1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/dma-mapping.h> 45 #include <linux/kref.h> 46 #include <linux/list.h> 47 #include <linux/rwsem.h> 48 #include <linux/workqueue.h> 49 #include <linux/irq_poll.h> 50 #include <uapi/linux/if_ether.h> 51 #include <net/ipv6.h> 52 #include <net/ip.h> 53 #include <linux/string.h> 54 #include <linux/slab.h> 55 #include <linux/netdevice.h> 56 #include <linux/refcount.h> 57 #include <linux/if_link.h> 58 #include <linux/atomic.h> 59 #include <linux/mmu_notifier.h> 60 #include <linux/uaccess.h> 61 #include <linux/cgroup_rdma.h> 62 #include <linux/irqflags.h> 63 #include <linux/preempt.h> 64 #include <linux/dim.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/rdma_counter.h> 67 #include <rdma/restrack.h> 68 #include <rdma/signature.h> 69 #include <uapi/rdma/rdma_user_ioctl.h> 70 #include <uapi/rdma/ib_user_ioctl_verbs.h> 71 72 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 73 74 struct ib_umem_odp; 75 struct ib_uqp_object; 76 struct ib_usrq_object; 77 struct ib_uwq_object; 78 79 extern struct workqueue_struct *ib_wq; 80 extern struct workqueue_struct *ib_comp_wq; 81 extern struct workqueue_struct *ib_comp_unbound_wq; 82 83 struct ib_ucq_object; 84 85 __printf(3, 4) __cold 86 void ibdev_printk(const char *level, const struct ib_device *ibdev, 87 const char *format, ...); 88 __printf(2, 3) __cold 89 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 90 __printf(2, 3) __cold 91 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 92 __printf(2, 3) __cold 93 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 94 __printf(2, 3) __cold 95 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 96 __printf(2, 3) __cold 97 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 98 __printf(2, 3) __cold 99 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 100 __printf(2, 3) __cold 101 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 102 103 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 104 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 105 #define ibdev_dbg(__dev, format, args...) \ 106 dynamic_ibdev_dbg(__dev, format, ##args) 107 #else 108 __printf(2, 3) __cold 109 static inline 110 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 111 #endif 112 113 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 114 do { \ 115 static DEFINE_RATELIMIT_STATE(_rs, \ 116 DEFAULT_RATELIMIT_INTERVAL, \ 117 DEFAULT_RATELIMIT_BURST); \ 118 if (__ratelimit(&_rs)) \ 119 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 120 } while (0) 121 122 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 123 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 124 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 125 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 126 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 127 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 128 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 129 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 130 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 131 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 132 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 133 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 134 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 135 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 136 137 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 138 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 139 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 140 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 141 do { \ 142 static DEFINE_RATELIMIT_STATE(_rs, \ 143 DEFAULT_RATELIMIT_INTERVAL, \ 144 DEFAULT_RATELIMIT_BURST); \ 145 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 146 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 147 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 148 ##__VA_ARGS__); \ 149 } while (0) 150 #else 151 __printf(2, 3) __cold 152 static inline 153 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 154 #endif 155 156 union ib_gid { 157 u8 raw[16]; 158 struct { 159 __be64 subnet_prefix; 160 __be64 interface_id; 161 } global; 162 }; 163 164 extern union ib_gid zgid; 165 166 enum ib_gid_type { 167 /* If link layer is Ethernet, this is RoCE V1 */ 168 IB_GID_TYPE_IB = 0, 169 IB_GID_TYPE_ROCE = 0, 170 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 171 IB_GID_TYPE_SIZE 172 }; 173 174 #define ROCE_V2_UDP_DPORT 4791 175 struct ib_gid_attr { 176 struct net_device __rcu *ndev; 177 struct ib_device *device; 178 union ib_gid gid; 179 enum ib_gid_type gid_type; 180 u16 index; 181 u8 port_num; 182 }; 183 184 enum { 185 /* set the local administered indication */ 186 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 187 }; 188 189 enum rdma_transport_type { 190 RDMA_TRANSPORT_IB, 191 RDMA_TRANSPORT_IWARP, 192 RDMA_TRANSPORT_USNIC, 193 RDMA_TRANSPORT_USNIC_UDP, 194 RDMA_TRANSPORT_UNSPECIFIED, 195 }; 196 197 enum rdma_protocol_type { 198 RDMA_PROTOCOL_IB, 199 RDMA_PROTOCOL_IBOE, 200 RDMA_PROTOCOL_IWARP, 201 RDMA_PROTOCOL_USNIC_UDP 202 }; 203 204 __attribute_const__ enum rdma_transport_type 205 rdma_node_get_transport(unsigned int node_type); 206 207 enum rdma_network_type { 208 RDMA_NETWORK_IB, 209 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 210 RDMA_NETWORK_IPV4, 211 RDMA_NETWORK_IPV6 212 }; 213 214 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 215 { 216 if (network_type == RDMA_NETWORK_IPV4 || 217 network_type == RDMA_NETWORK_IPV6) 218 return IB_GID_TYPE_ROCE_UDP_ENCAP; 219 220 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 221 return IB_GID_TYPE_IB; 222 } 223 224 static inline enum rdma_network_type 225 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 226 { 227 if (attr->gid_type == IB_GID_TYPE_IB) 228 return RDMA_NETWORK_IB; 229 230 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 231 return RDMA_NETWORK_IPV4; 232 else 233 return RDMA_NETWORK_IPV6; 234 } 235 236 enum rdma_link_layer { 237 IB_LINK_LAYER_UNSPECIFIED, 238 IB_LINK_LAYER_INFINIBAND, 239 IB_LINK_LAYER_ETHERNET, 240 }; 241 242 enum ib_device_cap_flags { 243 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 244 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 245 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 246 IB_DEVICE_RAW_MULTI = (1 << 3), 247 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 248 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 249 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 250 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 251 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 252 /* Not in use, former INIT_TYPE = (1 << 9),*/ 253 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 254 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 255 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 256 IB_DEVICE_SRQ_RESIZE = (1 << 13), 257 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 258 259 /* 260 * This device supports a per-device lkey or stag that can be 261 * used without performing a memory registration for the local 262 * memory. Note that ULPs should never check this flag, but 263 * instead of use the local_dma_lkey flag in the ib_pd structure, 264 * which will always contain a usable lkey. 265 */ 266 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 267 /* Reserved, old SEND_W_INV = (1 << 16),*/ 268 IB_DEVICE_MEM_WINDOW = (1 << 17), 269 /* 270 * Devices should set IB_DEVICE_UD_IP_SUM if they support 271 * insertion of UDP and TCP checksum on outgoing UD IPoIB 272 * messages and can verify the validity of checksum for 273 * incoming messages. Setting this flag implies that the 274 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 275 */ 276 IB_DEVICE_UD_IP_CSUM = (1 << 18), 277 IB_DEVICE_UD_TSO = (1 << 19), 278 IB_DEVICE_XRC = (1 << 20), 279 280 /* 281 * This device supports the IB "base memory management extension", 282 * which includes support for fast registrations (IB_WR_REG_MR, 283 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 284 * also be set by any iWarp device which must support FRs to comply 285 * to the iWarp verbs spec. iWarp devices also support the 286 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 287 * stag. 288 */ 289 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 290 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 291 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 292 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 293 IB_DEVICE_RC_IP_CSUM = (1 << 25), 294 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 295 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 296 /* 297 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 298 * support execution of WQEs that involve synchronization 299 * of I/O operations with single completion queue managed 300 * by hardware. 301 */ 302 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 303 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 304 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 305 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 306 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 307 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 308 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 309 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 310 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35), 311 /* The device supports padding incoming writes to cacheline. */ 312 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 313 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 314 }; 315 316 enum ib_atomic_cap { 317 IB_ATOMIC_NONE, 318 IB_ATOMIC_HCA, 319 IB_ATOMIC_GLOB 320 }; 321 322 enum ib_odp_general_cap_bits { 323 IB_ODP_SUPPORT = 1 << 0, 324 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 325 }; 326 327 enum ib_odp_transport_cap_bits { 328 IB_ODP_SUPPORT_SEND = 1 << 0, 329 IB_ODP_SUPPORT_RECV = 1 << 1, 330 IB_ODP_SUPPORT_WRITE = 1 << 2, 331 IB_ODP_SUPPORT_READ = 1 << 3, 332 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 333 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 334 }; 335 336 struct ib_odp_caps { 337 uint64_t general_caps; 338 struct { 339 uint32_t rc_odp_caps; 340 uint32_t uc_odp_caps; 341 uint32_t ud_odp_caps; 342 uint32_t xrc_odp_caps; 343 } per_transport_caps; 344 }; 345 346 struct ib_rss_caps { 347 /* Corresponding bit will be set if qp type from 348 * 'enum ib_qp_type' is supported, e.g. 349 * supported_qpts |= 1 << IB_QPT_UD 350 */ 351 u32 supported_qpts; 352 u32 max_rwq_indirection_tables; 353 u32 max_rwq_indirection_table_size; 354 }; 355 356 enum ib_tm_cap_flags { 357 /* Support tag matching with rendezvous offload for RC transport */ 358 IB_TM_CAP_RNDV_RC = 1 << 0, 359 }; 360 361 struct ib_tm_caps { 362 /* Max size of RNDV header */ 363 u32 max_rndv_hdr_size; 364 /* Max number of entries in tag matching list */ 365 u32 max_num_tags; 366 /* From enum ib_tm_cap_flags */ 367 u32 flags; 368 /* Max number of outstanding list operations */ 369 u32 max_ops; 370 /* Max number of SGE in tag matching entry */ 371 u32 max_sge; 372 }; 373 374 struct ib_cq_init_attr { 375 unsigned int cqe; 376 u32 comp_vector; 377 u32 flags; 378 }; 379 380 enum ib_cq_attr_mask { 381 IB_CQ_MODERATE = 1 << 0, 382 }; 383 384 struct ib_cq_caps { 385 u16 max_cq_moderation_count; 386 u16 max_cq_moderation_period; 387 }; 388 389 struct ib_dm_mr_attr { 390 u64 length; 391 u64 offset; 392 u32 access_flags; 393 }; 394 395 struct ib_dm_alloc_attr { 396 u64 length; 397 u32 alignment; 398 u32 flags; 399 }; 400 401 struct ib_device_attr { 402 u64 fw_ver; 403 __be64 sys_image_guid; 404 u64 max_mr_size; 405 u64 page_size_cap; 406 u32 vendor_id; 407 u32 vendor_part_id; 408 u32 hw_ver; 409 int max_qp; 410 int max_qp_wr; 411 u64 device_cap_flags; 412 int max_send_sge; 413 int max_recv_sge; 414 int max_sge_rd; 415 int max_cq; 416 int max_cqe; 417 int max_mr; 418 int max_pd; 419 int max_qp_rd_atom; 420 int max_ee_rd_atom; 421 int max_res_rd_atom; 422 int max_qp_init_rd_atom; 423 int max_ee_init_rd_atom; 424 enum ib_atomic_cap atomic_cap; 425 enum ib_atomic_cap masked_atomic_cap; 426 int max_ee; 427 int max_rdd; 428 int max_mw; 429 int max_raw_ipv6_qp; 430 int max_raw_ethy_qp; 431 int max_mcast_grp; 432 int max_mcast_qp_attach; 433 int max_total_mcast_qp_attach; 434 int max_ah; 435 int max_srq; 436 int max_srq_wr; 437 int max_srq_sge; 438 unsigned int max_fast_reg_page_list_len; 439 unsigned int max_pi_fast_reg_page_list_len; 440 u16 max_pkeys; 441 u8 local_ca_ack_delay; 442 int sig_prot_cap; 443 int sig_guard_cap; 444 struct ib_odp_caps odp_caps; 445 uint64_t timestamp_mask; 446 uint64_t hca_core_clock; /* in KHZ */ 447 struct ib_rss_caps rss_caps; 448 u32 max_wq_type_rq; 449 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 450 struct ib_tm_caps tm_caps; 451 struct ib_cq_caps cq_caps; 452 u64 max_dm_size; 453 /* Max entries for sgl for optimized performance per READ */ 454 u32 max_sgl_rd; 455 }; 456 457 enum ib_mtu { 458 IB_MTU_256 = 1, 459 IB_MTU_512 = 2, 460 IB_MTU_1024 = 3, 461 IB_MTU_2048 = 4, 462 IB_MTU_4096 = 5 463 }; 464 465 enum opa_mtu { 466 OPA_MTU_8192 = 6, 467 OPA_MTU_10240 = 7 468 }; 469 470 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 471 { 472 switch (mtu) { 473 case IB_MTU_256: return 256; 474 case IB_MTU_512: return 512; 475 case IB_MTU_1024: return 1024; 476 case IB_MTU_2048: return 2048; 477 case IB_MTU_4096: return 4096; 478 default: return -1; 479 } 480 } 481 482 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 483 { 484 if (mtu >= 4096) 485 return IB_MTU_4096; 486 else if (mtu >= 2048) 487 return IB_MTU_2048; 488 else if (mtu >= 1024) 489 return IB_MTU_1024; 490 else if (mtu >= 512) 491 return IB_MTU_512; 492 else 493 return IB_MTU_256; 494 } 495 496 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 497 { 498 switch (mtu) { 499 case OPA_MTU_8192: 500 return 8192; 501 case OPA_MTU_10240: 502 return 10240; 503 default: 504 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 505 } 506 } 507 508 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 509 { 510 if (mtu >= 10240) 511 return OPA_MTU_10240; 512 else if (mtu >= 8192) 513 return OPA_MTU_8192; 514 else 515 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 516 } 517 518 enum ib_port_state { 519 IB_PORT_NOP = 0, 520 IB_PORT_DOWN = 1, 521 IB_PORT_INIT = 2, 522 IB_PORT_ARMED = 3, 523 IB_PORT_ACTIVE = 4, 524 IB_PORT_ACTIVE_DEFER = 5 525 }; 526 527 enum ib_port_phys_state { 528 IB_PORT_PHYS_STATE_SLEEP = 1, 529 IB_PORT_PHYS_STATE_POLLING = 2, 530 IB_PORT_PHYS_STATE_DISABLED = 3, 531 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 532 IB_PORT_PHYS_STATE_LINK_UP = 5, 533 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 534 IB_PORT_PHYS_STATE_PHY_TEST = 7, 535 }; 536 537 enum ib_port_width { 538 IB_WIDTH_1X = 1, 539 IB_WIDTH_2X = 16, 540 IB_WIDTH_4X = 2, 541 IB_WIDTH_8X = 4, 542 IB_WIDTH_12X = 8 543 }; 544 545 static inline int ib_width_enum_to_int(enum ib_port_width width) 546 { 547 switch (width) { 548 case IB_WIDTH_1X: return 1; 549 case IB_WIDTH_2X: return 2; 550 case IB_WIDTH_4X: return 4; 551 case IB_WIDTH_8X: return 8; 552 case IB_WIDTH_12X: return 12; 553 default: return -1; 554 } 555 } 556 557 enum ib_port_speed { 558 IB_SPEED_SDR = 1, 559 IB_SPEED_DDR = 2, 560 IB_SPEED_QDR = 4, 561 IB_SPEED_FDR10 = 8, 562 IB_SPEED_FDR = 16, 563 IB_SPEED_EDR = 32, 564 IB_SPEED_HDR = 64 565 }; 566 567 /** 568 * struct rdma_hw_stats 569 * @lock - Mutex to protect parallel write access to lifespan and values 570 * of counters, which are 64bits and not guaranteeed to be written 571 * atomicaly on 32bits systems. 572 * @timestamp - Used by the core code to track when the last update was 573 * @lifespan - Used by the core code to determine how old the counters 574 * should be before being updated again. Stored in jiffies, defaults 575 * to 10 milliseconds, drivers can override the default be specifying 576 * their own value during their allocation routine. 577 * @name - Array of pointers to static names used for the counters in 578 * directory. 579 * @num_counters - How many hardware counters there are. If name is 580 * shorter than this number, a kernel oops will result. Driver authors 581 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 582 * in their code to prevent this. 583 * @value - Array of u64 counters that are accessed by the sysfs code and 584 * filled in by the drivers get_stats routine 585 */ 586 struct rdma_hw_stats { 587 struct mutex lock; /* Protect lifespan and values[] */ 588 unsigned long timestamp; 589 unsigned long lifespan; 590 const char * const *names; 591 int num_counters; 592 u64 value[]; 593 }; 594 595 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 596 /** 597 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 598 * for drivers. 