1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <uapi/linux/if_ether.h> 53 54 #include <linux/atomic.h> 55 #include <linux/mmu_notifier.h> 56 #include <asm/uaccess.h> 57 58 extern struct workqueue_struct *ib_wq; 59 60 union ib_gid { 61 u8 raw[16]; 62 struct { 63 __be64 subnet_prefix; 64 __be64 interface_id; 65 } global; 66 }; 67 68 extern union ib_gid zgid; 69 70 struct ib_gid_attr { 71 struct net_device *ndev; 72 }; 73 74 enum rdma_node_type { 75 /* IB values map to NodeInfo:NodeType. */ 76 RDMA_NODE_IB_CA = 1, 77 RDMA_NODE_IB_SWITCH, 78 RDMA_NODE_IB_ROUTER, 79 RDMA_NODE_RNIC, 80 RDMA_NODE_USNIC, 81 RDMA_NODE_USNIC_UDP, 82 }; 83 84 enum rdma_transport_type { 85 RDMA_TRANSPORT_IB, 86 RDMA_TRANSPORT_IWARP, 87 RDMA_TRANSPORT_USNIC, 88 RDMA_TRANSPORT_USNIC_UDP 89 }; 90 91 enum rdma_protocol_type { 92 RDMA_PROTOCOL_IB, 93 RDMA_PROTOCOL_IBOE, 94 RDMA_PROTOCOL_IWARP, 95 RDMA_PROTOCOL_USNIC_UDP 96 }; 97 98 __attribute_const__ enum rdma_transport_type 99 rdma_node_get_transport(enum rdma_node_type node_type); 100 101 enum rdma_link_layer { 102 IB_LINK_LAYER_UNSPECIFIED, 103 IB_LINK_LAYER_INFINIBAND, 104 IB_LINK_LAYER_ETHERNET, 105 }; 106 107 enum ib_device_cap_flags { 108 IB_DEVICE_RESIZE_MAX_WR = 1, 109 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 110 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 111 IB_DEVICE_RAW_MULTI = (1<<3), 112 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 113 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 114 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 115 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 116 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 117 IB_DEVICE_INIT_TYPE = (1<<9), 118 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 119 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 120 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 121 IB_DEVICE_SRQ_RESIZE = (1<<13), 122 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 123 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 124 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 125 IB_DEVICE_MEM_WINDOW = (1<<17), 126 /* 127 * Devices should set IB_DEVICE_UD_IP_SUM if they support 128 * insertion of UDP and TCP checksum on outgoing UD IPoIB 129 * messages and can verify the validity of checksum for 130 * incoming messages. Setting this flag implies that the 131 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 132 */ 133 IB_DEVICE_UD_IP_CSUM = (1<<18), 134 IB_DEVICE_UD_TSO = (1<<19), 135 IB_DEVICE_XRC = (1<<20), 136 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 137 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 138 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23), 139 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24), 140 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29), 141 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30), 142 IB_DEVICE_ON_DEMAND_PAGING = (1<<31), 143 }; 144 145 enum ib_signature_prot_cap { 146 IB_PROT_T10DIF_TYPE_1 = 1, 147 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 148 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 149 }; 150 151 enum ib_signature_guard_cap { 152 IB_GUARD_T10DIF_CRC = 1, 153 IB_GUARD_T10DIF_CSUM = 1 << 1, 154 }; 155 156 enum ib_atomic_cap { 157 IB_ATOMIC_NONE, 158 IB_ATOMIC_HCA, 159 IB_ATOMIC_GLOB 160 }; 161 162 enum ib_odp_general_cap_bits { 163 IB_ODP_SUPPORT = 1 << 0, 164 }; 165 166 enum ib_odp_transport_cap_bits { 167 IB_ODP_SUPPORT_SEND = 1 << 0, 168 IB_ODP_SUPPORT_RECV = 1 << 1, 169 IB_ODP_SUPPORT_WRITE = 1 << 2, 170 IB_ODP_SUPPORT_READ = 1 << 3, 171 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 172 }; 173 174 struct ib_odp_caps { 175 uint64_t general_caps; 176 struct { 177 uint32_t rc_odp_caps; 178 uint32_t uc_odp_caps; 179 uint32_t ud_odp_caps; 180 } per_transport_caps; 181 }; 182 183 enum ib_cq_creation_flags { 184 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 185 }; 186 187 struct ib_cq_init_attr { 188 unsigned int cqe; 189 int comp_vector; 190 u32 flags; 191 }; 192 193 struct ib_device_attr { 194 u64 fw_ver; 195 __be64 sys_image_guid; 196 u64 max_mr_size; 197 u64 page_size_cap; 198 u32 vendor_id; 199 u32 vendor_part_id; 200 u32 hw_ver; 201 int max_qp; 202 int max_qp_wr; 203 int device_cap_flags; 204 int max_sge; 205 int max_sge_rd; 206 int max_cq; 207 int max_cqe; 208 int max_mr; 209 int max_pd; 210 int max_qp_rd_atom; 211 int max_ee_rd_atom; 212 int max_res_rd_atom; 213 int max_qp_init_rd_atom; 214 int max_ee_init_rd_atom; 215 enum ib_atomic_cap atomic_cap; 216 enum ib_atomic_cap masked_atomic_cap; 217 int max_ee; 218 int max_rdd; 219 int max_mw; 220 int max_raw_ipv6_qp; 221 int max_raw_ethy_qp; 222 int max_mcast_grp; 223 int max_mcast_qp_attach; 224 int max_total_mcast_qp_attach; 225 int max_ah; 226 int max_fmr; 227 int max_map_per_fmr; 228 int max_srq; 229 int max_srq_wr; 230 int max_srq_sge; 231 unsigned int max_fast_reg_page_list_len; 232 u16 max_pkeys; 233 u8 local_ca_ack_delay; 234 int sig_prot_cap; 235 int sig_guard_cap; 236 struct ib_odp_caps odp_caps; 237 uint64_t timestamp_mask; 238 uint64_t hca_core_clock; /* in KHZ */ 239 }; 240 241 enum ib_mtu { 242 IB_MTU_256 = 1, 243 IB_MTU_512 = 2, 244 IB_MTU_1024 = 3, 245 IB_MTU_2048 = 4, 246 IB_MTU_4096 = 5 247 }; 248 249 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 250 { 251 switch (mtu) { 252 case IB_MTU_256: return 256; 253 case IB_MTU_512: return 512; 254 case IB_MTU_1024: return 1024; 255 case IB_MTU_2048: return 2048; 256 case IB_MTU_4096: return 4096; 257 default: return -1; 258 } 259 } 260 261 enum ib_port_state { 262 IB_PORT_NOP = 0, 263 IB_PORT_DOWN = 1, 264 IB_PORT_INIT = 2, 265 IB_PORT_ARMED = 3, 266 IB_PORT_ACTIVE = 4, 267 IB_PORT_ACTIVE_DEFER = 5 268 }; 269 270 enum ib_port_cap_flags { 271 IB_PORT_SM = 1 << 1, 272 IB_PORT_NOTICE_SUP = 1 << 2, 273 IB_PORT_TRAP_SUP = 1 << 3, 274 IB_PORT_OPT_IPD_SUP = 1 << 4, 275 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 276 IB_PORT_SL_MAP_SUP = 1 << 6, 277 IB_PORT_MKEY_NVRAM = 1 << 7, 278 IB_PORT_PKEY_NVRAM = 1 << 8, 279 IB_PORT_LED_INFO_SUP = 1 << 9, 280 IB_PORT_SM_DISABLED = 1 << 10, 281 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 282 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 283 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 284 IB_PORT_CM_SUP = 1 << 16, 285 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 286 IB_PORT_REINIT_SUP = 1 << 18, 287 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 288 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 289 IB_PORT_DR_NOTICE_SUP = 1 << 21, 290 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 291 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 292 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 293 IB_PORT_CLIENT_REG_SUP = 1 << 25, 294 IB_PORT_IP_BASED_GIDS = 1 << 26, 295 }; 296 297 enum ib_port_width { 298 IB_WIDTH_1X = 1, 299 IB_WIDTH_4X = 2, 300 IB_WIDTH_8X = 4, 301 IB_WIDTH_12X = 8 302 }; 303 304 static inline int ib_width_enum_to_int(enum ib_port_width width) 305 { 306 switch (width) { 307 case IB_WIDTH_1X: return 1; 308 case IB_WIDTH_4X: return 4; 309 case IB_WIDTH_8X: return 8; 310 case IB_WIDTH_12X: return 12; 311 default: return -1; 312 } 313 } 314 315 enum ib_port_speed { 316 IB_SPEED_SDR = 1, 317 IB_SPEED_DDR = 2, 318 IB_SPEED_QDR = 4, 319 IB_SPEED_FDR10 = 8, 320 IB_SPEED_FDR = 16, 321 IB_SPEED_EDR = 32 322 }; 323 324 struct ib_protocol_stats { 325 /* TBD... */ 326 }; 327 328 struct iw_protocol_stats { 329 u64 ipInReceives; 330 u64 ipInHdrErrors; 331 u64 ipInTooBigErrors; 332 u64 ipInNoRoutes; 333 u64 ipInAddrErrors; 334 u64 ipInUnknownProtos; 335 u64 ipInTruncatedPkts; 336 u64 ipInDiscards; 337 u64 ipInDelivers; 338 u64 ipOutForwDatagrams; 339 u64 ipOutRequests; 340 u64 ipOutDiscards; 341 u64 ipOutNoRoutes; 342 u64 ipReasmTimeout; 343 u64 ipReasmReqds; 344 u64 ipReasmOKs; 345 u64 ipReasmFails; 346 u64 ipFragOKs; 347 u64 ipFragFails; 348 u64 ipFragCreates; 349 u64 ipInMcastPkts; 350 u64 ipOutMcastPkts; 351 u64 ipInBcastPkts; 352 u64 ipOutBcastPkts; 353 354 u64 tcpRtoAlgorithm; 355 u64 tcpRtoMin; 356 u64 tcpRtoMax; 357 u64 tcpMaxConn; 358 u64 tcpActiveOpens; 359 u64 tcpPassiveOpens; 360 u64 tcpAttemptFails; 361 u64 tcpEstabResets; 362 u64 tcpCurrEstab; 363 u64 tcpInSegs; 364 u64 tcpOutSegs; 365 u64 tcpRetransSegs; 366 u64 tcpInErrs; 367 u64 tcpOutRsts; 368 }; 369 370 union rdma_protocol_stats { 371 struct ib_protocol_stats ib; 372 struct iw_protocol_stats iw; 373 }; 374 375 /* Define bits for the various functionality this port needs to be supported by 376 * the core. 377 */ 378 /* Management 0x00000FFF */ 379 #define RDMA_CORE_CAP_IB_MAD 0x00000001 380 #define RDMA_CORE_CAP_IB_SMI 0x00000002 381 #define RDMA_CORE_CAP_IB_CM 0x00000004 382 #define RDMA_CORE_CAP_IW_CM 0x00000008 383 #define RDMA_CORE_CAP_IB_SA 0x00000010 384 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 385 386 /* Address format 0x000FF000 */ 387 #define RDMA_CORE_CAP_AF_IB 0x00001000 388 #define RDMA_CORE_CAP_ETH_AH 0x00002000 389 390 /* Protocol 0xFFF00000 */ 391 #define RDMA_CORE_CAP_PROT_IB 0x00100000 392 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 393 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 394 395 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 396 | RDMA_CORE_CAP_IB_MAD \ 397 | RDMA_CORE_CAP_IB_SMI \ 398 | RDMA_CORE_CAP_IB_CM \ 399 | RDMA_CORE_CAP_IB_SA \ 400 | RDMA_CORE_CAP_AF_IB) 401 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 402 | RDMA_CORE_CAP_IB_MAD \ 403 | RDMA_CORE_CAP_IB_CM \ 404 | RDMA_CORE_CAP_AF_IB \ 405 | RDMA_CORE_CAP_ETH_AH) 406 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 407 | RDMA_CORE_CAP_IW_CM) 408 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 409 | RDMA_CORE_CAP_OPA_MAD) 410 411 struct ib_port_attr { 412 enum ib_port_state state; 413 enum ib_mtu max_mtu; 414 enum ib_mtu active_mtu; 415 int gid_tbl_len; 416 u32 port_cap_flags; 417 u32 max_msg_sz; 418 u32 bad_pkey_cntr; 419 u32 qkey_viol_cntr; 420 u16 pkey_tbl_len; 421 u16 lid; 422 u16 sm_lid; 423 u8 lmc; 424 u8 max_vl_num; 425 u8 sm_sl; 426 u8 subnet_timeout; 427 u8 init_type_reply; 428 u8 active_width; 429 u8 active_speed; 430 u8 phys_state; 431 }; 432 433 enum ib_device_modify_flags { 434 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 435 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 436 }; 437 438 struct ib_device_modify { 439 u64 sys_image_guid; 440 char node_desc[64]; 441 }; 442 443 enum ib_port_modify_flags { 444 IB_PORT_SHUTDOWN = 1, 445 IB_PORT_INIT_TYPE = (1<<2), 446 IB_PORT_RESET_QKEY_CNTR = (1<<3) 447 }; 448 449 struct ib_port_modify { 450 u32 set_port_cap_mask; 451 u32 clr_port_cap_mask; 452 u8 init_type; 453 }; 454 455 enum ib_event_type { 456 IB_EVENT_CQ_ERR, 457 IB_EVENT_QP_FATAL, 458 IB_EVENT_QP_REQ_ERR, 459 IB_EVENT_QP_ACCESS_ERR, 460 IB_EVENT_COMM_EST, 461 IB_EVENT_SQ_DRAINED, 462 IB_EVENT_PATH_MIG, 463 IB_EVENT_PATH_MIG_ERR, 464 IB_EVENT_DEVICE_FATAL, 465 IB_EVENT_PORT_ACTIVE, 466 IB_EVENT_PORT_ERR, 467 IB_EVENT_LID_CHANGE, 468 IB_EVENT_PKEY_CHANGE, 469 IB_EVENT_SM_CHANGE, 470 IB_EVENT_SRQ_ERR, 471 IB_EVENT_SRQ_LIMIT_REACHED, 472 IB_EVENT_QP_LAST_WQE_REACHED, 473 IB_EVENT_CLIENT_REREGISTER, 474 IB_EVENT_GID_CHANGE, 475 }; 476 477 __attribute_const__ const char *ib_event_msg(enum ib_event_type event); 478 479 struct ib_event { 480 struct ib_device *device; 481 union { 482 struct ib_cq *cq; 483 struct ib_qp *qp; 484 struct ib_srq *srq; 485 u8 port_num; 486 } element; 487 enum ib_event_type event; 488 }; 489 490 struct ib_event_handler { 491 struct ib_device *device; 492 void (*handler)(struct ib_event_handler *, struct ib_event *); 493 struct list_head list; 494 }; 495 496 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 497 do { \ 498 (_ptr)->device = _device; \ 499 (_ptr)->handler = _handler; \ 500 INIT_LIST_HEAD(&(_ptr)->list); \ 501 } while (0) 502 503 struct ib_global_route { 504 union ib_gid dgid; 505 u32 flow_label; 506 u8 sgid_index; 507 u8 hop_limit; 508 u8 traffic_class; 509 }; 510 511 struct ib_grh { 512 __be32 version_tclass_flow; 513 __be16 paylen; 514 u8 next_hdr; 515 u8 hop_limit; 516 union ib_gid sgid; 517 union ib_gid dgid; 518 }; 519 520 enum { 521 IB_MULTICAST_QPN = 0xffffff 522 }; 523 524 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 525 526 enum ib_ah_flags { 527 IB_AH_GRH = 1 528 }; 529 530 enum ib_rate { 531 IB_RATE_PORT_CURRENT = 0, 532 IB_RATE_2_5_GBPS = 2, 533 IB_RATE_5_GBPS = 5, 534 IB_RATE_10_GBPS = 3, 535 IB_RATE_20_GBPS = 6, 536 IB_RATE_30_GBPS = 4, 537 IB_RATE_40_GBPS = 7, 538 IB_RATE_60_GBPS = 8, 539 IB_RATE_80_GBPS = 9, 540 IB_RATE_120_GBPS = 10, 541 IB_RATE_14_GBPS = 11, 542 IB_RATE_56_GBPS = 12, 543 IB_RATE_112_GBPS = 13, 544 IB_RATE_168_GBPS = 14, 545 IB_RATE_25_GBPS = 15, 546 IB_RATE_100_GBPS = 16, 547 IB_RATE_200_GBPS = 17, 548 IB_RATE_300_GBPS = 18 549 }; 550 551 /** 552 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 553 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 554 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 555 * @rate: rate to convert. 