recv_wr **bad_recv_wr);
2078 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
2079 						struct ib_qp_init_attr *qp_init_attr,
2080 						struct ib_udata *udata);
2081 	int                        (*modify_qp)(struct ib_qp *qp,
2082 						struct ib_qp_attr *qp_attr,
2083 						int qp_attr_mask,
2084 						struct ib_udata *udata);
2085 	int                        (*query_qp)(struct ib_qp *qp,
2086 					       struct ib_qp_attr *qp_attr,
2087 					       int qp_attr_mask,
2088 					       struct ib_qp_init_attr *qp_init_attr);
2089 	int                        (*destroy_qp)(struct ib_qp *qp);
2090 	int                        (*post_send)(struct ib_qp *qp,
2091 						struct ib_send_wr *send_wr,
2092 						struct ib_send_wr **bad_send_wr);
2093 	int                        (*post_recv)(struct ib_qp *qp,
2094 						struct ib_recv_wr *recv_wr,
2095 						struct ib_recv_wr **bad_recv_wr);
2096 	struct ib_cq *             (*create_cq)(struct ib_device *device,
2097 						const struct ib_cq_init_attr *attr,
2098 						struct ib_ucontext *context,
2099 						struct ib_udata *udata);
2100 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2101 						u16 cq_period);
2102 	int                        (*destroy_cq)(struct ib_cq *cq);
2103 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2104 						struct ib_udata *udata);
2105 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2106 					      struct ib_wc *wc);
2107 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2108 	int                        (*req_notify_cq)(struct ib_cq *cq,
2109 						    enum ib_cq_notify_flags flags);
2110 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
2111 						      int wc_cnt);
2112 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2113 						 int mr_access_flags);
2114 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2115 						  u64 start, u64 length,
2116 						  u64 virt_addr,
2117 						  int mr_access_flags,
2118 						  struct ib_udata *udata);
2119 	int			   (*rereg_user_mr)(struct ib_mr *mr,
2120 						    int flags,
2121 						    u64 start, u64 length,
2122 						    u64 virt_addr,
2123 						    int mr_access_flags,
2124 						    struct ib_pd *pd,
2125 						    struct ib_udata *udata);
2126 	int                        (*dereg_mr)(struct ib_mr *mr);
2127 	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
2128 					       enum ib_mr_type mr_type,
2129 					       u32 max_num_sg);
2130 	int                        (*map_mr_sg)(struct ib_mr *mr,
2131 						struct scatterlist *sg,
2132 						int sg_nents,
2133 						unsigned int *sg_offset);
2134 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2135 					       enum ib_mw_type type,
2136 					       struct ib_udata *udata);
2137 	int                        (*dealloc_mw)(struct ib_mw *mw);
2138 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2139 						int mr_access_flags,
2140 						struct ib_fmr_attr *fmr_attr);
2141 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2142 						   u64 *page_list, int list_len,
2143 						   u64 iova);
2144 	int		           (*unmap_fmr)(struct list_head *fmr_list);
2145 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2146 	int                        (*attach_mcast)(struct ib_qp *qp,
2147 						   union ib_gid *gid,
2148 						   u16 lid);
2149 	int                        (*detach_mcast)(struct ib_qp *qp,
2150 						   union ib_gid *gid,
2151 						   u16 lid);
2152 	int                        (*process_mad)(struct ib_device *device,
2153 						  int process_mad_flags,
2154 						  u8 port_num,
2155 						  const struct ib_wc *in_wc,
2156 						  const struct ib_grh *in_grh,
2157 						  const struct ib_mad_hdr *in_mad,
2158 						  size_t in_mad_size,
2159 						  struct ib_mad_hdr *out_mad,
2160 						  size_t *out_mad_size,
2161 						  u16 *out_mad_pkey_index);
2162 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2163 						 struct ib_ucontext *ucontext,
2164 						 struct ib_udata *udata);
2165 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2166 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2167 						  struct ib_flow_attr
2168 						  *flow_attr,
2169 						  int domain);
2170 	int			   (*destroy_flow)(struct ib_flow *flow_id);
2171 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2172 						      struct ib_mr_status *mr_status);
2173 	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2174 	void			   (*drain_rq)(struct ib_qp *qp);
2175 	void			   (*drain_sq)(struct ib_qp *qp);
2176 	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2177 							int state);
2178 	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2179 						   struct ifla_vf_info *ivf);
2180 	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2181 						   struct ifla_vf_stats *stats);
2182 	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2183 						  int type);
2184 	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2185 						struct ib_wq_init_attr *init_attr,
2186 						struct ib_udata *udata);
2187 	int			   (*destroy_wq)(struct ib_wq *wq);
2188 	int			   (*modify_wq)(struct ib_wq *wq,
2189 						struct ib_wq_attr *attr,
2190 						u32 wq_attr_mask,
2191 						struct ib_udata *udata);
2192 	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2193 							   struct ib_rwq_ind_table_init_attr *init_attr,
2194 							   struct ib_udata *udata);
2195 	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2196 	/**
2197 	 * rdma netdev operations
2198 	 *
2199 	 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2200 	 * doesn't support the specified rdma netdev type.
2201 	 */
2202 	struct net_device *(*alloc_rdma_netdev)(
2203 					struct ib_device *device,
2204 					u8 port_num,
2205 					enum rdma_netdev_t type,
2206 					const char *name,
2207 					unsigned char name_assign_type,
2208 					void (*setup)(struct net_device *));
2209 	void (*free_rdma_netdev)(struct net_device *netdev);
2210 
2211 	struct module               *owner;
2212 	struct device                dev;
2213 	struct kobject               *ports_parent;
2214 	struct list_head             port_list;
2215 
2216 	enum {
2217 		IB_DEV_UNINITIALIZED,
2218 		IB_DEV_REGISTERED,
2219 		IB_DEV_UNREGISTERED
2220 	}                            reg_state;
2221 
2222 	int			     uverbs_abi_ver;
2223 	u64			     uverbs_cmd_mask;
2224 	u64			     uverbs_ex_cmd_mask;
2225 
2226 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2227 	__be64			     node_guid;
2228 	u32			     local_dma_lkey;
2229 	u16                          is_switch:1;
2230 	u8                           node_type;
2231 	u8                           phys_port_cnt;
2232 	struct ib_device_attr        attrs;
2233 	struct attribute_group	     *hw_stats_ag;
2234 	struct rdma_hw_stats         *hw_stats;
2235 
2236 #ifdef CONFIG_CGROUP_RDMA
2237 	struct rdmacg_device         cg_device;
2238 #endif
2239 
2240 	/**
2241 	 * The following mandatory functions are used only at device
2242 	 * registration.  Keep functions such as these at the end of this
2243 	 * structure to avoid cache line misses when accessing struct ib_device
2244 	 * in fast paths.
