1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/dma-mapping.h> 45 #include <linux/kref.h> 46 #include <linux/list.h> 47 #include <linux/rwsem.h> 48 #include <linux/workqueue.h> 49 #include <linux/irq_poll.h> 50 #include <uapi/linux/if_ether.h> 51 #include <net/ipv6.h> 52 #include <net/ip.h> 53 #include <linux/string.h> 54 #include <linux/slab.h> 55 #include <linux/netdevice.h> 56 #include <linux/refcount.h> 57 #include <linux/if_link.h> 58 #include <linux/atomic.h> 59 #include <linux/mmu_notifier.h> 60 #include <linux/uaccess.h> 61 #include <linux/cgroup_rdma.h> 62 #include <uapi/rdma/ib_user_verbs.h> 63 #include <rdma/restrack.h> 64 #include <uapi/rdma/rdma_user_ioctl.h> 65 #include <uapi/rdma/ib_user_ioctl_verbs.h> 66 67 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 68 69 struct ib_umem_odp; 70 71 extern struct workqueue_struct *ib_wq; 72 extern struct workqueue_struct *ib_comp_wq; 73 extern struct workqueue_struct *ib_comp_unbound_wq; 74 75 union ib_gid { 76 u8 raw[16]; 77 struct { 78 __be64 subnet_prefix; 79 __be64 interface_id; 80 } global; 81 }; 82 83 extern union ib_gid zgid; 84 85 enum ib_gid_type { 86 /* If link layer is Ethernet, this is RoCE V1 */ 87 IB_GID_TYPE_IB = 0, 88 IB_GID_TYPE_ROCE = 0, 89 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 90 IB_GID_TYPE_SIZE 91 }; 92 93 #define ROCE_V2_UDP_DPORT 4791 94 struct ib_gid_attr { 95 struct net_device *ndev; 96 struct ib_device *device; 97 union ib_gid gid; 98 enum ib_gid_type gid_type; 99 u16 index; 100 u8 port_num; 101 }; 102 103 enum rdma_node_type { 104 /* IB values map to NodeInfo:NodeType. */ 105 RDMA_NODE_IB_CA = 1, 106 RDMA_NODE_IB_SWITCH, 107 RDMA_NODE_IB_ROUTER, 108 RDMA_NODE_RNIC, 109 RDMA_NODE_USNIC, 110 RDMA_NODE_USNIC_UDP, 111 }; 112 113 enum { 114 /* set the local administered indication */ 115 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 116 }; 117 118 enum rdma_transport_type { 119 RDMA_TRANSPORT_IB, 120 RDMA_TRANSPORT_IWARP, 121 RDMA_TRANSPORT_USNIC, 122 RDMA_TRANSPORT_USNIC_UDP 123 }; 124 125 enum rdma_protocol_type { 126 RDMA_PROTOCOL_IB, 127 RDMA_PROTOCOL_IBOE, 128 RDMA_PROTOCOL_IWARP, 129 RDMA_PROTOCOL_USNIC_UDP 130 }; 131 132 __attribute_const__ enum rdma_transport_type 133 rdma_node_get_transport(enum rdma_node_type node_type); 134 135 enum rdma_network_type { 136 RDMA_NETWORK_IB, 137 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 138 RDMA_NETWORK_IPV4, 139 RDMA_NETWORK_IPV6 140 }; 141 142 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 143 { 144 if (network_type == RDMA_NETWORK_IPV4 || 145 network_type == RDMA_NETWORK_IPV6) 146 return IB_GID_TYPE_ROCE_UDP_ENCAP; 147 148 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 149 return IB_GID_TYPE_IB; 150 } 151 152 static inline enum rdma_network_type 153 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 154 { 155 if (attr->gid_type == IB_GID_TYPE_IB) 156 return RDMA_NETWORK_IB; 157 158 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 159 return RDMA_NETWORK_IPV4; 160 else 161 return RDMA_NETWORK_IPV6; 162 } 163 164 enum rdma_link_layer { 165 IB_LINK_LAYER_UNSPECIFIED, 166 IB_LINK_LAYER_INFINIBAND, 167 IB_LINK_LAYER_ETHERNET, 168 }; 169 170 enum ib_device_cap_flags { 171 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 172 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 173 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 174 IB_DEVICE_RAW_MULTI = (1 << 3), 175 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 176 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 177 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 178 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 179 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 180 /* Not in use, former INIT_TYPE = (1 << 9),*/ 181 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 182 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 183 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 184 IB_DEVICE_SRQ_RESIZE = (1 << 13), 185 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 186 187 /* 188 * This device supports a per-device lkey or stag that can be 189 * used without performing a memory registration for the local 190 * memory. Note that ULPs should never check this flag, but 191 * instead of use the local_dma_lkey flag in the ib_pd structure, 192 * which will always contain a usable lkey. 193 */ 194 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 195 /* Reserved, old SEND_W_INV = (1 << 16),*/ 196 IB_DEVICE_MEM_WINDOW = (1 << 17), 197 /* 198 * Devices should set IB_DEVICE_UD_IP_SUM if they support 199 * insertion of UDP and TCP checksum on outgoing UD IPoIB 200 * messages and can verify the validity of checksum for 201 * incoming messages. Setting this flag implies that the 202 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 203 */ 204 IB_DEVICE_UD_IP_CSUM = (1 << 18), 205 IB_DEVICE_UD_TSO = (1 << 19), 206 IB_DEVICE_XRC = (1 << 20), 207 208 /* 209 * This device supports the IB "base memory management extension", 210 * which includes support for fast registrations (IB_WR_REG_MR, 211 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 212 * also be set by any iWarp device which must support FRs to comply 213 * to the iWarp verbs spec. iWarp devices also support the 214 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 215 * stag. 216 */ 217 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 218 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 219 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 220 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 221 IB_DEVICE_RC_IP_CSUM = (1 << 25), 222 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 223 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 224 /* 225 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 226 * support execution of WQEs that involve synchronization 227 * of I/O operations with single completion queue managed 228 * by hardware. 229 */ 230 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 231 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 232 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 233 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 234 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 235 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 236 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 237 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 238 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 239 /* The device supports padding incoming writes to cacheline. */ 240 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 241 }; 242 243 enum ib_signature_prot_cap { 244 IB_PROT_T10DIF_TYPE_1 = 1, 245 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 246 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 247 }; 248 249 enum ib_signature_guard_cap { 250 IB_GUARD_T10DIF_CRC = 1, 251 IB_GUARD_T10DIF_CSUM = 1 << 1, 252 }; 253 254 enum ib_atomic_cap { 255 IB_ATOMIC_NONE, 256 IB_ATOMIC_HCA, 257 IB_ATOMIC_GLOB 258 }; 259 260 enum ib_odp_general_cap_bits { 261 IB_ODP_SUPPORT = 1 << 0, 262 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 263 }; 264 265 enum ib_odp_transport_cap_bits { 266 IB_ODP_SUPPORT_SEND = 1 << 0, 267 IB_ODP_SUPPORT_RECV = 1 << 1, 268 IB_ODP_SUPPORT_WRITE = 1 << 2, 269 IB_ODP_SUPPORT_READ = 1 << 3, 270 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 271 }; 272 273 struct ib_odp_caps { 274 uint64_t general_caps; 275 struct { 276 uint32_t rc_odp_caps; 277 uint32_t uc_odp_caps; 278 uint32_t ud_odp_caps; 279 } per_transport_caps; 280 }; 281 282 struct ib_rss_caps { 283 /* Corresponding bit will be set if qp type from 284 * 'enum ib_qp_type' is supported, e.g. 285 * supported_qpts |= 1 << IB_QPT_UD 286 */ 287 u32 supported_qpts; 288 u32 max_rwq_indirection_tables; 289 u32 max_rwq_indirection_table_size; 290 }; 291 292 enum ib_tm_cap_flags { 293 /* Support tag matching on RC transport */ 294 IB_TM_CAP_RC = 1 << 0, 295 }; 296 297 struct ib_tm_caps { 298 /* Max size of RNDV header */ 299 u32 max_rndv_hdr_size; 300 /* Max number of entries in tag matching list */ 301 u32 max_num_tags; 302 /* From enum ib_tm_cap_flags */ 303 u32 flags; 304 /* Max number of outstanding list operations */ 305 u32 max_ops; 306 /* Max number of SGE in tag matching entry */ 307 u32 max_sge; 308 }; 309 310 struct ib_cq_init_attr { 311 unsigned int cqe; 312 int comp_vector; 313 u32 flags; 314 }; 315 316 enum ib_cq_attr_mask { 317 IB_CQ_MODERATE = 1 << 0, 318 }; 319 320 struct ib_cq_caps { 321 u16 max_cq_moderation_count; 322 u16 max_cq_moderation_period; 323 }; 324 325 struct ib_dm_mr_attr { 326 u64 length; 327 u64 offset; 328 u32 access_flags; 329 }; 330 331 struct ib_dm_alloc_attr { 332 u64 length; 333 u32 alignment; 334 u32 flags; 335 }; 336 337 struct ib_device_attr { 338 u64 fw_ver; 339 __be64 sys_image_guid; 340 u64 max_mr_size; 341 u64 page_size_cap; 342 u32 vendor_id; 343 u32 vendor_part_id; 344 u32 hw_ver; 345 int max_qp; 346 int max_qp_wr; 347 u64 device_cap_flags; 348 int max_send_sge; 349 int max_recv_sge; 350 int max_sge_rd; 351 int max_cq; 352 int max_cqe; 353 int max_mr; 354 int max_pd; 355 int max_qp_rd_atom; 356 int max_ee_rd_atom; 357 int max_res_rd_atom; 358 int max_qp_init_rd_atom; 359 int max_ee_init_rd_atom; 360 enum ib_atomic_cap atomic_cap; 361 enum ib_atomic_cap masked_atomic_cap; 362 int max_ee; 363 int max_rdd; 364 int max_mw; 365 int max_raw_ipv6_qp; 366 int max_raw_ethy_qp; 367 int max_mcast_grp; 368 int max_mcast_qp_attach; 369 int max_total_mcast_qp_attach; 370 int max_ah; 371 int max_fmr; 372 int max_map_per_fmr; 373 int max_srq; 374 int max_srq_wr; 375 int max_srq_sge; 376 unsigned int max_fast_reg_page_list_len; 377 u16 max_pkeys; 378 u8 local_ca_ack_delay; 379 int sig_prot_cap; 380 int sig_guard_cap; 381 struct ib_odp_caps odp_caps; 382 uint64_t timestamp_mask; 383 uint64_t hca_core_clock; /* in KHZ */ 384 struct ib_rss_caps rss_caps; 385 u32 max_wq_type_rq; 386 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 387 struct ib_tm_caps tm_caps; 388 struct ib_cq_caps cq_caps; 389 u64 max_dm_size; 390 }; 391 392 enum ib_mtu { 393 IB_MTU_256 = 1, 394 IB_MTU_512 = 2, 395 IB_MTU_1024 = 3, 396 IB_MTU_2048 = 4, 397 IB_MTU_4096 = 5 398 }; 399 400 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 401 { 402 switch (mtu) { 403 case IB_MTU_256: return 256; 404 case IB_MTU_512: return 512; 405 case IB_MTU_1024: return 1024; 406 case IB_MTU_2048: return 2048; 407 case IB_MTU_4096: return 4096; 408 default: return -1; 409 } 410 } 411 412 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 413 { 414 if (mtu >= 4096) 415 return IB_MTU_4096; 416 else if (mtu >= 2048) 417 return IB_MTU_2048; 418 else if (mtu >= 1024) 419 return IB_MTU_1024; 420 else if (mtu >= 512) 421 return IB_MTU_512; 422 else 423 return IB_MTU_256; 424 } 425 426 enum ib_port_state { 427 IB_PORT_NOP = 0, 428 IB_PORT_DOWN = 1, 429 IB_PORT_INIT = 2, 430 IB_PORT_ARMED = 3, 431 IB_PORT_ACTIVE = 4, 432 IB_PORT_ACTIVE_DEFER = 5 433 }; 434 435 enum ib_port_width { 436 IB_WIDTH_1X = 1, 437 IB_WIDTH_4X = 2, 438 IB_WIDTH_8X = 4, 439 IB_WIDTH_12X = 8 440 }; 441 442 static inline int ib_width_enum_to_int(enum ib_port_width width) 443 { 444 switch (width) { 445 case IB_WIDTH_1X: return 1; 446 case IB_WIDTH_4X: return 4; 447 case IB_WIDTH_8X: return 8; 448 case IB_WIDTH_12X: return 12; 449 default: return -1; 450 } 451 } 452 453 enum ib_port_speed { 454 IB_SPEED_SDR = 1, 455 IB_SPEED_DDR = 2, 456 IB_SPEED_QDR = 4, 457 IB_SPEED_FDR10 = 8, 458 IB_SPEED_FDR = 16, 459 IB_SPEED_EDR = 32, 460 IB_SPEED_HDR = 64 461 }; 462 463 /** 464 * struct rdma_hw_stats 465 * @lock - Mutex to protect parallel write access to lifespan and values 466 * of counters, which are 64bits and not guaranteeed to be written 467 * atomicaly on 32bits systems. 468 * @timestamp - Used by the core code to track when the last update was 469 * @lifespan - Used by the core code to determine how old the counters 470 * should be before being updated again. Stored in jiffies, defaults 471 * to 10 milliseconds, drivers can override the default be specifying 472 * their own value during their allocation routine. 473 * @name - Array of pointers to static names used for the counters in 474 * directory. 475 * @num_counters - How many hardware counters there are. If name is 476 * shorter than this number, a kernel oops will result. Driver authors 477 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 478 * in their code to prevent this. 479 * @value - Array of u64 counters that are accessed by the sysfs code and 480 * filled in by the drivers get_stats routine 481 */ 482 struct rdma_hw_stats { 483 struct mutex lock; /* Protect lifespan and values[] */ 484 unsigned long timestamp; 485 unsigned long lifespan; 486 const char * const *names; 487 int num_counters; 488 u64 value[]; 489 }; 490 491 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 492 /** 493 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 494 * for drivers. 495 * @names - Array of static const char * 496 * @num_counters - How many elements in array 497 * @lifespan - How many milliseconds between updates 498 */ 499 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 500 const char * const *names, int num_counters, 501 unsigned long lifespan) 502 { 503 struct rdma_hw_stats *stats; 504 505 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 506 GFP_KERNEL); 507 if (!stats) 508 return NULL; 509 stats->names = names; 510 stats->num_counters = num_counters; 511 stats->lifespan = msecs_to_jiffies(lifespan); 512 513 return stats; 514 } 515 516 517 /* Define bits for the various functionality this port needs to be supported by 518 * the core. 519 */ 520 /* Management 0x00000FFF */ 521 #define RDMA_CORE_CAP_IB_MAD 0x00000001 522 #define RDMA_CORE_CAP_IB_SMI 0x00000002 523 #define RDMA_CORE_CAP_IB_CM 0x00000004 524 #define RDMA_CORE_CAP_IW_CM 0x00000008 525 #define RDMA_CORE_CAP_IB_SA 0x00000010 526 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 527 528 /* Address format 0x000FF000 */ 529 #define RDMA_CORE_CAP_AF_IB 0x00001000 530 #define RDMA_CORE_CAP_ETH_AH 0x00002000 531 #define RDMA_CORE_CAP_OPA_AH 0x00004000 532 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 533 534 /* Protocol 0xFFF00000 */ 535 #define RDMA_CORE_CAP_PROT_IB 0x00100000 536 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 537 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 538 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 539 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 540 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 541 542 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 543 | RDMA_CORE_CAP_PROT_ROCE \ 544 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 545 546 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 547 | RDMA_CORE_CAP_IB_MAD \ 548 | RDMA_CORE_CAP_IB_SMI \ 549 | RDMA_CORE_CAP_IB_CM \ 550 | RDMA_CORE_CAP_IB_SA \ 551 | RDMA_CORE_CAP_AF_IB) 552 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 553 | RDMA_CORE_CAP_IB_MAD \ 554 | RDMA_CORE_CAP_IB_CM \ 555 | RDMA_CORE_CAP_AF_IB \ 556 | RDMA_CORE_CAP_ETH_AH) 557 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 558 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 559 | RDMA_CORE_CAP_IB_MAD \ 560 | RDMA_CORE_CAP_IB_CM \ 561 | RDMA_CORE_CAP_AF_IB \ 562 | RDMA_CORE_CAP_ETH_AH) 563 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 564 | RDMA_CORE_CAP_IW_CM) 565 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 566 | RDMA_CORE_CAP_OPA_MAD) 567 568 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 569 570 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 571 572 struct ib_port_attr { 573 u64 subnet_prefix; 574 enum ib_port_state state; 575 enum ib_mtu max_mtu; 576 enum ib_mtu active_mtu; 577 int gid_tbl_len; 578 unsigned int ip_gids:1; 579 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 580 u32 port_cap_flags; 581 u32 max_msg_sz; 582 u32 bad_pkey_cntr; 583 u32 qkey_viol_cntr; 584 u16 pkey_tbl_len; 585 u32 sm_lid; 586 u32 lid; 587 u8 lmc; 588 u8 max_vl_num; 589 u8 sm_sl; 590 u8 subnet_timeout; 591 u8 init_type_reply; 592 u8 active_width; 593 u8 active_speed; 594 u8 phys_state; 595 }; 596 597 enum ib_device_modify_flags { 598 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 599 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 600 }; 601 602 #define IB_DEVICE_NODE_DESC_MAX 64 603 604 struct ib_device_modify { 605 u64 sys_image_guid; 606 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 607 }; 608 609 enum ib_port_modify_flags { 610 IB_PORT_SHUTDOWN = 1, 611 IB_PORT_INIT_TYPE = (1<<2), 612 IB_PORT_RESET_QKEY_CNTR = (1<<3), 613 IB_PORT_OPA_MASK_CHG = (1<<4) 614 }; 615 616 struct ib_port_modify { 617 u32 set_port_cap_mask; 618 u32 clr_port_cap_mask; 619 u8 init_type; 620 }; 621 622 enum ib_event_type { 623 IB_EVENT_CQ_ERR, 624 IB_EVENT_QP_FATAL, 625 IB_EVENT_QP_REQ_ERR, 626 IB_EVENT_QP_ACCESS_ERR, 627 IB_EVENT_COMM_EST, 628 IB_EVENT_SQ_DRAINED, 629 IB_EVENT_PATH_MIG, 630 IB_EVENT_PATH_MIG_ERR, 631 IB_EVENT_DEVICE_FATAL, 632 IB_EVENT_PORT_ACTIVE, 633 IB_EVENT_PORT_ERR, 634 IB_EVENT_LID_CHANGE, 635 IB_EVENT_PKEY_CHANGE, 636 IB_EVENT_SM_CHANGE, 637 IB_EVENT_SRQ_ERR, 638 IB_EVENT_SRQ_LIMIT_REACHED, 639 IB_EVENT_QP_LAST_WQE_REACHED, 640 IB_EVENT_CLIENT_REREGISTER, 641 IB_EVENT_GID_CHANGE, 642 IB_EVENT_WQ_FATAL, 643 }; 644 645 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 646 647 struct ib_event { 648 struct ib_device *device; 649 union { 650 struct ib_cq *cq; 651 struct ib_qp *qp; 652 struct ib_srq *srq; 653 struct ib_wq *wq; 654 u8 port_num; 655 } element; 656 enum ib_event_type event; 657 }; 658 659 struct ib_event_handler { 660 struct ib_device *device; 661 void (*handler)(struct ib_event_handler *, struct ib_event *); 662 struct list_head list; 663 }; 664 665 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 666 do { \ 667 (_ptr)->device = _device; \ 668 (_ptr)->handler = _handler; \ 669 INIT_LIST_HEAD(&(_ptr)->list); \ 670 } while (0) 671 672 struct ib_global_route { 673 const struct ib_gid_attr *sgid_attr; 674 union ib_gid dgid; 675 u32 flow_label; 676 u8 sgid_index; 677 u8 hop_limit; 678 u8 traffic_class; 679 }; 680 681 struct ib_grh { 682 __be32 version_tclass_flow; 683 __be16 paylen; 684 u8 next_hdr; 685 u8 hop_limit; 686 union ib_gid sgid; 687 union ib_gid dgid; 688 }; 689 690 union rdma_network_hdr { 691 struct ib_grh ibgrh; 692 struct { 693 /* The IB spec states that if it's IPv4, the header 694 * is located in the last 20 bytes of the header. 