1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 51 #include <asm/atomic.h> 52 #include <asm/uaccess.h> 53 54 union ib_gid { 55 u8 raw[16]; 56 struct { 57 __be64 subnet_prefix; 58 __be64 interface_id; 59 } global; 60 }; 61 62 enum rdma_node_type { 63 /* IB values map to NodeInfo:NodeType. */ 64 RDMA_NODE_IB_CA = 1, 65 RDMA_NODE_IB_SWITCH, 66 RDMA_NODE_IB_ROUTER, 67 RDMA_NODE_RNIC 68 }; 69 70 enum rdma_transport_type { 71 RDMA_TRANSPORT_IB, 72 RDMA_TRANSPORT_IWARP 73 }; 74 75 enum rdma_transport_type 76 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 77 78 enum ib_device_cap_flags { 79 IB_DEVICE_RESIZE_MAX_WR = 1, 80 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 81 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 82 IB_DEVICE_RAW_MULTI = (1<<3), 83 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 84 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 85 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 86 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 87 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 88 IB_DEVICE_INIT_TYPE = (1<<9), 89 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 90 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 91 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 92 IB_DEVICE_SRQ_RESIZE = (1<<13), 93 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 94 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 95 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 96 IB_DEVICE_MEM_WINDOW = (1<<17), 97 /* 98 * Devices should set IB_DEVICE_UD_IP_SUM if they support 99 * insertion of UDP and TCP checksum on outgoing UD IPoIB 100 * messages and can verify the validity of checksum for 101 * incoming messages. Setting this flag implies that the 102 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 103 */ 104 IB_DEVICE_UD_IP_CSUM = (1<<18), 105 IB_DEVICE_UD_TSO = (1<<19), 106 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 107 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 108 }; 109 110 enum ib_atomic_cap { 111 IB_ATOMIC_NONE, 112 IB_ATOMIC_HCA, 113 IB_ATOMIC_GLOB 114 }; 115 116 struct ib_device_attr { 117 u64 fw_ver; 118 __be64 sys_image_guid; 119 u64 max_mr_size; 120 u64 page_size_cap; 121 u32 vendor_id; 122 u32 vendor_part_id; 123 u32 hw_ver; 124 int max_qp; 125 int max_qp_wr; 126 int device_cap_flags; 127 int max_sge; 128 int max_sge_rd; 129 int max_cq; 130 int max_cqe; 131 int max_mr; 132 int max_pd; 133 int max_qp_rd_atom; 134 int max_ee_rd_atom; 135 int max_res_rd_atom; 136 int max_qp_init_rd_atom; 137 int max_ee_init_rd_atom; 138 enum ib_atomic_cap atomic_cap; 139 enum ib_atomic_cap masked_atomic_cap; 140 int max_ee; 141 int max_rdd; 142 int max_mw; 143 int max_raw_ipv6_qp; 144 int max_raw_ethy_qp; 145 int max_mcast_grp; 146 int max_mcast_qp_attach; 147 int max_total_mcast_qp_attach; 148 int max_ah; 149 int max_fmr; 150 int max_map_per_fmr; 151 int max_srq; 152 int max_srq_wr; 153 int max_srq_sge; 154 unsigned int max_fast_reg_page_list_len; 155 u16 max_pkeys; 156 u8 local_ca_ack_delay; 157 }; 158 159 enum ib_mtu { 160 IB_MTU_256 = 1, 161 IB_MTU_512 = 2, 162 IB_MTU_1024 = 3, 163 IB_MTU_2048 = 4, 164 IB_MTU_4096 = 5 165 }; 166 167 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 168 { 169 switch (mtu) { 170 case IB_MTU_256: return 256; 171 case IB_MTU_512: return 512; 172 case IB_MTU_1024: return 1024; 173 case IB_MTU_2048: return 2048; 174 case IB_MTU_4096: return 4096; 175 default: return -1; 176 } 177 } 178 179 enum ib_port_state { 180 IB_PORT_NOP = 0, 181 IB_PORT_DOWN = 1, 182 IB_PORT_INIT = 2, 183 IB_PORT_ARMED = 3, 184 IB_PORT_ACTIVE = 4, 185 IB_PORT_ACTIVE_DEFER = 5 186 }; 187 188 enum ib_port_cap_flags { 189 IB_PORT_SM = 1 << 1, 190 IB_PORT_NOTICE_SUP = 1 << 2, 191 IB_PORT_TRAP_SUP = 1 << 3, 192 IB_PORT_OPT_IPD_SUP = 1 << 4, 193 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 194 IB_PORT_SL_MAP_SUP = 1 << 6, 195 IB_PORT_MKEY_NVRAM = 1 << 7, 196 IB_PORT_PKEY_NVRAM = 1 << 8, 197 IB_PORT_LED_INFO_SUP = 1 << 9, 198 IB_PORT_SM_DISABLED = 1 << 10, 199 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 200 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 201 IB_PORT_CM_SUP = 1 << 16, 202 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 203 IB_PORT_REINIT_SUP = 1 << 18, 204 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 205 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 206 IB_PORT_DR_NOTICE_SUP = 1 << 21, 207 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 208 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 209 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 210 IB_PORT_CLIENT_REG_SUP = 1 << 25 211 }; 212 213 enum ib_port_width { 214 IB_WIDTH_1X = 1, 215 IB_WIDTH_4X = 2, 216 IB_WIDTH_8X = 4, 217 IB_WIDTH_12X = 8 218 }; 219 220 static inline int ib_width_enum_to_int(enum ib_port_width width) 221 { 222 switch (width) { 223 case IB_WIDTH_1X: return 1; 224 case IB_WIDTH_4X: return 4; 225 case IB_WIDTH_8X: return 8; 226 case IB_WIDTH_12X: return 12; 227 default: return -1; 228 } 229 } 230 231 struct ib_protocol_stats { 232 /* TBD... */ 233 }; 234 235 struct iw_protocol_stats { 236 u64 ipInReceives; 237 u64 ipInHdrErrors; 238 u64 ipInTooBigErrors; 239 u64 ipInNoRoutes; 240 u64 ipInAddrErrors; 241 u64 ipInUnknownProtos; 242 u64 ipInTruncatedPkts; 243 u64 ipInDiscards; 244 u64 ipInDelivers; 245 u64 ipOutForwDatagrams; 246 u64 ipOutRequests; 247 u64 ipOutDiscards; 248 u64 ipOutNoRoutes; 249 u64 ipReasmTimeout; 250 u64 ipReasmReqds; 251 u64 ipReasmOKs; 252 u64 ipReasmFails; 253 u64 ipFragOKs; 254 u64 ipFragFails; 255 u64 ipFragCreates; 256 u64 ipInMcastPkts; 257 u64 ipOutMcastPkts; 258 u64 ipInBcastPkts; 259 u64 ipOutBcastPkts; 260 261 u64 tcpRtoAlgorithm; 262 u64 tcpRtoMin; 263 u64 tcpRtoMax; 264 u64 tcpMaxConn; 265 u64 tcpActiveOpens; 266 u64 tcpPassiveOpens; 267 u64 tcpAttemptFails; 268 u64 tcpEstabResets; 269 u64 tcpCurrEstab; 270 u64 tcpInSegs; 271 u64 tcpOutSegs; 272 u64 tcpRetransSegs; 273 u64 tcpInErrs; 274 u64 tcpOutRsts; 275 }; 276 277 union rdma_protocol_stats { 278 struct ib_protocol_stats ib; 279 struct iw_protocol_stats iw; 280 }; 281 282 struct ib_port_attr { 283 enum ib_port_state state; 284 enum ib_mtu max_mtu; 285 enum ib_mtu active_mtu; 286 int gid_tbl_len; 287 u32 port_cap_flags; 288 u32 max_msg_sz; 289 u32 bad_pkey_cntr; 290 u32 qkey_viol_cntr; 291 u16 pkey_tbl_len; 292 u16 lid; 293 u16 sm_lid; 294 u8 lmc; 295 u8 max_vl_num; 296 u8 sm_sl; 297 u8 subnet_timeout; 298 u8 init_type_reply; 299 u8 active_width; 300 u8 active_speed; 301 u8 phys_state; 302 }; 303 304 enum ib_device_modify_flags { 305 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 306 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 307 }; 308 309 struct ib_device_modify { 310 u64 sys_image_guid; 311 char node_desc[64]; 312 }; 313 314 enum ib_port_modify_flags { 315 IB_PORT_SHUTDOWN = 1, 316 IB_PORT_INIT_TYPE = (1<<2), 317 IB_PORT_RESET_QKEY_CNTR = (1<<3) 318 }; 319 320 struct ib_port_modify { 321 u32 set_port_cap_mask; 322 u32 clr_port_cap_mask; 323 u8 init_type; 324 }; 325 326 enum ib_event_type { 327 IB_EVENT_CQ_ERR, 328 IB_EVENT_QP_FATAL, 329 IB_EVENT_QP_REQ_ERR, 330 IB_EVENT_QP_ACCESS_ERR, 331 IB_EVENT_COMM_EST, 332 IB_EVENT_SQ_DRAINED, 333 IB_EVENT_PATH_MIG, 334 IB_EVENT_PATH_MIG_ERR, 335 IB_EVENT_DEVICE_FATAL, 336 IB_EVENT_PORT_ACTIVE, 337 IB_EVENT_PORT_ERR, 338 IB_EVENT_LID_CHANGE, 339 IB_EVENT_PKEY_CHANGE, 340 IB_EVENT_SM_CHANGE, 341 IB_EVENT_SRQ_ERR, 342 IB_EVENT_SRQ_LIMIT_REACHED, 343 IB_EVENT_QP_LAST_WQE_REACHED, 344 IB_EVENT_CLIENT_REREGISTER 345 }; 346 347 struct ib_event { 348 struct ib_device *device; 349 union { 350 struct ib_cq *cq; 351 struct