599 * @names - Array of static const char * 600 * @num_counters - How many elements in array 601 * @lifespan - How many milliseconds between updates 602 */ 603 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 604 const char * const *names, int num_counters, 605 unsigned long lifespan) 606 { 607 struct rdma_hw_stats *stats; 608 609 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 610 GFP_KERNEL); 611 if (!stats) 612 return NULL; 613 stats->names = names; 614 stats->num_counters = num_counters; 615 stats->lifespan = msecs_to_jiffies(lifespan); 616 617 return stats; 618 } 619 620 621 /* Define bits for the various functionality this port needs to be supported by 622 * the core. 623 */ 624 /* Management 0x00000FFF */ 625 #define RDMA_CORE_CAP_IB_MAD 0x00000001 626 #define RDMA_CORE_CAP_IB_SMI 0x00000002 627 #define RDMA_CORE_CAP_IB_CM 0x00000004 628 #define RDMA_CORE_CAP_IW_CM 0x00000008 629 #define RDMA_CORE_CAP_IB_SA 0x00000010 630 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 631 632 /* Address format 0x000FF000 */ 633 #define RDMA_CORE_CAP_AF_IB 0x00001000 634 #define RDMA_CORE_CAP_ETH_AH 0x00002000 635 #define RDMA_CORE_CAP_OPA_AH 0x00004000 636 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 637 638 /* Protocol 0xFFF00000 */ 639 #define RDMA_CORE_CAP_PROT_IB 0x00100000 640 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 641 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 642 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 643 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 644 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 645 646 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 647 | RDMA_CORE_CAP_PROT_ROCE \ 648 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 649 650 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 651 | RDMA_CORE_CAP_IB_MAD \ 652 | RDMA_CORE_CAP_IB_SMI \ 653 | RDMA_CORE_CAP_IB_CM \ 654 | RDMA_CORE_CAP_IB_SA \ 655 | RDMA_CORE_CAP_AF_IB) 656 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 657 | RDMA_CORE_CAP_IB_MAD \ 658 | RDMA_CORE_CAP_IB_CM \ 659 | RDMA_CORE_CAP_AF_IB \ 660 | RDMA_CORE_CAP_ETH_AH) 661 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 662 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 663 | RDMA_CORE_CAP_IB_MAD \ 664 | RDMA_CORE_CAP_IB_CM \ 665 | RDMA_CORE_CAP_AF_IB \ 666 | RDMA_CORE_CAP_ETH_AH) 667 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 668 | RDMA_CORE_CAP_IW_CM) 669 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 670 | RDMA_CORE_CAP_OPA_MAD) 671 672 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 673 674 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 675 676 struct ib_port_attr { 677 u64 subnet_prefix; 678 enum ib_port_state state; 679 enum ib_mtu max_mtu; 680 enum ib_mtu active_mtu; 681 u32 phys_mtu; 682 int gid_tbl_len; 683 unsigned int ip_gids:1; 684 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 685 u32 port_cap_flags; 686 u32 max_msg_sz; 687 u32 bad_pkey_cntr; 688 u32 qkey_viol_cntr; 689 u16 pkey_tbl_len; 690 u32 sm_lid; 691 u32 lid; 692 u8 lmc; 693 u8 max_vl_num; 694 u8 sm_sl; 695 u8 subnet_timeout; 696 u8 init_type_reply; 697 u8 active_width; 698 u8 active_speed; 699 u8 phys_state; 700 u16 port_cap_flags2; 701 }; 702 703 enum ib_device_modify_flags { 704 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 705 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 706 }; 707 708 #define IB_DEVICE_NODE_DESC_MAX 64 709 710 struct ib_device_modify { 711 u64 sys_image_guid; 712 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 713 }; 714 715 enum ib_port_modify_flags { 716 IB_PORT_SHUTDOWN = 1, 717 IB_PORT_INIT_TYPE = (1<<2), 718 IB_PORT_RESET_QKEY_CNTR = (1<<3), 719 IB_PORT_OPA_MASK_CHG = (1<<4) 720 }; 721 722 struct ib_port_modify { 723 u32 set_port_cap_mask; 724 u32 clr_port_cap_mask; 725 u8 init_type; 726 }; 727 728 enum ib_event_type { 729 IB_EVENT_CQ_ERR, 730 IB_EVENT_QP_FATAL, 731 IB_EVENT_QP_REQ_ERR, 732 IB_EVENT_QP_ACCESS_ERR, 733 IB_EVENT_COMM_EST, 734 IB_EVENT_SQ_DRAINED, 735 IB_EVENT_PATH_MIG, 736 IB_EVENT_PATH_MIG_ERR, 737 IB_EVENT_DEVICE_FATAL, 738 IB_EVENT_PORT_ACTIVE, 739 IB_EVENT_PORT_ERR, 740 IB_EVENT_LID_CHANGE, 741 IB_EVENT_PKEY_CHANGE, 742 IB_EVENT_SM_CHANGE, 743 IB_EVENT_SRQ_ERR, 744 IB_EVENT_SRQ_LIMIT_REACHED, 745 IB_EVENT_QP_LAST_WQE_REACHED, 746 IB_EVENT_CLIENT_REREGISTER, 747 IB_EVENT_GID_CHANGE, 748 IB_EVENT_WQ_FATAL, 749 }; 750 751 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 752 753 struct ib_event { 754 struct ib_device *device; 755 union { 756 struct ib_cq *cq; 757 struct ib_qp *qp; 758 struct ib_srq *srq; 759 struct ib_wq *wq; 760 u8 port_num; 761 } element; 762 enum ib_event_type event; 763 }; 764 765 struct ib_event_handler { 766 struct ib_device *device; 767 void (*handler)(struct ib_event_handler *, struct ib_event *); 768 struct list_head list; 769 }; 770 771 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 772 do { \ 773 (_ptr)->device = _device; \ 774 (_ptr)->handler = _handler; \ 775 INIT_LIST_HEAD(&(_ptr)->list); \ 776 } while (0) 777 778 struct ib_global_route { 779 const struct ib_gid_attr *sgid_attr; 780 union ib_gid dgid; 781 u32 flow_label; 782 u8 sgid_index; 783 u8 hop_limit; 784 u8 traffic_class; 785 }; 786 787 struct ib_grh { 788 __be32 version_tclass_flow; 789 __be16 paylen; 790 u8 next_hdr; 791 u8 hop_limit; 792 union ib_gid sgid; 793 union ib_gid dgid; 794 }; 795 796 union rdma_network_hdr { 797 struct ib_grh ibgrh; 798 struct { 799 /* The IB spec states that if it's IPv4, the header 800 * is located in the last 20 bytes of the header. 801 */ 802 u8 reserved[20]; 803 struct iphdr roce4grh; 804 }; 805 }; 806 807 #define IB_QPN_MASK 0xFFFFFF 808 809 enum { 810 IB_MULTICAST_QPN = 0xffffff 811 }; 812 813 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 814 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 815 816 enum ib_ah_flags { 817 IB_AH_GRH = 1 818 }; 819 820 enum ib_rate { 821 IB_RATE_PORT_CURRENT = 0, 822 IB_RATE_2_5_GBPS = 2, 823 IB_RATE_5_GBPS = 5, 824 IB_RATE_10_GBPS = 3, 825 IB_RATE_20_GBPS = 6, 826 IB_RATE_30_GBPS = 4, 827 IB_RATE_40_GBPS = 7, 828 IB_RATE_60_GBPS = 8, 829 IB_RATE_80_GBPS = 9, 830 IB_RATE_120_GBPS = 10, 831 IB_RATE_14_GBPS = 11, 832 IB_RATE_56_GBPS = 12, 833 IB_RATE_112_GBPS = 13, 834 IB_RATE_168_GBPS = 14, 835 IB_RATE_25_GBPS = 15, 836 IB_RATE_100_GBPS = 16, 837 IB_RATE_200_GBPS = 17, 838 IB_RATE_300_GBPS = 18, 839 IB_RATE_28_GBPS = 19, 840 IB_RATE_50_GBPS = 20, 841 IB_RATE_400_GBPS = 21, 842 IB_RATE_600_GBPS = 22, 843 }; 844 845 /** 846 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 847 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 848 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 849 * @rate: rate to convert. 850 */ 851 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 852 853 /** 854 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 855 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 856 * @rate: rate to convert. 857 */ 858 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 859 860 861 /** 862 * enum ib_mr_type - memory region type 863 * @IB_MR_TYPE_MEM_REG: memory region that is used for 864 * normal registration 865 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 866 * register any arbitrary sg lists (without 867 * the normal mr constraints - see 868 * ib_map_mr_sg) 869 * @IB_MR_TYPE_DM: memory region that is used for device 870 * memory registration 871 * @IB_MR_TYPE_USER: memory region that is used for the user-space 872 * application 873 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 874 * without address translations (VA=PA) 875 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 876 * data integrity operations 877 */ 878 enum ib_mr_type { 879 IB_MR_TYPE_MEM_REG, 880 IB_MR_TYPE_SG_GAPS, 881 IB_MR_TYPE_DM, 882 IB_MR_TYPE_USER, 883 IB_MR_TYPE_DMA, 884 IB_MR_TYPE_INTEGRITY, 885 }; 886 887 enum ib_mr_status_check { 888 IB_MR_CHECK_SIG_STATUS = 1, 889 }; 890 891 /** 892 * struct ib_mr_status - Memory region status container 893 * 894 * @fail_status: Bitmask of MR checks status. For each 895 * failed check a corresponding status bit is set. 896 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 897 * failure. 898 */ 899 struct ib_mr_status { 900 u32 fail_status; 901 struct ib_sig_err sig_err; 902 }; 903 904 /** 905 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 906 * enum. 907 * @mult: multiple to convert. 908 */ 909 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 910 911 struct rdma_ah_init_attr { 912 struct rdma_ah_attr *ah_attr; 913 u32 flags; 914 struct net_device *xmit_slave; 915 }; 916 917 enum rdma_ah_attr_type { 918 RDMA_AH_ATTR_TYPE_UNDEFINED, 919 RDMA_AH_ATTR_TYPE_IB, 920 RDMA_AH_ATTR_TYPE_ROCE, 921 RDMA_AH_ATTR_TYPE_OPA, 922 }; 923 924 struct ib_ah_attr { 925 u16 dlid; 926 u8 src_path_bits; 927 }; 928 929 struct roce_ah_attr { 930 u8 dmac[ETH_ALEN]; 931 }; 932 933 struct opa_ah_attr { 934 u32 dlid; 935 u8 src_path_bits; 936 bool make_grd; 937 }; 938 939 struct rdma_ah_attr { 940 struct ib_global_route grh; 941 u8 sl; 942 u8 static_rate; 943 u8 port_num; 944 u8 ah_flags; 945 enum rdma_ah_attr_type type; 946 union { 947 struct ib_ah_attr ib; 948 struct roce_ah_attr roce; 949 struct opa_ah_attr opa; 950 }; 951 }; 952 953 enum ib_wc_status { 954 IB_WC_SUCCESS, 955 IB_WC_LOC_LEN_ERR, 956 IB_WC_LOC_QP_OP_ERR, 957 IB_WC_LOC_EEC_OP_ERR, 958 IB_WC_LOC_PROT_ERR, 959 IB_WC_WR_FLUSH_ERR, 960 IB_WC_MW_BIND_ERR, 961 IB_WC_BAD_RESP_ERR, 962 IB_WC_LOC_ACCESS_ERR, 963 IB_WC_REM_INV_REQ_ERR, 964 IB_WC_REM_ACCESS_ERR, 965 IB_WC_REM_OP_ERR, 966 IB_WC_RETRY_EXC_ERR, 967 IB_WC_RNR_RETRY_EXC_ERR, 968 IB_WC_LOC_RDD_VIOL_ERR, 969 IB_WC_REM_INV_RD_REQ_ERR, 970 IB_WC_REM_ABORT_ERR, 971 IB_WC_INV_EECN_ERR, 972 IB_WC_INV_EEC_STATE_ERR, 973 IB_WC_FATAL_ERR, 974 IB_WC_RESP_TIMEOUT_ERR, 975 IB_WC_GENERAL_ERR 976 }; 977 978 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 979 980 enum ib_wc_opcode { 981 IB_WC_SEND, 982 IB_WC_RDMA_WRITE, 983 IB_WC_RDMA_READ, 984 IB_WC_COMP_SWAP, 985 IB_WC_FETCH_ADD, 986 IB_WC_LSO, 987 IB_WC_LOCAL_INV, 988 IB_WC_REG_MR, 989 IB_WC_MASKED_COMP_SWAP, 990 IB_WC_MASKED_FETCH_ADD, 991 /* 992 * Set value of IB_WC_RECV so consumers can test if a completion is a 993 * receive by testing (opcode & IB_WC_RECV). 994 */ 995 IB_WC_RECV = 1 << 7, 996 IB_WC_RECV_RDMA_WITH_IMM 997 }; 998 999 enum ib_wc_flags { 1000 IB_WC_GRH = 1, 1001 IB_WC_WITH_IMM = (1<<1), 1002 IB_WC_WITH_INVALIDATE = (1<<2), 1003 IB_WC_IP_CSUM_OK = (1<<3), 1004 IB_WC_WITH_SMAC = (1<<4), 1005 IB_WC_WITH_VLAN = (1<<5), 1006 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 1007 }; 1008 1009 struct ib_wc { 1010 union { 1011 u64 wr_id; 1012 struct ib_cqe *wr_cqe; 1013 }; 1014 enum ib_wc_status status; 1015 enum ib_wc_opcode opcode; 1016 u32 vendor_err; 1017 u32 byte_len; 1018 struct ib_qp *qp; 1019 union { 1020 __be32 imm_data; 1021 u32 invalidate_rkey; 1022 } ex; 1023 u32 src_qp; 1024 u32 slid; 1025 int wc_flags; 1026 u16 pkey_index; 1027 u8 sl; 1028 u8 dlid_path_bits; 1029 u8 port_num; /* valid only for DR SMPs on switches */ 1030 u8 smac[ETH_ALEN]; 1031 u16 vlan_id; 1032 u8 network_hdr_type; 1033 }; 1034 1035 enum ib_cq_notify_flags { 1036 IB_CQ_SOLICITED = 1 << 0, 1037 IB_CQ_NEXT_COMP = 1 << 1, 1038 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1039 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1040 }; 1041 1042 enum ib_srq_type { 1043 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1044 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1045 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1046 }; 1047 1048 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1049 { 1050 return srq_type == IB_SRQT_XRC || 1051 srq_type == IB_SRQT_TM; 1052 } 1053 1054 enum ib_srq_attr_mask { 1055 IB_SRQ_MAX_WR = 1 << 0, 1056 IB_SRQ_LIMIT = 1 << 1, 1057 }; 1058 1059 struct ib_srq_attr { 1060 u32 max_wr; 1061 u32 max_sge; 1062 u32 srq_limit; 1063 }; 1064 1065 struct ib_srq_init_attr { 1066 void (*event_handler)(struct ib_event *, void *); 1067 void *srq_context; 1068 struct ib_srq_attr attr; 1069 enum ib_srq_type srq_type; 1070 1071 struct { 1072 struct ib_cq *cq; 1073 union { 1074 struct { 1075 struct ib_xrcd *xrcd; 1076 } xrc; 1077 1078 struct { 1079 u32 max_num_tags; 1080 } tag_matching; 1081 }; 1082 } ext; 1083 }; 1084 1085 struct ib_qp_cap { 1086 u32 max_send_wr; 1087 u32 max_recv_wr; 1088 u32 max_send_sge; 1089 u32 max_recv_sge; 1090 u32 max_inline_data; 1091 1092 /* 1093 * Maximum number of rdma_rw_ctx structures in flight at a time. 1094 * ib_create_qp() will calculate the right amount of neededed WRs 1095 * and MRs based on this. 1096 */ 1097 u32 max_rdma_ctxs; 1098 }; 1099 1100 enum ib_sig_type { 1101 IB_SIGNAL_ALL_WR, 1102 IB_SIGNAL_REQ_WR 1103 }; 1104 1105 enum ib_qp_type { 1106 /* 1107 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1108 * here (and in that order) since the MAD layer uses them as 1109 * indices into a 2-entry table. 1110 */ 1111 IB_QPT_SMI, 1112 IB_QPT_GSI, 1113 1114 IB_QPT_RC = IB_UVERBS_QPT_RC, 1115 IB_QPT_UC = IB_UVERBS_QPT_UC, 1116 IB_QPT_UD = IB_UVERBS_QPT_UD, 1117 IB_QPT_RAW_IPV6, 1118 IB_QPT_RAW_ETHERTYPE, 1119 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1120 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1121 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1122 IB_QPT_MAX, 1123 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1124 /* Reserve a range for qp types internal to the low level driver. 1125 * These qp types will not be visible at the IB core layer, so the 1126 * IB_QPT_MAX usages should not be affected in the core layer 1127 */ 1128 IB_QPT_RESERVED1 = 0x1000, 1129 IB_QPT_RESERVED2, 1130 IB_QPT_RESERVED3, 1131 IB_QPT_RESERVED4, 1132 IB_QPT_RESERVED5, 1133 IB_QPT_RESERVED6, 1134 IB_QPT_RESERVED7, 1135 IB_QPT_RESERVED8, 1136 IB_QPT_RESERVED9, 1137 IB_QPT_RESERVED10, 1138 }; 1139 1140 enum ib_qp_create_flags { 1141 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1142 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1143 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1144 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1145 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1146 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1147 IB_QP_CREATE_NETIF_QP = 1 << 5, 1148 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1149 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1150 IB_QP_CREATE_SCATTER_FCS = 1151 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1152 IB_QP_CREATE_CVLAN_STRIPPING = 1153 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1154 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1155 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1156 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1157 /* reserve bits 26-31 for low level drivers' internal use */ 1158 IB_QP_CREATE_RESERVED_START = 1 << 26, 1159 IB_QP_CREATE_RESERVED_END = 1 << 31, 1160 }; 1161 1162 /* 1163 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1164 * callback to destroy the passed in QP. 1165 */ 1166 1167 struct ib_qp_init_attr { 1168 /* Consumer's event_handler callback must not block */ 1169 void (*event_handler)(struct ib_event *, void *); 1170 1171 void *qp_context; 1172 struct ib_cq *send_cq; 1173 struct ib_cq *recv_cq; 1174 struct ib_srq *srq; 1175 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1176 struct ib_qp_cap cap; 1177 enum ib_sig_type sq_sig_type; 1178 enum ib_qp_type qp_type; 1179 u32 create_flags; 1180 1181 /* 1182 * Only needed for special QP types, or when using the RW API. 1183 */ 1184 u8 port_num; 1185 struct ib_rwq_ind_table *rwq_ind_tbl; 1186 u32 source_qpn; 1187 }; 1188 1189 struct ib_qp_open_attr { 1190 void (*event_handler)(struct ib_event *, void *); 1191 void *qp_context; 1192 u32 qp_num; 1193 enum ib_qp_type qp_type; 1194 }; 1195 1196 enum ib_rnr_timeout { 1197 IB_RNR_TIMER_655_36 = 0, 1198 IB_RNR_TIMER_000_01 = 1, 1199 IB_RNR_TIMER_000_02 = 2, 1200 IB_RNR_TIMER_000_03 = 3, 1201 IB_RNR_TIMER_000_04 = 4, 1202 IB_RNR_TIMER_000_06 = 5, 1203 IB_RNR_TIMER_000_08 = 6, 1204 IB_RNR_TIMER_000_12 = 7, 1205 IB_RNR_TIMER_000_16 = 8, 1206 IB_RNR_TIMER_000_24 = 9, 1207 IB_RNR_TIMER_000_32 = 10, 1208 IB_RNR_TIMER_000_48 = 11, 1209 IB_RNR_TIMER_000_64 = 12, 1210 IB_RNR_TIMER_000_96 = 13, 1211 IB_RNR_TIMER_001_28 = 14, 1212 IB_RNR_TIMER_001_92 = 15, 1213 IB_RNR_TIMER_002_56 = 16, 1214 IB_RNR_TIMER_003_84 = 17, 1215 IB_RNR_TIMER_005_12 = 18, 1216 IB_RNR_TIMER_007_68 = 19, 1217 IB_RNR_TIMER_010_24 = 20, 1218 IB_RNR_TIMER_015_36 = 21, 1219 IB_RNR_TIMER_020_48 = 22, 1220 IB_RNR_TIMER_030_72 = 23, 1221 IB_RNR_TIMER_040_96 = 24, 1222 IB_RNR_TIMER_061_44 = 25, 1223 IB_RNR_TIMER_081_92 = 26, 1224 IB_RNR_TIMER_122_88 = 27, 1225 IB_RNR_TIMER_163_84 = 28, 1226 IB_RNR_TIMER_245_76 = 29, 1227 IB_RNR_TIMER_327_68 = 30, 1228 IB_RNR_TIMER_491_52 = 31 1229 }; 1230 1231 enum ib_qp_attr_mask { 1232 IB_QP_STATE = 1, 1233 IB_QP_CUR_STATE = (1<<1), 1234 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1235 IB_QP_ACCESS_FLAGS = (1<<3), 1236 IB_QP_PKEY_INDEX = (1<<4), 1237 IB_QP_PORT = (1<<5), 1238 IB_QP_QKEY = (1<<6), 1239 IB_QP_AV = (1<<7), 1240 IB_QP_PATH_MTU = (1<<8), 1241 IB_QP_TIMEOUT = (1<<9), 1242 IB_QP_RETRY_CNT = (1<<10), 1243 IB_QP_RNR_RETRY = (1<<11), 1244 IB_QP_RQ_PSN = (1<<12), 1245 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1246 IB_QP_ALT_PATH = (1<<14), 1247 IB_QP_MIN_RNR_TIMER = (1<<15), 1248 IB_QP_SQ_PSN = (1<<16), 1249 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1250 IB_QP_PATH_MIG_STATE = (1<<18), 1251 IB_QP_CAP = (1<<19), 1252 IB_QP_DEST_QPN = (1<<20), 1253 IB_QP_RESERVED1 = (1<<21), 1254 IB_QP_RESERVED2 = (1<<22), 1255 IB_QP_RESERVED3 = (1<<23), 1256 IB_QP_RESERVED4 = (1<<24), 1257 IB_QP_RATE_LIMIT = (1<<25), 1258 }; 1259 1260 enum ib_qp_state { 1261 IB_QPS_RESET, 1262 IB_QPS_INIT, 1263 IB_QPS_RTR, 1264 IB_QPS_RTS, 1265 IB_QPS_SQD, 1266 IB_QPS_SQE, 1267 IB_QPS_ERR 1268 }; 1269 1270 enum ib_mig_state { 1271 IB_MIG_MIGRATED, 1272 IB_MIG_REARM, 1273 IB_MIG_ARMED 1274 }; 1275 1276 enum ib_mw_type { 1277 IB_MW_TYPE_1 = 1, 1278 IB_MW_TYPE_2 = 2 1279 }; 1280 1281 struct ib_qp_attr { 1282 enum ib_qp_state qp_state; 1283 enum ib_qp_state cur_qp_state; 1284 enum ib_mtu path_mtu; 1285 enum ib_mig_state path_mig_state; 1286 u32 qkey; 1287 u32 rq_psn; 1288 u32 sq_psn; 1289 u32 dest_qp_num; 1290 int qp_access_flags; 1291 struct ib_qp_cap cap; 1292 struct rdma_ah_attr ah_attr; 1293 struct rdma_ah_attr alt_ah_attr; 1294 u16 pkey_index; 1295 u16 alt_pkey_index; 1296 u8 en_sqd_async_notify; 1297 u8 sq_draining; 1298 u8 max_rd_atomic; 1299 u8 max_dest_rd_atomic; 1300 u8 min_rnr_timer; 1301 u8 port_num; 1302 u8 timeout; 1303 u8 retry_cnt; 1304 u8 rnr_retry; 1305 u8 alt_port_num; 1306 u8 alt_timeout; 1307 u32 rate_limit; 1308 struct net_device *xmit_slave; 1309 }; 1310 1311 enum ib_wr_opcode { 1312 /* These are shared with userspace */ 1313 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1314 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1315 IB_WR_SEND = IB_UVERBS_WR_SEND, 1316 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1317 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1318 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1319 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1320 IB_WR_LSO = IB_UVERBS_WR_TSO, 1321 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1322 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1323 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1324 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1325 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1326 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1327 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1328 1329 /* These are kernel only and can not be issued by userspace */ 1330 IB_WR_REG_MR = 0x20, 1331 IB_WR_REG_MR_INTEGRITY, 1332 1333 /* reserve values for low level drivers' internal use. 1334 * These values will not be used at all in the ib core layer. 