2245 	 */
2246 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2247 	void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2248 };
2249 
2250 struct ib_client {
2251 	char  *name;
2252 	void (*add)   (struct ib_device *);
2253 	void (*remove)(struct ib_device *, void *client_data);
2254 
2255 	/* Returns the net_dev belonging to this ib_client and matching the
2256 	 * given parameters.
2257 	 * @dev:	 An RDMA device that the net_dev use for communication.
2258 	 * @port:	 A physical port number on the RDMA device.
2259 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2260 	 * @gid:	 A GID that the net_dev uses to communicate.
2261 	 * @addr:	 An IP address the net_dev is configured with.
2262 	 * @client_data: The device's client data set by ib_set_client_data().
2263 	 *
2264 	 * An ib_client that implements a net_dev on top of RDMA devices
2265 	 * (such as IP over IB) should implement this callback, allowing the
2266 	 * rdma_cm module to find the right net_dev for a given request.
2267 	 *
2268 	 * The caller is responsible for calling dev_put on the returned
2269 	 * netdev. */
2270 	struct net_device *(*get_net_dev_by_params)(
2271 			struct ib_device *dev,
2272 			u8 port,
2273 			u16 pkey,
2274 			const union ib_gid *gid,
2275 			const struct sockaddr *addr,
2276 			void *client_data);
2277 	struct list_head list;
2278 };
2279 
2280 struct ib_device *ib_alloc_device(size_t size);
2281 void ib_dealloc_device(struct ib_device *device);
2282 
2283 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2284 
2285 int ib_register_device(struct ib_device *device,
2286 		       int (*port_callback)(struct ib_device *,
2287 					    u8, struct kobject *));
2288 void ib_unregister_device(struct ib_device *device);
2289 
2290 int ib_register_client   (struct ib_client *client);
2291 void ib_unregister_client(struct ib_client *client);
2292 
2293 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2294 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2295 			 void *data);
2296 
2297 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2298 {
2299 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2300 }
2301 
2302 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2303 {
2304 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2305 }
2306 
2307 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2308 				       size_t offset,
2309 				       size_t len)
2310 {
2311 	const void __user *p = udata->inbuf + offset;
2312 	bool ret;
2313 	u8 *buf;
2314 
2315 	if (len > USHRT_MAX)
2316 		return false;
2317 
2318 	buf = memdup_user(p, len);
2319 	if (IS_ERR(buf))
2320 		return false;
2321 
2322 	ret = !memchr_inv(buf, 0, len);
2323 	kfree(buf);
2324 	return ret;
2325 }
2326 
2327 /**
2328  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2329  * contains all required attributes and no attributes not allowed for
2330  * the given QP state transition.
2331  * @cur_state: Current QP state
2332  * @next_state: Next QP state
2333  * @type: QP type
2334  * @mask: Mask of supplied QP attributes
2335  * @ll : link layer of port
2336  *
2337  * This function is a helper function that a low-level driver's
2338  * modify_qp method can use to validate the consumer's input.  It
2339  * checks that cur_state and next_state are valid QP states, that a
2340  * transition from cur_state to next_state is allowed by the IB spec,
2341  * and that the attribute mask supplied is allowed for the transition.
2342  */
2343 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2344 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
2345 		       enum rdma_link_layer ll);
2346 
2347 int ib_register_event_handler  (struct ib_event_handler *event_handler);
2348 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2349 void ib_dispatch_event(struct ib_event *event);
2350 
2351 int ib_query_port(struct ib_device *device,
2352 		  u8 port_num, struct ib_port_attr *port_attr);
2353 
2354 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2355 					       u8 port_num);
2356 
2357 /**
2358  * rdma_cap_ib_switch - Check if the device is IB switch
2359  * @device: Device to check
2360  *
2361  * Device driver is responsible for setting is_switch bit on
2362  * in ib_device structure at init time.
2363  *
2364  * Return: true if the device is IB switch.
2365  */
2366 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2367 {
2368 	return device->is_switch;
2369 }
2370 
2371 /**
2372  * rdma_start_port - Return the first valid port number for the device
2373  * specified
2374  *
2375  * @device: Device to be checked
2376  *
2377  * Return start port number
2378  */
2379 static inline u8 rdma_start_port(const struct ib_device *device)
2380 {
2381 	return rdma_cap_ib_switch(device) ? 0 : 1;
2382 }
2383 
2384 /**
2385  * rdma_end_port - Return the last valid port number for the device
2386  * specified
2387  *
2388  * @device: Device to be checked
2389  *
2390  * Return last port number
2391  */
2392 static inline u8 rdma_end_port(const struct ib_device *device)
2393 {
2394 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2395 }
2396 
2397 static inline int rdma_is_port_valid(const struct ib_device *device,
2398 				     unsigned int port)
2399 {
2400 	return (port >= rdma_start_port(device) &&
2401 		port <= rdma_end_port(device));
2402 }
2403 
2404 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2405 {
2406 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2407 }
2408 
2409 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2410 {
2411 	return device->port_immutable[port_num].core_cap_flags &
2412 		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2413 }
2414 
2415 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2416 {
2417 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2418 }
2419 
2420 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2421 {
2422 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2423 }
2424 
2425 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2426 {
2427 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2428 }
2429 
2430 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2431 {
2432 	return rdma_protocol_ib(device, port_num) ||
2433 		rdma_protocol_roce(device, port_num);
2434 }
2435 
2436 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2437 {
2438 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2439 }
2440 
2441 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2442 {
2443 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2444 }
2445 
2446 /**
2447  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2448  * Management Datagrams.
2449  * @device: Device to check
2450  * @port_num: Port number to check
2451  *
2452  * Management Datagrams (MAD) are a required part of the InfiniBand
2453  * specification and are supported on all InfiniBand devices.  A slightly
2454  * extended version are also supported on OPA interfaces.
