xref: /linux/include/rdma/ib_verbs.h (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 
51 #include <asm/atomic.h>
52 #include <asm/uaccess.h>
53 
54 union ib_gid {
55 	u8	raw[16];
56 	struct {
57 		__be64	subnet_prefix;
58 		__be64	interface_id;
59 	} global;
60 };
61 
62 enum rdma_node_type {
63 	/* IB values map to NodeInfo:NodeType. */
64 	RDMA_NODE_IB_CA 	= 1,
65 	RDMA_NODE_IB_SWITCH,
66 	RDMA_NODE_IB_ROUTER,
67 	RDMA_NODE_RNIC
68 };
69 
70 enum rdma_transport_type {
71 	RDMA_TRANSPORT_IB,
72 	RDMA_TRANSPORT_IWARP
73 };
74 
75 enum rdma_transport_type
76 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
77 
78 enum ib_device_cap_flags {
79 	IB_DEVICE_RESIZE_MAX_WR		= 1,
80 	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
81 	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
82 	IB_DEVICE_RAW_MULTI		= (1<<3),
83 	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
84 	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
85 	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
86 	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
87 	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
88 	IB_DEVICE_INIT_TYPE		= (1<<9),
89 	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
90 	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
91 	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
92 	IB_DEVICE_SRQ_RESIZE		= (1<<13),
93 	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
94 	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
95 	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
96 	IB_DEVICE_MEM_WINDOW		= (1<<17),
97 	/*
98 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
99 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
100 	 * messages and can verify the validity of checksum for
101 	 * incoming messages.  Setting this flag implies that the
102 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
103 	 */
104 	IB_DEVICE_UD_IP_CSUM		= (1<<18),
105 	IB_DEVICE_UD_TSO		= (1<<19),
106 	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
107 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
108 };
109 
110 enum ib_atomic_cap {
111 	IB_ATOMIC_NONE,
112 	IB_ATOMIC_HCA,
113 	IB_ATOMIC_GLOB
114 };
115 
116 struct ib_device_attr {
117 	u64			fw_ver;
118 	__be64			sys_image_guid;
119 	u64			max_mr_size;
120 	u64			page_size_cap;
121 	u32			vendor_id;
122 	u32			vendor_part_id;
123 	u32			hw_ver;
124 	int			max_qp;
125 	int			max_qp_wr;
126 	int			device_cap_flags;
127 	int			max_sge;
128 	int			max_sge_rd;
129 	int			max_cq;
130 	int			max_cqe;
131 	int			max_mr;
132 	int			max_pd;
133 	int			max_qp_rd_atom;
134 	int			max_ee_rd_atom;
135 	int			max_res_rd_atom;
136 	int			max_qp_init_rd_atom;
137 	int			max_ee_init_rd_atom;
138 	enum ib_atomic_cap	atomic_cap;
139 	enum ib_atomic_cap	masked_atomic_cap;
140 	int			max_ee;
141 	int			max_rdd;
142 	int			max_mw;
143 	int			max_raw_ipv6_qp;
144 	int			max_raw_ethy_qp;
145 	int			max_mcast_grp;
146 	int			max_mcast_qp_attach;
147 	int			max_total_mcast_qp_attach;
148 	int			max_ah;
149 	int			max_fmr;
150 	int			max_map_per_fmr;
151 	int			max_srq;
152 	int			max_srq_wr;
153 	int			max_srq_sge;
154 	unsigned int		max_fast_reg_page_list_len;
155 	u16			max_pkeys;
156 	u8			local_ca_ack_delay;
157 };
158 
159 enum ib_mtu {
160 	IB_MTU_256  = 1,
161 	IB_MTU_512  = 2,
162 	IB_MTU_1024 = 3,
163 	IB_MTU_2048 = 4,
164 	IB_MTU_4096 = 5
165 };
166 
167 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
168 {
169 	switch (mtu) {
170 	case IB_MTU_256:  return  256;
171 	case IB_MTU_512:  return  512;
172 	case IB_MTU_1024: return 1024;
173 	case IB_MTU_2048: return 2048;
174 	case IB_MTU_4096: return 4096;
175 	default: 	  return -1;
176 	}
177 }
178 
179 enum ib_port_state {
180 	IB_PORT_NOP		= 0,
181 	IB_PORT_DOWN		= 1,
182 	IB_PORT_INIT		= 2,
183 	IB_PORT_ARMED		= 3,
184 	IB_PORT_ACTIVE		= 4,
185 	IB_PORT_ACTIVE_DEFER	= 5
186 };
187 
188 enum ib_port_cap_flags {
189 	IB_PORT_SM				= 1 <<  1,
190 	IB_PORT_NOTICE_SUP			= 1 <<  2,
191 	IB_PORT_TRAP_SUP			= 1 <<  3,
192 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
193 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
194 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
195 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
196 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
197 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
198 	IB_PORT_SM_DISABLED			= 1 << 10,
199 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
200 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
201 	IB_PORT_CM_SUP				= 1 << 16,
202 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
203 	IB_PORT_REINIT_SUP			= 1 << 18,
204 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
205 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
206 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
207 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
208 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
209 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
210 	IB_PORT_CLIENT_REG_SUP			= 1 << 25
211 };
212 
213 enum ib_port_width {
214 	IB_WIDTH_1X	= 1,
215 	IB_WIDTH_4X	= 2,
216 	IB_WIDTH_8X	= 4,
217 	IB_WIDTH_12X	= 8
218 };
219 
220 static inline int ib_width_enum_to_int(enum ib_port_width width)
221 {
222 	switch (width) {
223 	case IB_WIDTH_1X:  return  1;
224 	case IB_WIDTH_4X:  return  4;
225 	case IB_WIDTH_8X:  return  8;
226 	case IB_WIDTH_12X: return 12;
227 	default: 	  return -1;
228 	}
229 }
230 
231 struct ib_protocol_stats {
232 	/* TBD... */
233 };
234 
235 struct iw_protocol_stats {
236 	u64	ipInReceives;
237 	u64	ipInHdrErrors;
238 	u64	ipInTooBigErrors;
239 	u64	ipInNoRoutes;
240 	u64	ipInAddrErrors;
241 	u64	ipInUnknownProtos;
242 	u64	ipInTruncatedPkts;
243 	u64	ipInDiscards;
244 	u64	ipInDelivers;
245 	u64	ipOutForwDatagrams;
246 	u64	ipOutRequests;
247 	u64	ipOutDiscards;
248 	u64	ipOutNoRoutes;
249 	u64	ipReasmTimeout;
250 	u64	ipReasmReqds;
251 	u64	ipReasmOKs;
252 	u64	ipReasmFails;
253 	u64	ipFragOKs;
254 	u64	ipFragFails;
255 	u64	ipFragCreates;
256 	u64	ipInMcastPkts;
257 	u64	ipOutMcastPkts;
258 	u64	ipInBcastPkts;
259 	u64	ipOutBcastPkts;
260 
261 	u64	tcpRtoAlgorithm;
262 	u64	tcpRtoMin;
263 	u64	tcpRtoMax;
264 	u64	tcpMaxConn;
265 	u64	tcpActiveOpens;
266 	u64	tcpPassiveOpens;
267 	u64	tcpAttemptFails;
268 	u64	tcpEstabResets;
269 	u64	tcpCurrEstab;
270 	u64	tcpInSegs;
271 	u64	tcpOutSegs;
272 	u64	tcpRetransSegs;
273 	u64	tcpInErrs;