ib_qp *qp; 352 struct ib_srq *srq; 353 u8 port_num; 354 } element; 355 enum ib_event_type event; 356 }; 357 358 struct ib_event_handler { 359 struct ib_device *device; 360 void (*handler)(struct ib_event_handler *, struct ib_event *); 361 struct list_head list; 362 }; 363 364 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 365 do { \ 366 (_ptr)->device = _device; \ 367 (_ptr)->handler = _handler; \ 368 INIT_LIST_HEAD(&(_ptr)->list); \ 369 } while (0) 370 371 struct ib_global_route { 372 union ib_gid dgid; 373 u32 flow_label; 374 u8 sgid_index; 375 u8 hop_limit; 376 u8 traffic_class; 377 }; 378 379 struct ib_grh { 380 __be32 version_tclass_flow; 381 __be16 paylen; 382 u8 next_hdr; 383 u8 hop_limit; 384 union ib_gid sgid; 385 union ib_gid dgid; 386 }; 387 388 enum { 389 IB_MULTICAST_QPN = 0xffffff 390 }; 391 392 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 393 394 enum ib_ah_flags { 395 IB_AH_GRH = 1 396 }; 397 398 enum ib_rate { 399 IB_RATE_PORT_CURRENT = 0, 400 IB_RATE_2_5_GBPS = 2, 401 IB_RATE_5_GBPS = 5, 402 IB_RATE_10_GBPS = 3, 403 IB_RATE_20_GBPS = 6, 404 IB_RATE_30_GBPS = 4, 405 IB_RATE_40_GBPS = 7, 406 IB_RATE_60_GBPS = 8, 407 IB_RATE_80_GBPS = 9, 408 IB_RATE_120_GBPS = 10 409 }; 410 411 /** 412 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 413 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 414 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 415 * @rate: rate to convert. 416 */ 417 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 418 419 /** 420 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 421 * enum. 422 * @mult: multiple to convert. 423 */ 424 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 425 426 struct ib_ah_attr { 427 struct ib_global_route grh; 428 u16 dlid; 429 u8 sl; 430 u8 src_path_bits; 431 u8 static_rate; 432 u8 ah_flags; 433 u8 port_num; 434 }; 435 436 enum ib_wc_status { 437 IB_WC_SUCCESS, 438 IB_WC_LOC_LEN_ERR, 439 IB_WC_LOC_QP_OP_ERR, 440 IB_WC_LOC_EEC_OP_ERR, 441 IB_WC_LOC_PROT_ERR, 442 IB_WC_WR_FLUSH_ERR, 443 IB_WC_MW_BIND_ERR, 444 IB_WC_BAD_RESP_ERR, 445 IB_WC_LOC_ACCESS_ERR, 446 IB_WC_REM_INV_REQ_ERR, 447 IB_WC_REM_ACCESS_ERR, 448 IB_WC_REM_OP_ERR, 449 IB_WC_RETRY_EXC_ERR, 450 IB_WC_RNR_RETRY_EXC_ERR, 451 IB_WC_LOC_RDD_VIOL_ERR, 452 IB_WC_REM_INV_RD_REQ_ERR, 453 IB_WC_REM_ABORT_ERR, 454 IB_WC_INV_EECN_ERR, 455 IB_WC_INV_EEC_STATE_ERR, 456 IB_WC_FATAL_ERR, 457 IB_WC_RESP_TIMEOUT_ERR, 458 IB_WC_GENERAL_ERR 459 }; 460 461 enum ib_wc_opcode { 462 IB_WC_SEND, 463 IB_WC_RDMA_WRITE, 464 IB_WC_RDMA_READ, 465 IB_WC_COMP_SWAP, 466 IB_WC_FETCH_ADD, 467 IB_WC_BIND_MW, 468 IB_WC_LSO, 469 IB_WC_LOCAL_INV, 470 IB_WC_FAST_REG_MR, 471 IB_WC_MASKED_COMP_SWAP, 472 IB_WC_MASKED_FETCH_ADD, 473 /* 474 * Set value of IB_WC_RECV so consumers can test if a completion is a 475 * receive by testing (opcode & IB_WC_RECV). 476 */ 477 IB_WC_RECV = 1 << 7, 478 IB_WC_RECV_RDMA_WITH_IMM 479 }; 480 481 enum ib_wc_flags { 482 IB_WC_GRH = 1, 483 IB_WC_WITH_IMM = (1<<1), 484 IB_WC_WITH_INVALIDATE = (1<<2), 485 }; 486 487 struct ib_wc { 488 u64 wr_id; 489 enum ib_wc_status status; 490 enum ib_wc_opcode opcode; 491 u32 vendor_err; 492 u32 byte_len; 493 struct ib_qp *qp; 494 union { 495 __be32 imm_data; 496 u32 invalidate_rkey; 497 } ex; 498 u32 src_qp; 499 int wc_flags; 500 u16 pkey_index; 501 u16 slid; 502 u8 sl; 503 u8 dlid_path_bits; 504 u8 port_num; /* valid only for DR SMPs on switches */ 505 int csum_ok; 506 }; 507 508 enum ib_cq_notify_flags { 509 IB_CQ_SOLICITED = 1 << 0, 510 IB_CQ_NEXT_COMP = 1 << 1, 511 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 512 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 513 }; 514 515 enum ib_srq_attr_mask { 516 IB_SRQ_MAX_WR = 1 << 0, 517 IB_SRQ_LIMIT = 1 << 1, 518 }; 519 520 struct ib_srq_attr { 521 u32 max_wr; 522 u32 max_sge; 523 u32 srq_limit; 524 }; 525 526 struct ib_srq_init_attr { 527 void (*event_handler)(struct ib_event *, void *); 528 void *srq_context; 529 struct ib_srq_attr attr; 530 }; 531 532 struct ib_qp_cap { 533 u32 max_send_wr; 534 u32 max_recv_wr; 535 u32 max_send_sge; 536 u32 max_recv_sge; 537 u32 max_inline_data; 538 }; 539 540 enum ib_sig_type { 541 IB_SIGNAL_ALL_WR, 542 IB_SIGNAL_REQ_WR 543 }; 544 545 enum ib_qp_type { 546 /* 547 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 548 * here (and in that order) since the MAD layer uses them as 549 * indices into a 2-entry table. 550 */ 551 IB_QPT_SMI, 552 IB_QPT_GSI, 553 554 IB_QPT_RC, 555 IB_QPT_UC, 556 IB_QPT_UD, 557 IB_QPT_RAW_IPV6, 558 IB_QPT_RAW_ETHERTYPE 559 }; 560 561 enum ib_qp_create_flags { 562 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 563 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 564 }; 565 566 struct ib_qp_init_attr { 567 void (*event_handler)(struct ib_event *, void *); 568 void *qp_context; 569 struct ib_cq *send_cq; 570 struct ib_cq *recv_cq; 571 struct ib_srq *srq; 572 struct ib_qp_cap cap; 573 enum ib_sig_type sq_sig_type; 574 enum ib_qp_type qp_type; 575 enum ib_qp_create_flags create_flags; 576 u8 port_num; /* special QP types only */ 577 }; 578 579 enum ib_rnr_timeout { 580 IB_RNR_TIMER_655_36 = 0, 581 IB_RNR_TIMER_000_01 = 1, 582 IB_RNR_TIMER_000_02 = 2, 583 IB_RNR_TIMER_000_03 = 3, 584 IB_RNR_TIMER_000_04 = 4, 585 IB_RNR_TIMER_000_06 = 5, 586 IB_RNR_TIMER_000_08 = 6, 587 IB_RNR_TIMER_000_12 = 7, 588 IB_RNR_TIMER_000_16 = 8, 589 IB_RNR_TIMER_000_24 = 9, 590 IB_RNR_TIMER_000_32 = 10, 591 IB_RNR_TIMER_000_48 = 11, 592 IB_RNR_TIMER_000_64 = 12, 593 IB_RNR_TIMER_000_96 = 13, 594 IB_RNR_TIMER_001_28 = 14, 595 IB_RNR_TIMER_001_92 = 15, 596 IB_RNR_TIMER_002_56 = 16, 597 IB_RNR_TIMER_003_84 = 17, 598 IB_RNR_TIMER_005_12 = 18, 599 IB_RNR_TIMER_007_68 = 19, 600 IB_RNR_TIMER_010_24 = 20, 601 IB_RNR_TIMER_015_36 = 21, 602 IB_RNR_TIMER_020_48 = 22, 603 IB_RNR_TIMER_030_72 = 23, 604 IB_RNR_TIMER_040_96 = 24, 605 IB_RNR_TIMER_061_44 = 25, 606 IB_RNR_TIMER_081_92 = 26, 607 IB_RNR_TIMER_122_88 = 27, 608 IB_RNR_TIMER_163_84 = 28, 609 IB_RNR_TIMER_245_76 = 29, 610 IB_RNR_TIMER_327_68 = 30, 611 IB_RNR_TIMER_491_52 = 31 612 }; 613 614 enum ib_qp_attr_mask { 615 IB_QP_STATE = 1, 616 IB_QP_CUR_STATE = (1<<1), 617 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 618 IB_QP_ACCESS_FLAGS = (1<<3), 619 IB_QP_PKEY_INDEX = (1<<4), 620 IB_QP_PORT = (1<<5), 621 IB_QP_QKEY = (1<<6), 622 IB_QP_AV = (1<<7), 623 IB_QP_PATH_MTU = (1<<8), 624 IB_QP_TIMEOUT = (1<<9), 625 IB_QP_RETRY_CNT = (1<<10), 626 IB_QP_RNR_RETRY = (1<<11), 627 IB_QP_RQ_PSN = (1<<12), 628 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 629 IB_QP_ALT_PATH = (1<<14), 630 IB_QP_MIN_RNR_TIMER = (1<<15), 631 IB_QP_SQ_PSN = (1<<16), 632 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 633 IB_QP_PATH_MIG_STATE = (1<<18), 634 IB_QP_CAP = (1<<19), 635 IB_QP_DEST_QPN = (1<<20) 636 }; 637 638 enum ib_qp_state { 639 IB_QPS_RESET, 640 IB_QPS_INIT, 641 IB_QPS_RTR, 642 IB_QPS_RTS, 643 IB_QPS_SQD, 644 IB_QPS_SQE, 645 IB_QPS_ERR 646 }; 647 648 enum ib_mig_state { 649 IB_MIG_MIGRATED, 650 IB_MIG_REARM, 651 IB_MIG_ARMED 652 }; 653 654 struct ib_qp_attr { 655 enum ib_qp_state qp_state; 656 enum ib_qp_state cur_qp_state; 657 enum ib_mtu path_mtu; 658 enum ib_mig_state path_mig_state; 659 u32 qkey; 660 u32 rq_psn; 661 u32 sq_psn; 662 u32 dest_qp_num; 663 int qp_access_flags; 664 struct ib_qp_cap cap; 665 struct ib_ah_attr ah_attr; 666 struct ib_ah_attr alt_ah_attr; 667 u16 pkey_index; 668 u16 alt_pkey_index; 669 u8 en_sqd_async_notify; 670 u8 sq_draining; 671 u8 max_rd_atomic; 672 u8 max_dest_rd_atomic; 673 u8 min_rnr_timer; 674 u8 port_num; 675 u8 timeout; 676 u8 retry_cnt; 677 u8 rnr_retry; 678 u8 alt_port_num; 679 u8 alt_timeout; 680 }; 681 682 enum