1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 * 38 * $Id: ib_verbs.h 1349 2004-12-16 21:09:43Z roland $ 39 */ 40 41 #if !defined(IB_VERBS_H) 42 #define IB_VERBS_H 43 44 #include <linux/types.h> 45 #include <linux/device.h> 46 47 #include <asm/atomic.h> 48 #include <asm/scatterlist.h> 49 #include <asm/uaccess.h> 50 51 union ib_gid { 52 u8 raw[16]; 53 struct { 54 __be64 subnet_prefix; 55 __be64 interface_id; 56 } global; 57 }; 58 59 enum ib_node_type { 60 IB_NODE_CA = 1, 61 IB_NODE_SWITCH, 62 IB_NODE_ROUTER 63 }; 64 65 enum ib_device_cap_flags { 66 IB_DEVICE_RESIZE_MAX_WR = 1, 67 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 68 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 69 IB_DEVICE_RAW_MULTI = (1<<3), 70 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 71 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 72 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 73 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 74 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 75 IB_DEVICE_INIT_TYPE = (1<<9), 76 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 77 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 78 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 79 IB_DEVICE_SRQ_RESIZE = (1<<13), 80 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 81 }; 82 83 enum ib_atomic_cap { 84 IB_ATOMIC_NONE, 85 IB_ATOMIC_HCA, 86 IB_ATOMIC_GLOB 87 }; 88 89 struct ib_device_attr { 90 u64 fw_ver; 91 __be64 sys_image_guid; 92 u64 max_mr_size; 93 u64 page_size_cap; 94 u32 vendor_id; 95 u32 vendor_part_id; 96 u32 hw_ver; 97 int max_qp; 98 int max_qp_wr; 99 int device_cap_flags; 100 int max_sge; 101 int max_sge_rd; 102 int max_cq; 103 int max_cqe; 104 int max_mr; 105 int max_pd; 106 int max_qp_rd_atom; 107 int max_ee_rd_atom; 108 int max_res_rd_atom; 109 int max_qp_init_rd_atom; 110 int max_ee_init_rd_atom; 111 enum ib_atomic_cap atomic_cap; 112 int max_ee; 113 int max_rdd; 114 int max_mw; 115 int max_raw_ipv6_qp; 116 int max_raw_ethy_qp; 117 int max_mcast_grp; 118 int max_mcast_qp_attach; 119 int max_total_mcast_qp_attach; 120 int max_ah; 121 int max_fmr; 122 int max_map_per_fmr; 123 int max_srq; 124 int max_srq_wr; 125 int max_srq_sge; 126 u16 max_pkeys; 127 u8 local_ca_ack_delay; 128 }; 129 130 enum ib_mtu { 131 IB_MTU_256 = 1, 132 IB_MTU_512 = 2, 133 IB_MTU_1024 = 3, 134 IB_MTU_2048 = 4, 135 IB_MTU_4096 = 5 136 }; 137 138 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 139 { 140 switch (mtu) { 141 case IB_MTU_256: return 256; 142 case IB_MTU_512: return 512; 143 case IB_MTU_1024: return 1024; 144 case IB_MTU_2048: return 2048; 145 case IB_MTU_4096: return 4096; 146 default: return -1; 147 } 148 } 149 150 enum ib_port_state { 151 IB_PORT_NOP = 0, 152 IB_PORT_DOWN = 1, 153 IB_PORT_INIT = 2, 154 IB_PORT_ARMED = 3, 155 IB_PORT_ACTIVE = 4, 156 IB_PORT_ACTIVE_DEFER = 5 157 }; 158 159 enum ib_port_cap_flags { 160 IB_PORT_SM = 1 << 1, 161 IB_PORT_NOTICE_SUP = 1 << 2, 162 IB_PORT_TRAP_SUP = 1 << 3, 163 IB_PORT_OPT_IPD_SUP = 1 << 4, 164 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 165 IB_PORT_SL_MAP_SUP = 1 << 6, 166 IB_PORT_MKEY_NVRAM = 1 << 7, 167 IB_PORT_PKEY_NVRAM = 1 << 8, 168 IB_PORT_LED_INFO_SUP = 1 << 9, 169 IB_PORT_SM_DISABLED = 1 << 10, 170 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 171 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 172 IB_PORT_CM_SUP = 1 << 16, 173 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 174 IB_PORT_REINIT_SUP = 1 << 18, 175 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 176 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 177 IB_PORT_DR_NOTICE_SUP = 1 << 21, 178 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 179 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 180 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 181 IB_PORT_CLIENT_REG_SUP = 1 << 25 182 }; 183 184 enum ib_port_width { 185 IB_WIDTH_1X = 1, 186 IB_WIDTH_4X = 2, 187 IB_WIDTH_8X = 4, 188 IB_WIDTH_12X = 8 189 }; 190 191 static inline int ib_width_enum_to_int(enum ib_port_width width) 192 { 193 switch (width) { 194 case IB_WIDTH_1X: return 1; 195 case IB_WIDTH_4X: return 4; 196 case IB_WIDTH_8X: return 8; 197 case IB_WIDTH_12X: return 12; 198 default: return -1; 199 } 200 } 201 202 struct ib_port_attr { 203 enum ib_port_state state; 204 enum ib_mtu max_mtu; 205 enum ib_mtu active_mtu; 206 int gid_tbl_len; 207 u32 port_cap_flags; 208 u32 max_msg_sz; 209 u32 bad_pkey_cntr; 210 u32 qkey_viol_cntr; 211 u16 pkey_tbl_len; 212 u16 lid; 213 u16 sm_lid; 214 u8 lmc; 215 u8 max_vl_num; 216 u8 sm_sl; 217 u8 subnet_timeout; 218 u8 init_type_reply; 219 u8 active_width; 220 u8 active_speed; 221 u8 phys_state; 222 }; 223 224 enum ib_device_modify_flags { 225 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 226 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 227 }; 228 229 struct ib_device_modify { 230 u64 sys_image_guid; 231 char node_desc[64]; 232 }; 233 234 enum ib_port_modify_flags { 235 IB_PORT_SHUTDOWN = 1, 236 IB_PORT_INIT_TYPE = (1<<2), 237 IB_PORT_RESET_QKEY_CNTR = (1<<3) 238 }; 239 240 struct ib_port_modify { 241 u32 set_port_cap_mask; 242 u32 clr_port_cap_mask; 243 u8 init_type; 244 }; 245 246 enum ib_event_type { 247 IB_EVENT_CQ_ERR, 248 IB_EVENT_QP_FATAL, 249 IB_EVENT_QP_REQ_ERR, 250 IB_EVENT_QP_ACCESS_ERR, 251 