1335 */ 1336 IB_WR_RESERVED1 = 0xf0, 1337 IB_WR_RESERVED2, 1338 IB_WR_RESERVED3, 1339 IB_WR_RESERVED4, 1340 IB_WR_RESERVED5, 1341 IB_WR_RESERVED6, 1342 IB_WR_RESERVED7, 1343 IB_WR_RESERVED8, 1344 IB_WR_RESERVED9, 1345 IB_WR_RESERVED10, 1346 }; 1347 1348 enum ib_send_flags { 1349 IB_SEND_FENCE = 1, 1350 IB_SEND_SIGNALED = (1<<1), 1351 IB_SEND_SOLICITED = (1<<2), 1352 IB_SEND_INLINE = (1<<3), 1353 IB_SEND_IP_CSUM = (1<<4), 1354 1355 /* reserve bits 26-31 for low level drivers' internal use */ 1356 IB_SEND_RESERVED_START = (1 << 26), 1357 IB_SEND_RESERVED_END = (1 << 31), 1358 }; 1359 1360 struct ib_sge { 1361 u64 addr; 1362 u32 length; 1363 u32 lkey; 1364 }; 1365 1366 struct ib_cqe { 1367 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1368 }; 1369 1370 struct ib_send_wr { 1371 struct ib_send_wr *next; 1372 union { 1373 u64 wr_id; 1374 struct ib_cqe *wr_cqe; 1375 }; 1376 struct ib_sge *sg_list; 1377 int num_sge; 1378 enum ib_wr_opcode opcode; 1379 int send_flags; 1380 union { 1381 __be32 imm_data; 1382 u32 invalidate_rkey; 1383 } ex; 1384 }; 1385 1386 struct ib_rdma_wr { 1387 struct ib_send_wr wr; 1388 u64 remote_addr; 1389 u32 rkey; 1390 }; 1391 1392 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1393 { 1394 return container_of(wr, struct ib_rdma_wr, wr); 1395 } 1396 1397 struct ib_atomic_wr { 1398 struct ib_send_wr wr; 1399 u64 remote_addr; 1400 u64 compare_add; 1401 u64 swap; 1402 u64 compare_add_mask; 1403 u64 swap_mask; 1404 u32 rkey; 1405 }; 1406 1407 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1408 { 1409 return container_of(wr, struct ib_atomic_wr, wr); 1410 } 1411 1412 struct ib_ud_wr { 1413 struct ib_send_wr wr; 1414 struct ib_ah *ah; 1415 void *header; 1416 int hlen; 1417 int mss; 1418 u32 remote_qpn; 1419 u32 remote_qkey; 1420 u16 pkey_index; /* valid for GSI only */ 1421 u8 port_num; /* valid for DR SMPs on switch only */ 1422 }; 1423 1424 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1425 { 1426 return container_of(wr, struct ib_ud_wr, wr); 1427 } 1428 1429 struct ib_reg_wr { 1430 struct ib_send_wr wr; 1431 struct ib_mr *mr; 1432 u32 key; 1433 int access; 1434 }; 1435 1436 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1437 { 1438 return container_of(wr, struct ib_reg_wr, wr); 1439 } 1440 1441 struct ib_recv_wr { 1442 struct ib_recv_wr *next; 1443 union { 1444 u64 wr_id; 1445 struct ib_cqe *wr_cqe; 1446 }; 1447 struct ib_sge *sg_list; 1448 int num_sge; 1449 }; 1450 1451 enum ib_access_flags { 1452 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1453 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1454 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1455 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1456 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1457 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1458 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1459 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1460 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1461 1462 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1463 IB_ACCESS_SUPPORTED = 1464 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1465 }; 1466 1467 /* 1468 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1469 * are hidden here instead of a uapi header! 1470 */ 1471 enum ib_mr_rereg_flags { 1472 IB_MR_REREG_TRANS = 1, 1473 IB_MR_REREG_PD = (1<<1), 1474 IB_MR_REREG_ACCESS = (1<<2), 1475 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1476 }; 1477 1478 struct ib_umem; 1479 1480 enum rdma_remove_reason { 1481 /* 1482 * Userspace requested uobject deletion or initial try 1483 * to remove uobject via cleanup. Call could fail 1484 */ 1485 RDMA_REMOVE_DESTROY, 1486 /* Context deletion. This call should delete the actual object itself */ 1487 RDMA_REMOVE_CLOSE, 1488 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1489 RDMA_REMOVE_DRIVER_REMOVE, 1490 /* uobj is being cleaned-up before being committed */ 1491 RDMA_REMOVE_ABORT, 1492 /* 1493 * uobj has been fully created, with the uobj->object set, but is being 1494 * cleaned up before being comitted 1495 */ 1496 RDMA_REMOVE_ABORT_HWOBJ, 1497 }; 1498 1499 struct ib_rdmacg_object { 1500 #ifdef CONFIG_CGROUP_RDMA 1501 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1502 #endif 1503 }; 1504 1505 struct ib_ucontext { 1506 struct ib_device *device; 1507 struct ib_uverbs_file *ufile; 1508 /* 1509 * 'closing' can be read by the driver only during a destroy callback, 1510 * it is set when we are closing the file descriptor and indicates 1511 * that mm_sem may be locked. 1512 */ 1513 bool closing; 1514 1515 bool cleanup_retryable; 1516 1517 struct ib_rdmacg_object cg_obj; 1518 /* 1519 * Implementation details of the RDMA core, don't use in drivers: 1520 */ 1521 struct rdma_restrack_entry res; 1522 struct xarray mmap_xa; 1523 }; 1524 1525 struct ib_uobject { 1526 u64 user_handle; /* handle given to us by userspace */ 1527 /* ufile & ucontext owning this object */ 1528 struct ib_uverbs_file *ufile; 1529 /* FIXME, save memory: ufile->context == context */ 1530 struct ib_ucontext *context; /* associated user context */ 1531 void *object; /* containing object */ 1532 struct list_head list; /* link to context's list */ 1533 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1534 int id; /* index into kernel idr */ 1535 struct kref ref; 1536 atomic_t usecnt; /* protects exclusive access */ 1537 struct rcu_head rcu; /* kfree_rcu() overhead */ 1538 1539 const struct uverbs_api_object *uapi_object; 1540 }; 1541 1542 struct ib_udata { 1543 const void __user *inbuf; 1544 void __user *outbuf; 1545 size_t inlen; 1546 size_t outlen; 1547 }; 1548 1549 struct ib_pd { 1550 u32 local_dma_lkey; 1551 u32 flags; 1552 struct ib_device *device; 1553 struct ib_uobject *uobject; 1554 atomic_t usecnt; /* count all resources */ 1555 1556 u32 unsafe_global_rkey; 1557 1558 /* 1559 * Implementation details of the RDMA core, don't use in drivers: 1560 */ 1561 struct ib_mr *__internal_mr; 1562 struct rdma_restrack_entry res; 1563 }; 1564 1565 struct ib_xrcd { 1566 struct ib_device *device; 1567 atomic_t usecnt; /* count all exposed resources */ 1568 struct inode *inode; 1569 1570 struct mutex tgt_qp_mutex; 1571 struct list_head tgt_qp_list; 1572 }; 1573 1574 struct ib_ah { 1575 struct ib_device *device; 1576 struct ib_pd *pd; 1577 struct ib_uobject *uobject; 1578 const struct ib_gid_attr *sgid_attr; 1579 enum rdma_ah_attr_type type; 1580 }; 1581 1582 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1583 1584 enum ib_poll_context { 1585 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1586 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1587 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1588 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1589 1590 IB_POLL_DIRECT, /* caller context, no hw completions */ 1591 }; 1592 1593 struct ib_cq { 1594 struct ib_device *device; 1595 struct ib_ucq_object *uobject; 1596 ib_comp_handler comp_handler; 1597 void (*event_handler)(struct ib_event *, void *); 1598 void *cq_context; 1599 int cqe; 1600 unsigned int cqe_used; 1601 atomic_t usecnt; /* count number of work queues */ 1602 enum ib_poll_context poll_ctx; 1603 struct ib_wc *wc; 1604 struct list_head pool_entry; 1605 union { 1606 struct irq_poll iop; 1607 struct work_struct work; 1608 }; 1609 struct workqueue_struct *comp_wq; 1610 struct dim *dim; 1611 1612 /* updated only by trace points */ 1613 ktime_t timestamp; 1614 u8 interrupt:1; 1615 u8 shared:1; 1616 unsigned int comp_vector; 1617 1618 /* 1619 * Implementation details of the RDMA core, don't use in drivers: 1620 */ 1621 struct rdma_restrack_entry res; 1622 }; 1623 1624 struct ib_srq { 1625 struct ib_device *device; 1626 struct ib_pd *pd; 1627 struct ib_usrq_object *uobject; 1628 void (*event_handler)(struct ib_event *, void *); 1629 void *srq_context; 1630 enum ib_srq_type srq_type; 1631 atomic_t usecnt; 1632 1633 struct { 1634 struct ib_cq *cq; 1635 union { 1636 struct { 1637 struct ib_xrcd *xrcd; 1638 u32 srq_num; 1639 } xrc; 1640 }; 1641 } ext; 1642 }; 1643 1644 enum ib_raw_packet_caps { 1645 /* Strip cvlan from incoming packet and report it in the matching work 1646 * completion is supported. 1647 */ 1648 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1649 /* Scatter FCS field of an incoming packet to host memory is supported. 1650 */ 1651 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1652 /* Checksum offloads are supported (for both send and receive). */ 1653 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1654 /* When a packet is received for an RQ with no receive WQEs, the 1655 * packet processing is delayed. 1656 */ 1657 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1658 }; 1659 1660 enum ib_wq_type { 1661 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1662 }; 1663 1664 enum ib_wq_state { 1665 IB_WQS_RESET, 1666 IB_WQS_RDY, 1667 IB_WQS_ERR 1668 }; 1669 1670 struct ib_wq { 1671 struct ib_device *device; 1672 struct ib_uwq_object *uobject; 1673 void *wq_context; 1674 void (*event_handler)(struct ib_event *, void *); 1675 struct ib_pd *pd; 1676 struct ib_cq *cq; 1677 u32 wq_num; 1678 enum ib_wq_state state; 1679 enum ib_wq_type wq_type; 1680 atomic_t usecnt; 1681 }; 1682 1683 enum ib_wq_flags { 1684 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1685 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1686 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1687 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1688 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1689 }; 1690 1691 struct ib_wq_init_attr { 1692 void *wq_context; 1693 enum ib_wq_type wq_type; 1694 u32 max_wr; 1695 u32 max_sge; 1696 struct ib_cq *cq; 1697 void (*event_handler)(struct ib_event *, void *); 1698 u32 create_flags; /* Use enum ib_wq_flags */ 1699 }; 1700 1701 enum ib_wq_attr_mask { 1702 IB_WQ_STATE = 1 << 0, 1703 IB_WQ_CUR_STATE = 1 << 1, 1704 IB_WQ_FLAGS = 1 << 2, 1705 }; 1706 1707 struct ib_wq_attr { 1708 enum ib_wq_state wq_state; 1709 enum ib_wq_state curr_wq_state; 1710 u32 flags; /* Use enum ib_wq_flags */ 1711 u32 flags_mask; /* Use enum ib_wq_flags */ 1712 }; 1713 1714 struct ib_rwq_ind_table { 1715 struct ib_device *device; 1716 struct ib_uobject *uobject; 1717 atomic_t usecnt; 1718 u32 ind_tbl_num; 1719 u32 log_ind_tbl_size; 1720 struct ib_wq **ind_tbl; 1721 }; 1722 1723 struct ib_rwq_ind_table_init_attr { 1724 u32 log_ind_tbl_size; 1725 /* Each entry is a pointer to Receive Work Queue */ 1726 struct ib_wq **ind_tbl; 1727 }; 1728 1729 enum port_pkey_state { 1730 IB_PORT_PKEY_NOT_VALID = 0, 1731 IB_PORT_PKEY_VALID = 1, 1732 IB_PORT_PKEY_LISTED = 2, 1733 }; 1734 1735 struct ib_qp_security; 1736 1737 struct ib_port_pkey { 1738 enum port_pkey_state state; 1739 u16 pkey_index; 1740 u8 port_num; 1741 struct list_head qp_list; 1742 struct list_head to_error_list; 1743 struct ib_qp_security *sec; 1744 }; 1745 1746 struct ib_ports_pkeys { 1747 struct ib_port_pkey main; 1748 struct ib_port_pkey alt; 1749 }; 1750 1751 struct ib_qp_security { 1752 struct ib_qp *qp; 1753 struct ib_device *dev; 1754 /* Hold this mutex when changing port and pkey settings. */ 1755 struct mutex mutex; 1756 struct ib_ports_pkeys *ports_pkeys; 1757 /* A list of all open shared QP handles. Required to enforce security 1758 * properly for all users of a shared QP. 1759 */ 1760 struct list_head shared_qp_list; 1761 void *security; 1762 bool destroying; 1763 atomic_t error_list_count; 1764 struct completion error_complete; 1765 int error_comps_pending; 1766 }; 1767 1768 /* 1769 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1770 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1771 */ 1772 struct ib_qp { 1773 struct ib_device *device; 1774 struct ib_pd *pd; 1775 struct ib_cq *send_cq; 1776 struct ib_cq *recv_cq; 1777 spinlock_t mr_lock; 1778 int mrs_used; 1779 struct list_head rdma_mrs; 1780 struct list_head sig_mrs; 1781 struct ib_srq *srq; 1782 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1783 struct list_head xrcd_list; 1784 1785 /* count times opened, mcast attaches, flow attaches */ 1786 atomic_t usecnt; 1787 struct list_head open_list; 1788 struct ib_qp *real_qp; 1789 struct ib_uqp_object *uobject; 1790 void (*event_handler)(struct ib_event *, void *); 1791 void *qp_context; 1792 /* sgid_attrs associated with the AV's */ 1793 const struct ib_gid_attr *av_sgid_attr; 1794 const struct ib_gid_attr *alt_path_sgid_attr; 1795 u32 qp_num; 1796 u32 max_write_sge; 1797 u32 max_read_sge; 1798 enum ib_qp_type qp_type; 1799 struct ib_rwq_ind_table *rwq_ind_tbl; 1800 struct ib_qp_security *qp_sec; 1801 u8 port; 1802 1803 bool integrity_en; 1804 /* 1805 * Implementation details of the RDMA core, don't use in drivers: 1806 */ 1807 struct rdma_restrack_entry res; 1808 1809 /* The counter the qp is bind to */ 1810 struct rdma_counter *counter; 1811 }; 1812 1813 struct ib_dm { 1814 struct ib_device *device; 1815 u32 length; 1816 u32 flags; 1817 struct ib_uobject *uobject; 1818 atomic_t usecnt; 1819 }; 1820 1821 struct ib_mr { 1822 struct ib_device *device; 1823 struct ib_pd *pd; 1824 u32 lkey; 1825 u32 rkey; 1826 u64 iova; 1827 u64 length; 1828 unsigned int page_size; 1829 enum ib_mr_type type; 1830 bool need_inval; 1831 union { 1832 struct ib_uobject *uobject; /* user */ 1833 struct list_head qp_entry; /* FR */ 1834 }; 1835 1836 struct ib_dm *dm; 1837 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1838 /* 1839 * Implementation details of the RDMA core, don't use in drivers: 1840 */ 1841 struct rdma_restrack_entry res; 1842 }; 1843 1844 struct ib_mw { 1845 struct ib_device *device; 1846 struct ib_pd *pd; 1847 struct ib_uobject *uobject; 1848 u32 rkey; 1849 enum ib_mw_type type; 1850 }; 1851 1852 /* Supported steering options */ 1853 enum ib_flow_attr_type { 1854 /* steering according to rule specifications */ 1855 IB_FLOW_ATTR_NORMAL = 0x0, 1856 /* default unicast and multicast rule - 1857 * receive all Eth traffic which isn't steered to any QP 1858 */ 1859 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1860 /* default multicast rule - 1861 * receive all Eth multicast traffic which isn't steered to any QP 1862 */ 1863 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1864 /* sniffer rule - receive all port traffic */ 1865 IB_FLOW_ATTR_SNIFFER = 0x3 1866 }; 1867 1868 /* Supported steering header types */ 1869 enum ib_flow_spec_type { 1870 /* L2 headers*/ 1871 IB_FLOW_SPEC_ETH = 0x20, 1872 IB_FLOW_SPEC_IB = 0x22, 1873 /* L3 header*/ 1874 IB_FLOW_SPEC_IPV4 = 0x30, 1875 IB_FLOW_SPEC_IPV6 = 0x31, 1876 IB_FLOW_SPEC_ESP = 0x34, 1877 /* L4 headers*/ 1878 IB_FLOW_SPEC_TCP = 0x40, 1879 IB_FLOW_SPEC_UDP = 0x41, 1880 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1881 IB_FLOW_SPEC_GRE = 0x51, 1882 IB_FLOW_SPEC_MPLS = 0x60, 1883 IB_FLOW_SPEC_INNER = 0x100, 1884 /* Actions */ 1885 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1886 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1887 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1888 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1889 }; 1890 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1891 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1892 1893 /* Flow steering rule priority is set according to it's domain. 1894 * Lower domain value means higher priority. 1895 */ 1896 enum ib_flow_domain { 1897 IB_FLOW_DOMAIN_USER, 1898 IB_FLOW_DOMAIN_ETHTOOL, 1899 IB_FLOW_DOMAIN_RFS, 1900 IB_FLOW_DOMAIN_NIC, 1901 IB_FLOW_DOMAIN_NUM /* Must be last */ 1902 }; 1903 1904 enum ib_flow_flags { 1905 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1906 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1907 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1908 }; 1909 1910 struct ib_flow_eth_filter { 1911 u8 dst_mac[6]; 1912 u8 src_mac[6]; 1913 __be16 ether_type; 1914 __be16 vlan_tag; 1915 /* Must be last */ 1916 u8 real_sz[]; 1917 }; 1918 1919 struct ib_flow_spec_eth { 1920 u32 type; 1921 u16 size; 1922 struct ib_flow_eth_filter val; 1923 struct ib_flow_eth_filter mask; 1924 }; 1925 1926 struct ib_flow_ib_filter { 1927 __be16 dlid; 1928 __u8 sl; 1929 /* Must be last */ 1930 u8 real_sz[]; 1931 }; 1932 1933 struct ib_flow_spec_ib { 1934 u32 type; 1935 u16 size; 1936 struct ib_flow_ib_filter val; 1937 struct ib_flow_ib_filter mask; 1938 }; 1939 1940 /* IPv4 header flags */ 1941 enum ib_ipv4_flags { 1942 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1943 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1944 last have this flag set */ 1945 }; 1946 1947 struct ib_flow_ipv4_filter { 1948 __be32 src_ip; 1949 __be32 dst_ip; 1950 u8 proto; 1951 u8 tos; 1952 u8 ttl; 1953 u8 flags; 1954 /* Must be last */ 1955 u8 real_sz[]; 1956 }; 1957 1958 struct ib_flow_spec_ipv4 { 1959 u32 type; 1960 u16 size; 1961 struct ib_flow_ipv4_filter val; 1962 struct ib_flow_ipv4_filter mask; 1963 }; 1964 1965 struct ib_flow_ipv6_filter { 1966 u8 src_ip[16]; 1967 u8 dst_ip[16]; 1968 __be32 flow_label; 1969 u8 next_hdr; 1970 u8 traffic_class; 1971 u8 hop_limit; 1972 /* Must be last */ 1973 u8 real_sz[]; 1974 }; 1975 1976 struct ib_flow_spec_ipv6 { 1977 u32 type; 1978 u16 size; 1979 struct ib_flow_ipv6_filter val; 1980 struct ib_flow_ipv6_filter mask; 1981 }; 1982 1983 struct ib_flow_tcp_udp_filter { 1984 __be16 dst_port; 1985 __be16 src_port; 1986 /* Must be last */ 1987 u8 real_sz[]; 1988 }; 1989 1990 struct ib_flow_spec_tcp_udp { 1991 u32 type; 1992 u16 size; 1993 struct ib_flow_tcp_udp_filter val; 1994 struct ib_flow_tcp_udp_filter mask; 1995 }; 1996 1997 struct ib_flow_tunnel_filter { 1998 __be32 tunnel_id; 1999 u8 real_sz[]; 2000 }; 2001 2002 /* ib_flow_spec_tunnel describes the Vxlan tunnel 2003 * the tunnel_id from val has the vni value 2004 */ 2005 struct ib_flow_spec_tunnel { 2006 u32 type; 2007 u16 size; 2008 struct ib_flow_tunnel_filter val; 2009 struct ib_flow_tunnel_filter mask; 2010 }; 2011 2012 struct ib_flow_esp_filter { 2013 __be32 spi; 2014 __be32 seq; 2015 /* Must be last */ 2016 u8 real_sz[]; 2017 }; 2018 2019 struct ib_flow_spec_esp { 2020 u32 type; 2021 u16 size; 2022 struct ib_flow_esp_filter val; 2023 struct ib_flow_esp_filter mask; 2024 }; 2025 2026 struct ib_flow_gre_filter { 2027 __be16 c_ks_res0_ver; 2028 __be16 protocol; 2029 __be32 key; 2030 /* Must be last */ 2031 u8 real_sz[]; 2032 }; 2033 2034 struct ib_flow_spec_gre { 2035 u32 type; 2036 u16 size; 2037 struct ib_flow_gre_filter val; 2038 struct ib_flow_gre_filter mask; 2039 }; 2040 2041 struct ib_flow_mpls_filter { 2042 __be32 tag; 2043 /* Must be last */ 2044 u8 real_sz[]; 2045 }; 2046 2047 struct ib_flow_spec_mpls { 2048 u32 type; 2049 u16 size; 2050 struct ib_flow_mpls_filter val; 2051 struct ib_flow_mpls_filter mask; 2052 }; 2053 2054 struct ib_flow_spec_action_tag { 2055 enum ib_flow_spec_type type; 2056 u16 size; 2057 u32 tag_id; 2058 }; 2059 2060 struct ib_flow_spec_action_drop { 2061 enum ib_flow_spec_type type; 2062 u16 size; 2063 }; 2064 2065 struct ib_flow_spec_action_handle { 2066 enum ib_flow_spec_type type; 2067 u16 size; 2068 struct ib_flow_action *act; 2069 }; 2070 2071 enum ib_counters_description { 2072 IB_COUNTER_PACKETS, 2073 IB_COUNTER_BYTES, 2074 }; 2075 2076 struct ib_flow_spec_action_count { 2077 enum ib_flow_spec_type type; 2078 u16 size; 2079 struct ib_counters *counters; 2080 }; 2081 2082 union ib_flow_spec { 2083 struct { 2084 u32 type; 2085 u16 size; 2086 }; 2087 struct ib_flow_spec_eth eth; 2088 struct ib_flow_spec_ib ib; 2089 struct ib_flow_spec_ipv4 ipv4; 2090 struct ib_flow_spec_tcp_udp tcp_udp; 2091 struct ib_flow_spec_ipv6 ipv6; 2092 struct ib_flow_spec_tunnel tunnel; 2093 struct ib_flow_spec_esp esp; 2094 struct ib_flow_spec_gre gre; 2095 struct ib_flow_spec_mpls mpls; 2096 struct ib_flow_spec_action_tag flow_tag; 2097 struct ib_flow_spec_action_drop drop; 2098 struct ib_flow_spec_action_handle action; 2099 struct ib_flow_spec_action_count flow_count; 2100 }; 2101 2102 struct ib_flow_attr { 2103 enum ib_flow_attr_type type; 2104 u16 size; 2105 u16 priority; 2106 u32 flags; 2107 u8 num_of_specs; 2108 u8 port; 2109 union ib_flow_spec flows[]; 2110 }; 2111 2112 struct ib_flow { 2113 struct ib_qp *qp; 2114 struct ib_device *device; 2115 struct ib_uobject *uobject; 2116 }; 2117 2118 enum ib_flow_action_type { 2119 IB_FLOW_ACTION_UNSPECIFIED, 2120 IB_FLOW_ACTION_ESP = 1, 2121 }; 2122 2123 struct ib_flow_action_attrs_esp_keymats { 2124 enum ib_uverbs_flow_action_esp_keymat protocol; 2125 union { 2126 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2127 } keymat; 2128 }; 2129 2130 struct ib_flow_action_attrs_esp_replays { 2131 enum ib_uverbs_flow_action_esp_replay protocol; 2132 union { 2133 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2134 } replay; 2135 }; 2136 2137 enum ib_flow_action_attrs_esp_flags { 2138 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2139 * This is done in order to share the same flags between user-space and 2140 * kernel and spare an unnecessary translation. 