ib_wr_opcode { 683 IB_WR_RDMA_WRITE, 684 IB_WR_RDMA_WRITE_WITH_IMM, 685 IB_WR_SEND, 686 IB_WR_SEND_WITH_IMM, 687 IB_WR_RDMA_READ, 688 IB_WR_ATOMIC_CMP_AND_SWP, 689 IB_WR_ATOMIC_FETCH_AND_ADD, 690 IB_WR_LSO, 691 IB_WR_SEND_WITH_INV, 692 IB_WR_RDMA_READ_WITH_INV, 693 IB_WR_LOCAL_INV, 694 IB_WR_FAST_REG_MR, 695 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 696 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 697 }; 698 699 enum ib_send_flags { 700 IB_SEND_FENCE = 1, 701 IB_SEND_SIGNALED = (1<<1), 702 IB_SEND_SOLICITED = (1<<2), 703 IB_SEND_INLINE = (1<<3), 704 IB_SEND_IP_CSUM = (1<<4) 705 }; 706 707 struct ib_sge { 708 u64 addr; 709 u32 length; 710 u32 lkey; 711 }; 712 713 struct ib_fast_reg_page_list { 714 struct ib_device *device; 715 u64 *page_list; 716 unsigned int max_page_list_len; 717 }; 718 719 struct ib_send_wr { 720 struct ib_send_wr *next; 721 u64 wr_id; 722 struct ib_sge *sg_list; 723 int num_sge; 724 enum ib_wr_opcode opcode; 725 int send_flags; 726 union { 727 __be32 imm_data; 728 u32 invalidate_rkey; 729 } ex; 730 union { 731 struct { 732 u64 remote_addr; 733 u32 rkey; 734 } rdma; 735 struct { 736 u64 remote_addr; 737 u64 compare_add; 738 u64 swap; 739 u64 compare_add_mask; 740 u64 swap_mask; 741 u32 rkey; 742 } atomic; 743 struct { 744 struct ib_ah *ah; 745 void *header; 746 int hlen; 747 int mss; 748 u32 remote_qpn; 749 u32 remote_qkey; 750 u16 pkey_index; /* valid for GSI only */ 751 u8 port_num; /* valid for DR SMPs on switch only */ 752 } ud; 753 struct { 754 u64 iova_start; 755 struct ib_fast_reg_page_list *page_list; 756 unsigned int page_shift; 757 unsigned int page_list_len; 758 u32 length; 759 int access_flags; 760 u32 rkey; 761 } fast_reg; 762 } wr; 763 }; 764 765 struct ib_recv_wr { 766 struct ib_recv_wr *next; 767 u64 wr_id; 768 struct ib_sge *sg_list; 769 int num_sge; 770 }; 771 772 enum ib_access_flags { 773 IB_ACCESS_LOCAL_WRITE = 1, 774 IB_ACCESS_REMOTE_WRITE = (1<<1), 775 IB_ACCESS_REMOTE_READ = (1<<2), 776 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 777 IB_ACCESS_MW_BIND = (1<<4) 778 }; 779 780 struct ib_phys_buf { 781 u64 addr; 782 u64 size; 783 }; 784 785 struct ib_mr_attr { 786 struct ib_pd *pd; 787 u64 device_virt_addr; 788 u64 size; 789 int mr_access_flags; 790 u32 lkey; 791 u32 rkey; 792 }; 793 794 enum ib_mr_rereg_flags { 795 IB_MR_REREG_TRANS = 1, 796 IB_MR_REREG_PD = (1<<1), 797 IB_MR_REREG_ACCESS = (1<<2) 798 }; 799 800 struct ib_mw_bind { 801 struct ib_mr *mr; 802 u64 wr_id; 803 u64 addr; 804 u32 length; 805 int send_flags; 806 int mw_access_flags; 807 }; 808 809 struct ib_fmr_attr { 810 int max_pages; 811 int max_maps; 812 u8 page_shift; 813 }; 814 815 struct ib_ucontext { 816 struct ib_device *device; 817 struct list_head pd_list; 818 struct list_head mr_list; 819 struct list_head mw_list; 820 struct list_head cq_list; 821 struct list_head qp_list; 822 struct list_head srq_list; 823 struct list_head ah_list; 824 int closing; 825 }; 826 827 struct ib_uobject { 828 u64 user_handle; /* handle given to us by userspace */ 829 struct ib_ucontext *context; /* associated user context */ 830 void *object; /* containing object */ 831 struct list_head list; /* link to context's list */ 832 int id; /* index into kernel idr */ 833 struct kref ref; 834 struct rw_semaphore mutex; /* protects .live */ 835 int live; 836 }; 837 838 struct ib_udata { 839 void __user *inbuf; 840 void __user *outbuf; 841 size_t inlen; 842 size_t outlen; 843 }; 844 845 struct ib_pd { 846 struct ib_device *device; 847 struct ib_uobject *uobject; 848 atomic_t usecnt; /* count all resources */ 849 }; 850 851 struct ib_ah { 852 struct ib_device *device; 853 struct ib_pd *pd; 854 struct ib_uobject *uobject; 855 }; 856 857 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 858 859 struct ib_cq { 860 struct ib_device *device; 861 struct ib_uobject *uobject; 862 ib_comp_handler comp_handler; 863 void (*event_handler)(struct ib_event *, void *); 864 void *cq_context; 865 int cqe; 866 atomic_t usecnt; /* count number of work queues */ 867 }; 868 869 struct ib_srq { 870 struct ib_device *device; 871 struct ib_pd *pd; 872 struct ib_uobject *uobject; 873 void (*event_handler)(struct ib_event *, void *); 874 void *srq_context; 875 atomic_t usecnt; 876 }; 877 878 struct ib_qp { 879 struct ib_device *device; 880 struct ib_pd *pd; 881 struct ib_cq *send_cq; 882 struct ib_cq *recv_cq; 883 struct ib_srq *srq; 884 struct ib_uobject *uobject; 885 void (*event_handler)(struct ib_event *, void *); 886 void *qp_context; 887 u32 qp_num; 888 enum ib_qp_type qp_type; 889 }; 890 891 struct ib_mr { 892 struct ib_device *device; 893 struct ib_pd *pd; 894 struct ib_uobject *uobject; 895 u32 lkey; 896 u32 rkey; 897 atomic_t usecnt; /* count number of MWs */ 898 }; 899 900 struct ib_mw { 901 struct ib_device *device; 902 struct ib_pd *pd; 903 struct ib_uobject *uobject; 904 u32 rkey; 905 }; 906 907 struct ib_fmr { 908 struct ib_device *device; 909 struct ib_pd *pd; 910 struct list_head list; 911 u32 lkey; 912 u32 rkey; 913 }; 914 915 struct ib_mad; 916 struct ib_grh; 917 918 enum ib_process_mad_flags { 919 IB_MAD_IGNORE_MKEY = 1, 920 IB_MAD_IGNORE_BKEY = 2, 921 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 922 }; 923 924 enum ib_mad_result { 925 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 926 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 927 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 928 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 929 }; 930 931 #define IB_DEVICE_NAME_MAX 64 932 933 struct ib_cache { 934 rwlock_t lock; 935 struct ib_event_handler event_handler; 936 struct ib_pkey_cache **pkey_cache; 937 struct ib_gid_cache **gid_cache; 938 u8 *lmc_cache; 939 }; 940 941 struct ib_dma_mapping_ops { 942 int (*mapping_error)(struct ib_device *dev, 943 u64 dma_addr); 944 u64 (*map_single)(struct ib_device *dev, 945 void *ptr, size_t size, 946 enum dma_data_direction direction); 947 void (*unmap_single)(struct ib_device *dev, 948 u64 addr, size_t size, 949 enum dma_data_direction direction); 950 u64 (*map_page)(struct ib_device *dev, 951 struct page *page, unsigned long offset, 952 size_t size, 953 enum dma_data_direction direction); 954 void (*unmap_page)(struct ib_device *dev, 955 u64 addr, size_t size, 956 enum dma_data_direction direction); 957 int (*map_sg)(struct ib_device *dev, 958 struct scatterlist *sg, int nents, 959 enum dma_data_direction direction); 960 void (*unmap_sg)(struct ib_device *dev, 961 struct scatterlist *sg, int nents, 962 enum dma_data_direction direction); 963 u64 (*dma_address)(struct ib_device *dev, 964 struct scatterlist *sg); 965 unsigned int (*dma_len)(struct ib_device *dev, 966 struct scatterlist *sg); 967 void (*sync_single_for_cpu)(struct ib_device *dev, 968 u64 dma_handle, 969 size_t size, 970 enum dma_data_direction dir); 971 void (*sync_single_for_device)(struct ib_device *dev, 972 u64 dma_handle, 973 size_t size, 974 enum dma_data_direction dir); 975 void *(*alloc_coherent)(struct ib_device *dev, 976 size_t size, 977 u64 *dma_handle, 978 gfp_t flag); 979 void (*free_coherent)(struct ib_device *dev, 980 size_t size, void *cpu_addr, 981 u64 dma_handle); 982 }; 983 984 struct iw_cm_verbs; 985 986 struct ib_device { 987 struct device *dma_device; 988 989 char name[IB_DEVICE_NAME_MAX]; 990 991 struct list_head event_handler_list; 992 spinlock_t event_handler_lock; 993 994 spinlock_t client_data_lock; 995 struct list_head core_list; 996 struct list_head client_data_list; 997 998 struct ib_cache cache; 999 int *pkey_tbl_len; 1000 int *gid_tbl_len; 1001 1002 int num_comp_vectors; 1003 1004 struct iw_cm_verbs *iwcm; 1005 1006 int (*get_protocol_stats)(struct ib_device *device, 1007 union rdma_protocol_stats *stats); 1008 int (*query_device)(struct ib_device *device, 1009 struct ib_device_attr *device_attr); 1010 int (*query_port)(struct ib_device *device, 1011 u8 port_num, 1012 struct ib_port_attr *port_attr); 1013 int (*query_gid)(struct ib_device *device, 1014 u8 port_num, int index, 1015 union ib_gid *gid); 1016 int (*query_pkey)(struct ib_device *device, 1017 u8 port_num, u16 index, u16 *pkey); 1018 int (*modify_device)(struct ib_device *device, 1019 int device_modify_mask, 1020 struct ib_device_modify *device_modify); 1021 int (*modify_port)(struct ib_device *device, 1022 u8 port_num, int port_modify_mask, 1023 struct ib_port_modify *port_modify); 1024 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1025 struct ib_udata *udata); 1026 int (*dealloc_ucontext)(struct ib_ucontext *context); 1027 int (*mmap)(struct ib_ucontext *context, 1028 struct vm_area_struct *vma); 1029 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1030 struct ib_ucontext *context, 1031 struct ib_udata *udata); 1032 int (*dealloc_pd)(struct ib_pd *pd); 1033 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1034 struct ib_ah_attr *ah_attr); 1035 int (*modify_ah)(struct ib_ah *ah, 1036 struct ib_ah_attr *ah_attr); 1037 int (*query_ah)(struct ib_ah *ah, 1038 struct ib_ah_attr *ah_attr); 1039 int (*destroy_ah)(struct ib_ah *ah); 1040 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1041 struct ib_srq_init_attr *srq_init_attr, 1042 struct ib_udata *udata); 1043 int (*modify_srq)(struct ib_srq *srq, 1044 struct ib_srq_attr *srq_attr, 1045 enum ib_srq_attr_mask srq_attr_mask, 1046 struct ib_udata *udata); 1047 int (*query_srq)(struct ib_srq *srq, 1048 struct ib_srq_attr *srq_attr); 1049 int (*destroy_srq)(struct ib_srq *srq); 1050 int (*post_srq_recv)(struct ib_srq *srq, 1051 struct ib_recv_wr *recv_wr, 1052 struct ib_recv_wr **bad_recv_wr); 1053 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1054 struct ib_qp_init_attr *qp_init_attr, 1055 struct ib_udata *udata); 1056 int (*modify_qp)(struct ib_qp *qp, 1057 struct ib_qp_attr *qp_attr, 1058 int qp_attr_mask, 1059 struct ib_udata *udata); 1060 int (*query_qp)(struct ib_qp *qp, 1061 struct ib_qp_attr *qp_attr, 1062 int qp_attr_mask, 1063 struct ib_qp_init_attr *qp_init_attr); 1064 int (*destroy_qp)(struct ib_qp *qp); 1065 int (*post_send)(struct ib_qp *qp, 1066 struct ib_send_wr *send_wr, 1067 struct ib_send_wr **bad_send_wr); 1068 int (*post_recv)(struct ib_qp *qp, 1069 struct ib_recv_wr *recv_wr, 1070 struct ib_recv_wr **bad_recv_wr); 1071 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1072 int comp_vector, 1073 struct ib_ucontext *context, 1074 struct ib_udata *udata); 1075 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1076 u16 cq_period); 1077 int (*destroy_cq)(struct ib_cq *cq); 1078 int (*resize_cq)(struct ib_cq *cq, int cqe, 1079 struct ib_udata *udata); 1080 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1081 struct ib_wc *wc); 1082 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1083 int (*req_notify_cq)(struct ib_cq *cq, 1084 enum ib_cq_notify_flags flags); 1085 int (*req_ncomp_notif)(struct ib_cq *cq, 1086 int wc_cnt); 1087 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1088 int mr_access_flags); 1089 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1090 struct ib_phys_buf *phys_buf_array, 1091 int num_phys_buf, 1092 int mr_access_flags, 1093 u64 *iova_start); 1094 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1095 u64 start, u64 length, 1096 u64 virt_addr, 1097 int mr_access_flags, 1098 struct ib_udata *udata); 1099 int (*query_mr)(struct ib_mr *mr, 1100 struct ib_mr_attr *mr_attr); 1101 int (*dereg_mr)(struct ib_mr *mr); 1102 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1103 int max_page_list_len); 1104 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1105 int page_list_len); 1106 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1107 int (*rereg_phys_mr)(struct ib_mr *mr, 1108 int mr_rereg_mask, 1109 struct ib_pd *pd, 1110 struct ib_phys_buf *phys_buf_array, 1111 int num_phys_buf, 1112 int mr_access_flags, 1113 u64 *iova_start); 1114 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1115 int (*bind_mw)(struct ib_qp *qp, 1116 struct ib_mw *mw, 1117 struct ib_mw_bind *mw_bind); 1118 int (*dealloc_mw)(struct ib_mw *mw); 1119 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1120 int mr_access_flags, 1121 struct ib_fmr_attr *fmr_attr); 1122 int (*map_phys_fmr)(struct ib_fmr *fmr, 1123 u64 *page_list, int list_len, 1124 u64 iova); 1125 int (*unmap_fmr)(struct list_head *fmr_list); 1126 int (*dealloc_fmr)(struct ib_fmr *fmr); 1127 int (*attach_mcast)(struct ib_qp *qp, 1128 union ib_gid *gid, 1129 u16 lid); 1130 int (*detach_mcast)(struct ib_qp *qp, 1131 union ib_gid *gid, 1132 u16 lid); 1133 int (*process_mad)(struct ib_device *device, 1134 int process_mad_flags, 1135 u8 port_num, 1136 struct ib_wc *in_wc, 1137 struct ib_grh *in_grh, 1138 struct ib_mad *in_mad, 1139 struct ib_mad *out_mad); 1140 1141 struct ib_dma_mapping_ops *dma_ops; 1142 1143 struct module *owner; 1144 struct device dev; 1145 struct kobject *ports_parent; 1146 struct list_head port_list; 1147 1148 enum { 1149 IB_DEV_UNINITIALIZED, 1150 IB_DEV_REGISTERED, 1151 IB_DEV_UNREGISTERED 1152 } reg_state; 1153 1154 int uverbs_abi_ver; 1155 u64 uverbs_cmd_mask; 1156 1157 char node_desc[64]; 1158 __be64 node_guid; 1159 u32 local_dma_lkey; 1160 u8 node_type; 1161 u8 phys_port_cnt; 1162 }; 1163 1164 struct ib_client { 1165 char *name; 1166 void (*add) (struct ib_device *); 1167 void (*remove)(struct ib_device *); 1168 1169 struct list_head list; 1170 }; 1171 1172 struct ib_device *ib_alloc_device(size_t size); 1173 void ib_dealloc_device(struct ib_device *device); 1174 1175 int ib_register_device(struct ib_device *device, 1176 int (*port_callback)(struct ib_device *, 1177 u8, struct kobject *)); 1178 void ib_unregister_device(struct ib_device *device); 1179 1180 int ib_register_client (struct ib_client *client); 1181 void ib_unregister_client(struct ib_client *client); 1182 1183 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1184 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1185 void *data); 1186 1187 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1188 { 1189 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1190 } 1191 1192 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1193 { 1194 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1195 } 1196 1197 /** 1198 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1199 * contains all required attributes and no attributes not allowed for 1200 * the given QP state transition. 1201 * @cur_state: Current QP state 1202 * @next_state: Next QP state 1203 * @type: QP type 1204 * @mask: Mask of supplied QP attributes 1205 * 1206 * This function is a helper function that a low-level driver's 1207 * modify_qp method can use to validate the consumer's input. It 1208 * checks that cur_state and next_state are valid QP states, that a 1209 * transition from cur_state to next_state is allowed by the IB spec, 1210 * and that the attribute mask supplied is allowed for the transition. 