274 	u64	tcpOutRsts;
275 };
276 
277 union rdma_protocol_stats {
278 	struct ib_protocol_stats	ib;
279 	struct iw_protocol_stats	iw;
280 };
281 
282 struct ib_port_attr {
283 	enum ib_port_state	state;
284 	enum ib_mtu		max_mtu;
285 	enum ib_mtu		active_mtu;
286 	int			gid_tbl_len;
287 	u32			port_cap_flags;
288 	u32			max_msg_sz;
289 	u32			bad_pkey_cntr;
290 	u32			qkey_viol_cntr;
291 	u16			pkey_tbl_len;
292 	u16			lid;
293 	u16			sm_lid;
294 	u8			lmc;
295 	u8			max_vl_num;
296 	u8			sm_sl;
297 	u8			subnet_timeout;
298 	u8			init_type_reply;
299 	u8			active_width;
300 	u8			active_speed;
301 	u8                      phys_state;
302 };
303 
304 enum ib_device_modify_flags {
305 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
306 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
307 };
308 
309 struct ib_device_modify {
310 	u64	sys_image_guid;
311 	char	node_desc[64];
312 };
313 
314 enum ib_port_modify_flags {
315 	IB_PORT_SHUTDOWN		= 1,
316 	IB_PORT_INIT_TYPE		= (1<<2),
317 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
318 };
319 
320 struct ib_port_modify {
321 	u32	set_port_cap_mask;
322 	u32	clr_port_cap_mask;
323 	u8	init_type;
324 };
325 
326 enum ib_event_type {
327 	IB_EVENT_CQ_ERR,
328 	IB_EVENT_QP_FATAL,
329 	IB_EVENT_QP_REQ_ERR,
330 	IB_EVENT_QP_ACCESS_ERR,
331 	IB_EVENT_COMM_EST,
332 	IB_EVENT_SQ_DRAINED,
333 	IB_EVENT_PATH_MIG,
334 	IB_EVENT_PATH_MIG_ERR,
335 	IB_EVENT_DEVICE_FATAL,
336 	IB_EVENT_PORT_ACTIVE,
337 	IB_EVENT_PORT_ERR,
338 	IB_EVENT_LID_CHANGE,
339 	IB_EVENT_PKEY_CHANGE,
340 	IB_EVENT_SM_CHANGE,
341 	IB_EVENT_SRQ_ERR,
342 	IB_EVENT_SRQ_LIMIT_REACHED,
343 	IB_EVENT_QP_LAST_WQE_REACHED,
344 	IB_EVENT_CLIENT_REREGISTER
345 };
346 
347 struct ib_event {
348 	struct ib_device	*device;
349 	union {
350 		struct ib_cq	*cq;
351 		struct ib_qp	*qp;
352 		struct ib_srq	*srq;
353 		u8		port_num;
354 	} element;
355 	enum ib_event_type	event;
356 };
357 
358 struct ib_event_handler {
359 	struct ib_device *device;
360 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
361 	struct list_head  list;
362 };
363 
364 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
365 	do {							\
366 		(_ptr)->device  = _device;			\
367 		(_ptr)->handler = _handler;			\
368 		INIT_LIST_HEAD(&(_ptr)->list);			\
369 	} while (0)
370 
371 struct ib_global_route {
372 	union ib_gid	dgid;
373 	u32		flow_label;
374 	u8		sgid_index;
375 	u8		hop_limit;
376 	u8		traffic_class;
377 };
378 
379 struct ib_grh {
380 	__be32		version_tclass_flow;
381 	__be16		paylen;
382 	u8		next_hdr;
383 	u8		hop_limit;
384 	union ib_gid	sgid;
385 	union ib_gid	dgid;
386 };
387 
388 enum {
389 	IB_MULTICAST_QPN = 0xffffff
390 };
391 
392 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
393 
394 enum ib_ah_flags {
395 	IB_AH_GRH	= 1
396 };
397 
398 enum ib_rate {
399 	IB_RATE_PORT_CURRENT = 0,
400 	IB_RATE_2_5_GBPS = 2,
401 	IB_RATE_5_GBPS   = 5,
402 	IB_RATE_10_GBPS  = 3,
403 	IB_RATE_20_GBPS  = 6,
404 	IB_RATE_30_GBPS  = 4,
405 	IB_RATE_40_GBPS  = 7,
406 	IB_RATE_60_GBPS  = 8,
407 	IB_RATE_80_GBPS  = 9,
408 	IB_RATE_120_GBPS = 10
409 };
410 
411 /**
412  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
413  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
414  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
415  * @rate: rate to convert.
416  */
417 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
418 
419 /**
420  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
421  * enum.
422  * @mult: multiple to convert.
423  */
424 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
425 
426 struct ib_ah_attr {
427 	struct ib_global_route	grh;
428 	u16			dlid;
429 	u8			sl;
430 	u8			src_path_bits;
431 	u8			static_rate;
432 	u8			ah_flags;
433 	u8			port_num;
434 };
435 
436 enum ib_wc_status {
437 	IB_WC_SUCCESS,
438 	IB_WC_LOC_LEN_ERR,
439 	IB_WC_LOC_QP_OP_ERR,
440 	IB_WC_LOC_EEC_OP_ERR,
441 	IB_WC_LOC_PROT_ERR,
442 	IB_WC_WR_FLUSH_ERR,
443 	IB_WC_MW_BIND_ERR,
444 	IB_WC_BAD_RESP_ERR,
445 	IB_WC_LOC_ACCESS_ERR,
446 	IB_WC_REM_INV_REQ_ERR,
447 	IB_WC_REM_ACCESS_ERR,
448 	IB_WC_REM_OP_ERR,
449 	IB_WC_RETRY_EXC_ERR,
450 	IB_WC_RNR_RETRY_EXC_ERR,
451 	IB_WC_LOC_RDD_VIOL_ERR,
452 	IB_WC_REM_INV_RD_REQ_ERR,
453 	IB_WC_REM_ABORT_ERR,
454 	IB_WC_INV_EECN_ERR,
455 	IB_WC_INV_EEC_STATE_ERR,
456 	IB_WC_FATAL_ERR,
457 	IB_WC_RESP_TIMEOUT_ERR,
458 	IB_WC_GENERAL_ERR
459 };
460 
461 enum ib_wc_opcode {
462 	IB_WC_SEND,
463 	IB_WC_RDMA_WRITE,
464 	IB_WC_RDMA_READ,
465 	IB_WC_COMP_SWAP,
466 	IB_WC_FETCH_ADD,
467 	IB_WC_BIND_MW,
468 	IB_WC_LSO,
469 	IB_WC_LOCAL_INV,
470 	IB_WC_FAST_REG_MR,
471 	IB_WC_MASKED_COMP_SWAP,
472 	IB_WC_MASKED_FETCH_ADD,
473 /*
474  * Set value of IB_WC_RECV so consumers can test if a completion is a
475  * receive by testing (opcode & IB_WC_RECV).
476  */
477 	IB_WC_RECV			= 1 << 7,
478 	IB_WC_RECV_RDMA_WITH_IMM
479 };
480 
481 enum ib_wc_flags {
482 	IB_WC_GRH		= 1,
483 	IB_WC_WITH_IMM		= (1<<1),
484 	IB_WC_WITH_INVALIDATE	= (1<<2),
485 };
486 
487 struct ib_wc {
488 	u64			wr_id;
489 	enum ib_wc_status	status;
490 	enum ib_wc_opcode	opcode;
491 	u32			vendor_err;
492 	u32			byte_len;
493 	struct ib_qp	       *qp;
494 	union {
495 		__be32		imm_data;
496 		u32		invalidate_rkey;
497 	} ex;
498 	u32			src_qp;
499 	int			wc_flags;
500 	u16			pkey_index;
501 	u16			slid;
502 	u8			sl;
503 	u8			dlid_path_bits;
504 	u8			port_num;	/* valid only for DR SMPs on switches */
505 	int			csum_ok;
506 };
507 
508 enum ib_cq_notify_flags {
509 	IB_CQ_SOLICITED			= 1 << 0,
510 	IB_CQ_NEXT_COMP			= 1 << 1,
511 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
512 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
513 };
514 
515 enum ib_srq_attr_mask {
516 	IB_SRQ_MAX_WR	= 1 << 0,
517 	IB_SRQ_LIMIT	= 1 << 1,
518 };
519 
520 struct ib_srq_attr {
521 	u32	max_wr;
522 	u32	max_sge;
523 	u32	srq_limit;
524 };
525 
526 struct ib_srq_init_attr {
527 	void		      (*event_handler)(struct ib_event *, void *);
528 	void		       *srq_context;
529 	struct ib_srq_attr	attr;
530 };
531 
532 struct ib_qp_cap {
533 	u32	max_send_wr;
534 	u32	max_recv_wr;
535 	u32	max_send_sge;
536 	u32	max_recv_sge;
537 	u32	max_inline_data;
538 };
539 
540 enum ib_sig_type {
541 	IB_SIGNAL_ALL_WR,
542 	IB_SIGNAL_REQ_WR
543 };
544 
545 enum ib_qp_type {
546 	/*
547 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
548 	 * here (and in that order) since the MAD layer uses them as
549 	 * indices into a 2-entry table.