2455  *
2456  * Return: true if the port supports sending/receiving of MAD packets.
2457  */
2458 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2459 {
2460 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2461 }
2462 
2463 /**
2464  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2465  * Management Datagrams.
2466  * @device: Device to check
2467  * @port_num: Port number to check
2468  *
2469  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2470  * datagrams with their own versions.  These OPA MADs share many but not all of
2471  * the characteristics of InfiniBand MADs.
2472  *
2473  * OPA MADs differ in the following ways:
2474  *
2475  *    1) MADs are variable size up to 2K
2476  *       IBTA defined MADs remain fixed at 256 bytes
2477  *    2) OPA SMPs must carry valid PKeys
2478  *    3) OPA SMP packets are a different format
2479  *
2480  * Return: true if the port supports OPA MAD packet formats.
2481  */
2482 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2483 {
2484 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2485 		== RDMA_CORE_CAP_OPA_MAD;
2486 }
2487 
2488 /**
2489  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2490  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2491  * @device: Device to check
2492  * @port_num: Port number to check
2493  *
2494  * Each InfiniBand node is required to provide a Subnet Management Agent
2495  * that the subnet manager can access.  Prior to the fabric being fully
2496  * configured by the subnet manager, the SMA is accessed via a well known
2497  * interface called the Subnet Management Interface (SMI).  This interface
2498  * uses directed route packets to communicate with the SM to get around the
2499  * chicken and egg problem of the SM needing to know what's on the fabric
2500  * in order to configure the fabric, and needing to configure the fabric in
2501  * order to send packets to the devices on the fabric.  These directed
2502  * route packets do not need the fabric fully configured in order to reach
2503  * their destination.  The SMI is the only method allowed to send
2504  * directed route packets on an InfiniBand fabric.
2505  *
2506  * Return: true if the port provides an SMI.
2507  */
2508 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2509 {
2510 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2511 }
2512 
2513 /**
2514  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2515  * Communication Manager.
2516  * @device: Device to check
2517  * @port_num: Port number to check
2518  *
2519  * The InfiniBand Communication Manager is one of many pre-defined General
2520  * Service Agents (GSA) that are accessed via the General Service
2521  * Interface (GSI).  It's role is to facilitate establishment of connections
2522  * between nodes as well as other management related tasks for established
2523  * connections.
2524  *
2525  * Return: true if the port supports an IB CM (this does not guarantee that
2526  * a CM is actually running however).
2527  */
2528 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2529 {
2530 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2531 }
2532 
2533 /**
2534  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2535  * Communication Manager.
2536  * @device: Device to check
2537  * @port_num: Port number to check
2538  *
2539  * Similar to above, but specific to iWARP connections which have a different
2540  * managment protocol than InfiniBand.
2541  *
2542  * Return: true if the port supports an iWARP CM (this does not guarantee that
2543  * a CM is actually running however).
2544  */
2545 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2546 {
2547 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2548 }
2549 
2550 /**
2551  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2552  * Subnet Administration.
2553  * @device: Device to check
2554  * @port_num: Port number to check
2555  *
2556  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2557  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2558  * fabrics, devices should resolve routes to other hosts by contacting the
2559  * SA to query the proper route.
2560  *
2561  * Return: true if the port should act as a client to the fabric Subnet
2562  * Administration interface.  This does not imply that the SA service is
2563  * running locally.
2564  */
2565 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2566 {
2567 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2568 }
2569 
2570 /**
2571  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2572  * Multicast.
2573  * @device: Device to check
2574  * @port_num: Port number to check
2575  *
2576  * InfiniBand multicast registration is more complex than normal IPv4 or
2577  * IPv6 multicast registration.  Each Host Channel Adapter must register
2578  * with the Subnet Manager when it wishes to join a multicast group.  It
2579  * should do so only once regardless of how many queue pairs it subscribes
2580  * to this group.  And it should leave the group only after all queue pairs
2581  * attached to the group have been detached.
2582  *
2583  * Return: true if the port must undertake the additional adminstrative
2584  * overhead of registering/unregistering with the SM and tracking of the
2585  * total number of queue pairs attached to the multicast group.
2586  */
2587 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2588 {
2589 	return rdma_cap_ib_sa(device, port_num);
2590 }
2591 
2592 /**
2593  * rdma_cap_af_ib - Check if the port of device has the capability
2594  * Native Infiniband Address.
2595  * @device: Device to check
2596  * @port_num: Port number to check
2597  *
2598  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2599  * GID.  RoCE uses a different mechanism, but still generates a GID via
2600  * a prescribed mechanism and port specific data.
2601  *
2602  * Return: true if the port uses a GID address to identify devices on the
2603  * network.
2604  */
2605 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2606 {
2607 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2608 }
2609 
2610 /**
2611  * rdma_cap_eth_ah - Check if the port of device has the capability
2612  * Ethernet Address Handle.
2613  * @device: Device to check
2614  * @port_num: Port number to check
2615  *
2616  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2617  * to fabricate GIDs over Ethernet/IP specific addresses native to the
2618  * port.  Normally, packet headers are generated by the sending host
2619  * adapter, but when sending connectionless datagrams, we must manually
2620  * inject the proper headers for the fabric we are communicating over.
2621  *
2622  * Return: true if we are running as a RoCE port and must force the
2623  * addition of a Global Route Header built from our Ethernet Address
2624  * Handle into our header list for connectionless packets.
2625  */
2626 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2627 {
2628 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2629 }
2630 
2631 /**
2632  * rdma_cap_opa_ah - Check if the port of device supports
2633  * OPA Address handles
2634  * @device: Device to check
2635  * @port_num: Port number to check
2636  *
2637  * Return: true if we are running on an OPA device which supports
2638  * the extended OPA addressing.
2639  */
2640 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2641 {
2642 	return (device->port_immutable[port_num].core_cap_flags &
2643 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2644 }
2645 
2646 /**
2647  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2648  *
2649  * @device: Device
2650  * @port_num: Port number
2651  *
2652  * This MAD size includes the MAD headers and MAD payload.  No other headers
2653  * are included.
2654  *
2655  * Return the max MAD size required by the Port.  Will return 0 if the port
2656  * does not support MADs
2657  */
2658 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2659 {
2660 	return device->port_immutable[port_num].max_mad_size;
2661 }
2662 
2663 /**
2664  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2665  * @device: Device to check
2666  * @port_num: Port number to check
2667  *
2668  * RoCE GID table mechanism manages the various GIDs for a device.