2141 */ 2142 2143 /* Kernel flags */ 2144 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2145 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2146 }; 2147 2148 struct ib_flow_spec_list { 2149 struct ib_flow_spec_list *next; 2150 union ib_flow_spec spec; 2151 }; 2152 2153 struct ib_flow_action_attrs_esp { 2154 struct ib_flow_action_attrs_esp_keymats *keymat; 2155 struct ib_flow_action_attrs_esp_replays *replay; 2156 struct ib_flow_spec_list *encap; 2157 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2158 * Value of 0 is a valid value. 2159 */ 2160 u32 esn; 2161 u32 spi; 2162 u32 seq; 2163 u32 tfc_pad; 2164 /* Use enum ib_flow_action_attrs_esp_flags */ 2165 u64 flags; 2166 u64 hard_limit_pkts; 2167 }; 2168 2169 struct ib_flow_action { 2170 struct ib_device *device; 2171 struct ib_uobject *uobject; 2172 enum ib_flow_action_type type; 2173 atomic_t usecnt; 2174 }; 2175 2176 struct ib_mad; 2177 struct ib_grh; 2178 2179 enum ib_process_mad_flags { 2180 IB_MAD_IGNORE_MKEY = 1, 2181 IB_MAD_IGNORE_BKEY = 2, 2182 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2183 }; 2184 2185 enum ib_mad_result { 2186 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2187 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2188 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2189 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2190 }; 2191 2192 struct ib_port_cache { 2193 u64 subnet_prefix; 2194 struct ib_pkey_cache *pkey; 2195 struct ib_gid_table *gid; 2196 u8 lmc; 2197 enum ib_port_state port_state; 2198 }; 2199 2200 struct ib_port_immutable { 2201 int pkey_tbl_len; 2202 int gid_tbl_len; 2203 u32 core_cap_flags; 2204 u32 max_mad_size; 2205 }; 2206 2207 struct ib_port_data { 2208 struct ib_device *ib_dev; 2209 2210 struct ib_port_immutable immutable; 2211 2212 spinlock_t pkey_list_lock; 2213 struct list_head pkey_list; 2214 2215 struct ib_port_cache cache; 2216 2217 spinlock_t netdev_lock; 2218 struct net_device __rcu *netdev; 2219 struct hlist_node ndev_hash_link; 2220 struct rdma_port_counter port_counter; 2221 struct rdma_hw_stats *hw_stats; 2222 }; 2223 2224 /* rdma netdev type - specifies protocol type */ 2225 enum rdma_netdev_t { 2226 RDMA_NETDEV_OPA_VNIC, 2227 RDMA_NETDEV_IPOIB, 2228 }; 2229 2230 /** 2231 * struct rdma_netdev - rdma netdev 2232 * For cases where netstack interfacing is required. 2233 */ 2234 struct rdma_netdev { 2235 void *clnt_priv; 2236 struct ib_device *hca; 2237 u8 port_num; 2238 int mtu; 2239 2240 /* 2241 * cleanup function must be specified. 2242 * FIXME: This is only used for OPA_VNIC and that usage should be 2243 * removed too. 2244 */ 2245 void (*free_rdma_netdev)(struct net_device *netdev); 2246 2247 /* control functions */ 2248 void (*set_id)(struct net_device *netdev, int id); 2249 /* send packet */ 2250 int (*send)(struct net_device *dev, struct sk_buff *skb, 2251 struct ib_ah *address, u32 dqpn); 2252 /* multicast */ 2253 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2254 union ib_gid *gid, u16 mlid, 2255 int set_qkey, u32 qkey); 2256 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2257 union ib_gid *gid, u16 mlid); 2258 }; 2259 2260 struct rdma_netdev_alloc_params { 2261 size_t sizeof_priv; 2262 unsigned int txqs; 2263 unsigned int rxqs; 2264 void *param; 2265 2266 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2267 struct net_device *netdev, void *param); 2268 }; 2269 2270 struct ib_odp_counters { 2271 atomic64_t faults; 2272 atomic64_t invalidations; 2273 }; 2274 2275 struct ib_counters { 2276 struct ib_device *device; 2277 struct ib_uobject *uobject; 2278 /* num of objects attached */ 2279 atomic_t usecnt; 2280 }; 2281 2282 struct ib_counters_read_attr { 2283 u64 *counters_buff; 2284 u32 ncounters; 2285 u32 flags; /* use enum ib_read_counters_flags */ 2286 }; 2287 2288 struct uverbs_attr_bundle; 2289 struct iw_cm_id; 2290 struct iw_cm_conn_param; 2291 2292 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2293 .size_##ib_struct = \ 2294 (sizeof(struct drv_struct) + \ 2295 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2296 BUILD_BUG_ON_ZERO( \ 2297 !__same_type(((struct drv_struct *)NULL)->member, \ 2298 struct ib_struct))) 2299 2300 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2301 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2302 2303 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2304 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2305 2306 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2307 2308 struct rdma_user_mmap_entry { 2309 struct kref ref; 2310 struct ib_ucontext *ucontext; 2311 unsigned long start_pgoff; 2312 size_t npages; 2313 bool driver_removed; 2314 }; 2315 2316 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2317 static inline u64 2318 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2319 { 2320 return (u64)entry->start_pgoff << PAGE_SHIFT; 2321 } 2322 2323 /** 2324 * struct ib_device_ops - InfiniBand device operations 2325 * This structure defines all the InfiniBand device operations, providers will 2326 * need to define the supported operations, otherwise they will be set to null. 2327 */ 2328 struct ib_device_ops { 2329 struct module *owner; 2330 enum rdma_driver_id driver_id; 2331 u32 uverbs_abi_ver; 2332 unsigned int uverbs_no_driver_id_binding:1; 2333 2334 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2335 const struct ib_send_wr **bad_send_wr); 2336 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2337 const struct ib_recv_wr **bad_recv_wr); 2338 void (*drain_rq)(struct ib_qp *qp); 2339 void (*drain_sq)(struct ib_qp *qp); 2340 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2341 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2342 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2343 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); 2344 int (*post_srq_recv)(struct ib_srq *srq, 2345 const struct ib_recv_wr *recv_wr, 2346 const struct ib_recv_wr **bad_recv_wr); 2347 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2348 u8 port_num, const struct ib_wc *in_wc, 2349 const struct ib_grh *in_grh, 2350 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2351 size_t *out_mad_size, u16 *out_mad_pkey_index); 2352 int (*query_device)(struct ib_device *device, 2353 struct ib_device_attr *device_attr, 2354 struct ib_udata *udata); 2355 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2356 struct ib_device_modify *device_modify); 2357 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2358 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2359 int comp_vector); 2360 int (*query_port)(struct ib_device *device, u8 port_num, 2361 struct ib_port_attr *port_attr); 2362 int (*modify_port)(struct ib_device *device, u8 port_num, 2363 int port_modify_mask, 2364 struct ib_port_modify *port_modify); 2365 /** 2366 * The following mandatory functions are used only at device 2367 * registration. Keep functions such as these at the end of this 2368 * structure to avoid cache line misses when accessing struct ib_device 2369 * in fast paths. 2370 */ 2371 int (*get_port_immutable)(struct ib_device *device, u8 port_num, 2372 struct ib_port_immutable *immutable); 2373 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2374 u8 port_num); 2375 /** 2376 * When calling get_netdev, the HW vendor's driver should return the 2377 * net device of device @device at port @port_num or NULL if such 2378 * a net device doesn't exist. The vendor driver should call dev_hold 2379 * on this net device. The HW vendor's device driver must guarantee 2380 * that this function returns NULL before the net device has finished 2381 * NETDEV_UNREGISTER state. 2382 */ 2383 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num); 2384 /** 2385 * rdma netdev operation 2386 * 2387 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2388 * must return -EOPNOTSUPP if it doesn't support the specified type. 2389 */ 2390 struct net_device *(*alloc_rdma_netdev)( 2391 struct ib_device *device, u8 port_num, enum rdma_netdev_t type, 2392 const char *name, unsigned char name_assign_type, 2393 void (*setup)(struct net_device *)); 2394 2395 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2396 enum rdma_netdev_t type, 2397 struct rdma_netdev_alloc_params *params); 2398 /** 2399 * query_gid should be return GID value for @device, when @port_num 2400 * link layer is either IB or iWarp. It is no-op if @port_num port 2401 * is RoCE link layer. 2402 */ 2403 int (*query_gid)(struct ib_device *device, u8 port_num, int index, 2404 union ib_gid *gid); 2405 /** 2406 * When calling add_gid, the HW vendor's driver should add the gid 2407 * of device of port at gid index available at @attr. Meta-info of 2408 * that gid (for example, the network device related to this gid) is 2409 * available at @attr. @context allows the HW vendor driver to store 2410 * extra information together with a GID entry. The HW vendor driver may 2411 * allocate memory to contain this information and store it in @context 2412 * when a new GID entry is written to. Params are consistent until the 2413 * next call of add_gid or delete_gid. The function should return 0 on 2414 * success or error otherwise. The function could be called 2415 * concurrently for different ports. This function is only called when 2416 * roce_gid_table is used. 2417 */ 2418 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2419 /** 2420 * When calling del_gid, the HW vendor's driver should delete the 2421 * gid of device @device at gid index gid_index of port port_num 2422 * available in @attr. 2423 * Upon the deletion of a GID entry, the HW vendor must free any 2424 * allocated memory. The caller will clear @context afterwards. 2425 * This function is only called when roce_gid_table is used. 2426 */ 2427 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2428 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, 2429 u16 *pkey); 2430 int (*alloc_ucontext)(struct ib_ucontext *context, 2431 struct ib_udata *udata); 2432 void (*dealloc_ucontext)(struct ib_ucontext *context); 2433 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2434 /** 2435 * This will be called once refcount of an entry in mmap_xa reaches 2436 * zero. The type of the memory that was mapped may differ between 2437 * entries and is opaque to the rdma_user_mmap interface. 2438 * Therefore needs to be implemented by the driver in mmap_free. 2439 */ 2440 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2441 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2442 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2443 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2444 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2445 struct ib_udata *udata); 2446 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2447 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2448 void (*destroy_ah)(struct ib_ah *ah, u32 flags); 2449 int (*create_srq)(struct ib_srq *srq, 2450 struct ib_srq_init_attr *srq_init_attr, 2451 struct ib_udata *udata); 2452 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2453 enum ib_srq_attr_mask srq_attr_mask, 2454 struct ib_udata *udata); 2455 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2456 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2457 struct ib_qp *(*create_qp)(struct ib_pd *pd, 2458 struct ib_qp_init_attr *qp_init_attr, 2459 struct ib_udata *udata); 2460 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2461 int qp_attr_mask, struct ib_udata *udata); 2462 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2463 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2464 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2465 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2466 struct ib_udata *udata); 2467 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2468 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2469 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2470 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2471 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2472 u64 virt_addr, int mr_access_flags, 2473 struct ib_udata *udata); 2474 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length, 2475 u64 virt_addr, int mr_access_flags, 2476 struct ib_pd *pd, struct ib_udata *udata); 2477 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2478 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2479 u32 max_num_sg, struct ib_udata *udata); 2480 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2481 u32 max_num_data_sg, 2482 u32 max_num_meta_sg); 2483 int (*advise_mr)(struct ib_pd *pd, 2484 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2485 struct ib_sge *sg_list, u32 num_sge, 2486 struct uverbs_attr_bundle *attrs); 2487 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2488 unsigned int *sg_offset); 2489 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2490 struct ib_mr_status *mr_status); 2491 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type, 2492 struct ib_udata *udata); 2493 int (*dealloc_mw)(struct ib_mw *mw); 2494 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2495 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2496 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device, 2497 struct ib_udata *udata); 2498 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2499 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2500 struct ib_flow_attr *flow_attr, 2501 int domain, struct ib_udata *udata); 2502 int (*destroy_flow)(struct ib_flow *flow_id); 2503 struct ib_flow_action *(*create_flow_action_esp)( 2504 struct ib_device *device, 2505 const struct ib_flow_action_attrs_esp *attr, 2506 struct uverbs_attr_bundle *attrs); 2507 int (*destroy_flow_action)(struct ib_flow_action *action); 2508 int (*modify_flow_action_esp)( 2509 struct ib_flow_action *action, 2510 const struct ib_flow_action_attrs_esp *attr, 2511 struct uverbs_attr_bundle *attrs); 2512 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2513 int state); 2514 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2515 struct ifla_vf_info *ivf); 2516 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2517 struct ifla_vf_stats *stats); 2518 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port, 2519 struct ifla_vf_guid *node_guid, 2520 struct ifla_vf_guid *port_guid); 2521 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2522 int type); 2523 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2524 struct ib_wq_init_attr *init_attr, 2525 struct ib_udata *udata); 2526 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2527 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2528 u32 wq_attr_mask, struct ib_udata *udata); 2529 struct ib_rwq_ind_table *(*create_rwq_ind_table)( 2530 struct ib_device *device, 2531 struct ib_rwq_ind_table_init_attr *init_attr, 2532 struct ib_udata *udata); 2533 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2534 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2535 struct ib_ucontext *context, 2536 struct ib_dm_alloc_attr *attr, 2537 struct uverbs_attr_bundle *attrs); 2538 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2539 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2540 struct ib_dm_mr_attr *attr, 2541 struct uverbs_attr_bundle *attrs); 2542 struct ib_counters *(*create_counters)( 2543 struct ib_device *device, struct uverbs_attr_bundle *attrs); 2544 int (*destroy_counters)(struct ib_counters *counters); 2545 int (*read_counters)(struct ib_counters *counters, 2546 struct ib_counters_read_attr *counters_read_attr, 2547 struct uverbs_attr_bundle *attrs); 2548 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2549 int data_sg_nents, unsigned int *data_sg_offset, 2550 struct scatterlist *meta_sg, int meta_sg_nents, 2551 unsigned int *meta_sg_offset); 2552 2553 /** 2554 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2555 * driver initialized data. The struct is kfree()'ed by the sysfs 2556 * core when the device is removed. A lifespan of -1 in the return 2557 * struct tells the core to set a default lifespan. 2558 */ 2559 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2560 u8 port_num); 2561 /** 2562 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2563 * @index - The index in the value array we wish to have updated, or 2564 * num_counters if we want all stats updated 2565 * Return codes - 2566 * < 0 - Error, no counters updated 2567 * index - Updated the single counter pointed to by index 2568 * num_counters - Updated all counters (will reset the timestamp 2569 * and prevent further calls for lifespan milliseconds) 2570 * Drivers are allowed to update all counters in leiu of just the 2571 * one given in index at their option 2572 */ 2573 int (*get_hw_stats)(struct ib_device *device, 2574 struct rdma_hw_stats *stats, u8 port, int index); 2575 /* 2576 * This function is called once for each port when a ib device is 2577 * registered. 2578 */ 2579 int (*init_port)(struct ib_device *device, u8 port_num, 2580 struct kobject *port_sysfs); 2581 /** 2582 * Allows rdma drivers to add their own restrack attributes. 2583 */ 2584 int (*fill_res_entry)(struct sk_buff *msg, 2585 struct rdma_restrack_entry *entry); 2586 2587 /* Device lifecycle callbacks */ 2588 /* 2589 * Called after the device becomes registered, before clients are 2590 * attached 2591 */ 2592 int (*enable_driver)(struct ib_device *dev); 2593 /* 2594 * This is called as part of ib_dealloc_device(). 