1211 */ 1212 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1213 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1214 1215 int ib_register_event_handler (struct ib_event_handler *event_handler); 1216 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1217 void ib_dispatch_event(struct ib_event *event); 1218 1219 int ib_query_device(struct ib_device *device, 1220 struct ib_device_attr *device_attr); 1221 1222 int ib_query_port(struct ib_device *device, 1223 u8 port_num, struct ib_port_attr *port_attr); 1224 1225 int ib_query_gid(struct ib_device *device, 1226 u8 port_num, int index, union ib_gid *gid); 1227 1228 int ib_query_pkey(struct ib_device *device, 1229 u8 port_num, u16 index, u16 *pkey); 1230 1231 int ib_modify_device(struct ib_device *device, 1232 int device_modify_mask, 1233 struct ib_device_modify *device_modify); 1234 1235 int ib_modify_port(struct ib_device *device, 1236 u8 port_num, int port_modify_mask, 1237 struct ib_port_modify *port_modify); 1238 1239 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1240 u8 *port_num, u16 *index); 1241 1242 int ib_find_pkey(struct ib_device *device, 1243 u8 port_num, u16 pkey, u16 *index); 1244 1245 /** 1246 * ib_alloc_pd - Allocates an unused protection domain. 1247 * @device: The device on which to allocate the protection domain. 1248 * 1249 * A protection domain object provides an association between QPs, shared 1250 * receive queues, address handles, memory regions, and memory windows. 1251 */ 1252 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1253 1254 /** 1255 * ib_dealloc_pd - Deallocates a protection domain. 1256 * @pd: The protection domain to deallocate. 1257 */ 1258 int ib_dealloc_pd(struct ib_pd *pd); 1259 1260 /** 1261 * ib_create_ah - Creates an address handle for the given address vector. 1262 * @pd: The protection domain associated with the address handle. 1263 * @ah_attr: The attributes of the address vector. 1264 * 1265 * The address handle is used to reference a local or global destination 1266 * in all UD QP post sends. 1267 */ 1268 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1269 1270 /** 1271 * ib_init_ah_from_wc - Initializes address handle attributes from a 1272 * work completion. 1273 * @device: Device on which the received message arrived. 1274 * @port_num: Port on which the received message arrived. 1275 * @wc: Work completion associated with the received message. 1276 * @grh: References the received global route header. This parameter is 1277 * ignored unless the work completion indicates that the GRH is valid. 1278 * @ah_attr: Returned attributes that can be used when creating an address 1279 * handle for replying to the message. 1280 */ 1281 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1282 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1283 1284 /** 1285 * ib_create_ah_from_wc - Creates an address handle associated with the 1286 * sender of the specified work completion. 1287 * @pd: The protection domain associated with the address handle. 1288 * @wc: Work completion information associated with a received message. 1289 * @grh: References the received global route header. This parameter is 1290 * ignored unless the work completion indicates that the GRH is valid. 1291 * @port_num: The outbound port number to associate with the address. 1292 * 1293 * The address handle is used to reference a local or global destination 1294 * in all UD QP post sends. 1295 */ 1296 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1297 struct ib_grh *grh, u8 port_num); 1298 1299 /** 1300 * ib_modify_ah - Modifies the address vector associated with an address 1301 * handle. 1302 * @ah: The address handle to modify. 1303 * @ah_attr: The new address vector attributes to associate with the 1304 * address handle. 1305 */ 1306 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1307 1308 /** 1309 * ib_query_ah - Queries the address vector associated with an address 1310 * handle. 1311 * @ah: The address handle to query. 1312 * @ah_attr: The address vector attributes associated with the address 1313 * handle. 1314 */ 1315 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1316 1317 /** 1318 * ib_destroy_ah - Destroys an address handle. 1319 * @ah: The address handle to destroy. 1320 */ 1321 int ib_destroy_ah(struct ib_ah *ah); 1322 1323 /** 1324 * ib_create_srq - Creates a SRQ associated with the specified protection 1325 * domain. 1326 * @pd: The protection domain associated with the SRQ. 1327 * @srq_init_attr: A list of initial attributes required to create the 1328 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1329 * the actual capabilities of the created SRQ. 1330 * 1331 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1332 * requested size of the SRQ, and set to the actual values allocated 1333 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1334 * will always be at least as large as the requested values. 1335 */ 1336 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1337 struct ib_srq_init_attr *srq_init_attr); 1338 1339 /** 1340 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1341 * @srq: The SRQ to modify. 1342 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1343 * the current values of selected SRQ attributes are returned. 1344 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1345 * are being modified. 1346 * 1347 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1348 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1349 * the number of receives queued drops below the limit. 1350 */ 1351 int ib_modify_srq(struct ib_srq *srq, 1352 struct ib_srq_attr *srq_attr, 1353 enum ib_srq_attr_mask srq_attr_mask); 1354 1355 /** 1356 * ib_query_srq - Returns the attribute list and current values for the 1357 * specified SRQ. 1358 * @srq: The SRQ to query. 1359 * @srq_attr: The attributes of the specified SRQ. 1360 */ 1361 int ib_query_srq(struct ib_srq *srq, 1362 struct ib_srq_attr *srq_attr); 1363 1364 /** 1365 * ib_destroy_srq - Destroys the specified SRQ. 1366 * @srq: The SRQ to destroy. 1367 */ 1368 int ib_destroy_srq(struct ib_srq *srq); 1369 1370 /** 1371 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1372 * @srq: The SRQ to post the work request on. 1373 * @recv_wr: A list of work requests to post on the receive queue. 1374 * @bad_recv_wr: On an immediate failure, this parameter will reference 1375 * the work request that failed to be posted on the QP. 1376 */ 1377 static inline int ib_post_srq_recv(struct ib_srq *srq, 1378 struct ib_recv_wr *recv_wr, 1379 struct ib_recv_wr **bad_recv_wr) 1380 { 1381 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1382 } 1383 1384 /** 1385 * ib_create_qp - Creates a QP associated with the specified protection 1386 * domain. 1387 * @pd: The protection domain associated with the QP. 1388 * @qp_init_attr: A list of initial attributes required to create the 1389 * QP. If QP creation succeeds, then the attributes are updated to 1390 * the actual capabilities of the created QP. 1391 */ 1392 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1393 struct ib_qp_init_attr *qp_init_attr); 1394 1395 /** 1396 * ib_modify_qp - Modifies the attributes for the specified QP and then 1397 * transitions the QP to the given state. 1398 * @qp: The QP to modify. 1399 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1400 * the current values of selected QP attributes are returned. 1401 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1402 * are being modified. 1403 */ 1404 int ib_modify_qp(struct ib_qp *qp, 1405 struct ib_qp_attr *qp_attr, 1406 int qp_attr_mask); 1407 1408 /** 1409 * ib_query_qp - Returns the attribute list and current values for the 1410 * specified QP. 1411 * @qp: The QP to query. 1412 * @qp_attr: The attributes of the specified QP. 1413 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1414 * @qp_init_attr: Additional attributes of the selected QP. 1415 * 1416 * The qp_attr_mask may be used to limit the query to gathering only the 1417 * selected attributes. 