695 */ 696 u8 reserved[20]; 697 struct iphdr roce4grh; 698 }; 699 }; 700 701 #define IB_QPN_MASK 0xFFFFFF 702 703 enum { 704 IB_MULTICAST_QPN = 0xffffff 705 }; 706 707 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 708 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 709 710 enum ib_ah_flags { 711 IB_AH_GRH = 1 712 }; 713 714 enum ib_rate { 715 IB_RATE_PORT_CURRENT = 0, 716 IB_RATE_2_5_GBPS = 2, 717 IB_RATE_5_GBPS = 5, 718 IB_RATE_10_GBPS = 3, 719 IB_RATE_20_GBPS = 6, 720 IB_RATE_30_GBPS = 4, 721 IB_RATE_40_GBPS = 7, 722 IB_RATE_60_GBPS = 8, 723 IB_RATE_80_GBPS = 9, 724 IB_RATE_120_GBPS = 10, 725 IB_RATE_14_GBPS = 11, 726 IB_RATE_56_GBPS = 12, 727 IB_RATE_112_GBPS = 13, 728 IB_RATE_168_GBPS = 14, 729 IB_RATE_25_GBPS = 15, 730 IB_RATE_100_GBPS = 16, 731 IB_RATE_200_GBPS = 17, 732 IB_RATE_300_GBPS = 18 733 }; 734 735 /** 736 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 737 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 738 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 739 * @rate: rate to convert. 740 */ 741 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 742 743 /** 744 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 745 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 746 * @rate: rate to convert. 747 */ 748 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 749 750 751 /** 752 * enum ib_mr_type - memory region type 753 * @IB_MR_TYPE_MEM_REG: memory region that is used for 754 * normal registration 755 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 756 * signature operations (data-integrity 757 * capable regions) 758 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 759 * register any arbitrary sg lists (without 760 * the normal mr constraints - see 761 * ib_map_mr_sg) 762 */ 763 enum ib_mr_type { 764 IB_MR_TYPE_MEM_REG, 765 IB_MR_TYPE_SIGNATURE, 766 IB_MR_TYPE_SG_GAPS, 767 }; 768 769 /** 770 * Signature types 771 * IB_SIG_TYPE_NONE: Unprotected. 772 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 773 */ 774 enum ib_signature_type { 775 IB_SIG_TYPE_NONE, 776 IB_SIG_TYPE_T10_DIF, 777 }; 778 779 /** 780 * Signature T10-DIF block-guard types 781 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 782 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 783 */ 784 enum ib_t10_dif_bg_type { 785 IB_T10DIF_CRC, 786 IB_T10DIF_CSUM 787 }; 788 789 /** 790 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 791 * domain. 792 * @bg_type: T10-DIF block guard type (CRC|CSUM) 793 * @pi_interval: protection information interval. 794 * @bg: seed of guard computation. 795 * @app_tag: application tag of guard block 796 * @ref_tag: initial guard block reference tag. 797 * @ref_remap: Indicate wethear the reftag increments each block 798 * @app_escape: Indicate to skip block check if apptag=0xffff 799 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 800 * @apptag_check_mask: check bitmask of application tag. 801 */ 802 struct ib_t10_dif_domain { 803 enum ib_t10_dif_bg_type bg_type; 804 u16 pi_interval; 805 u16 bg; 806 u16 app_tag; 807 u32 ref_tag; 808 bool ref_remap; 809 bool app_escape; 810 bool ref_escape; 811 u16 apptag_check_mask; 812 }; 813 814 /** 815 * struct ib_sig_domain - Parameters for signature domain 816 * @sig_type: specific signauture type 817 * @sig: union of all signature domain attributes that may 818 * be used to set domain layout. 819 */ 820 struct ib_sig_domain { 821 enum ib_signature_type sig_type; 822 union { 823 struct ib_t10_dif_domain dif; 824 } sig; 825 }; 826 827 /** 828 * struct ib_sig_attrs - Parameters for signature handover operation 829 * @check_mask: bitmask for signature byte check (8 bytes) 830 * @mem: memory domain layout desciptor. 831 * @wire: wire domain layout desciptor. 832 */ 833 struct ib_sig_attrs { 834 u8 check_mask; 835 struct ib_sig_domain mem; 836 struct ib_sig_domain wire; 837 }; 838 839 enum ib_sig_err_type { 840 IB_SIG_BAD_GUARD, 841 IB_SIG_BAD_REFTAG, 842 IB_SIG_BAD_APPTAG, 843 }; 844 845 /** 846 * Signature check masks (8 bytes in total) according to the T10-PI standard: 847 * -------- -------- ------------ 848 * | GUARD | APPTAG | REFTAG | 849 * | 2B | 2B | 4B | 850 * -------- -------- ------------ 851 */ 852 enum { 853 IB_SIG_CHECK_GUARD = 0xc0, 854 IB_SIG_CHECK_APPTAG = 0x30, 855 IB_SIG_CHECK_REFTAG = 0x0f, 856 }; 857 858 /** 859 * struct ib_sig_err - signature error descriptor 860 */ 861 struct ib_sig_err { 862 enum ib_sig_err_type err_type; 863 u32 expected; 864 u32 actual; 865 u64 sig_err_offset; 866 u32 key; 867 }; 868 869 enum ib_mr_status_check { 870 IB_MR_CHECK_SIG_STATUS = 1, 871 }; 872 873 /** 874 * struct ib_mr_status - Memory region status container 875 * 876 * @fail_status: Bitmask of MR checks status. For each 877 * failed check a corresponding status bit is set. 878 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 879 * failure. 880 */ 881 struct ib_mr_status { 882 u32 fail_status; 883 struct ib_sig_err sig_err; 884 }; 885 886 /** 887 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 888 * enum. 889 * @mult: multiple to convert. 890 */ 891 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 892 893 enum rdma_ah_attr_type { 894 RDMA_AH_ATTR_TYPE_UNDEFINED, 895 RDMA_AH_ATTR_TYPE_IB, 896 RDMA_AH_ATTR_TYPE_ROCE, 897 RDMA_AH_ATTR_TYPE_OPA, 898 }; 899 900 struct ib_ah_attr { 901 u16 dlid; 902 u8 src_path_bits; 903 }; 904 905 struct roce_ah_attr { 906 u8 dmac[ETH_ALEN]; 907 }; 908 909 struct opa_ah_attr { 910 u32 dlid; 911 u8 src_path_bits; 912 bool make_grd; 913 }; 914 915 struct rdma_ah_attr { 916 struct ib_global_route grh; 917 u8 sl; 918 u8 static_rate; 919 u8 port_num; 920 u8 ah_flags; 921 enum rdma_ah_attr_type type; 922 union { 923 struct ib_ah_attr ib; 924 struct roce_ah_attr roce; 925 struct opa_ah_attr opa; 926 }; 927 }; 928 929 enum ib_wc_status { 930 IB_WC_SUCCESS, 931 IB_WC_LOC_LEN_ERR, 932 IB_WC_LOC_QP_OP_ERR, 933 IB_WC_LOC_EEC_OP_ERR, 934 IB_WC_LOC_PROT_ERR, 935 IB_WC_WR_FLUSH_ERR, 936 IB_WC_MW_BIND_ERR, 937 IB_WC_BAD_RESP_ERR, 938 IB_WC_LOC_ACCESS_ERR, 939 IB_WC_REM_INV_REQ_ERR, 940 IB_WC_REM_ACCESS_ERR, 941 IB_WC_REM_OP_ERR, 942 IB_WC_RETRY_EXC_ERR, 943 IB_WC_RNR_RETRY_EXC_ERR, 944 IB_WC_LOC_RDD_VIOL_ERR, 945 IB_WC_REM_INV_RD_REQ_ERR, 946 IB_WC_REM_ABORT_ERR, 947 IB_WC_INV_EECN_ERR, 948 IB_WC_INV_EEC_STATE_ERR, 949 IB_WC_FATAL_ERR, 950 IB_WC_RESP_TIMEOUT_ERR, 951 IB_WC_GENERAL_ERR 952 }; 953 954 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 955 956 enum ib_wc_opcode { 957 IB_WC_SEND, 958 IB_WC_RDMA_WRITE, 959 IB_WC_RDMA_READ, 960 IB_WC_COMP_SWAP, 961 IB_WC_FETCH_ADD, 962 IB_WC_LSO, 963 IB_WC_LOCAL_INV, 964 IB_WC_REG_MR, 965 IB_WC_MASKED_COMP_SWAP, 966 IB_WC_MASKED_FETCH_ADD, 967 /* 968 * Set value of IB_WC_RECV so consumers can test if a completion is a 969 * receive by testing (opcode & IB_WC_RECV). 970 */ 971 IB_WC_RECV = 1 << 7, 972 IB_WC_RECV_RDMA_WITH_IMM 973 }; 974 975 enum ib_wc_flags { 976 IB_WC_GRH = 1, 977 IB_WC_WITH_IMM = (1<<1), 978 IB_WC_WITH_INVALIDATE = (1<<2), 979 IB_WC_IP_CSUM_OK = (1<<3), 980 IB_WC_WITH_SMAC = (1<<4), 981 IB_WC_WITH_VLAN = (1<<5), 982 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 983 }; 984 985 struct ib_wc { 986 union { 987 u64 wr_id; 988 struct ib_cqe *wr_cqe; 989 }; 990 enum ib_wc_status status; 991 enum ib_wc_opcode opcode; 992 u32 vendor_err; 993 u32 byte_len; 994 struct ib_qp *qp; 995 union { 996 __be32 imm_data; 997 u32 invalidate_rkey; 998 } ex; 999 u32 src_qp; 1000 u32 slid; 1001 int wc_flags; 1002 u16 pkey_index; 1003 u8 sl; 1004 u8 dlid_path_bits; 1005 u8 port_num; /* valid only for DR SMPs on switches */ 1006 u8 smac[ETH_ALEN]; 1007 u16 vlan_id; 1008 u8 network_hdr_type; 1009 }; 1010 1011 enum ib_cq_notify_flags { 1012 IB_CQ_SOLICITED = 1 << 0, 1013 IB_CQ_NEXT_COMP = 1 << 1, 1014 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1015 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1016 }; 1017 1018 enum ib_srq_type { 1019 IB_SRQT_BASIC, 1020 IB_SRQT_XRC, 1021 IB_SRQT_TM, 1022 }; 1023 1024 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1025 { 1026 return srq_type == IB_SRQT_XRC || 1027 srq_type == IB_SRQT_TM; 1028 } 1029 1030 enum ib_srq_attr_mask { 1031 IB_SRQ_MAX_WR = 1 << 0, 1032 IB_SRQ_LIMIT = 1 << 1, 1033 }; 1034 1035 struct ib_srq_attr { 1036 u32 max_wr; 1037 u32 max_sge; 1038 u32 srq_limit; 1039 }; 1040 1041 struct ib_srq_init_attr { 1042 void (*event_handler)(struct ib_event *, void *); 1043 void *srq_context; 1044 struct ib_srq_attr attr; 1045 enum ib_srq_type srq_type; 1046 1047 struct { 1048 struct ib_cq *cq; 1049 union { 1050 struct { 1051 struct ib_xrcd *xrcd; 1052 } xrc; 1053 1054 struct { 1055 u32 max_num_tags; 1056 } tag_matching; 1057 }; 1058 } ext; 1059 }; 1060 1061 struct ib_qp_cap { 1062 u32 max_send_wr; 1063 u32 max_recv_wr; 1064 u32 max_send_sge; 1065 u32 max_recv_sge; 1066 u32 max_inline_data; 1067 1068 /* 1069 * Maximum number of rdma_rw_ctx structures in flight at a time. 1070 * ib_create_qp() will calculate the right amount of neededed WRs 1071 * and MRs based on this. 1072 */ 1073 u32 max_rdma_ctxs; 1074 }; 1075 1076 enum ib_sig_type { 1077 IB_SIGNAL_ALL_WR, 1078 IB_SIGNAL_REQ_WR 1079 }; 1080 1081 enum ib_qp_type { 1082 /* 1083 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1084 * here (and in that order) since the MAD layer uses them as 1085 * indices into a 2-entry table. 1086 */ 1087 IB_QPT_SMI, 1088 IB_QPT_GSI, 1089 1090 IB_QPT_RC, 1091 IB_QPT_UC, 1092 IB_QPT_UD, 1093 IB_QPT_RAW_IPV6, 1094 IB_QPT_RAW_ETHERTYPE, 1095 IB_QPT_RAW_PACKET = 8, 1096 IB_QPT_XRC_INI = 9, 1097 IB_QPT_XRC_TGT, 1098 IB_QPT_MAX, 1099 IB_QPT_DRIVER = 0xFF, 1100 /* Reserve a range for qp types internal to the low level driver. 1101 * These qp types will not be visible at the IB core layer, so the 1102 * IB_QPT_MAX usages should not be affected in the core layer 1103 */ 1104 IB_QPT_RESERVED1 = 0x1000, 1105 IB_QPT_RESERVED2, 1106 IB_QPT_RESERVED3, 1107 IB_QPT_RESERVED4, 1108 IB_QPT_RESERVED5, 1109 IB_QPT_RESERVED6, 1110 IB_QPT_RESERVED7, 1111 IB_QPT_RESERVED8, 1112 IB_QPT_RESERVED9, 1113 IB_QPT_RESERVED10, 1114 }; 1115 1116 enum ib_qp_create_flags { 1117 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1118 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1119 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1120 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1121 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1122 IB_QP_CREATE_NETIF_QP = 1 << 5, 1123 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1124 /* FREE = 1 << 7, */ 1125 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1126 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1127 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1128 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1129 /* reserve bits 26-31 for low level drivers' internal use */ 1130 IB_QP_CREATE_RESERVED_START = 1 << 26, 1131 IB_QP_CREATE_RESERVED_END = 1 << 31, 1132 }; 1133 1134 /* 1135 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1136 * callback to destroy the passed in QP. 1137 */ 1138 1139 struct ib_qp_init_attr { 1140 /* Consumer's event_handler callback must not block */ 1141 void (*event_handler)(struct ib_event *, void *); 1142 1143 void *qp_context; 1144 struct ib_cq *send_cq; 1145 struct ib_cq *recv_cq; 1146 struct ib_srq *srq; 1147 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1148 struct ib_qp_cap cap; 1149 enum ib_sig_type sq_sig_type; 1150 enum ib_qp_type qp_type; 1151 u32 create_flags; 1152 1153 /* 1154 * Only needed for special QP types, or when using the RW API. 1155 */ 1156 u8 port_num; 1157 struct ib_rwq_ind_table *rwq_ind_tbl; 1158 u32 source_qpn; 1159 }; 1160 1161 struct ib_qp_open_attr { 1162 void (*event_handler)(struct ib_event *, void *); 1163 void *qp_context; 1164 u32 qp_num; 1165 enum ib_qp_type qp_type; 1166 }; 1167 1168 enum ib_rnr_timeout { 1169 IB_RNR_TIMER_655_36 = 0, 1170 IB_RNR_TIMER_000_01 = 1, 1171 IB_RNR_TIMER_000_02 = 2, 1172 IB_RNR_TIMER_000_03 = 3, 1173 IB_RNR_TIMER_000_04 = 4, 1174 IB_RNR_TIMER_000_06 = 5, 1175 IB_RNR_TIMER_000_08 = 6, 1176 IB_RNR_TIMER_000_12 = 7, 1177 IB_RNR_TIMER_000_16 = 8, 1178 IB_RNR_TIMER_000_24 = 9, 1179 IB_RNR_TIMER_000_32 = 10, 1180 IB_RNR_TIMER_000_48 = 11, 1181 IB_RNR_TIMER_000_64 = 12, 1182 IB_RNR_TIMER_000_96 = 13, 1183 IB_RNR_TIMER_001_28 = 14, 1184 IB_RNR_TIMER_001_92 = 15, 1185 IB_RNR_TIMER_002_56 = 16, 1186 IB_RNR_TIMER_003_84 = 17, 1187 IB_RNR_TIMER_005_12 = 18, 1188 IB_RNR_TIMER_007_68 = 19, 1189 IB_RNR_TIMER_010_24 = 20, 1190 IB_RNR_TIMER_015_36 = 21, 1191 IB_RNR_TIMER_020_48 = 22, 1192 IB_RNR_TIMER_030_72 = 23, 1193 IB_RNR_TIMER_040_96 = 24, 1194 IB_RNR_TIMER_061_44 = 25, 1195 IB_RNR_TIMER_081_92 = 26, 1196 IB_RNR_TIMER_122_88 = 27, 1197 IB_RNR_TIMER_163_84 = 28, 1198 IB_RNR_TIMER_245_76 = 29, 1199 IB_RNR_TIMER_327_68 = 30, 1200 IB_RNR_TIMER_491_52 = 31 1201 }; 1202 1203 enum ib_qp_attr_mask { 1204 IB_QP_STATE = 1, 1205 IB_QP_CUR_STATE = (1<<1), 1206 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1207 IB_QP_ACCESS_FLAGS = (1<<3), 1208 IB_QP_PKEY_INDEX = (1<<4), 1209 IB_QP_PORT = (1<<5), 1210 IB_QP_QKEY = (1<<6), 1211 IB_QP_AV = (1<<7), 1212 IB_QP_PATH_MTU = (1<<8), 1213 IB_QP_TIMEOUT = (1<<9), 1214 IB_QP_RETRY_CNT = (1<<10), 1215 IB_QP_RNR_RETRY = (1<<11), 1216 IB_QP_RQ_PSN = (1<<12), 1217 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1218 IB_QP_ALT_PATH = (1<<14), 1219 IB_QP_MIN_RNR_TIMER = (1<<15), 1220 IB_QP_SQ_PSN = (1<<16), 1221 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1222 IB_QP_PATH_MIG_STATE = (1<<18), 1223 IB_QP_CAP = (1<<19), 1224 IB_QP_DEST_QPN = (1<<20), 1225 IB_QP_RESERVED1 = (1<<21), 1226 IB_QP_RESERVED2 = (1<<22), 1227 IB_QP_RESERVED3 = (1<<23), 1228 IB_QP_RESERVED4 = (1<<24), 1229 IB_QP_RATE_LIMIT = (1<<25), 1230 }; 1231 1232 enum ib_qp_state { 1233 IB_QPS_RESET, 1234 IB_QPS_INIT, 1235 IB_QPS_RTR, 1236 IB_QPS_RTS, 1237 IB_QPS_SQD, 1238 IB_QPS_SQE, 1239 IB_QPS_ERR 1240 }; 1241 1242 enum ib_mig_state { 1243 IB_MIG_MIGRATED, 1244 IB_MIG_REARM, 1245 IB_MIG_ARMED 1246 }; 1247 1248 enum ib_mw_type { 1249 IB_MW_TYPE_1 = 1, 1250 IB_MW_TYPE_2 = 2 1251 }; 1252 1253 struct ib_qp_attr { 1254 enum ib_qp_state qp_state; 1255 enum ib_qp_state cur_qp_state; 1256 enum ib_mtu path_mtu; 1257 enum ib_mig_state path_mig_state; 1258 u32 qkey; 1259 u32 rq_psn; 1260 u32 sq_psn; 1261 u32 dest_qp_num; 1262 int qp_access_flags; 1263 struct ib_qp_cap cap; 1264 struct rdma_ah_attr ah_attr; 1265 struct rdma_ah_attr alt_ah_attr; 1266 u16 pkey_index; 1267 u16 alt_pkey_index; 1268 u8 en_sqd_async_notify; 1269 u8 sq_draining; 1270 u8 max_rd_atomic; 1271 u8 max_dest_rd_atomic; 1272 u8 min_rnr_timer; 1273 u8 port_num; 1274 u8 timeout; 1275 u8 retry_cnt; 1276 u8 rnr_retry; 1277 u8 alt_port_num; 1278 u8 alt_timeout; 1279 u32 rate_limit; 1280 }; 1281 1282 enum ib_wr_opcode { 1283 /* These are shared with userspace */ 1284 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1285 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1286 IB_WR_SEND = IB_UVERBS_WR_SEND, 1287 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1288 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1289 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1290 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1291 IB_WR_LSO = IB_UVERBS_WR_TSO, 1292 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1293 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1294 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1295 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1296 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1297 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1298 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1299 1300 /* These are kernel only and can not be issued by userspace */ 1301 IB_WR_REG_MR = 0x20, 1302 IB_WR_REG_SIG_MR, 1303 1304 /* reserve values for low level drivers' internal use. 1305 * These values will not be used at all in the ib core layer. 