2669  *
2670  * NOTE: if allocating the port's GID table has failed, this call will still
2671  * return true, but any RoCE GID table API will fail.
2672  *
2673  * Return: true if the port uses RoCE GID table mechanism in order to manage
2674  * its GIDs.
2675  */
2676 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2677 					   u8 port_num)
2678 {
2679 	return rdma_protocol_roce(device, port_num) &&
2680 		device->add_gid && device->del_gid;
2681 }
2682 
2683 /*
2684  * Check if the device supports READ W/ INVALIDATE.
2685  */
2686 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2687 {
2688 	/*
2689 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
2690 	 * has support for it yet.
2691 	 */
2692 	return rdma_protocol_iwarp(dev, port_num);
2693 }
2694 
2695 int ib_query_gid(struct ib_device *device,
2696 		 u8 port_num, int index, union ib_gid *gid,
2697 		 struct ib_gid_attr *attr);
2698 
2699 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2700 			 int state);
2701 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2702 		     struct ifla_vf_info *info);
2703 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2704 		    struct ifla_vf_stats *stats);
2705 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2706 		   int type);
2707 
2708 int ib_query_pkey(struct ib_device *device,
2709 		  u8 port_num, u16 index, u16 *pkey);
2710 
2711 int ib_modify_device(struct ib_device *device,
2712 		     int device_modify_mask,
2713 		     struct ib_device_modify *device_modify);
2714 
2715 int ib_modify_port(struct ib_device *device,
2716 		   u8 port_num, int port_modify_mask,
2717 		   struct ib_port_modify *port_modify);
2718 
2719 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2720 		enum ib_gid_type gid_type, struct net_device *ndev,
2721 		u8 *port_num, u16 *index);
2722 
2723 int ib_find_pkey(struct ib_device *device,
2724 		 u8 port_num, u16 pkey, u16 *index);
2725 
2726 enum ib_pd_flags {
2727 	/*
2728 	 * Create a memory registration for all memory in the system and place
2729 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
2730 	 * ULPs to avoid the overhead of dynamic MRs.
2731 	 *
2732 	 * This flag is generally considered unsafe and must only be used in
2733 	 * extremly trusted environments.  Every use of it will log a warning
2734 	 * in the kernel log.
2735 	 */
2736 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
2737 };
2738 
2739 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2740 		const char *caller);
2741 #define ib_alloc_pd(device, flags) \
2742 	__ib_alloc_pd((device), (flags), __func__)
2743 void ib_dealloc_pd(struct ib_pd *pd);
2744 
2745 /**
2746  * rdma_create_ah - Creates an address handle for the given address vector.
2747  * @pd: The protection domain associated with the address handle.
2748  * @ah_attr: The attributes of the address vector.
2749  *
2750  * The address handle is used to reference a local or global destination
2751  * in all UD QP post sends.
2752  */
2753 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
2754 
2755 /**
2756  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2757  *   work completion.
2758  * @hdr: the L3 header to parse
2759  * @net_type: type of header to parse
2760  * @sgid: place to store source gid
2761  * @dgid: place to store destination gid
2762  */
2763 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2764 			      enum rdma_network_type net_type,
2765 			      union ib_gid *sgid, union ib_gid *dgid);
2766 
2767 /**
2768  * ib_get_rdma_header_version - Get the header version
2769  * @hdr: the L3 header to parse
2770  */
2771 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2772 
2773 /**
2774  * ib_init_ah_from_wc - Initializes address handle attributes from a
2775  *   work completion.
2776  * @device: Device on which the received message arrived.
2777  * @port_num: Port on which the received message arrived.
2778  * @wc: Work completion associated with the received message.
2779  * @grh: References the received global route header.  This parameter is
2780  *   ignored unless the work completion indicates that the GRH is valid.
2781  * @ah_attr: Returned attributes that can be used when creating an address
2782  *   handle for replying to the message.
2783  */
2784 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2785 		       const struct ib_wc *wc, const struct ib_grh *grh,
2786 		       struct rdma_ah_attr *ah_attr);
2787 
2788 /**
2789  * ib_create_ah_from_wc - Creates an address handle associated with the
2790  *   sender of the specified work completion.
2791  * @pd: The protection domain associated with the address handle.
2792  * @wc: Work completion information associated with a received message.
2793  * @grh: References the received global route header.  This parameter is
2794  *   ignored unless the work completion indicates that the GRH is valid.
2795  * @port_num: The outbound port number to associate with the address.
2796  *
2797  * The address handle is used to reference a local or global destination
2798  * in all UD QP post sends.
2799  */
2800 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2801 				   const struct ib_grh *grh, u8 port_num);
2802 
2803 /**
2804  * rdma_modify_ah - Modifies the address vector associated with an address
2805  *   handle.
2806  * @ah: The address handle to modify.
2807  * @ah_attr: The new address vector attributes to associate with the
2808  *   address handle.
2809  */
2810 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2811 
2812 /**
2813  * rdma_query_ah - Queries the address vector associated with an address
2814  *   handle.
2815  * @ah: The address handle to query.
2816  * @ah_attr: The address vector attributes associated with the address
2817  *   handle.
2818  */
2819 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2820 
2821 /**
2822  * rdma_destroy_ah - Destroys an address handle.
2823  * @ah: The address handle to destroy.
2824  */
2825 int rdma_destroy_ah(struct ib_ah *ah);
2826 
2827 /**
2828  * ib_create_srq - Creates a SRQ associated with the specified protection
2829  *   domain.
2830  * @pd: The protection domain associated with the SRQ.
2831  * @srq_init_attr: A list of initial attributes required to create the
2832  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
2833  *   the actual capabilities of the created SRQ.
2834  *
2835  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2836  * requested size of the SRQ, and set to the actual values allocated
2837  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
2838  * will always be at least as large as the requested values.
2839  */
2840 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2841 			     struct ib_srq_init_attr *srq_init_attr);
2842 
2843 /**
2844  * ib_modify_srq - Modifies the attributes for the specified SRQ.
2845  * @srq: The SRQ to modify.
2846  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
2847  *   the current values of selected SRQ attributes are returned.
2848  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2849  *   are being modified.
2850  *
2851  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2852  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2853  * the number of receives queued drops below the limit.