1418 */ 1419 int ib_query_qp(struct ib_qp *qp, 1420 struct ib_qp_attr *qp_attr, 1421 int qp_attr_mask, 1422 struct ib_qp_init_attr *qp_init_attr); 1423 1424 /** 1425 * ib_destroy_qp - Destroys the specified QP. 1426 * @qp: The QP to destroy. 1427 */ 1428 int ib_destroy_qp(struct ib_qp *qp); 1429 1430 /** 1431 * ib_post_send - Posts a list of work requests to the send queue of 1432 * the specified QP. 1433 * @qp: The QP to post the work request on. 1434 * @send_wr: A list of work requests to post on the send queue. 1435 * @bad_send_wr: On an immediate failure, this parameter will reference 1436 * the work request that failed to be posted on the QP. 1437 * 1438 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 1439 * error is returned, the QP state shall not be affected, 1440 * ib_post_send() will return an immediate error after queueing any 1441 * earlier work requests in the list. 1442 */ 1443 static inline int ib_post_send(struct ib_qp *qp, 1444 struct ib_send_wr *send_wr, 1445 struct ib_send_wr **bad_send_wr) 1446 { 1447 return qp->device->post_send(qp, send_wr, bad_send_wr); 1448 } 1449 1450 /** 1451 * ib_post_recv - Posts a list of work requests to the receive queue of 1452 * the specified QP. 1453 * @qp: The QP to post the work request on. 1454 * @recv_wr: A list of work requests to post on the receive queue. 1455 * @bad_recv_wr: On an immediate failure, this parameter will reference 1456 * the work request that failed to be posted on the QP. 1457 */ 1458 static inline int ib_post_recv(struct ib_qp *qp, 1459 struct ib_recv_wr *recv_wr, 1460 struct ib_recv_wr **bad_recv_wr) 1461 { 1462 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1463 } 1464 1465 /** 1466 * ib_create_cq - Creates a CQ on the specified device. 1467 * @device: The device on which to create the CQ. 1468 * @comp_handler: A user-specified callback that is invoked when a 1469 * completion event occurs on the CQ. 1470 * @event_handler: A user-specified callback that is invoked when an 1471 * asynchronous event not associated with a completion occurs on the CQ. 1472 * @cq_context: Context associated with the CQ returned to the user via 1473 * the associated completion and event handlers. 1474 * @cqe: The minimum size of the CQ. 1475 * @comp_vector - Completion vector used to signal completion events. 1476 * Must be >= 0 and < context->num_comp_vectors. 1477 * 1478 * Users can examine the cq structure to determine the actual CQ size. 1479 */ 1480 struct ib_cq *ib_create_cq(struct ib_device *device, 1481 ib_comp_handler comp_handler, 1482 void (*event_handler)(struct ib_event *, void *), 1483 void *cq_context, int cqe, int comp_vector); 1484 1485 /** 1486 * ib_resize_cq - Modifies the capacity of the CQ. 1487 * @cq: The CQ to resize. 1488 * @cqe: The minimum size of the CQ. 1489 * 1490 * Users can examine the cq structure to determine the actual CQ size. 1491 */ 1492 int ib_resize_cq(struct ib_cq *cq, int cqe); 1493 1494 /** 1495 * ib_modify_cq - Modifies moderation params of the CQ 1496 * @cq: The CQ to modify. 1497 * @cq_count: number of CQEs that will trigger an event 1498 * @cq_period: max period of time in usec before triggering an event 1499 * 1500 */ 1501 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1502 1503 /** 1504 * ib_destroy_cq - Destroys the specified CQ. 1505 * @cq: The CQ to destroy. 1506 */ 1507 int ib_destroy_cq(struct ib_cq *cq); 1508 1509 /** 1510 * ib_poll_cq - poll a CQ for completion(s) 1511 * @cq:the CQ being polled 1512 * @num_entries:maximum number of completions to return 1513 * @wc:array of at least @num_entries &struct ib_wc where completions 1514 * will be returned 1515 * 1516 * Poll a CQ for (possibly multiple) completions. If the return value 1517 * is < 0, an error occurred. If the return value is >= 0, it is the 1518 * number of completions returned. If the return value is 1519 * non-negative and < num_entries, then the CQ was emptied. 1520 */ 1521 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1522 struct ib_wc *wc) 1523 { 1524 return cq->device->poll_cq(cq, num_entries, wc); 1525 } 1526 1527 /** 1528 * ib_peek_cq - Returns the number of unreaped completions currently 1529 * on the specified CQ. 1530 * @cq: The CQ to peek. 1531 * @wc_cnt: A minimum number of unreaped completions to check for. 1532 * 1533 * If the number of unreaped completions is greater than or equal to wc_cnt, 1534 * this function returns wc_cnt, otherwise, it returns the actual number of 1535 * unreaped completions. 1536 */ 1537 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1538 1539 /** 1540 * ib_req_notify_cq - Request completion notification on a CQ. 1541 * @cq: The CQ to generate an event for. 1542 * @flags: 1543 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1544 * to request an event on the next solicited event or next work 1545 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1546 * may also be |ed in to request a hint about missed events, as 1547 * described below. 1548 * 1549 * Return Value: 1550 * < 0 means an error occurred while requesting notification 1551 * == 0 means notification was requested successfully, and if 1552 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1553 * were missed and it is safe to wait for another event. In 1554 * this case is it guaranteed that any work completions added 1555 * to the CQ since the last CQ poll will trigger a completion 1556 * notification event. 1557 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1558 * in. It means that the consumer must poll the CQ again to 1559 * make sure it is empty to avoid missing an event because of a 1560 * race between requesting notification and an entry being 1561 * added to the CQ. This return value means it is possible 1562 * (but not guaranteed) that a work completion has been added 1563 * to the CQ since the last poll without triggering a 1564 * completion notification event. 1565 */ 1566 static inline int ib_req_notify_cq(struct ib_cq *cq, 1567 enum ib_cq_notify_flags flags) 1568 { 1569 return cq->device->req_notify_cq(cq, flags); 1570 } 1571 1572 /** 1573 * ib_req_ncomp_notif - Request completion notification when there are 1574 * at least the specified number of unreaped completions on the CQ. 1575 * @cq: The CQ to generate an event for. 1576 * @wc_cnt: The number of unreaped completions that should be on the 1577 * CQ before an event is generated. 1578 */ 1579 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1580 { 1581 return cq->device->req_ncomp_notif ? 1582 cq->device->req_ncomp_notif(cq, wc_cnt) : 1583 -ENOSYS; 1584 } 1585 1586 /** 1587 * ib_get_dma_mr - Returns a memory region for system memory that is 1588 * usable for DMA. 1589 * @pd: The protection domain associated with the memory region. 1590 * @mr_access_flags: Specifies the memory access rights. 1591 * 1592 * Note that the ib_dma_*() functions defined below must be used 1593 * to create/destroy addresses used with the Lkey or Rkey returned 1594 * by ib_get_dma_mr(). 