550 	 */
551 	IB_QPT_SMI,
552 	IB_QPT_GSI,
553 
554 	IB_QPT_RC,
555 	IB_QPT_UC,
556 	IB_QPT_UD,
557 	IB_QPT_RAW_IPV6,
558 	IB_QPT_RAW_ETHERTYPE
559 };
560 
561 enum ib_qp_create_flags {
562 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
563 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
564 };
565 
566 struct ib_qp_init_attr {
567 	void                  (*event_handler)(struct ib_event *, void *);
568 	void		       *qp_context;
569 	struct ib_cq	       *send_cq;
570 	struct ib_cq	       *recv_cq;
571 	struct ib_srq	       *srq;
572 	struct ib_qp_cap	cap;
573 	enum ib_sig_type	sq_sig_type;
574 	enum ib_qp_type		qp_type;
575 	enum ib_qp_create_flags	create_flags;
576 	u8			port_num; /* special QP types only */
577 };
578 
579 enum ib_rnr_timeout {
580 	IB_RNR_TIMER_655_36 =  0,
581 	IB_RNR_TIMER_000_01 =  1,
582 	IB_RNR_TIMER_000_02 =  2,
583 	IB_RNR_TIMER_000_03 =  3,
584 	IB_RNR_TIMER_000_04 =  4,
585 	IB_RNR_TIMER_000_06 =  5,
586 	IB_RNR_TIMER_000_08 =  6,
587 	IB_RNR_TIMER_000_12 =  7,
588 	IB_RNR_TIMER_000_16 =  8,
589 	IB_RNR_TIMER_000_24 =  9,
590 	IB_RNR_TIMER_000_32 = 10,
591 	IB_RNR_TIMER_000_48 = 11,
592 	IB_RNR_TIMER_000_64 = 12,
593 	IB_RNR_TIMER_000_96 = 13,
594 	IB_RNR_TIMER_001_28 = 14,
595 	IB_RNR_TIMER_001_92 = 15,
596 	IB_RNR_TIMER_002_56 = 16,
597 	IB_RNR_TIMER_003_84 = 17,
598 	IB_RNR_TIMER_005_12 = 18,
599 	IB_RNR_TIMER_007_68 = 19,
600 	IB_RNR_TIMER_010_24 = 20,
601 	IB_RNR_TIMER_015_36 = 21,
602 	IB_RNR_TIMER_020_48 = 22,
603 	IB_RNR_TIMER_030_72 = 23,
604 	IB_RNR_TIMER_040_96 = 24,
605 	IB_RNR_TIMER_061_44 = 25,
606 	IB_RNR_TIMER_081_92 = 26,
607 	IB_RNR_TIMER_122_88 = 27,
608 	IB_RNR_TIMER_163_84 = 28,
609 	IB_RNR_TIMER_245_76 = 29,
610 	IB_RNR_TIMER_327_68 = 30,
611 	IB_RNR_TIMER_491_52 = 31
612 };
613 
614 enum ib_qp_attr_mask {
615 	IB_QP_STATE			= 1,
616 	IB_QP_CUR_STATE			= (1<<1),
617 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
618 	IB_QP_ACCESS_FLAGS		= (1<<3),
619 	IB_QP_PKEY_INDEX		= (1<<4),
620 	IB_QP_PORT			= (1<<5),
621 	IB_QP_QKEY			= (1<<6),
622 	IB_QP_AV			= (1<<7),
623 	IB_QP_PATH_MTU			= (1<<8),
624 	IB_QP_TIMEOUT			= (1<<9),
625 	IB_QP_RETRY_CNT			= (1<<10),
626 	IB_QP_RNR_RETRY			= (1<<11),
627 	IB_QP_RQ_PSN			= (1<<12),
628 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
629 	IB_QP_ALT_PATH			= (1<<14),
630 	IB_QP_MIN_RNR_TIMER		= (1<<15),
631 	IB_QP_SQ_PSN			= (1<<16),
632 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
633 	IB_QP_PATH_MIG_STATE		= (1<<18),
634 	IB_QP_CAP			= (1<<19),
635 	IB_QP_DEST_QPN			= (1<<20)
636 };
637 
638 enum ib_qp_state {
639 	IB_QPS_RESET,
640 	IB_QPS_INIT,
641 	IB_QPS_RTR,
642 	IB_QPS_RTS,
643 	IB_QPS_SQD,
644 	IB_QPS_SQE,
645 	IB_QPS_ERR
646 };
647 
648 enum ib_mig_state {
649 	IB_MIG_MIGRATED,
650 	IB_MIG_REARM,
651 	IB_MIG_ARMED
652 };
653 
654 struct ib_qp_attr {
655 	enum ib_qp_state	qp_state;
656 	enum ib_qp_state	cur_qp_state;
657 	enum ib_mtu		path_mtu;
658 	enum ib_mig_state	path_mig_state;
659 	u32			qkey;
660 	u32			rq_psn;
661 	u32			sq_psn;
662 	u32			dest_qp_num;
663 	int			qp_access_flags;
664 	struct ib_qp_cap	cap;
665 	struct ib_ah_attr	ah_attr;
666 	struct ib_ah_attr	alt_ah_attr;
667 	u16			pkey_index;
668 	u16			alt_pkey_index;
669 	u8			en_sqd_async_notify;
670 	u8			sq_draining;
671 	u8			max_rd_atomic;
672 	u8			max_dest_rd_atomic;
673 	u8			min_rnr_timer;
674 	u8			port_num;
675 	u8			timeout;
676 	u8			retry_cnt;
677 	u8			rnr_retry;
678 	u8			alt_port_num;
679 	u8			alt_timeout;
680 };
681 
682 enum ib_wr_opcode {
683 	IB_WR_RDMA_WRITE,
684 	IB_WR_RDMA_WRITE_WITH_IMM,
685 	IB_WR_SEND,
686 	IB_WR_SEND_WITH_IMM,
687 	IB_WR_RDMA_READ,
688 	IB_WR_ATOMIC_CMP_AND_SWP,
689 	IB_WR_ATOMIC_FETCH_AND_ADD,
690 	IB_WR_LSO,
691 	IB_WR_SEND_WITH_INV,
692 	IB_WR_RDMA_READ_WITH_INV,
693 	IB_WR_LOCAL_INV,
694 	IB_WR_FAST_REG_MR,
695 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
696 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
697 };
698 
699 enum ib_send_flags {
700 	IB_SEND_FENCE		= 1,
701 	IB_SEND_SIGNALED	= (1<<1),
702 	IB_SEND_SOLICITED	= (1<<2),
703 	IB_SEND_INLINE		= (1<<3),
704 	IB_SEND_IP_CSUM		= (1<<4)
705 };
706 
707 struct ib_sge {
708 	u64	addr;
709 	u32	length;
710 	u32	lkey;
711 };
712 
713 struct ib_fast_reg_page_list {
714 	struct ib_device       *device;
715 	u64		       *page_list;
716 	unsigned int		max_page_list_len;
717 };
718 
719 struct ib_send_wr {
720 	struct ib_send_wr      *next;
721 	u64			wr_id;
722 	struct ib_sge	       *sg_list;
723 	int			num_sge;
724 	enum ib_wr_opcode	opcode;
725 	int			send_flags;
726 	union {
727 		__be32		imm_data;
728 		u32		invalidate_rkey;
729 	} ex;
730 	union {
731 		struct {
732 			u64	remote_addr;
733 			u32	rkey;
734 		} rdma;
735 		struct {
736 			u64	remote_addr;
737 			u64	compare_add;
738 			u64	swap;
739 			u64	compare_add_mask;
740 			u64	swap_mask;
741 			u32	rkey;
742 		} atomic;
743 		struct {
744 			struct ib_ah *ah;
745 			void   *header;
746 			int     hlen;
747 			int     mss;
748 			u32	remote_qpn;
749 			u32	remote_qkey;
750 			u16	pkey_index; /* valid for GSI only */
751 			u8	port_num;   /* valid for DR SMPs on switch only */
752 		} ud;
753 		struct {
754 			u64				iova_start;
755 			struct ib_fast_reg_page_list   *page_list;
756 			unsigned int			page_shift;
757 			unsigned int			page_list_len;
758 			u32				length;
759 			int				access_flags;
760 			u32				rkey;
761 		} fast_reg;
762 	} wr;
763 };
764 
765 struct ib_recv_wr {
766 	struct ib_recv_wr      *next;
767 	u64			wr_id;
768 	struct ib_sge	       *sg_list;
769 	int			num_sge;
770 };
771 
772 enum ib_access_flags {
773 	IB_ACCESS_LOCAL_WRITE	= 1,
774 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
775 	IB_ACCESS_REMOTE_READ	= (1<<2),
776 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
777 	IB_ACCESS_MW_BIND	= (1<<4)
778 };
779 
780 struct ib_phys_buf {
781 	u64      addr;
782 	u64      size;
783 };
784 
785 struct ib_mr_attr {
786 	struct ib_pd	*pd;
787 	u64		device_virt_addr;
788 	u64		size;
789 	int		mr_access_flags;
790 	u32		lkey;
791 	u32		rkey;
792 };
793 
794 enum ib_mr_rereg_flags {
795 	IB_MR_REREG_TRANS	= 1,
796 	IB_MR_REREG_PD		= (1<<1),
797 	IB_MR_REREG_ACCESS	= (1<<2)
798 };
799 
800 struct ib_mw_bind {
801 	struct ib_mr   *mr;
802 	u64		wr_id;
803 	u64		addr;
804 	u32		length;
805 	int		send_flags;
806 	int		mw_access_flags;
807 };
808 
809 struct ib_fmr_attr {
810 	int	max_pages;
811 	int	max_maps;
812 	u8	page_shift;
813 };
814 
815 struct ib_ucontext {
816 	struct ib_device       *device;
817 	struct list_head	pd_list;
818 	struct list_head	mr_list;
819 	struct list_head	mw_list;
820 	struct list_head	cq_list;
821 	struct list_head	qp_list;
822 	struct list_head	srq_list;
823 	struct list_head	ah_list;
824 	int			closing;
825 };
826 
827 struct ib_uobject {
828 	u64			user_handle;	/* handle given to us by userspace */
829 	struct ib_ucontext     *context;	/* associated user context */
830 	void		       *object;		/* containing object */
831 	struct list_head	list;		/* link to context's list */
832 	int			id;		/* index into kernel idr */
833 	struct kref		ref;
834 	struct rw_semaphore	mutex;		/* protects .live */
835 	int			live;
836 };
837 
838 struct ib_udata {
839 	void __user *inbuf;
840 	void __user *outbuf;
841 	size_t       inlen;
842 	size_t       outlen;
843 };
844 
845 struct ib_pd {
846 	struct ib_device       *device;
847 	struct ib_uobject      *uobject;
848 	atomic_t          	usecnt; /* count all resources */
849 };
850 
851 struct ib_ah {
852 	struct ib_device	*device;
853 	struct ib_pd		*pd;
854 	struct ib_uobject	*uobject;
855 };
856 
857 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
858 
859 struct ib_cq {
860 	struct ib_device       *device;
861 	struct ib_uobject      *uobject;
862 	ib_comp_handler   	comp_handler;
863 	void                  (*event_handler)(struct ib_event *, void *);
864 	void                   *cq_context;
865 	int               	cqe;
866 	atomic_t          	usecnt; /* count number of work queues */
867 };
868 
869 struct ib_srq {
870 	struct ib_device       *device;
871 	struct ib_pd	       *pd;
872 	struct ib_uobject      *uobject;