1306 */ 1307 IB_WR_RESERVED1 = 0xf0, 1308 IB_WR_RESERVED2, 1309 IB_WR_RESERVED3, 1310 IB_WR_RESERVED4, 1311 IB_WR_RESERVED5, 1312 IB_WR_RESERVED6, 1313 IB_WR_RESERVED7, 1314 IB_WR_RESERVED8, 1315 IB_WR_RESERVED9, 1316 IB_WR_RESERVED10, 1317 }; 1318 1319 enum ib_send_flags { 1320 IB_SEND_FENCE = 1, 1321 IB_SEND_SIGNALED = (1<<1), 1322 IB_SEND_SOLICITED = (1<<2), 1323 IB_SEND_INLINE = (1<<3), 1324 IB_SEND_IP_CSUM = (1<<4), 1325 1326 /* reserve bits 26-31 for low level drivers' internal use */ 1327 IB_SEND_RESERVED_START = (1 << 26), 1328 IB_SEND_RESERVED_END = (1 << 31), 1329 }; 1330 1331 struct ib_sge { 1332 u64 addr; 1333 u32 length; 1334 u32 lkey; 1335 }; 1336 1337 struct ib_cqe { 1338 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1339 }; 1340 1341 struct ib_send_wr { 1342 struct ib_send_wr *next; 1343 union { 1344 u64 wr_id; 1345 struct ib_cqe *wr_cqe; 1346 }; 1347 struct ib_sge *sg_list; 1348 int num_sge; 1349 enum ib_wr_opcode opcode; 1350 int send_flags; 1351 union { 1352 __be32 imm_data; 1353 u32 invalidate_rkey; 1354 } ex; 1355 }; 1356 1357 struct ib_rdma_wr { 1358 struct ib_send_wr wr; 1359 u64 remote_addr; 1360 u32 rkey; 1361 }; 1362 1363 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1364 { 1365 return container_of(wr, struct ib_rdma_wr, wr); 1366 } 1367 1368 struct ib_atomic_wr { 1369 struct ib_send_wr wr; 1370 u64 remote_addr; 1371 u64 compare_add; 1372 u64 swap; 1373 u64 compare_add_mask; 1374 u64 swap_mask; 1375 u32 rkey; 1376 }; 1377 1378 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1379 { 1380 return container_of(wr, struct ib_atomic_wr, wr); 1381 } 1382 1383 struct ib_ud_wr { 1384 struct ib_send_wr wr; 1385 struct ib_ah *ah; 1386 void *header; 1387 int hlen; 1388 int mss; 1389 u32 remote_qpn; 1390 u32 remote_qkey; 1391 u16 pkey_index; /* valid for GSI only */ 1392 u8 port_num; /* valid for DR SMPs on switch only */ 1393 }; 1394 1395 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1396 { 1397 return container_of(wr, struct ib_ud_wr, wr); 1398 } 1399 1400 struct ib_reg_wr { 1401 struct ib_send_wr wr; 1402 struct ib_mr *mr; 1403 u32 key; 1404 int access; 1405 }; 1406 1407 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1408 { 1409 return container_of(wr, struct ib_reg_wr, wr); 1410 } 1411 1412 struct ib_sig_handover_wr { 1413 struct ib_send_wr wr; 1414 struct ib_sig_attrs *sig_attrs; 1415 struct ib_mr *sig_mr; 1416 int access_flags; 1417 struct ib_sge *prot; 1418 }; 1419 1420 static inline const struct ib_sig_handover_wr * 1421 sig_handover_wr(const struct ib_send_wr *wr) 1422 { 1423 return container_of(wr, struct ib_sig_handover_wr, wr); 1424 } 1425 1426 struct ib_recv_wr { 1427 struct ib_recv_wr *next; 1428 union { 1429 u64 wr_id; 1430 struct ib_cqe *wr_cqe; 1431 }; 1432 struct ib_sge *sg_list; 1433 int num_sge; 1434 }; 1435 1436 enum ib_access_flags { 1437 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1438 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1439 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1440 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1441 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1442 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1443 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1444 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1445 1446 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1) 1447 }; 1448 1449 /* 1450 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1451 * are hidden here instead of a uapi header! 1452 */ 1453 enum ib_mr_rereg_flags { 1454 IB_MR_REREG_TRANS = 1, 1455 IB_MR_REREG_PD = (1<<1), 1456 IB_MR_REREG_ACCESS = (1<<2), 1457 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1458 }; 1459 1460 struct ib_fmr_attr { 1461 int max_pages; 1462 int max_maps; 1463 u8 page_shift; 1464 }; 1465 1466 struct ib_umem; 1467 1468 enum rdma_remove_reason { 1469 /* 1470 * Userspace requested uobject deletion or initial try 1471 * to remove uobject via cleanup. Call could fail 1472 */ 1473 RDMA_REMOVE_DESTROY, 1474 /* Context deletion. This call should delete the actual object itself */ 1475 RDMA_REMOVE_CLOSE, 1476 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1477 RDMA_REMOVE_DRIVER_REMOVE, 1478 /* uobj is being cleaned-up before being committed */ 1479 RDMA_REMOVE_ABORT, 1480 }; 1481 1482 struct ib_rdmacg_object { 1483 #ifdef CONFIG_CGROUP_RDMA 1484 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1485 #endif 1486 }; 1487 1488 struct ib_ucontext { 1489 struct ib_device *device; 1490 struct ib_uverbs_file *ufile; 1491 /* 1492 * 'closing' can be read by the driver only during a destroy callback, 1493 * it is set when we are closing the file descriptor and indicates 1494 * that mm_sem may be locked. 1495 */ 1496 bool closing; 1497 1498 bool cleanup_retryable; 1499 1500 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1501 void (*invalidate_range)(struct ib_umem_odp *umem_odp, 1502 unsigned long start, unsigned long end); 1503 struct mutex per_mm_list_lock; 1504 struct list_head per_mm_list; 1505 #endif 1506 1507 struct ib_rdmacg_object cg_obj; 1508 /* 1509 * Implementation details of the RDMA core, don't use in drivers: 1510 */ 1511 struct rdma_restrack_entry res; 1512 }; 1513 1514 struct ib_uobject { 1515 u64 user_handle; /* handle given to us by userspace */ 1516 /* ufile & ucontext owning this object */ 1517 struct ib_uverbs_file *ufile; 1518 /* FIXME, save memory: ufile->context == context */ 1519 struct ib_ucontext *context; /* associated user context */ 1520 void *object; /* containing object */ 1521 struct list_head list; /* link to context's list */ 1522 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1523 int id; /* index into kernel idr */ 1524 struct kref ref; 1525 atomic_t usecnt; /* protects exclusive access */ 1526 struct rcu_head rcu; /* kfree_rcu() overhead */ 1527 1528 const struct uverbs_api_object *uapi_object; 1529 }; 1530 1531 struct ib_udata { 1532 const void __user *inbuf; 1533 void __user *outbuf; 1534 size_t inlen; 1535 size_t outlen; 1536 }; 1537 1538 struct ib_pd { 1539 u32 local_dma_lkey; 1540 u32 flags; 1541 struct ib_device *device; 1542 struct ib_uobject *uobject; 1543 atomic_t usecnt; /* count all resources */ 1544 1545 u32 unsafe_global_rkey; 1546 1547 /* 1548 * Implementation details of the RDMA core, don't use in drivers: 1549 */ 1550 struct ib_mr *__internal_mr; 1551 struct rdma_restrack_entry res; 1552 }; 1553 1554 struct ib_xrcd { 1555 struct ib_device *device; 1556 atomic_t usecnt; /* count all exposed resources */ 1557 struct inode *inode; 1558 1559 struct mutex tgt_qp_mutex; 1560 struct list_head tgt_qp_list; 1561 }; 1562 1563 struct ib_ah { 1564 struct ib_device *device; 1565 struct ib_pd *pd; 1566 struct ib_uobject *uobject; 1567 const struct ib_gid_attr *sgid_attr; 1568 enum rdma_ah_attr_type type; 1569 }; 1570 1571 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1572 1573 enum ib_poll_context { 1574 IB_POLL_DIRECT, /* caller context, no hw completions */ 1575 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1576 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1577 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1578 }; 1579 1580 struct ib_cq { 1581 struct ib_device *device; 1582 struct ib_uobject *uobject; 1583 ib_comp_handler comp_handler; 1584 void (*event_handler)(struct ib_event *, void *); 1585 void *cq_context; 1586 int cqe; 1587 atomic_t usecnt; /* count number of work queues */ 1588 enum ib_poll_context poll_ctx; 1589 struct ib_wc *wc; 1590 union { 1591 struct irq_poll iop; 1592 struct work_struct work; 1593 }; 1594 struct workqueue_struct *comp_wq; 1595 /* 1596 * Implementation details of the RDMA core, don't use in drivers: 1597 */ 1598 struct rdma_restrack_entry res; 1599 }; 1600 1601 struct ib_srq { 1602 struct ib_device *device; 1603 struct ib_pd *pd; 1604 struct ib_uobject *uobject; 1605 void (*event_handler)(struct ib_event *, void *); 1606 void *srq_context; 1607 enum ib_srq_type srq_type; 1608 atomic_t usecnt; 1609 1610 struct { 1611 struct ib_cq *cq; 1612 union { 1613 struct { 1614 struct ib_xrcd *xrcd; 1615 u32 srq_num; 1616 } xrc; 1617 }; 1618 } ext; 1619 }; 1620 1621 enum ib_raw_packet_caps { 1622 /* Strip cvlan from incoming packet and report it in the matching work 1623 * completion is supported. 1624 */ 1625 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1626 /* Scatter FCS field of an incoming packet to host memory is supported. 1627 */ 1628 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1629 /* Checksum offloads are supported (for both send and receive). */ 1630 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1631 /* When a packet is received for an RQ with no receive WQEs, the 1632 * packet processing is delayed. 1633 */ 1634 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1635 }; 1636 1637 enum ib_wq_type { 1638 IB_WQT_RQ 1639 }; 1640 1641 enum ib_wq_state { 1642 IB_WQS_RESET, 1643 IB_WQS_RDY, 1644 IB_WQS_ERR 1645 }; 1646 1647 struct ib_wq { 1648 struct ib_device *device; 1649 struct ib_uobject *uobject; 1650 void *wq_context; 1651 void (*event_handler)(struct ib_event *, void *); 1652 struct ib_pd *pd; 1653 struct ib_cq *cq; 1654 u32 wq_num; 1655 enum ib_wq_state state; 1656 enum ib_wq_type wq_type; 1657 atomic_t usecnt; 1658 }; 1659 1660 enum ib_wq_flags { 1661 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1662 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1663 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1664 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1665 }; 1666 1667 struct ib_wq_init_attr { 1668 void *wq_context; 1669 enum ib_wq_type wq_type; 1670 u32 max_wr; 1671 u32 max_sge; 1672 struct ib_cq *cq; 1673 void (*event_handler)(struct ib_event *, void *); 1674 u32 create_flags; /* Use enum ib_wq_flags */ 1675 }; 1676 1677 enum ib_wq_attr_mask { 1678 IB_WQ_STATE = 1 << 0, 1679 IB_WQ_CUR_STATE = 1 << 1, 1680 IB_WQ_FLAGS = 1 << 2, 1681 }; 1682 1683 struct ib_wq_attr { 1684 enum ib_wq_state wq_state; 1685 enum ib_wq_state curr_wq_state; 1686 u32 flags; /* Use enum ib_wq_flags */ 1687 u32 flags_mask; /* Use enum ib_wq_flags */ 1688 }; 1689 1690 struct ib_rwq_ind_table { 1691 struct ib_device *device; 1692 struct ib_uobject *uobject; 1693 atomic_t usecnt; 1694 u32 ind_tbl_num; 1695 u32 log_ind_tbl_size; 1696 struct ib_wq **ind_tbl; 1697 }; 1698 1699 struct ib_rwq_ind_table_init_attr { 1700 u32 log_ind_tbl_size; 1701 /* Each entry is a pointer to Receive Work Queue */ 1702 struct ib_wq **ind_tbl; 1703 }; 1704 1705 enum port_pkey_state { 1706 IB_PORT_PKEY_NOT_VALID = 0, 1707 IB_PORT_PKEY_VALID = 1, 1708 IB_PORT_PKEY_LISTED = 2, 1709 }; 1710 1711 struct ib_qp_security; 1712 1713 struct ib_port_pkey { 1714 enum port_pkey_state state; 1715 u16 pkey_index; 1716 u8 port_num; 1717 struct list_head qp_list; 1718 struct list_head to_error_list; 1719 struct ib_qp_security *sec; 1720 }; 1721 1722 struct ib_ports_pkeys { 1723 struct ib_port_pkey main; 1724 struct ib_port_pkey alt; 1725 }; 1726 1727 struct ib_qp_security { 1728 struct ib_qp *qp; 1729 struct ib_device *dev; 1730 /* Hold this mutex when changing port and pkey settings. */ 1731 struct mutex mutex; 1732 struct ib_ports_pkeys *ports_pkeys; 1733 /* A list of all open shared QP handles. Required to enforce security 1734 * properly for all users of a shared QP. 1735 */ 1736 struct list_head shared_qp_list; 1737 void *security; 1738 bool destroying; 1739 atomic_t error_list_count; 1740 struct completion error_complete; 1741 int error_comps_pending; 1742 }; 1743 1744 /* 1745 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1746 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1747 */ 1748 struct ib_qp { 1749 struct ib_device *device; 1750 struct ib_pd *pd; 1751 struct ib_cq *send_cq; 1752 struct ib_cq *recv_cq; 1753 spinlock_t mr_lock; 1754 int mrs_used; 1755 struct list_head rdma_mrs; 1756 struct list_head sig_mrs; 1757 struct ib_srq *srq; 1758 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1759 struct list_head xrcd_list; 1760 1761 /* count times opened, mcast attaches, flow attaches */ 1762 atomic_t usecnt; 1763 struct list_head open_list; 1764 struct ib_qp *real_qp; 1765 struct ib_uobject *uobject; 1766 void (*event_handler)(struct ib_event *, void *); 1767 void *qp_context; 1768 /* sgid_attrs associated with the AV's */ 1769 const struct ib_gid_attr *av_sgid_attr; 1770 const struct ib_gid_attr *alt_path_sgid_attr; 1771 u32 qp_num; 1772 u32 max_write_sge; 1773 u32 max_read_sge; 1774 enum ib_qp_type qp_type; 1775 struct ib_rwq_ind_table *rwq_ind_tbl; 1776 struct ib_qp_security *qp_sec; 1777 u8 port; 1778 1779 /* 1780 * Implementation details of the RDMA core, don't use in drivers: 1781 */ 1782 struct rdma_restrack_entry res; 1783 }; 1784 1785 struct ib_dm { 1786 struct ib_device *device; 1787 u32 length; 1788 u32 flags; 1789 struct ib_uobject *uobject; 1790 atomic_t usecnt; 1791 }; 1792 1793 struct ib_mr { 1794 struct ib_device *device; 1795 struct ib_pd *pd; 1796 u32 lkey; 1797 u32 rkey; 1798 u64 iova; 1799 u64 length; 1800 unsigned int page_size; 1801 bool need_inval; 1802 union { 1803 struct ib_uobject *uobject; /* user */ 1804 struct list_head qp_entry; /* FR */ 1805 }; 1806 1807 struct ib_dm *dm; 1808 1809 /* 1810 * Implementation details of the RDMA core, don't use in drivers: 1811 */ 1812 struct rdma_restrack_entry res; 1813 }; 1814 1815 struct ib_mw { 1816 struct ib_device *device; 1817 struct ib_pd *pd; 1818 struct ib_uobject *uobject; 1819 u32 rkey; 1820 enum ib_mw_type type; 1821 }; 1822 1823 struct ib_fmr { 1824 struct ib_device *device; 1825 struct ib_pd *pd; 1826 struct list_head list; 1827 u32 lkey; 1828 u32 rkey; 1829 }; 1830 1831 /* Supported steering options */ 1832 enum ib_flow_attr_type { 1833 /* steering according to rule specifications */ 1834 IB_FLOW_ATTR_NORMAL = 0x0, 1835 /* default unicast and multicast rule - 1836 * receive all Eth traffic which isn't steered to any QP 1837 */ 1838 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1839 /* default multicast rule - 1840 * receive all Eth multicast traffic which isn't steered to any QP 1841 */ 1842 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1843 /* sniffer rule - receive all port traffic */ 1844 IB_FLOW_ATTR_SNIFFER = 0x3 1845 }; 1846 1847 /* Supported steering header types */ 1848 enum ib_flow_spec_type { 1849 /* L2 headers*/ 1850 IB_FLOW_SPEC_ETH = 0x20, 1851 IB_FLOW_SPEC_IB = 0x22, 1852 /* L3 header*/ 1853 IB_FLOW_SPEC_IPV4 = 0x30, 1854 IB_FLOW_SPEC_IPV6 = 0x31, 1855 IB_FLOW_SPEC_ESP = 0x34, 1856 /* L4 headers*/ 1857 IB_FLOW_SPEC_TCP = 0x40, 1858 IB_FLOW_SPEC_UDP = 0x41, 1859 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1860 IB_FLOW_SPEC_GRE = 0x51, 1861 IB_FLOW_SPEC_MPLS = 0x60, 1862 IB_FLOW_SPEC_INNER = 0x100, 1863 /* Actions */ 1864 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1865 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1866 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1867 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1868 }; 1869 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1870 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1871 1872 /* Flow steering rule priority is set according to it's domain. 