IB_EVENT_COMM_EST, 252 IB_EVENT_SQ_DRAINED, 253 IB_EVENT_PATH_MIG, 254 IB_EVENT_PATH_MIG_ERR, 255 IB_EVENT_DEVICE_FATAL, 256 IB_EVENT_PORT_ACTIVE, 257 IB_EVENT_PORT_ERR, 258 IB_EVENT_LID_CHANGE, 259 IB_EVENT_PKEY_CHANGE, 260 IB_EVENT_SM_CHANGE, 261 IB_EVENT_SRQ_ERR, 262 IB_EVENT_SRQ_LIMIT_REACHED, 263 IB_EVENT_QP_LAST_WQE_REACHED 264 }; 265 266 struct ib_event { 267 struct ib_device *device; 268 union { 269 struct ib_cq *cq; 270 struct ib_qp *qp; 271 struct ib_srq *srq; 272 u8 port_num; 273 } element; 274 enum ib_event_type event; 275 }; 276 277 struct ib_event_handler { 278 struct ib_device *device; 279 void (*handler)(struct ib_event_handler *, struct ib_event *); 280 struct list_head list; 281 }; 282 283 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 284 do { \ 285 (_ptr)->device = _device; \ 286 (_ptr)->handler = _handler; \ 287 INIT_LIST_HEAD(&(_ptr)->list); \ 288 } while (0) 289 290 struct ib_global_route { 291 union ib_gid dgid; 292 u32 flow_label; 293 u8 sgid_index; 294 u8 hop_limit; 295 u8 traffic_class; 296 }; 297 298 struct ib_grh { 299 __be32 version_tclass_flow; 300 __be16 paylen; 301 u8 next_hdr; 302 u8 hop_limit; 303 union ib_gid sgid; 304 union ib_gid dgid; 305 }; 306 307 enum { 308 IB_MULTICAST_QPN = 0xffffff 309 }; 310 311 #define IB_LID_PERMISSIVE __constant_htons(0xFFFF) 312 313 enum ib_ah_flags { 314 IB_AH_GRH = 1 315 }; 316 317 struct ib_ah_attr { 318 struct ib_global_route grh; 319 u16 dlid; 320 u8 sl; 321 u8 src_path_bits; 322 u8 static_rate; 323 u8 ah_flags; 324 u8 port_num; 325 }; 326 327 enum ib_wc_status { 328 IB_WC_SUCCESS, 329 IB_WC_LOC_LEN_ERR, 330 IB_WC_LOC_QP_OP_ERR, 331 IB_WC_LOC_EEC_OP_ERR, 332 IB_WC_LOC_PROT_ERR, 333 IB_WC_WR_FLUSH_ERR, 334 IB_WC_MW_BIND_ERR, 335 IB_WC_BAD_RESP_ERR, 336 IB_WC_LOC_ACCESS_ERR, 337 IB_WC_REM_INV_REQ_ERR, 338 IB_WC_REM_ACCESS_ERR, 339 IB_WC_REM_OP_ERR, 340 IB_WC_RETRY_EXC_ERR, 341 IB_WC_RNR_RETRY_EXC_ERR, 342 IB_WC_LOC_RDD_VIOL_ERR, 343 IB_WC_REM_INV_RD_REQ_ERR, 344 IB_WC_REM_ABORT_ERR, 345 IB_WC_INV_EECN_ERR, 346 IB_WC_INV_EEC_STATE_ERR, 347 IB_WC_FATAL_ERR, 348 IB_WC_RESP_TIMEOUT_ERR, 349 IB_WC_GENERAL_ERR 350 }; 351 352 enum ib_wc_opcode { 353 IB_WC_SEND, 354 IB_WC_RDMA_WRITE, 355 IB_WC_RDMA_READ, 356 IB_WC_COMP_SWAP, 357 IB_WC_FETCH_ADD, 358 IB_WC_BIND_MW, 359 /* 360 * Set value of IB_WC_RECV so consumers can test if a completion is a 361 * receive by testing (opcode & IB_WC_RECV). 362 */ 363 IB_WC_RECV = 1 << 7, 364 IB_WC_RECV_RDMA_WITH_IMM 365 }; 366 367 enum ib_wc_flags { 368 IB_WC_GRH = 1, 369 IB_WC_WITH_IMM = (1<<1) 370 }; 371 372 struct ib_wc { 373 u64 wr_id; 374 enum ib_wc_status status; 375 enum ib_wc_opcode opcode; 376 u32 vendor_err; 377 u32 byte_len; 378 __be32 imm_data; 379 u32 qp_num; 380 u32 src_qp; 381 int wc_flags; 382 u16 pkey_index; 383 u16 slid; 384 u8 sl; 385 u8 dlid_path_bits; 386 u8 port_num; /* valid only for DR SMPs on switches */ 387 }; 388 389 enum ib_cq_notify { 390 IB_CQ_SOLICITED, 391 IB_CQ_NEXT_COMP 392 }; 393 394 enum ib_srq_attr_mask { 395 IB_SRQ_MAX_WR = 1 << 0, 396 IB_SRQ_LIMIT = 1 << 1, 397 }; 398 399 struct ib_srq_attr { 400 u32 max_wr; 401 u32 max_sge; 402 u32 srq_limit; 403 }; 404 405 struct ib_srq_init_attr { 406 void (*event_handler)(struct ib_event *, void *); 407 void *srq_context; 408 struct ib_srq_attr attr; 409 }; 410 411 struct ib_qp_cap { 412 u32 max_send_wr; 413 u32 max_recv_wr; 414 u32 max_send_sge; 415 u32 max_recv_sge; 416 u32 max_inline_data; 417 }; 418 419 enum ib_sig_type { 420 IB_SIGNAL_ALL_WR, 421 IB_SIGNAL_REQ_WR 422 }; 423 424 enum ib_qp_type { 425 /* 426 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 427 * here (and in that order) since the MAD layer uses them as 428 * indices into a 2-entry table. 429 */ 430 IB_QPT_SMI, 431 IB_QPT_GSI, 432 433 IB_QPT_RC, 434 IB_QPT_UC, 435 IB_QPT_UD, 436 IB_QPT_RAW_IPV6, 437 IB_QPT_RAW_ETY 438 }; 439 440 struct ib_qp_init_attr { 441 void (*event_handler)(struct ib_event *, void *); 442 void *qp_context; 443 struct ib_cq *send_cq; 444 struct ib_cq *recv_cq; 445 struct ib_srq *srq; 446 struct ib_qp_cap cap; 447 enum ib_sig_type sq_sig_type; 448 enum ib_qp_type qp_type; 449 u8 port_num; /* special QP types only */ 450 }; 451 452 enum ib_rnr_timeout { 453 IB_RNR_TIMER_655_36 = 0, 454 IB_RNR_TIMER_000_01 = 1, 455 IB_RNR_TIMER_000_02 = 2, 456 IB_RNR_TIMER_000_03 = 3, 457 IB_RNR_TIMER_000_04 = 4, 458 IB_RNR_TIMER_000_06 = 5, 459 IB_RNR_TIMER_000_08 = 6, 460 IB_RNR_TIMER_000_12 = 7, 461 IB_RNR_TIMER_000_16 = 8, 462 IB_RNR_TIMER_000_24 = 9, 463 IB_RNR_TIMER_000_32 = 10, 464 IB_RNR_TIMER_000_48 = 11, 465 IB_RNR_TIMER_000_64 = 12, 466 IB_RNR_TIMER_000_96 = 13, 467 IB_RNR_TIMER_001_28 = 14, 468 IB_RNR_TIMER_001_92 = 15, 469 IB_RNR_TIMER_002_56 = 16, 470 IB_RNR_TIMER_003_84 = 17, 471 IB_RNR_TIMER_005_12 = 18, 472 IB_RNR_TIMER_007_68 = 19, 473 IB_RNR_TIMER_010_24 = 20, 474 IB_RNR_TIMER_015_36 = 21, 475 IB_RNR_TIMER_020_48 = 22, 476 IB_RNR_TIMER_030_72 = 23, 477 IB_RNR_TIMER_040_96 = 24, 478 IB_RNR_TIMER_061_44 = 25, 479 IB_RNR_TIMER_081_92 = 26, 480 IB_RNR_TIMER_122_88 = 27, 481 IB_RNR_TIMER_163_84 = 28, 482 IB_RNR_TIMER_245_76 = 29, 483 IB_RNR_TIMER_327_68 = 30, 484 IB_RNR_TIMER_491_52 = 31 485 }; 486 487 enum ib_qp_attr_mask { 488 IB_QP_STATE = 1, 489 IB_QP_CUR_STATE = (1<<1), 490 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 491 IB_QP_ACCESS_FLAGS = (1<<3), 492 IB_QP_PKEY_INDEX = (1<<4), 493 IB_QP_PORT = (1<<5), 494 IB_QP_QKEY = (1<<6), 495 IB_QP_AV = (1<<7), 496 IB_QP_PATH_MTU = (1<<8), 497 IB_QP_TIMEOUT = (1<<9), 498 IB_QP_RETRY_CNT = (1<<10), 499 IB_QP_RNR_RETRY = (1<<11), 500 IB_QP_RQ_PSN = (1<<12), 501 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 502 IB_QP_ALT_PATH = (1<<14), 503 IB_QP_MIN_RNR_TIMER = (1<<15), 504 IB_QP_SQ_PSN = (1<<16), 505 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 506 IB_QP_PATH_MIG_STATE = (1<<18), 507 IB_QP_CAP = (1<<19), 508 IB_QP_DEST_QPN = (1<<20) 509 }; 510 511 enum ib_qp_state { 512 IB_QPS_RESET, 513 IB_QPS_INIT, 514 IB_QPS_RTR, 515 IB_QPS_RTS, 516 IB_QPS_SQD, 517 IB_QPS_SQE, 518 IB_QPS_ERR 519 }; 520 521 enum ib_mig_state { 522 IB_MIG_MIGRATED, 523 IB_MIG_REARM, 524 IB_MIG_ARMED 525 }; 526 527 struct ib_qp_attr { 528 enum ib_qp_state qp_state; 529 enum ib_qp_state cur_qp_state; 530 enum ib_mtu path_mtu; 531 enum ib_mig_state path_mig_state; 532 u32 qkey; 533 u32 rq_psn; 534 u32 sq_psn; 535 u32 dest_qp_num; 536 int qp_access_flags; 537 struct ib_qp_cap cap; 538 struct ib_ah_attr ah_attr; 539 struct ib_ah_attr alt_ah_attr; 540 u16 pkey_index; 541 u16 alt_pkey_index; 542 u8 en_sqd_async_notify; 543 u8 sq_draining; 544 u8 max_rd_atomic; 545 u8 max_dest_rd_atomic; 546 u8 min_rnr_timer; 547 u8 port_num; 548 u8 timeout; 549 u8 retry_cnt; 550 u8 rnr_retry; 551 u8 alt_port_num; 552 u8 alt_timeout; 553 }; 554 555 enum ib_wr_opcode { 556 IB_WR_RDMA_WRITE, 557 IB_WR_RDMA_WRITE_WITH_IMM, 558 IB_WR_SEND, 559 IB_WR_SEND_WITH_IMM, 560 IB_WR_RDMA_READ, 561 IB_WR_ATOMIC_CMP_AND_SWP, 562 IB_WR_ATOMIC_FETCH_AND_ADD 563 }; 564 565 enum ib_send_flags { 566 IB_SEND_FENCE = 1, 567 IB_SEND_SIGNALED = (1<<1), 568 IB_SEND_SOLICITED = (1<<2), 569 IB_SEND_INLINE = (1<<3) 570 }; 571 572 struct ib_sge { 573 u64 addr; 574 u32 length; 575 u32 lkey; 576 }; 577 578 struct ib_send_wr { 579 struct ib_send_wr *next; 580 u64 wr_id; 581 struct ib_sge *sg_list; 582 int num_sge; 583 enum ib_wr_opcode opcode; 584 int send_flags; 585 __be32 imm_data; 586 union { 587 struct { 588 u64 remote_addr; 589 u32 rkey; 590 } rdma; 591 struct { 592 u64 remote_addr; 593 u64 compare_add; 594 u64 swap; 595 u32 rkey; 596 } atomic; 597 struct { 598 struct ib_ah *ah; 599 u32 remote_qpn; 600 u32 remote_qkey; 601 u16 pkey_index; /* valid for GSI only */ 602 u8 port_num; /* valid for DR SMPs on switch only */ 603 } ud; 604 } wr; 605 }; 606 607 struct ib_recv_wr { 608 struct ib_recv_wr *next; 609 u64 wr_id; 610 struct ib_sge *sg_list; 611 int num_sge; 612 }; 613 614 enum ib_access_flags { 615 IB_ACCESS_LOCAL_WRITE = 1, 616 IB_ACCESS_REMOTE_WRITE = (1<<1), 617 IB_ACCESS_REMOTE_READ = (1<<2), 618 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 619 IB_ACCESS_MW_BIND = (1<<4) 620 }; 621 622 struct ib_phys_buf { 623 u64 addr; 624 u64 size; 625 }; 626 627 struct ib_mr_attr { 628 struct ib_pd *pd; 629 u64 device_virt_addr; 630 u64 size; 631 int mr_access_flags; 632 u32 lkey; 633 u32 rkey; 634 }; 635 636 enum ib_mr_rereg_flags { 637 IB_MR_REREG_TRANS = 1, 638 IB_MR_REREG_PD = (1<<1), 639 IB_MR_REREG_ACCESS = (1<<2) 640 }; 641 642 struct ib_mw_bind { 643 struct ib_mr *mr; 644 u64 wr_id; 645 u64 addr; 646 u32 length; 647 int send_flags; 648 int mw_access_flags; 649 }; 650 651 struct ib_fmr_attr { 652 int max_pages; 653 int max_maps; 654 u8 page_shift; 655 }; 656 657 struct ib_ucontext { 658 struct ib_device *device; 659 struct list_head pd_list; 660 struct list_head mr_list; 661 struct list_head mw_list; 662 struct list_head cq_list; 663 struct list_head qp_list; 664 struct list_head srq_list; 665 struct list_head ah_list; 666 }; 667 668 struct ib_uobject { 669 u64 user_handle; /* handle given to us by userspace */ 670 struct ib_ucontext *context; /* associated user context */ 671 struct list_head list; /* link to context's list */ 672 u32 id; /* index into kernel idr */ 673 }; 674 675 struct ib_umem { 676 unsigned long user_base; 677 unsigned long virt_base; 678 size_t length; 679 int offset; 680 int page_size; 681 int writable; 682 struct list_head chunk_list; 683 }; 684 685 struct ib_umem_chunk { 686 struct list_head list; 687 int nents; 688 int nmap; 689 struct scatterlist page_list[0]; 690 }; 691 692 struct ib_udata { 693 void __user *inbuf; 694 void __user *outbuf; 695 size_t inlen; 696 size_t outlen; 697 }; 698 699 #define IB_UMEM_MAX_PAGE_CHUNK \ 700 ((PAGE_SIZE - offsetof(struct ib_umem_chunk, page_list)) / \ 701 ((void *) &((struct ib_umem_chunk *) 0)->page_list[1] - \ 702 (void *) &((struct ib_umem_chunk *) 0)->page_list[0])) 703 704 struct ib_umem_object { 705 struct ib_uobject uobject; 706 struct ib_umem umem; 707 }; 708 709 struct ib_pd { 710 struct ib_device *device; 711 struct ib_uobject *uobject; 712 atomic_t usecnt; /* count all resources */ 713 }; 714 715 struct ib_ah { 716 struct ib_device *device; 717 struct ib_pd *pd; 718 struct ib_uobject *uobject; 719 }; 720 721 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 722 723 struct ib_cq { 724 struct ib_device *device; 725 struct ib_uobject *uobject; 726 ib_comp_handler comp_handler; 727 void (*event_handler)(struct ib_event *, void *); 728 void * cq_context; 729 int cqe; 730 atomic_t usecnt; /* count number of work queues */ 731 }; 732 733 struct ib_srq { 734 struct ib_device *device; 735 struct ib_pd *pd; 736 struct ib_uobject *uobject; 737 void (*event_handler)(struct ib_event *, void *); 738 void *srq_context; 739 atomic_t usecnt; 740 }; 741 742 struct ib_qp { 743 struct ib_device *device; 744 struct ib_pd *pd; 745 struct ib_cq *send_cq; 746 struct ib_cq *recv_cq; 747 struct ib_srq *srq; 748 struct ib_uobject *uobject; 749 void (*event_handler)(struct ib_event *, void *); 750 void *qp_context; 751 u32 qp_num; 752 enum ib_qp_type qp_type; 753 }; 754 755 struct ib_mr { 756 struct ib_device *device; 757 struct ib_pd *pd; 758 struct ib_uobject *uobject; 759 u32 lkey; 760 u32 rkey; 761 atomic_t usecnt; /* count number of MWs */ 762 }; 763 764 struct ib_mw { 765 struct ib_device *device; 766 struct ib_pd *pd; 767 struct ib_uobject *uobject; 768 u32 rkey; 769 }; 770 771 struct ib_fmr { 772 struct ib_device *device; 773 struct ib_pd *pd; 774 struct list_head list; 775 u32 lkey; 776 u32 rkey; 777 }; 778 779 struct ib_mad; 780 struct ib_grh; 781 782 enum ib_process_mad_flags { 783 IB_MAD_IGNORE_MKEY = 1, 784 IB_MAD_IGNORE_BKEY = 2, 785 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 786 }; 787 788 enum ib_mad_result { 789 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 790 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 791 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 792 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 793 }; 794 795 #define IB_DEVICE_NAME_MAX 64 796 797 struct ib_cache { 798 rwlock_t lock; 799 struct ib_event_handler event_handler; 800 struct ib_pkey_cache **pkey_cache; 801 struct ib_gid_cache **gid_cache; 802 }; 803 804 struct ib_device { 805 struct device *dma_device; 806 807 char name[IB_DEVICE_NAME_MAX]; 808 809 struct list_head event_handler_list; 810 spinlock_t event_handler_lock; 811 812 struct list_head core_list; 813 struct list_head client_data_list; 814 spinlock_t client_data_lock; 815 816 struct ib_cache cache; 817 818 u32 flags; 819 820 int (*query_device)(struct ib_device *device, 821 struct ib_device_attr *device_attr); 822 int (*query_port)(struct ib_device *device, 823 u8 port_num, 824 struct ib_port_attr *port_attr); 825 int (*query_gid)(struct ib_device *device, 826 u8 port_num, int index, 827 union ib_gid *gid); 828 int (*query_pkey)(struct ib_device *device, 829 u8 port_num, u16 index, u16 *pkey); 830 int (*modify_device)(struct ib_device *device, 831 int device_modify_mask, 832 struct ib_device_modify *device_modify); 833 int (*modify_port)(struct ib_device *device, 834 u8 port_num, int port_modify_mask, 835 struct ib_port_modify *port_modify); 836 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 837 struct ib_udata *udata); 838 int (*dealloc_ucontext)(struct ib_ucontext *context); 839 int (*mmap)(struct ib_ucontext *context, 840 struct vm_area_struct *vma); 841 struct ib_pd * (*alloc_pd)(struct ib_device *device, 842 struct ib_ucontext *context, 843 struct ib_udata *udata); 844 int (*dealloc_pd)(struct ib_pd *pd); 845 struct ib_ah * (*create_ah)(struct ib_pd *pd, 846 struct ib_ah_attr *ah_attr); 847 int (*modify_ah)(struct ib_ah *ah, 848 struct ib_ah_attr *ah_attr); 849 int (*query_ah)(struct ib_ah *ah, 850 struct ib_ah_attr *ah_attr); 851 int (*destroy_ah)(struct ib_ah *ah); 852 struct ib_srq * (*create_srq)(struct ib_pd *pd, 853 struct ib_srq_init_attr *srq_init_attr, 854 struct ib_udata *udata); 855 int (*modify_srq)(struct ib_srq *srq, 856 struct ib_srq_attr *srq_attr, 857 enum ib_srq_attr_mask srq_attr_mask); 858 int (*query_srq)(struct ib_srq *srq, 859 struct ib_srq_attr *srq_attr); 860 int (*destroy_srq)(struct ib_srq *srq); 861 int (*post_srq_recv)(struct ib_srq *srq, 862 struct ib_recv_wr *recv_wr, 863 struct ib_recv_wr **bad_recv_wr); 864 struct ib_qp * (*create_qp)(struct ib_pd *pd, 865 struct ib_qp_init_attr *qp_init_attr, 866 struct ib_udata *udata); 867 int (*modify_qp)(struct ib_qp *qp, 868 struct ib_qp_attr *qp_attr, 869 int qp_attr_mask); 870 int (*query_qp)(struct ib_qp *qp, 871 struct ib_qp_attr *qp_attr, 872 int qp_attr_mask, 873 struct ib_qp_init_attr *qp_init_attr); 874 int (*destroy_qp)(struct ib_qp *qp); 875 int (*post_send)(struct ib_qp *qp, 876 struct ib_send_wr *send_wr, 877 struct ib_send_wr **bad_send_wr); 878 int (*post_recv)(struct ib_qp *qp, 879 struct ib_recv_wr *recv_wr, 880 struct ib_recv_wr **bad_recv_wr); 881 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 882 struct ib_ucontext *context, 883 struct ib_udata *udata); 884 int (*destroy_cq)(struct ib_cq *cq); 885 int (*resize_cq)(struct ib_cq *cq, int cqe, 886 struct ib_udata *udata); 887 int (*poll_cq)(struct ib_cq *cq, int num_entries, 888 struct ib_wc *wc); 889 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 890 int (*req_notify_cq)(struct ib_cq *cq, 891 enum ib_cq_notify cq_notify); 892 int (*req_ncomp_notif)(struct ib_cq *cq, 893 int wc_cnt); 894 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 895 int mr_access_flags); 896 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 897 struct ib_phys_buf *phys_buf_array, 898 int num_phys_buf, 899 int mr_access_flags, 900 u64 *iova_start); 901 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 902 struct ib_umem *region, 903 int mr_access_flags, 904 struct ib_udata *udata); 905 int (*query_mr)(struct ib_mr *mr, 906 struct ib_mr_attr *mr_attr); 907 int (*dereg_mr)(struct ib_mr *mr); 908 