1595 */ 1596 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1597 1598 /** 1599 * ib_dma_mapping_error - check a DMA addr for error 1600 * @dev: The device for which the dma_addr was created 1601 * @dma_addr: The DMA address to check 1602 */ 1603 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1604 { 1605 if (dev->dma_ops) 1606 return dev->dma_ops->mapping_error(dev, dma_addr); 1607 return dma_mapping_error(dev->dma_device, dma_addr); 1608 } 1609 1610 /** 1611 * ib_dma_map_single - Map a kernel virtual address to DMA address 1612 * @dev: The device for which the dma_addr is to be created 1613 * @cpu_addr: The kernel virtual address 1614 * @size: The size of the region in bytes 1615 * @direction: The direction of the DMA 1616 */ 1617 static inline u64 ib_dma_map_single(struct ib_device *dev, 1618 void *cpu_addr, size_t size, 1619 enum dma_data_direction direction) 1620 { 1621 if (dev->dma_ops) 1622 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1623 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1624 } 1625 1626 /** 1627 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1628 * @dev: The device for which the DMA address was created 1629 * @addr: The DMA address 1630 * @size: The size of the region in bytes 1631 * @direction: The direction of the DMA 1632 */ 1633 static inline void ib_dma_unmap_single(struct ib_device *dev, 1634 u64 addr, size_t size, 1635 enum dma_data_direction direction) 1636 { 1637 if (dev->dma_ops) 1638 dev->dma_ops->unmap_single(dev, addr, size, direction); 1639 else 1640 dma_unmap_single(dev->dma_device, addr, size, direction); 1641 } 1642 1643 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1644 void *cpu_addr, size_t size, 1645 enum dma_data_direction direction, 1646 struct dma_attrs *attrs) 1647 { 1648 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1649 direction, attrs); 1650 } 1651 1652 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1653 u64 addr, size_t size, 1654 enum dma_data_direction direction, 1655 struct dma_attrs *attrs) 1656 { 1657 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1658 direction, attrs); 1659 } 1660 1661 /** 1662 * ib_dma_map_page - Map a physical page to DMA address 1663 * @dev: The device for which the dma_addr is to be created 1664 * @page: The page to be mapped 1665 * @offset: The offset within the page 1666 * @size: The size of the region in bytes 1667 * @direction: The direction of the DMA 1668 */ 1669 static inline u64 ib_dma_map_page(struct ib_device *dev, 1670 struct page *page, 1671 unsigned long offset, 1672 size_t size, 1673 enum dma_data_direction direction) 1674 { 1675 if (dev->dma_ops) 1676 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1677 return dma_map_page(dev->dma_device, page, offset, size, direction); 1678 } 1679 1680 /** 1681 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1682 * @dev: The device for which the DMA address was created 1683 * @addr: The DMA address 1684 * @size: The size of the region in bytes 1685 * @direction: The direction of the DMA 1686 */ 1687 static inline void ib_dma_unmap_page(struct ib_device *dev, 1688 u64 addr, size_t size, 1689 enum dma_data_direction direction) 1690 { 1691 if (dev->dma_ops) 1692 dev->dma_ops->unmap_page(dev, addr, size, direction); 1693 else 1694 dma_unmap_page(dev->dma_device, addr, size, direction); 1695 } 1696 1697 /** 1698 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1699 * @dev: The device for which the DMA addresses are to be created 1700 * @sg: The array of scatter/gather entries 1701 * @nents: The number of scatter/gather entries 1702 * @direction: The direction of the DMA 1703 */ 1704 static inline int ib_dma_map_sg(struct ib_device *dev, 1705 struct scatterlist *sg, int nents, 1706 enum dma_data_direction direction) 1707 { 1708 if (dev->dma_ops) 1709 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1710 return dma_map_sg(dev->dma_device, sg, nents, direction); 1711 } 1712 1713 /** 1714 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1715 * @dev: The device for which the DMA addresses were created 1716 * @sg: The array of scatter/gather entries 1717 * @nents: The number of scatter/gather entries 1718 * @direction: The direction of the DMA 1719 */ 1720 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1721 struct scatterlist *sg, int nents, 1722 enum dma_data_direction direction) 1723 { 1724 if (dev->dma_ops) 1725 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1726 else 1727 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1728 } 1729 1730 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 1731 struct scatterlist *sg, int nents, 1732 enum dma_data_direction direction, 1733 struct dma_attrs *attrs) 1734 { 1735 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1736 } 1737 1738 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 1739 struct scatterlist *sg, int nents, 1740 enum dma_data_direction direction, 1741 struct dma_attrs *attrs) 1742 { 1743 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1744 } 1745 /** 1746 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1747 * @dev: The device for which the DMA addresses were created 1748 * @sg: The scatter/gather entry 1749 */ 1750 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1751 struct scatterlist *sg) 1752 { 1753 if (dev->dma_ops) 1754 return dev->dma_ops->dma_address(dev, sg); 1755 return sg_dma_address(sg); 1756 } 1757 1758 /** 1759 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1760 * @dev: The device for which the DMA addresses were created 1761 * @sg: The scatter/gather entry 1762 */ 1763 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1764 struct scatterlist *sg) 1765 { 1766 if (dev->dma_ops) 1767 return dev->dma_ops->dma_len(dev, sg); 1768 return sg_dma_len(sg); 1769 } 1770 1771 /** 1772 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1773 * @dev: The device for which the DMA address was created 1774 * @addr: The DMA address 1775 * @size: The size of the region in bytes 1776 * @dir: The direction of the DMA 1777 */ 1778 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1779 u64 addr, 1780 size_t size, 1781 enum dma_data_direction dir) 1782 { 1783 if (dev->dma_ops) 1784 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1785 else 1786 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1787 } 1788 1789 /** 1790 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1791 * @dev: The device for which the DMA address was created 1792 * @addr: The DMA address 1793 * @size: The size of the region in bytes 1794 * @dir: The direction of the DMA 1795 */ 1796 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1797 u64 addr, 1798 size_t size, 1799 enum dma_data_direction dir) 1800 { 1801 if (dev->dma_ops) 1802 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1803 else 1804 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1805 } 1806 1807 /** 1808 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1809 * @dev: The device for which the DMA address is requested 1810 * @size: The size of the region to allocate in bytes 1811 * @dma_handle: A pointer for returning the DMA address of the region 1812 * @flag: memory allocator flags 1813 */ 1814 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1815 size_t size, 1816 u64 *dma_handle, 1817 gfp_t flag) 1818 { 1819 if (dev->dma_ops) 1820 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1821 else { 1822 dma_addr_t handle; 1823 void *ret; 1824 1825 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1826 *dma_handle = handle; 1827 return ret; 1828 } 1829 } 1830 1831 /** 1832 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1833 * @dev: The device for which the DMA addresses were allocated 1834 * @size: The size of the region 1835 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1836 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1837 */ 1838 static inline void ib_dma_free_coherent(struct ib_device *dev, 1839 size_t size, void *cpu_addr, 1840 u64 dma_handle) 1841 { 1842 if (dev->dma_ops) 1843 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1844 else 1845 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 1846 } 1847 1848 /** 1849 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1850 * by an HCA. 1851 * @pd: The protection domain associated assigned to the registered region. 1852 * @phys_buf_array: Specifies a list of physical buffers to use in the 1853 * memory region. 