1873 * Lower domain value means higher priority. 1874 */ 1875 enum ib_flow_domain { 1876 IB_FLOW_DOMAIN_USER, 1877 IB_FLOW_DOMAIN_ETHTOOL, 1878 IB_FLOW_DOMAIN_RFS, 1879 IB_FLOW_DOMAIN_NIC, 1880 IB_FLOW_DOMAIN_NUM /* Must be last */ 1881 }; 1882 1883 enum ib_flow_flags { 1884 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1885 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1886 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1887 }; 1888 1889 struct ib_flow_eth_filter { 1890 u8 dst_mac[6]; 1891 u8 src_mac[6]; 1892 __be16 ether_type; 1893 __be16 vlan_tag; 1894 /* Must be last */ 1895 u8 real_sz[0]; 1896 }; 1897 1898 struct ib_flow_spec_eth { 1899 u32 type; 1900 u16 size; 1901 struct ib_flow_eth_filter val; 1902 struct ib_flow_eth_filter mask; 1903 }; 1904 1905 struct ib_flow_ib_filter { 1906 __be16 dlid; 1907 __u8 sl; 1908 /* Must be last */ 1909 u8 real_sz[0]; 1910 }; 1911 1912 struct ib_flow_spec_ib { 1913 u32 type; 1914 u16 size; 1915 struct ib_flow_ib_filter val; 1916 struct ib_flow_ib_filter mask; 1917 }; 1918 1919 /* IPv4 header flags */ 1920 enum ib_ipv4_flags { 1921 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1922 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1923 last have this flag set */ 1924 }; 1925 1926 struct ib_flow_ipv4_filter { 1927 __be32 src_ip; 1928 __be32 dst_ip; 1929 u8 proto; 1930 u8 tos; 1931 u8 ttl; 1932 u8 flags; 1933 /* Must be last */ 1934 u8 real_sz[0]; 1935 }; 1936 1937 struct ib_flow_spec_ipv4 { 1938 u32 type; 1939 u16 size; 1940 struct ib_flow_ipv4_filter val; 1941 struct ib_flow_ipv4_filter mask; 1942 }; 1943 1944 struct ib_flow_ipv6_filter { 1945 u8 src_ip[16]; 1946 u8 dst_ip[16]; 1947 __be32 flow_label; 1948 u8 next_hdr; 1949 u8 traffic_class; 1950 u8 hop_limit; 1951 /* Must be last */ 1952 u8 real_sz[0]; 1953 }; 1954 1955 struct ib_flow_spec_ipv6 { 1956 u32 type; 1957 u16 size; 1958 struct ib_flow_ipv6_filter val; 1959 struct ib_flow_ipv6_filter mask; 1960 }; 1961 1962 struct ib_flow_tcp_udp_filter { 1963 __be16 dst_port; 1964 __be16 src_port; 1965 /* Must be last */ 1966 u8 real_sz[0]; 1967 }; 1968 1969 struct ib_flow_spec_tcp_udp { 1970 u32 type; 1971 u16 size; 1972 struct ib_flow_tcp_udp_filter val; 1973 struct ib_flow_tcp_udp_filter mask; 1974 }; 1975 1976 struct ib_flow_tunnel_filter { 1977 __be32 tunnel_id; 1978 u8 real_sz[0]; 1979 }; 1980 1981 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1982 * the tunnel_id from val has the vni value 1983 */ 1984 struct ib_flow_spec_tunnel { 1985 u32 type; 1986 u16 size; 1987 struct ib_flow_tunnel_filter val; 1988 struct ib_flow_tunnel_filter mask; 1989 }; 1990 1991 struct ib_flow_esp_filter { 1992 __be32 spi; 1993 __be32 seq; 1994 /* Must be last */ 1995 u8 real_sz[0]; 1996 }; 1997 1998 struct ib_flow_spec_esp { 1999 u32 type; 2000 u16 size; 2001 struct ib_flow_esp_filter val; 2002 struct ib_flow_esp_filter mask; 2003 }; 2004 2005 struct ib_flow_gre_filter { 2006 __be16 c_ks_res0_ver; 2007 __be16 protocol; 2008 __be32 key; 2009 /* Must be last */ 2010 u8 real_sz[0]; 2011 }; 2012 2013 struct ib_flow_spec_gre { 2014 u32 type; 2015 u16 size; 2016 struct ib_flow_gre_filter val; 2017 struct ib_flow_gre_filter mask; 2018 }; 2019 2020 struct ib_flow_mpls_filter { 2021 __be32 tag; 2022 /* Must be last */ 2023 u8 real_sz[0]; 2024 }; 2025 2026 struct ib_flow_spec_mpls { 2027 u32 type; 2028 u16 size; 2029 struct ib_flow_mpls_filter val; 2030 struct ib_flow_mpls_filter mask; 2031 }; 2032 2033 struct ib_flow_spec_action_tag { 2034 enum ib_flow_spec_type type; 2035 u16 size; 2036 u32 tag_id; 2037 }; 2038 2039 struct ib_flow_spec_action_drop { 2040 enum ib_flow_spec_type type; 2041 u16 size; 2042 }; 2043 2044 struct ib_flow_spec_action_handle { 2045 enum ib_flow_spec_type type; 2046 u16 size; 2047 struct ib_flow_action *act; 2048 }; 2049 2050 enum ib_counters_description { 2051 IB_COUNTER_PACKETS, 2052 IB_COUNTER_BYTES, 2053 }; 2054 2055 struct ib_flow_spec_action_count { 2056 enum ib_flow_spec_type type; 2057 u16 size; 2058 struct ib_counters *counters; 2059 }; 2060 2061 union ib_flow_spec { 2062 struct { 2063 u32 type; 2064 u16 size; 2065 }; 2066 struct ib_flow_spec_eth eth; 2067 struct ib_flow_spec_ib ib; 2068 struct ib_flow_spec_ipv4 ipv4; 2069 struct ib_flow_spec_tcp_udp tcp_udp; 2070 struct ib_flow_spec_ipv6 ipv6; 2071 struct ib_flow_spec_tunnel tunnel; 2072 struct ib_flow_spec_esp esp; 2073 struct ib_flow_spec_gre gre; 2074 struct ib_flow_spec_mpls mpls; 2075 struct ib_flow_spec_action_tag flow_tag; 2076 struct ib_flow_spec_action_drop drop; 2077 struct ib_flow_spec_action_handle action; 2078 struct ib_flow_spec_action_count flow_count; 2079 }; 2080 2081 struct ib_flow_attr { 2082 enum ib_flow_attr_type type; 2083 u16 size; 2084 u16 priority; 2085 u32 flags; 2086 u8 num_of_specs; 2087 u8 port; 2088 union ib_flow_spec flows[]; 2089 }; 2090 2091 struct ib_flow { 2092 struct ib_qp *qp; 2093 struct ib_device *device; 2094 struct ib_uobject *uobject; 2095 }; 2096 2097 enum ib_flow_action_type { 2098 IB_FLOW_ACTION_UNSPECIFIED, 2099 IB_FLOW_ACTION_ESP = 1, 2100 }; 2101 2102 struct ib_flow_action_attrs_esp_keymats { 2103 enum ib_uverbs_flow_action_esp_keymat protocol; 2104 union { 2105 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2106 } keymat; 2107 }; 2108 2109 struct ib_flow_action_attrs_esp_replays { 2110 enum ib_uverbs_flow_action_esp_replay protocol; 2111 union { 2112 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2113 } replay; 2114 }; 2115 2116 enum ib_flow_action_attrs_esp_flags { 2117 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2118 * This is done in order to share the same flags between user-space and 2119 * kernel and spare an unnecessary translation. 2120 */ 2121 2122 /* Kernel flags */ 2123 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2124 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2125 }; 2126 2127 struct ib_flow_spec_list { 2128 struct ib_flow_spec_list *next; 2129 union ib_flow_spec spec; 2130 }; 2131 2132 struct ib_flow_action_attrs_esp { 2133 struct ib_flow_action_attrs_esp_keymats *keymat; 2134 struct ib_flow_action_attrs_esp_replays *replay; 2135 struct ib_flow_spec_list *encap; 2136 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2137 * Value of 0 is a valid value. 2138 */ 2139 u32 esn; 2140 u32 spi; 2141 u32 seq; 2142 u32 tfc_pad; 2143 /* Use enum ib_flow_action_attrs_esp_flags */ 2144 u64 flags; 2145 u64 hard_limit_pkts; 2146 }; 2147 2148 struct ib_flow_action { 2149 struct ib_device *device; 2150 struct ib_uobject *uobject; 2151 enum ib_flow_action_type type; 2152 atomic_t usecnt; 2153 }; 2154 2155 struct ib_mad_hdr; 2156 struct ib_grh; 2157 2158 enum ib_process_mad_flags { 2159 IB_MAD_IGNORE_MKEY = 1, 2160 IB_MAD_IGNORE_BKEY = 2, 2161 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2162 }; 2163 2164 enum ib_mad_result { 2165 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2166 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2167 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2168 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2169 }; 2170 2171 struct ib_port_cache { 2172 u64 subnet_prefix; 2173 struct ib_pkey_cache *pkey; 2174 struct ib_gid_table *gid; 2175 u8 lmc; 2176 enum ib_port_state port_state; 2177 }; 2178 2179 struct ib_cache { 2180 rwlock_t lock; 2181 struct ib_event_handler event_handler; 2182 struct ib_port_cache *ports; 2183 }; 2184 2185 struct iw_cm_verbs; 2186 2187 struct ib_port_immutable { 2188 int pkey_tbl_len; 2189 int gid_tbl_len; 2190 u32 core_cap_flags; 2191 u32 max_mad_size; 2192 }; 2193 2194 /* rdma netdev type - specifies protocol type */ 2195 enum rdma_netdev_t { 2196 RDMA_NETDEV_OPA_VNIC, 2197 RDMA_NETDEV_IPOIB, 2198 }; 2199 2200 /** 2201 * struct rdma_netdev - rdma netdev 2202 * For cases where netstack interfacing is required. 2203 */ 2204 struct rdma_netdev { 2205 void *clnt_priv; 2206 struct ib_device *hca; 2207 u8 port_num; 2208 2209 /* 2210 * cleanup function must be specified. 2211 * FIXME: This is only used for OPA_VNIC and that usage should be 2212 * removed too. 2213 */ 2214 void (*free_rdma_netdev)(struct net_device *netdev); 2215 2216 /* control functions */ 2217 void (*set_id)(struct net_device *netdev, int id); 2218 /* send packet */ 2219 int (*send)(struct net_device *dev, struct sk_buff *skb, 2220 struct ib_ah *address, u32 dqpn); 2221 /* multicast */ 2222 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2223 union ib_gid *gid, u16 mlid, 2224 int set_qkey, u32 qkey); 2225 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2226 union ib_gid *gid, u16 mlid); 2227 }; 2228 2229 struct rdma_netdev_alloc_params { 2230 size_t sizeof_priv; 2231 unsigned int txqs; 2232 unsigned int rxqs; 2233 void *param; 2234 2235 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2236 struct net_device *netdev, void *param); 2237 }; 2238 2239 struct ib_port_pkey_list { 2240 /* Lock to hold while modifying the list. */ 2241 spinlock_t list_lock; 2242 struct list_head pkey_list; 2243 }; 2244 2245 struct ib_counters { 2246 struct ib_device *device; 2247 struct ib_uobject *uobject; 2248 /* num of objects attached */ 2249 atomic_t usecnt; 2250 }; 2251 2252 struct ib_counters_read_attr { 2253 u64 *counters_buff; 2254 u32 ncounters; 2255 u32 flags; /* use enum ib_read_counters_flags */ 2256 }; 2257 2258 struct uverbs_attr_bundle; 2259 2260 struct ib_device { 2261 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2262 struct device *dma_device; 2263 2264 char name[IB_DEVICE_NAME_MAX]; 2265 2266 struct list_head event_handler_list; 2267 spinlock_t event_handler_lock; 2268 2269 rwlock_t client_data_lock; 2270 struct list_head core_list; 2271 /* Access to the client_data_list is protected by the client_data_lock 2272 * rwlock and the lists_rwsem read-write semaphore 2273 */ 2274 struct list_head client_data_list; 2275 2276 struct ib_cache cache; 2277 /** 2278 * port_immutable is indexed by port number 2279 */ 2280 struct ib_port_immutable *port_immutable; 2281 2282 int num_comp_vectors; 2283 2284 struct ib_port_pkey_list *port_pkey_list; 2285 2286 struct iw_cm_verbs *iwcm; 2287 2288 /** 2289 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2290 * driver initialized data. The struct is kfree()'ed by the sysfs 2291 * core when the device is removed. A lifespan of -1 in the return 2292 * struct tells the core to set a default lifespan. 2293 */ 2294 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2295 u8 port_num); 2296 /** 2297 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2298 * @index - The index in the value array we wish to have updated, or 2299 * num_counters if we want all stats updated 2300 * Return codes - 2301 * < 0 - Error, no counters updated 2302 * index - Updated the single counter pointed to by index 2303 * num_counters - Updated all counters (will reset the timestamp 2304 * and prevent further calls for lifespan milliseconds) 2305 * Drivers are allowed to update all counters in lieu of just the 2306 * one given in index at their option 2307 */ 2308 int (*get_hw_stats)(struct ib_device *device, 2309 struct rdma_hw_stats *stats, 2310 u8 port, int index); 2311 int (*query_device)(struct ib_device *device, 2312 struct ib_device_attr *device_attr, 2313 struct ib_udata *udata); 2314 int (*query_port)(struct ib_device *device, 2315 u8 port_num, 2316 struct ib_port_attr *port_attr); 2317 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2318 u8 port_num); 2319 /* When calling get_netdev, the HW vendor's driver should return the 2320 * net device of device @device at port @port_num or NULL if such 2321 * a net device doesn't exist. The vendor driver should call dev_hold 2322 * on this net device. The HW vendor's device driver must guarantee 2323 * that this function returns NULL before the net device has finished 2324 * NETDEV_UNREGISTER state. 2325 */ 2326 struct net_device *(*get_netdev)(struct ib_device *device, 2327 u8 port_num); 2328 /* query_gid should be return GID value for @device, when @port_num 2329 * link layer is either IB or iWarp. It is no-op if @port_num port 2330 * is RoCE link layer. 2331 */ 2332 int (*query_gid)(struct ib_device *device, 2333 u8 port_num, int index, 2334 union ib_gid *gid); 2335 /* When calling add_gid, the HW vendor's driver should add the gid 2336 * of device of port at gid index available at @attr. Meta-info of 2337 * that gid (for example, the network device related to this gid) is 2338 * available at @attr. @context allows the HW vendor driver to store 2339 * extra information together with a GID entry. The HW vendor driver may 2340 * allocate memory to contain this information and store it in @context 2341 * when a new GID entry is written to. Params are consistent until the 2342 * next call of add_gid or delete_gid. The function should return 0 on 2343 * success or error otherwise. The function could be called 2344 * concurrently for different ports. This function is only called when 2345 * roce_gid_table is used. 2346 */ 2347 int (*add_gid)(const struct ib_gid_attr *attr, 2348 void **context); 2349 /* When calling del_gid, the HW vendor's driver should delete the 2350 * gid of device @device at gid index gid_index of port port_num 2351 * available in @attr. 2352 * Upon the deletion of a GID entry, the HW vendor must free any 2353 * allocated memory. The caller will clear @context afterwards. 