873 	void		      (*event_handler)(struct ib_event *, void *);
874 	void		       *srq_context;
875 	atomic_t		usecnt;
876 };
877 
878 struct ib_qp {
879 	struct ib_device       *device;
880 	struct ib_pd	       *pd;
881 	struct ib_cq	       *send_cq;
882 	struct ib_cq	       *recv_cq;
883 	struct ib_srq	       *srq;
884 	struct ib_uobject      *uobject;
885 	void                  (*event_handler)(struct ib_event *, void *);
886 	void		       *qp_context;
887 	u32			qp_num;
888 	enum ib_qp_type		qp_type;
889 };
890 
891 struct ib_mr {
892 	struct ib_device  *device;
893 	struct ib_pd	  *pd;
894 	struct ib_uobject *uobject;
895 	u32		   lkey;
896 	u32		   rkey;
897 	atomic_t	   usecnt; /* count number of MWs */
898 };
899 
900 struct ib_mw {
901 	struct ib_device	*device;
902 	struct ib_pd		*pd;
903 	struct ib_uobject	*uobject;
904 	u32			rkey;
905 };
906 
907 struct ib_fmr {
908 	struct ib_device	*device;
909 	struct ib_pd		*pd;
910 	struct list_head	list;
911 	u32			lkey;
912 	u32			rkey;
913 };
914 
915 struct ib_mad;
916 struct ib_grh;
917 
918 enum ib_process_mad_flags {
919 	IB_MAD_IGNORE_MKEY	= 1,
920 	IB_MAD_IGNORE_BKEY	= 2,
921 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
922 };
923 
924 enum ib_mad_result {
925 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
926 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
927 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
928 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
929 };
930 
931 #define IB_DEVICE_NAME_MAX 64
932 
933 struct ib_cache {
934 	rwlock_t                lock;
935 	struct ib_event_handler event_handler;
936 	struct ib_pkey_cache  **pkey_cache;
937 	struct ib_gid_cache   **gid_cache;
938 	u8                     *lmc_cache;
939 };
940 
941 struct ib_dma_mapping_ops {
942 	int		(*mapping_error)(struct ib_device *dev,
943 					 u64 dma_addr);
944 	u64		(*map_single)(struct ib_device *dev,
945 				      void *ptr, size_t size,
946 				      enum dma_data_direction direction);
947 	void		(*unmap_single)(struct ib_device *dev,
948 					u64 addr, size_t size,
949 					enum dma_data_direction direction);
950 	u64		(*map_page)(struct ib_device *dev,
951 				    struct page *page, unsigned long offset,
952 				    size_t size,
953 				    enum dma_data_direction direction);
954 	void		(*unmap_page)(struct ib_device *dev,
955 				      u64 addr, size_t size,
956 				      enum dma_data_direction direction);
957 	int		(*map_sg)(struct ib_device *dev,
958 				  struct scatterlist *sg, int nents,
959 				  enum dma_data_direction direction);
960 	void		(*unmap_sg)(struct ib_device *dev,
961 				    struct scatterlist *sg, int nents,
962 				    enum dma_data_direction direction);
963 	u64		(*dma_address)(struct ib_device *dev,
964 				       struct scatterlist *sg);
965 	unsigned int	(*dma_len)(struct ib_device *dev,
966 				   struct scatterlist *sg);
967 	void		(*sync_single_for_cpu)(struct ib_device *dev,
968 					       u64 dma_handle,
969 					       size_t size,
970 					       enum dma_data_direction dir);
971 	void		(*sync_single_for_device)(struct ib_device *dev,
972 						  u64 dma_handle,
973 						  size_t size,
974 						  enum dma_data_direction dir);
975 	void		*(*alloc_coherent)(struct ib_device *dev,
976 					   size_t size,
977 					   u64 *dma_handle,
978 					   gfp_t flag);
979 	void		(*free_coherent)(struct ib_device *dev,
980 					 size_t size, void *cpu_addr,
981 					 u64 dma_handle);
982 };
983 
984 struct iw_cm_verbs;
985 
986 struct ib_device {
987 	struct device                *dma_device;
988 
989 	char                          name[IB_DEVICE_NAME_MAX];
990 
991 	struct list_head              event_handler_list;
992 	spinlock_t                    event_handler_lock;
993 
994 	spinlock_t                    client_data_lock;
995 	struct list_head              core_list;
996 	struct list_head              client_data_list;
997 
998 	struct ib_cache               cache;
999 	int                          *pkey_tbl_len;
1000 	int                          *gid_tbl_len;
1001 
1002 	int			      num_comp_vectors;
1003 
1004 	struct iw_cm_verbs	     *iwcm;
1005 
1006 	int		           (*get_protocol_stats)(struct ib_device *device,
1007 							 union rdma_protocol_stats *stats);
1008 	int		           (*query_device)(struct ib_device *device,
1009 						   struct ib_device_attr *device_attr);
1010 	int		           (*query_port)(struct ib_device *device,
1011 						 u8 port_num,
1012 						 struct ib_port_attr *port_attr);
1013 	int		           (*query_gid)(struct ib_device *device,
1014 						u8 port_num, int index,
1015 						union ib_gid *gid);
1016 	int		           (*query_pkey)(struct ib_device *device,
1017 						 u8 port_num, u16 index, u16 *pkey);
1018 	int		           (*modify_device)(struct ib_device *device,
1019 						    int device_modify_mask,
1020 						    struct ib_device_modify *device_modify);
1021 	int		           (*modify_port)(struct ib_device *device,
1022 						  u8 port_num, int port_modify_mask,
1023 						  struct ib_port_modify *port_modify);
1024 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1025 						     struct ib_udata *udata);
1026 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1027 	int                        (*mmap)(struct ib_ucontext *context,
1028 					   struct vm_area_struct *vma);
1029 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1030 					       struct ib_ucontext *context,
1031 					       struct ib_udata *udata);
1032 	int                        (*dealloc_pd)(struct ib_pd *pd);
1033 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1034 						struct ib_ah_attr *ah_attr);
1035 	int                        (*modify_ah)(struct ib_ah *ah,
1036 						struct ib_ah_attr *ah_attr);
1037 	int                        (*query_ah)(struct ib_ah *ah,
1038 					       struct ib_ah_attr *ah_attr);
1039 	int                        (*destroy_ah)(struct ib_ah *ah);
1040 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1041 						 struct ib_srq_init_attr *srq_init_attr,
1042 						 struct ib_udata *udata);
1043 	int                        (*modify_srq)(struct ib_srq *srq,
1044 						 struct ib_srq_attr *srq_attr,
1045 						 enum ib_srq_attr_mask srq_attr_mask,
1046 						 struct ib_udata *udata);
1047 	int                        (*query_srq)(struct ib_srq *srq,
1048 						struct ib_srq_attr *srq_attr);
1049 	int                        (*destroy_srq)(struct ib_srq *srq);
1050 	int                        (*post_srq_recv)(struct ib_srq *srq,
1051 						    struct ib_recv_wr *recv_wr,
1052 						    struct ib_recv_wr **bad_recv_wr);
1053 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1054 						struct ib_qp_init_attr *qp_init_attr,
1055 						struct ib_udata *udata);
1056 	int                        (*modify_qp)(struct ib_qp *qp,
1057 						struct ib_qp_attr *qp_attr,
1058 						int qp_attr_mask,
1059 						struct ib_udata *udata);
1060 	int                        (*query_qp)(struct ib_qp *qp,
1061 					       struct ib_qp_attr *qp_attr,
1062 					       int qp_attr_mask,
1063 					       struct ib_qp_init_attr *qp_init_attr);
1064 	int                        (*destroy_qp)(struct ib_qp *qp);
1065 	int                        (*post_send)(struct ib_qp *qp,
1066 						struct ib_send_wr *send_wr,
1067 						struct ib_send_wr **bad_send_wr);
1068 	int                        (*post_recv)(struct ib_qp *qp,
1069 						struct ib_recv_wr *recv_wr,
1070 						struct ib_recv_wr **bad_recv_wr);
1071 	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1072 						int comp_vector,
1073 						struct ib_ucontext *context,
1074 						struct ib_udata *udata);
1075 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1076 						u16 cq_period);
1077 	int                        (*destroy_cq)(struct ib_cq *cq);
1078 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1079 						struct ib_udata *udata);
1080 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1081 					      struct ib_wc *wc);
1082 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1083 	int                        (*req_notify_cq)(struct ib_cq *cq,