int (*rereg_phys_mr)(struct ib_mr *mr, 909 int mr_rereg_mask, 910 struct ib_pd *pd, 911 struct ib_phys_buf *phys_buf_array, 912 int num_phys_buf, 913 int mr_access_flags, 914 u64 *iova_start); 915 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 916 int (*bind_mw)(struct ib_qp *qp, 917 struct ib_mw *mw, 918 struct ib_mw_bind *mw_bind); 919 int (*dealloc_mw)(struct ib_mw *mw); 920 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 921 int mr_access_flags, 922 struct ib_fmr_attr *fmr_attr); 923 int (*map_phys_fmr)(struct ib_fmr *fmr, 924 u64 *page_list, int list_len, 925 u64 iova); 926 int (*unmap_fmr)(struct list_head *fmr_list); 927 int (*dealloc_fmr)(struct ib_fmr *fmr); 928 int (*attach_mcast)(struct ib_qp *qp, 929 union ib_gid *gid, 930 u16 lid); 931 int (*detach_mcast)(struct ib_qp *qp, 932 union ib_gid *gid, 933 u16 lid); 934 int (*process_mad)(struct ib_device *device, 935 int process_mad_flags, 936 u8 port_num, 937 struct ib_wc *in_wc, 938 struct ib_grh *in_grh, 939 struct ib_mad *in_mad, 940 struct ib_mad *out_mad); 941 942 struct module *owner; 943 struct class_device class_dev; 944 struct kobject ports_parent; 945 struct list_head port_list; 946 947 enum { 948 IB_DEV_UNINITIALIZED, 949 IB_DEV_REGISTERED, 950 IB_DEV_UNREGISTERED 951 } reg_state; 952 953 u64 uverbs_cmd_mask; 954 int uverbs_abi_ver; 955 956 char node_desc[64]; 957 __be64 node_guid; 958 u8 node_type; 959 u8 phys_port_cnt; 960 }; 961 962 struct ib_client { 963 char *name; 964 void (*add) (struct ib_device *); 965 void (*remove)(struct ib_device *); 966 967 struct list_head list; 968 }; 969 970 struct ib_device *ib_alloc_device(size_t size); 971 void ib_dealloc_device(struct ib_device *device); 972 973 int ib_register_device (struct ib_device *device); 974 void ib_unregister_device(struct ib_device *device); 975 976 int ib_register_client (struct ib_client *client); 977 void ib_unregister_client(struct ib_client *client); 978 979 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 980 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 981 void *data); 982 983 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 984 { 985 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 986 } 987 988 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 989 { 990 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 991 } 992 993 /** 994 * ib_modify_qp_is_ok - Check that the supplied attribute mask 995 * contains all required attributes and no attributes not allowed for 996 * the given QP state transition. 997 * @cur_state: Current QP state 998 * @next_state: Next QP state 999 * @type: QP type 1000 * @mask: Mask of supplied QP attributes 1001 * 1002 * This function is a helper function that a low-level driver's 1003 * modify_qp method can use to validate the consumer's input. It 1004 * checks that cur_state and next_state are valid QP states, that a 1005 * transition from cur_state to next_state is allowed by the IB spec, 1006 * and that the attribute mask supplied is allowed for the transition. 1007 */ 1008 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1009 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1010 1011 int ib_register_event_handler (struct ib_event_handler *event_handler); 1012 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1013 void ib_dispatch_event(struct ib_event *event); 1014 1015 int ib_query_device(struct ib_device *device, 1016 struct ib_device_attr *device_attr); 1017 1018 int ib_query_port(struct ib_device *device, 1019 u8 port_num, struct ib_port_attr *port_attr); 1020 1021 int ib_query_gid(struct ib_device *device, 1022 u8 port_num, int index, union ib_gid *gid); 1023 1024 int ib_query_pkey(struct ib_device *device, 1025 u8 port_num, u16 index, u16 *pkey); 1026 1027 int ib_modify_device(struct ib_device *device, 1028 int device_modify_mask, 1029 struct ib_device_modify *device_modify); 1030 1031 int ib_modify_port(struct ib_device *device, 1032 u8 port_num, int port_modify_mask, 1033 struct ib_port_modify *port_modify); 1034 1035 /** 1036 * ib_alloc_pd - Allocates an unused protection domain. 1037 * @device: The device on which to allocate the protection domain. 1038 * 1039 * A protection domain object provides an association between QPs, shared 1040 * receive queues, address handles, memory regions, and memory windows. 1041 */ 1042 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1043 1044 /** 1045 * ib_dealloc_pd - Deallocates a protection domain. 1046 * @pd: The protection domain to deallocate. 1047 */ 1048 int ib_dealloc_pd(struct ib_pd *pd); 1049 1050 /** 1051 * ib_create_ah - Creates an address handle for the given address vector. 1052 * @pd: The protection domain associated with the address handle. 1053 * @ah_attr: The attributes of the address vector. 1054 * 1055 * The address handle is used to reference a local or global destination 1056 * in all UD QP post sends. 1057 */ 1058 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1059 1060 /** 1061 * ib_create_ah_from_wc - Creates an address handle associated with the 1062 * sender of the specified work completion. 1063 * @pd: The protection domain associated with the address handle. 1064 * @wc: Work completion information associated with a received message. 1065 * @grh: References the received global route header. This parameter is 1066 * ignored unless the work completion indicates that the GRH is valid. 