2354 * This function is only called when roce_gid_table is used. 2355 */ 2356 int (*del_gid)(const struct ib_gid_attr *attr, 2357 void **context); 2358 int (*query_pkey)(struct ib_device *device, 2359 u8 port_num, u16 index, u16 *pkey); 2360 int (*modify_device)(struct ib_device *device, 2361 int device_modify_mask, 2362 struct ib_device_modify *device_modify); 2363 int (*modify_port)(struct ib_device *device, 2364 u8 port_num, int port_modify_mask, 2365 struct ib_port_modify *port_modify); 2366 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 2367 struct ib_udata *udata); 2368 int (*dealloc_ucontext)(struct ib_ucontext *context); 2369 int (*mmap)(struct ib_ucontext *context, 2370 struct vm_area_struct *vma); 2371 struct ib_pd * (*alloc_pd)(struct ib_device *device, 2372 struct ib_ucontext *context, 2373 struct ib_udata *udata); 2374 int (*dealloc_pd)(struct ib_pd *pd); 2375 struct ib_ah * (*create_ah)(struct ib_pd *pd, 2376 struct rdma_ah_attr *ah_attr, 2377 struct ib_udata *udata); 2378 int (*modify_ah)(struct ib_ah *ah, 2379 struct rdma_ah_attr *ah_attr); 2380 int (*query_ah)(struct ib_ah *ah, 2381 struct rdma_ah_attr *ah_attr); 2382 int (*destroy_ah)(struct ib_ah *ah); 2383 struct ib_srq * (*create_srq)(struct ib_pd *pd, 2384 struct ib_srq_init_attr *srq_init_attr, 2385 struct ib_udata *udata); 2386 int (*modify_srq)(struct ib_srq *srq, 2387 struct ib_srq_attr *srq_attr, 2388 enum ib_srq_attr_mask srq_attr_mask, 2389 struct ib_udata *udata); 2390 int (*query_srq)(struct ib_srq *srq, 2391 struct ib_srq_attr *srq_attr); 2392 int (*destroy_srq)(struct ib_srq *srq); 2393 int (*post_srq_recv)(struct ib_srq *srq, 2394 const struct ib_recv_wr *recv_wr, 2395 const struct ib_recv_wr **bad_recv_wr); 2396 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2397 struct ib_qp_init_attr *qp_init_attr, 2398 struct ib_udata *udata); 2399 int (*modify_qp)(struct ib_qp *qp, 2400 struct ib_qp_attr *qp_attr, 2401 int qp_attr_mask, 2402 struct ib_udata *udata); 2403 int (*query_qp)(struct ib_qp *qp, 2404 struct ib_qp_attr *qp_attr, 2405 int qp_attr_mask, 2406 struct ib_qp_init_attr *qp_init_attr); 2407 int (*destroy_qp)(struct ib_qp *qp); 2408 int (*post_send)(struct ib_qp *qp, 2409 const struct ib_send_wr *send_wr, 2410 const struct ib_send_wr **bad_send_wr); 2411 int (*post_recv)(struct ib_qp *qp, 2412 const struct ib_recv_wr *recv_wr, 2413 const struct ib_recv_wr **bad_recv_wr); 2414 struct ib_cq * (*create_cq)(struct ib_device *device, 2415 const struct ib_cq_init_attr *attr, 2416 struct ib_ucontext *context, 2417 struct ib_udata *udata); 2418 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2419 u16 cq_period); 2420 int (*destroy_cq)(struct ib_cq *cq); 2421 int (*resize_cq)(struct ib_cq *cq, int cqe, 2422 struct ib_udata *udata); 2423 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2424 struct ib_wc *wc); 2425 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2426 int (*req_notify_cq)(struct ib_cq *cq, 2427 enum ib_cq_notify_flags flags); 2428 int (*req_ncomp_notif)(struct ib_cq *cq, 2429 int wc_cnt); 2430 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2431 int mr_access_flags); 2432 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2433 u64 start, u64 length, 2434 u64 virt_addr, 2435 int mr_access_flags, 2436 struct ib_udata *udata); 2437 int (*rereg_user_mr)(struct ib_mr *mr, 2438 int flags, 2439 u64 start, u64 length, 2440 u64 virt_addr, 2441 int mr_access_flags, 2442 struct ib_pd *pd, 2443 struct ib_udata *udata); 2444 int (*dereg_mr)(struct ib_mr *mr); 2445 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2446 enum ib_mr_type mr_type, 2447 u32 max_num_sg); 2448 int (*map_mr_sg)(struct ib_mr *mr, 2449 struct scatterlist *sg, 2450 int sg_nents, 2451 unsigned int *sg_offset); 2452 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2453 enum ib_mw_type type, 2454 struct ib_udata *udata); 2455 int (*dealloc_mw)(struct ib_mw *mw); 2456 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2457 int mr_access_flags, 2458 struct ib_fmr_attr *fmr_attr); 2459 int (*map_phys_fmr)(struct ib_fmr *fmr, 2460 u64 *page_list, int list_len, 2461 u64 iova); 2462 int (*unmap_fmr)(struct list_head *fmr_list); 2463 int (*dealloc_fmr)(struct ib_fmr *fmr); 2464 int (*attach_mcast)(struct ib_qp *qp, 2465 union ib_gid *gid, 2466 u16 lid); 2467 int (*detach_mcast)(struct ib_qp *qp, 2468 union ib_gid *gid, 2469 u16 lid); 2470 int (*process_mad)(struct ib_device *device, 2471 int process_mad_flags, 2472 u8 port_num, 2473 const struct ib_wc *in_wc, 2474 const struct ib_grh *in_grh, 2475 const struct ib_mad_hdr *in_mad, 2476 size_t in_mad_size, 2477 struct ib_mad_hdr *out_mad, 2478 size_t *out_mad_size, 2479 u16 *out_mad_pkey_index); 2480 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2481 struct ib_ucontext *ucontext, 2482 struct ib_udata *udata); 2483 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2484 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2485 struct ib_flow_attr 2486 *flow_attr, 2487 int domain, 2488 struct ib_udata *udata); 2489 int (*destroy_flow)(struct ib_flow *flow_id); 2490 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2491 struct ib_mr_status *mr_status); 2492 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2493 void (*drain_rq)(struct ib_qp *qp); 2494 void (*drain_sq)(struct ib_qp *qp); 2495 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2496 int state); 2497 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2498 struct ifla_vf_info *ivf); 2499 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2500 struct ifla_vf_stats *stats); 2501 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2502 int type); 2503 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2504 struct ib_wq_init_attr *init_attr, 2505 struct ib_udata *udata); 2506 int (*destroy_wq)(struct ib_wq *wq); 2507 int (*modify_wq)(struct ib_wq *wq, 2508 struct ib_wq_attr *attr, 2509 u32 wq_attr_mask, 2510 struct ib_udata *udata); 2511 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2512 struct ib_rwq_ind_table_init_attr *init_attr, 2513 struct ib_udata *udata); 2514 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2515 struct ib_flow_action * (*create_flow_action_esp)(struct ib_device *device, 2516 const struct ib_flow_action_attrs_esp *attr, 2517 struct uverbs_attr_bundle *attrs); 2518 int (*destroy_flow_action)(struct ib_flow_action *action); 2519 int (*modify_flow_action_esp)(struct ib_flow_action *action, 2520 const struct ib_flow_action_attrs_esp *attr, 2521 struct uverbs_attr_bundle *attrs); 2522 struct ib_dm * (*alloc_dm)(struct ib_device *device, 2523 struct ib_ucontext *context, 2524 struct ib_dm_alloc_attr *attr, 2525 struct uverbs_attr_bundle *attrs); 2526 int (*dealloc_dm)(struct ib_dm *dm); 2527 struct ib_mr * (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2528 struct ib_dm_mr_attr *attr, 2529 struct uverbs_attr_bundle *attrs); 2530 struct ib_counters * (*create_counters)(struct ib_device *device, 2531 struct uverbs_attr_bundle *attrs); 2532 int (*destroy_counters)(struct ib_counters *counters); 2533 int (*read_counters)(struct ib_counters *counters, 2534 struct ib_counters_read_attr *counters_read_attr, 2535 struct uverbs_attr_bundle *attrs); 2536 2537 /** 2538 * rdma netdev operation 2539 * 2540 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2541 * must return -EOPNOTSUPP if it doesn't support the specified type. 2542 */ 2543 struct net_device *(*alloc_rdma_netdev)( 2544 struct ib_device *device, 2545 u8 port_num, 2546 enum rdma_netdev_t type, 2547 const char *name, 2548 unsigned char name_assign_type, 2549 void (*setup)(struct net_device *)); 2550 2551 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2552 enum rdma_netdev_t type, 2553 struct rdma_netdev_alloc_params *params); 2554 2555 struct module *owner; 2556 struct device dev; 2557 /* First group for device attributes, 2558 * Second group for driver provided attributes (optional). 2559 * It is NULL terminated array. 2560 */ 2561 const struct attribute_group *groups[3]; 2562 2563 struct kobject *ports_kobj; 2564 struct list_head port_list; 2565 2566 enum { 2567 IB_DEV_UNINITIALIZED, 2568 IB_DEV_REGISTERED, 2569 IB_DEV_UNREGISTERED 2570 } reg_state; 2571 2572 int uverbs_abi_ver; 2573 u64 uverbs_cmd_mask; 2574 u64 uverbs_ex_cmd_mask; 2575 2576 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2577 __be64 node_guid; 2578 u32 local_dma_lkey; 2579 u16 is_switch:1; 2580 u8 node_type; 2581 u8 phys_port_cnt; 2582 struct ib_device_attr attrs; 2583 struct attribute_group *hw_stats_ag; 2584 struct rdma_hw_stats *hw_stats; 2585 2586 #ifdef CONFIG_CGROUP_RDMA 2587 struct rdmacg_device cg_device; 2588 #endif 2589 2590 u32 index; 2591 /* 2592 * Implementation details of the RDMA core, don't use in drivers 2593 */ 2594 struct rdma_restrack_root res; 2595 2596 /** 2597 * The following mandatory functions are used only at device 2598 * registration. Keep functions such as these at the end of this 2599 * structure to avoid cache line misses when accessing struct ib_device 2600 * in fast paths. 2601 */ 2602 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2603 void (*get_dev_fw_str)(struct ib_device *, char *str); 2604 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2605 int comp_vector); 2606 2607 const struct uapi_definition *driver_def; 2608 enum rdma_driver_id driver_id; 2609 /* 2610 * Provides synchronization between device unregistration and netlink 2611 * commands on a device. To be used only by core. 2612 */ 2613 refcount_t refcount; 2614 struct completion unreg_completion; 2615 }; 2616 2617 struct ib_client { 2618 char *name; 2619 void (*add) (struct ib_device *); 2620 void (*remove)(struct ib_device *, void *client_data); 2621 2622 /* Returns the net_dev belonging to this ib_client and matching the 2623 * given parameters. 2624 * @dev: An RDMA device that the net_dev use for communication. 2625 * @port: A physical port number on the RDMA device. 2626 * @pkey: P_Key that the net_dev uses if applicable. 2627 * @gid: A GID that the net_dev uses to communicate. 2628 * @addr: An IP address the net_dev is configured with. 2629 * @client_data: The device's client data set by ib_set_client_data(). 2630 * 2631 * An ib_client that implements a net_dev on top of RDMA devices 2632 * (such as IP over IB) should implement this callback, allowing the 2633 * rdma_cm module to find the right net_dev for a given request. 2634 * 2635 * The caller is responsible for calling dev_put on the returned 2636 * netdev. */ 2637 struct net_device *(*get_net_dev_by_params)( 2638 struct ib_device *dev, 2639 u8 port, 2640 u16 pkey, 2641 const union ib_gid *gid, 2642 const struct sockaddr *addr, 2643 void *client_data); 2644 struct list_head list; 2645 }; 2646 2647 struct ib_device *ib_alloc_device(size_t size); 2648 void ib_dealloc_device(struct ib_device *device); 2649 2650 void ib_get_device_fw_str(struct ib_device *device, char *str); 2651 2652 int ib_register_device(struct ib_device *device, const char *name, 2653 int (*port_callback)(struct ib_device *, u8, 2654 struct kobject *)); 2655 void ib_unregister_device(struct ib_device *device); 2656 2657 int ib_register_client (struct ib_client *client); 2658 void ib_unregister_client(struct ib_client *client); 2659 2660 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2661 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2662 void *data); 2663 2664 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 2665 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2666 unsigned long pfn, unsigned long size, pgprot_t prot); 2667 int rdma_user_mmap_page(struct ib_ucontext *ucontext, 2668 struct vm_area_struct *vma, struct page *page, 2669 unsigned long size); 2670 #else 2671 static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext, 2672 struct vm_area_struct *vma, 2673 unsigned long pfn, unsigned long size, 2674 pgprot_t prot) 2675 { 2676 return -EINVAL; 2677 } 2678 static inline int rdma_user_mmap_page(struct ib_ucontext *ucontext, 2679 struct vm_area_struct *vma, struct page *page, 2680 unsigned long size) 2681 { 2682 return -EINVAL; 2683 } 2684 #endif 2685 2686 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2687 { 2688 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2689 } 2690 2691 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2692 { 2693 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2694 } 2695 2696 static inline bool ib_is_buffer_cleared(const void __user *p, 2697 size_t len) 2698 { 2699 bool ret; 2700 u8 *buf; 2701 2702 if (len > USHRT_MAX) 2703 return false; 2704 2705 buf = memdup_user(p, len); 2706 if (IS_ERR(buf)) 2707 return false; 2708 2709 ret = !memchr_inv(buf, 0, len); 2710 kfree(buf); 2711 return ret; 2712 } 2713 2714 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2715 size_t offset, 2716 size_t len) 2717 { 2718 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2719 } 2720 2721 /** 2722 * ib_is_destroy_retryable - Check whether the uobject destruction 2723 * is retryable. 2724 * @ret: The initial destruction return code 2725 * @why: remove reason 2726 * @uobj: The uobject that is destroyed 2727 * 2728 * This function is a helper function that IB layer and low-level drivers 2729 * can use to consider whether the destruction of the given uobject is 2730 * retry-able. 2731 * It checks the original return code, if it wasn't success the destruction 2732 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2733 * the remove reason. (i.e. why). 2734 * Must be called with the object locked for destroy. 2735 */ 2736 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2737 struct ib_uobject *uobj) 2738 { 2739 return ret && (why == RDMA_REMOVE_DESTROY || 2740 uobj->context->cleanup_retryable); 2741 } 2742 2743 /** 2744 * ib_destroy_usecnt - Called during destruction to check the usecnt 2745 * @usecnt: The usecnt atomic 2746 * @why: remove reason 2747 * @uobj: The uobject that is destroyed 2748 * 2749 * Non-zero usecnts will block destruction unless destruction was triggered by 2750 * a ucontext cleanup. 2751 */ 2752 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2753 enum rdma_remove_reason why, 2754 struct ib_uobject *uobj) 2755 { 2756 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2757 return -EBUSY; 2758 return 0; 2759 } 2760 2761 /** 2762 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2763 * contains all required attributes and no attributes not allowed for 2764 * the given QP state transition. 2765 * @cur_state: Current QP state 2766 * @next_state: Next QP state 2767 * @type: QP type 2768 * @mask: Mask of supplied QP attributes 2769 * 2770 * This function is a helper function that a low-level driver's 2771 * modify_qp method can use to validate the consumer's input. It 2772 * checks that cur_state and next_state are valid QP states, that a 2773 * transition from cur_state to next_state is allowed by the IB spec, 2774 * and that the attribute mask supplied is allowed for the transition. 2775 */ 2776 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2777 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2778 2779 void ib_register_event_handler(struct ib_event_handler *event_handler); 2780 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2781 void ib_dispatch_event(struct ib_event *event); 2782 2783 int ib_query_port(struct ib_device *device, 2784 u8 port_num, struct ib_port_attr *port_attr); 2785 2786 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2787 u8 port_num); 2788 2789 /** 2790 * rdma_cap_ib_switch - Check if the device is IB switch 2791 * @device: Device to check 2792 * 2793 * Device driver is responsible for setting is_switch bit on 2794 * in ib_device structure at init time. 2795 * 2796 * Return: true if the device is IB switch. 2797 */ 2798 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2799 { 2800 return device->is_switch; 2801 } 2802 2803 /** 2804 * rdma_start_port - Return the first valid port number for the device 2805 * specified 2806 * 2807 * @device: Device to be checked 2808 * 2809 * Return start port number 2810 */ 2811 static inline u8 rdma_start_port(const struct ib_device *device) 2812 { 2813 return rdma_cap_ib_switch(device) ? 0 : 1; 2814 } 2815 2816 /** 2817 * rdma_end_port - Return the last valid port number for the device 2818 * specified 2819 * 2820 * @device: Device to be checked 2821 * 2822 * Return last port number 2823 */ 2824 static inline u8 rdma_end_port(const struct ib_device *device) 2825 { 2826 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2827 } 2828 2829 static inline int rdma_is_port_valid(const struct ib_device *device, 2830 unsigned int port) 2831 { 2832 return (port >= rdma_start_port(device) && 2833 port <= rdma_end_port(device)); 2834 } 2835 2836 static inline bool rdma_is_grh_required(const struct ib_device *device, 2837 u8 port_num) 2838 { 2839 return device->port_immutable[port_num].core_cap_flags & 2840 RDMA_CORE_PORT_IB_GRH_REQUIRED; 2841 } 2842 2843 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2844 { 2845 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2846 } 2847 2848 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2849 { 2850 return device->port_immutable[port_num].core_cap_flags & 2851 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2852 } 2853 2854 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2855 { 2856 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2857 } 2858 2859 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2860 { 2861 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2862 } 2863 2864 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2865 { 2866 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2867 } 2868 2869 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2870 { 2871 return rdma_protocol_ib(device, port_num) || 2872 rdma_protocol_roce(device, port_num); 2873 } 2874 2875 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2876 { 2877 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET; 2878 } 2879 2880 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2881 { 2882 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC; 2883 } 2884 2885 /** 2886 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2887 * Management Datagrams. 