556 */ 557 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 558 559 /** 560 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 561 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 562 * @rate: rate to convert. 563 */ 564 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 565 566 567 /** 568 * enum ib_mr_type - memory region type 569 * @IB_MR_TYPE_MEM_REG: memory region that is used for 570 * normal registration 571 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 572 * signature operations (data-integrity 573 * capable regions) 574 */ 575 enum ib_mr_type { 576 IB_MR_TYPE_MEM_REG, 577 IB_MR_TYPE_SIGNATURE, 578 }; 579 580 /** 581 * Signature types 582 * IB_SIG_TYPE_NONE: Unprotected. 583 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 584 */ 585 enum ib_signature_type { 586 IB_SIG_TYPE_NONE, 587 IB_SIG_TYPE_T10_DIF, 588 }; 589 590 /** 591 * Signature T10-DIF block-guard types 592 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 593 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 594 */ 595 enum ib_t10_dif_bg_type { 596 IB_T10DIF_CRC, 597 IB_T10DIF_CSUM 598 }; 599 600 /** 601 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 602 * domain. 603 * @bg_type: T10-DIF block guard type (CRC|CSUM) 604 * @pi_interval: protection information interval. 605 * @bg: seed of guard computation. 606 * @app_tag: application tag of guard block 607 * @ref_tag: initial guard block reference tag. 608 * @ref_remap: Indicate wethear the reftag increments each block 609 * @app_escape: Indicate to skip block check if apptag=0xffff 610 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 611 * @apptag_check_mask: check bitmask of application tag. 612 */ 613 struct ib_t10_dif_domain { 614 enum ib_t10_dif_bg_type bg_type; 615 u16 pi_interval; 616 u16 bg; 617 u16 app_tag; 618 u32 ref_tag; 619 bool ref_remap; 620 bool app_escape; 621 bool ref_escape; 622 u16 apptag_check_mask; 623 }; 624 625 /** 626 * struct ib_sig_domain - Parameters for signature domain 627 * @sig_type: specific signauture type 628 * @sig: union of all signature domain attributes that may 629 * be used to set domain layout. 630 */ 631 struct ib_sig_domain { 632 enum ib_signature_type sig_type; 633 union { 634 struct ib_t10_dif_domain dif; 635 } sig; 636 }; 637 638 /** 639 * struct ib_sig_attrs - Parameters for signature handover operation 640 * @check_mask: bitmask for signature byte check (8 bytes) 641 * @mem: memory domain layout desciptor. 642 * @wire: wire domain layout desciptor. 643 */ 644 struct ib_sig_attrs { 645 u8 check_mask; 646 struct ib_sig_domain mem; 647 struct ib_sig_domain wire; 648 }; 649 650 enum ib_sig_err_type { 651 IB_SIG_BAD_GUARD, 652 IB_SIG_BAD_REFTAG, 653 IB_SIG_BAD_APPTAG, 654 }; 655 656 /** 657 * struct ib_sig_err - signature error descriptor 658 */ 659 struct ib_sig_err { 660 enum ib_sig_err_type err_type; 661 u32 expected; 662 u32 actual; 663 u64 sig_err_offset; 664 u32 key; 665 }; 666 667 enum ib_mr_status_check { 668 IB_MR_CHECK_SIG_STATUS = 1, 669 }; 670 671 /** 672 * struct ib_mr_status - Memory region status container 673 * 674 * @fail_status: Bitmask of MR checks status. For each 675 * failed check a corresponding status bit is set. 676 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 677 * failure. 678 */ 679 struct ib_mr_status { 680 u32 fail_status; 681 struct ib_sig_err sig_err; 682 }; 683 684 /** 685 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 686 * enum. 687 * @mult: multiple to convert. 688 */ 689 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 690 691 struct ib_ah_attr { 692 struct ib_global_route grh; 693 u16 dlid; 694 u8 sl; 695 u8 src_path_bits; 696 u8 static_rate; 697 u8 ah_flags; 698 u8 port_num; 699 u8 dmac[ETH_ALEN]; 700 u16 vlan_id; 701 }; 702 703 enum ib_wc_status { 704 IB_WC_SUCCESS, 705 IB_WC_LOC_LEN_ERR, 706 IB_WC_LOC_QP_OP_ERR, 707 IB_WC_LOC_EEC_OP_ERR, 708 IB_WC_LOC_PROT_ERR, 709 IB_WC_WR_FLUSH_ERR, 710 IB_WC_MW_BIND_ERR, 711 IB_WC_BAD_RESP_ERR, 712 IB_WC_LOC_ACCESS_ERR, 713 IB_WC_REM_INV_REQ_ERR, 714 IB_WC_REM_ACCESS_ERR, 715 IB_WC_REM_OP_ERR, 716 IB_WC_RETRY_EXC_ERR, 717 IB_WC_RNR_RETRY_EXC_ERR, 718 IB_WC_LOC_RDD_VIOL_ERR, 719 IB_WC_REM_INV_RD_REQ_ERR, 720 IB_WC_REM_ABORT_ERR, 721 IB_WC_INV_EECN_ERR, 722 IB_WC_INV_EEC_STATE_ERR, 723 IB_WC_FATAL_ERR, 724 IB_WC_RESP_TIMEOUT_ERR, 725 IB_WC_GENERAL_ERR 726 }; 727 728 __attribute_const__ const char *ib_wc_status_msg(enum ib_wc_status status); 729 730 enum ib_wc_opcode { 731 IB_WC_SEND, 732 IB_WC_RDMA_WRITE, 733 IB_WC_RDMA_READ, 734 IB_WC_COMP_SWAP, 735 IB_WC_FETCH_ADD, 736 IB_WC_BIND_MW, 737 IB_WC_LSO, 738 IB_WC_LOCAL_INV, 739 IB_WC_FAST_REG_MR, 740 IB_WC_MASKED_COMP_SWAP, 741 IB_WC_MASKED_FETCH_ADD, 742 /* 743 * Set value of IB_WC_RECV so consumers can test if a completion is a 744 * receive by testing (opcode & IB_WC_RECV). 745 */ 746 IB_WC_RECV = 1 << 7, 747 IB_WC_RECV_RDMA_WITH_IMM 748 }; 749 750 enum ib_wc_flags { 751 IB_WC_GRH = 1, 752 IB_WC_WITH_IMM = (1<<1), 753 IB_WC_WITH_INVALIDATE = (1<<2), 754 IB_WC_IP_CSUM_OK = (1<<3), 755 IB_WC_WITH_SMAC = (1<<4), 756 IB_WC_WITH_VLAN = (1<<5), 757 }; 758 759 struct ib_wc { 760 u64 wr_id; 761 enum ib_wc_status status; 762 enum ib_wc_opcode opcode; 763 u32 vendor_err; 764 u32 byte_len; 765 struct ib_qp *qp; 766 union { 767 __be32 imm_data; 768 u32 invalidate_rkey; 769 } ex; 770 u32 src_qp; 771 int wc_flags; 772 u16 pkey_index; 773 u16 slid; 774 u8 sl; 775 u8 dlid_path_bits; 776 u8 port_num; /* valid only for DR SMPs on switches */ 777 u8 smac[ETH_ALEN]; 778 u16 vlan_id; 779 }; 780 781 enum ib_cq_notify_flags { 782 IB_CQ_SOLICITED = 1 << 0, 783 IB_CQ_NEXT_COMP = 1 << 1, 784 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 785 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 786 }; 787 788 enum ib_srq_type { 789 IB_SRQT_BASIC, 790 IB_SRQT_XRC 791 }; 792 793 enum ib_srq_attr_mask { 794 IB_SRQ_MAX_WR = 1 << 0, 795 IB_SRQ_LIMIT = 1 << 1, 796 }; 797 798 struct ib_srq_attr { 799 u32 max_wr; 800 u32 max_sge; 801 u32 srq_limit; 802 }; 803 804 struct ib_srq_init_attr { 805 void (*event_handler)(struct ib_event *, void *); 806 void *srq_context; 807 struct ib_srq_attr attr; 808 enum ib_srq_type srq_type; 809 810 union { 811 struct { 812 struct ib_xrcd *xrcd; 813 struct ib_cq *cq; 814 } xrc; 815 } ext; 816 }; 817 818 struct ib_qp_cap { 819 u32 max_send_wr; 820 u32 max_recv_wr; 821 u32 max_send_sge; 822 u32 max_recv_sge; 823 u32 max_inline_data; 824 }; 825 826 enum ib_sig_type { 827 IB_SIGNAL_ALL_WR, 828 IB_SIGNAL_REQ_WR 829 }; 830 831 enum ib_qp_type { 832 /* 833 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 834 * here (and in that order) since the MAD layer uses them as 835 * indices into a 2-entry table. 836 */ 837 IB_QPT_SMI, 838 IB_QPT_GSI, 839 840 IB_QPT_RC, 841 IB_QPT_UC, 842 IB_QPT_UD, 843 IB_QPT_RAW_IPV6, 844 IB_QPT_RAW_ETHERTYPE, 845 IB_QPT_RAW_PACKET = 8, 846 IB_QPT_XRC_INI = 9, 847 IB_QPT_XRC_TGT, 848 IB_QPT_MAX, 849 /* Reserve a range for qp types internal to the low level driver. 850 * These qp types will not be visible at the IB core layer, so the 851 * IB_QPT_MAX usages should not be affected in the core layer 852 */ 853 IB_QPT_RESERVED1 = 0x1000, 854 IB_QPT_RESERVED2, 855 IB_QPT_RESERVED3, 856 IB_QPT_RESERVED4, 857 IB_QPT_RESERVED5, 858 IB_QPT_RESERVED6, 859 IB_QPT_RESERVED7, 860 IB_QPT_RESERVED8, 861 IB_QPT_RESERVED9, 862 IB_QPT_RESERVED10, 863 }; 864 865 enum ib_qp_create_flags { 866 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 867 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 868 IB_QP_CREATE_NETIF_QP = 1 << 5, 869 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 870 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 871 /* reserve bits 26-31 for low level drivers' internal use */ 872 IB_QP_CREATE_RESERVED_START = 1 << 26, 873 IB_QP_CREATE_RESERVED_END = 1 << 31, 874 }; 875 876 877 /* 878 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 879 * callback to destroy the passed in QP. 880 */ 881 882 struct ib_qp_init_attr { 883 void (*event_handler)(struct ib_event *, void *); 884 void *qp_context; 885 struct ib_cq *send_cq; 886 struct ib_cq *recv_cq; 887 struct ib_srq *srq; 888 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 889 struct ib_qp_cap cap; 890 enum ib_sig_type sq_sig_type; 891 enum ib_qp_type qp_type; 892 enum ib_qp_create_flags create_flags; 893 u8 port_num; /* special QP types only */ 894 }; 895 896 struct ib_qp_open_attr { 897 void (*event_handler)(struct ib_event *, void *); 898 void *qp_context; 899 u32 qp_num; 900 enum ib_qp_type qp_type; 901 }; 902 903 enum ib_rnr_timeout { 904 IB_RNR_TIMER_655_36 = 0, 905 IB_RNR_TIMER_000_01 = 1, 906 IB_RNR_TIMER_000_02 = 2, 907 IB_RNR_TIMER_000_03 = 3, 908 IB_RNR_TIMER_000_04 = 4, 909 IB_RNR_TIMER_000_06 = 5, 910 IB_RNR_TIMER_000_08 = 6, 911 IB_RNR_TIMER_000_12 = 7, 912 IB_RNR_TIMER_000_16 = 8, 913 IB_RNR_TIMER_000_24 = 9, 914 IB_RNR_TIMER_000_32 = 10, 915 IB_RNR_TIMER_000_48 = 11, 916 IB_RNR_TIMER_000_64 = 12, 917 IB_RNR_TIMER_000_96 = 13, 918 IB_RNR_TIMER_001_28 = 14, 919 IB_RNR_TIMER_001_92 = 15, 920 IB_RNR_TIMER_002_56 = 16, 921 IB_RNR_TIMER_003_84 = 17, 922 IB_RNR_TIMER_005_12 = 18, 923 IB_RNR_TIMER_007_68 = 19, 924 IB_RNR_TIMER_010_24 = 20, 925 IB_RNR_TIMER_015_36 = 21, 926 IB_RNR_TIMER_020_48 = 22, 927 IB_RNR_TIMER_030_72 = 23, 928 IB_RNR_TIMER_040_96 = 24, 929 IB_RNR_TIMER_061_44 = 25, 930 IB_RNR_TIMER_081_92 = 26, 931 IB_RNR_TIMER_122_88 = 27, 932 IB_RNR_TIMER_163_84 = 28, 933 IB_RNR_TIMER_245_76 = 29, 934 IB_RNR_TIMER_327_68 = 30, 935 IB_RNR_TIMER_491_52 = 31 936 }; 937 938 enum ib_qp_attr_mask { 939 IB_QP_STATE = 1, 940 IB_QP_CUR_STATE = (1<<1), 941 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 942 IB_QP_ACCESS_FLAGS = (1<<3), 943 IB_QP_PKEY_INDEX = (1<<4), 944 IB_QP_PORT = (1<<5), 945 IB_QP_QKEY = (1<<6), 946 IB_QP_AV = (1<<7), 947 IB_QP_PATH_MTU = (1<<8), 948 IB_QP_TIMEOUT = (1<<9), 949 IB_QP_RETRY_CNT = (1<<10), 950 IB_QP_RNR_RETRY = (1<<11), 951 