1084 						    enum ib_cq_notify_flags flags);
1085 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1086 						      int wc_cnt);
1087 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1088 						 int mr_access_flags);
1089 	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1090 						  struct ib_phys_buf *phys_buf_array,
1091 						  int num_phys_buf,
1092 						  int mr_access_flags,
1093 						  u64 *iova_start);
1094 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1095 						  u64 start, u64 length,
1096 						  u64 virt_addr,
1097 						  int mr_access_flags,
1098 						  struct ib_udata *udata);
1099 	int                        (*query_mr)(struct ib_mr *mr,
1100 					       struct ib_mr_attr *mr_attr);
1101 	int                        (*dereg_mr)(struct ib_mr *mr);
1102 	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1103 					       int max_page_list_len);
1104 	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1105 								   int page_list_len);
1106 	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1107 	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1108 						    int mr_rereg_mask,
1109 						    struct ib_pd *pd,
1110 						    struct ib_phys_buf *phys_buf_array,
1111 						    int num_phys_buf,
1112 						    int mr_access_flags,
1113 						    u64 *iova_start);
1114 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd);
1115 	int                        (*bind_mw)(struct ib_qp *qp,
1116 					      struct ib_mw *mw,
1117 					      struct ib_mw_bind *mw_bind);
1118 	int                        (*dealloc_mw)(struct ib_mw *mw);
1119 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1120 						int mr_access_flags,
1121 						struct ib_fmr_attr *fmr_attr);
1122 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1123 						   u64 *page_list, int list_len,
1124 						   u64 iova);
1125 	int		           (*unmap_fmr)(struct list_head *fmr_list);
1126 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1127 	int                        (*attach_mcast)(struct ib_qp *qp,
1128 						   union ib_gid *gid,
1129 						   u16 lid);
1130 	int                        (*detach_mcast)(struct ib_qp *qp,
1131 						   union ib_gid *gid,
1132 						   u16 lid);
1133 	int                        (*process_mad)(struct ib_device *device,
1134 						  int process_mad_flags,
1135 						  u8 port_num,
1136 						  struct ib_wc *in_wc,
1137 						  struct ib_grh *in_grh,
1138 						  struct ib_mad *in_mad,
1139 						  struct ib_mad *out_mad);
1140 
1141 	struct ib_dma_mapping_ops   *dma_ops;
1142 
1143 	struct module               *owner;
1144 	struct device                dev;
1145 	struct kobject               *ports_parent;
1146 	struct list_head             port_list;
1147 
1148 	enum {
1149 		IB_DEV_UNINITIALIZED,
1150 		IB_DEV_REGISTERED,
1151 		IB_DEV_UNREGISTERED
1152 	}                            reg_state;
1153 
1154 	int			     uverbs_abi_ver;
1155 	u64			     uverbs_cmd_mask;
1156 
1157 	char			     node_desc[64];
1158 	__be64			     node_guid;
1159 	u32			     local_dma_lkey;
1160 	u8                           node_type;
1161 	u8                           phys_port_cnt;
1162 };
1163 
1164 struct ib_client {
1165 	char  *name;
1166 	void (*add)   (struct ib_device *);
1167 	void (*remove)(struct ib_device *);
1168 
1169 	struct list_head list;
1170 };
1171 
1172 struct ib_device *ib_alloc_device(size_t size);
1173 void ib_dealloc_device(struct ib_device *device);
1174 
1175 int ib_register_device(struct ib_device *device,
1176 		       int (*port_callback)(struct ib_device *,
1177 					    u8, struct kobject *));
1178 void ib_unregister_device(struct ib_device *device);
1179 
1180 int ib_register_client   (struct ib_client *client);
1181 void ib_unregister_client(struct ib_client *client);
1182 
1183 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1184 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1185 			 void *data);
1186 
1187 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1188 {
1189 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1190 }
1191 
1192 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1193 {
1194 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1195 }
1196 
1197 /**
1198  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1199  * contains all required attributes and no attributes not allowed for
1200  * the given QP state transition.
1201  * @cur_state: Current QP state
1202  * @next_state: Next QP state
1203  * @type: QP type
1204  * @mask: Mask of supplied QP attributes
1205  *
1206  * This function is a helper function that a low-level driver's
1207  * modify_qp method can use to validate the consumer's input.  It
1208  * checks that cur_state and next_state are valid QP states, that a
1209  * transition from cur_state to next_state is allowed by the IB spec,
1210  * and that the attribute mask supplied is allowed for the transition.
1211  */
1212 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1213 		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
1214 
1215 int ib_register_event_handler  (struct ib_event_handler *event_handler);
1216 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1217 void ib_dispatch_event(struct ib_event *event);
1218 
1219 int ib_query_device(struct ib_device *device,
1220 		    struct ib_device_attr *device_attr);
1221 
1222 int ib_query_port(struct ib_device *device,
1223 		  u8 port_num, struct ib_port_attr *port_attr);
1224 
1225 int ib_query_gid(struct ib_device *device,
1226 		 u8 port_num, int index, union ib_gid *gid);
1227 
1228 int ib_query_pkey(struct ib_device *device,
1229 		  u8 port_num, u16 index, u16 *pkey);
1230 
1231 int ib_modify_device(struct ib_device *device,
1232 		     int device_modify_mask,
1233 		     struct ib_device_modify *device_modify);
1234 
1235 int ib_modify_port(struct ib_device *device,
1236 		   u8 port_num, int port_modify_mask,
1237 		   struct ib_port_modify *port_modify);
1238 
1239 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1240 		u8 *port_num, u16 *index);
1241 
1242 int ib_find_pkey(struct ib_device *device,
1243 		 u8 port_num, u16 pkey, u16 *index);
1244 
1245 /**
1246  * ib_alloc_pd - Allocates an unused protection domain.
1247  * @device: The device on which to allocate the protection domain.
1248  *
1249  * A protection domain object provides an association between QPs, shared
1250  * receive queues, address handles, memory regions, and memory windows.
1251  */
1252 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1253 
1254 /**
1255  * ib_dealloc_pd - Deallocates a protection domain.
1256  * @pd: The protection domain to deallocate.
1257  */
1258 int ib_dealloc_pd(struct ib_pd *pd);
1259 
1260 /**
1261  * ib_create_ah - Creates an address handle for the given address vector.
1262  * @pd: The protection domain associated with the address handle.
1263  * @ah_attr: The attributes of the address vector.
1264  *
1265  * The address handle is used to reference a local or global destination
1266  * in all UD QP post sends.
1267  */
1268 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1269 
1270 /**
1271  * ib_init_ah_from_wc - Initializes address handle attributes from a
1272  *   work completion.
1273  * @device: Device on which the received message arrived.
1274  * @port_num: Port on which the received message arrived.
1275  * @wc: Work completion associated with the received message.
1276  * @grh: References the received global route header.  This parameter is
1277  *   ignored unless the work completion indicates that the GRH is valid.
1278  * @ah_attr: Returned attributes that can be used when creating an address
1279  *   handle for replying to the message.
1280  */
1281 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1282 		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1283 
1284 /**
1285  * ib_create_ah_from_wc - Creates an address handle associated with the
1286  *   sender of the specified work completion.
1287  * @pd: The protection domain associated with the address handle.
1288  * @wc: Work completion information associated with a received message.