2595 */ 2596 void (*dealloc_driver)(struct ib_device *dev); 2597 2598 /* iWarp CM callbacks */ 2599 void (*iw_add_ref)(struct ib_qp *qp); 2600 void (*iw_rem_ref)(struct ib_qp *qp); 2601 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2602 int (*iw_connect)(struct iw_cm_id *cm_id, 2603 struct iw_cm_conn_param *conn_param); 2604 int (*iw_accept)(struct iw_cm_id *cm_id, 2605 struct iw_cm_conn_param *conn_param); 2606 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2607 u8 pdata_len); 2608 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2609 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2610 /** 2611 * counter_bind_qp - Bind a QP to a counter. 2612 * @counter - The counter to be bound. If counter->id is zero then 2613 * the driver needs to allocate a new counter and set counter->id 2614 */ 2615 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2616 /** 2617 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2618 * counter and bind it onto the default one 2619 */ 2620 int (*counter_unbind_qp)(struct ib_qp *qp); 2621 /** 2622 * counter_dealloc -De-allocate the hw counter 2623 */ 2624 int (*counter_dealloc)(struct rdma_counter *counter); 2625 /** 2626 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2627 * the driver initialized data. 2628 */ 2629 struct rdma_hw_stats *(*counter_alloc_stats)( 2630 struct rdma_counter *counter); 2631 /** 2632 * counter_update_stats - Query the stats value of this counter 2633 */ 2634 int (*counter_update_stats)(struct rdma_counter *counter); 2635 2636 /** 2637 * Allows rdma drivers to add their own restrack attributes 2638 * dumped via 'rdma stat' iproute2 command. 2639 */ 2640 int (*fill_stat_entry)(struct sk_buff *msg, 2641 struct rdma_restrack_entry *entry); 2642 2643 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2644 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2645 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2646 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2647 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2648 }; 2649 2650 struct ib_core_device { 2651 /* device must be the first element in structure until, 2652 * union of ib_core_device and device exists in ib_device. 2653 */ 2654 struct device dev; 2655 possible_net_t rdma_net; 2656 struct kobject *ports_kobj; 2657 struct list_head port_list; 2658 struct ib_device *owner; /* reach back to owner ib_device */ 2659 }; 2660 2661 struct rdma_restrack_root; 2662 struct ib_device { 2663 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2664 struct device *dma_device; 2665 struct ib_device_ops ops; 2666 char name[IB_DEVICE_NAME_MAX]; 2667 struct rcu_head rcu_head; 2668 2669 struct list_head event_handler_list; 2670 /* Protects event_handler_list */ 2671 struct rw_semaphore event_handler_rwsem; 2672 2673 /* Protects QP's event_handler calls and open_qp list */ 2674 spinlock_t qp_open_list_lock; 2675 2676 struct rw_semaphore client_data_rwsem; 2677 struct xarray client_data; 2678 struct mutex unregistration_lock; 2679 2680 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2681 rwlock_t cache_lock; 2682 /** 2683 * port_data is indexed by port number 2684 */ 2685 struct ib_port_data *port_data; 2686 2687 int num_comp_vectors; 2688 2689 union { 2690 struct device dev; 2691 struct ib_core_device coredev; 2692 }; 2693 2694 /* First group for device attributes, 2695 * Second group for driver provided attributes (optional). 2696 * It is NULL terminated array. 2697 */ 2698 const struct attribute_group *groups[3]; 2699 2700 u64 uverbs_cmd_mask; 2701 u64 uverbs_ex_cmd_mask; 2702 2703 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2704 __be64 node_guid; 2705 u32 local_dma_lkey; 2706 u16 is_switch:1; 2707 /* Indicates kernel verbs support, should not be used in drivers */ 2708 u16 kverbs_provider:1; 2709 /* CQ adaptive moderation (RDMA DIM) */ 2710 u16 use_cq_dim:1; 2711 u8 node_type; 2712 u8 phys_port_cnt; 2713 struct ib_device_attr attrs; 2714 struct attribute_group *hw_stats_ag; 2715 struct rdma_hw_stats *hw_stats; 2716 2717 #ifdef CONFIG_CGROUP_RDMA 2718 struct rdmacg_device cg_device; 2719 #endif 2720 2721 u32 index; 2722 2723 spinlock_t cq_pools_lock; 2724 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2725 2726 struct rdma_restrack_root *res; 2727 2728 const struct uapi_definition *driver_def; 2729 2730 /* 2731 * Positive refcount indicates that the device is currently 2732 * registered and cannot be unregistered. 2733 */ 2734 refcount_t refcount; 2735 struct completion unreg_completion; 2736 struct work_struct unregistration_work; 2737 2738 const struct rdma_link_ops *link_ops; 2739 2740 /* Protects compat_devs xarray modifications */ 2741 struct mutex compat_devs_mutex; 2742 /* Maintains compat devices for each net namespace */ 2743 struct xarray compat_devs; 2744 2745 /* Used by iWarp CM */ 2746 char iw_ifname[IFNAMSIZ]; 2747 u32 iw_driver_flags; 2748 u32 lag_flags; 2749 }; 2750 2751 struct ib_client_nl_info; 2752 struct ib_client { 2753 const char *name; 2754 int (*add)(struct ib_device *ibdev); 2755 void (*remove)(struct ib_device *, void *client_data); 2756 void (*rename)(struct ib_device *dev, void *client_data); 2757 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2758 struct ib_client_nl_info *res); 2759 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2760 2761 /* Returns the net_dev belonging to this ib_client and matching the 2762 * given parameters. 2763 * @dev: An RDMA device that the net_dev use for communication. 2764 * @port: A physical port number on the RDMA device. 2765 * @pkey: P_Key that the net_dev uses if applicable. 2766 * @gid: A GID that the net_dev uses to communicate. 2767 * @addr: An IP address the net_dev is configured with. 2768 * @client_data: The device's client data set by ib_set_client_data(). 2769 * 2770 * An ib_client that implements a net_dev on top of RDMA devices 2771 * (such as IP over IB) should implement this callback, allowing the 2772 * rdma_cm module to find the right net_dev for a given request. 2773 * 2774 * The caller is responsible for calling dev_put on the returned 2775 * netdev. */ 2776 struct net_device *(*get_net_dev_by_params)( 2777 struct ib_device *dev, 2778 u8 port, 2779 u16 pkey, 2780 const union ib_gid *gid, 2781 const struct sockaddr *addr, 2782 void *client_data); 2783 2784 refcount_t uses; 2785 struct completion uses_zero; 2786 u32 client_id; 2787 2788 /* kverbs are not required by the client */ 2789 u8 no_kverbs_req:1; 2790 }; 2791 2792 /* 2793 * IB block DMA iterator 2794 * 2795 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2796 * to a HW supported page size. 2797 */ 2798 struct ib_block_iter { 2799 /* internal states */ 2800 struct scatterlist *__sg; /* sg holding the current aligned block */ 2801 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2802 unsigned int __sg_nents; /* number of SG entries */ 2803 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2804 unsigned int __pg_bit; /* alignment of current block */ 2805 }; 2806 2807 struct ib_device *_ib_alloc_device(size_t size); 2808 #define ib_alloc_device(drv_struct, member) \ 2809 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2810 BUILD_BUG_ON_ZERO(offsetof( \ 2811 struct drv_struct, member))), \ 2812 struct drv_struct, member) 2813 2814 void ib_dealloc_device(struct ib_device *device); 2815 2816 void ib_get_device_fw_str(struct ib_device *device, char *str); 2817 2818 int ib_register_device(struct ib_device *device, const char *name); 2819 void ib_unregister_device(struct ib_device *device); 2820 void ib_unregister_driver(enum rdma_driver_id driver_id); 2821 void ib_unregister_device_and_put(struct ib_device *device); 2822 void ib_unregister_device_queued(struct ib_device *ib_dev); 2823 2824 int ib_register_client (struct ib_client *client); 2825 void ib_unregister_client(struct ib_client *client); 2826 2827 void __rdma_block_iter_start(struct ib_block_iter *biter, 2828 struct scatterlist *sglist, 2829 unsigned int nents, 2830 unsigned long pgsz); 2831 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2832 2833 /** 2834 * rdma_block_iter_dma_address - get the aligned dma address of the current 2835 * block held by the block iterator. 2836 * @biter: block iterator holding the memory block 2837 */ 2838 static inline dma_addr_t 2839 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2840 { 2841 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2842 } 2843 2844 /** 2845 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2846 * @sglist: sglist to iterate over 2847 * @biter: block iterator holding the memory block 2848 * @nents: maximum number of sg entries to iterate over 2849 * @pgsz: best HW supported page size to use 2850 * 2851 * Callers may use rdma_block_iter_dma_address() to get each 2852 * blocks aligned DMA address. 2853 */ 2854 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2855 for (__rdma_block_iter_start(biter, sglist, nents, \ 2856 pgsz); \ 2857 __rdma_block_iter_next(biter);) 2858 2859 /** 2860 * ib_get_client_data - Get IB client context 2861 * @device:Device to get context for 2862 * @client:Client to get context for 2863 * 2864 * ib_get_client_data() returns the client context data set with 2865 * ib_set_client_data(). This can only be called while the client is 2866 * registered to the device, once the ib_client remove() callback returns this 2867 * cannot be called. 2868 */ 2869 static inline void *ib_get_client_data(struct ib_device *device, 2870 struct ib_client *client) 2871 { 2872 return xa_load(&device->client_data, client->client_id); 2873 } 2874 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2875 void *data); 2876 void ib_set_device_ops(struct ib_device *device, 2877 const struct ib_device_ops *ops); 2878 2879 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2880 unsigned long pfn, unsigned long size, pgprot_t prot, 2881 struct rdma_user_mmap_entry *entry); 2882 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2883 struct rdma_user_mmap_entry *entry, 2884 size_t length); 2885 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2886 struct rdma_user_mmap_entry *entry, 2887 size_t length, u32 min_pgoff, 2888 u32 max_pgoff); 2889 2890 struct rdma_user_mmap_entry * 2891 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2892 unsigned long pgoff); 2893 struct rdma_user_mmap_entry * 2894 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2895 struct vm_area_struct *vma); 2896 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2897 2898 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2899 2900 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2901 { 2902 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2903 } 2904 2905 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2906 { 2907 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2908 } 2909 2910 static inline bool ib_is_buffer_cleared(const void __user *p, 2911 size_t len) 2912 { 2913 bool ret; 2914 u8 *buf; 2915 2916 if (len > USHRT_MAX) 2917 return false; 2918 2919 buf = memdup_user(p, len); 2920 if (IS_ERR(buf)) 2921 return false; 2922 2923 ret = !memchr_inv(buf, 0, len); 2924 kfree(buf); 2925 return ret; 2926 } 2927 2928 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2929 size_t offset, 2930 size_t len) 2931 { 2932 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2933 } 2934 2935 /** 2936 * ib_is_destroy_retryable - Check whether the uobject destruction 2937 * is retryable. 2938 * @ret: The initial destruction return code 2939 * @why: remove reason 2940 * @uobj: The uobject that is destroyed 2941 * 2942 * This function is a helper function that IB layer and low-level drivers 2943 * can use to consider whether the destruction of the given uobject is 2944 * retry-able. 2945 * It checks the original return code, if it wasn't success the destruction 2946 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2947 * the remove reason. (i.e. why). 2948 * Must be called with the object locked for destroy. 2949 */ 2950 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2951 struct ib_uobject *uobj) 2952 { 2953 return ret && (why == RDMA_REMOVE_DESTROY || 2954 uobj->context->cleanup_retryable); 2955 } 2956 2957 /** 2958 * ib_destroy_usecnt - Called during destruction to check the usecnt 2959 * @usecnt: The usecnt atomic 2960 * @why: remove reason 2961 * @uobj: The uobject that is destroyed 2962 * 2963 * Non-zero usecnts will block destruction unless destruction was triggered by 2964 * a ucontext cleanup. 2965 */ 2966 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2967 enum rdma_remove_reason why, 2968 struct ib_uobject *uobj) 2969 { 2970 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2971 return -EBUSY; 2972 return 0; 2973 } 2974 2975 /** 2976 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2977 * contains all required attributes and no attributes not allowed for 2978 * the given QP state transition. 2979 * @cur_state: Current QP state 2980 * @next_state: Next QP state 2981 * @type: QP type 2982 * @mask: Mask of supplied QP attributes 2983 * 2984 * This function is a helper function that a low-level driver's 2985 * modify_qp method can use to validate the consumer's input. It 2986 * checks that cur_state and next_state are valid QP states, that a 2987 * transition from cur_state to next_state is allowed by the IB spec, 2988 * and that the attribute mask supplied is allowed for the transition. 2989 */ 2990 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2991 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2992 2993 void ib_register_event_handler(struct ib_event_handler *event_handler); 2994 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2995 void ib_dispatch_event(const struct ib_event *event); 2996 2997 int ib_query_port(struct ib_device *device, 2998 u8 port_num, struct ib_port_attr *port_attr); 2999 3000 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 3001 u8 port_num); 3002 3003 /** 3004 * rdma_cap_ib_switch - Check if the device is IB switch 3005 * @device: Device to check 3006 * 3007 * Device driver is responsible for setting is_switch bit on 3008 * in ib_device structure at init time. 3009 * 3010 * Return: true if the device is IB switch. 3011 */ 3012 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3013 { 3014 return device->is_switch; 3015 } 3016 3017 /** 3018 * rdma_start_port - Return the first valid port number for the device 3019 * specified 3020 * 3021 * @device: Device to be checked 3022 * 3023 * Return start port number 3024 */ 3025 static inline u8 rdma_start_port(const struct ib_device *device) 3026 { 3027 return rdma_cap_ib_switch(device) ? 0 : 1; 3028 } 3029 3030 /** 3031 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3032 * @device - The struct ib_device * to iterate over 3033 * @iter - The unsigned int to store the port number 3034 */ 3035 #define rdma_for_each_port(device, iter) \ 3036 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \ 3037 unsigned int, iter))); \ 3038 iter <= rdma_end_port(device); (iter)++) 3039 3040 /** 3041 * rdma_end_port - Return the last valid port number for the device 3042 * specified 3043 * 3044 * @device: Device to be checked 3045 * 3046 * Return last port number 3047 */ 3048 static inline u8 rdma_end_port(const struct ib_device *device) 3049 { 3050 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3051 } 3052 3053 static inline int rdma_is_port_valid(const struct ib_device *device, 3054 unsigned int port) 3055 { 3056 return (port >= rdma_start_port(device) && 3057 port <= rdma_end_port(device)); 3058 } 3059 3060 static inline bool rdma_is_grh_required(const struct ib_device *device, 3061 u8 port_num) 3062 { 3063 return device->port_data[port_num].immutable.core_cap_flags & 3064 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3065 } 3066 3067 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 3068 { 3069 return device->port_data[port_num].immutable.core_cap_flags & 3070 RDMA_CORE_CAP_PROT_IB; 3071 } 3072 3073 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 3074 { 3075 return device->port_data[port_num].immutable.core_cap_flags & 3076 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3077 } 3078 3079 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 3080 { 3081 return device->port_data[port_num].immutable.core_cap_flags & 3082 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3083 } 3084 3085 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 3086 { 3087 return device->port_data[port_num].immutable.core_cap_flags & 3088 RDMA_CORE_CAP_PROT_ROCE; 3089 } 3090 3091 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 3092 { 3093 return device->port_data[port_num].immutable.core_cap_flags & 3094 RDMA_CORE_CAP_PROT_IWARP; 3095 } 3096 3097 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 3098 { 3099 return rdma_protocol_ib(device, port_num) || 3100 rdma_protocol_roce(device, port_num); 3101 } 3102 3103 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 3104 { 3105 return device->port_data[port_num].immutable.core_cap_flags & 3106 RDMA_CORE_CAP_PROT_RAW_PACKET; 3107 } 3108 3109 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 3110 { 3111 return device->port_data[port_num].immutable.core_cap_flags & 3112 RDMA_CORE_CAP_PROT_USNIC; 3113 } 3114 3115 /** 3116 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3117 * Management Datagrams. 3118 * @device: Device to check 3119 * @port_num: Port number to check 3120 * 3121 * Management Datagrams (MAD) are a required part of the InfiniBand 3122 * specification and are supported on all InfiniBand devices. A slightly 3123 * extended version are also supported on OPA interfaces. 3124 * 3125 * Return: true if the port supports sending/receiving of MAD packets. 3126 */ 3127 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 3128 { 3129 return device->port_data[port_num].immutable.core_cap_flags & 3130 RDMA_CORE_CAP_IB_MAD; 3131 } 3132 3133 /** 3134 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3135 * Management Datagrams. 3136 * @device: Device to check 3137 * @port_num: Port number to check 3138 * 3139 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3140 * datagrams with their own versions. These OPA MADs share many but not all of 3141 * the characteristics of InfiniBand MADs. 3142 * 3143 * OPA MADs differ in the following ways: 3144 * 3145 * 1) MADs are variable size up to 2K 3146 * IBTA defined MADs remain fixed at 256 bytes 3147 * 2) OPA SMPs must carry valid PKeys 3148 * 3) OPA SMP packets are a different format 3149 * 3150 * Return: true if the port supports OPA MAD packet formats. 