IB_QP_RQ_PSN = (1<<12), 952 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 953 IB_QP_ALT_PATH = (1<<14), 954 IB_QP_MIN_RNR_TIMER = (1<<15), 955 IB_QP_SQ_PSN = (1<<16), 956 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 957 IB_QP_PATH_MIG_STATE = (1<<18), 958 IB_QP_CAP = (1<<19), 959 IB_QP_DEST_QPN = (1<<20), 960 IB_QP_SMAC = (1<<21), 961 IB_QP_ALT_SMAC = (1<<22), 962 IB_QP_VID = (1<<23), 963 IB_QP_ALT_VID = (1<<24), 964 }; 965 966 enum ib_qp_state { 967 IB_QPS_RESET, 968 IB_QPS_INIT, 969 IB_QPS_RTR, 970 IB_QPS_RTS, 971 IB_QPS_SQD, 972 IB_QPS_SQE, 973 IB_QPS_ERR 974 }; 975 976 enum ib_mig_state { 977 IB_MIG_MIGRATED, 978 IB_MIG_REARM, 979 IB_MIG_ARMED 980 }; 981 982 enum ib_mw_type { 983 IB_MW_TYPE_1 = 1, 984 IB_MW_TYPE_2 = 2 985 }; 986 987 struct ib_qp_attr { 988 enum ib_qp_state qp_state; 989 enum ib_qp_state cur_qp_state; 990 enum ib_mtu path_mtu; 991 enum ib_mig_state path_mig_state; 992 u32 qkey; 993 u32 rq_psn; 994 u32 sq_psn; 995 u32 dest_qp_num; 996 int qp_access_flags; 997 struct ib_qp_cap cap; 998 struct ib_ah_attr ah_attr; 999 struct ib_ah_attr alt_ah_attr; 1000 u16 pkey_index; 1001 u16 alt_pkey_index; 1002 u8 en_sqd_async_notify; 1003 u8 sq_draining; 1004 u8 max_rd_atomic; 1005 u8 max_dest_rd_atomic; 1006 u8 min_rnr_timer; 1007 u8 port_num; 1008 u8 timeout; 1009 u8 retry_cnt; 1010 u8 rnr_retry; 1011 u8 alt_port_num; 1012 u8 alt_timeout; 1013 u8 smac[ETH_ALEN]; 1014 u8 alt_smac[ETH_ALEN]; 1015 u16 vlan_id; 1016 u16 alt_vlan_id; 1017 }; 1018 1019 enum ib_wr_opcode { 1020 IB_WR_RDMA_WRITE, 1021 IB_WR_RDMA_WRITE_WITH_IMM, 1022 IB_WR_SEND, 1023 IB_WR_SEND_WITH_IMM, 1024 IB_WR_RDMA_READ, 1025 IB_WR_ATOMIC_CMP_AND_SWP, 1026 IB_WR_ATOMIC_FETCH_AND_ADD, 1027 IB_WR_LSO, 1028 IB_WR_SEND_WITH_INV, 1029 IB_WR_RDMA_READ_WITH_INV, 1030 IB_WR_LOCAL_INV, 1031 IB_WR_FAST_REG_MR, 1032 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1033 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1034 IB_WR_BIND_MW, 1035 IB_WR_REG_SIG_MR, 1036 /* reserve values for low level drivers' internal use. 1037 * These values will not be used at all in the ib core layer. 1038 */ 1039 IB_WR_RESERVED1 = 0xf0, 1040 IB_WR_RESERVED2, 1041 IB_WR_RESERVED3, 1042 IB_WR_RESERVED4, 1043 IB_WR_RESERVED5, 1044 IB_WR_RESERVED6, 1045 IB_WR_RESERVED7, 1046 IB_WR_RESERVED8, 1047 IB_WR_RESERVED9, 1048 IB_WR_RESERVED10, 1049 }; 1050 1051 enum ib_send_flags { 1052 IB_SEND_FENCE = 1, 1053 IB_SEND_SIGNALED = (1<<1), 1054 IB_SEND_SOLICITED = (1<<2), 1055 IB_SEND_INLINE = (1<<3), 1056 IB_SEND_IP_CSUM = (1<<4), 1057 1058 /* reserve bits 26-31 for low level drivers' internal use */ 1059 IB_SEND_RESERVED_START = (1 << 26), 1060 IB_SEND_RESERVED_END = (1 << 31), 1061 }; 1062 1063 struct ib_sge { 1064 u64 addr; 1065 u32 length; 1066 u32 lkey; 1067 }; 1068 1069 struct ib_fast_reg_page_list { 1070 struct ib_device *device; 1071 u64 *page_list; 1072 unsigned int max_page_list_len; 1073 }; 1074 1075 /** 1076 * struct ib_mw_bind_info - Parameters for a memory window bind operation. 1077 * @mr: A memory region to bind the memory window to. 1078 * @addr: The address where the memory window should begin. 1079 * @length: The length of the memory window, in bytes. 1080 * @mw_access_flags: Access flags from enum ib_access_flags for the window. 1081 * 1082 * This struct contains the shared parameters for type 1 and type 2 1083 * memory window bind operations. 1084 */ 1085 struct ib_mw_bind_info { 1086 struct ib_mr *mr; 1087 u64 addr; 1088 u64 length; 1089 int mw_access_flags; 1090 }; 1091 1092 struct ib_send_wr { 1093 struct ib_send_wr *next; 1094 u64 wr_id; 1095 struct ib_sge *sg_list; 1096 int num_sge; 1097 enum ib_wr_opcode opcode; 1098 int send_flags; 1099 union { 1100 __be32 imm_data; 1101 u32 invalidate_rkey; 1102 } ex; 1103 union { 1104 struct { 1105 u64 remote_addr; 1106 u32 rkey; 1107 } rdma; 1108 struct { 1109 u64 remote_addr; 1110 u64 compare_add; 1111 u64 swap; 1112 u64 compare_add_mask; 1113 u64 swap_mask; 1114 u32 rkey; 1115 } atomic; 1116 struct { 1117 struct ib_ah *ah; 1118 void *header; 1119 int hlen; 1120 int mss; 1121 u32 remote_qpn; 1122 u32 remote_qkey; 1123 u16 pkey_index; /* valid for GSI only */ 1124 u8 port_num; /* valid for DR SMPs on switch only */ 1125 } ud; 1126 struct { 1127 u64 iova_start; 1128 struct ib_fast_reg_page_list *page_list; 1129 unsigned int page_shift; 1130 unsigned int page_list_len; 1131 u32 length; 1132 int access_flags; 1133 u32 rkey; 1134 } fast_reg; 1135 struct { 1136 struct ib_mw *mw; 1137 /* The new rkey for the memory window. */ 1138 u32 rkey; 1139 struct ib_mw_bind_info bind_info; 1140 } bind_mw; 1141 struct { 1142 struct ib_sig_attrs *sig_attrs; 1143 struct ib_mr *sig_mr; 1144 int access_flags; 1145 struct ib_sge *prot; 1146 } sig_handover; 1147 } wr; 1148 u32 xrc_remote_srq_num; /* XRC TGT QPs only */ 1149 }; 1150 1151 struct ib_recv_wr { 1152 struct ib_recv_wr *next; 1153 u64 wr_id; 1154 struct ib_sge *sg_list; 1155 int num_sge; 1156 }; 1157 1158 enum ib_access_flags { 1159 IB_ACCESS_LOCAL_WRITE = 1, 1160 IB_ACCESS_REMOTE_WRITE = (1<<1), 1161 IB_ACCESS_REMOTE_READ = (1<<2), 1162 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1163 IB_ACCESS_MW_BIND = (1<<4), 1164 IB_ZERO_BASED = (1<<5), 1165 IB_ACCESS_ON_DEMAND = (1<<6), 1166 }; 1167 1168 struct ib_phys_buf { 1169 u64 addr; 1170 u64 size; 1171 }; 1172 1173 struct ib_mr_attr { 1174 struct ib_pd *pd; 1175 u64 device_virt_addr; 1176 u64 size; 1177 int mr_access_flags; 1178 u32 lkey; 1179 u32 rkey; 1180 }; 1181 1182 enum ib_mr_rereg_flags { 1183 IB_MR_REREG_TRANS = 1, 1184 IB_MR_REREG_PD = (1<<1), 1185 IB_MR_REREG_ACCESS = (1<<2), 1186 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1187 }; 1188 1189 /** 1190 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation. 1191 * @wr_id: Work request id. 1192 * @send_flags: Flags from ib_send_flags enum. 1193 * @bind_info: More parameters of the bind operation. 1194 */ 1195 struct ib_mw_bind { 1196 u64 wr_id; 1197 int send_flags; 1198 struct ib_mw_bind_info bind_info; 1199 }; 1200 1201 struct ib_fmr_attr { 1202 int max_pages; 1203 int max_maps; 1204 u8 page_shift; 1205 }; 1206 1207 struct ib_umem; 1208 1209 struct ib_ucontext { 1210 struct ib_device *device; 1211 struct list_head pd_list; 1212 struct list_head mr_list; 1213 struct list_head mw_list; 1214 struct list_head cq_list; 1215 struct list_head qp_list; 1216 struct list_head srq_list; 1217 struct list_head ah_list; 1218 struct list_head xrcd_list; 1219 struct list_head rule_list; 1220 int closing; 1221 1222 struct pid *tgid; 1223 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1224 struct rb_root umem_tree; 1225 /* 1226 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1227 * mmu notifiers registration. 1228 */ 1229 struct rw_semaphore umem_rwsem; 1230 void (*invalidate_range)(struct ib_umem *umem, 1231 unsigned long start, unsigned long end); 1232 1233 struct mmu_notifier mn; 1234 atomic_t notifier_count; 1235 /* A list of umems that don't have private mmu notifier counters yet. */ 1236 struct list_head no_private_counters; 1237 int odp_mrs_count; 1238 #endif 1239 }; 1240 1241 struct ib_uobject { 1242 u64 user_handle; /* handle given to us by userspace */ 1243 struct ib_ucontext *context; /* associated user context */ 1244 void *object; /* containing object */ 1245 struct list_head list; /* link to context's list */ 1246 int id; /* index into kernel idr */ 1247 struct kref ref; 1248 struct rw_semaphore mutex; /* protects .live */ 1249 int live; 1250 }; 1251 1252 struct ib_udata { 1253 const void __user *inbuf; 1254 void __user *outbuf; 1255 size_t inlen; 1256 size_t outlen; 1257 }; 1258 1259 struct ib_pd { 1260 u32 local_dma_lkey; 1261 struct ib_device *device; 1262 struct ib_uobject *uobject; 1263 atomic_t usecnt; /* count all resources */ 1264 struct ib_mr *local_mr; 1265 }; 1266 1267 struct ib_xrcd { 1268 struct ib_device *device; 1269 atomic_t usecnt; /* count all exposed resources */ 1270 struct inode *inode; 1271 1272 struct mutex tgt_qp_mutex; 1273 struct list_head tgt_qp_list; 1274 }; 1275 1276 struct ib_ah { 1277 struct ib_device *device; 1278 struct ib_pd *pd; 1279 struct ib_uobject *uobject; 1280 }; 1281 1282 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1283 1284 struct ib_cq { 1285 struct ib_device *device; 1286 struct ib_uobject *uobject; 1287 ib_comp_handler comp_handler; 1288 void (*event_handler)(struct ib_event *, void *); 1289 void *cq_context; 1290 int cqe; 1291 atomic_t usecnt; /* count number of work queues */ 1292 }; 1293 1294 struct ib_srq { 1295 struct ib_device *device; 1296 struct ib_pd *pd; 1297 struct ib_uobject *uobject; 1298 void (*event_handler)(struct ib_event *, void *); 1299 void *srq_context; 1300 enum ib_srq_type srq_type; 1301 atomic_t usecnt; 1302 1303 union { 1304 struct { 1305 struct ib_xrcd *xrcd; 1306 struct ib_cq *cq; 1307 u32 srq_num; 1308 } xrc; 1309 } ext; 1310 }; 1311 1312 struct ib_qp { 1313 struct ib_device *device; 1314 struct ib_pd *pd; 1315 struct ib_cq *send_cq; 1316 struct ib_cq *recv_cq; 1317 struct ib_srq *srq; 1318 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1319 struct list_head xrcd_list; 1320 /* count times opened, mcast attaches, flow attaches */ 1321 atomic_t usecnt; 1322 struct list_head open_list; 1323 struct ib_qp *real_qp; 1324 struct ib_uobject *uobject; 1325 void (*event_handler)(struct ib_event *, void *); 1326 void *qp_context; 1327 u32 qp_num; 1328 enum ib_qp_type qp_type; 1329 }; 1330 1331 struct ib_mr { 1332 struct ib_device *device; 1333 struct ib_pd *pd; 1334 struct ib_uobject *uobject; 1335 u32 lkey; 1336 u32 rkey; 1337 atomic_t usecnt; /* count number of MWs */ 1338 }; 1339 1340 struct ib_mw { 1341 struct ib_device *device; 1342 struct ib_pd *pd; 1343 struct ib_uobject *uobject; 1344 u32 rkey; 1345 enum ib_mw_type type; 1346 }; 1347 1348 struct ib_fmr { 1349 struct ib_device *device; 1350 struct ib_pd *pd; 1351 struct list_head list; 1352 u32 lkey; 1353 u32 rkey; 1354 }; 1355 1356 /* Supported steering options */ 1357 enum ib_flow_attr_type { 1358 /* steering according to rule specifications */ 1359 IB_FLOW_ATTR_NORMAL = 0x0, 1360 /* default unicast and multicast rule - 1361 * receive all Eth traffic which isn't steered to any QP 1362 */ 1363 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1364 /* default multicast rule - 1365 * receive all Eth multicast traffic which isn't steered to any QP 1366 */ 1367 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1368 /* sniffer rule - receive all port traffic */ 1369 IB_FLOW_ATTR_SNIFFER = 0x3 1370 }; 1371 1372 /* Supported steering header types */ 1373 enum ib_flow_spec_type { 1374 /* L2 headers*/ 1375 IB_FLOW_SPEC_ETH = 0x20, 1376 IB_FLOW_SPEC_IB = 0x22, 1377 /* L3 header*/ 1378 IB_FLOW_SPEC_IPV4 = 0x30, 1379 /* L4 headers*/ 1380 IB_FLOW_SPEC_TCP = 0x40, 1381 IB_FLOW_SPEC_UDP = 0x41 1382 }; 1383 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1384 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1385 1386 /* Flow steering rule priority is set according to it's domain. 1387 * Lower domain value means higher priority. 