1289  * @grh: References the received global route header.  This parameter is
1290  *   ignored unless the work completion indicates that the GRH is valid.
1291  * @port_num: The outbound port number to associate with the address.
1292  *
1293  * The address handle is used to reference a local or global destination
1294  * in all UD QP post sends.
1295  */
1296 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1297 				   struct ib_grh *grh, u8 port_num);
1298 
1299 /**
1300  * ib_modify_ah - Modifies the address vector associated with an address
1301  *   handle.
1302  * @ah: The address handle to modify.
1303  * @ah_attr: The new address vector attributes to associate with the
1304  *   address handle.
1305  */
1306 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1307 
1308 /**
1309  * ib_query_ah - Queries the address vector associated with an address
1310  *   handle.
1311  * @ah: The address handle to query.
1312  * @ah_attr: The address vector attributes associated with the address
1313  *   handle.
1314  */
1315 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1316 
1317 /**
1318  * ib_destroy_ah - Destroys an address handle.
1319  * @ah: The address handle to destroy.
1320  */
1321 int ib_destroy_ah(struct ib_ah *ah);
1322 
1323 /**
1324  * ib_create_srq - Creates a SRQ associated with the specified protection
1325  *   domain.
1326  * @pd: The protection domain associated with the SRQ.
1327  * @srq_init_attr: A list of initial attributes required to create the
1328  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1329  *   the actual capabilities of the created SRQ.
1330  *
1331  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1332  * requested size of the SRQ, and set to the actual values allocated
1333  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1334  * will always be at least as large as the requested values.
1335  */
1336 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1337 			     struct ib_srq_init_attr *srq_init_attr);
1338 
1339 /**
1340  * ib_modify_srq - Modifies the attributes for the specified SRQ.
1341  * @srq: The SRQ to modify.
1342  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1343  *   the current values of selected SRQ attributes are returned.
1344  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1345  *   are being modified.
1346  *
1347  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1348  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1349  * the number of receives queued drops below the limit.
1350  */
1351 int ib_modify_srq(struct ib_srq *srq,
1352 		  struct ib_srq_attr *srq_attr,
1353 		  enum ib_srq_attr_mask srq_attr_mask);
1354 
1355 /**
1356  * ib_query_srq - Returns the attribute list and current values for the
1357  *   specified SRQ.
1358  * @srq: The SRQ to query.
1359  * @srq_attr: The attributes of the specified SRQ.
1360  */
1361 int ib_query_srq(struct ib_srq *srq,
1362 		 struct ib_srq_attr *srq_attr);
1363 
1364 /**
1365  * ib_destroy_srq - Destroys the specified SRQ.
1366  * @srq: The SRQ to destroy.
1367  */
1368 int ib_destroy_srq(struct ib_srq *srq);
1369 
1370 /**
1371  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1372  * @srq: The SRQ to post the work request on.
1373  * @recv_wr: A list of work requests to post on the receive queue.
1374  * @bad_recv_wr: On an immediate failure, this parameter will reference
1375  *   the work request that failed to be posted on the QP.
1376  */
1377 static inline int ib_post_srq_recv(struct ib_srq *srq,
1378 				   struct ib_recv_wr *recv_wr,
1379 				   struct ib_recv_wr **bad_recv_wr)
1380 {
1381 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1382 }
1383 
1384 /**
1385  * ib_create_qp - Creates a QP associated with the specified protection
1386  *   domain.
1387  * @pd: The protection domain associated with the QP.
1388  * @qp_init_attr: A list of initial attributes required to create the
1389  *   QP.  If QP creation succeeds, then the attributes are updated to
1390  *   the actual capabilities of the created QP.
1391  */
1392 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1393 			   struct ib_qp_init_attr *qp_init_attr);
1394 
1395 /**
1396  * ib_modify_qp - Modifies the attributes for the specified QP and then
1397  *   transitions the QP to the given state.
1398  * @qp: The QP to modify.
1399  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1400  *   the current values of selected QP attributes are returned.
1401  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1402  *   are being modified.
1403  */
1404 int ib_modify_qp(struct ib_qp *qp,
1405 		 struct ib_qp_attr *qp_attr,
1406 		 int qp_attr_mask);
1407 
1408 /**
1409  * ib_query_qp - Returns the attribute list and current values for the
1410  *   specified QP.
1411  * @qp: The QP to query.
1412  * @qp_attr: The attributes of the specified QP.
1413  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1414  * @qp_init_attr: Additional attributes of the selected QP.
1415  *
1416  * The qp_attr_mask may be used to limit the query to gathering only the
1417  * selected attributes.
1418  */
1419 int ib_query_qp(struct ib_qp *qp,
1420 		struct ib_qp_attr *qp_attr,
1421 		int qp_attr_mask,
1422 		struct ib_qp_init_attr *qp_init_attr);
1423 
1424 /**
1425  * ib_destroy_qp - Destroys the specified QP.
1426  * @qp: The QP to destroy.
1427  */
1428 int ib_destroy_qp(struct ib_qp *qp);
1429 
1430 /**
1431  * ib_post_send - Posts a list of work requests to the send queue of
1432  *   the specified QP.
1433  * @qp: The QP to post the work request on.
1434  * @send_wr: A list of work requests to post on the send queue.
1435  * @bad_send_wr: On an immediate failure, this parameter will reference
1436  *   the work request that failed to be posted on the QP.
1437  *
1438  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1439  * error is returned, the QP state shall not be affected,
1440  * ib_post_send() will return an immediate error after queueing any
1441  * earlier work requests in the list.
1442  */
1443 static inline int ib_post_send(struct ib_qp *qp,
1444 			       struct ib_send_wr *send_wr,
1445 			       struct ib_send_wr **bad_send_wr)
1446 {
1447 	return qp->device->post_send(qp, send_wr, bad_send_wr);
1448 }
1449 
1450 /**
1451  * ib_post_recv - Posts a list of work requests to the receive queue of
1452  *   the specified QP.
1453  * @qp: The QP to post the work request on.
1454  * @recv_wr: A list of work requests to post on the receive queue.
1455  * @bad_recv_wr: On an immediate failure, this parameter will reference
1456  *   the work request that failed to be posted on the QP.
1457  */
1458 static inline int ib_post_recv(struct ib_qp *qp,
1459 			       struct ib_recv_wr *recv_wr,
1460 			       struct ib_recv_wr **bad_recv_wr)
1461 {
1462 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1463 }
1464 
1465 /**
1466  * ib_create_cq - Creates a CQ on the specified device.
1467  * @device: The device on which to create the CQ.
1468  * @comp_handler: A user-specified callback that is invoked when a
1469  *   completion event occurs on the CQ.
1470  * @event_handler: A user-specified callback that is invoked when an
1471  *   asynchronous event not associated with a completion occurs on the CQ.
1472  * @cq_context: Context associated with the CQ returned to the user via
1473  *   the associated completion and event handlers.
1474  * @cqe: The minimum size of the CQ.
1475  * @comp_vector - Completion vector used to signal completion events.
1476  *     Must be >= 0 and < context->num_comp_vectors.
1477  *
1478  * Users can examine the cq structure to determine the actual CQ size.
1479  */
1480 struct ib_cq *ib_create_cq(struct ib_device *device,
1481 			   ib_comp_handler comp_handler,
1482 			   void (*event_handler)(struct ib_event *, void *),
1483 			   void *cq_context, int cqe, int comp_vector);
1484 
1485 /**
1486  * ib_resize_cq - Modifies the capacity of the CQ.
1487  * @cq: The CQ to resize.
1488  * @cqe: The minimum size of the CQ.
1489  *
1490  * Users can examine the cq structure to determine the actual CQ size.
1491  */
1492 int ib_resize_cq(struct ib_cq *cq, int cqe);
1493 
1494 /**
1495  * ib_modify_cq - Modifies moderation params of the CQ
1496  * @cq: The CQ to modify.
1497  * @cq_count: number of CQEs that will trigger an event
1498  * @cq_period: max period of time in usec before triggering an event
1499  *
1500  */
1501 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1502 
1503 /**
1504  * ib_destroy_cq - Destroys the specified CQ.
1505  * @cq: The CQ to destroy.
1506  */
1507 int ib_destroy_cq(struct ib_cq *cq);
1508 
1509 /**
1510  * ib_poll_cq - poll a CQ for completion(s)
1511  * @cq:the CQ being polled
1512  * @num_entries:maximum number of completions to return
1513  * @wc:array of at least @num_entries &struct ib_wc where completions
1514  *   will be returned
1515  *
1516  * Poll a CQ for (possibly multiple) completions.  If the return value
1517  * is < 0, an error occurred.  If the return value is >= 0, it is the
1518  * number of completions returned.  If the return value is
1519  * non-negative and < num_entries, then the CQ was emptied.