3151 */ 3152 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 3153 { 3154 return device->port_data[port_num].immutable.core_cap_flags & 3155 RDMA_CORE_CAP_OPA_MAD; 3156 } 3157 3158 /** 3159 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3160 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3161 * @device: Device to check 3162 * @port_num: Port number to check 3163 * 3164 * Each InfiniBand node is required to provide a Subnet Management Agent 3165 * that the subnet manager can access. Prior to the fabric being fully 3166 * configured by the subnet manager, the SMA is accessed via a well known 3167 * interface called the Subnet Management Interface (SMI). This interface 3168 * uses directed route packets to communicate with the SM to get around the 3169 * chicken and egg problem of the SM needing to know what's on the fabric 3170 * in order to configure the fabric, and needing to configure the fabric in 3171 * order to send packets to the devices on the fabric. These directed 3172 * route packets do not need the fabric fully configured in order to reach 3173 * their destination. The SMI is the only method allowed to send 3174 * directed route packets on an InfiniBand fabric. 3175 * 3176 * Return: true if the port provides an SMI. 3177 */ 3178 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 3179 { 3180 return device->port_data[port_num].immutable.core_cap_flags & 3181 RDMA_CORE_CAP_IB_SMI; 3182 } 3183 3184 /** 3185 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3186 * Communication Manager. 3187 * @device: Device to check 3188 * @port_num: Port number to check 3189 * 3190 * The InfiniBand Communication Manager is one of many pre-defined General 3191 * Service Agents (GSA) that are accessed via the General Service 3192 * Interface (GSI). It's role is to facilitate establishment of connections 3193 * between nodes as well as other management related tasks for established 3194 * connections. 3195 * 3196 * Return: true if the port supports an IB CM (this does not guarantee that 3197 * a CM is actually running however). 3198 */ 3199 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 3200 { 3201 return device->port_data[port_num].immutable.core_cap_flags & 3202 RDMA_CORE_CAP_IB_CM; 3203 } 3204 3205 /** 3206 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3207 * Communication Manager. 3208 * @device: Device to check 3209 * @port_num: Port number to check 3210 * 3211 * Similar to above, but specific to iWARP connections which have a different 3212 * managment protocol than InfiniBand. 3213 * 3214 * Return: true if the port supports an iWARP CM (this does not guarantee that 3215 * a CM is actually running however). 3216 */ 3217 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 3218 { 3219 return device->port_data[port_num].immutable.core_cap_flags & 3220 RDMA_CORE_CAP_IW_CM; 3221 } 3222 3223 /** 3224 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3225 * Subnet Administration. 3226 * @device: Device to check 3227 * @port_num: Port number to check 3228 * 3229 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3230 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3231 * fabrics, devices should resolve routes to other hosts by contacting the 3232 * SA to query the proper route. 3233 * 3234 * Return: true if the port should act as a client to the fabric Subnet 3235 * Administration interface. This does not imply that the SA service is 3236 * running locally. 3237 */ 3238 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 3239 { 3240 return device->port_data[port_num].immutable.core_cap_flags & 3241 RDMA_CORE_CAP_IB_SA; 3242 } 3243 3244 /** 3245 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3246 * Multicast. 3247 * @device: Device to check 3248 * @port_num: Port number to check 3249 * 3250 * InfiniBand multicast registration is more complex than normal IPv4 or 3251 * IPv6 multicast registration. Each Host Channel Adapter must register 3252 * with the Subnet Manager when it wishes to join a multicast group. It 3253 * should do so only once regardless of how many queue pairs it subscribes 3254 * to this group. And it should leave the group only after all queue pairs 3255 * attached to the group have been detached. 3256 * 3257 * Return: true if the port must undertake the additional adminstrative 3258 * overhead of registering/unregistering with the SM and tracking of the 3259 * total number of queue pairs attached to the multicast group. 3260 */ 3261 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3262 { 3263 return rdma_cap_ib_sa(device, port_num); 3264 } 3265 3266 /** 3267 * rdma_cap_af_ib - Check if the port of device has the capability 3268 * Native Infiniband Address. 3269 * @device: Device to check 3270 * @port_num: Port number to check 3271 * 3272 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3273 * GID. RoCE uses a different mechanism, but still generates a GID via 3274 * a prescribed mechanism and port specific data. 3275 * 3276 * Return: true if the port uses a GID address to identify devices on the 3277 * network. 3278 */ 3279 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3280 { 3281 return device->port_data[port_num].immutable.core_cap_flags & 3282 RDMA_CORE_CAP_AF_IB; 3283 } 3284 3285 /** 3286 * rdma_cap_eth_ah - Check if the port of device has the capability 3287 * Ethernet Address Handle. 3288 * @device: Device to check 3289 * @port_num: Port number to check 3290 * 3291 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3292 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3293 * port. Normally, packet headers are generated by the sending host 3294 * adapter, but when sending connectionless datagrams, we must manually 3295 * inject the proper headers for the fabric we are communicating over. 3296 * 3297 * Return: true if we are running as a RoCE port and must force the 3298 * addition of a Global Route Header built from our Ethernet Address 3299 * Handle into our header list for connectionless packets. 3300 */ 3301 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3302 { 3303 return device->port_data[port_num].immutable.core_cap_flags & 3304 RDMA_CORE_CAP_ETH_AH; 3305 } 3306 3307 /** 3308 * rdma_cap_opa_ah - Check if the port of device supports 3309 * OPA Address handles 3310 * @device: Device to check 3311 * @port_num: Port number to check 3312 * 3313 * Return: true if we are running on an OPA device which supports 3314 * the extended OPA addressing. 3315 */ 3316 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3317 { 3318 return (device->port_data[port_num].immutable.core_cap_flags & 3319 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3320 } 3321 3322 /** 3323 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3324 * 3325 * @device: Device 3326 * @port_num: Port number 3327 * 3328 * This MAD size includes the MAD headers and MAD payload. No other headers 3329 * are included. 3330 * 3331 * Return the max MAD size required by the Port. Will return 0 if the port 3332 * does not support MADs 3333 */ 3334 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3335 { 3336 return device->port_data[port_num].immutable.max_mad_size; 3337 } 3338 3339 /** 3340 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3341 * @device: Device to check 3342 * @port_num: Port number to check 3343 * 3344 * RoCE GID table mechanism manages the various GIDs for a device. 3345 * 3346 * NOTE: if allocating the port's GID table has failed, this call will still 3347 * return true, but any RoCE GID table API will fail. 3348 * 3349 * Return: true if the port uses RoCE GID table mechanism in order to manage 3350 * its GIDs. 3351 */ 3352 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3353 u8 port_num) 3354 { 3355 return rdma_protocol_roce(device, port_num) && 3356 device->ops.add_gid && device->ops.del_gid; 3357 } 3358 3359 /* 3360 * Check if the device supports READ W/ INVALIDATE. 3361 */ 3362 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3363 { 3364 /* 3365 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3366 * has support for it yet. 3367 */ 3368 return rdma_protocol_iwarp(dev, port_num); 3369 } 3370 3371 /** 3372 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes 3373 * 3374 * @addr: address 3375 * @pgsz_bitmap: bitmap of HW supported page sizes 3376 */ 3377 static inline unsigned int rdma_find_pg_bit(unsigned long addr, 3378 unsigned long pgsz_bitmap) 3379 { 3380 unsigned long align; 3381 unsigned long pgsz; 3382 3383 align = addr & -addr; 3384 3385 /* Find page bit such that addr is aligned to the highest supported 3386 * HW page size 3387 */ 3388 pgsz = pgsz_bitmap & ~(-align << 1); 3389 if (!pgsz) 3390 return __ffs(pgsz_bitmap); 3391 3392 return __fls(pgsz); 3393 } 3394 3395 /** 3396 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3397 * @device: Device 3398 * @port_num: 1 based Port number 3399 * 3400 * Return true if port is an Intel OPA port , false if not 3401 */ 3402 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3403 u32 port_num) 3404 { 3405 return (device->port_data[port_num].immutable.core_cap_flags & 3406 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3407 } 3408 3409 /** 3410 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3411 * @device: Device 3412 * @port_num: Port number 3413 * @mtu: enum value of MTU 3414 * 3415 * Return the MTU size supported by the port as an integer value. Will return 3416 * -1 if enum value of mtu is not supported. 3417 */ 3418 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port, 3419 int mtu) 3420 { 3421 if (rdma_core_cap_opa_port(device, port)) 3422 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3423 else 3424 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3425 } 3426 3427 /** 3428 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3429 * @device: Device 3430 * @port_num: Port number 3431 * @attr: port attribute 3432 * 3433 * Return the MTU size supported by the port as an integer value. 3434 */ 3435 static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port, 3436 struct ib_port_attr *attr) 3437 { 3438 if (rdma_core_cap_opa_port(device, port)) 3439 return attr->phys_mtu; 3440 else 3441 return ib_mtu_enum_to_int(attr->max_mtu); 3442 } 3443 3444 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3445 int state); 3446 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3447 struct ifla_vf_info *info); 3448 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3449 struct ifla_vf_stats *stats); 3450 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port, 3451 struct ifla_vf_guid *node_guid, 3452 struct ifla_vf_guid *port_guid); 3453 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3454 int type); 3455 3456 int ib_query_pkey(struct ib_device *device, 3457 u8 port_num, u16 index, u16 *pkey); 3458 3459 int ib_modify_device(struct ib_device *device, 3460 int device_modify_mask, 3461 struct ib_device_modify *device_modify); 3462 3463 int ib_modify_port(struct ib_device *device, 3464 u8 port_num, int port_modify_mask, 3465 struct ib_port_modify *port_modify); 3466 3467 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3468 u8 *port_num, u16 *index); 3469 3470 int ib_find_pkey(struct ib_device *device, 3471 u8 port_num, u16 pkey, u16 *index); 3472 3473 enum ib_pd_flags { 3474 /* 3475 * Create a memory registration for all memory in the system and place 3476 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3477 * ULPs to avoid the overhead of dynamic MRs. 3478 * 3479 * This flag is generally considered unsafe and must only be used in 3480 * extremly trusted environments. Every use of it will log a warning 3481 * in the kernel log. 3482 */ 3483 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3484 }; 3485 3486 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3487 const char *caller); 3488 3489 #define ib_alloc_pd(device, flags) \ 3490 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3491 3492 /** 3493 * ib_dealloc_pd_user - Deallocate kernel/user PD 3494 * @pd: The protection domain 3495 * @udata: Valid user data or NULL for kernel objects 3496 */ 3497 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3498 3499 /** 3500 * ib_dealloc_pd - Deallocate kernel PD 3501 * @pd: The protection domain 3502 * 3503 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3504 */ 3505 static inline void ib_dealloc_pd(struct ib_pd *pd) 3506 { 3507 ib_dealloc_pd_user(pd, NULL); 3508 } 3509 3510 enum rdma_create_ah_flags { 3511 /* In a sleepable context */ 3512 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3513 }; 3514 3515 /** 3516 * rdma_create_ah - Creates an address handle for the given address vector. 3517 * @pd: The protection domain associated with the address handle. 3518 * @ah_attr: The attributes of the address vector. 3519 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3520 * 3521 * The address handle is used to reference a local or global destination 3522 * in all UD QP post sends. 3523 */ 3524 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3525 u32 flags); 3526 3527 /** 3528 * rdma_create_user_ah - Creates an address handle for the given address vector. 3529 * It resolves destination mac address for ah attribute of RoCE type. 3530 * @pd: The protection domain associated with the address handle. 3531 * @ah_attr: The attributes of the address vector. 3532 * @udata: pointer to user's input output buffer information need by 3533 * provider driver. 3534 * 3535 * It returns 0 on success and returns appropriate error code on error. 3536 * The address handle is used to reference a local or global destination 3537 * in all UD QP post sends. 3538 */ 3539 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3540 struct rdma_ah_attr *ah_attr, 3541 struct ib_udata *udata); 3542 /** 3543 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3544 * work completion. 3545 * @hdr: the L3 header to parse 3546 * @net_type: type of header to parse 3547 * @sgid: place to store source gid 3548 * @dgid: place to store destination gid 3549 */ 3550 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3551 enum rdma_network_type net_type, 3552 union ib_gid *sgid, union ib_gid *dgid); 3553 3554 /** 3555 * ib_get_rdma_header_version - Get the header version 3556 * @hdr: the L3 header to parse 3557 */ 3558 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3559 3560 /** 3561 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3562 * work completion. 3563 * @device: Device on which the received message arrived. 3564 * @port_num: Port on which the received message arrived. 3565 * @wc: Work completion associated with the received message. 3566 * @grh: References the received global route header. This parameter is 3567 * ignored unless the work completion indicates that the GRH is valid. 3568 * @ah_attr: Returned attributes that can be used when creating an address 3569 * handle for replying to the message. 3570 * When ib_init_ah_attr_from_wc() returns success, 3571 * (a) for IB link layer it optionally contains a reference to SGID attribute 3572 * when GRH is present for IB link layer. 3573 * (b) for RoCE link layer it contains a reference to SGID attribute. 3574 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3575 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3576 * 3577 */ 3578 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3579 const struct ib_wc *wc, const struct ib_grh *grh, 3580 struct rdma_ah_attr *ah_attr); 3581 3582 /** 3583 * ib_create_ah_from_wc - Creates an address handle associated with the 3584 * sender of the specified work completion. 3585 * @pd: The protection domain associated with the address handle. 3586 * @wc: Work completion information associated with a received message. 3587 * @grh: References the received global route header. This parameter is 3588 * ignored unless the work completion indicates that the GRH is valid. 3589 * @port_num: The outbound port number to associate with the address. 3590 * 3591 * The address handle is used to reference a local or global destination 3592 * in all UD QP post sends. 3593 */ 3594 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3595 const struct ib_grh *grh, u8 port_num); 3596 3597 /** 3598 * rdma_modify_ah - Modifies the address vector associated with an address 3599 * handle. 3600 * @ah: The address handle to modify. 3601 * @ah_attr: The new address vector attributes to associate with the 3602 * address handle. 3603 */ 3604 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3605 3606 /** 3607 * rdma_query_ah - Queries the address vector associated with an address 3608 * handle. 3609 * @ah: The address handle to query. 3610 * @ah_attr: The address vector attributes associated with the address 3611 * handle. 3612 */ 3613 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3614 3615 enum rdma_destroy_ah_flags { 3616 /* In a sleepable context */ 3617 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3618 }; 3619 3620 /** 3621 * rdma_destroy_ah_user - Destroys an address handle. 3622 * @ah: The address handle to destroy. 3623 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3624 * @udata: Valid user data or NULL for kernel objects 3625 */ 3626 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3627 3628 /** 3629 * rdma_destroy_ah - Destroys an kernel address handle. 3630 * @ah: The address handle to destroy. 3631 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3632 * 3633 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3634 */ 3635 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3636 { 3637 return rdma_destroy_ah_user(ah, flags, NULL); 3638 } 3639 3640 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3641 struct ib_srq_init_attr *srq_init_attr, 3642 struct ib_usrq_object *uobject, 3643 struct ib_udata *udata); 3644 static inline struct ib_srq * 3645 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3646 { 3647 if (!pd->device->ops.create_srq) 3648 return ERR_PTR(-EOPNOTSUPP); 3649 3650 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3651 } 3652 3653 /** 3654 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3655 * @srq: The SRQ to modify. 3656 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3657 * the current values of selected SRQ attributes are returned. 3658 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3659 * are being modified. 3660 * 3661 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3662 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3663 * the number of receives queued drops below the limit. 3664 */ 3665 int ib_modify_srq(struct ib_srq *srq, 3666 struct ib_srq_attr *srq_attr, 3667 enum ib_srq_attr_mask srq_attr_mask); 3668 3669 /** 3670 * ib_query_srq - Returns the attribute list and current values for the 3671 * specified SRQ. 3672 * @srq: The SRQ to query. 3673 * @srq_attr: The attributes of the specified SRQ. 3674 */ 3675 int ib_query_srq(struct ib_srq *srq, 3676 struct ib_srq_attr *srq_attr); 3677 3678 /** 3679 * ib_destroy_srq_user - Destroys the specified SRQ. 3680 * @srq: The SRQ to destroy. 