1388 */ 1389 enum ib_flow_domain { 1390 IB_FLOW_DOMAIN_USER, 1391 IB_FLOW_DOMAIN_ETHTOOL, 1392 IB_FLOW_DOMAIN_RFS, 1393 IB_FLOW_DOMAIN_NIC, 1394 IB_FLOW_DOMAIN_NUM /* Must be last */ 1395 }; 1396 1397 struct ib_flow_eth_filter { 1398 u8 dst_mac[6]; 1399 u8 src_mac[6]; 1400 __be16 ether_type; 1401 __be16 vlan_tag; 1402 }; 1403 1404 struct ib_flow_spec_eth { 1405 enum ib_flow_spec_type type; 1406 u16 size; 1407 struct ib_flow_eth_filter val; 1408 struct ib_flow_eth_filter mask; 1409 }; 1410 1411 struct ib_flow_ib_filter { 1412 __be16 dlid; 1413 __u8 sl; 1414 }; 1415 1416 struct ib_flow_spec_ib { 1417 enum ib_flow_spec_type type; 1418 u16 size; 1419 struct ib_flow_ib_filter val; 1420 struct ib_flow_ib_filter mask; 1421 }; 1422 1423 struct ib_flow_ipv4_filter { 1424 __be32 src_ip; 1425 __be32 dst_ip; 1426 }; 1427 1428 struct ib_flow_spec_ipv4 { 1429 enum ib_flow_spec_type type; 1430 u16 size; 1431 struct ib_flow_ipv4_filter val; 1432 struct ib_flow_ipv4_filter mask; 1433 }; 1434 1435 struct ib_flow_tcp_udp_filter { 1436 __be16 dst_port; 1437 __be16 src_port; 1438 }; 1439 1440 struct ib_flow_spec_tcp_udp { 1441 enum ib_flow_spec_type type; 1442 u16 size; 1443 struct ib_flow_tcp_udp_filter val; 1444 struct ib_flow_tcp_udp_filter mask; 1445 }; 1446 1447 union ib_flow_spec { 1448 struct { 1449 enum ib_flow_spec_type type; 1450 u16 size; 1451 }; 1452 struct ib_flow_spec_eth eth; 1453 struct ib_flow_spec_ib ib; 1454 struct ib_flow_spec_ipv4 ipv4; 1455 struct ib_flow_spec_tcp_udp tcp_udp; 1456 }; 1457 1458 struct ib_flow_attr { 1459 enum ib_flow_attr_type type; 1460 u16 size; 1461 u16 priority; 1462 u32 flags; 1463 u8 num_of_specs; 1464 u8 port; 1465 /* Following are the optional layers according to user request 1466 * struct ib_flow_spec_xxx 1467 * struct ib_flow_spec_yyy 1468 */ 1469 }; 1470 1471 struct ib_flow { 1472 struct ib_qp *qp; 1473 struct ib_uobject *uobject; 1474 }; 1475 1476 struct ib_mad_hdr; 1477 struct ib_grh; 1478 1479 enum ib_process_mad_flags { 1480 IB_MAD_IGNORE_MKEY = 1, 1481 IB_MAD_IGNORE_BKEY = 2, 1482 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1483 }; 1484 1485 enum ib_mad_result { 1486 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1487 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1488 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1489 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1490 }; 1491 1492 #define IB_DEVICE_NAME_MAX 64 1493 1494 struct ib_cache { 1495 rwlock_t lock; 1496 struct ib_event_handler event_handler; 1497 struct ib_pkey_cache **pkey_cache; 1498 struct ib_gid_table **gid_cache; 1499 u8 *lmc_cache; 1500 }; 1501 1502 struct ib_dma_mapping_ops { 1503 int (*mapping_error)(struct ib_device *dev, 1504 u64 dma_addr); 1505 u64 (*map_single)(struct ib_device *dev, 1506 void *ptr, size_t size, 1507 enum dma_data_direction direction); 1508 void (*unmap_single)(struct ib_device *dev, 1509 u64 addr, size_t size, 1510 enum dma_data_direction direction); 1511 u64 (*map_page)(struct ib_device *dev, 1512 struct page *page, unsigned long offset, 1513 size_t size, 1514 enum dma_data_direction direction); 1515 void (*unmap_page)(struct ib_device *dev, 1516 u64 addr, size_t size, 1517 enum dma_data_direction direction); 1518 int (*map_sg)(struct ib_device *dev, 1519 struct scatterlist *sg, int nents, 1520 enum dma_data_direction direction); 1521 void (*unmap_sg)(struct ib_device *dev, 1522 struct scatterlist *sg, int nents, 1523 enum dma_data_direction direction); 1524 void (*sync_single_for_cpu)(struct ib_device *dev, 1525 u64 dma_handle, 1526 size_t size, 1527 enum dma_data_direction dir); 1528 void (*sync_single_for_device)(struct ib_device *dev, 1529 u64 dma_handle, 1530 size_t size, 1531 enum dma_data_direction dir); 1532 void *(*alloc_coherent)(struct ib_device *dev, 1533 size_t size, 1534 u64 *dma_handle, 1535 gfp_t flag); 1536 void (*free_coherent)(struct ib_device *dev, 1537 size_t size, void *cpu_addr, 1538 u64 dma_handle); 1539 }; 1540 1541 struct iw_cm_verbs; 1542 1543 struct ib_port_immutable { 1544 int pkey_tbl_len; 1545 int gid_tbl_len; 1546 u32 core_cap_flags; 1547 u32 max_mad_size; 1548 }; 1549 1550 struct ib_device { 1551 struct device *dma_device; 1552 1553 char name[IB_DEVICE_NAME_MAX]; 1554 1555 struct list_head event_handler_list; 1556 spinlock_t event_handler_lock; 1557 1558 spinlock_t client_data_lock; 1559 struct list_head core_list; 1560 /* Access to the client_data_list is protected by the client_data_lock 1561 * spinlock and the lists_rwsem read-write semaphore */ 1562 struct list_head client_data_list; 1563 1564 struct ib_cache cache; 1565 /** 1566 * port_immutable is indexed by port number 1567 */ 1568 struct ib_port_immutable *port_immutable; 1569 1570 int num_comp_vectors; 1571 1572 struct iw_cm_verbs *iwcm; 1573 1574 int (*get_protocol_stats)(struct ib_device *device, 1575 union rdma_protocol_stats *stats); 1576 int (*query_device)(struct ib_device *device, 1577 struct ib_device_attr *device_attr, 1578 struct ib_udata *udata); 1579 int (*query_port)(struct ib_device *device, 1580 u8 port_num, 1581 struct ib_port_attr *port_attr); 1582 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1583 u8 port_num); 1584 /* When calling get_netdev, the HW vendor's driver should return the 1585 * net device of device @device at port @port_num or NULL if such 1586 * a net device doesn't exist. The vendor driver should call dev_hold 1587 * on this net device. The HW vendor's device driver must guarantee 1588 * that this function returns NULL before the net device reaches 1589 * NETDEV_UNREGISTER_FINAL state. 1590 */ 1591 struct net_device *(*get_netdev)(struct ib_device *device, 1592 u8 port_num); 1593 int (*query_gid)(struct ib_device *device, 1594 u8 port_num, int index, 1595 union ib_gid *gid); 1596 /* When calling add_gid, the HW vendor's driver should 1597 * add the gid of device @device at gid index @index of 1598 * port @port_num to be @gid. Meta-info of that gid (for example, 1599 * the network device related to this gid is available 1600 * at @attr. @context allows the HW vendor driver to store extra 1601 * information together with a GID entry. The HW vendor may allocate 1602 * memory to contain this information and store it in @context when a 1603 * new GID entry is written to. Params are consistent until the next 1604 * call of add_gid or delete_gid. The function should return 0 on 1605 * success or error otherwise. The function could be called 1606 * concurrently for different ports. This function is only called 1607 * when roce_gid_table is used. 1608 */ 1609 int (*add_gid)(struct ib_device *device, 1610 u8 port_num, 1611 unsigned int index, 1612 const union ib_gid *gid, 1613 const struct ib_gid_attr *attr, 1614 void **context); 1615 /* When calling del_gid, the HW vendor's driver should delete the 1616 * gid of device @device at gid index @index of port @port_num. 1617 * Upon the deletion of a GID entry, the HW vendor must free any 1618 * allocated memory. The caller will clear @context afterwards. 1619 * This function is only called when roce_gid_table is used. 1620 */ 1621 int (*del_gid)(struct ib_device *device, 1622 u8 port_num, 1623 unsigned int index, 1624 void **context); 1625 int (*query_pkey)(struct ib_device *device, 1626 u8 port_num, u16 index, u16 *pkey); 1627 int (*modify_device)(struct ib_device *device, 1628 int device_modify_mask, 1629 struct ib_device_modify *device_modify); 1630 int (*modify_port)(struct ib_device *device, 1631 u8 port_num, int port_modify_mask, 1632 struct ib_port_modify *port_modify); 1633 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1634 struct ib_udata *udata); 1635 int (*dealloc_ucontext)(struct ib_ucontext *context); 1636 int (*mmap)(struct ib_ucontext *context, 1637 struct vm_area_struct *vma); 1638 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1639 struct ib_ucontext *context, 1640 struct ib_udata *udata); 1641 int (*dealloc_pd)(struct ib_pd *pd); 1642 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1643 struct ib_ah_attr *ah_attr); 1644 int (*modify_ah)(struct ib_ah *ah, 1645 struct ib_ah_attr *ah_attr); 1646 int (*query_ah)(struct ib_ah *ah, 1647 struct ib_ah_attr *ah_attr); 1648 int (*destroy_ah)(struct ib_ah *ah); 1649 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1650 struct ib_srq_init_attr *srq_init_attr, 1651 struct ib_udata *udata); 1652 int (*modify_srq)(struct ib_srq *srq, 1653 struct ib_srq_attr *srq_attr, 1654 enum ib_srq_attr_mask srq_attr_mask, 1655 struct ib_udata *udata); 1656 int (*query_srq)(struct ib_srq *srq, 1657 struct ib_srq_attr *srq_attr); 1658 int (*destroy_srq)(struct ib_srq *srq); 1659 int (*post_srq_recv)(struct ib_srq *srq, 1660 struct ib_recv_wr *recv_wr, 1661 struct ib_recv_wr **bad_recv_wr); 1662 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1663 struct ib_qp_init_attr *qp_init_attr, 1664 struct ib_udata *udata); 1665 int (*modify_qp)(struct ib_qp *qp, 1666 struct ib_qp_attr *qp_attr, 1667 int qp_attr_mask, 1668 struct ib_udata *udata); 1669 int (*query_qp)(struct ib_qp *qp, 1670 struct ib_qp_attr *qp_attr, 1671 int qp_attr_mask, 1672 struct ib_qp_init_attr *qp_init_attr); 1673 int (*destroy_qp)(struct ib_qp *qp); 1674 int (*post_send)(struct ib_qp *qp, 1675 struct ib_send_wr *send_wr, 1676 struct ib_send_wr **bad_send_wr); 1677 int (*post_recv)(struct ib_qp *qp, 1678 struct ib_recv_wr *recv_wr, 1679 struct ib_recv_wr **bad_recv_wr); 1680 struct ib_cq * (*create_cq)(struct ib_device *device, 1681 const struct ib_cq_init_attr *attr, 1682 struct ib_ucontext *context, 1683 struct ib_udata *udata); 1684 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1685 u16 cq_period); 1686 int (*destroy_cq)(struct ib_cq *cq); 1687 int (*resize_cq)(struct ib_cq *cq, int cqe, 1688 struct ib_udata *udata); 1689 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1690 struct ib_wc *wc); 1691 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1692 int (*req_notify_cq)(struct ib_cq *cq, 1693 enum ib_cq_notify_flags flags); 1694 int (*req_ncomp_notif)(struct ib_cq *cq, 1695 int wc_cnt); 1696 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1697 int mr_access_flags); 1698 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1699 struct ib_phys_buf *phys_buf_array, 1700 int num_phys_buf, 1701 int mr_access_flags, 1702 u64 *iova_start); 1703 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1704 u64 start, u64 length, 1705 u64 virt_addr, 1706 int mr_access_flags, 1707 struct ib_udata *udata); 1708 int (*rereg_user_mr)(struct ib_mr *mr, 1709 int flags, 1710 u64 start, u64 length, 1711 u64 virt_addr, 1712 int mr_access_flags, 1713 struct ib_pd *pd, 1714 struct ib_udata *udata); 1715 int (*query_mr)(struct ib_mr *mr, 1716 struct ib_mr_attr *mr_attr); 1717 int (*dereg_mr)(struct ib_mr *mr); 1718 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 1719 enum ib_mr_type mr_type, 1720 u32 max_num_sg); 1721 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1722 int page_list_len); 1723 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1724 int (*rereg_phys_mr)(struct ib_mr *mr, 1725 int mr_rereg_mask, 1726 struct ib_pd *pd, 1727 struct ib_phys_buf *phys_buf_array, 1728 int num_phys_buf, 1729 int mr_access_flags, 1730 u64 *iova_start); 1731 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1732 enum ib_mw_type type); 1733 int (*bind_mw)(struct ib_qp *qp, 1734 struct ib_mw *mw, 1735 struct ib_mw_bind *mw_bind); 1736 int (*dealloc_mw)(struct ib_mw *mw); 1737 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1738 int mr_access_flags, 1739 struct ib_fmr_attr *fmr_attr); 1740 int (*map_phys_fmr)(struct ib_fmr *fmr, 1741 u64 *page_list, int list_len, 1742 u64 iova); 1743 int (*unmap_fmr)(struct list_head *fmr_list); 1744 int (*dealloc_fmr)(struct ib_fmr *fmr); 1745 int (*attach_mcast)(struct ib_qp *qp, 1746 union ib_gid *gid, 1747 u16 lid); 1748 int (*detach_mcast)(struct ib_qp *qp, 1749 union ib_gid *gid, 1750 u16 lid); 1751 int (*process_mad)(struct ib_device *device, 1752 int process_mad_flags, 1753 u8 port_num, 1754 const struct ib_wc *in_wc, 1755 const struct ib_grh *in_grh, 1756 const struct ib_mad_hdr *in_mad, 1757 size_t in_mad_size, 1758 struct ib_mad_hdr *out_mad, 1759 size_t *out_mad_size, 1760 u16 *out_mad_pkey_index); 1761 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1762 struct ib_ucontext *ucontext, 1763 struct ib_udata *udata); 1764 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1765 struct ib_flow * (*create_flow)(struct ib_qp *qp, 1766 struct ib_flow_attr 1767 *flow_attr, 1768 int domain); 1769 int (*destroy_flow)(struct ib_flow *flow_id); 1770 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 1771 struct ib_mr_status *mr_status); 1772 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 1773 1774 struct ib_dma_mapping_ops *dma_ops; 1775 1776 struct module *owner; 1777 struct device dev; 1778 struct kobject *ports_parent; 1779 struct list_head port_list; 1780 1781 enum { 1782 IB_DEV_UNINITIALIZED, 1783 IB_DEV_REGISTERED, 1784 IB_DEV_UNREGISTERED 1785 } reg_state; 1786 1787 int uverbs_abi_ver; 1788 u64 uverbs_cmd_mask; 1789 u64 uverbs_ex_cmd_mask; 1790 1791 char node_desc[64]; 1792 __be64 node_guid; 1793 u32 local_dma_lkey; 1794 u16 is_switch:1; 1795 u8 node_type; 1796 u8 phys_port_cnt; 1797 1798 /** 1799 * The following mandatory functions are used only at device 1800 * registration. Keep functions such as these at the end of this 1801 * structure to avoid cache line misses when accessing struct ib_device 1802 * in fast paths. 