1067 * @port_num: The outbound port number to associate with the address. 1068 * 1069 * The address handle is used to reference a local or global destination 1070 * in all UD QP post sends. 1071 */ 1072 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1073 struct ib_grh *grh, u8 port_num); 1074 1075 /** 1076 * ib_modify_ah - Modifies the address vector associated with an address 1077 * handle. 1078 * @ah: The address handle to modify. 1079 * @ah_attr: The new address vector attributes to associate with the 1080 * address handle. 1081 */ 1082 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1083 1084 /** 1085 * ib_query_ah - Queries the address vector associated with an address 1086 * handle. 1087 * @ah: The address handle to query. 1088 * @ah_attr: The address vector attributes associated with the address 1089 * handle. 1090 */ 1091 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1092 1093 /** 1094 * ib_destroy_ah - Destroys an address handle. 1095 * @ah: The address handle to destroy. 1096 */ 1097 int ib_destroy_ah(struct ib_ah *ah); 1098 1099 /** 1100 * ib_create_srq - Creates a SRQ associated with the specified protection 1101 * domain. 1102 * @pd: The protection domain associated with the SRQ. 1103 * @srq_init_attr: A list of initial attributes required to create the 1104 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1105 * the actual capabilities of the created SRQ. 1106 * 1107 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1108 * requested size of the SRQ, and set to the actual values allocated 1109 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1110 * will always be at least as large as the requested values. 1111 */ 1112 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1113 struct ib_srq_init_attr *srq_init_attr); 1114 1115 /** 1116 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1117 * @srq: The SRQ to modify. 1118 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1119 * the current values of selected SRQ attributes are returned. 1120 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1121 * are being modified. 1122 * 1123 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1124 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1125 * the number of receives queued drops below the limit. 1126 */ 1127 int ib_modify_srq(struct ib_srq *srq, 1128 struct ib_srq_attr *srq_attr, 1129 enum ib_srq_attr_mask srq_attr_mask); 1130 1131 /** 1132 * ib_query_srq - Returns the attribute list and current values for the 1133 * specified SRQ. 1134 * @srq: The SRQ to query. 1135 * @srq_attr: The attributes of the specified SRQ. 1136 */ 1137 int ib_query_srq(struct ib_srq *srq, 1138 struct ib_srq_attr *srq_attr); 1139 1140 /** 1141 * ib_destroy_srq - Destroys the specified SRQ. 1142 * @srq: The SRQ to destroy. 1143 */ 1144 int ib_destroy_srq(struct ib_srq *srq); 1145 1146 /** 1147 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1148 * @srq: The SRQ to post the work request on. 1149 * @recv_wr: A list of work requests to post on the receive queue. 1150 * @bad_recv_wr: On an immediate failure, this parameter will reference 1151 * the work request that failed to be posted on the QP. 1152 */ 1153 static inline int ib_post_srq_recv(struct ib_srq *srq, 1154 struct ib_recv_wr *recv_wr, 1155 struct ib_recv_wr **bad_recv_wr) 1156 { 1157 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1158 } 1159 1160 /** 1161 * ib_create_qp - Creates a QP associated with the specified protection 1162 * domain. 1163 * @pd: The protection domain associated with the QP. 1164 * @qp_init_attr: A list of initial attributes required to create the 1165 * QP. If QP creation succeeds, then the attributes are updated to 1166 * the actual capabilities of the created QP. 1167 */ 1168 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1169 struct ib_qp_init_attr *qp_init_attr); 1170 1171 /** 1172 * ib_modify_qp - Modifies the attributes for the specified QP and then 1173 * transitions the QP to the given state. 1174 * @qp: The QP to modify. 1175 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1176 * the current values of selected QP attributes are returned. 1177 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1178 * are being modified. 1179 */ 1180 int ib_modify_qp(struct ib_qp *qp, 1181 struct ib_qp_attr *qp_attr, 1182 int qp_attr_mask); 1183 1184 /** 1185 * ib_query_qp - Returns the attribute list and current values for the 1186 * specified QP. 1187 * @qp: The QP to query. 1188 * @qp_attr: The attributes of the specified QP. 1189 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1190 * @qp_init_attr: Additional attributes of the selected QP. 1191 * 1192 * The qp_attr_mask may be used to limit the query to gathering only the 1193 * selected attributes. 1194 */ 1195 int ib_query_qp(struct ib_qp *qp, 1196 struct ib_qp_attr *qp_attr, 1197 int qp_attr_mask, 1198 struct ib_qp_init_attr *qp_init_attr); 1199 1200 /** 1201 * ib_destroy_qp - Destroys the specified QP. 1202 * @qp: The QP to destroy. 1203 */ 1204 int ib_destroy_qp(struct ib_qp *qp); 1205 1206 /** 1207 * ib_post_send - Posts a list of work requests to the send queue of 1208 * the specified QP. 1209 * @qp: The QP to post the work request on. 1210 * @send_wr: A list of work requests to post on the send queue. 