3681 * @udata: Valid user data or NULL for kernel objects 3682 */ 3683 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3684 3685 /** 3686 * ib_destroy_srq - Destroys the specified kernel SRQ. 3687 * @srq: The SRQ to destroy. 3688 * 3689 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3690 */ 3691 static inline int ib_destroy_srq(struct ib_srq *srq) 3692 { 3693 return ib_destroy_srq_user(srq, NULL); 3694 } 3695 3696 /** 3697 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3698 * @srq: The SRQ to post the work request on. 3699 * @recv_wr: A list of work requests to post on the receive queue. 3700 * @bad_recv_wr: On an immediate failure, this parameter will reference 3701 * the work request that failed to be posted on the QP. 3702 */ 3703 static inline int ib_post_srq_recv(struct ib_srq *srq, 3704 const struct ib_recv_wr *recv_wr, 3705 const struct ib_recv_wr **bad_recv_wr) 3706 { 3707 const struct ib_recv_wr *dummy; 3708 3709 return srq->device->ops.post_srq_recv(srq, recv_wr, 3710 bad_recv_wr ? : &dummy); 3711 } 3712 3713 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3714 struct ib_qp_init_attr *qp_init_attr); 3715 3716 /** 3717 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3718 * @qp: The QP to modify. 3719 * @attr: On input, specifies the QP attributes to modify. On output, 3720 * the current values of selected QP attributes are returned. 3721 * @attr_mask: A bit-mask used to specify which attributes of the QP 3722 * are being modified. 3723 * @udata: pointer to user's input output buffer information 3724 * are being modified. 3725 * It returns 0 on success and returns appropriate error code on error. 3726 */ 3727 int ib_modify_qp_with_udata(struct ib_qp *qp, 3728 struct ib_qp_attr *attr, 3729 int attr_mask, 3730 struct ib_udata *udata); 3731 3732 /** 3733 * ib_modify_qp - Modifies the attributes for the specified QP and then 3734 * transitions the QP to the given state. 3735 * @qp: The QP to modify. 3736 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3737 * the current values of selected QP attributes are returned. 3738 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3739 * are being modified. 3740 */ 3741 int ib_modify_qp(struct ib_qp *qp, 3742 struct ib_qp_attr *qp_attr, 3743 int qp_attr_mask); 3744 3745 /** 3746 * ib_query_qp - Returns the attribute list and current values for the 3747 * specified QP. 3748 * @qp: The QP to query. 3749 * @qp_attr: The attributes of the specified QP. 3750 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3751 * @qp_init_attr: Additional attributes of the selected QP. 3752 * 3753 * The qp_attr_mask may be used to limit the query to gathering only the 3754 * selected attributes. 3755 */ 3756 int ib_query_qp(struct ib_qp *qp, 3757 struct ib_qp_attr *qp_attr, 3758 int qp_attr_mask, 3759 struct ib_qp_init_attr *qp_init_attr); 3760 3761 /** 3762 * ib_destroy_qp - Destroys the specified QP. 3763 * @qp: The QP to destroy. 3764 * @udata: Valid udata or NULL for kernel objects 3765 */ 3766 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3767 3768 /** 3769 * ib_destroy_qp - Destroys the specified kernel QP. 3770 * @qp: The QP to destroy. 3771 * 3772 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3773 */ 3774 static inline int ib_destroy_qp(struct ib_qp *qp) 3775 { 3776 return ib_destroy_qp_user(qp, NULL); 3777 } 3778 3779 /** 3780 * ib_open_qp - Obtain a reference to an existing sharable QP. 3781 * @xrcd - XRC domain 3782 * @qp_open_attr: Attributes identifying the QP to open. 3783 * 3784 * Returns a reference to a sharable QP. 3785 */ 3786 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3787 struct ib_qp_open_attr *qp_open_attr); 3788 3789 /** 3790 * ib_close_qp - Release an external reference to a QP. 3791 * @qp: The QP handle to release 3792 * 3793 * The opened QP handle is released by the caller. The underlying 3794 * shared QP is not destroyed until all internal references are released. 3795 */ 3796 int ib_close_qp(struct ib_qp *qp); 3797 3798 /** 3799 * ib_post_send - Posts a list of work requests to the send queue of 3800 * the specified QP. 3801 * @qp: The QP to post the work request on. 3802 * @send_wr: A list of work requests to post on the send queue. 3803 * @bad_send_wr: On an immediate failure, this parameter will reference 3804 * the work request that failed to be posted on the QP. 3805 * 3806 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3807 * error is returned, the QP state shall not be affected, 3808 * ib_post_send() will return an immediate error after queueing any 3809 * earlier work requests in the list. 3810 */ 3811 static inline int ib_post_send(struct ib_qp *qp, 3812 const struct ib_send_wr *send_wr, 3813 const struct ib_send_wr **bad_send_wr) 3814 { 3815 const struct ib_send_wr *dummy; 3816 3817 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3818 } 3819 3820 /** 3821 * ib_post_recv - Posts a list of work requests to the receive queue of 3822 * the specified QP. 3823 * @qp: The QP to post the work request on. 3824 * @recv_wr: A list of work requests to post on the receive queue. 3825 * @bad_recv_wr: On an immediate failure, this parameter will reference 3826 * the work request that failed to be posted on the QP. 3827 */ 3828 static inline int ib_post_recv(struct ib_qp *qp, 3829 const struct ib_recv_wr *recv_wr, 3830 const struct ib_recv_wr **bad_recv_wr) 3831 { 3832 const struct ib_recv_wr *dummy; 3833 3834 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3835 } 3836 3837 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private, 3838 int nr_cqe, int comp_vector, 3839 enum ib_poll_context poll_ctx, 3840 const char *caller, struct ib_udata *udata); 3841 3842 /** 3843 * ib_alloc_cq_user: Allocate kernel/user CQ 3844 * @dev: The IB device 3845 * @private: Private data attached to the CQE 3846 * @nr_cqe: Number of CQEs in the CQ 3847 * @comp_vector: Completion vector used for the IRQs 3848 * @poll_ctx: Context used for polling the CQ 3849 * @udata: Valid user data or NULL for kernel objects 3850 */ 3851 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev, 3852 void *private, int nr_cqe, 3853 int comp_vector, 3854 enum ib_poll_context poll_ctx, 3855 struct ib_udata *udata) 3856 { 3857 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3858 KBUILD_MODNAME, udata); 3859 } 3860 3861 /** 3862 * ib_alloc_cq: Allocate kernel CQ 3863 * @dev: The IB device 3864 * @private: Private data attached to the CQE 3865 * @nr_cqe: Number of CQEs in the CQ 3866 * @comp_vector: Completion vector used for the IRQs 3867 * @poll_ctx: Context used for polling the CQ 3868 * 3869 * NOTE: for user cq use ib_alloc_cq_user with valid udata! 3870 */ 3871 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3872 int nr_cqe, int comp_vector, 3873 enum ib_poll_context poll_ctx) 3874 { 3875 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3876 NULL); 3877 } 3878 3879 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3880 int nr_cqe, enum ib_poll_context poll_ctx, 3881 const char *caller); 3882 3883 /** 3884 * ib_alloc_cq_any: Allocate kernel CQ 3885 * @dev: The IB device 3886 * @private: Private data attached to the CQE 3887 * @nr_cqe: Number of CQEs in the CQ 3888 * @poll_ctx: Context used for polling the CQ 3889 */ 3890 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3891 void *private, int nr_cqe, 3892 enum ib_poll_context poll_ctx) 3893 { 3894 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3895 KBUILD_MODNAME); 3896 } 3897 3898 /** 3899 * ib_free_cq_user - Free kernel/user CQ 3900 * @cq: The CQ to free 3901 * @udata: Valid user data or NULL for kernel objects 3902 * 3903 * NOTE: This function shouldn't be called on shared CQs. 3904 */ 3905 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3906 3907 /** 3908 * ib_free_cq - Free kernel CQ 3909 * @cq: The CQ to free 3910 * 3911 * NOTE: for user cq use ib_free_cq_user with valid udata! 3912 */ 3913 static inline void ib_free_cq(struct ib_cq *cq) 3914 { 3915 ib_free_cq_user(cq, NULL); 3916 } 3917 3918 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3919 3920 /** 3921 * ib_create_cq - Creates a CQ on the specified device. 3922 * @device: The device on which to create the CQ. 3923 * @comp_handler: A user-specified callback that is invoked when a 3924 * completion event occurs on the CQ. 3925 * @event_handler: A user-specified callback that is invoked when an 3926 * asynchronous event not associated with a completion occurs on the CQ. 3927 * @cq_context: Context associated with the CQ returned to the user via 3928 * the associated completion and event handlers. 3929 * @cq_attr: The attributes the CQ should be created upon. 3930 * 3931 * Users can examine the cq structure to determine the actual CQ size. 3932 */ 3933 struct ib_cq *__ib_create_cq(struct ib_device *device, 3934 ib_comp_handler comp_handler, 3935 void (*event_handler)(struct ib_event *, void *), 3936 void *cq_context, 3937 const struct ib_cq_init_attr *cq_attr, 3938 const char *caller); 3939 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3940 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3941 3942 /** 3943 * ib_resize_cq - Modifies the capacity of the CQ. 3944 * @cq: The CQ to resize. 3945 * @cqe: The minimum size of the CQ. 3946 * 3947 * Users can examine the cq structure to determine the actual CQ size. 3948 */ 3949 int ib_resize_cq(struct ib_cq *cq, int cqe); 3950 3951 /** 3952 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3953 * @cq: The CQ to modify. 3954 * @cq_count: number of CQEs that will trigger an event 3955 * @cq_period: max period of time in usec before triggering an event 3956 * 3957 */ 3958 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3959 3960 /** 3961 * ib_destroy_cq_user - Destroys the specified CQ. 3962 * @cq: The CQ to destroy. 3963 * @udata: Valid user data or NULL for kernel objects 3964 */ 3965 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3966 3967 /** 3968 * ib_destroy_cq - Destroys the specified kernel CQ. 3969 * @cq: The CQ to destroy. 3970 * 3971 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3972 */ 3973 static inline void ib_destroy_cq(struct ib_cq *cq) 3974 { 3975 ib_destroy_cq_user(cq, NULL); 3976 } 3977 3978 /** 3979 * ib_poll_cq - poll a CQ for completion(s) 3980 * @cq:the CQ being polled 3981 * @num_entries:maximum number of completions to return 3982 * @wc:array of at least @num_entries &struct ib_wc where completions 3983 * will be returned 3984 * 3985 * Poll a CQ for (possibly multiple) completions. If the return value 3986 * is < 0, an error occurred. If the return value is >= 0, it is the 3987 * number of completions returned. If the return value is 3988 * non-negative and < num_entries, then the CQ was emptied. 3989 */ 3990 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3991 struct ib_wc *wc) 3992 { 3993 return cq->device->ops.poll_cq(cq, num_entries, wc); 3994 } 3995 3996 /** 3997 * ib_req_notify_cq - Request completion notification on a CQ. 3998 * @cq: The CQ to generate an event for. 3999 * @flags: 4000 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 4001 * to request an event on the next solicited event or next work 4002 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 4003 * may also be |ed in to request a hint about missed events, as 4004 * described below. 4005 * 4006 * Return Value: 4007 * < 0 means an error occurred while requesting notification 4008 * == 0 means notification was requested successfully, and if 4009 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 4010 * were missed and it is safe to wait for another event. In 4011 * this case is it guaranteed that any work completions added 4012 * to the CQ since the last CQ poll will trigger a completion 4013 * notification event. 4014 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 4015 * in. It means that the consumer must poll the CQ again to 4016 * make sure it is empty to avoid missing an event because of a 4017 * race between requesting notification and an entry being 4018 * added to the CQ. This return value means it is possible 4019 * (but not guaranteed) that a work completion has been added 4020 * to the CQ since the last poll without triggering a 4021 * completion notification event. 4022 */ 4023 static inline int ib_req_notify_cq(struct ib_cq *cq, 4024 enum ib_cq_notify_flags flags) 4025 { 4026 return cq->device->ops.req_notify_cq(cq, flags); 4027 } 4028 4029 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4030 int comp_vector_hint, 4031 enum ib_poll_context poll_ctx); 4032 4033 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4034 4035 /** 4036 * ib_req_ncomp_notif - Request completion notification when there are 4037 * at least the specified number of unreaped completions on the CQ. 4038 * @cq: The CQ to generate an event for. 4039 * @wc_cnt: The number of unreaped completions that should be on the 4040 * CQ before an event is generated. 4041 */ 4042 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 4043 { 4044 return cq->device->ops.req_ncomp_notif ? 4045 cq->device->ops.req_ncomp_notif(cq, wc_cnt) : 4046 -ENOSYS; 4047 } 4048 4049 /** 4050 * ib_dma_mapping_error - check a DMA addr for error 4051 * @dev: The device for which the dma_addr was created 4052 * @dma_addr: The DMA address to check 4053 */ 4054 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4055 { 4056 return dma_mapping_error(dev->dma_device, dma_addr); 4057 } 4058 4059 /** 4060 * ib_dma_map_single - Map a kernel virtual address to DMA address 4061 * @dev: The device for which the dma_addr is to be created 4062 * @cpu_addr: The kernel virtual address 4063 * @size: The size of the region in bytes 4064 * @direction: The direction of the DMA 4065 */ 4066 static inline u64 ib_dma_map_single(struct ib_device *dev, 4067 void *cpu_addr, size_t size, 4068 enum dma_data_direction direction) 4069 { 4070 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4071 } 4072 4073 /** 4074 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4075 * @dev: The device for which the DMA address was created 4076 * @addr: The DMA address 4077 * @size: The size of the region in bytes 4078 * @direction: The direction of the DMA 4079 */ 4080 static inline void ib_dma_unmap_single(struct ib_device *dev, 4081 u64 addr, size_t size, 4082 enum dma_data_direction direction) 4083 { 4084 dma_unmap_single(dev->dma_device, addr, size, direction); 4085 } 4086 4087 /** 4088 * ib_dma_map_page - Map a physical page to DMA address 4089 * @dev: The device for which the dma_addr is to be created 4090 * @page: The page to be mapped 4091 * @offset: The offset within the page 4092 * @size: The size of the region in bytes 4093 * @direction: The direction of the DMA 4094 */ 4095 static inline u64 ib_dma_map_page(struct ib_device *dev, 4096 struct page *page, 4097 unsigned long offset, 4098 size_t size, 4099 enum dma_data_direction direction) 4100 { 4101 return dma_map_page(dev->dma_device, page, offset, size, direction); 4102 } 4103 4104 /** 4105 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4106 * @dev: The device for which the DMA address was created 4107 * @addr: The DMA address 4108 * @size: The size of the region in bytes 4109 * @direction: The direction of the DMA 4110 */ 4111 static inline void ib_dma_unmap_page(struct ib_device *dev, 4112 u64 addr, size_t size, 4113 enum dma_data_direction direction) 4114 { 4115 dma_unmap_page(dev->dma_device, addr, size, direction); 4116 } 4117 4118 /** 4119 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4120 * @dev: The device for which the DMA addresses are to be created 4121 * @sg: The array of scatter/gather entries 4122 * @nents: The number of scatter/gather entries 4123 * @direction: The direction of the DMA 4124 */ 4125 static inline int ib_dma_map_sg(struct ib_device *dev, 4126 struct scatterlist *sg, int nents, 4127 enum dma_data_direction direction) 4128 { 4129 return dma_map_sg(dev->dma_device, sg, nents, direction); 4130 } 4131 4132 /** 4133 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4134 * @dev: The device for which the DMA addresses were created 4135 * @sg: The array of scatter/gather entries 4136 * @nents: The number of scatter/gather entries 4137 * @direction: The direction of the DMA 4138 */ 4139 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4140 struct scatterlist *sg, int nents, 4141 enum dma_data_direction direction) 4142 { 4143 dma_unmap_sg(dev->dma_device, sg, nents, direction); 4144 } 4145 4146 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4147 struct scatterlist *sg, int nents, 4148 enum dma_data_direction direction, 4149 unsigned long dma_attrs) 4150 { 4151 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4152 dma_attrs); 4153 } 4154 4155 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4156 struct scatterlist *sg, int nents, 4157 enum dma_data_direction direction, 4158 unsigned long dma_attrs) 4159 { 4160 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 4161 } 4162 4163 /** 4164 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4165 * @dev: The device to query 4166 * 4167 * The returned value represents a size in bytes. 4168 */ 4169 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4170 { 4171 return dma_get_max_seg_size(dev->dma_device); 4172 } 4173 4174 /** 4175 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4176 * @dev: The device for which the DMA address was created 4177 * @addr: The DMA address 4178 * @size: The size of the region in bytes 4179 * @dir: The direction of the DMA 4180 */ 4181 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4182 u64 addr, 4183 size_t size, 4184 enum dma_data_direction dir) 4185 { 4186 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4187 } 4188 4189 /** 4190 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4191 * @dev: The device for which the DMA address was created 4192 * @addr: The DMA address 4193 * @size: The size of the region in bytes 4194 * @dir: The direction of the DMA 4195 */ 4196 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4197 u64 addr, 4198 size_t size, 4199 enum dma_data_direction dir) 4200 { 4201 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4202 } 4203 4204 /** 4205 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 4206 * @dev: The device for which the DMA address is requested 4207 * @size: The size of the region to allocate in bytes 4208 * @dma_handle: A pointer for returning the DMA address of the region 4209 * @flag: memory allocator flags 4210 */ 4211 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 4212 size_t size, 4213 dma_addr_t *dma_handle, 4214 gfp_t flag) 4215 { 4216 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 4217 } 4218 4219 /** 4220 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 4221 * @dev: The device for which the DMA addresses were allocated 4222 * @size: The size of the region 4223 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 4224 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 4225 */ 4226 static inline void ib_dma_free_coherent(struct ib_device *dev, 4227 size_t size, void *cpu_addr, 4228 dma_addr_t dma_handle) 4229 { 4230 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 4231 } 4232 4233 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4234 * space. This function should be called when 'current' is the owning MM. 4235 */ 4236 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4237 u64 virt_addr, int mr_access_flags); 4238 4239 /* ib_advise_mr - give an advice about an address range in a memory region */ 4240 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4241 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4242 /** 4243 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4244 * HCA translation table. 