2854  */
2855 int ib_modify_srq(struct ib_srq *srq,
2856 		  struct ib_srq_attr *srq_attr,
2857 		  enum ib_srq_attr_mask srq_attr_mask);
2858 
2859 /**
2860  * ib_query_srq - Returns the attribute list and current values for the
2861  *   specified SRQ.
2862  * @srq: The SRQ to query.
2863  * @srq_attr: The attributes of the specified SRQ.
2864  */
2865 int ib_query_srq(struct ib_srq *srq,
2866 		 struct ib_srq_attr *srq_attr);
2867 
2868 /**
2869  * ib_destroy_srq - Destroys the specified SRQ.
2870  * @srq: The SRQ to destroy.
2871  */
2872 int ib_destroy_srq(struct ib_srq *srq);
2873 
2874 /**
2875  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2876  * @srq: The SRQ to post the work request on.
2877  * @recv_wr: A list of work requests to post on the receive queue.
2878  * @bad_recv_wr: On an immediate failure, this parameter will reference
2879  *   the work request that failed to be posted on the QP.
2880  */
2881 static inline int ib_post_srq_recv(struct ib_srq *srq,
2882 				   struct ib_recv_wr *recv_wr,
2883 				   struct ib_recv_wr **bad_recv_wr)
2884 {
2885 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2886 }
2887 
2888 /**
2889  * ib_create_qp - Creates a QP associated with the specified protection
2890  *   domain.
2891  * @pd: The protection domain associated with the QP.
2892  * @qp_init_attr: A list of initial attributes required to create the
2893  *   QP.  If QP creation succeeds, then the attributes are updated to
2894  *   the actual capabilities of the created QP.
2895  */
2896 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2897 			   struct ib_qp_init_attr *qp_init_attr);
2898 
2899 /**
2900  * ib_modify_qp - Modifies the attributes for the specified QP and then
2901  *   transitions the QP to the given state.
2902  * @qp: The QP to modify.
2903  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
2904  *   the current values of selected QP attributes are returned.
2905  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2906  *   are being modified.
2907  */
2908 int ib_modify_qp(struct ib_qp *qp,
2909 		 struct ib_qp_attr *qp_attr,
2910 		 int qp_attr_mask);
2911 
2912 /**
2913  * ib_query_qp - Returns the attribute list and current values for the
2914  *   specified QP.
2915  * @qp: The QP to query.
2916  * @qp_attr: The attributes of the specified QP.
2917  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2918  * @qp_init_attr: Additional attributes of the selected QP.
2919  *
2920  * The qp_attr_mask may be used to limit the query to gathering only the
2921  * selected attributes.
2922  */
2923 int ib_query_qp(struct ib_qp *qp,
2924 		struct ib_qp_attr *qp_attr,
2925 		int qp_attr_mask,
2926 		struct ib_qp_init_attr *qp_init_attr);
2927 
2928 /**
2929  * ib_destroy_qp - Destroys the specified QP.
2930  * @qp: The QP to destroy.
2931  */
2932 int ib_destroy_qp(struct ib_qp *qp);
2933 
2934 /**
2935  * ib_open_qp - Obtain a reference to an existing sharable QP.
2936  * @xrcd - XRC domain
2937  * @qp_open_attr: Attributes identifying the QP to open.
2938  *
2939  * Returns a reference to a sharable QP.
2940  */
2941 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2942 			 struct ib_qp_open_attr *qp_open_attr);
2943 
2944 /**
2945  * ib_close_qp - Release an external reference to a QP.
2946  * @qp: The QP handle to release
2947  *
2948  * The opened QP handle is released by the caller.  The underlying
2949  * shared QP is not destroyed until all internal references are released.
2950  */
2951 int ib_close_qp(struct ib_qp *qp);
2952 
2953 /**
2954  * ib_post_send - Posts a list of work requests to the send queue of
2955  *   the specified QP.
2956  * @qp: The QP to post the work request on.
2957  * @send_wr: A list of work requests to post on the send queue.
2958  * @bad_send_wr: On an immediate failure, this parameter will reference
2959  *   the work request that failed to be posted on the QP.
2960  *
2961  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2962  * error is returned, the QP state shall not be affected,
2963  * ib_post_send() will return an immediate error after queueing any
2964  * earlier work requests in the list.
2965  */
2966 static inline int ib_post_send(struct ib_qp *qp,
2967 			       struct ib_send_wr *send_wr,
2968 			       struct ib_send_wr **bad_send_wr)
2969 {
2970 	return qp->device->post_send(qp, send_wr, bad_send_wr);
2971 }
2972 
2973 /**
2974  * ib_post_recv - Posts a list of work requests to the receive queue of
2975  *   the specified QP.
2976  * @qp: The QP to post the work request on.
2977  * @recv_wr: A list of work requests to post on the receive queue.
2978  * @bad_recv_wr: On an immediate failure, this parameter will reference
2979  *   the work request that failed to be posted on the QP.
2980  */
2981 static inline int ib_post_recv(struct ib_qp *qp,
2982 			       struct ib_recv_wr *recv_wr,
2983 			       struct ib_recv_wr **bad_recv_wr)
2984 {
2985 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2986 }
2987 
2988 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2989 		int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2990 void ib_free_cq(struct ib_cq *cq);
2991 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2992 
2993 /**
2994  * ib_create_cq - Creates a CQ on the specified device.
2995  * @device: The device on which to create the CQ.
2996  * @comp_handler: A user-specified callback that is invoked when a
2997  *   completion event occurs on the CQ.
2998  * @event_handler: A user-specified callback that is invoked when an
2999  *   asynchronous event not associated with a completion occurs on the CQ.
3000  * @cq_context: Context associated with the CQ returned to the user via
3001  *   the associated completion and event handlers.
3002  * @cq_attr: The attributes the CQ should be created upon.
3003  *
3004  * Users can examine the cq structure to determine the actual CQ size.
3005  */
3006 struct ib_cq *ib_create_cq(struct ib_device *device,
3007 			   ib_comp_handler comp_handler,
3008 			   void (*event_handler)(struct ib_event *, void *),
3009 			   void *cq_context,
3010 			   const struct ib_cq_init_attr *cq_attr);
3011 
3012 /**
3013  * ib_resize_cq - Modifies the capacity of the CQ.
3014  * @cq: The CQ to resize.