1803 */ 1804 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 1805 }; 1806 1807 struct ib_client { 1808 char *name; 1809 void (*add) (struct ib_device *); 1810 void (*remove)(struct ib_device *, void *client_data); 1811 1812 /* Returns the net_dev belonging to this ib_client and matching the 1813 * given parameters. 1814 * @dev: An RDMA device that the net_dev use for communication. 1815 * @port: A physical port number on the RDMA device. 1816 * @pkey: P_Key that the net_dev uses if applicable. 1817 * @gid: A GID that the net_dev uses to communicate. 1818 * @addr: An IP address the net_dev is configured with. 1819 * @client_data: The device's client data set by ib_set_client_data(). 1820 * 1821 * An ib_client that implements a net_dev on top of RDMA devices 1822 * (such as IP over IB) should implement this callback, allowing the 1823 * rdma_cm module to find the right net_dev for a given request. 1824 * 1825 * The caller is responsible for calling dev_put on the returned 1826 * netdev. */ 1827 struct net_device *(*get_net_dev_by_params)( 1828 struct ib_device *dev, 1829 u8 port, 1830 u16 pkey, 1831 const union ib_gid *gid, 1832 const struct sockaddr *addr, 1833 void *client_data); 1834 struct list_head list; 1835 }; 1836 1837 struct ib_device *ib_alloc_device(size_t size); 1838 void ib_dealloc_device(struct ib_device *device); 1839 1840 int ib_register_device(struct ib_device *device, 1841 int (*port_callback)(struct ib_device *, 1842 u8, struct kobject *)); 1843 void ib_unregister_device(struct ib_device *device); 1844 1845 int ib_register_client (struct ib_client *client); 1846 void ib_unregister_client(struct ib_client *client); 1847 1848 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1849 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1850 void *data); 1851 1852 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1853 { 1854 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1855 } 1856 1857 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1858 { 1859 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1860 } 1861 1862 /** 1863 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1864 * contains all required attributes and no attributes not allowed for 1865 * the given QP state transition. 1866 * @cur_state: Current QP state 1867 * @next_state: Next QP state 1868 * @type: QP type 1869 * @mask: Mask of supplied QP attributes 1870 * @ll : link layer of port 1871 * 1872 * This function is a helper function that a low-level driver's 1873 * modify_qp method can use to validate the consumer's input. It 1874 * checks that cur_state and next_state are valid QP states, that a 1875 * transition from cur_state to next_state is allowed by the IB spec, 1876 * and that the attribute mask supplied is allowed for the transition. 1877 */ 1878 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1879 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1880 enum rdma_link_layer ll); 1881 1882 int ib_register_event_handler (struct ib_event_handler *event_handler); 1883 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1884 void ib_dispatch_event(struct ib_event *event); 1885 1886 int ib_query_device(struct ib_device *device, 1887 struct ib_device_attr *device_attr); 1888 1889 int ib_query_port(struct ib_device *device, 1890 u8 port_num, struct ib_port_attr *port_attr); 1891 1892 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1893 u8 port_num); 1894 1895 /** 1896 * rdma_cap_ib_switch - Check if the device is IB switch 1897 * @device: Device to check 1898 * 1899 * Device driver is responsible for setting is_switch bit on 1900 * in ib_device structure at init time. 1901 * 1902 * Return: true if the device is IB switch. 1903 */ 1904 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 1905 { 1906 return device->is_switch; 1907 } 1908 1909 /** 1910 * rdma_start_port - Return the first valid port number for the device 1911 * specified 1912 * 1913 * @device: Device to be checked 1914 * 1915 * Return start port number 1916 */ 1917 static inline u8 rdma_start_port(const struct ib_device *device) 1918 { 1919 return rdma_cap_ib_switch(device) ? 0 : 1; 1920 } 1921 1922 /** 1923 * rdma_end_port - Return the last valid port number for the device 1924 * specified 1925 * 1926 * @device: Device to be checked 1927 * 1928 * Return last port number 1929 */ 1930 static inline u8 rdma_end_port(const struct ib_device *device) 1931 { 1932 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 1933 } 1934 1935 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 1936 { 1937 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 1938 } 1939 1940 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 1941 { 1942 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 1943 } 1944 1945 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 1946 { 1947 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 1948 } 1949 1950 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 1951 { 1952 return device->port_immutable[port_num].core_cap_flags & 1953 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE); 1954 } 1955 1956 /** 1957 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 1958 * Management Datagrams. 1959 * @device: Device to check 1960 * @port_num: Port number to check 1961 * 1962 * Management Datagrams (MAD) are a required part of the InfiniBand 1963 * specification and are supported on all InfiniBand devices. A slightly 1964 * extended version are also supported on OPA interfaces. 1965 * 1966 * Return: true if the port supports sending/receiving of MAD packets. 1967 */ 1968 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 1969 { 1970 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 1971 } 1972 1973 /** 1974 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 1975 * Management Datagrams. 1976 * @device: Device to check 1977 * @port_num: Port number to check 1978 * 1979 * Intel OmniPath devices extend and/or replace the InfiniBand Management 1980 * datagrams with their own versions. These OPA MADs share many but not all of 1981 * the characteristics of InfiniBand MADs. 1982 * 1983 * OPA MADs differ in the following ways: 1984 * 1985 * 1) MADs are variable size up to 2K 1986 * IBTA defined MADs remain fixed at 256 bytes 1987 * 2) OPA SMPs must carry valid PKeys 1988 * 3) OPA SMP packets are a different format 1989 * 1990 * Return: true if the port supports OPA MAD packet formats. 1991 */ 1992 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 1993 { 1994 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 1995 == RDMA_CORE_CAP_OPA_MAD; 1996 } 1997 1998 /** 1999 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2000 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2001 * @device: Device to check 2002 * @port_num: Port number to check 2003 * 2004 * Each InfiniBand node is required to provide a Subnet Management Agent 2005 * that the subnet manager can access. Prior to the fabric being fully 2006 * configured by the subnet manager, the SMA is accessed via a well known 2007 * interface called the Subnet Management Interface (SMI). This interface 2008 * uses directed route packets to communicate with the SM to get around the 2009 * chicken and egg problem of the SM needing to know what's on the fabric 2010 * in order to configure the fabric, and needing to configure the fabric in 2011 * order to send packets to the devices on the fabric. These directed 2012 * route packets do not need the fabric fully configured in order to reach 2013 * their destination. The SMI is the only method allowed to send 2014 * directed route packets on an InfiniBand fabric. 2015 * 2016 * Return: true if the port provides an SMI. 2017 */ 2018 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2019 { 2020 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2021 } 2022 2023 /** 2024 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2025 * Communication Manager. 2026 * @device: Device to check 2027 * @port_num: Port number to check 2028 * 2029 * The InfiniBand Communication Manager is one of many pre-defined General 2030 * Service Agents (GSA) that are accessed via the General Service 2031 * Interface (GSI). It's role is to facilitate establishment of connections 2032 * between nodes as well as other management related tasks for established 2033 * connections. 2034 * 2035 * Return: true if the port supports an IB CM (this does not guarantee that 2036 * a CM is actually running however). 2037 */ 2038 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2039 { 2040 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2041 } 2042 2043 /** 2044 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2045 * Communication Manager. 2046 * @device: Device to check 2047 * @port_num: Port number to check 2048 * 2049 * Similar to above, but specific to iWARP connections which have a different 2050 * managment protocol than InfiniBand. 2051 * 2052 * Return: true if the port supports an iWARP CM (this does not guarantee that 2053 * a CM is actually running however). 2054 */ 2055 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2056 { 2057 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2058 } 2059 2060 /** 2061 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2062 * Subnet Administration. 2063 * @device: Device to check 2064 * @port_num: Port number to check 2065 * 2066 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2067 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2068 * fabrics, devices should resolve routes to other hosts by contacting the 2069 * SA to query the proper route. 2070 * 2071 * Return: true if the port should act as a client to the fabric Subnet 2072 * Administration interface. This does not imply that the SA service is 2073 * running locally. 