1211 * @bad_send_wr: On an immediate failure, this parameter will reference 1212 * the work request that failed to be posted on the QP. 1213 */ 1214 static inline int ib_post_send(struct ib_qp *qp, 1215 struct ib_send_wr *send_wr, 1216 struct ib_send_wr **bad_send_wr) 1217 { 1218 return qp->device->post_send(qp, send_wr, bad_send_wr); 1219 } 1220 1221 /** 1222 * ib_post_recv - Posts a list of work requests to the receive queue of 1223 * the specified QP. 1224 * @qp: The QP to post the work request on. 1225 * @recv_wr: A list of work requests to post on the receive queue. 1226 * @bad_recv_wr: On an immediate failure, this parameter will reference 1227 * the work request that failed to be posted on the QP. 1228 */ 1229 static inline int ib_post_recv(struct ib_qp *qp, 1230 struct ib_recv_wr *recv_wr, 1231 struct ib_recv_wr **bad_recv_wr) 1232 { 1233 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1234 } 1235 1236 /** 1237 * ib_create_cq - Creates a CQ on the specified device. 1238 * @device: The device on which to create the CQ. 1239 * @comp_handler: A user-specified callback that is invoked when a 1240 * completion event occurs on the CQ. 1241 * @event_handler: A user-specified callback that is invoked when an 1242 * asynchronous event not associated with a completion occurs on the CQ. 1243 * @cq_context: Context associated with the CQ returned to the user via 1244 * the associated completion and event handlers. 1245 * @cqe: The minimum size of the CQ. 1246 * 1247 * Users can examine the cq structure to determine the actual CQ size. 1248 */ 1249 struct ib_cq *ib_create_cq(struct ib_device *device, 1250 ib_comp_handler comp_handler, 1251 void (*event_handler)(struct ib_event *, void *), 1252 void *cq_context, int cqe); 1253 1254 /** 1255 * ib_resize_cq - Modifies the capacity of the CQ. 1256 * @cq: The CQ to resize. 1257 * @cqe: The minimum size of the CQ. 1258 * 1259 * Users can examine the cq structure to determine the actual CQ size. 1260 */ 1261 int ib_resize_cq(struct ib_cq *cq, int cqe); 1262 1263 /** 1264 * ib_destroy_cq - Destroys the specified CQ. 1265 * @cq: The CQ to destroy. 1266 */ 1267 int ib_destroy_cq(struct ib_cq *cq); 1268 1269 /** 1270 * ib_poll_cq - poll a CQ for completion(s) 1271 * @cq:the CQ being polled 1272 * @num_entries:maximum number of completions to return 1273 * @wc:array of at least @num_entries &struct ib_wc where completions 1274 * will be returned 1275 * 1276 * Poll a CQ for (possibly multiple) completions. If the return value 1277 * is < 0, an error occurred. If the return value is >= 0, it is the 1278 * number of completions returned. If the return value is 1279 * non-negative and < num_entries, then the CQ was emptied. 1280 */ 1281 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1282 struct ib_wc *wc) 1283 { 1284 return cq->device->poll_cq(cq, num_entries, wc); 1285 } 1286 1287 /** 1288 * ib_peek_cq - Returns the number of unreaped completions currently 1289 * on the specified CQ. 1290 * @cq: The CQ to peek. 1291 * @wc_cnt: A minimum number of unreaped completions to check for. 1292 * 1293 * If the number of unreaped completions is greater than or equal to wc_cnt, 1294 * this function returns wc_cnt, otherwise, it returns the actual number of 1295 * unreaped completions. 1296 */ 1297 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1298 1299 /** 1300 * ib_req_notify_cq - Request completion notification on a CQ. 1301 * @cq: The CQ to generate an event for. 1302 * @cq_notify: If set to %IB_CQ_SOLICITED, completion notification will 1303 * occur on the next solicited event. If set to %IB_CQ_NEXT_COMP, 1304 * notification will occur on the next completion. 1305 */ 1306 static inline int ib_req_notify_cq(struct ib_cq *cq, 1307 enum ib_cq_notify cq_notify) 1308 { 1309 return cq->device->req_notify_cq(cq, cq_notify); 1310 } 1311 1312 /** 1313 * ib_req_ncomp_notif - Request completion notification when there are 1314 * at least the specified number of unreaped completions on the CQ. 1315 * @cq: The CQ to generate an event for. 1316 * @wc_cnt: The number of unreaped completions that should be on the 1317 * CQ before an event is generated. 1318 */ 1319 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1320 { 1321 return cq->device->req_ncomp_notif ? 1322 cq->device->req_ncomp_notif(cq, wc_cnt) : 1323 -ENOSYS; 1324 } 1325 1326 /** 1327 * ib_get_dma_mr - Returns a memory region for system memory that is 1328 * usable for DMA. 1329 * @pd: The protection domain associated with the memory region. 1330 * @mr_access_flags: Specifies the memory access rights. 1331 */ 1332 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1333 1334 /** 1335 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1336 * by an HCA. 1337 * @pd: The protection domain associated assigned to the registered region. 1338 * @phys_buf_array: Specifies a list of physical buffers to use in the 1339 * memory region. 1340 * @num_phys_buf: Specifies the size of the phys_buf_array. 1341 * @mr_access_flags: Specifies the memory access rights. 1342 * @iova_start: The offset of the region's starting I/O virtual address. 