2888 * @device: Device to check 2889 * @port_num: Port number to check 2890 * 2891 * Management Datagrams (MAD) are a required part of the InfiniBand 2892 * specification and are supported on all InfiniBand devices. A slightly 2893 * extended version are also supported on OPA interfaces. 2894 * 2895 * Return: true if the port supports sending/receiving of MAD packets. 2896 */ 2897 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2898 { 2899 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2900 } 2901 2902 /** 2903 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2904 * Management Datagrams. 2905 * @device: Device to check 2906 * @port_num: Port number to check 2907 * 2908 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2909 * datagrams with their own versions. These OPA MADs share many but not all of 2910 * the characteristics of InfiniBand MADs. 2911 * 2912 * OPA MADs differ in the following ways: 2913 * 2914 * 1) MADs are variable size up to 2K 2915 * IBTA defined MADs remain fixed at 256 bytes 2916 * 2) OPA SMPs must carry valid PKeys 2917 * 3) OPA SMP packets are a different format 2918 * 2919 * Return: true if the port supports OPA MAD packet formats. 2920 */ 2921 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2922 { 2923 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2924 == RDMA_CORE_CAP_OPA_MAD; 2925 } 2926 2927 /** 2928 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2929 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2930 * @device: Device to check 2931 * @port_num: Port number to check 2932 * 2933 * Each InfiniBand node is required to provide a Subnet Management Agent 2934 * that the subnet manager can access. Prior to the fabric being fully 2935 * configured by the subnet manager, the SMA is accessed via a well known 2936 * interface called the Subnet Management Interface (SMI). This interface 2937 * uses directed route packets to communicate with the SM to get around the 2938 * chicken and egg problem of the SM needing to know what's on the fabric 2939 * in order to configure the fabric, and needing to configure the fabric in 2940 * order to send packets to the devices on the fabric. These directed 2941 * route packets do not need the fabric fully configured in order to reach 2942 * their destination. The SMI is the only method allowed to send 2943 * directed route packets on an InfiniBand fabric. 2944 * 2945 * Return: true if the port provides an SMI. 2946 */ 2947 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2948 { 2949 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2950 } 2951 2952 /** 2953 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2954 * Communication Manager. 2955 * @device: Device to check 2956 * @port_num: Port number to check 2957 * 2958 * The InfiniBand Communication Manager is one of many pre-defined General 2959 * Service Agents (GSA) that are accessed via the General Service 2960 * Interface (GSI). It's role is to facilitate establishment of connections 2961 * between nodes as well as other management related tasks for established 2962 * connections. 2963 * 2964 * Return: true if the port supports an IB CM (this does not guarantee that 2965 * a CM is actually running however). 2966 */ 2967 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2968 { 2969 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2970 } 2971 2972 /** 2973 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2974 * Communication Manager. 2975 * @device: Device to check 2976 * @port_num: Port number to check 2977 * 2978 * Similar to above, but specific to iWARP connections which have a different 2979 * managment protocol than InfiniBand. 2980 * 2981 * Return: true if the port supports an iWARP CM (this does not guarantee that 2982 * a CM is actually running however). 2983 */ 2984 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2985 { 2986 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2987 } 2988 2989 /** 2990 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2991 * Subnet Administration. 2992 * @device: Device to check 2993 * @port_num: Port number to check 2994 * 2995 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2996 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2997 * fabrics, devices should resolve routes to other hosts by contacting the 2998 * SA to query the proper route. 2999 * 3000 * Return: true if the port should act as a client to the fabric Subnet 3001 * Administration interface. This does not imply that the SA service is 3002 * running locally. 3003 */ 3004 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 3005 { 3006 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 3007 } 3008 3009 /** 3010 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3011 * Multicast. 3012 * @device: Device to check 3013 * @port_num: Port number to check 3014 * 3015 * InfiniBand multicast registration is more complex than normal IPv4 or 3016 * IPv6 multicast registration. Each Host Channel Adapter must register 3017 * with the Subnet Manager when it wishes to join a multicast group. It 3018 * should do so only once regardless of how many queue pairs it subscribes 3019 * to this group. And it should leave the group only after all queue pairs 3020 * attached to the group have been detached. 3021 * 3022 * Return: true if the port must undertake the additional adminstrative 3023 * overhead of registering/unregistering with the SM and tracking of the 3024 * total number of queue pairs attached to the multicast group. 3025 */ 3026 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3027 { 3028 return rdma_cap_ib_sa(device, port_num); 3029 } 3030 3031 /** 3032 * rdma_cap_af_ib - Check if the port of device has the capability 3033 * Native Infiniband Address. 3034 * @device: Device to check 3035 * @port_num: Port number to check 3036 * 3037 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3038 * GID. RoCE uses a different mechanism, but still generates a GID via 3039 * a prescribed mechanism and port specific data. 3040 * 3041 * Return: true if the port uses a GID address to identify devices on the 3042 * network. 3043 */ 3044 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3045 { 3046 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 3047 } 3048 3049 /** 3050 * rdma_cap_eth_ah - Check if the port of device has the capability 3051 * Ethernet Address Handle. 3052 * @device: Device to check 3053 * @port_num: Port number to check 3054 * 3055 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3056 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3057 * port. Normally, packet headers are generated by the sending host 3058 * adapter, but when sending connectionless datagrams, we must manually 3059 * inject the proper headers for the fabric we are communicating over. 3060 * 3061 * Return: true if we are running as a RoCE port and must force the 3062 * addition of a Global Route Header built from our Ethernet Address 3063 * Handle into our header list for connectionless packets. 3064 */ 3065 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3066 { 3067 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 3068 } 3069 3070 /** 3071 * rdma_cap_opa_ah - Check if the port of device supports 3072 * OPA Address handles 3073 * @device: Device to check 3074 * @port_num: Port number to check 3075 * 3076 * Return: true if we are running on an OPA device which supports 3077 * the extended OPA addressing. 3078 */ 3079 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3080 { 3081 return (device->port_immutable[port_num].core_cap_flags & 3082 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3083 } 3084 3085 /** 3086 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3087 * 3088 * @device: Device 3089 * @port_num: Port number 3090 * 3091 * This MAD size includes the MAD headers and MAD payload. No other headers 3092 * are included. 3093 * 3094 * Return the max MAD size required by the Port. Will return 0 if the port 3095 * does not support MADs 3096 */ 3097 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3098 { 3099 return device->port_immutable[port_num].max_mad_size; 3100 } 3101 3102 /** 3103 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3104 * @device: Device to check 3105 * @port_num: Port number to check 3106 * 3107 * RoCE GID table mechanism manages the various GIDs for a device. 3108 * 3109 * NOTE: if allocating the port's GID table has failed, this call will still 3110 * return true, but any RoCE GID table API will fail. 3111 * 3112 * Return: true if the port uses RoCE GID table mechanism in order to manage 3113 * its GIDs. 3114 */ 3115 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3116 u8 port_num) 3117 { 3118 return rdma_protocol_roce(device, port_num) && 3119 device->add_gid && device->del_gid; 3120 } 3121 3122 /* 3123 * Check if the device supports READ W/ INVALIDATE. 3124 */ 3125 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3126 { 3127 /* 3128 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3129 * has support for it yet. 3130 */ 3131 return rdma_protocol_iwarp(dev, port_num); 3132 } 3133 3134 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3135 int state); 3136 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3137 struct ifla_vf_info *info); 3138 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3139 struct ifla_vf_stats *stats); 3140 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3141 int type); 3142 3143 int ib_query_pkey(struct ib_device *device, 3144 u8 port_num, u16 index, u16 *pkey); 3145 3146 int ib_modify_device(struct ib_device *device, 3147 int device_modify_mask, 3148 struct ib_device_modify *device_modify); 3149 3150 int ib_modify_port(struct ib_device *device, 3151 u8 port_num, int port_modify_mask, 3152 struct ib_port_modify *port_modify); 3153 3154 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3155 u8 *port_num, u16 *index); 3156 3157 int ib_find_pkey(struct ib_device *device, 3158 u8 port_num, u16 pkey, u16 *index); 3159 3160 enum ib_pd_flags { 3161 /* 3162 * Create a memory registration for all memory in the system and place 3163 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3164 * ULPs to avoid the overhead of dynamic MRs. 3165 * 3166 * This flag is generally considered unsafe and must only be used in 3167 * extremly trusted environments. Every use of it will log a warning 3168 * in the kernel log. 3169 */ 3170 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3171 }; 3172 3173 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3174 const char *caller); 3175 #define ib_alloc_pd(device, flags) \ 3176 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3177 void ib_dealloc_pd(struct ib_pd *pd); 3178 3179 /** 3180 * rdma_create_ah - Creates an address handle for the given address vector. 3181 * @pd: The protection domain associated with the address handle. 3182 * @ah_attr: The attributes of the address vector. 3183 * 3184 * The address handle is used to reference a local or global destination 3185 * in all UD QP post sends. 3186 */ 3187 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr); 3188 3189 /** 3190 * rdma_create_user_ah - Creates an address handle for the given address vector. 3191 * It resolves destination mac address for ah attribute of RoCE type. 3192 * @pd: The protection domain associated with the address handle. 3193 * @ah_attr: The attributes of the address vector. 3194 * @udata: pointer to user's input output buffer information need by 3195 * provider driver. 3196 * 3197 * It returns 0 on success and returns appropriate error code on error. 3198 * The address handle is used to reference a local or global destination 3199 * in all UD QP post sends. 3200 */ 3201 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3202 struct rdma_ah_attr *ah_attr, 3203 struct ib_udata *udata); 3204 /** 3205 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3206 * work completion. 3207 * @hdr: the L3 header to parse 3208 * @net_type: type of header to parse 3209 * @sgid: place to store source gid 3210 * @dgid: place to store destination gid 3211 */ 3212 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3213 enum rdma_network_type net_type, 3214 union ib_gid *sgid, union ib_gid *dgid); 3215 3216 /** 3217 * ib_get_rdma_header_version - Get the header version 3218 * @hdr: the L3 header to parse 3219 */ 3220 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3221 3222 /** 3223 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3224 * work completion. 3225 * @device: Device on which the received message arrived. 3226 * @port_num: Port on which the received message arrived. 3227 * @wc: Work completion associated with the received message. 3228 * @grh: References the received global route header. This parameter is 3229 * ignored unless the work completion indicates that the GRH is valid. 3230 * @ah_attr: Returned attributes that can be used when creating an address 3231 * handle for replying to the message. 3232 * When ib_init_ah_attr_from_wc() returns success, 3233 * (a) for IB link layer it optionally contains a reference to SGID attribute 3234 * when GRH is present for IB link layer. 3235 * (b) for RoCE link layer it contains a reference to SGID attribute. 3236 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3237 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3238 * 3239 */ 3240 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3241 const struct ib_wc *wc, const struct ib_grh *grh, 3242 struct rdma_ah_attr *ah_attr); 3243 3244 /** 3245 * ib_create_ah_from_wc - Creates an address handle associated with the 3246 * sender of the specified work completion. 3247 * @pd: The protection domain associated with the address handle. 3248 * @wc: Work completion information associated with a received message. 3249 * @grh: References the received global route header. This parameter is 3250 * ignored unless the work completion indicates that the GRH is valid. 3251 * @port_num: The outbound port number to associate with the address. 3252 * 3253 * The address handle is used to reference a local or global destination 3254 * in all UD QP post sends. 3255 */ 3256 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3257 const struct ib_grh *grh, u8 port_num); 3258 3259 /** 3260 * rdma_modify_ah - Modifies the address vector associated with an address 3261 * handle. 3262 * @ah: The address handle to modify. 3263 * @ah_attr: The new address vector attributes to associate with the 3264 * address handle. 3265 */ 3266 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3267 3268 /** 3269 * rdma_query_ah - Queries the address vector associated with an address 3270 * handle. 3271 * @ah: The address handle to query. 3272 * @ah_attr: The address vector attributes associated with the address 3273 * handle. 3274 */ 3275 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3276 3277 /** 3278 * rdma_destroy_ah - Destroys an address handle. 3279 * @ah: The address handle to destroy. 3280 */ 3281 int rdma_destroy_ah(struct ib_ah *ah); 3282 3283 /** 3284 * ib_create_srq - Creates a SRQ associated with the specified protection 3285 * domain. 3286 * @pd: The protection domain associated with the SRQ. 3287 * @srq_init_attr: A list of initial attributes required to create the 3288 * SRQ. If SRQ creation succeeds, then the attributes are updated to 3289 * the actual capabilities of the created SRQ. 3290 * 3291 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 3292 * requested size of the SRQ, and set to the actual values allocated 3293 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 3294 * will always be at least as large as the requested values. 