3015  * @cqe: The minimum size of the CQ.
3016  *
3017  * Users can examine the cq structure to determine the actual CQ size.
3018  */
3019 int ib_resize_cq(struct ib_cq *cq, int cqe);
3020 
3021 /**
3022  * ib_modify_cq - Modifies moderation params of the CQ
3023  * @cq: The CQ to modify.
3024  * @cq_count: number of CQEs that will trigger an event
3025  * @cq_period: max period of time in usec before triggering an event
3026  *
3027  */
3028 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3029 
3030 /**
3031  * ib_destroy_cq - Destroys the specified CQ.
3032  * @cq: The CQ to destroy.
3033  */
3034 int ib_destroy_cq(struct ib_cq *cq);
3035 
3036 /**
3037  * ib_poll_cq - poll a CQ for completion(s)
3038  * @cq:the CQ being polled
3039  * @num_entries:maximum number of completions to return
3040  * @wc:array of at least @num_entries &struct ib_wc where completions
3041  *   will be returned
3042  *
3043  * Poll a CQ for (possibly multiple) completions.  If the return value
3044  * is < 0, an error occurred.  If the return value is >= 0, it is the
3045  * number of completions returned.  If the return value is
3046  * non-negative and < num_entries, then the CQ was emptied.
3047  */
3048 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3049 			     struct ib_wc *wc)
3050 {
3051 	return cq->device->poll_cq(cq, num_entries, wc);
3052 }
3053 
3054 /**
3055  * ib_peek_cq - Returns the number of unreaped completions currently
3056  *   on the specified CQ.
3057  * @cq: The CQ to peek.
3058  * @wc_cnt: A minimum number of unreaped completions to check for.
3059  *
3060  * If the number of unreaped completions is greater than or equal to wc_cnt,
3061  * this function returns wc_cnt, otherwise, it returns the actual number of
3062  * unreaped completions.
3063  */
3064 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3065 
3066 /**
3067  * ib_req_notify_cq - Request completion notification on a CQ.
3068  * @cq: The CQ to generate an event for.
3069  * @flags:
3070  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3071  *   to request an event on the next solicited event or next work
3072  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3073  *   may also be |ed in to request a hint about missed events, as
3074  *   described below.
3075  *
3076  * Return Value:
3077  *    < 0 means an error occurred while requesting notification
3078  *   == 0 means notification was requested successfully, and if
3079  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3080  *        were missed and it is safe to wait for another event.  In
3081  *        this case is it guaranteed that any work completions added
3082  *        to the CQ since the last CQ poll will trigger a completion
3083  *        notification event.
3084  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3085  *        in.  It means that the consumer must poll the CQ again to
3086  *        make sure it is empty to avoid missing an event because of a
3087  *        race between requesting notification and an entry being
3088  *        added to the CQ.  This return value means it is possible
3089  *        (but not guaranteed) that a work completion has been added
3090  *        to the CQ since the last poll without triggering a
3091  *        completion notification event.
3092  */
3093 static inline int ib_req_notify_cq(struct ib_cq *cq,
3094 				   enum ib_cq_notify_flags flags)
3095 {
3096 	return cq->device->req_notify_cq(cq, flags);
3097 }
3098 
3099 /**
3100  * ib_req_ncomp_notif - Request completion notification when there are
3101  *   at least the specified number of unreaped completions on the CQ.
3102  * @cq: The CQ to generate an event for.
3103  * @wc_cnt: The number of unreaped completions that should be on the
3104  *   CQ before an event is generated.
3105  */
3106 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3107 {
3108 	return cq->device->req_ncomp_notif ?
3109 		cq->device->req_ncomp_notif(cq, wc_cnt) :
3110 		-ENOSYS;
3111 }
3112 
3113 /**
3114  * ib_dma_mapping_error - check a DMA addr for error
3115  * @dev: The device for which the dma_addr was created
3116  * @dma_addr: The DMA address to check
3117  */
3118 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3119 {
3120 	return dma_mapping_error(dev->dma_device, dma_addr);
3121 }
3122 
3123 /**
3124  * ib_dma_map_single - Map a kernel virtual address to DMA address
3125  * @dev: The device for which the dma_addr is to be created
3126  * @cpu_addr: The kernel virtual address
3127  * @size: The size of the region in bytes
3128  * @direction: The direction of the DMA
3129  */
3130 static inline u64 ib_dma_map_single(struct ib_device *dev,
3131 				    void *cpu_addr, size_t size,
3132 				    enum dma_data_direction direction)
3133 {
3134 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3135 }
3136 
3137 /**
3138  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3139  * @dev: The device for which the DMA address was created
3140  * @addr: The DMA address
3141  * @size: The size of the region in bytes
3142  * @direction: The direction of the DMA
3143  */
3144 static inline void ib_dma_unmap_single(struct ib_device *dev,
3145 				       u64 addr, size_t size,
3146 				       enum dma_data_direction direction)
3147 {
3148 	dma_unmap_single(dev->dma_device, addr, size, direction);
3149 }
3150 
3151 /**
3152  * ib_dma_map_page - Map a physical page to DMA address
3153  * @dev: The device for which the dma_addr is to be created
3154  * @page: The page to be mapped
3155  * @offset: The offset within the page
3156  * @size: The size of the region in bytes
3157  * @direction: The direction of the DMA
3158  */
3159 static inline u64 ib_dma_map_page(struct ib_device *dev,
3160 				  struct page *page,
3161 				  unsigned long offset,
3162 				  size_t size,
3163 					 enum dma_data_direction direction)
3164 {
3165 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3166 }
3167 
3168 /**
3169  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3170  * @dev: The device for which the DMA address was created
3171  * @addr: The DMA address
3172  * @size: The size of the region in bytes
3173  * @direction: The direction of the DMA
3174  */
3175 static inline void ib_dma_unmap_page(struct ib_device *dev,
3176 				     u64 addr, size_t size,
3177 				     enum dma_data_direction direction)
3178 {
3179 	dma_unmap_page(dev->dma_device, addr, size, direction);
3180 }
3181 
3182 /**
3183  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3184  * @dev: The device for which the DMA addresses are to be created
3185  * @sg: The array of scatter/gather entries
3186  * @nents: The number of scatter/gather entries
3187  * @direction: The direction of the DMA
3188  */
3189 static inline int ib_dma_map_sg(struct ib_device *dev,
3190 				struct scatterlist *sg, int nents,
3191 				enum dma_data_direction direction)
3192 {
3193 	return dma_map_sg(dev->dma_device, sg, nents, direction);
3194 }
3195 
3196 /**
3197  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3198  * @dev: The device for which the DMA addresses were created
3199  * @sg: The array of scatter/gather entries
3200  * @nents: The number of scatter/gather entries
3201  * @direction: The direction of the DMA
3202  */
3203 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3204 				   struct scatterlist *sg, int nents,
3205 				   enum dma_data_direction direction)
3206 {
3207 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
3208 }
3209 
3210 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3211 				      struct scatterlist *sg, int nents,
3212 				      enum dma_data_direction direction,
3213 				      unsigned long dma_attrs)
3214 {
3215 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3216 				dma_attrs);
3217 }
3218 
3219 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3220 					 struct scatterlist *sg, int nents,
3221 					 enum dma_data_direction direction,
3222 					 unsigned long dma_attrs)
3223 {
3224 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3225 }
3226 /**
3227  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3228  * @dev: The device for which the DMA addresses were created
3229  * @sg: The scatter/gather entry
3230  *
3231  * Note: this function is obsolete. To do: change all occurrences of
3232  * ib_sg_dma_address() into sg_dma_address().