2074 */ 2075 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2076 { 2077 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2078 } 2079 2080 /** 2081 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2082 * Multicast. 2083 * @device: Device to check 2084 * @port_num: Port number to check 2085 * 2086 * InfiniBand multicast registration is more complex than normal IPv4 or 2087 * IPv6 multicast registration. Each Host Channel Adapter must register 2088 * with the Subnet Manager when it wishes to join a multicast group. It 2089 * should do so only once regardless of how many queue pairs it subscribes 2090 * to this group. And it should leave the group only after all queue pairs 2091 * attached to the group have been detached. 2092 * 2093 * Return: true if the port must undertake the additional adminstrative 2094 * overhead of registering/unregistering with the SM and tracking of the 2095 * total number of queue pairs attached to the multicast group. 2096 */ 2097 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2098 { 2099 return rdma_cap_ib_sa(device, port_num); 2100 } 2101 2102 /** 2103 * rdma_cap_af_ib - Check if the port of device has the capability 2104 * Native Infiniband Address. 2105 * @device: Device to check 2106 * @port_num: Port number to check 2107 * 2108 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2109 * GID. RoCE uses a different mechanism, but still generates a GID via 2110 * a prescribed mechanism and port specific data. 2111 * 2112 * Return: true if the port uses a GID address to identify devices on the 2113 * network. 2114 */ 2115 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2116 { 2117 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2118 } 2119 2120 /** 2121 * rdma_cap_eth_ah - Check if the port of device has the capability 2122 * Ethernet Address Handle. 2123 * @device: Device to check 2124 * @port_num: Port number to check 2125 * 2126 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2127 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2128 * port. Normally, packet headers are generated by the sending host 2129 * adapter, but when sending connectionless datagrams, we must manually 2130 * inject the proper headers for the fabric we are communicating over. 2131 * 2132 * Return: true if we are running as a RoCE port and must force the 2133 * addition of a Global Route Header built from our Ethernet Address 2134 * Handle into our header list for connectionless packets. 2135 */ 2136 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2137 { 2138 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2139 } 2140 2141 /** 2142 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2143 * 2144 * @device: Device 2145 * @port_num: Port number 2146 * 2147 * This MAD size includes the MAD headers and MAD payload. No other headers 2148 * are included. 2149 * 2150 * Return the max MAD size required by the Port. Will return 0 if the port 2151 * does not support MADs 2152 */ 2153 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2154 { 2155 return device->port_immutable[port_num].max_mad_size; 2156 } 2157 2158 /** 2159 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2160 * @device: Device to check 2161 * @port_num: Port number to check 2162 * 2163 * RoCE GID table mechanism manages the various GIDs for a device. 2164 * 2165 * NOTE: if allocating the port's GID table has failed, this call will still 2166 * return true, but any RoCE GID table API will fail. 2167 * 2168 * Return: true if the port uses RoCE GID table mechanism in order to manage 2169 * its GIDs. 2170 */ 2171 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2172 u8 port_num) 2173 { 2174 return rdma_protocol_roce(device, port_num) && 2175 device->add_gid && device->del_gid; 2176 } 2177 2178 int ib_query_gid(struct ib_device *device, 2179 u8 port_num, int index, union ib_gid *gid); 2180 2181 int ib_query_pkey(struct ib_device *device, 2182 u8 port_num, u16 index, u16 *pkey); 2183 2184 int ib_modify_device(struct ib_device *device, 2185 int device_modify_mask, 2186 struct ib_device_modify *device_modify); 2187 2188 int ib_modify_port(struct ib_device *device, 2189 u8 port_num, int port_modify_mask, 2190 struct ib_port_modify *port_modify); 2191 2192 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2193 u8 *port_num, u16 *index); 2194 2195 int ib_find_pkey(struct ib_device *device, 2196 u8 port_num, u16 pkey, u16 *index); 2197 2198 struct ib_pd *ib_alloc_pd(struct ib_device *device); 2199 2200 void ib_dealloc_pd(struct ib_pd *pd); 2201 2202 /** 2203 * ib_create_ah - Creates an address handle for the given address vector. 2204 * @pd: The protection domain associated with the address handle. 2205 * @ah_attr: The attributes of the address vector. 2206 * 2207 * The address handle is used to reference a local or global destination 2208 * in all UD QP post sends. 2209 */ 2210 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2211 2212 /** 2213 * ib_init_ah_from_wc - Initializes address handle attributes from a 2214 * work completion. 2215 * @device: Device on which the received message arrived. 2216 * @port_num: Port on which the received message arrived. 2217 * @wc: Work completion associated with the received message. 2218 * @grh: References the received global route header. This parameter is 2219 * ignored unless the work completion indicates that the GRH is valid. 2220 * @ah_attr: Returned attributes that can be used when creating an address 2221 * handle for replying to the message. 2222 */ 2223 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2224 const struct ib_wc *wc, const struct ib_grh *grh, 2225 struct ib_ah_attr *ah_attr); 2226 2227 /** 2228 * ib_create_ah_from_wc - Creates an address handle associated with the 2229 * sender of the specified work completion. 2230 * @pd: The protection domain associated with the address handle. 2231 * @wc: Work completion information associated with a received message. 2232 * @grh: References the received global route header. This parameter is 2233 * ignored unless the work completion indicates that the GRH is valid. 2234 * @port_num: The outbound port number to associate with the address. 2235 * 2236 * The address handle is used to reference a local or global destination 2237 * in all UD QP post sends. 2238 */ 2239 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2240 const struct ib_grh *grh, u8 port_num); 2241 2242 /** 2243 * ib_modify_ah - Modifies the address vector associated with an address 2244 * handle. 2245 * @ah: The address handle to modify. 2246 * @ah_attr: The new address vector attributes to associate with the 2247 * address handle. 2248 */ 2249 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2250 2251 /** 2252 * ib_query_ah - Queries the address vector associated with an address 2253 * handle. 2254 * @ah: The address handle to query. 2255 * @ah_attr: The address vector attributes associated with the address 2256 * handle. 2257 */ 2258 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2259 2260 /** 2261 * ib_destroy_ah - Destroys an address handle. 2262 * @ah: The address handle to destroy. 2263 */ 2264 int ib_destroy_ah(struct ib_ah *ah); 2265 2266 /** 2267 * ib_create_srq - Creates a SRQ associated with the specified protection 2268 * domain. 2269 * @pd: The protection domain associated with the SRQ. 2270 * @srq_init_attr: A list of initial attributes required to create the 2271 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2272 * the actual capabilities of the created SRQ. 2273 * 2274 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2275 * requested size of the SRQ, and set to the actual values allocated 2276 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2277 * will always be at least as large as the requested values. 2278 */ 2279 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2280 struct ib_srq_init_attr *srq_init_attr); 2281 2282 /** 2283 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2284 * @srq: The SRQ to modify. 2285 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2286 * the current values of selected SRQ attributes are returned. 2287 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2288 * are being modified. 2289 * 2290 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2291 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2292 * the number of receives queued drops below the limit. 2293 */ 2294 int ib_modify_srq(struct ib_srq *srq, 2295 struct ib_srq_attr *srq_attr, 2296 enum ib_srq_attr_mask srq_attr_mask); 2297 2298 /** 2299 * ib_query_srq - Returns the attribute list and current values for the 2300 * specified SRQ. 2301 * @srq: The SRQ to query. 2302 * @srq_attr: The attributes of the specified SRQ. 2303 */ 2304 int ib_query_srq(struct ib_srq *srq, 2305 struct ib_srq_attr *srq_attr); 2306 2307 /** 2308 * ib_destroy_srq - Destroys the specified SRQ. 2309 * @srq: The SRQ to destroy. 2310 */ 2311 int ib_destroy_srq(struct ib_srq *srq); 2312 2313 /** 2314 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2315 * @srq: The SRQ to post the work request on. 2316 * @recv_wr: A list of work requests to post on the receive queue. 2317 * @bad_recv_wr: On an immediate failure, this parameter will reference 2318 * the work request that failed to be posted on the QP. 2319 */ 2320 static inline int ib_post_srq_recv(struct ib_srq *srq, 2321 struct ib_recv_wr *recv_wr, 2322 struct ib_recv_wr **bad_recv_wr) 2323 { 2324 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2325 } 2326 2327 /** 2328 * ib_create_qp - Creates a QP associated with the specified protection 2329 * domain. 2330 * @pd: The protection domain associated with the QP. 2331 * @qp_init_attr: A list of initial attributes required to create the 2332 * QP. If QP creation succeeds, then the attributes are updated to 2333 * the actual capabilities of the created QP. 2334 */ 2335 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2336 struct ib_qp_init_attr *qp_init_attr); 2337 2338 /** 2339 * ib_modify_qp - Modifies the attributes for the specified QP and then 2340 * transitions the QP to the given state. 2341 * @qp: The QP to modify. 2342 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2343 * the current values of selected QP attributes are returned. 2344 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2345 * are being modified. 2346 */ 2347 int ib_modify_qp(struct ib_qp *qp, 2348 struct ib_qp_attr *qp_attr, 2349 int qp_attr_mask); 2350 2351 /** 2352 * ib_query_qp - Returns the attribute list and current values for the 2353 * specified QP. 2354 * @qp: The QP to query. 2355 * @qp_attr: The attributes of the specified QP. 2356 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2357 * @qp_init_attr: Additional attributes of the selected QP. 2358 * 2359 * The qp_attr_mask may be used to limit the query to gathering only the 2360 * selected attributes. 2361 */ 2362 int ib_query_qp(struct ib_qp *qp, 2363 struct ib_qp_attr *qp_attr, 2364 int qp_attr_mask, 2365 struct ib_qp_init_attr *qp_init_attr); 2366 2367 /** 2368 * ib_destroy_qp - Destroys the specified QP. 2369 * @qp: The QP to destroy. 2370 */ 2371 int ib_destroy_qp(struct ib_qp *qp); 2372 2373 /** 2374 * ib_open_qp - Obtain a reference to an existing sharable QP. 2375 * @xrcd - XRC domain 2376 * @qp_open_attr: Attributes identifying the QP to open. 2377 * 2378 * Returns a reference to a sharable QP. 2379 */ 2380 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2381 struct ib_qp_open_attr *qp_open_attr); 2382 2383 /** 2384 * ib_close_qp - Release an external reference to a QP. 2385 * @qp: The QP handle to release 2386 * 2387 * The opened QP handle is released by the caller. The underlying 2388 * shared QP is not destroyed until all internal references are released. 