1854 * @num_phys_buf: Specifies the size of the phys_buf_array. 1855 * @mr_access_flags: Specifies the memory access rights. 1856 * @iova_start: The offset of the region's starting I/O virtual address. 1857 */ 1858 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1859 struct ib_phys_buf *phys_buf_array, 1860 int num_phys_buf, 1861 int mr_access_flags, 1862 u64 *iova_start); 1863 1864 /** 1865 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1866 * Conceptually, this call performs the functions deregister memory region 1867 * followed by register physical memory region. Where possible, 1868 * resources are reused instead of deallocated and reallocated. 1869 * @mr: The memory region to modify. 1870 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1871 * properties of the memory region are being modified. 1872 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1873 * the new protection domain to associated with the memory region, 1874 * otherwise, this parameter is ignored. 1875 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1876 * field specifies a list of physical buffers to use in the new 1877 * translation, otherwise, this parameter is ignored. 1878 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1879 * field specifies the size of the phys_buf_array, otherwise, this 1880 * parameter is ignored. 1881 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1882 * field specifies the new memory access rights, otherwise, this 1883 * parameter is ignored. 1884 * @iova_start: The offset of the region's starting I/O virtual address. 1885 */ 1886 int ib_rereg_phys_mr(struct ib_mr *mr, 1887 int mr_rereg_mask, 1888 struct ib_pd *pd, 1889 struct ib_phys_buf *phys_buf_array, 1890 int num_phys_buf, 1891 int mr_access_flags, 1892 u64 *iova_start); 1893 1894 /** 1895 * ib_query_mr - Retrieves information about a specific memory region. 1896 * @mr: The memory region to retrieve information about. 1897 * @mr_attr: The attributes of the specified memory region. 1898 */ 1899 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 1900 1901 /** 1902 * ib_dereg_mr - Deregisters a memory region and removes it from the 1903 * HCA translation table. 1904 * @mr: The memory region to deregister. 1905 */ 1906 int ib_dereg_mr(struct ib_mr *mr); 1907 1908 /** 1909 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 1910 * IB_WR_FAST_REG_MR send work request. 1911 * @pd: The protection domain associated with the region. 1912 * @max_page_list_len: requested max physical buffer list length to be 1913 * used with fast register work requests for this MR. 1914 */ 1915 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 1916 1917 /** 1918 * ib_alloc_fast_reg_page_list - Allocates a page list array 1919 * @device - ib device pointer. 1920 * @page_list_len - size of the page list array to be allocated. 1921 * 1922 * This allocates and returns a struct ib_fast_reg_page_list * and a 1923 * page_list array that is at least page_list_len in size. The actual 1924 * size is returned in max_page_list_len. The caller is responsible 1925 * for initializing the contents of the page_list array before posting 1926 * a send work request with the IB_WC_FAST_REG_MR opcode. 1927 * 1928 * The page_list array entries must be translated using one of the 1929 * ib_dma_*() functions just like the addresses passed to 1930 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 1931 * ib_fast_reg_page_list must not be modified by the caller until the 1932 * IB_WC_FAST_REG_MR work request completes. 1933 */ 1934 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 1935 struct ib_device *device, int page_list_len); 1936 1937 /** 1938 * ib_free_fast_reg_page_list - Deallocates a previously allocated 1939 * page list array. 1940 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 1941 */ 1942 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 1943 1944 /** 1945 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 1946 * R_Key and L_Key. 1947 * @mr - struct ib_mr pointer to be updated. 1948 * @newkey - new key to be used. 1949 */ 1950 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 1951 { 1952 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 1953 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 1954 } 1955 1956 /** 1957 * ib_alloc_mw - Allocates a memory window. 1958 * @pd: The protection domain associated with the memory window. 1959 */ 1960 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 1961 1962 /** 1963 * ib_bind_mw - Posts a work request to the send queue of the specified 1964 * QP, which binds the memory window to the given address range and 1965 * remote access attributes. 1966 * @qp: QP to post the bind work request on. 1967 * @mw: The memory window to bind. 1968 * @mw_bind: Specifies information about the memory window, including 1969 * its address range, remote access rights, and associated memory region. 1970 */ 1971 static inline int ib_bind_mw(struct ib_qp *qp, 1972 struct ib_mw *mw, 1973 struct ib_mw_bind *mw_bind) 1974 { 1975 /* XXX reference counting in corresponding MR? */ 1976 return mw->device->bind_mw ? 1977 mw->device->bind_mw(qp, mw, mw_bind) : 1978 -ENOSYS; 1979 } 1980 1981 /** 1982 * ib_dealloc_mw - Deallocates a memory window. 1983 * @mw: The memory window to deallocate. 1984 */ 1985 int ib_dealloc_mw(struct ib_mw *mw); 1986 1987 /** 1988 * ib_alloc_fmr - Allocates a unmapped fast memory region. 1989 * @pd: The protection domain associated with the unmapped region. 1990 * @mr_access_flags: Specifies the memory access rights. 1991 * @fmr_attr: Attributes of the unmapped region. 1992 * 1993 * A fast memory region must be mapped before it can be used as part of 1994 * a work request. 1995 */ 1996 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1997 int mr_access_flags, 1998 struct ib_fmr_attr *fmr_attr); 1999 2000 /** 2001 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2002 * @fmr: The fast memory region to associate with the pages. 2003 * @page_list: An array of physical pages to map to the fast memory region. 2004 * @list_len: The number of pages in page_list. 2005 * @iova: The I/O virtual address to use with the mapped region. 2006 */ 2007 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2008 u64 *page_list, int list_len, 2009 u64 iova) 2010 { 2011 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2012 } 2013 2014 /** 2015 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2016 * @fmr_list: A linked list of fast memory regions to unmap. 2017 */ 2018 int ib_unmap_fmr(struct list_head *fmr_list); 2019 2020 /** 2021 * ib_dealloc_fmr - Deallocates a fast memory region. 2022 * @fmr: The fast memory region to deallocate. 2023 */ 2024 int ib_dealloc_fmr(struct ib_fmr *fmr); 2025 2026 /** 2027 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2028 * @qp: QP to attach to the multicast group. The QP must be type 2029 * IB_QPT_UD. 2030 * @gid: Multicast group GID. 2031 * @lid: Multicast group LID in host byte order. 2032 * 2033 * In order to send and receive multicast packets, subnet 2034 * administration must have created the multicast group and configured 2035 * the fabric appropriately. The port associated with the specified 2036 * QP must also be a member of the multicast group. 2037 */ 2038 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2039 2040 /** 2041 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2042 * @qp: QP to detach from the multicast group. 2043 * @gid: Multicast group GID. 2044 * @lid: Multicast group LID in host byte order. 2045 */ 2046 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2047 2048 #endif /* IB_VERBS_H */ 2049