1520  */
1521 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1522 			     struct ib_wc *wc)
1523 {
1524 	return cq->device->poll_cq(cq, num_entries, wc);
1525 }
1526 
1527 /**
1528  * ib_peek_cq - Returns the number of unreaped completions currently
1529  *   on the specified CQ.
1530  * @cq: The CQ to peek.
1531  * @wc_cnt: A minimum number of unreaped completions to check for.
1532  *
1533  * If the number of unreaped completions is greater than or equal to wc_cnt,
1534  * this function returns wc_cnt, otherwise, it returns the actual number of
1535  * unreaped completions.
1536  */
1537 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1538 
1539 /**
1540  * ib_req_notify_cq - Request completion notification on a CQ.
1541  * @cq: The CQ to generate an event for.
1542  * @flags:
1543  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1544  *   to request an event on the next solicited event or next work
1545  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1546  *   may also be |ed in to request a hint about missed events, as
1547  *   described below.
1548  *
1549  * Return Value:
1550  *    < 0 means an error occurred while requesting notification
1551  *   == 0 means notification was requested successfully, and if
1552  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1553  *        were missed and it is safe to wait for another event.  In
1554  *        this case is it guaranteed that any work completions added
1555  *        to the CQ since the last CQ poll will trigger a completion
1556  *        notification event.
1557  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1558  *        in.  It means that the consumer must poll the CQ again to
1559  *        make sure it is empty to avoid missing an event because of a
1560  *        race between requesting notification and an entry being
1561  *        added to the CQ.  This return value means it is possible
1562  *        (but not guaranteed) that a work completion has been added
1563  *        to the CQ since the last poll without triggering a
1564  *        completion notification event.
1565  */
1566 static inline int ib_req_notify_cq(struct ib_cq *cq,
1567 				   enum ib_cq_notify_flags flags)
1568 {
1569 	return cq->device->req_notify_cq(cq, flags);
1570 }
1571 
1572 /**
1573  * ib_req_ncomp_notif - Request completion notification when there are
1574  *   at least the specified number of unreaped completions on the CQ.
1575  * @cq: The CQ to generate an event for.
1576  * @wc_cnt: The number of unreaped completions that should be on the
1577  *   CQ before an event is generated.
1578  */
1579 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1580 {
1581 	return cq->device->req_ncomp_notif ?
1582 		cq->device->req_ncomp_notif(cq, wc_cnt) :
1583 		-ENOSYS;
1584 }
1585 
1586 /**
1587  * ib_get_dma_mr - Returns a memory region for system memory that is
1588  *   usable for DMA.
1589  * @pd: The protection domain associated with the memory region.
1590  * @mr_access_flags: Specifies the memory access rights.
1591  *
1592  * Note that the ib_dma_*() functions defined below must be used
1593  * to create/destroy addresses used with the Lkey or Rkey returned
1594  * by ib_get_dma_mr().
1595  */
1596 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1597 
1598 /**
1599  * ib_dma_mapping_error - check a DMA addr for error
1600  * @dev: The device for which the dma_addr was created
1601  * @dma_addr: The DMA address to check
1602  */
1603 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1604 {
1605 	if (dev->dma_ops)
1606 		return dev->dma_ops->mapping_error(dev, dma_addr);
1607 	return dma_mapping_error(dev->dma_device, dma_addr);
1608 }
1609 
1610 /**
1611  * ib_dma_map_single - Map a kernel virtual address to DMA address
1612  * @dev: The device for which the dma_addr is to be created
1613  * @cpu_addr: The kernel virtual address
1614  * @size: The size of the region in bytes
1615  * @direction: The direction of the DMA
1616  */
1617 static inline u64 ib_dma_map_single(struct ib_device *dev,
1618 				    void *cpu_addr, size_t size,
1619 				    enum dma_data_direction direction)
1620 {
1621 	if (dev->dma_ops)
1622 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1623 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1624 }
1625 
1626 /**
1627  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1628  * @dev: The device for which the DMA address was created
1629  * @addr: The DMA address
1630  * @size: The size of the region in bytes
1631  * @direction: The direction of the DMA
1632  */
1633 static inline void ib_dma_unmap_single(struct ib_device *dev,
1634 				       u64 addr, size_t size,
1635 				       enum dma_data_direction direction)
1636 {
1637 	if (dev->dma_ops)
1638 		dev->dma_ops->unmap_single(dev, addr, size, direction);
1639 	else
1640 		dma_unmap_single(dev->dma_device, addr, size, direction);
1641 }
1642 
1643 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1644 					  void *cpu_addr, size_t size,
1645 					  enum dma_data_direction direction,
1646 					  struct dma_attrs *attrs)
1647 {
1648 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1649 				    direction, attrs);
1650 }
1651 
1652 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1653 					     u64 addr, size_t size,
1654 					     enum dma_data_direction direction,
1655 					     struct dma_attrs *attrs)
1656 {
1657 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1658 				      direction, attrs);
1659 }
1660 
1661 /**
1662  * ib_dma_map_page - Map a physical page to DMA address
1663  * @dev: The device for which the dma_addr is to be created
1664  * @page: The page to be mapped
1665  * @offset: The offset within the page
1666  * @size: The size of the region in bytes
1667  * @direction: The direction of the DMA
1668  */
1669 static inline u64 ib_dma_map_page(struct ib_device *dev,
1670 				  struct page *page,
1671 				  unsigned long offset,
1672 				  size_t size,
1673 					 enum dma_data_direction direction)
1674 {
1675 	if (dev->dma_ops)
1676 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1677 	return dma_map_page(dev->dma_device, page, offset, size, direction);
1678 }
1679 
1680 /**
1681  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1682  * @dev: The device for which the DMA address was created
1683  * @addr: The DMA address
1684  * @size: The size of the region in bytes
1685  * @direction: The direction of the DMA
1686  */
1687 static inline void ib_dma_unmap_page(struct ib_device *dev,
1688 				     u64 addr, size_t size,
1689 				     enum dma_data_direction direction)
1690 {
1691 	if (dev->dma_ops)
1692 		dev->dma_ops->unmap_page(dev, addr, size, direction);
1693 	else
1694 		dma_unmap_page(dev->dma_device, addr, size, direction);
1695 }
1696 
1697 /**
1698  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1699  * @dev: The device for which the DMA addresses are to be created
1700  * @sg: The array of scatter/gather entries
1701  * @nents: The number of scatter/gather entries
1702  * @direction: The direction of the DMA
1703  */
1704 static inline int ib_dma_map_sg(struct ib_device *dev,
1705 				struct scatterlist *sg, int nents,
1706 				enum dma_data_direction direction)
1707 {
1708 	if (dev->dma_ops)
1709 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
1710 	return dma_map_sg(dev->dma_device, sg, nents, direction);
1711 }
1712 
1713 /**
1714  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1715  * @dev: The device for which the DMA addresses were created
1716  * @sg: The array of scatter/gather entries
1717  * @nents: The number of scatter/gather entries
1718  * @direction: The direction of the DMA
1719  */
1720 static inline void ib_dma_unmap_sg(struct ib_device *dev,
1721 				   struct scatterlist *sg, int nents,
1722 				   enum dma_data_direction direction)
1723 {
1724 	if (dev->dma_ops)
1725 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1726 	else
1727 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
1728 }
1729 
1730 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1731 				      struct scatterlist *sg, int nents,
1732 				      enum dma_data_direction direction,
1733 				      struct dma_attrs *attrs)
1734 {
1735 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1736 }
1737 
1738 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1739 					 struct scatterlist *sg, int nents,
1740 					 enum dma_data_direction direction,
1741 					 struct dma_attrs *attrs)
1742 {
1743 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1744 }
1745 /**
1746  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1747  * @dev: The device for which the DMA addresses were created
1748  * @sg: The scatter/gather entry
1749  */
1750 static inline u64 ib_sg_dma_address(struct ib_device *dev,
1751 				    struct scatterlist *sg)
1752 {
1753 	if (dev->dma_ops)
1754 		return dev->dma_ops->dma_address(dev, sg);
1755 	return sg_dma_address(sg);
1756 }
1757 
1758 /**
1759  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1760  * @dev: The device for which the DMA addresses were created
1761  * @sg: The scatter/gather entry
1762  */
1763 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1764 					 struct scatterlist *sg)
1765 {
1766 	if (dev->dma_ops)
1767 		return dev->dma_ops->dma_len(dev, sg);
1768 	return sg_dma_len(sg);
1769 }
1770 
1771 /**
1772  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1773  * @dev: The device for which the DMA address was created
1774  * @addr: The DMA address
1775  * @size: The size of the region in bytes
1776  * @dir: The direction of the DMA
1777  */
1778 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1779 					      u64 addr,
1780 					      size_t size,
1781 					      enum dma_data_direction dir)
1782 {
1783 	if (dev->dma_ops)
1784 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1785 	else
1786 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1787 }
1788 
1789 /**
1790  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1791  * @dev: The device for which the DMA address was created
1792  * @addr: The DMA address
1793  * @size: The size of the region in bytes
1794  * @dir: The direction of the DMA
1795  */
1796 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1797 						 u64 addr,
1798 						 size_t size,
1799 						 enum dma_data_direction dir)
1800 {
1801 	if (dev->dma_ops)
1802 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1803 	else
1804 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1805 }
1806 
1807 /**
1808  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1809  * @dev: The device for which the DMA address is requested
1810  * @size: The size of the region to allocate in bytes
1811  * @dma_handle: A pointer for returning the DMA address of the region
1812  * @flag: memory allocator flags
1813  */
1814 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1815 					   size_t size,
1816 					   u64 *dma_handle,
1817 					   gfp_t flag)
1818 {
1819 	if (dev->dma_ops)
1820 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1821 	else {
1822 		dma_addr_t handle;
1823 		void *ret;
1824 
1825 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1826 		*dma_handle = handle;
1827 		return ret;
1828 	}
1829 }
1830 
1831 /**
1832  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1833  * @dev: The device for which the DMA addresses were allocated
1834  * @size: The size of the region
1835  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1836  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1837  */
1838 static inline void ib_dma_free_coherent(struct ib_device *dev,
1839 					size_t size, void *cpu_addr,
1840 					u64 dma_handle)
1841 {
1842 	if (dev->dma_ops)
1843 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1844 	else
1845 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1846 }
1847 
1848 /**
1849  * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1850  *   by an HCA.