2389 */ 2390 int ib_close_qp(struct ib_qp *qp); 2391 2392 /** 2393 * ib_post_send - Posts a list of work requests to the send queue of 2394 * the specified QP. 2395 * @qp: The QP to post the work request on. 2396 * @send_wr: A list of work requests to post on the send queue. 2397 * @bad_send_wr: On an immediate failure, this parameter will reference 2398 * the work request that failed to be posted on the QP. 2399 * 2400 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2401 * error is returned, the QP state shall not be affected, 2402 * ib_post_send() will return an immediate error after queueing any 2403 * earlier work requests in the list. 2404 */ 2405 static inline int ib_post_send(struct ib_qp *qp, 2406 struct ib_send_wr *send_wr, 2407 struct ib_send_wr **bad_send_wr) 2408 { 2409 return qp->device->post_send(qp, send_wr, bad_send_wr); 2410 } 2411 2412 /** 2413 * ib_post_recv - Posts a list of work requests to the receive queue of 2414 * the specified QP. 2415 * @qp: The QP to post the work request on. 2416 * @recv_wr: A list of work requests to post on the receive queue. 2417 * @bad_recv_wr: On an immediate failure, this parameter will reference 2418 * the work request that failed to be posted on the QP. 2419 */ 2420 static inline int ib_post_recv(struct ib_qp *qp, 2421 struct ib_recv_wr *recv_wr, 2422 struct ib_recv_wr **bad_recv_wr) 2423 { 2424 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2425 } 2426 2427 /** 2428 * ib_create_cq - Creates a CQ on the specified device. 2429 * @device: The device on which to create the CQ. 2430 * @comp_handler: A user-specified callback that is invoked when a 2431 * completion event occurs on the CQ. 2432 * @event_handler: A user-specified callback that is invoked when an 2433 * asynchronous event not associated with a completion occurs on the CQ. 2434 * @cq_context: Context associated with the CQ returned to the user via 2435 * the associated completion and event handlers. 2436 * @cq_attr: The attributes the CQ should be created upon. 2437 * 2438 * Users can examine the cq structure to determine the actual CQ size. 2439 */ 2440 struct ib_cq *ib_create_cq(struct ib_device *device, 2441 ib_comp_handler comp_handler, 2442 void (*event_handler)(struct ib_event *, void *), 2443 void *cq_context, 2444 const struct ib_cq_init_attr *cq_attr); 2445 2446 /** 2447 * ib_resize_cq - Modifies the capacity of the CQ. 2448 * @cq: The CQ to resize. 2449 * @cqe: The minimum size of the CQ. 2450 * 2451 * Users can examine the cq structure to determine the actual CQ size. 2452 */ 2453 int ib_resize_cq(struct ib_cq *cq, int cqe); 2454 2455 /** 2456 * ib_modify_cq - Modifies moderation params of the CQ 2457 * @cq: The CQ to modify. 2458 * @cq_count: number of CQEs that will trigger an event 2459 * @cq_period: max period of time in usec before triggering an event 2460 * 2461 */ 2462 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2463 2464 /** 2465 * ib_destroy_cq - Destroys the specified CQ. 2466 * @cq: The CQ to destroy. 2467 */ 2468 int ib_destroy_cq(struct ib_cq *cq); 2469 2470 /** 2471 * ib_poll_cq - poll a CQ for completion(s) 2472 * @cq:the CQ being polled 2473 * @num_entries:maximum number of completions to return 2474 * @wc:array of at least @num_entries &struct ib_wc where completions 2475 * will be returned 2476 * 2477 * Poll a CQ for (possibly multiple) completions. If the return value 2478 * is < 0, an error occurred. If the return value is >= 0, it is the 2479 * number of completions returned. If the return value is 2480 * non-negative and < num_entries, then the CQ was emptied. 2481 */ 2482 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2483 struct ib_wc *wc) 2484 { 2485 return cq->device->poll_cq(cq, num_entries, wc); 2486 } 2487 2488 /** 2489 * ib_peek_cq - Returns the number of unreaped completions currently 2490 * on the specified CQ. 2491 * @cq: The CQ to peek. 2492 * @wc_cnt: A minimum number of unreaped completions to check for. 2493 * 2494 * If the number of unreaped completions is greater than or equal to wc_cnt, 2495 * this function returns wc_cnt, otherwise, it returns the actual number of 2496 * unreaped completions. 2497 */ 2498 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2499 2500 /** 2501 * ib_req_notify_cq - Request completion notification on a CQ. 2502 * @cq: The CQ to generate an event for. 2503 * @flags: 2504 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2505 * to request an event on the next solicited event or next work 2506 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2507 * may also be |ed in to request a hint about missed events, as 2508 * described below. 2509 * 2510 * Return Value: 2511 * < 0 means an error occurred while requesting notification 2512 * == 0 means notification was requested successfully, and if 2513 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2514 * were missed and it is safe to wait for another event. In 2515 * this case is it guaranteed that any work completions added 2516 * to the CQ since the last CQ poll will trigger a completion 2517 * notification event. 2518 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2519 * in. It means that the consumer must poll the CQ again to 2520 * make sure it is empty to avoid missing an event because of a 2521 * race between requesting notification and an entry being 2522 * added to the CQ. This return value means it is possible 2523 * (but not guaranteed) that a work completion has been added 2524 * to the CQ since the last poll without triggering a 2525 * completion notification event. 2526 */ 2527 static inline int ib_req_notify_cq(struct ib_cq *cq, 2528 enum ib_cq_notify_flags flags) 2529 { 2530 return cq->device->req_notify_cq(cq, flags); 2531 } 2532 2533 /** 2534 * ib_req_ncomp_notif - Request completion notification when there are 2535 * at least the specified number of unreaped completions on the CQ. 2536 * @cq: The CQ to generate an event for. 2537 * @wc_cnt: The number of unreaped completions that should be on the 2538 * CQ before an event is generated. 2539 */ 2540 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2541 { 2542 return cq->device->req_ncomp_notif ? 2543 cq->device->req_ncomp_notif(cq, wc_cnt) : 2544 -ENOSYS; 2545 } 2546 2547 /** 2548 * ib_get_dma_mr - Returns a memory region for system memory that is 2549 * usable for DMA. 2550 * @pd: The protection domain associated with the memory region. 2551 * @mr_access_flags: Specifies the memory access rights. 2552 * 2553 * Note that the ib_dma_*() functions defined below must be used 2554 * to create/destroy addresses used with the Lkey or Rkey returned 2555 * by ib_get_dma_mr(). 2556 */ 2557 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 2558 2559 /** 2560 * ib_dma_mapping_error - check a DMA addr for error 2561 * @dev: The device for which the dma_addr was created 2562 * @dma_addr: The DMA address to check 2563 */ 2564 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2565 { 2566 if (dev->dma_ops) 2567 return dev->dma_ops->mapping_error(dev, dma_addr); 2568 return dma_mapping_error(dev->dma_device, dma_addr); 2569 } 2570 2571 /** 2572 * ib_dma_map_single - Map a kernel virtual address to DMA address 2573 * @dev: The device for which the dma_addr is to be created 2574 * @cpu_addr: The kernel virtual address 2575 * @size: The size of the region in bytes 2576 * @direction: The direction of the DMA 2577 */ 2578 static inline u64 ib_dma_map_single(struct ib_device *dev, 2579 void *cpu_addr, size_t size, 2580 enum dma_data_direction direction) 2581 { 2582 if (dev->dma_ops) 2583 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2584 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2585 } 2586 2587 /** 2588 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2589 * @dev: The device for which the DMA address was created 2590 * @addr: The DMA address 2591 * @size: The size of the region in bytes 2592 * @direction: The direction of the DMA 2593 */ 2594 static inline void ib_dma_unmap_single(struct ib_device *dev, 2595 u64 addr, size_t size, 2596 enum dma_data_direction direction) 2597 { 2598 if (dev->dma_ops) 2599 dev->dma_ops->unmap_single(dev, addr, size, direction); 2600 else 2601 dma_unmap_single(dev->dma_device, addr, size, direction); 2602 } 2603 2604 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2605 void *cpu_addr, size_t size, 2606 enum dma_data_direction direction, 2607 struct dma_attrs *attrs) 2608 { 2609 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2610 direction, attrs); 2611 } 2612 2613 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2614 u64 addr, size_t size, 2615 enum dma_data_direction direction, 2616 struct dma_attrs *attrs) 2617 { 2618 return dma_unmap_single_attrs(dev->dma_device, addr, size, 2619 direction, attrs); 2620 } 2621 2622 /** 2623 * ib_dma_map_page - Map a physical page to DMA address 2624 * @dev: The device for which the dma_addr is to be created 2625 * @page: The page to be mapped 2626 * @offset: The offset within the page 2627 * @size: The size of the region in bytes 2628 * @direction: The direction of the DMA 2629 */ 2630 static inline u64 ib_dma_map_page(struct ib_device *dev, 2631 struct page *page, 2632 unsigned long offset, 2633 size_t size, 2634 enum dma_data_direction direction) 2635 { 2636 if (dev->dma_ops) 2637 return dev->dma_ops->map_page(dev, page, offset, size, direction); 2638 return dma_map_page(dev->dma_device, page, offset, size, direction); 2639 } 2640 2641 /** 2642 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 2643 * @dev: The device for which the DMA address was created 2644 * @addr: The DMA address 2645 * @size: The size of the region in bytes 2646 * @direction: The direction of the DMA 2647 */ 2648 static inline void ib_dma_unmap_page(struct ib_device *dev, 2649 u64 addr, size_t size, 2650 enum dma_data_direction direction) 2651 { 2652 if (dev->dma_ops) 2653 dev->dma_ops->unmap_page(dev, addr, size, direction); 2654 else 2655 dma_unmap_page(dev->dma_device, addr, size, direction); 2656 } 2657 2658 /** 2659 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 2660 * @dev: The device for which the DMA addresses are to be created 2661 * @sg: The array of scatter/gather entries 2662 * @nents: The number of scatter/gather entries 2663 * @direction: The direction of the DMA 2664 */ 2665 static inline int ib_dma_map_sg(struct ib_device *dev, 2666 struct scatterlist *sg, int nents, 2667 enum dma_data_direction direction) 2668 { 2669 if (dev->dma_ops) 2670 return dev->dma_ops->map_sg(dev, sg, nents, direction); 2671 return dma_map_sg(dev->dma_device, sg, nents, direction); 2672 } 2673 2674 /** 2675 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 2676 * @dev: The device for which the DMA addresses were created 2677 * @sg: The array of scatter/gather entries 2678 * @nents: The number of scatter/gather entries 2679 * @direction: The direction of the DMA 2680 */ 2681 static inline void ib_dma_unmap_sg(struct ib_device *dev, 2682 struct scatterlist *sg, int nents, 2683 enum dma_data_direction direction) 2684 { 2685 if (dev->dma_ops) 2686 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2687 else 2688 dma_unmap_sg(dev->dma_device, sg, nents, direction); 2689 } 2690 2691 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 2692 struct scatterlist *sg, int nents, 2693 enum dma_data_direction direction, 2694 struct dma_attrs *attrs) 2695 { 2696 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2697 } 2698 2699 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 2700 struct scatterlist *sg, int nents, 2701 enum dma_data_direction direction, 2702 struct dma_attrs *attrs) 2703 { 2704 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2705 } 2706 /** 2707 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 2708 * @dev: The device for which the DMA addresses were created 2709 * @sg: The scatter/gather entry 2710 * 2711 * Note: this function is obsolete. To do: change all occurrences of 2712 * ib_sg_dma_address() into sg_dma_address(). 