4245 * @mr: The memory region to deregister. 4246 * @udata: Valid user data or NULL for kernel object 4247 * 4248 * This function can fail, if the memory region has memory windows bound to it. 4249 */ 4250 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4251 4252 /** 4253 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4254 * HCA translation table. 4255 * @mr: The memory region to deregister. 4256 * 4257 * This function can fail, if the memory region has memory windows bound to it. 4258 * 4259 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4260 */ 4261 static inline int ib_dereg_mr(struct ib_mr *mr) 4262 { 4263 return ib_dereg_mr_user(mr, NULL); 4264 } 4265 4266 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 4267 u32 max_num_sg, struct ib_udata *udata); 4268 4269 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 4270 enum ib_mr_type mr_type, u32 max_num_sg) 4271 { 4272 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL); 4273 } 4274 4275 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4276 u32 max_num_data_sg, 4277 u32 max_num_meta_sg); 4278 4279 /** 4280 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4281 * R_Key and L_Key. 4282 * @mr - struct ib_mr pointer to be updated. 4283 * @newkey - new key to be used. 4284 */ 4285 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4286 { 4287 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4288 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4289 } 4290 4291 /** 4292 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4293 * for calculating a new rkey for type 2 memory windows. 4294 * @rkey - the rkey to increment. 4295 */ 4296 static inline u32 ib_inc_rkey(u32 rkey) 4297 { 4298 const u32 mask = 0x000000ff; 4299 return ((rkey + 1) & mask) | (rkey & ~mask); 4300 } 4301 4302 /** 4303 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4304 * @qp: QP to attach to the multicast group. The QP must be type 4305 * IB_QPT_UD. 4306 * @gid: Multicast group GID. 4307 * @lid: Multicast group LID in host byte order. 4308 * 4309 * In order to send and receive multicast packets, subnet 4310 * administration must have created the multicast group and configured 4311 * the fabric appropriately. The port associated with the specified 4312 * QP must also be a member of the multicast group. 4313 */ 4314 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4315 4316 /** 4317 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4318 * @qp: QP to detach from the multicast group. 4319 * @gid: Multicast group GID. 4320 * @lid: Multicast group LID in host byte order. 4321 */ 4322 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4323 4324 /** 4325 * ib_alloc_xrcd - Allocates an XRC domain. 4326 * @device: The device on which to allocate the XRC domain. 4327 * @caller: Module name for kernel consumers 4328 */ 4329 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 4330 #define ib_alloc_xrcd(device) \ 4331 __ib_alloc_xrcd((device), KBUILD_MODNAME) 4332 4333 /** 4334 * ib_dealloc_xrcd - Deallocates an XRC domain. 4335 * @xrcd: The XRC domain to deallocate. 4336 * @udata: Valid user data or NULL for kernel object 4337 */ 4338 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata); 4339 4340 static inline int ib_check_mr_access(int flags) 4341 { 4342 /* 4343 * Local write permission is required if remote write or 4344 * remote atomic permission is also requested. 4345 */ 4346 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4347 !(flags & IB_ACCESS_LOCAL_WRITE)) 4348 return -EINVAL; 4349 4350 if (flags & ~IB_ACCESS_SUPPORTED) 4351 return -EINVAL; 4352 4353 return 0; 4354 } 4355 4356 static inline bool ib_access_writable(int access_flags) 4357 { 4358 /* 4359 * We have writable memory backing the MR if any of the following 4360 * access flags are set. "Local write" and "remote write" obviously 4361 * require write access. "Remote atomic" can do things like fetch and 4362 * add, which will modify memory, and "MW bind" can change permissions 4363 * by binding a window. 4364 */ 4365 return access_flags & 4366 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4367 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4368 } 4369 4370 /** 4371 * ib_check_mr_status: lightweight check of MR status. 4372 * This routine may provide status checks on a selected 4373 * ib_mr. first use is for signature status check. 4374 * 4375 * @mr: A memory region. 4376 * @check_mask: Bitmask of which checks to perform from 4377 * ib_mr_status_check enumeration. 4378 * @mr_status: The container of relevant status checks. 4379 * failed checks will be indicated in the status bitmask 4380 * and the relevant info shall be in the error item. 4381 */ 4382 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4383 struct ib_mr_status *mr_status); 4384 4385 /** 4386 * ib_device_try_get: Hold a registration lock 4387 * device: The device to lock 4388 * 4389 * A device under an active registration lock cannot become unregistered. It 4390 * is only possible to obtain a registration lock on a device that is fully 4391 * registered, otherwise this function returns false. 4392 * 4393 * The registration lock is only necessary for actions which require the 4394 * device to still be registered. Uses that only require the device pointer to 4395 * be valid should use get_device(&ibdev->dev) to hold the memory. 4396 * 4397 */ 4398 static inline bool ib_device_try_get(struct ib_device *dev) 4399 { 4400 return refcount_inc_not_zero(&dev->refcount); 4401 } 4402 4403 void ib_device_put(struct ib_device *device); 4404 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4405 enum rdma_driver_id driver_id); 4406 struct ib_device *ib_device_get_by_name(const char *name, 4407 enum rdma_driver_id driver_id); 4408 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 4409 u16 pkey, const union ib_gid *gid, 4410 const struct sockaddr *addr); 4411 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4412 unsigned int port); 4413 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port); 4414 4415 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4416 struct ib_wq_init_attr *init_attr); 4417 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata); 4418 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 4419 u32 wq_attr_mask); 4420 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 4421 struct ib_rwq_ind_table_init_attr* 4422 wq_ind_table_init_attr); 4423 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 4424 4425 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4426 unsigned int *sg_offset, unsigned int page_size); 4427 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4428 int data_sg_nents, unsigned int *data_sg_offset, 4429 struct scatterlist *meta_sg, int meta_sg_nents, 4430 unsigned int *meta_sg_offset, unsigned int page_size); 4431 4432 static inline int 4433 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4434 unsigned int *sg_offset, unsigned int page_size) 4435 { 4436 int n; 4437 4438 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4439 mr->iova = 0; 4440 4441 return n; 4442 } 4443 4444 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4445 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4446 4447 void ib_drain_rq(struct ib_qp *qp); 4448 void ib_drain_sq(struct ib_qp *qp); 4449 void ib_drain_qp(struct ib_qp *qp); 4450 4451 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 4452 4453 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4454 { 4455 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4456 return attr->roce.dmac; 4457 return NULL; 4458 } 4459 4460 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4461 { 4462 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4463 attr->ib.dlid = (u16)dlid; 4464 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4465 attr->opa.dlid = dlid; 4466 } 4467 4468 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4469 { 4470 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4471 return attr->ib.dlid; 4472 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4473 return attr->opa.dlid; 4474 return 0; 4475 } 4476 4477 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4478 { 4479 attr->sl = sl; 4480 } 4481 4482 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4483 { 4484 return attr->sl; 4485 } 4486 4487 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4488 u8 src_path_bits) 4489 { 4490 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4491 attr->ib.src_path_bits = src_path_bits; 4492 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4493 attr->opa.src_path_bits = src_path_bits; 4494 } 4495 4496 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4497 { 4498 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4499 return attr->ib.src_path_bits; 4500 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4501 return attr->opa.src_path_bits; 4502 return 0; 4503 } 4504 4505 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4506 bool make_grd) 4507 { 4508 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4509 attr->opa.make_grd = make_grd; 4510 } 4511 4512 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4513 { 4514 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4515 return attr->opa.make_grd; 4516 return false; 4517 } 4518 4519 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4520 { 4521 attr->port_num = port_num; 4522 } 4523 4524 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4525 { 4526 return attr->port_num; 4527 } 4528 4529 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4530 u8 static_rate) 4531 { 4532 attr->static_rate = static_rate; 4533 } 4534 4535 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4536 { 4537 return attr->static_rate; 4538 } 4539 4540 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4541 enum ib_ah_flags flag) 4542 { 4543 attr->ah_flags = flag; 4544 } 4545 4546 static inline enum ib_ah_flags 4547 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4548 { 4549 return attr->ah_flags; 4550 } 4551 4552 static inline const struct ib_global_route 4553 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4554 { 4555 return &attr->grh; 4556 } 4557 4558 /*To retrieve and modify the grh */ 4559 static inline struct ib_global_route 4560 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4561 { 4562 return &attr->grh; 4563 } 4564 4565 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4566 { 4567 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4568 4569 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4570 } 4571 4572 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4573 __be64 prefix) 4574 { 4575 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4576 4577 grh->dgid.global.subnet_prefix = prefix; 4578 } 4579 4580 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4581 __be64 if_id) 4582 { 4583 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4584 4585 grh->dgid.global.interface_id = if_id; 4586 } 4587 4588 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4589 union ib_gid *dgid, u32 flow_label, 4590 u8 sgid_index, u8 hop_limit, 4591 u8 traffic_class) 4592 { 4593 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4594 4595 attr->ah_flags = IB_AH_GRH; 4596 if (dgid) 4597 grh->dgid = *dgid; 4598 grh->flow_label = flow_label; 4599 grh->sgid_index = sgid_index; 4600 grh->hop_limit = hop_limit; 4601 grh->traffic_class = traffic_class; 4602 grh->sgid_attr = NULL; 4603 } 4604 4605 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4606 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4607 u32 flow_label, u8 hop_limit, u8 traffic_class, 4608 const struct ib_gid_attr *sgid_attr); 4609 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4610 const struct rdma_ah_attr *src); 4611 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4612 const struct rdma_ah_attr *new); 4613 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4614 4615 /** 4616 * rdma_ah_find_type - Return address handle type. 4617 * 4618 * @dev: Device to be checked 4619 * @port_num: Port number 4620 */ 4621 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4622 u8 port_num) 4623 { 4624 if (rdma_protocol_roce(dev, port_num)) 4625 return RDMA_AH_ATTR_TYPE_ROCE; 4626 if (rdma_protocol_ib(dev, port_num)) { 4627 if (rdma_cap_opa_ah(dev, port_num)) 4628 return RDMA_AH_ATTR_TYPE_OPA; 4629 return RDMA_AH_ATTR_TYPE_IB; 4630 } 4631 4632 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4633 } 4634 4635 /** 4636 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4637 * In the current implementation the only way to get 4638 * get the 32bit lid is from other sources for OPA. 4639 * For IB, lids will always be 16bits so cast the 4640 * value accordingly. 4641 * 4642 * @lid: A 32bit LID 4643 */ 4644 static inline u16 ib_lid_cpu16(u32 lid) 4645 { 4646 WARN_ON_ONCE(lid & 0xFFFF0000); 4647 return (u16)lid; 4648 } 4649 4650 /** 4651 * ib_lid_be16 - Return lid in 16bit BE encoding. 4652 * 4653 * @lid: A 32bit LID 4654 */ 4655 static inline __be16 ib_lid_be16(u32 lid) 4656 { 4657 WARN_ON_ONCE(lid & 0xFFFF0000); 4658 return cpu_to_be16((u16)lid); 4659 } 4660 4661 /** 4662 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4663 * vector 4664 * @device: the rdma device 4665 * @comp_vector: index of completion vector 4666 * 4667 * Returns NULL on failure, otherwise a corresponding cpu map of the 4668 * completion vector (returns all-cpus map if the device driver doesn't 4669 * implement get_vector_affinity). 4670 */ 4671 static inline const struct cpumask * 4672 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4673 { 4674 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4675 !device->ops.get_vector_affinity) 4676 return NULL; 4677 4678 return device->ops.get_vector_affinity(device, comp_vector); 4679 4680 } 4681 4682 /** 4683 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4684 * and add their gids, as needed, to the relevant RoCE devices. 4685 * 4686 * @device: the rdma device 4687 */ 4688 void rdma_roce_rescan_device(struct ib_device *ibdev); 4689 4690 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4691 4692 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4693 4694 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4695 enum rdma_netdev_t type, const char *name, 4696 unsigned char name_assign_type, 4697 void (*setup)(struct net_device *)); 4698 4699 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4700 enum rdma_netdev_t type, const char *name, 4701 unsigned char name_assign_type, 4702 void (*setup)(struct net_device *), 4703 struct net_device *netdev); 4704 4705 /** 4706 * rdma_set_device_sysfs_group - Set device attributes group to have 4707 * driver specific sysfs entries at 4708 * for infiniband class. 4709 * 4710 * @device: device pointer for which attributes to be created 4711 * @group: Pointer to group which should be added when device 4712 * is registered with sysfs. 4713 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4714 * group per device to have sysfs attributes. 4715 * 4716 * NOTE: New drivers should not make use of this API; instead new device 4717 * parameter should be exposed via netlink command. This API and mechanism 4718 * exist only for existing drivers. 4719 */ 4720 static inline void 4721 rdma_set_device_sysfs_group(struct ib_device *dev, 4722 const struct attribute_group *group) 4723 { 4724 dev->groups[1] = group; 4725 } 4726 4727 /** 4728 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4729 * 4730 * @device: device pointer for which ib_device pointer to retrieve 4731 * 4732 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4733 * 4734 */ 4735 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4736 { 4737 struct ib_core_device *coredev = 4738 container_of(device, struct ib_core_device, dev); 4739 4740 return coredev->owner; 4741 } 4742 4743 /** 4744 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4745 * ib_device holder structure from device pointer. 4746 * 4747 * NOTE: New drivers should not make use of this API; This API is only for 4748 * existing drivers who have exposed sysfs entries using 4749 * rdma_set_device_sysfs_group(). 4750 */ 4751 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4752 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4753 4754 bool rdma_dev_access_netns(const struct ib_device *device, 4755 const struct net *net); 4756 4757 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4758 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4759 4760 /** 4761 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4762 * on the flow_label 4763 * 4764 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4765 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4766 * convention. 4767 */ 4768 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4769 { 4770 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4771 4772 fl_low ^= fl_high >> 14; 4773 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4774 } 4775 4776 /** 4777 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4778 * local and remote qpn values 4779 * 4780 * This function folded the multiplication results of two qpns, 24 bit each, 4781 * fields, and converts it to a 20 bit results. 4782 * 4783 * This function will create symmetric flow_label value based on the local 4784 * and remote qpn values. this will allow both the requester and responder 4785 * to calculate the same flow_label for a given connection. 4786 * 4787 * This helper function should be used by driver in case the upper layer 4788 * provide a zero flow_label value. This is to improve entropy of RDMA 4789 * traffic in the network. 4790 */ 4791 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4792 { 4793 u64 v = (u64)lqpn * rqpn; 4794 4795 v ^= v >> 20; 4796 v ^= v >> 40; 4797 4798 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4799 } 4800 #endif /* IB_VERBS_H */ 4801