3295 */ 3296 struct ib_srq *ib_create_srq(struct ib_pd *pd, 3297 struct ib_srq_init_attr *srq_init_attr); 3298 3299 /** 3300 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3301 * @srq: The SRQ to modify. 3302 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3303 * the current values of selected SRQ attributes are returned. 3304 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3305 * are being modified. 3306 * 3307 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3308 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3309 * the number of receives queued drops below the limit. 3310 */ 3311 int ib_modify_srq(struct ib_srq *srq, 3312 struct ib_srq_attr *srq_attr, 3313 enum ib_srq_attr_mask srq_attr_mask); 3314 3315 /** 3316 * ib_query_srq - Returns the attribute list and current values for the 3317 * specified SRQ. 3318 * @srq: The SRQ to query. 3319 * @srq_attr: The attributes of the specified SRQ. 3320 */ 3321 int ib_query_srq(struct ib_srq *srq, 3322 struct ib_srq_attr *srq_attr); 3323 3324 /** 3325 * ib_destroy_srq - Destroys the specified SRQ. 3326 * @srq: The SRQ to destroy. 3327 */ 3328 int ib_destroy_srq(struct ib_srq *srq); 3329 3330 /** 3331 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3332 * @srq: The SRQ to post the work request on. 3333 * @recv_wr: A list of work requests to post on the receive queue. 3334 * @bad_recv_wr: On an immediate failure, this parameter will reference 3335 * the work request that failed to be posted on the QP. 3336 */ 3337 static inline int ib_post_srq_recv(struct ib_srq *srq, 3338 const struct ib_recv_wr *recv_wr, 3339 const struct ib_recv_wr **bad_recv_wr) 3340 { 3341 const struct ib_recv_wr *dummy; 3342 3343 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr ? : &dummy); 3344 } 3345 3346 /** 3347 * ib_create_qp - Creates a QP associated with the specified protection 3348 * domain. 3349 * @pd: The protection domain associated with the QP. 3350 * @qp_init_attr: A list of initial attributes required to create the 3351 * QP. If QP creation succeeds, then the attributes are updated to 3352 * the actual capabilities of the created QP. 3353 */ 3354 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3355 struct ib_qp_init_attr *qp_init_attr); 3356 3357 /** 3358 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3359 * @qp: The QP to modify. 3360 * @attr: On input, specifies the QP attributes to modify. On output, 3361 * the current values of selected QP attributes are returned. 3362 * @attr_mask: A bit-mask used to specify which attributes of the QP 3363 * are being modified. 3364 * @udata: pointer to user's input output buffer information 3365 * are being modified. 3366 * It returns 0 on success and returns appropriate error code on error. 3367 */ 3368 int ib_modify_qp_with_udata(struct ib_qp *qp, 3369 struct ib_qp_attr *attr, 3370 int attr_mask, 3371 struct ib_udata *udata); 3372 3373 /** 3374 * ib_modify_qp - Modifies the attributes for the specified QP and then 3375 * transitions the QP to the given state. 3376 * @qp: The QP to modify. 3377 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3378 * the current values of selected QP attributes are returned. 3379 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3380 * are being modified. 3381 */ 3382 int ib_modify_qp(struct ib_qp *qp, 3383 struct ib_qp_attr *qp_attr, 3384 int qp_attr_mask); 3385 3386 /** 3387 * ib_query_qp - Returns the attribute list and current values for the 3388 * specified QP. 3389 * @qp: The QP to query. 3390 * @qp_attr: The attributes of the specified QP. 3391 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3392 * @qp_init_attr: Additional attributes of the selected QP. 3393 * 3394 * The qp_attr_mask may be used to limit the query to gathering only the 3395 * selected attributes. 3396 */ 3397 int ib_query_qp(struct ib_qp *qp, 3398 struct ib_qp_attr *qp_attr, 3399 int qp_attr_mask, 3400 struct ib_qp_init_attr *qp_init_attr); 3401 3402 /** 3403 * ib_destroy_qp - Destroys the specified QP. 3404 * @qp: The QP to destroy. 3405 */ 3406 int ib_destroy_qp(struct ib_qp *qp); 3407 3408 /** 3409 * ib_open_qp - Obtain a reference to an existing sharable QP. 3410 * @xrcd - XRC domain 3411 * @qp_open_attr: Attributes identifying the QP to open. 3412 * 3413 * Returns a reference to a sharable QP. 3414 */ 3415 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3416 struct ib_qp_open_attr *qp_open_attr); 3417 3418 /** 3419 * ib_close_qp - Release an external reference to a QP. 3420 * @qp: The QP handle to release 3421 * 3422 * The opened QP handle is released by the caller. The underlying 3423 * shared QP is not destroyed until all internal references are released. 3424 */ 3425 int ib_close_qp(struct ib_qp *qp); 3426 3427 /** 3428 * ib_post_send - Posts a list of work requests to the send queue of 3429 * the specified QP. 3430 * @qp: The QP to post the work request on. 3431 * @send_wr: A list of work requests to post on the send queue. 3432 * @bad_send_wr: On an immediate failure, this parameter will reference 3433 * the work request that failed to be posted on the QP. 3434 * 3435 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3436 * error is returned, the QP state shall not be affected, 3437 * ib_post_send() will return an immediate error after queueing any 3438 * earlier work requests in the list. 3439 */ 3440 static inline int ib_post_send(struct ib_qp *qp, 3441 const struct ib_send_wr *send_wr, 3442 const struct ib_send_wr **bad_send_wr) 3443 { 3444 const struct ib_send_wr *dummy; 3445 3446 return qp->device->post_send(qp, send_wr, bad_send_wr ? : &dummy); 3447 } 3448 3449 /** 3450 * ib_post_recv - Posts a list of work requests to the receive queue of 3451 * the specified QP. 3452 * @qp: The QP to post the work request on. 3453 * @recv_wr: A list of work requests to post on the receive queue. 3454 * @bad_recv_wr: On an immediate failure, this parameter will reference 3455 * the work request that failed to be posted on the QP. 3456 */ 3457 static inline int ib_post_recv(struct ib_qp *qp, 3458 const struct ib_recv_wr *recv_wr, 3459 const struct ib_recv_wr **bad_recv_wr) 3460 { 3461 const struct ib_recv_wr *dummy; 3462 3463 return qp->device->post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3464 } 3465 3466 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, 3467 int nr_cqe, int comp_vector, 3468 enum ib_poll_context poll_ctx, const char *caller); 3469 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \ 3470 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME) 3471 3472 void ib_free_cq(struct ib_cq *cq); 3473 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3474 3475 /** 3476 * ib_create_cq - Creates a CQ on the specified device. 3477 * @device: The device on which to create the CQ. 3478 * @comp_handler: A user-specified callback that is invoked when a 3479 * completion event occurs on the CQ. 3480 * @event_handler: A user-specified callback that is invoked when an 3481 * asynchronous event not associated with a completion occurs on the CQ. 3482 * @cq_context: Context associated with the CQ returned to the user via 3483 * the associated completion and event handlers. 3484 * @cq_attr: The attributes the CQ should be created upon. 3485 * 3486 * Users can examine the cq structure to determine the actual CQ size. 3487 */ 3488 struct ib_cq *__ib_create_cq(struct ib_device *device, 3489 ib_comp_handler comp_handler, 3490 void (*event_handler)(struct ib_event *, void *), 3491 void *cq_context, 3492 const struct ib_cq_init_attr *cq_attr, 3493 const char *caller); 3494 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3495 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3496 3497 /** 3498 * ib_resize_cq - Modifies the capacity of the CQ. 3499 * @cq: The CQ to resize. 3500 * @cqe: The minimum size of the CQ. 3501 * 3502 * Users can examine the cq structure to determine the actual CQ size. 3503 */ 3504 int ib_resize_cq(struct ib_cq *cq, int cqe); 3505 3506 /** 3507 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3508 * @cq: The CQ to modify. 3509 * @cq_count: number of CQEs that will trigger an event 3510 * @cq_period: max period of time in usec before triggering an event 3511 * 3512 */ 3513 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3514 3515 /** 3516 * ib_destroy_cq - Destroys the specified CQ. 3517 * @cq: The CQ to destroy. 3518 */ 3519 int ib_destroy_cq(struct ib_cq *cq); 3520 3521 /** 3522 * ib_poll_cq - poll a CQ for completion(s) 3523 * @cq:the CQ being polled 3524 * @num_entries:maximum number of completions to return 3525 * @wc:array of at least @num_entries &struct ib_wc where completions 3526 * will be returned 3527 * 3528 * Poll a CQ for (possibly multiple) completions. If the return value 3529 * is < 0, an error occurred. If the return value is >= 0, it is the 3530 * number of completions returned. If the return value is 3531 * non-negative and < num_entries, then the CQ was emptied. 3532 */ 3533 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3534 struct ib_wc *wc) 3535 { 3536 return cq->device->poll_cq(cq, num_entries, wc); 3537 } 3538 3539 /** 3540 * ib_req_notify_cq - Request completion notification on a CQ. 3541 * @cq: The CQ to generate an event for. 3542 * @flags: 3543 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3544 * to request an event on the next solicited event or next work 3545 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3546 * may also be |ed in to request a hint about missed events, as 3547 * described below. 3548 * 3549 * Return Value: 3550 * < 0 means an error occurred while requesting notification 3551 * == 0 means notification was requested successfully, and if 3552 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3553 * were missed and it is safe to wait for another event. In 3554 * this case is it guaranteed that any work completions added 3555 * to the CQ since the last CQ poll will trigger a completion 3556 * notification event. 3557 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3558 * in. It means that the consumer must poll the CQ again to 3559 * make sure it is empty to avoid missing an event because of a 3560 * race between requesting notification and an entry being 3561 * added to the CQ. This return value means it is possible 3562 * (but not guaranteed) that a work completion has been added 3563 * to the CQ since the last poll without triggering a 3564 * completion notification event. 3565 */ 3566 static inline int ib_req_notify_cq(struct ib_cq *cq, 3567 enum ib_cq_notify_flags flags) 3568 { 3569 return cq->device->req_notify_cq(cq, flags); 3570 } 3571 3572 /** 3573 * ib_req_ncomp_notif - Request completion notification when there are 3574 * at least the specified number of unreaped completions on the CQ. 3575 * @cq: The CQ to generate an event for. 3576 * @wc_cnt: The number of unreaped completions that should be on the 3577 * CQ before an event is generated. 3578 */ 3579 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3580 { 3581 return cq->device->req_ncomp_notif ? 3582 cq->device->req_ncomp_notif(cq, wc_cnt) : 3583 -ENOSYS; 3584 } 3585 3586 /** 3587 * ib_dma_mapping_error - check a DMA addr for error 3588 * @dev: The device for which the dma_addr was created 3589 * @dma_addr: The DMA address to check 3590 */ 3591 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3592 { 3593 return dma_mapping_error(dev->dma_device, dma_addr); 3594 } 3595 3596 /** 3597 * ib_dma_map_single - Map a kernel virtual address to DMA address 3598 * @dev: The device for which the dma_addr is to be created 3599 * @cpu_addr: The kernel virtual address 3600 * @size: The size of the region in bytes 3601 * @direction: The direction of the DMA 3602 */ 3603 static inline u64 ib_dma_map_single(struct ib_device *dev, 3604 void *cpu_addr, size_t size, 3605 enum dma_data_direction direction) 3606 { 3607 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3608 } 3609 3610 /** 3611 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3612 * @dev: The device for which the DMA address was created 3613 * @addr: The DMA address 3614 * @size: The size of the region in bytes 3615 * @direction: The direction of the DMA 3616 */ 3617 static inline void ib_dma_unmap_single(struct ib_device *dev, 3618 u64 addr, size_t size, 3619 enum dma_data_direction direction) 3620 { 3621 dma_unmap_single(dev->dma_device, addr, size, direction); 3622 } 3623 3624 /** 3625 * ib_dma_map_page - Map a physical page to DMA address 3626 * @dev: The device for which the dma_addr is to be created 3627 * @page: The page to be mapped 3628 * @offset: The offset within the page 3629 * @size: The size of the region in bytes 3630 * @direction: The direction of the DMA 3631 */ 3632 static inline u64 ib_dma_map_page(struct ib_device *dev, 3633 struct page *page, 3634 unsigned long offset, 3635 size_t size, 3636 enum dma_data_direction direction) 3637 { 3638 return dma_map_page(dev->dma_device, page, offset, size, direction); 3639 } 3640 3641 /** 3642 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3643 * @dev: The device for which the DMA address was created 3644 * @addr: The DMA address 3645 * @size: The size of the region in bytes 3646 * @direction: The direction of the DMA 3647 */ 3648 static inline void ib_dma_unmap_page(struct ib_device *dev, 3649 u64 addr, size_t size, 3650 enum dma_data_direction direction) 3651 { 3652 dma_unmap_page(dev->dma_device, addr, size, direction); 3653 } 3654 3655 /** 3656 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3657 * @dev: The device for which the DMA addresses are to be created 3658 * @sg: The array of scatter/gather entries 3659 * @nents: The number of scatter/gather entries 3660 * @direction: The direction of the DMA 3661 */ 3662 static inline int ib_dma_map_sg(struct ib_device *dev, 3663 struct scatterlist *sg, int nents, 3664 enum dma_data_direction direction) 3665 { 3666 return dma_map_sg(dev->dma_device, sg, nents, direction); 3667 } 3668 3669 /** 3670 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3671 * @dev: The device for which the DMA addresses were created 3672 * @sg: The array of scatter/gather entries 3673 * @nents: The number of scatter/gather entries 3674 * @direction: The direction of the DMA 3675 */ 3676 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3677 struct scatterlist *sg, int nents, 3678 enum dma_data_direction direction) 3679 { 3680 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3681 } 3682 3683 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3684 struct scatterlist *sg, int nents, 3685 enum dma_data_direction direction, 3686 unsigned long dma_attrs) 3687 { 3688 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3689 dma_attrs); 3690 } 3691 3692 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3693 struct scatterlist *sg, int nents, 3694 enum dma_data_direction direction, 3695 unsigned long dma_attrs) 3696 { 3697 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3698 } 3699 /** 3700 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3701 * @dev: The device for which the DMA addresses were created 3702 * @sg: The scatter/gather entry 3703 * 3704 * Note: this function is obsolete. To do: change all occurrences of 3705 * ib_sg_dma_address() into sg_dma_address(). 3706 */ 3707 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3708 struct scatterlist *sg) 3709 { 3710 return sg_dma_address(sg); 3711 } 3712 3713 /** 3714 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3715 * @dev: The device for which the DMA addresses were created 3716 * @sg: The scatter/gather entry 3717 * 3718 * Note: this function is obsolete. To do: change all occurrences of 3719 * ib_sg_dma_len() into sg_dma_len(). 