1851  * @pd: The protection domain associated assigned to the registered region.
1852  * @phys_buf_array: Specifies a list of physical buffers to use in the
1853  *   memory region.
1854  * @num_phys_buf: Specifies the size of the phys_buf_array.
1855  * @mr_access_flags: Specifies the memory access rights.
1856  * @iova_start: The offset of the region's starting I/O virtual address.
1857  */
1858 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1859 			     struct ib_phys_buf *phys_buf_array,
1860 			     int num_phys_buf,
1861 			     int mr_access_flags,
1862 			     u64 *iova_start);
1863 
1864 /**
1865  * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1866  *   Conceptually, this call performs the functions deregister memory region
1867  *   followed by register physical memory region.  Where possible,
1868  *   resources are reused instead of deallocated and reallocated.
1869  * @mr: The memory region to modify.
1870  * @mr_rereg_mask: A bit-mask used to indicate which of the following
1871  *   properties of the memory region are being modified.
1872  * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1873  *   the new protection domain to associated with the memory region,
1874  *   otherwise, this parameter is ignored.
1875  * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1876  *   field specifies a list of physical buffers to use in the new
1877  *   translation, otherwise, this parameter is ignored.
1878  * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1879  *   field specifies the size of the phys_buf_array, otherwise, this
1880  *   parameter is ignored.
1881  * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1882  *   field specifies the new memory access rights, otherwise, this
1883  *   parameter is ignored.
1884  * @iova_start: The offset of the region's starting I/O virtual address.
1885  */
1886 int ib_rereg_phys_mr(struct ib_mr *mr,
1887 		     int mr_rereg_mask,
1888 		     struct ib_pd *pd,
1889 		     struct ib_phys_buf *phys_buf_array,
1890 		     int num_phys_buf,
1891 		     int mr_access_flags,
1892 		     u64 *iova_start);
1893 
1894 /**
1895  * ib_query_mr - Retrieves information about a specific memory region.
1896  * @mr: The memory region to retrieve information about.
1897  * @mr_attr: The attributes of the specified memory region.
1898  */
1899 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1900 
1901 /**
1902  * ib_dereg_mr - Deregisters a memory region and removes it from the
1903  *   HCA translation table.
1904  * @mr: The memory region to deregister.
1905  */
1906 int ib_dereg_mr(struct ib_mr *mr);
1907 
1908 /**
1909  * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1910  *   IB_WR_FAST_REG_MR send work request.
1911  * @pd: The protection domain associated with the region.
1912  * @max_page_list_len: requested max physical buffer list length to be
1913  *   used with fast register work requests for this MR.
1914  */
1915 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1916 
1917 /**
1918  * ib_alloc_fast_reg_page_list - Allocates a page list array
1919  * @device - ib device pointer.
1920  * @page_list_len - size of the page list array to be allocated.
1921  *
1922  * This allocates and returns a struct ib_fast_reg_page_list * and a
1923  * page_list array that is at least page_list_len in size.  The actual
1924  * size is returned in max_page_list_len.  The caller is responsible
1925  * for initializing the contents of the page_list array before posting
1926  * a send work request with the IB_WC_FAST_REG_MR opcode.
1927  *
1928  * The page_list array entries must be translated using one of the
1929  * ib_dma_*() functions just like the addresses passed to
1930  * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
1931  * ib_fast_reg_page_list must not be modified by the caller until the
1932  * IB_WC_FAST_REG_MR work request completes.
1933  */
1934 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1935 				struct ib_device *device, int page_list_len);
1936 
1937 /**
1938  * ib_free_fast_reg_page_list - Deallocates a previously allocated
1939  *   page list array.
1940  * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1941  */
1942 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1943 
1944 /**
1945  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1946  *   R_Key and L_Key.
1947  * @mr - struct ib_mr pointer to be updated.
1948  * @newkey - new key to be used.
1949  */
1950 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1951 {
1952 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1953 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1954 }
1955 
1956 /**
1957  * ib_alloc_mw - Allocates a memory window.
1958  * @pd: The protection domain associated with the memory window.
1959  */
1960 struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1961 
1962 /**
1963  * ib_bind_mw - Posts a work request to the send queue of the specified
1964  *   QP, which binds the memory window to the given address range and
1965  *   remote access attributes.
1966  * @qp: QP to post the bind work request on.
1967  * @mw: The memory window to bind.
1968  * @mw_bind: Specifies information about the memory window, including
1969  *   its address range, remote access rights, and associated memory region.
1970  */
1971 static inline int ib_bind_mw(struct ib_qp *qp,
1972 			     struct ib_mw *mw,
1973 			     struct ib_mw_bind *mw_bind)
1974 {
1975 	/* XXX reference counting in corresponding MR? */
1976 	return mw->device->bind_mw ?
1977 		mw->device->bind_mw(qp, mw, mw_bind) :
1978 		-ENOSYS;
1979 }
1980 
1981 /**
1982  * ib_dealloc_mw - Deallocates a memory window.
1983  * @mw: The memory window to deallocate.
1984  */
1985 int ib_dealloc_mw(struct ib_mw *mw);
1986 
1987 /**
1988  * ib_alloc_fmr - Allocates a unmapped fast memory region.
1989  * @pd: The protection domain associated with the unmapped region.
1990  * @mr_access_flags: Specifies the memory access rights.
1991  * @fmr_attr: Attributes of the unmapped region.
1992  *
1993  * A fast memory region must be mapped before it can be used as part of
1994  * a work request.
1995  */
1996 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1997 			    int mr_access_flags,
1998 			    struct ib_fmr_attr *fmr_attr);
1999 
2000 /**
2001  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2002  * @fmr: The fast memory region to associate with the pages.
2003  * @page_list: An array of physical pages to map to the fast memory region.
2004  * @list_len: The number of pages in page_list.
2005  * @iova: The I/O virtual address to use with the mapped region.
2006  */
2007 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2008 				  u64 *page_list, int list_len,
2009 				  u64 iova)
2010 {
2011 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2012 }
2013 
2014 /**
2015  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2016  * @fmr_list: A linked list of fast memory regions to unmap.
2017  */
2018 int ib_unmap_fmr(struct list_head *fmr_list);
2019 
2020 /**
2021  * ib_dealloc_fmr - Deallocates a fast memory region.
2022  * @fmr: The fast memory region to deallocate.
2023  */
2024 int ib_dealloc_fmr(struct ib_fmr *fmr);
2025 
2026 /**
2027  * ib_attach_mcast - Attaches the specified QP to a multicast group.
2028  * @qp: QP to attach to the multicast group.  The QP must be type
2029  *   IB_QPT_UD.
2030  * @gid: Multicast group GID.
2031  * @lid: Multicast group LID in host byte order.
2032  *
2033  * In order to send and receive multicast packets, subnet
2034  * administration must have created the multicast group and configured
2035  * the fabric appropriately.  The port associated with the specified
2036  * QP must also be a member of the multicast group.
2037  */
2038 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2039 
2040 /**
2041  * ib_detach_mcast - Detaches the specified QP from a multicast group.
2042  * @qp: QP to detach from the multicast group.
2043  * @gid: Multicast group GID.
2044  * @lid: Multicast group LID in host byte order.
2045  */
2046 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2047 
2048 #endif /* IB_VERBS_H */
2049