1343 */ 1344 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1345 struct ib_phys_buf *phys_buf_array, 1346 int num_phys_buf, 1347 int mr_access_flags, 1348 u64 *iova_start); 1349 1350 /** 1351 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1352 * Conceptually, this call performs the functions deregister memory region 1353 * followed by register physical memory region. Where possible, 1354 * resources are reused instead of deallocated and reallocated. 1355 * @mr: The memory region to modify. 1356 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1357 * properties of the memory region are being modified. 1358 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1359 * the new protection domain to associated with the memory region, 1360 * otherwise, this parameter is ignored. 1361 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1362 * field specifies a list of physical buffers to use in the new 1363 * translation, otherwise, this parameter is ignored. 1364 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1365 * field specifies the size of the phys_buf_array, otherwise, this 1366 * parameter is ignored. 1367 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1368 * field specifies the new memory access rights, otherwise, this 1369 * parameter is ignored. 1370 * @iova_start: The offset of the region's starting I/O virtual address. 1371 */ 1372 int ib_rereg_phys_mr(struct ib_mr *mr, 1373 int mr_rereg_mask, 1374 struct ib_pd *pd, 1375 struct ib_phys_buf *phys_buf_array, 1376 int num_phys_buf, 1377 int mr_access_flags, 1378 u64 *iova_start); 1379 1380 /** 1381 * ib_query_mr - Retrieves information about a specific memory region. 1382 * @mr: The memory region to retrieve information about. 1383 * @mr_attr: The attributes of the specified memory region. 1384 */ 1385 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 1386 1387 /** 1388 * ib_dereg_mr - Deregisters a memory region and removes it from the 1389 * HCA translation table. 1390 * @mr: The memory region to deregister. 1391 */ 1392 int ib_dereg_mr(struct ib_mr *mr); 1393 1394 /** 1395 * ib_alloc_mw - Allocates a memory window. 1396 * @pd: The protection domain associated with the memory window. 1397 */ 1398 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 1399 1400 /** 1401 * ib_bind_mw - Posts a work request to the send queue of the specified 1402 * QP, which binds the memory window to the given address range and 1403 * remote access attributes. 1404 * @qp: QP to post the bind work request on. 1405 * @mw: The memory window to bind. 1406 * @mw_bind: Specifies information about the memory window, including 1407 * its address range, remote access rights, and associated memory region. 1408 */ 1409 static inline int ib_bind_mw(struct ib_qp *qp, 1410 struct ib_mw *mw, 1411 struct ib_mw_bind *mw_bind) 1412 { 1413 /* XXX reference counting in corresponding MR? */ 1414 return mw->device->bind_mw ? 1415 mw->device->bind_mw(qp, mw, mw_bind) : 1416 -ENOSYS; 1417 } 1418 1419 /** 1420 * ib_dealloc_mw - Deallocates a memory window. 1421 * @mw: The memory window to deallocate. 1422 */ 1423 int ib_dealloc_mw(struct ib_mw *mw); 1424 1425 /** 1426 * ib_alloc_fmr - Allocates a unmapped fast memory region. 1427 * @pd: The protection domain associated with the unmapped region. 1428 * @mr_access_flags: Specifies the memory access rights. 1429 * @fmr_attr: Attributes of the unmapped region. 1430 * 1431 * A fast memory region must be mapped before it can be used as part of 1432 * a work request. 1433 */ 1434 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1435 int mr_access_flags, 1436 struct ib_fmr_attr *fmr_attr); 1437 1438 /** 1439 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 1440 * @fmr: The fast memory region to associate with the pages. 1441 * @page_list: An array of physical pages to map to the fast memory region. 1442 * @list_len: The number of pages in page_list. 1443 * @iova: The I/O virtual address to use with the mapped region. 1444 */ 1445 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 1446 u64 *page_list, int list_len, 1447 u64 iova) 1448 { 1449 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 1450 } 1451 1452 /** 1453 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 1454 * @fmr_list: A linked list of fast memory regions to unmap. 1455 */ 1456 int ib_unmap_fmr(struct list_head *fmr_list); 1457 1458 /** 1459 * ib_dealloc_fmr - Deallocates a fast memory region. 1460 * @fmr: The fast memory region to deallocate. 1461 */ 1462 int ib_dealloc_fmr(struct ib_fmr *fmr); 1463 1464 /** 1465 * ib_attach_mcast - Attaches the specified QP to a multicast group. 1466 * @qp: QP to attach to the multicast group. The QP must be type 1467 * IB_QPT_UD. 1468 * @gid: Multicast group GID. 1469 * @lid: Multicast group LID in host byte order. 1470 * 1471 * In order to send and receive multicast packets, subnet 1472 * administration must have created the multicast group and configured 1473 * the fabric appropriately. The port associated with the specified 1474 * QP must also be a member of the multicast group. 1475 */ 1476 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1477 1478 /** 1479 * ib_detach_mcast - Detaches the specified QP from a multicast group. 1480 * @qp: QP to detach from the multicast group. 1481 * @gid: Multicast group GID. 1482 * @lid: Multicast group LID in host byte order. 1483 */ 1484 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1485 1486 #endif /* IB_VERBS_H */ 1487