2713 */ 2714 static inline u64 ib_sg_dma_address(struct ib_device *dev, 2715 struct scatterlist *sg) 2716 { 2717 return sg_dma_address(sg); 2718 } 2719 2720 /** 2721 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 2722 * @dev: The device for which the DMA addresses were created 2723 * @sg: The scatter/gather entry 2724 * 2725 * Note: this function is obsolete. To do: change all occurrences of 2726 * ib_sg_dma_len() into sg_dma_len(). 2727 */ 2728 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 2729 struct scatterlist *sg) 2730 { 2731 return sg_dma_len(sg); 2732 } 2733 2734 /** 2735 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 2736 * @dev: The device for which the DMA address was created 2737 * @addr: The DMA address 2738 * @size: The size of the region in bytes 2739 * @dir: The direction of the DMA 2740 */ 2741 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 2742 u64 addr, 2743 size_t size, 2744 enum dma_data_direction dir) 2745 { 2746 if (dev->dma_ops) 2747 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 2748 else 2749 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 2750 } 2751 2752 /** 2753 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 2754 * @dev: The device for which the DMA address was created 2755 * @addr: The DMA address 2756 * @size: The size of the region in bytes 2757 * @dir: The direction of the DMA 2758 */ 2759 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 2760 u64 addr, 2761 size_t size, 2762 enum dma_data_direction dir) 2763 { 2764 if (dev->dma_ops) 2765 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 2766 else 2767 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 2768 } 2769 2770 /** 2771 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 2772 * @dev: The device for which the DMA address is requested 2773 * @size: The size of the region to allocate in bytes 2774 * @dma_handle: A pointer for returning the DMA address of the region 2775 * @flag: memory allocator flags 2776 */ 2777 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 2778 size_t size, 2779 u64 *dma_handle, 2780 gfp_t flag) 2781 { 2782 if (dev->dma_ops) 2783 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 2784 else { 2785 dma_addr_t handle; 2786 void *ret; 2787 2788 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 2789 *dma_handle = handle; 2790 return ret; 2791 } 2792 } 2793 2794 /** 2795 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 2796 * @dev: The device for which the DMA addresses were allocated 2797 * @size: The size of the region 2798 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 2799 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 2800 */ 2801 static inline void ib_dma_free_coherent(struct ib_device *dev, 2802 size_t size, void *cpu_addr, 2803 u64 dma_handle) 2804 { 2805 if (dev->dma_ops) 2806 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 2807 else 2808 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 2809 } 2810 2811 /** 2812 * ib_query_mr - Retrieves information about a specific memory region. 2813 * @mr: The memory region to retrieve information about. 2814 * @mr_attr: The attributes of the specified memory region. 2815 */ 2816 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2817 2818 /** 2819 * ib_dereg_mr - Deregisters a memory region and removes it from the 2820 * HCA translation table. 2821 * @mr: The memory region to deregister. 2822 * 2823 * This function can fail, if the memory region has memory windows bound to it. 2824 */ 2825 int ib_dereg_mr(struct ib_mr *mr); 2826 2827 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 2828 enum ib_mr_type mr_type, 2829 u32 max_num_sg); 2830 2831 /** 2832 * ib_alloc_fast_reg_page_list - Allocates a page list array 2833 * @device - ib device pointer. 2834 * @page_list_len - size of the page list array to be allocated. 2835 * 2836 * This allocates and returns a struct ib_fast_reg_page_list * and a 2837 * page_list array that is at least page_list_len in size. The actual 2838 * size is returned in max_page_list_len. The caller is responsible 2839 * for initializing the contents of the page_list array before posting 2840 * a send work request with the IB_WC_FAST_REG_MR opcode. 2841 * 2842 * The page_list array entries must be translated using one of the 2843 * ib_dma_*() functions just like the addresses passed to 2844 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2845 * ib_fast_reg_page_list must not be modified by the caller until the 2846 * IB_WC_FAST_REG_MR work request completes. 2847 */ 2848 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2849 struct ib_device *device, int page_list_len); 2850 2851 /** 2852 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2853 * page list array. 2854 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2855 */ 2856 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2857 2858 /** 2859 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2860 * R_Key and L_Key. 2861 * @mr - struct ib_mr pointer to be updated. 2862 * @newkey - new key to be used. 2863 */ 2864 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2865 { 2866 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2867 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2868 } 2869 2870 /** 2871 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 2872 * for calculating a new rkey for type 2 memory windows. 2873 * @rkey - the rkey to increment. 2874 */ 2875 static inline u32 ib_inc_rkey(u32 rkey) 2876 { 2877 const u32 mask = 0x000000ff; 2878 return ((rkey + 1) & mask) | (rkey & ~mask); 2879 } 2880 2881 /** 2882 * ib_alloc_mw - Allocates a memory window. 2883 * @pd: The protection domain associated with the memory window. 2884 * @type: The type of the memory window (1 or 2). 2885 */ 2886 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type); 2887 2888 /** 2889 * ib_bind_mw - Posts a work request to the send queue of the specified 2890 * QP, which binds the memory window to the given address range and 2891 * remote access attributes. 2892 * @qp: QP to post the bind work request on. 2893 * @mw: The memory window to bind. 2894 * @mw_bind: Specifies information about the memory window, including 2895 * its address range, remote access rights, and associated memory region. 2896 * 2897 * If there is no immediate error, the function will update the rkey member 2898 * of the mw parameter to its new value. The bind operation can still fail 2899 * asynchronously. 2900 */ 2901 static inline int ib_bind_mw(struct ib_qp *qp, 2902 struct ib_mw *mw, 2903 struct ib_mw_bind *mw_bind) 2904 { 2905 /* XXX reference counting in corresponding MR? */ 2906 return mw->device->bind_mw ? 2907 mw->device->bind_mw(qp, mw, mw_bind) : 2908 -ENOSYS; 2909 } 2910 2911 /** 2912 * ib_dealloc_mw - Deallocates a memory window. 2913 * @mw: The memory window to deallocate. 2914 */ 2915 int ib_dealloc_mw(struct ib_mw *mw); 2916 2917 /** 2918 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2919 * @pd: The protection domain associated with the unmapped region. 2920 * @mr_access_flags: Specifies the memory access rights. 2921 * @fmr_attr: Attributes of the unmapped region. 2922 * 2923 * A fast memory region must be mapped before it can be used as part of 2924 * a work request. 2925 */ 2926 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2927 int mr_access_flags, 2928 struct ib_fmr_attr *fmr_attr); 2929 2930 /** 2931 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2932 * @fmr: The fast memory region to associate with the pages. 2933 * @page_list: An array of physical pages to map to the fast memory region. 2934 * @list_len: The number of pages in page_list. 2935 * @iova: The I/O virtual address to use with the mapped region. 2936 */ 2937 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2938 u64 *page_list, int list_len, 2939 u64 iova) 2940 { 2941 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2942 } 2943 2944 /** 2945 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2946 * @fmr_list: A linked list of fast memory regions to unmap. 2947 */ 2948 int ib_unmap_fmr(struct list_head *fmr_list); 2949 2950 /** 2951 * ib_dealloc_fmr - Deallocates a fast memory region. 2952 * @fmr: The fast memory region to deallocate. 2953 */ 2954 int ib_dealloc_fmr(struct ib_fmr *fmr); 2955 2956 /** 2957 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2958 * @qp: QP to attach to the multicast group. The QP must be type 2959 * IB_QPT_UD. 2960 * @gid: Multicast group GID. 2961 * @lid: Multicast group LID in host byte order. 2962 * 2963 * In order to send and receive multicast packets, subnet 2964 * administration must have created the multicast group and configured 2965 * the fabric appropriately. The port associated with the specified 2966 * QP must also be a member of the multicast group. 2967 */ 2968 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2969 2970 /** 2971 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2972 * @qp: QP to detach from the multicast group. 2973 * @gid: Multicast group GID. 2974 * @lid: Multicast group LID in host byte order. 2975 */ 2976 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2977 2978 /** 2979 * ib_alloc_xrcd - Allocates an XRC domain. 2980 * @device: The device on which to allocate the XRC domain. 2981 */ 2982 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2983 2984 /** 2985 * ib_dealloc_xrcd - Deallocates an XRC domain. 2986 * @xrcd: The XRC domain to deallocate. 2987 */ 2988 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2989 2990 struct ib_flow *ib_create_flow(struct ib_qp *qp, 2991 struct ib_flow_attr *flow_attr, int domain); 2992 int ib_destroy_flow(struct ib_flow *flow_id); 2993 2994 static inline int ib_check_mr_access(int flags) 2995 { 2996 /* 2997 * Local write permission is required if remote write or 2998 * remote atomic permission is also requested. 2999 */ 3000 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3001 !(flags & IB_ACCESS_LOCAL_WRITE)) 3002 return -EINVAL; 3003 3004 return 0; 3005 } 3006 3007 /** 3008 * ib_check_mr_status: lightweight check of MR status. 3009 * This routine may provide status checks on a selected 3010 * ib_mr. first use is for signature status check. 3011 * 3012 * @mr: A memory region. 3013 * @check_mask: Bitmask of which checks to perform from 3014 * ib_mr_status_check enumeration. 3015 * @mr_status: The container of relevant status checks. 3016 * failed checks will be indicated in the status bitmask 3017 * and the relevant info shall be in the error item. 3018 */ 3019 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3020 struct ib_mr_status *mr_status); 3021 3022 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3023 u16 pkey, const union ib_gid *gid, 3024 const struct sockaddr *addr); 3025 3026 #endif /* IB_VERBS_H */ 3027