3233  */
3234 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3235 				    struct scatterlist *sg)
3236 {
3237 	return sg_dma_address(sg);
3238 }
3239 
3240 /**
3241  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3242  * @dev: The device for which the DMA addresses were created
3243  * @sg: The scatter/gather entry
3244  *
3245  * Note: this function is obsolete. To do: change all occurrences of
3246  * ib_sg_dma_len() into sg_dma_len().
3247  */
3248 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3249 					 struct scatterlist *sg)
3250 {
3251 	return sg_dma_len(sg);
3252 }
3253 
3254 /**
3255  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3256  * @dev: The device for which the DMA address was created
3257  * @addr: The DMA address
3258  * @size: The size of the region in bytes
3259  * @dir: The direction of the DMA
3260  */
3261 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3262 					      u64 addr,
3263 					      size_t size,
3264 					      enum dma_data_direction dir)
3265 {
3266 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3267 }
3268 
3269 /**
3270  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3271  * @dev: The device for which the DMA address was created
3272  * @addr: The DMA address
3273  * @size: The size of the region in bytes
3274  * @dir: The direction of the DMA
3275  */
3276 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3277 						 u64 addr,
3278 						 size_t size,
3279 						 enum dma_data_direction dir)
3280 {
3281 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3282 }
3283 
3284 /**
3285  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3286  * @dev: The device for which the DMA address is requested
3287  * @size: The size of the region to allocate in bytes
3288  * @dma_handle: A pointer for returning the DMA address of the region
3289  * @flag: memory allocator flags
3290  */
3291 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3292 					   size_t size,
3293 					   dma_addr_t *dma_handle,
3294 					   gfp_t flag)
3295 {
3296 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3297 }
3298 
3299 /**
3300  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3301  * @dev: The device for which the DMA addresses were allocated
3302  * @size: The size of the region
3303  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3304  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3305  */
3306 static inline void ib_dma_free_coherent(struct ib_device *dev,
3307 					size_t size, void *cpu_addr,
3308 					dma_addr_t dma_handle)
3309 {
3310 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3311 }
3312 
3313 /**
3314  * ib_dereg_mr - Deregisters a memory region and removes it from the
3315  *   HCA translation table.
3316  * @mr: The memory region to deregister.
3317  *
3318  * This function can fail, if the memory region has memory windows bound to it.
3319  */
3320 int ib_dereg_mr(struct ib_mr *mr);
3321 
3322 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3323 			  enum ib_mr_type mr_type,
3324 			  u32 max_num_sg);
3325 
3326 /**
3327  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3328  *   R_Key and L_Key.
3329  * @mr - struct ib_mr pointer to be updated.
3330  * @newkey - new key to be used.
3331  */
3332 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3333 {
3334 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3335 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3336 }
3337 
3338 /**
3339  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3340  * for calculating a new rkey for type 2 memory windows.
3341  * @rkey - the rkey to increment.
3342  */
3343 static inline u32 ib_inc_rkey(u32 rkey)
3344 {
3345 	const u32 mask = 0x000000ff;
3346 	return ((rkey + 1) & mask) | (rkey & ~mask);
3347 }
3348 
3349 /**
3350  * ib_alloc_fmr - Allocates a unmapped fast memory region.
3351  * @pd: The protection domain associated with the unmapped region.
3352  * @mr_access_flags: Specifies the memory access rights.
3353  * @fmr_attr: Attributes of the unmapped region.
3354  *
3355  * A fast memory region must be mapped before it can be used as part of
3356  * a work request.
3357  */
3358 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3359 			    int mr_access_flags,
3360 			    struct ib_fmr_attr *fmr_attr);
3361 
3362 /**
3363  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3364  * @fmr: The fast memory region to associate with the pages.
3365  * @page_list: An array of physical pages to map to the fast memory region.
3366  * @list_len: The number of pages in page_list.
3367  * @iova: The I/O virtual address to use with the mapped region.
3368  */
3369 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3370 				  u64 *page_list, int list_len,
3371 				  u64 iova)
3372 {
3373 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3374 }
3375 
3376 /**
3377  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3378  * @fmr_list: A linked list of fast memory regions to unmap.
3379  */
3380 int ib_unmap_fmr(struct list_head *fmr_list);
3381 
3382 /**
3383  * ib_dealloc_fmr - Deallocates a fast memory region.
3384  * @fmr: The fast memory region to deallocate.
3385  */
3386 int ib_dealloc_fmr(struct ib_fmr *fmr);
3387 
3388 /**
3389  * ib_attach_mcast - Attaches the specified QP to a multicast group.
3390  * @qp: QP to attach to the multicast group.  The QP must be type
3391  *   IB_QPT_UD.
3392  * @gid: Multicast group GID.
3393  * @lid: Multicast group LID in host byte order.
3394  *
3395  * In order to send and receive multicast packets, subnet
3396  * administration must have created the multicast group and configured
3397  * the fabric appropriately.  The port associated with the specified
3398  * QP must also be a member of the multicast group.