3720 */ 3721 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3722 struct scatterlist *sg) 3723 { 3724 return sg_dma_len(sg); 3725 } 3726 3727 /** 3728 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3729 * @dev: The device for which the DMA address was created 3730 * @addr: The DMA address 3731 * @size: The size of the region in bytes 3732 * @dir: The direction of the DMA 3733 */ 3734 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3735 u64 addr, 3736 size_t size, 3737 enum dma_data_direction dir) 3738 { 3739 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3740 } 3741 3742 /** 3743 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3744 * @dev: The device for which the DMA address was created 3745 * @addr: The DMA address 3746 * @size: The size of the region in bytes 3747 * @dir: The direction of the DMA 3748 */ 3749 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3750 u64 addr, 3751 size_t size, 3752 enum dma_data_direction dir) 3753 { 3754 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3755 } 3756 3757 /** 3758 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3759 * @dev: The device for which the DMA address is requested 3760 * @size: The size of the region to allocate in bytes 3761 * @dma_handle: A pointer for returning the DMA address of the region 3762 * @flag: memory allocator flags 3763 */ 3764 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3765 size_t size, 3766 dma_addr_t *dma_handle, 3767 gfp_t flag) 3768 { 3769 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 3770 } 3771 3772 /** 3773 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3774 * @dev: The device for which the DMA addresses were allocated 3775 * @size: The size of the region 3776 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3777 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3778 */ 3779 static inline void ib_dma_free_coherent(struct ib_device *dev, 3780 size_t size, void *cpu_addr, 3781 dma_addr_t dma_handle) 3782 { 3783 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3784 } 3785 3786 /** 3787 * ib_dereg_mr - Deregisters a memory region and removes it from the 3788 * HCA translation table. 3789 * @mr: The memory region to deregister. 3790 * 3791 * This function can fail, if the memory region has memory windows bound to it. 3792 */ 3793 int ib_dereg_mr(struct ib_mr *mr); 3794 3795 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3796 enum ib_mr_type mr_type, 3797 u32 max_num_sg); 3798 3799 /** 3800 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3801 * R_Key and L_Key. 3802 * @mr - struct ib_mr pointer to be updated. 3803 * @newkey - new key to be used. 3804 */ 3805 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3806 { 3807 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3808 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3809 } 3810 3811 /** 3812 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3813 * for calculating a new rkey for type 2 memory windows. 3814 * @rkey - the rkey to increment. 3815 */ 3816 static inline u32 ib_inc_rkey(u32 rkey) 3817 { 3818 const u32 mask = 0x000000ff; 3819 return ((rkey + 1) & mask) | (rkey & ~mask); 3820 } 3821 3822 /** 3823 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3824 * @pd: The protection domain associated with the unmapped region. 3825 * @mr_access_flags: Specifies the memory access rights. 3826 * @fmr_attr: Attributes of the unmapped region. 3827 * 3828 * A fast memory region must be mapped before it can be used as part of 3829 * a work request. 3830 */ 3831 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3832 int mr_access_flags, 3833 struct ib_fmr_attr *fmr_attr); 3834 3835 /** 3836 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3837 * @fmr: The fast memory region to associate with the pages. 3838 * @page_list: An array of physical pages to map to the fast memory region. 3839 * @list_len: The number of pages in page_list. 3840 * @iova: The I/O virtual address to use with the mapped region. 3841 */ 3842 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3843 u64 *page_list, int list_len, 3844 u64 iova) 3845 { 3846 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3847 } 3848 3849 /** 3850 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3851 * @fmr_list: A linked list of fast memory regions to unmap. 3852 */ 3853 int ib_unmap_fmr(struct list_head *fmr_list); 3854 3855 /** 3856 * ib_dealloc_fmr - Deallocates a fast memory region. 3857 * @fmr: The fast memory region to deallocate. 3858 */ 3859 int ib_dealloc_fmr(struct ib_fmr *fmr); 3860 3861 /** 3862 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3863 * @qp: QP to attach to the multicast group. The QP must be type 3864 * IB_QPT_UD. 3865 * @gid: Multicast group GID. 3866 * @lid: Multicast group LID in host byte order. 3867 * 3868 * In order to send and receive multicast packets, subnet 3869 * administration must have created the multicast group and configured 3870 * the fabric appropriately. The port associated with the specified 3871 * QP must also be a member of the multicast group. 3872 */ 3873 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3874 3875 /** 3876 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3877 * @qp: QP to detach from the multicast group. 3878 * @gid: Multicast group GID. 3879 * @lid: Multicast group LID in host byte order. 3880 */ 3881 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3882 3883 /** 3884 * ib_alloc_xrcd - Allocates an XRC domain. 3885 * @device: The device on which to allocate the XRC domain. 3886 * @caller: Module name for kernel consumers 3887 */ 3888 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 3889 #define ib_alloc_xrcd(device) \ 3890 __ib_alloc_xrcd((device), KBUILD_MODNAME) 3891 3892 /** 3893 * ib_dealloc_xrcd - Deallocates an XRC domain. 3894 * @xrcd: The XRC domain to deallocate. 3895 */ 3896 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3897 3898 static inline int ib_check_mr_access(int flags) 3899 { 3900 /* 3901 * Local write permission is required if remote write or 3902 * remote atomic permission is also requested. 3903 */ 3904 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3905 !(flags & IB_ACCESS_LOCAL_WRITE)) 3906 return -EINVAL; 3907 3908 return 0; 3909 } 3910 3911 static inline bool ib_access_writable(int access_flags) 3912 { 3913 /* 3914 * We have writable memory backing the MR if any of the following 3915 * access flags are set. "Local write" and "remote write" obviously 3916 * require write access. "Remote atomic" can do things like fetch and 3917 * add, which will modify memory, and "MW bind" can change permissions 3918 * by binding a window. 3919 */ 3920 return access_flags & 3921 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 3922 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 3923 } 3924 3925 /** 3926 * ib_check_mr_status: lightweight check of MR status. 3927 * This routine may provide status checks on a selected 3928 * ib_mr. first use is for signature status check. 3929 * 3930 * @mr: A memory region. 3931 * @check_mask: Bitmask of which checks to perform from 3932 * ib_mr_status_check enumeration. 3933 * @mr_status: The container of relevant status checks. 3934 * failed checks will be indicated in the status bitmask 3935 * and the relevant info shall be in the error item. 3936 */ 3937 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3938 struct ib_mr_status *mr_status); 3939 3940 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3941 u16 pkey, const union ib_gid *gid, 3942 const struct sockaddr *addr); 3943 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3944 struct ib_wq_init_attr *init_attr); 3945 int ib_destroy_wq(struct ib_wq *wq); 3946 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3947 u32 wq_attr_mask); 3948 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3949 struct ib_rwq_ind_table_init_attr* 3950 wq_ind_table_init_attr); 3951 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3952 3953 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3954 unsigned int *sg_offset, unsigned int page_size); 3955 3956 static inline int 3957 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3958 unsigned int *sg_offset, unsigned int page_size) 3959 { 3960 int n; 3961 3962 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3963 mr->iova = 0; 3964 3965 return n; 3966 } 3967 3968 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3969 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3970 3971 void ib_drain_rq(struct ib_qp *qp); 3972 void ib_drain_sq(struct ib_qp *qp); 3973 void ib_drain_qp(struct ib_qp *qp); 3974 3975 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 3976 3977 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 3978 { 3979 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 3980 return attr->roce.dmac; 3981 return NULL; 3982 } 3983 3984 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 3985 { 3986 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3987 attr->ib.dlid = (u16)dlid; 3988 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3989 attr->opa.dlid = dlid; 3990 } 3991 3992 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 3993 { 3994 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3995 return attr->ib.dlid; 3996 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3997 return attr->opa.dlid; 3998 return 0; 3999 } 4000 4001 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4002 { 4003 attr->sl = sl; 4004 } 4005 4006 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4007 { 4008 return attr->sl; 4009 } 4010 4011 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4012 u8 src_path_bits) 4013 { 4014 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4015 attr->ib.src_path_bits = src_path_bits; 4016 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4017 attr->opa.src_path_bits = src_path_bits; 4018 } 4019 4020 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4021 { 4022 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4023 return attr->ib.src_path_bits; 4024 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4025 return attr->opa.src_path_bits; 4026 return 0; 4027 } 4028 4029 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4030 bool make_grd) 4031 { 4032 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4033 attr->opa.make_grd = make_grd; 4034 } 4035 4036 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4037 { 4038 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4039 return attr->opa.make_grd; 4040 return false; 4041 } 4042 4043 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4044 { 4045 attr->port_num = port_num; 4046 } 4047 4048 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4049 { 4050 return attr->port_num; 4051 } 4052 4053 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4054 u8 static_rate) 4055 { 4056 attr->static_rate = static_rate; 4057 } 4058 4059 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4060 { 4061 return attr->static_rate; 4062 } 4063 4064 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4065 enum ib_ah_flags flag) 4066 { 4067 attr->ah_flags = flag; 4068 } 4069 4070 static inline enum ib_ah_flags 4071 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4072 { 4073 return attr->ah_flags; 4074 } 4075 4076 static inline const struct ib_global_route 4077 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4078 { 4079 return &attr->grh; 4080 } 4081 4082 /*To retrieve and modify the grh */ 4083 static inline struct ib_global_route 4084 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4085 { 4086 return &attr->grh; 4087 } 4088 4089 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4090 { 4091 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4092 4093 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4094 } 4095 4096 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4097 __be64 prefix) 4098 { 4099 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4100 4101 grh->dgid.global.subnet_prefix = prefix; 4102 } 4103 4104 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4105 __be64 if_id) 4106 { 4107 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4108 4109 grh->dgid.global.interface_id = if_id; 4110 } 4111 4112 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4113 union ib_gid *dgid, u32 flow_label, 4114 u8 sgid_index, u8 hop_limit, 4115 u8 traffic_class) 4116 { 4117 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4118 4119 attr->ah_flags = IB_AH_GRH; 4120 if (dgid) 4121 grh->dgid = *dgid; 4122 grh->flow_label = flow_label; 4123 grh->sgid_index = sgid_index; 4124 grh->hop_limit = hop_limit; 4125 grh->traffic_class = traffic_class; 4126 grh->sgid_attr = NULL; 4127 } 4128 4129 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4130 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4131 u32 flow_label, u8 hop_limit, u8 traffic_class, 4132 const struct ib_gid_attr *sgid_attr); 4133 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4134 const struct rdma_ah_attr *src); 4135 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4136 const struct rdma_ah_attr *new); 4137 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4138 4139 /** 4140 * rdma_ah_find_type - Return address handle type. 4141 * 4142 * @dev: Device to be checked 4143 * @port_num: Port number 4144 */ 4145 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4146 u8 port_num) 4147 { 4148 if (rdma_protocol_roce(dev, port_num)) 4149 return RDMA_AH_ATTR_TYPE_ROCE; 4150 if (rdma_protocol_ib(dev, port_num)) { 4151 if (rdma_cap_opa_ah(dev, port_num)) 4152 return RDMA_AH_ATTR_TYPE_OPA; 4153 return RDMA_AH_ATTR_TYPE_IB; 4154 } 4155 4156 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4157 } 4158 4159 /** 4160 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4161 * In the current implementation the only way to get 4162 * get the 32bit lid is from other sources for OPA. 4163 * For IB, lids will always be 16bits so cast the 4164 * value accordingly. 4165 * 4166 * @lid: A 32bit LID 4167 */ 4168 static inline u16 ib_lid_cpu16(u32 lid) 4169 { 4170 WARN_ON_ONCE(lid & 0xFFFF0000); 4171 return (u16)lid; 4172 } 4173 4174 /** 4175 * ib_lid_be16 - Return lid in 16bit BE encoding. 4176 * 4177 * @lid: A 32bit LID 4178 */ 4179 static inline __be16 ib_lid_be16(u32 lid) 4180 { 4181 WARN_ON_ONCE(lid & 0xFFFF0000); 4182 return cpu_to_be16((u16)lid); 4183 } 4184 4185 /** 4186 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4187 * vector 4188 * @device: the rdma device 4189 * @comp_vector: index of completion vector 4190 * 4191 * Returns NULL on failure, otherwise a corresponding cpu map of the 4192 * completion vector (returns all-cpus map if the device driver doesn't 4193 * implement get_vector_affinity). 4194 */ 4195 static inline const struct cpumask * 4196 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4197 { 4198 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4199 !device->get_vector_affinity) 4200 return NULL; 4201 4202 return device->get_vector_affinity(device, comp_vector); 4203 4204 } 4205 4206 /** 4207 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4208 * and add their gids, as needed, to the relevant RoCE devices. 4209 * 4210 * @device: the rdma device 4211 */ 4212 void rdma_roce_rescan_device(struct ib_device *ibdev); 4213 4214 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4215 4216 4217 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4218 4219 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4220 enum rdma_netdev_t type, const char *name, 4221 unsigned char name_assign_type, 4222 void (*setup)(struct net_device *)); 4223 4224 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4225 enum rdma_netdev_t type, const char *name, 4226 unsigned char name_assign_type, 4227 void (*setup)(struct net_device *), 4228 struct net_device *netdev); 4229 4230 /** 4231 * rdma_set_device_sysfs_group - Set device attributes group to have 4232 * driver specific sysfs entries at 4233 * for infiniband class. 4234 * 4235 * @device: device pointer for which attributes to be created 4236 * @group: Pointer to group which should be added when device 4237 * is registered with sysfs. 4238 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4239 * group per device to have sysfs attributes. 4240 * 4241 * NOTE: New drivers should not make use of this API; instead new device 4242 * parameter should be exposed via netlink command. This API and mechanism 4243 * exist only for existing drivers. 4244 */ 4245 static inline void 4246 rdma_set_device_sysfs_group(struct ib_device *dev, 4247 const struct attribute_group *group) 4248 { 4249 dev->groups[1] = group; 4250 } 4251 4252 #endif /* IB_VERBS_H */ 4253