3399  */
3400 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3401 
3402 /**
3403  * ib_detach_mcast - Detaches the specified QP from a multicast group.
3404  * @qp: QP to detach from the multicast group.
3405  * @gid: Multicast group GID.
3406  * @lid: Multicast group LID in host byte order.
3407  */
3408 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3409 
3410 /**
3411  * ib_alloc_xrcd - Allocates an XRC domain.
3412  * @device: The device on which to allocate the XRC domain.
3413  */
3414 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3415 
3416 /**
3417  * ib_dealloc_xrcd - Deallocates an XRC domain.
3418  * @xrcd: The XRC domain to deallocate.
3419  */
3420 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3421 
3422 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3423 			       struct ib_flow_attr *flow_attr, int domain);
3424 int ib_destroy_flow(struct ib_flow *flow_id);
3425 
3426 static inline int ib_check_mr_access(int flags)
3427 {
3428 	/*
3429 	 * Local write permission is required if remote write or
3430 	 * remote atomic permission is also requested.
3431 	 */
3432 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3433 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3434 		return -EINVAL;
3435 
3436 	return 0;
3437 }
3438 
3439 /**
3440  * ib_check_mr_status: lightweight check of MR status.
3441  *     This routine may provide status checks on a selected
3442  *     ib_mr. first use is for signature status check.
3443  *
3444  * @mr: A memory region.
3445  * @check_mask: Bitmask of which checks to perform from
3446  *     ib_mr_status_check enumeration.
3447  * @mr_status: The container of relevant status checks.
3448  *     failed checks will be indicated in the status bitmask
3449  *     and the relevant info shall be in the error item.
3450  */
3451 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3452 		       struct ib_mr_status *mr_status);
3453 
3454 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3455 					    u16 pkey, const union ib_gid *gid,
3456 					    const struct sockaddr *addr);
3457 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3458 			   struct ib_wq_init_attr *init_attr);
3459 int ib_destroy_wq(struct ib_wq *wq);
3460 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3461 		 u32 wq_attr_mask);
3462 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3463 						 struct ib_rwq_ind_table_init_attr*
3464 						 wq_ind_table_init_attr);
3465 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3466 
3467 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3468 		 unsigned int *sg_offset, unsigned int page_size);
3469 
3470 static inline int
3471 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3472 		  unsigned int *sg_offset, unsigned int page_size)
3473 {
3474 	int n;
3475 
3476 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3477 	mr->iova = 0;
3478 
3479 	return n;
3480 }
3481 
3482 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3483 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3484 
3485 void ib_drain_rq(struct ib_qp *qp);
3486 void ib_drain_sq(struct ib_qp *qp);
3487 void ib_drain_qp(struct ib_qp *qp);
3488 
3489 int ib_resolve_eth_dmac(struct ib_device *device,
3490 			struct rdma_ah_attr *ah_attr);
3491 
3492 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3493 {
3494 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3495 		return attr->roce.dmac;
3496 	return NULL;
3497 }
3498 
3499 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3500 {
3501 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3502 		attr->ib.dlid = (u16)dlid;
3503 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3504 		attr->opa.dlid = dlid;
3505 }
3506 
3507 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3508 {
3509 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3510 		return attr->ib.dlid;
3511 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3512 		return attr->opa.dlid;
3513 	return 0;
3514 }
3515 
3516 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3517 {
3518 	attr->sl = sl;
3519 }
3520 
3521 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3522 {
3523 	return attr->sl;
3524 }
3525 
3526 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3527 					 u8 src_path_bits)
3528 {
3529 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3530 		attr->ib.src_path_bits = src_path_bits;
3531 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3532 		attr->opa.src_path_bits = src_path_bits;
3533 }
3534 
3535 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3536 {
3537 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3538 		return attr->ib.src_path_bits;
3539 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3540 		return attr->opa.src_path_bits;
3541 	return 0;
3542 }
3543 
3544 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3545 {
3546 	attr->port_num = port_num;
3547 }
3548 
3549 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3550 {
3551 	return attr->port_num;
3552 }
3553 
3554 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3555 					   u8 static_rate)
3556 {
3557 	attr->static_rate = static_rate;
3558 }
3559 
3560 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3561 {
3562 	return attr->static_rate;
3563 }
3564 
3565 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3566 					enum ib_ah_flags flag)
3567 {
3568 	attr->ah_flags = flag;
3569 }
3570 
3571 static inline enum ib_ah_flags
3572 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3573 {
3574 	return attr->ah_flags;
3575 }
3576 
3577 static inline const struct ib_global_route
3578 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3579 {
3580 	return &attr->grh;
3581 }
3582 
3583 /*To retrieve and modify the grh */
3584 static inline struct ib_global_route
3585 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3586 {
3587 	return &attr->grh;
3588 }
3589 
3590 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3591 {
3592 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3593 
3594 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3595 }
3596 
3597 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3598 					     __be64 prefix)
3599 {
3600 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3601 
3602 	grh->dgid.global.subnet_prefix = prefix;
3603 }
3604 
3605 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3606 					    __be64 if_id)
3607 {
3608 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3609 
3610 	grh->dgid.global.interface_id = if_id;
3611 }
3612 
3613 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3614 				   union ib_gid *dgid, u32 flow_label,
3615 				   u8 sgid_index, u8 hop_limit,
3616 				   u8 traffic_class)
3617 {
3618 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3619 
3620 	attr->ah_flags = IB_AH_GRH;
3621 	if (dgid)
3622 		grh->dgid = *dgid;
3623 	grh->flow_label = flow_label;
3624 	grh->sgid_index = sgid_index;
3625 	grh->hop_limit = hop_limit;
3626 	grh->traffic_class = traffic_class;
3627 }
3628 
3629 /*Get AH type */
3630 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3631 						       u32 port_num)
3632 {
3633 	if ((rdma_protocol_roce(dev, port_num)) ||
3634 	    (rdma_protocol_iwarp(dev, port_num)))
3635 		return RDMA_AH_ATTR_TYPE_ROCE;
3636 	else if ((rdma_protocol_ib(dev, port_num)) &&
3637 		 (rdma_cap_opa_ah(dev, port_num)))
3638 		return RDMA_AH_ATTR_TYPE_OPA;
3639 	else
3640 		return RDMA_AH_ATTR_TYPE_IB;
3641 }
3642 #endif /* IB_VERBS_H */
3643